Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11/*
12 * Handle hardware traps and faults.
13 */
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/kdebug.h>
17#include <linux/sched/debug.h>
18#include <linux/nmi.h>
19#include <linux/debugfs.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/ratelimit.h>
23#include <linux/slab.h>
24#include <linux/export.h>
25#include <linux/atomic.h>
26#include <linux/sched/clock.h>
27
28#include <asm/cpu_entry_area.h>
29#include <asm/traps.h>
30#include <asm/mach_traps.h>
31#include <asm/nmi.h>
32#include <asm/x86_init.h>
33#include <asm/reboot.h>
34#include <asm/cache.h>
35#include <asm/nospec-branch.h>
36#include <asm/sev.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/nmi.h>
40
41struct nmi_desc {
42 raw_spinlock_t lock;
43 struct list_head head;
44};
45
46static struct nmi_desc nmi_desc[NMI_MAX] =
47{
48 {
49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
51 },
52 {
53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
55 },
56 {
57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
59 },
60 {
61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 },
64
65};
66
67struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
72};
73
74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75
76static int ignore_nmis __read_mostly;
77
78int unknown_nmi_panic;
79/*
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
82 */
83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84
85static int __init setup_unknown_nmi_panic(char *str)
86{
87 unknown_nmi_panic = 1;
88 return 1;
89}
90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91
92#define nmi_to_desc(type) (&nmi_desc[type])
93
94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95
96static int __init nmi_warning_debugfs(void)
97{
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir, &nmi_longest_ns);
100 return 0;
101}
102fs_initcall(nmi_warning_debugfs);
103
104static void nmi_check_duration(struct nmiaction *action, u64 duration)
105{
106 int remainder_ns, decimal_msecs;
107
108 if (duration < nmi_longest_ns || duration < action->max_duration)
109 return;
110
111 action->max_duration = duration;
112
113 remainder_ns = do_div(duration, (1000 * 1000));
114 decimal_msecs = remainder_ns / 1000;
115
116 printk_ratelimited(KERN_INFO
117 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118 action->handler, duration, decimal_msecs);
119}
120
121static int nmi_handle(unsigned int type, struct pt_regs *regs)
122{
123 struct nmi_desc *desc = nmi_to_desc(type);
124 struct nmiaction *a;
125 int handled=0;
126
127 rcu_read_lock();
128
129 /*
130 * NMIs are edge-triggered, which means if you have enough
131 * of them concurrently, you can lose some because only one
132 * can be latched at any given time. Walk the whole list
133 * to handle those situations.
134 */
135 list_for_each_entry_rcu(a, &desc->head, list) {
136 int thishandled;
137 u64 delta;
138
139 delta = sched_clock();
140 thishandled = a->handler(type, regs);
141 handled += thishandled;
142 delta = sched_clock() - delta;
143 trace_nmi_handler(a->handler, (int)delta, thishandled);
144
145 nmi_check_duration(a, delta);
146 }
147
148 rcu_read_unlock();
149
150 /* return total number of NMI events handled */
151 return handled;
152}
153NOKPROBE_SYMBOL(nmi_handle);
154
155int __register_nmi_handler(unsigned int type, struct nmiaction *action)
156{
157 struct nmi_desc *desc = nmi_to_desc(type);
158 unsigned long flags;
159
160 if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
161 return -EINVAL;
162
163 raw_spin_lock_irqsave(&desc->lock, flags);
164
165 /*
166 * Indicate if there are multiple registrations on the
167 * internal NMI handler call chains (SERR and IO_CHECK).
