Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 */
  6
  7#include <stdlib.h>
  8#include <stdbool.h>
  9#include <unistd.h>
 10#include <sched.h>
 11#include <errno.h>
 12#include <string.h>
 13#include <sys/mman.h>
 14#include <sys/wait.h>
 15#include <asm/unistd.h>
 16#include <as-layout.h>
 17#include <init.h>
 18#include <kern_util.h>
 19#include <mem.h>
 20#include <os.h>
 21#include <ptrace_user.h>
 22#include <registers.h>
 23#include <skas.h>
 24#include <sysdep/stub.h>
 25#include <linux/threads.h>
 26
 27int is_skas_winch(int pid, int fd, void *data)
 28{
 29	return pid == getpgrp();
 30}
 31
 32static const char *ptrace_reg_name(int idx)
 33{
 34#define R(n) case HOST_##n: return #n
 35
 36	switch (idx) {
 37#ifdef __x86_64__
 38	R(BX);
 39	R(CX);
 40	R(DI);
 41	R(SI);
 42	R(DX);
 43	R(BP);
 44	R(AX);
 45	R(R8);
 46	R(R9);
 47	R(R10);
 48	R(R11);
 49	R(R12);
 50	R(R13);
 51	R(R14);
 52	R(R15);
 53	R(ORIG_AX);
 54	R(CS);
 55	R(SS);
 56	R(EFLAGS);
 57#elif defined(__i386__)
 58	R(IP);
 59	R(SP);
 60	R(EFLAGS);
 61	R(AX);
 62	R(BX);
 63	R(CX);
 64	R(DX);
 65	R(SI);
 66	R(DI);
 67	R(BP);
 68	R(CS);
 69	R(SS);
 70	R(DS);
 71	R(FS);
 72	R(ES);
 73	R(GS);
 74	R(ORIG_AX);
 75#endif
 76	}
 77	return "";
 78}
 79
 80static int ptrace_dump_regs(int pid)
 81{
 82	unsigned long regs[MAX_REG_NR];
 83	int i;
 84
 85	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 86		return -errno;
 87
 88	printk(UM_KERN_ERR "Stub registers -\n");
 89	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 90		const char *regname = ptrace_reg_name(i);
 91
 92		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
 93	}
 94
 95	return 0;
 96}
 97
 98/*
 99 * Signals that are OK to receive in the stub - we'll just continue it.
100 * SIGWINCH will happen when UML is inside a detached screen.
101 */
102#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
103
104/* Signals that the stub will finish with - anything else is an error */
105#define STUB_DONE_MASK (1 << SIGTRAP)
106
107void wait_stub_done(int pid)
108{
109	int n, status, err;
110
111	while (1) {
112		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
113		if ((n < 0) || !WIFSTOPPED(status))
114			goto bad_wait;
115
116		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
117			break;
118
119		err = ptrace(PTRACE_CONT, pid, 0, 0);
120		if (err) {
121			printk(UM_KERN_ERR "wait_stub_done : continue failed, "
122			       "errno = %d\n", errno);
123			fatal_sigsegv();
124		}
125	}
126
127	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
128		return;
129
130bad_wait:
131	err = ptrace_dump_regs(pid);
132	if (err)
133		printk(UM_KERN_ERR "Failed to get registers from stub, "
134		       "errno = %d\n", -err);
135	printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
136	       "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
137	       status);
138	fatal_sigsegv();
139}
140
141extern unsigned long current_stub_stack(void);
142
143static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
144{
145	int err;
146
147	err = get_fp_registers(pid, aux_fp_regs);
148	if (err < 0) {
149		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
150		       err);
151		fatal_sigsegv();
152	}
153	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
154	if (err) {
155		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
156		       "errno = %d\n", pid, errno);
157		fatal_sigsegv();
158	}
159	wait_stub_done(pid);
160
161	/*
162	 * faultinfo is prepared by the stub_segv_handler at start of
163	 * the stub stack page. We just have to copy it.
164	 */
165	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
166
167	err = put_fp_registers(pid, aux_fp_regs);
168	if (err < 0) {
169		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
170		       err);
171		fatal_sigsegv();
172	}
173}
174
175static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
176{
177	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
178	segv(regs->faultinfo, 0, 1, NULL);
179}
180
181/*
182 * To use the same value of using_sysemu as the caller, ask it that value
183 * (in local_using_sysemu
184 */
185static void handle_trap(int pid, struct uml_pt_regs *regs,
186			int local_using_sysemu)
187{
188	int err, status;
189
190	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
191		fatal_sigsegv();
192
193	if (!local_using_sysemu)
194	{
195		err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
196			     __NR_getpid);
197		if (err < 0) {
198			printk(UM_KERN_ERR "handle_trap - nullifying syscall "
199			       "failed, errno = %d\n", errno);
200			fatal_sigsegv();
201		}
202
203		err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
204		if (err < 0) {
205			printk(UM_KERN_ERR "handle_trap - continuing to end of "
206			       "syscall failed, errno = %d\n", errno);
207			fatal_sigsegv();
208		}
209
210		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
211		if ((err < 0) || !WIFSTOPPED(status) ||
212		    (WSTOPSIG(status) != SIGTRAP + 0x80)) {
213			err = ptrace_dump_regs(pid);
214			if (err)
215				printk(UM_KERN_ERR "Failed to get registers "
216				       "from process, errno = %d\n", -err);
217			printk(UM_KERN_ERR "handle_trap - failed to wait at "
218			       "end of syscall, errno = %d, status = %d\n",
219			       errno, status);
220			fatal_sigsegv();
221		}
222	}
223
224	handle_syscall(regs);
225}
226
227extern char __syscall_stub_start[];
228
229/**
230 * userspace_tramp() - userspace trampoline
231 * @stack:	pointer to the new userspace stack page, can be NULL, if? FIXME:
232 *
233 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
234 * This function will run on a temporary stack page.
235 * It ptrace()'es itself, then
236 * Two pages are mapped into the userspace address space:
237 * - STUB_CODE (with EXEC), which contains the skas stub code
238 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
239 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
240 * And last the process stops itself to give control to the UML kernel for this userspace process.
241 *
242 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
243 */
244static int userspace_tramp(void *stack)
245{
 
