Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! A reference-counted pointer.
  4//!
  5//! This module implements a way for users to create reference-counted objects and pointers to
  6//! them. Such a pointer automatically increments and decrements the count, and drops the
  7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
  8//! threads.
  9//!
 10//! It is different from the standard library's [`Arc`] in a few ways:
 11//! 1. It is backed by the kernel's `refcount_t` type.
 12//! 2. It does not support weak references, which allows it to be half the size.
 13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
 14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
 15//!
 16//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
 17
 18use crate::{
 19    bindings,
 20    error::{self, Error},
 21    init::{self, InPlaceInit, Init, PinInit},
 22    try_init,
 23    types::{ForeignOwnable, Opaque},
 24};
 25use alloc::boxed::Box;
 26use core::{
 27    alloc::{AllocError, Layout},
 28    fmt,
 29    marker::{PhantomData, Unsize},
 30    mem::{ManuallyDrop, MaybeUninit},
 31    ops::{Deref, DerefMut},
 32    pin::Pin,
 33    ptr::{NonNull, Pointee},
 34};
 35use macros::pin_data;
 36
 37mod std_vendor;
 38
 39/// A reference-counted pointer to an instance of `T`.
 40///
 41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
 42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
 43///
 44/// # Invariants
 45///
 46/// The reference count on an instance of [`Arc`] is always non-zero.
 47/// The object pointed to by [`Arc`] is always pinned.
 48///
 49/// # Examples
 50///
 51/// ```
 52/// use kernel::sync::Arc;
 53///
 54/// struct Example {
 55///     a: u32,
 56///     b: u32,
 57/// }
 58///
 59/// // Create a ref-counted instance of `Example`.
 60/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
 61///
 62/// // Get a new pointer to `obj` and increment the refcount.
 63/// let cloned = obj.clone();
 64///
 65/// // Assert that both `obj` and `cloned` point to the same underlying object.
 66/// assert!(core::ptr::eq(&*obj, &*cloned));
 67///
 68/// // Destroy `obj` and decrement its refcount.
 69/// drop(obj);
 70///
 71/// // Check that the values are still accessible through `cloned`.
 72/// assert_eq!(cloned.a, 10);
 73/// assert_eq!(cloned.b, 20);
 74///
 75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
 76/// # Ok::<(), Error>(())
 77/// ```
 78///
 79/// Using `Arc<T>` as the type of `self`:
 80///
 81/// ```
 82/// use kernel::sync::Arc;
 83///
 84/// struct Example {
 85///     a: u32,
 86///     b: u32,
 87/// }
 88///
 89/// impl Example {
 90///     fn take_over(self: Arc<Self>) {
 91///         // ...
 92///     }
 93///
 94///     fn use_reference(self: &Arc<Self>) {
 95///         // ...
 96///     }
 97/// }
 98///
 99/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111///     // Trait has a function whose `self` type is `Arc<Self>`.
112///     fn example1(self: Arc<Self>) {}
113///
114///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115///     fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::try_new(Example)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128pub struct Arc<T: ?Sized> {
129    ptr: NonNull<ArcInner<T>>,
130    _p: PhantomData<ArcInner<T>>,
131}
132
133#[pin_data]
134#[repr(C)]
135struct ArcInner<T: ?Sized> {
136    refcount: Opaque<bindings::refcount_t>,
137    data: T,
138}
139
140// This is to allow [`Arc`] (and variants) to be used as the type of `self`.
141impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
142
143// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
144// dynamically-sized type (DST) `U`.
145impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
146
147// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
148impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
149
150// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
151// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
152// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
153// mutable reference when the reference count reaches zero and `T` is dropped.
154unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
155
156// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
157// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
158// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
159// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
160// the reference count reaches zero and `T` is dropped.
161unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
162
163impl<T> Arc<T> {
164    /// Constructs a new reference counted instance of `T`.
165    pub fn try_new(contents: T) -> Result<Self, AllocError> {
166        // INVARIANT: The refcount is initialised to a non-zero value.
167        let value = ArcInner {
168            // SAFETY: There are no safety requirements for this FFI call.
169            refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
170            data: contents,
171        };
172
173        let inner = Box::try_new(value)?;
174
175        // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
176        // `Arc` object.
177        Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
178    }
179
180    /// Use the given initializer to in-place initialize a `T`.
181    ///
182    /// If `T: !Unpin` it will not be able to move afterwards.
183    #[inline]
184    pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
185    where
186        Error: From<E>,
187    {
188        UniqueArc::pin_init(init).map(|u| u.into())
189    }
190
191    /// Use the given initializer to in-place initialize a `T`.