168 */
169 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171
172 /*
173 * some handlers need to be executed first otherwise a fake
174 * event confuses some handlers (kdump uses this flag)
175 */
176 if (action->flags & NMI_FLAG_FIRST)
177 list_add_rcu(&action->list, &desc->head);
178 else
179 list_add_tail_rcu(&action->list, &desc->head);
180
181 raw_spin_unlock_irqrestore(&desc->lock, flags);
182 return 0;
183}
184EXPORT_SYMBOL(__register_nmi_handler);
185
186void unregister_nmi_handler(unsigned int type, const char *name)
187{
188 struct nmi_desc *desc = nmi_to_desc(type);
189 struct nmiaction *n, *found = NULL;
190 unsigned long flags;
191
192 raw_spin_lock_irqsave(&desc->lock, flags);
193
194 list_for_each_entry_rcu(n, &desc->head, list) {
195 /*
196 * the name passed in to describe the nmi handler
197 * is used as the lookup key
198 */
199 if (!strcmp(n->name, name)) {
200 WARN(in_nmi(),
201 "Trying to free NMI (%s) from NMI context!\n", n->name);
202 list_del_rcu(&n->list);
203 found = n;
204 break;
205 }
206 }
207
208 raw_spin_unlock_irqrestore(&desc->lock, flags);
209 if (found) {
210 synchronize_rcu();
211 INIT_LIST_HEAD(&found->list);
212 }
213}
214EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215
216static void
217pci_serr_error(unsigned char reason, struct pt_regs *regs)
218{
219 /* check to see if anyone registered against these types of errors */
220 if (nmi_handle(NMI_SERR, regs))
221 return;
222
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason, smp_processor_id());
225
226 if (panic_on_unrecovered_nmi)
227 nmi_panic(regs, "NMI: Not continuing");
228
229 pr_emerg("Dazed and confused, but trying to continue\n");
230
231 /* Clear and disable the PCI SERR error line. */
232 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
233 outb(reason, NMI_REASON_PORT);
234}
235NOKPROBE_SYMBOL(pci_serr_error);
236
237static void
238io_check_error(unsigned char reason, struct pt_regs *regs)
239{
240 unsigned long i;
241
242 /* check to see if anyone registered against these types of errors */
243 if (nmi_handle(NMI_IO_CHECK, regs))
244 return;
245
246 pr_emerg(
247 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248 reason, smp_processor_id());
249 show_regs(regs);
250
251 if (panic_on_io_nmi) {
252 nmi_panic(regs, "NMI IOCK error: Not continuing");
253
254 /*
255 * If we end up here, it means we have received an NMI while
256 * processing panic(). Simply return without delaying and
257 * re-enabling NMIs.
258 */
259 return;
260 }
261
262 /* Re-enable the IOCK line, wait for a few seconds */
263 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264 outb(reason, NMI_REASON_PORT);
265
266 i = 20000;
267 while (--i) {
268 touch_nmi_watchdog();
269 udelay(100);
270 }
271
272 reason &= ~NMI_REASON_CLEAR_IOCHK;
273 outb(reason, NMI_REASON_PORT);
274}
275NOKPROBE_SYMBOL(io_check_error);
276
277static void
278unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279{
280 int handled;
281
282 /*
283 * Use 'false' as back-to-back NMIs are dealt with one level up.
284 * Of course this makes having multiple 'unknown' handlers useless
285 * as only the first one is ever run (unless it can actually determine
286 * if it caused the NMI)
287 */
288 handled = nmi_handle(NMI_UNKNOWN, regs);
289 if (handled) {
290 __this_cpu_add(nmi_stats.unknown, handled);
291 return;
292 }
293
294 __this_cpu_add(nmi_stats.unknown, 1);
295
296 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 reason, smp_processor_id());
298
299 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 nmi_panic(regs, "NMI: Not continuing");
301
302 pr_emerg("Dazed and confused, but trying to continue\n");
303}
304NOKPROBE_SYMBOL(unknown_nmi_error);
305
306static DEFINE_PER_CPU(bool, swallow_nmi);
307static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308
309static noinstr void default_do_nmi(struct pt_regs *regs)
310{
311 unsigned char reason = 0;
312 int handled;
313 bool b2b = false;
314
315 /*
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
319 */
320
321 /*
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
327 */
328 if (regs->ip == __this_cpu_read(last_nmi_rip))
329 b2b = true;
330 else
331 __this_cpu_write(swallow_nmi, false);
332
333 __this_cpu_write(last_nmi_rip, regs->ip);
334
335 instrumentation_begin();
336
337 handled = nmi_handle(NMI_LOCAL, regs);
338 __this_cpu_add(nmi_stats.normal, handled);
339 if (handled) {
340 /*
341 * There are cases when a NMI handler handles multiple
342 * events in the current NMI. One of these events may
343 * be queued for in the next NMI. Because the event is
344 * already handled, the next NMI will result in an unknown
345 * NMI. Instead lets flag this for a potential NMI to
346 * swallow.
347 */
348 if (handled > 1)
349 __this_cpu_write(swallow_nmi, true);
350 goto out;
351 }
352
353 /*
354 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
355 *
356 * Another CPU may be processing panic routines while holding
357 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
358 * and if so, call its callback directly. If there is no CPU preparing
359 * crash dump, we simply loop here.