246	void *addr;
247	int fd;
248	unsigned long long offset;
 
 
 
249
250	ptrace(PTRACE_TRACEME, 0, 0, 0);
251
252	signal(SIGTERM, SIG_DFL);
253	signal(SIGWINCH, SIG_IGN);
254
255	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
256	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
257		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
258	if (addr == MAP_FAILED) {
259		printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
260		       "errno = %d\n", STUB_CODE, errno);
261		exit(1);
262	}
263
264	if (stack != NULL) {
265		fd = phys_mapping(uml_to_phys(stack), &offset);
266		addr = mmap((void *) STUB_DATA,
267			    UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
268			    MAP_FIXED | MAP_SHARED, fd, offset);
269		if (addr == MAP_FAILED) {
270			printk(UM_KERN_ERR "mapping segfault stack "
271			       "at 0x%lx failed, errno = %d\n",
272			       STUB_DATA, errno);
273			exit(1);
274		}
275	}
276	if (stack != NULL) {
277		struct sigaction sa;
278
279		unsigned long v = STUB_CODE +
280				  (unsigned long) stub_segv_handler -
281				  (unsigned long) __syscall_stub_start;
282
283		set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
284		sigemptyset(&sa.sa_mask);
285		sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
286		sa.sa_sigaction = (void *) v;
287		sa.sa_restorer = NULL;
288		if (sigaction(SIGSEGV, &sa, NULL) < 0) {
289			printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
290			       "handler failed - errno = %d\n", errno);
291			exit(1);
292		}
293	}
294
295	kill(os_getpid(), SIGSTOP);
296	return 0;
297}
298
299int userspace_pid[NR_CPUS];
300int kill_userspace_mm[NR_CPUS];
301
302/**
303 * start_userspace() - prepare a new userspace process
304 * @stub_stack:	pointer to the stub stack. Can be NULL, if? FIXME:
305 *
306 * Setups a new temporary stack page that is used while userspace_tramp() runs
307 * Clones the kernel process into a new userspace process, with FDs only.
308 *
309 * Return: When positive: the process id of the new userspace process,
310 *         when negative: an error number.
311 * FIXME: can PIDs become negative?!
312 */
313int start_userspace(unsigned long stub_stack)
314{
315	void *stack;
316	unsigned long sp;
317	int pid, status, n, flags, err;
318
319	/* setup a temporary stack page */
320	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
321		     PROT_READ | PROT_WRITE | PROT_EXEC,
322		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
323	if (stack == MAP_FAILED) {
324		err = -errno;
325		printk(UM_KERN_ERR "start_userspace : mmap failed, "
326		       "errno = %d\n", errno);
327		return err;
328	}
329
330	/* set stack pointer to the end of the stack page, so it can grow downwards */
331	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
332
333	flags = CLONE_FILES | SIGCHLD;
334
335	/* clone into new userspace process */
336	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
337	if (pid < 0) {
338		err = -errno;
339		printk(UM_KERN_ERR "start_userspace : clone failed, "
340		       "errno = %d\n", errno);
341		return err;
342	}
343
344	do {
345		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
346		if (n < 0) {
347			err = -errno;
348			printk(UM_KERN_ERR "start_userspace : wait failed, "
349			       "errno = %d\n", errno);
350			goto out_kill;
351		}
352	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
353
354	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
355		err = -EINVAL;
356		printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
357		       "status = %d\n", status);
358		goto out_kill;
359	}
360
361	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
362		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
363		err = -errno;
364		printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
365		       "failed, errno = %d\n", errno);
366		goto out_kill;
367	}
368
369	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
370		err = -errno;
371		printk(UM_KERN_ERR "start_userspace : munmap failed, "
372		       "errno = %d\n", errno);
373		goto out_kill;
374	}
375
376	return pid;
377
378 out_kill:
379	os_kill_ptraced_process(pid, 1);
380	return err;
381}
382