360 */
361 while (!raw_spin_trylock(&nmi_reason_lock)) {
362 run_crash_ipi_callback(regs);
363 cpu_relax();
364 }
365
366 reason = x86_platform.get_nmi_reason();
367
368 if (reason & NMI_REASON_MASK) {
369 if (reason & NMI_REASON_SERR)
370 pci_serr_error(reason, regs);
371 else if (reason & NMI_REASON_IOCHK)
372 io_check_error(reason, regs);
373#ifdef CONFIG_X86_32
374 /*
375 * Reassert NMI in case it became active
376 * meanwhile as it's edge-triggered:
377 */
378 reassert_nmi();
379#endif
380 __this_cpu_add(nmi_stats.external, 1);
381 raw_spin_unlock(&nmi_reason_lock);
382 goto out;
383 }
384 raw_spin_unlock(&nmi_reason_lock);
385
386 /*
387 * Only one NMI can be latched at a time. To handle
388 * this we may process multiple nmi handlers at once to
389 * cover the case where an NMI is dropped. The downside
390 * to this approach is we may process an NMI prematurely,
391 * while its real NMI is sitting latched. This will cause
392 * an unknown NMI on the next run of the NMI processing.
393 *
394 * We tried to flag that condition above, by setting the
395 * swallow_nmi flag when we process more than one event.
396 * This condition is also only present on the second half
397 * of a back-to-back NMI, so we flag that condition too.
398 *
399 * If both are true, we assume we already processed this
400 * NMI previously and we swallow it. Otherwise we reset
401 * the logic.
402 *
403 * There are scenarios where we may accidentally swallow
404 * a 'real' unknown NMI. For example, while processing
405 * a perf NMI another perf NMI comes in along with a
406 * 'real' unknown NMI. These two NMIs get combined into
407 * one (as described above). When the next NMI gets
408 * processed, it will be flagged by perf as handled, but
409 * no one will know that there was a 'real' unknown NMI sent
410 * also. As a result it gets swallowed. Or if the first
411 * perf NMI returns two events handled then the second
412 * NMI will get eaten by the logic below, again losing a
413 * 'real' unknown NMI. But this is the best we can do
414 * for now.
415 */
416 if (b2b && __this_cpu_read(swallow_nmi))
417 __this_cpu_add(nmi_stats.swallow, 1);
418 else
419 unknown_nmi_error(reason, regs);
420
421out:
422 instrumentation_end();
423}
424
425/*
426 * NMIs can page fault or hit breakpoints which will cause it to lose
427 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
428 *
429 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
430 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
431 * if the outer NMI came from kernel mode, but we can still nest if the
432 * outer NMI came from user mode.
433 *
434 * To handle these nested NMIs, we have three states:
435 *
436 * 1) not running
437 * 2) executing
438 * 3) latched
439 *
440 * When no NMI is in progress, it is in the "not running" state.
441 * When an NMI comes in, it goes into the "executing" state.
442 * Normally, if another NMI is triggered, it does not interrupt
443 * the running NMI and the HW will simply latch it so that when
444 * the first NMI finishes, it will restart the second NMI.
445 * (Note, the latch is binary, thus multiple NMIs triggering,
446 * when one is running, are ignored. Only one NMI is restarted.)
447 *
448 * If an NMI executes an iret, another NMI can preempt it. We do not
449 * want to allow this new NMI to run, but we want to execute it when the
450 * first one finishes. We set the state to "latched", and the exit of
451 * the first NMI will perform a dec_return, if the result is zero
452 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
453 * dec_return would have set the state to NMI_EXECUTING (what we want it
454 * to be when we are running). In this case, we simply jump back to
455 * rerun the NMI handler again, and restart the 'latched' NMI.
456 *
457 * No trap (breakpoint or page fault) should be hit before nmi_restart,
458 * thus there is no race between the first check of state for NOT_RUNNING
459 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
460 * at this point.
461 *
462 * In case the NMI takes a page fault, we need to save off the CR2
463 * because the NMI could have preempted another page fault and corrupt
464 * the CR2 that is about to be read. As nested NMIs must be restarted
465 * and they can not take breakpoints or page faults, the update of the
466 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
467 * Otherwise, there would be a race of another nested NMI coming in
468 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
469 */
470enum nmi_states {
471 NMI_NOT_RUNNING = 0,
472 NMI_EXECUTING,
473 NMI_LATCHED,
474};
475static DEFINE_PER_CPU(enum nmi_states, nmi_state);
476static DEFINE_PER_CPU(unsigned long, nmi_cr2);
477static DEFINE_PER_CPU(unsigned long, nmi_dr7);
478
479DEFINE_IDTENTRY_RAW(exc_nmi)
480{
481 irqentry_state_t irq_state;
482
483 /*
484 * Re-enable NMIs right here when running as an SEV-ES guest. This might
485 * cause nested NMIs, but those can be handled safely.