383void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
384{
385	int err, status, op, pid = userspace_pid[0];
386	/* To prevent races if using_sysemu changes under us.*/
387	int local_using_sysemu;
388	siginfo_t si;
389
390	/* Handle any immediate reschedules or signals */
391	interrupt_end();
392
393	while (1) {
394		if (kill_userspace_mm[0])
395			fatal_sigsegv();
396
397		/*
398		 * This can legitimately fail if the process loads a
399		 * bogus value into a segment register.  It will
400		 * segfault and PTRACE_GETREGS will read that value
401		 * out of the process.  However, PTRACE_SETREGS will
402		 * fail.  In this case, there is nothing to do but
403		 * just kill the process.
404		 */
405		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
406			printk(UM_KERN_ERR "userspace - ptrace set regs "
407			       "failed, errno = %d\n", errno);
408			fatal_sigsegv();
409		}
410
411		if (put_fp_registers(pid, regs->fp)) {
412			printk(UM_KERN_ERR "userspace - ptrace set fp regs "
413			       "failed, errno = %d\n", errno);
414			fatal_sigsegv();
415		}
416
417		/* Now we set local_using_sysemu to be used for one loop */
418		local_using_sysemu = get_using_sysemu();
419
420		op = SELECT_PTRACE_OPERATION(local_using_sysemu,
421					     singlestepping(NULL));
422
423		if (ptrace(op, pid, 0, 0)) {
424			printk(UM_KERN_ERR "userspace - ptrace continue "
425			       "failed, op = %d, errno = %d\n", op, errno);
426			fatal_sigsegv();
427		}
428
429		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
430		if (err < 0) {
431			printk(UM_KERN_ERR "userspace - wait failed, "
432			       "errno = %d\n", errno);
433			fatal_sigsegv();
434		}
435
436		regs->is_user = 1;
437		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
438			printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
439			       "errno = %d\n", errno);
440			fatal_sigsegv();
441		}
442
443		if (get_fp_registers(pid, regs->fp)) {
444			printk(UM_KERN_ERR "userspace -  get_fp_registers failed, "
445			       "errno = %d\n", errno);
446			fatal_sigsegv();
447		}
448
449		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
450
451		if (WIFSTOPPED(status)) {
452			int sig = WSTOPSIG(status);
453
454			/* These signal handlers need the si argument.
455			 * The SIGIO and SIGALARM handlers which constitute the
456			 * majority of invocations, do not use it.
457			 */
458			switch (sig) {
459			case SIGSEGV:
460			case SIGTRAP:
461			case SIGILL:
462			case SIGBUS:
463			case SIGFPE:
464			case SIGWINCH:
465				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
466				break;
467			}
468
469			switch (sig) {
470			case SIGSEGV:
471				if (PTRACE_FULL_FAULTINFO) {
472					get_skas_faultinfo(pid,
473							   &regs->faultinfo, aux_fp_regs);
474					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
475							     regs);
476				}
477				else handle_segv(pid, regs, aux_fp_regs);
478				break;
479			case SIGTRAP + 0x80:
480			        handle_trap(pid, regs, local_using_sysemu);
481				break;
482			case SIGTRAP:
483				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
484				break;
485			case SIGALRM:
486				break;
487			case SIGIO:
488			case SIGILL:
489			case SIGBUS:
490			case SIGFPE:
491			case SIGWINCH:
492				block_signals_trace();
493				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
494				unblock_signals_trace();
495				break;
496			default:
497				printk(UM_KERN_ERR "userspace - child stopped "
498				       "with signal %d\n", sig);
499				fatal_sigsegv();
500			}
501			pid = userspace_pid[0];
502			interrupt_end();
503
504			/* Avoid -ERESTARTSYS handling in host */
505			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
506				PT_SYSCALL_NR(regs->gp) = -1;
507		}
508	}
509}
510
511static unsigned long thread_regs[MAX_REG_NR];
512static unsigned long thread_fp_regs[FP_SIZE];
513
514static int __init init_thread_regs(void)
515{
516	get_safe_registers(thread_regs, thread_fp_regs);
517	/* Set parent's instruction pointer to start of clone-stub */
518	thread_regs[REGS_IP_INDEX] = STUB_CODE +
519				(unsigned long) stub_clone_handler -
520				(unsigned long) __syscall_stub_start;
521	thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
522		sizeof(void *);
523#ifdef __SIGNAL_FRAMESIZE
524	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
525#endif
526	return 0;
527}
528
529__initcall(init_thread_regs);
530
531int copy_context_skas0(unsigned long new_stack, int pid)
532{
533	int err;
534	unsigned long current_stack = current_stub_stack();
535	struct stub_data *data = (struct stub_data *) current_stack;
536	struct stub_data *child_data = (struct stub_data *) new_stack;
537	unsigned long long new_offset;
538	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
539
540	/*
541	 * prepare offset and fd of child's stack as argument for parent's
542	 * and child's mmap2 calls
543	 */
544	*data = ((struct stub_data) {
545		.offset	= MMAP_OFFSET(new_offset),
546		.fd     = new_fd,
547		.parent_err = -ESRCH,
548		.child_err = 0,
549	});
550
551	*child_data = ((struct stub_data) {
552		.child_err = -ESRCH,
553	});
554
555	err = ptrace_setregs(pid, thread_regs);
556	if (err < 0) {
557		err = -errno;
558		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
559		       "failed, pid = %d, errno = %d\n", pid, -err);
560		return err;
561	}
562
563	err = put_fp_registers(pid, thread_fp_regs);
564	if (err < 0) {
565		printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
566		       "failed, pid = %d, err = %d\n", pid, err);
567		return err;
568	}
569
570	/*
571	 * Wait, until parent has finished its work: read child's pid from
572	 * parent's stack, and check, if bad result.
573	 */
574	err = ptrace(PTRACE_CONT, pid, 0, 0);
575	if (err) {
576		err = -errno;
577		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
578		       "errno = %d\n", pid, errno);
579		return err;
580	}
581
582	wait_stub_done(pid);
583
584	pid = data->parent_err;
585	if (pid < 0) {
586		printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
587		       "error %d\n", -pid);
588		return pid;
589	}
590
591	/*
592	 * Wait, until child has finished too: read child's result from
593	 * child's stack and check it.
594	 */
595	wait_stub_done(pid);
596	if (child_data->child_err != STUB_DATA) {
597		printk(UM_KERN_ERR "copy_context_skas0 - stub-child %d reports "
598		       "error %ld\n", pid, data->child_err);
599		err = data->child_err;
600		goto out_kill;
601	}
602
603	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
604		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
605		err = -errno;
606		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
607		       "failed, errno = %d\n", errno);
608		goto out_kill;
609	}
610
611	return pid;
612
613 out_kill:
614	os_kill_ptraced_process(pid, 1);
615	return err;
616}
617
618void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
619{
620	(*buf)[0].JB_IP = (unsigned long) handler;
621	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
622		sizeof(void *);
623}
624
625#define INIT_JMP_NEW_THREAD 0
626#define INIT_JMP_CALLBACK 1
627#define INIT_JMP_HALT 2
628#define INIT_JMP_REBOOT 3
629
630void switch_threads(jmp_buf *me, jmp_buf *you)
631{
632	if (UML_SETJMP(me) == 0)
633		UML_LONGJMP(you, 1);
634}
635
636static jmp_buf initial_jmpbuf;
637
638/* XXX Make these percpu */
639static void (*cb_proc)(void *arg);
640static void *cb_arg;
641static jmp_buf *cb_back;
642
643int start_idle_thread(void *stack, jmp_buf *switch_buf)
644{
645	int n;
646
647	set_handler(SIGWINCH);
648
649	/*
650	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
651	 * and restore signals, with the possible side-effect of
652	 * trying to handle any signals which came when they were
653	 * blocked, which can't be done on this stack.
654	 * Signals must be blocked when jumping back here and restored
655	 * after returning to the jumper.
656	 */
657	n = setjmp(initial_jmpbuf);
658	switch (n) {
659	case INIT_JMP_NEW_THREAD:
660		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
661		(*switch_buf)[0].JB_SP = (unsigned long) stack +
662			UM_THREAD_SIZE - sizeof(void *);
663		break;
664	case INIT_JMP_CALLBACK:
665		(*cb_proc)(cb_arg);
666		longjmp(*cb_back, 1);
667		break;
668	case INIT_JMP_HALT:
669		kmalloc_ok = 0;
670		return 0;
671	case INIT_JMP_REBOOT:
672		kmalloc_ok = 0;
673		return 1;