486 */
487 sev_es_nmi_complete();
488
489 if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
490 return;
491
492 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
493 this_cpu_write(nmi_state, NMI_LATCHED);
494 return;
495 }
496 this_cpu_write(nmi_state, NMI_EXECUTING);
497 this_cpu_write(nmi_cr2, read_cr2());
498nmi_restart:
499
500 /*
501 * Needs to happen before DR7 is accessed, because the hypervisor can
502 * intercept DR7 reads/writes, turning those into #VC exceptions.
503 */
504 sev_es_ist_enter(regs);
505
506 this_cpu_write(nmi_dr7, local_db_save());
507
508 irq_state = irqentry_nmi_enter(regs);
509
510 inc_irq_stat(__nmi_count);
511
512 if (!ignore_nmis)
513 default_do_nmi(regs);
514
515 irqentry_nmi_exit(regs, irq_state);
516
517 local_db_restore(this_cpu_read(nmi_dr7));
518
519 sev_es_ist_exit();
520
521 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
522 write_cr2(this_cpu_read(nmi_cr2));
523 if (this_cpu_dec_return(nmi_state))
524 goto nmi_restart;
525
526 if (user_mode(regs))
527 mds_user_clear_cpu_buffers();
528}
529
530#if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL)
531DEFINE_IDTENTRY_RAW(exc_nmi_noist)
532{
533 exc_nmi(regs);
534}
535#endif
536#if IS_MODULE(CONFIG_KVM_INTEL)
537EXPORT_SYMBOL_GPL(asm_exc_nmi_noist);
538#endif
539
540void stop_nmi(void)
541{
542 ignore_nmis++;
543}
544
545void restart_nmi(void)
546{
547 ignore_nmis--;
548}
549
550/* reset the back-to-back NMI logic */
551void local_touch_nmi(void)
552{
553 __this_cpu_write(last_nmi_rip, 0);
554}
555EXPORT_SYMBOL_GPL(local_touch_nmi);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11/*
12 * Handle hardware traps and faults.
13 */
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/kdebug.h>
17#include <linux/sched/debug.h>
18#include <linux/nmi.h>
19#include <linux/debugfs.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/ratelimit.h>
23#include <linux/slab.h>
24#include <linux/export.h>
25#include <linux/atomic.h>
26#include <linux/sched/clock.h>
27
28#include <asm/cpu_entry_area.h>
29#include <asm/traps.h>
30#include <asm/mach_traps.h>
31#include <asm/nmi.h>
32#include <asm/x86_init.h>
33#include <asm/reboot.h>
34#include <asm/cache.h>
35#include <asm/nospec-branch.h>
36#include <asm/microcode.h>
37#include <asm/sev.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/nmi.h>
41
42struct nmi_desc {
43 raw_spinlock_t lock;
44 struct list_head head;
45};
46
47static struct nmi_desc nmi_desc[NMI_MAX] =
48{
49 {
50 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
51 .head = LIST_HEAD_INIT(nmi_desc[0].head),
52 },
53 {
54 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
55 .head = LIST_HEAD_INIT(nmi_desc[1].head),
56 },
57 {
58 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
59 .head = LIST_HEAD_INIT(nmi_desc[2].head),
60 },
61 {
62 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
63 .head = LIST_HEAD_INIT(nmi_desc[3].head),
64 },
65
66};
67
68struct nmi_stats {
69 unsigned int normal;
70 unsigned int unknown;
71 unsigned int external;
72 unsigned int swallow;
73 unsigned long recv_jiffies;
74 unsigned long idt_seq;
75 unsigned long idt_nmi_seq;
76 unsigned long idt_ignored;
77 atomic_long_t idt_calls;
78 unsigned long idt_seq_snap;
79 unsigned long idt_nmi_seq_snap;
80 unsigned long idt_ignored_snap;
81 long idt_calls_snap;
82};
83
84static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
85
86static int ignore_nmis __read_mostly;
87
88int unknown_nmi_panic;
89/*
90 * Prevent NMI reason port (0x61) being accessed simultaneously, can
91 * only be used in NMI handler.