674	default:
675		printk(UM_KERN_ERR "Bad sigsetjmp return in "
676		       "start_idle_thread - %d\n", n);
677		fatal_sigsegv();
678	}
679	longjmp(*switch_buf, 1);
680
681	/* unreachable */
682	printk(UM_KERN_ERR "impossible long jump!");
683	fatal_sigsegv();
684	return 0;
685}
686
687void initial_thread_cb_skas(void (*proc)(void *), void *arg)
688{
689	jmp_buf here;
690
691	cb_proc = proc;
692	cb_arg = arg;
693	cb_back = &here;
694
695	block_signals_trace();
696	if (UML_SETJMP(&here) == 0)
697		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
698	unblock_signals_trace();
699
700	cb_proc = NULL;
701	cb_arg = NULL;
702	cb_back = NULL;
703}
704
705void halt_skas(void)
706{
707	block_signals_trace();
708	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
709}
710
711static bool noreboot;
712
713static int __init noreboot_cmd_param(char *str, int *add)
714{
715	noreboot = true;
716	return 0;
717}
718
719__uml_setup("noreboot", noreboot_cmd_param,
720"noreboot\n"
721"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
722"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
723"    crashes in CI\n");
724
725void reboot_skas(void)
726{
727	block_signals_trace();
728	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
729}
730
731void __switch_mm(struct mm_id *mm_idp)
732{
733	userspace_pid[0] = mm_idp->u.pid;
734	kill_userspace_mm[0] = mm_idp->kill;
735}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 */
  6
  7#include <stdlib.h>
  8#include <stdbool.h>
  9#include <unistd.h>
 10#include <sched.h>
 11#include <errno.h>
 12#include <string.h>
 13#include <sys/mman.h>
 14#include <sys/wait.h>
 15#include <asm/unistd.h>
 16#include <as-layout.h>
 17#include <init.h>
 18#include <kern_util.h>
 19#include <mem.h>
 20#include <os.h>
 21#include <ptrace_user.h>
 22#include <registers.h>
 23#include <skas.h>
 24#include <sysdep/stub.h>
 25#include <linux/threads.h>
 26
 27int is_skas_winch(int pid, int fd, void *data)
 28{
 29	return pid == getpgrp();
 30}
 31
 32static const char *ptrace_reg_name(int idx)
 33{
 34#define R(n) case HOST_##n: return #n
 35
 36	switch (idx) {
 37#ifdef __x86_64__
 38	R(BX);
 39	R(CX);
 40	R(DI);
 41	R(SI);
 42	R(DX);
 43	R(BP);
 44	R(AX);
 45	R(R8);
 46	R(R9);
 47	R(R10);
 48	R(R11);
 49	R(R12);
 50	R(R13);
 51	R(R14);
 52	R(R15);
 53	R(ORIG_AX);
 54	R(CS);
 55	R(SS);
 56	R(EFLAGS);
 57#elif defined(__i386__)
 58	R(IP);
 59	R(SP);
 60	R(EFLAGS);
 61	R(AX);
 62	R(BX);
 63	R(CX);
 64	R(DX);
 65	R(SI);
 66	R(DI);
 67	R(BP);
 68	R(CS);
 69	R(SS);
 70	R(DS);
 71	R(FS);
 72	R(ES);
 73	R(GS);
 74	R(ORIG_AX);
 75#endif
 76	}
 77	return "";
 78}
 79
 80static int ptrace_dump_regs(int pid)
 81{
 82	unsigned long regs[MAX_REG_NR];
 83	int i;
 84
 85	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 86		return -errno;
 87
 88	printk(UM_KERN_ERR "Stub registers -\n");
 89	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 90		const char *regname = ptrace_reg_name(i);
 91
 92		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
 93	}
 94
 95	return 0;
 96}
 97
 98/*
 99 * Signals that are OK to receive in the stub - we'll just continue it.
100 * SIGWINCH will happen when UML is inside a detached screen.
101 */
102#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
103
104/* Signals that the stub will finish with - anything else is an error */
105#define STUB_DONE_MASK (1 << SIGTRAP)
106
107void wait_stub_done(int pid)
108{
109	int n, status, err;
110
111	while (1) {
112		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
113		if ((n < 0) || !WIFSTOPPED(status))
114			goto bad_wait;
115
116		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
117			break;
118
119		err = ptrace(PTRACE_CONT, pid, 0, 0);
120		if (err) {
121			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
122			       __func__, errno);
123			fatal_sigsegv();
124		}
125	}
126
127	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
128		return;
129
130bad_wait:
131	err = ptrace_dump_regs(pid);
132	if (err)
133		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
134		       -err);
135	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
136	       __func__, pid, n, errno, status);
 
137	fatal_sigsegv();
138}
139
140extern unsigned long current_stub_stack(void);
141
142static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143{
144	int err;
145
146	err = get_fp_registers(pid, aux_fp_regs);
147	if (err < 0) {
148		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149		       err);
150		fatal_sigsegv();
151	}
152	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153	if (err) {
154		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155		       "errno = %d\n", pid, errno);
156		fatal_sigsegv();
157	}
158	wait_stub_done(pid);
159
160	/*
161	 * faultinfo is prepared by the stub_segv_handler at start of
162	 * the stub stack page. We just have to copy it.
163	 */
164	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165
166	err = put_fp_registers(pid, aux_fp_regs);
167	if (err < 0) {
168		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169		       err);
170		fatal_sigsegv();
171	}
172}
173
174static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175{
176	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177	segv(regs->faultinfo, 0, 1, NULL);
178}
179
180static void handle_trap(int pid, struct uml_pt_regs *regs)
 
 
 
 
 
181{
 
 
182	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
183		fatal_sigsegv();
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185	handle_syscall(regs);
186}
187
188extern char __syscall_stub_start[];
189
190/**
191 * userspace_tramp() - userspace trampoline
192 * @stack:	pointer to the new userspace stack page
193 *
194 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
195 * This function will run on a temporary stack page.
196 * It ptrace()'es itself, then
197 * Two pages are mapped into the userspace address space:
198 * - STUB_CODE (with EXEC), which contains the skas stub code
199 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
200 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
201 * And last the process stops itself to give control to the UML kernel for this userspace process.
202 *
203 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
204 */
205static int userspace_tramp(void *stack)
206{
207	struct sigaction sa;
208	void *addr;
209	int fd;
210	unsigned long long offset;
211	unsigned long segv_handler = STUB_CODE +
212				     (unsigned long) stub_segv_handler -
213				     (unsigned long) __syscall_stub_start;
214
215	ptrace(PTRACE_TRACEME, 0, 0, 0);
216
217	signal(SIGTERM, SIG_DFL);
218	signal(SIGWINCH, SIG_IGN);
219
220	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
221	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
222		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
223	if (addr == MAP_FAILED) {
224		os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
225			STUB_CODE, errno);
226		exit(1);
227	}
228
229	fd = phys_mapping(uml_to_phys(stack), &offset);
230	addr = mmap((void *) STUB_DATA,
231		    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
232		    MAP_FIXED | MAP_SHARED, fd, offset);
233	if (addr == MAP_FAILED) {
234		os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
235			STUB_DATA, errno);
236		exit(1);
 
 
 
237	}
 
 
238
239	set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
240	sigemptyset(&sa.sa_mask);
241	sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
242	sa.sa_sigaction = (void *) segv_handler;
243	sa.sa_restorer = NULL;
244	if (sigaction(SIGSEGV, &sa, NULL) < 0) {
245		os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
246			__func__, errno);
247		exit(1);
 
 
 
 
 
248	}
249
250	kill(os_getpid(), SIGSTOP);
251	return 0;
252}
253
254int userspace_pid[NR_CPUS];
255int kill_userspace_mm[NR_CPUS];
256
257/**
258 * start_userspace() - prepare a new userspace process
259 * @stub_stack:	pointer to the stub stack.
260 *
261 * Setups a new temporary stack page that is used while userspace_tramp() runs
262 * Clones the kernel process into a new userspace process, with FDs only.
263 *
264 * Return: When positive: the process id of the new userspace process,
265 *         when negative: an error number.
266 * FIXME: can PIDs become negative?!
267 */
268int start_userspace(unsigned long stub_stack)
269{
270	void *stack;
271	unsigned long sp;
272	int pid, status, n, flags, err;
273
274	/* setup a temporary stack page */
275	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
276		     PROT_READ | PROT_WRITE | PROT_EXEC,
277		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
278	if (stack == MAP_FAILED) {
279		err = -errno;
280		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
281		       __func__, errno);
282		return err;
283	}
284
285	/* set stack pointer to the end of the stack page, so it can grow downwards */
286	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
287
288	flags = CLONE_FILES | SIGCHLD;
289
290	/* clone into new userspace process */
291	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
292	if (pid < 0) {
293		err = -errno;
294		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
295		       __func__, errno);
296		return err;
297	}
298
299	do {
300		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
301		if (n < 0) {
302			err = -errno;
303			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
304			       __func__, errno);
305			goto out_kill;
306		}
307	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
308
309	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
310		err = -EINVAL;
311		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
312		       __func__, status);
313		goto out_kill;
314	}
315
316	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
317		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
318		err = -errno;
319		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
320		       __func__, errno);
321		goto out_kill;
322	}
323
324	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
325		err = -errno;
326		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
327		       __func__, errno);
328		goto out_kill;
329	}
330
331	return pid;
332
333 out_kill:
334	os_kill_ptraced_process(pid, 1);
335	return err;
336}
337
338void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
339{
340	int err, status, op, pid = userspace_pid[0];
 