92 */
93static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
94
95static int __init setup_unknown_nmi_panic(char *str)
96{
97 unknown_nmi_panic = 1;
98 return 1;
99}
100__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
101
102#define nmi_to_desc(type) (&nmi_desc[type])
103
104static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
105
106static int __init nmi_warning_debugfs(void)
107{
108 debugfs_create_u64("nmi_longest_ns", 0644,
109 arch_debugfs_dir, &nmi_longest_ns);
110 return 0;
111}
112fs_initcall(nmi_warning_debugfs);
113
114static void nmi_check_duration(struct nmiaction *action, u64 duration)
115{
116 int remainder_ns, decimal_msecs;
117
118 if (duration < nmi_longest_ns || duration < action->max_duration)
119 return;
120
121 action->max_duration = duration;
122
123 remainder_ns = do_div(duration, (1000 * 1000));
124 decimal_msecs = remainder_ns / 1000;
125
126 printk_ratelimited(KERN_INFO
127 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
128 action->handler, duration, decimal_msecs);
129}
130
131static int nmi_handle(unsigned int type, struct pt_regs *regs)
132{
133 struct nmi_desc *desc = nmi_to_desc(type);
134 struct nmiaction *a;
135 int handled=0;
136
137 rcu_read_lock();
138
139 /*
140 * NMIs are edge-triggered, which means if you have enough
141 * of them concurrently, you can lose some because only one
142 * can be latched at any given time. Walk the whole list
143 * to handle those situations.
144 */
145 list_for_each_entry_rcu(a, &desc->head, list) {
146 int thishandled;
147 u64 delta;
148
149 delta = sched_clock();
150 thishandled = a->handler(type, regs);
151 handled += thishandled;
152 delta = sched_clock() - delta;
153 trace_nmi_handler(a->handler, (int)delta, thishandled);
154
155 nmi_check_duration(a, delta);
156 }
157
158 rcu_read_unlock();
159
160 /* return total number of NMI events handled */
161 return handled;
162}
163NOKPROBE_SYMBOL(nmi_handle);
164
165int __register_nmi_handler(unsigned int type, struct nmiaction *action)
166{
167 struct nmi_desc *desc = nmi_to_desc(type);
168 unsigned long flags;
169
170 if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
171 return -EINVAL;
172
173 raw_spin_lock_irqsave(&desc->lock, flags);
174
175 /*
176 * Indicate if there are multiple registrations on the
177 * internal NMI handler call chains (SERR and IO_CHECK).
178 */
179 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
180 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
181
182 /*
183 * some handlers need to be executed first otherwise a fake
184 * event confuses some handlers (kdump uses this flag)
185 */
186 if (action->flags & NMI_FLAG_FIRST)
187 list_add_rcu(&action->list, &desc->head);
188 else
189 list_add_tail_rcu(&action->list, &desc->head);
190
191 raw_spin_unlock_irqrestore(&desc->lock, flags);
192 return 0;
193}
194EXPORT_SYMBOL(__register_nmi_handler);
195
196void unregister_nmi_handler(unsigned int type, const char *name)
197{
198 struct nmi_desc *desc = nmi_to_desc(type);
199 struct nmiaction *n, *found = NULL;
200 unsigned long flags;
201
202 raw_spin_lock_irqsave(&desc->lock, flags);
203
204 list_for_each_entry_rcu(n, &desc->head, list) {
205 /*
206 * the name passed in to describe the nmi handler
207 * is used as the lookup key
208 */
209 if (!strcmp(n->name, name)) {
210 WARN(in_nmi(),
211 "Trying to free NMI (%s) from NMI context!\n", n->name);
212 list_del_rcu(&n->list);
213 found = n;
214 break;
215 }
216 }
217
218 raw_spin_unlock_irqrestore(&desc->lock, flags);
219 if (found) {
220 synchronize_rcu();
221 INIT_LIST_HEAD(&found->list);
222 }
223}
224EXPORT_SYMBOL_GPL(unregister_nmi_handler);
225
226static void
227pci_serr_error(unsigned char reason, struct pt_regs *regs)
228{
229 /* check to see if anyone registered against these types of errors */
230 if (nmi_handle(NMI_SERR, regs))
231 return;
232
233 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
234 reason, smp_processor_id());
235
236 if (panic_on_unrecovered_nmi)
237 nmi_panic(regs, "NMI: Not continuing");
238
239 pr_emerg("Dazed and confused, but trying to continue\n");
240
241 /* Clear and disable the PCI SERR error line. */
242 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
243 outb(reason, NMI_REASON_PORT);
244}
245NOKPROBE_SYMBOL(pci_serr_error);
246
247static void
248io_check_error(unsigned char reason, struct pt_regs *regs)
249{
250 unsigned long i;
251
252 /* check to see if anyone registered against these types of errors */
253 if (nmi_handle(NMI_IO_CHECK, regs))
254 return;
255
256 pr_emerg(
257 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
258 reason, smp_processor_id());
259 show_regs(regs);
260
261 if (panic_on_io_nmi) {
262 nmi_panic(regs, "NMI IOCK error: Not continuing");
263
264 /*
265 * If we end up here, it means we have received an NMI while
266 * processing panic(). Simply return without delaying and
267 * re-enabling NMIs.