 
341	siginfo_t si;
342
343	/* Handle any immediate reschedules or signals */
344	interrupt_end();
345
346	while (1) {
347		if (kill_userspace_mm[0])
348			fatal_sigsegv();
349
350		/*
351		 * This can legitimately fail if the process loads a
352		 * bogus value into a segment register.  It will
353		 * segfault and PTRACE_GETREGS will read that value
354		 * out of the process.  However, PTRACE_SETREGS will
355		 * fail.  In this case, there is nothing to do but
356		 * just kill the process.
357		 */
358		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
359			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
360			       __func__, errno);
361			fatal_sigsegv();
362		}
363
364		if (put_fp_registers(pid, regs->fp)) {
365			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
366			       __func__, errno);
367			fatal_sigsegv();
368		}
369
370		if (singlestepping())
371			op = PTRACE_SYSEMU_SINGLESTEP;
372		else
373			op = PTRACE_SYSEMU;
 
374
375		if (ptrace(op, pid, 0, 0)) {
376			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
377			       __func__, op, errno);
378			fatal_sigsegv();
379		}
380
381		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
382		if (err < 0) {
383			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
384			       __func__, errno);
385			fatal_sigsegv();
386		}
387
388		regs->is_user = 1;
389		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
390			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
391			       __func__, errno);
392			fatal_sigsegv();
393		}
394
395		if (get_fp_registers(pid, regs->fp)) {
396			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
397			       __func__, errno);
398			fatal_sigsegv();
399		}
400
401		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
402
403		if (WIFSTOPPED(status)) {
404			int sig = WSTOPSIG(status);
405
406			/* These signal handlers need the si argument.
407			 * The SIGIO and SIGALARM handlers which constitute the
408			 * majority of invocations, do not use it.
409			 */
410			switch (sig) {
411			case SIGSEGV:
412			case SIGTRAP:
413			case SIGILL:
414			case SIGBUS:
415			case SIGFPE:
416			case SIGWINCH:
417				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
418				break;
419			}
420
421			switch (sig) {
422			case SIGSEGV:
423				if (PTRACE_FULL_FAULTINFO) {
424					get_skas_faultinfo(pid,
425							   &regs->faultinfo, aux_fp_regs);
426					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
427							     regs);
428				}
429				else handle_segv(pid, regs, aux_fp_regs);
430				break;
431			case SIGTRAP + 0x80:
432				handle_trap(pid, regs);
433				break;
434			case SIGTRAP:
435				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
436				break;
437			case SIGALRM:
438				break;
439			case SIGIO:
440			case SIGILL:
441			case SIGBUS:
442			case SIGFPE:
443			case SIGWINCH:
444				block_signals_trace();
445				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
446				unblock_signals_trace();
447				break;
448			default:
449				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
450				       __func__, sig);
451				fatal_sigsegv();
452			}
453			pid = userspace_pid[0];
454			interrupt_end();
455
456			/* Avoid -ERESTARTSYS handling in host */
457			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
458				PT_SYSCALL_NR(regs->gp) = -1;
459		}
460	}
461}
462
463static unsigned long thread_regs[MAX_REG_NR];
464static unsigned long thread_fp_regs[FP_SIZE];
465
466static int __init init_thread_regs(void)
467{
468	get_safe_registers(thread_regs, thread_fp_regs);
469	/* Set parent's instruction pointer to start of clone-stub */
470	thread_regs[REGS_IP_INDEX] = STUB_CODE +
471				(unsigned long) stub_clone_handler -
472				(unsigned long) __syscall_stub_start;
473	thread_regs[REGS_SP_INDEX] = STUB_DATA + STUB_DATA_PAGES * UM_KERN_PAGE_SIZE -
474		sizeof(void *);
475#ifdef __SIGNAL_FRAMESIZE
476	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
477#endif
478	return 0;
479}
480
481__initcall(init_thread_regs);
482
483int copy_context_skas0(unsigned long new_stack, int pid)
484{
485	int err;
486	unsigned long current_stack = current_stub_stack();
487	struct stub_data *data = (struct stub_data *) current_stack;
488	struct stub_data *child_data = (struct stub_data *) new_stack;
489	unsigned long long new_offset;
490	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
491
492	/*
493	 * prepare offset and fd of child's stack as argument for parent's
494	 * and child's mmap2 calls
495	 */
496	*data = ((struct stub_data) {
497		.offset	= MMAP_OFFSET(new_offset),
498		.fd     = new_fd,
499		.parent_err = -ESRCH,
500		.child_err = 0,