268 */
269 return;
270 }
271
272 /* Re-enable the IOCK line, wait for a few seconds */
273 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
274 outb(reason, NMI_REASON_PORT);
275
276 i = 20000;
277 while (--i) {
278 touch_nmi_watchdog();
279 udelay(100);
280 }
281
282 reason &= ~NMI_REASON_CLEAR_IOCHK;
283 outb(reason, NMI_REASON_PORT);
284}
285NOKPROBE_SYMBOL(io_check_error);
286
287static void
288unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
289{
290 int handled;
291
292 /*
293 * Use 'false' as back-to-back NMIs are dealt with one level up.
294 * Of course this makes having multiple 'unknown' handlers useless
295 * as only the first one is ever run (unless it can actually determine
296 * if it caused the NMI)
297 */
298 handled = nmi_handle(NMI_UNKNOWN, regs);
299 if (handled) {
300 __this_cpu_add(nmi_stats.unknown, handled);
301 return;
302 }
303
304 __this_cpu_add(nmi_stats.unknown, 1);
305
306 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
307 reason, smp_processor_id());
308
309 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
310 nmi_panic(regs, "NMI: Not continuing");
311
312 pr_emerg("Dazed and confused, but trying to continue\n");
313}
314NOKPROBE_SYMBOL(unknown_nmi_error);
315
316static DEFINE_PER_CPU(bool, swallow_nmi);
317static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318
319static noinstr void default_do_nmi(struct pt_regs *regs)
320{
321 unsigned char reason = 0;
322 int handled;
323 bool b2b = false;
324
325 /*
326 * CPU-specific NMI must be processed before non-CPU-specific
327 * NMI, otherwise we may lose it, because the CPU-specific
328 * NMI can not be detected/processed on other CPUs.
329 */
330
331 /*
332 * Back-to-back NMIs are interesting because they can either
333 * be two NMI or more than two NMIs (any thing over two is dropped
334 * due to NMI being edge-triggered). If this is the second half
335 * of the back-to-back NMI, assume we dropped things and process
336 * more handlers. Otherwise reset the 'swallow' NMI behaviour
337 */
338 if (regs->ip == __this_cpu_read(last_nmi_rip))
339 b2b = true;
340 else
341 __this_cpu_write(swallow_nmi, false);
342
343 __this_cpu_write(last_nmi_rip, regs->ip);
344
345 instrumentation_begin();
346
347 if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
348 goto out;
349
350 handled = nmi_handle(NMI_LOCAL, regs);
351 __this_cpu_add(nmi_stats.normal, handled);
352 if (handled) {
353 /*
354 * There are cases when a NMI handler handles multiple
355 * events in the current NMI. One of these events may
356 * be queued for in the next NMI. Because the event is
357 * already handled, the next NMI will result in an unknown
358 * NMI. Instead lets flag this for a potential NMI to
359 * swallow.
360 */
361 if (handled > 1)
362 __this_cpu_write(swallow_nmi, true);
363 goto out;
364 }
365
366 /*
367 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
368 *
369 * Another CPU may be processing panic routines while holding
370 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
371 * and if so, call its callback directly. If there is no CPU preparing
372 * crash dump, we simply loop here.
373 */
374 while (!raw_spin_trylock(&nmi_reason_lock)) {
375 run_crash_ipi_callback(regs);
376 cpu_relax();
377 }
378
379 reason = x86_platform.get_nmi_reason();
380
381 if (reason & NMI_REASON_MASK) {
382 if (reason & NMI_REASON_SERR)
383 pci_serr_error(reason, regs);
384 else if (reason & NMI_REASON_IOCHK)
385 io_check_error(reason, regs);
386#ifdef CONFIG_X86_32
387 /*
388 * Reassert NMI in case it became active
389 * meanwhile as it's edge-triggered:
390 */
391 reassert_nmi();
392#endif
393 __this_cpu_add(nmi_stats.external, 1);
394 raw_spin_unlock(&nmi_reason_lock);
395 goto out;
396 }
397 raw_spin_unlock(&nmi_reason_lock);
398
399 /*
400 * Only one NMI can be latched at a time. To handle
401 * this we may process multiple nmi handlers at once to
402 * cover the case where an NMI is dropped. The downside
403 * to this approach is we may process an NMI prematurely,
404 * while its real NMI is sitting latched. This will cause
405 * an unknown NMI on the next run of the NMI processing.
406 *
407 * We tried to flag that condition above, by setting the
408 * swallow_nmi flag when we process more than one event.
409 * This condition is also only present on the second half
410 * of a back-to-back NMI, so we flag that condition too.
411 *
412 * If both are true, we assume we already processed this
413 * NMI previously and we swallow it. Otherwise we reset
414 * the logic.
415 *
416 * There are scenarios where we may accidentally swallow
417 * a 'real' unknown NMI. For example, while processing
418 * a perf NMI another perf NMI comes in along with a
419 * 'real' unknown NMI. These two NMIs get combined into
420 * one (as described above). When the next NMI gets
421 * processed, it will be flagged by perf as handled, but
422 * no one will know that there was a 'real' unknown NMI sent
423 * also. As a result it gets swallowed. Or if the first
424 * perf NMI returns two events handled then the second
425 * NMI will get eaten by the logic below, again losing a
426 * 'real' unknown NMI. But this is the best we can do
427 * for now.
428 */
429 if (b2b && __this_cpu_read(swallow_nmi))
430 __this_cpu_add(nmi_stats.swallow, 1);
431 else
432 unknown_nmi_error(reason, regs);
433
434out:
435 instrumentation_end();
436}
437
438/*
439 * NMIs can page fault or hit breakpoints which will cause it to lose
440 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
441 *
442 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
443 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
444 * if the outer NMI came from kernel mode, but we can still nest if the
445 * outer NMI came from user mode.
446 *
447 * To handle these nested NMIs, we have three states:
448 *
449 * 1) not running
450 * 2) executing
451 * 3) latched
452 *
453 * When no NMI is in progress, it is in the "not running" state.
454 * When an NMI comes in, it goes into the "executing" state.
455 * Normally, if another NMI is triggered, it does not interrupt
456 * the running NMI and the HW will simply latch it so that when
457 * the first NMI finishes, it will restart the second NMI.
458 * (Note, the latch is binary, thus multiple NMIs triggering,
459 * when one is running, are ignored. Only one NMI is restarted.)
460 *
461 * If an NMI executes an iret, another NMI can preempt it. We do not
462 * want to allow this new NMI to run, but we want to execute it when the
463 * first one finishes. We set the state to "latched", and the exit of
464 * the first NMI will perform a dec_return, if the result is zero
465 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
466 * dec_return would have set the state to NMI_EXECUTING (what we want it
467 * to be when we are running). In this case, we simply jump back to
468 * rerun the NMI handler again, and restart the 'latched' NMI.
469 *
470 * No trap (breakpoint or page fault) should be hit before nmi_restart,
471 * thus there is no race between the first check of state for NOT_RUNNING
472 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
473 * at this point.
474 *
475 * In case the NMI takes a page fault, we need to save off the CR2
476 * because the NMI could have preempted another page fault and corrupt
477 * the CR2 that is about to be read. As nested NMIs must be restarted
478 * and they can not take breakpoints or page faults, the update of the
479 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
480 * Otherwise, there would be a race of another nested NMI coming in
481 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
482 */
483enum nmi_states {
484 NMI_NOT_RUNNING = 0,
485 NMI_EXECUTING,
486 NMI_LATCHED,
487};
488static DEFINE_PER_CPU(enum nmi_states, nmi_state);
489static DEFINE_PER_CPU(unsigned long, nmi_cr2);
490static DEFINE_PER_CPU(unsigned long, nmi_dr7);
491
492DEFINE_IDTENTRY_RAW(exc_nmi)
493{
494 irqentry_state_t irq_state;
495 struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
496
497 /*
498 * Re-enable NMIs right here when running as an SEV-ES guest. This might
499 * cause nested NMIs, but those can be handled safely.