501	});
502
503	*child_data = ((struct stub_data) {
504		.child_err = -ESRCH,
505	});
506
507	err = ptrace_setregs(pid, thread_regs);
508	if (err < 0) {
509		err = -errno;
510		printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n",
511		      __func__, pid, -err);
512		return err;
513	}
514
515	err = put_fp_registers(pid, thread_fp_regs);
516	if (err < 0) {
517		printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n",
518		       __func__, pid, err);
519		return err;
520	}
521
522	/*
523	 * Wait, until parent has finished its work: read child's pid from
524	 * parent's stack, and check, if bad result.
525	 */
526	err = ptrace(PTRACE_CONT, pid, 0, 0);
527	if (err) {
528		err = -errno;
529		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n",
530		       pid, errno);
531		return err;
532	}
533
534	wait_stub_done(pid);
535
536	pid = data->parent_err;
537	if (pid < 0) {
538		printk(UM_KERN_ERR "%s - stub-parent reports error %d\n",
539		      __func__, -pid);
540		return pid;
541	}
542
543	/*
544	 * Wait, until child has finished too: read child's result from
545	 * child's stack and check it.
546	 */
547	wait_stub_done(pid);
548	if (child_data->child_err != STUB_DATA) {
549		printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n",
550		       __func__, pid, data->child_err);
551		err = data->child_err;
552		goto out_kill;
553	}
554
555	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
556		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
557		err = -errno;
558		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
559		       __func__, errno);
560		goto out_kill;
561	}
562
563	return pid;
564
565 out_kill:
566	os_kill_ptraced_process(pid, 1);
567	return err;
568}
569
570void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
571{
572	(*buf)[0].JB_IP = (unsigned long) handler;
573	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
574		sizeof(void *);
575}
576
577#define INIT_JMP_NEW_THREAD 0
578#define INIT_JMP_CALLBACK 1
579#define INIT_JMP_HALT 2
580#define INIT_JMP_REBOOT 3
581
582void switch_threads(jmp_buf *me, jmp_buf *you)
583{
584	if (UML_SETJMP(me) == 0)
585		UML_LONGJMP(you, 1);
586}
587
588static jmp_buf initial_jmpbuf;
589
590/* XXX Make these percpu */
591static void (*cb_proc)(void *arg);
592static void *cb_arg;
593static jmp_buf *cb_back;
594
595int start_idle_thread(void *stack, jmp_buf *switch_buf)
596{
597	int n;
598
599	set_handler(SIGWINCH);
600
601	/*
602	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
603	 * and restore signals, with the possible side-effect of
604	 * trying to handle any signals which came when they were
605	 * blocked, which can't be done on this stack.
606	 * Signals must be blocked when jumping back here and restored
607	 * after returning to the jumper.
608	 */
609	n = setjmp(initial_jmpbuf);
610	switch (n) {
611	case INIT_JMP_NEW_THREAD:
612		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
613		(*switch_buf)[0].JB_SP = (unsigned long) stack +
614			UM_THREAD_SIZE - sizeof(void *);
615		break;
616	case INIT_JMP_CALLBACK:
617		(*cb_proc)(cb_arg);
618		longjmp(*cb_back, 1);
619		break;
620	case INIT_JMP_HALT:
621		kmalloc_ok = 0;
622		return 0;
623	case INIT_JMP_REBOOT:
624		kmalloc_ok = 0;
625		return 1;
626	default:
627		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
628		       __func__, n);
629		fatal_sigsegv();
630	}
631	longjmp(*switch_buf, 1);
632
633	/* unreachable */
634	printk(UM_KERN_ERR "impossible long jump!");
635	fatal_sigsegv();
636	return 0;
637}
638
639void initial_thread_cb_skas(void (*proc)(void *), void *arg)
640{
641	jmp_buf here;
642
643	cb_proc = proc;
644	cb_arg = arg;
645	cb_back = &here;
646
647	block_signals_trace();
648	if (UML_SETJMP(&here) == 0)
649		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
650	unblock_signals_trace();
651
652	cb_proc = NULL;
653	cb_arg = NULL;
654	cb_back = NULL;
655}
656
657void halt_skas(void)
658{
659	block_signals_trace();
660	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
661}
662
663static bool noreboot;
664
665static int __init noreboot_cmd_param(char *str, int *add)
666{
667	noreboot = true;
668	return 0;
669}
670
671__uml_setup("noreboot", noreboot_cmd_param,
672"noreboot\n"
673"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
674"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
675"    crashes in CI\n");
676
677void reboot_skas(void)
678{
679	block_signals_trace();
680	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
681}
682
683void __switch_mm(struct mm_id *mm_idp)
684{
685	userspace_pid[0] = mm_idp->u.pid;
686	kill_userspace_mm[0] = mm_idp->kill;
687}