500 */
501 sev_es_nmi_complete();
502 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
503 raw_atomic_long_inc(&nsp->idt_calls);
504
505 if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) {
506 if (microcode_nmi_handler_enabled())
507 microcode_offline_nmi_handler();
508 return;
509 }
510
511 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
512 this_cpu_write(nmi_state, NMI_LATCHED);
513 return;
514 }
515 this_cpu_write(nmi_state, NMI_EXECUTING);
516 this_cpu_write(nmi_cr2, read_cr2());
517
518nmi_restart:
519 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
520 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
521 WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
522 WRITE_ONCE(nsp->recv_jiffies, jiffies);
523 }
524
525 /*
526 * Needs to happen before DR7 is accessed, because the hypervisor can
527 * intercept DR7 reads/writes, turning those into #VC exceptions.
528 */
529 sev_es_ist_enter(regs);
530
531 this_cpu_write(nmi_dr7, local_db_save());
532
533 irq_state = irqentry_nmi_enter(regs);
534
535 inc_irq_stat(__nmi_count);
536
537 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
538 WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
539 } else if (!ignore_nmis) {
540 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
541 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
542 WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
543 }
544 default_do_nmi(regs);
545 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
546 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
547 WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
548 }
549 }
550
551 irqentry_nmi_exit(regs, irq_state);
552
553 local_db_restore(this_cpu_read(nmi_dr7));
554
555 sev_es_ist_exit();
556
557 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
558 write_cr2(this_cpu_read(nmi_cr2));
559 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
560 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
561 WARN_ON_ONCE(nsp->idt_seq & 0x1);
562 WRITE_ONCE(nsp->recv_jiffies, jiffies);
563 }
564 if (this_cpu_dec_return(nmi_state))
565 goto nmi_restart;
566}
567
568#if IS_ENABLED(CONFIG_KVM_INTEL)
569DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
570{
571 exc_nmi(regs);
572}
573#if IS_MODULE(CONFIG_KVM_INTEL)
574EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
575#endif
576#endif
577
578#ifdef CONFIG_NMI_CHECK_CPU
579
580static char *nmi_check_stall_msg[] = {
581/* */
582/* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler. */
583/* | +------ cpu_is_offline(cpu) */
584/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
585/* | | | NMI handler has been invoked. */
586/* | | | */
587/* V V V */
588/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
589/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
590/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
591/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
592/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
593/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
594/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
595/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
596};
597
598void nmi_backtrace_stall_snap(const struct cpumask *btp)
599{
600 int cpu;
601 struct nmi_stats *nsp;
602
603 for_each_cpu(cpu, btp) {
604 nsp = per_cpu_ptr(&nmi_stats, cpu);
605 nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
606 nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
607 nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
608 nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
609 }
610}
611
612void nmi_backtrace_stall_check(const struct cpumask *btp)
613{
614 int cpu;
615 int idx;
616 unsigned long nmi_seq;
617 unsigned long j = jiffies;
618 char *modp;
619 char *msgp;
620 char *msghp;
621 struct nmi_stats *nsp;
622
623 for_each_cpu(cpu, btp) {
624 nsp = per_cpu_ptr(&nmi_stats, cpu);
625 modp = "";
626 msghp = "";
627 nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
628 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
629 msgp = "CPU entered NMI handler function, but has not exited";
630 } else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) {
631 msgp = "CPU is handling NMIs";
632 } else {
633 idx = ((nsp->idt_seq_snap & 0x1) << 2) |
634 (cpu_is_offline(cpu) << 1) |
635 (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636 msgp = nmi_check_stall_msg[idx];
637 if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638 modp = ", but OK because ignore_nmis was set";
639 if (nmi_seq & ~0x1)
640 msghp = " (CPU currently in NMI handler function)";
641 else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
642 msghp = " (CPU exited one NMI handler function)";
643 }
644 pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n",
645 __func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies));
646 }
647}
648
649#endif
650
651void stop_nmi(void)
652{
653 ignore_nmis++;
654}
655
656void restart_nmi(void)
657{
658 ignore_nmis--;
659}
660
661/* reset the back-to-back NMI logic */
662void local_touch_nmi(void)
663{
664 __this_cpu_write(last_nmi_rip, 0);
665}
666EXPORT_SYMBOL_GPL(local_touch_nmi);