192    ///
193    /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
194    #[inline]
195    pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
196    where
197        Error: From<E>,
198    {
199        UniqueArc::init(init).map(|u| u.into())
200    }
201}
202
203impl<T: ?Sized> Arc<T> {
204    /// Constructs a new [`Arc`] from an existing [`ArcInner`].
205    ///
206    /// # Safety
207    ///
208    /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
209    /// count, one of which will be owned by the new [`Arc`] instance.
210    unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
211        // INVARIANT: By the safety requirements, the invariants hold.
212        Arc {
213            ptr: inner,
214            _p: PhantomData,
215        }
216    }
217
218    /// Convert the [`Arc`] into a raw pointer.
219    ///
220    /// The raw pointer has ownership of the refcount that this Arc object owned.
221    pub fn into_raw(self) -> *const T {
222        let ptr = self.ptr.as_ptr();
223        core::mem::forget(self);
224        // SAFETY: The pointer is valid.
225        unsafe { core::ptr::addr_of!((*ptr).data) }
226    }
227
228    /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
229    ///
230    /// # Safety
231    ///
232    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
233    /// must not be called more than once for each previous call to [`Arc::into_raw`].
234    pub unsafe fn from_raw(ptr: *const T) -> Self {
235        let refcount_layout = Layout::new::<bindings::refcount_t>();
236        // SAFETY: The caller guarantees that the pointer is valid.
237        let val_layout = Layout::for_value(unsafe { &*ptr });
238        // SAFETY: We're computing the layout of a real struct that existed when compiling this
239        // binary, so its layout is not so large that it can trigger arithmetic overflow.
240        let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
241
242        let metadata: <T as Pointee>::Metadata = core::ptr::metadata(ptr);
243        // SAFETY: The metadata of `T` and `ArcInner<T>` is the same because `ArcInner` is a struct
244        // with `T` as its last field.
245        //
246        // This is documented at:
247        // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
248        let metadata: <ArcInner<T> as Pointee>::Metadata =
249            unsafe { core::mem::transmute_copy(&metadata) };
250        // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
251        // pointer, since it originates from a previous call to `Arc::into_raw` and is still valid.
252        let ptr = unsafe { (ptr as *mut u8).sub(val_offset) as *mut () };
253        let ptr = core::ptr::from_raw_parts_mut(ptr, metadata);
254
255        // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
256        // reference count held then will be owned by the new `Arc` object.
257        unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
258    }
259
260    /// Returns an [`ArcBorrow`] from the given [`Arc`].
261    ///
262    /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
263    /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
264    #[inline]
265    pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
266        // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
267        // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
268        // reference can be created.
269        unsafe { ArcBorrow::new(self.ptr) }
270    }
271
272    /// Compare whether two [`Arc`] pointers reference the same underlying object.
273    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
274        core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
275    }
276}
277
278impl<T: 'static> ForeignOwnable for Arc<T> {
279    type Borrowed<'a> = ArcBorrow<'a, T>;
280
281    fn into_foreign(self) -> *const core::ffi::c_void {
282        ManuallyDrop::new(self).ptr.as_ptr() as _
283    }
284
285    unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
286        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
287        // a previous call to `Arc::into_foreign`.
288        let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
289
290        // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
291        // for the lifetime of the returned value.
292        unsafe { ArcBorrow::new(inner) }
293    }
294
295    unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
296        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
297        // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
298        // holds a reference count increment that is transferrable to us.
299        unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
300    }
301}
302
303impl<T: ?Sized> Deref for Arc<T> {
304    type Target = T;
305
306    fn deref(&self) -> &Self::Target {
307        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
308        // safe to dereference it.
309        unsafe { &self.ptr.as_ref().data }
310    }
311}
312
313impl<T: ?Sized> AsRef<T> for Arc<T> {
314    fn as_ref(&self) -> &T {
315        self.deref()
316    }
317}
318
319impl<T: ?Sized> Clone for Arc<T> {
320    fn clone(&self) -> Self {
321        // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
322        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
323        // safe to increment the refcount.
324        unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
325
326        // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
327        unsafe { Self::from_inner(self.ptr) }
328    }
329}
330
331impl<T: ?Sized> Drop for Arc<T> {
332    fn drop(&mut self) {
333        // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
334        // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
335        // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
336        // freed/invalid memory as long as it is never dereferenced.
337        let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
338
339        // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
340        // this instance is being dropped, so the broken invariant is not observable.
341        // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
342        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
343        if is_zero {
344            // The count reached zero, we must free the memory.
345            //
346            // SAFETY: The pointer was initialised from the result of `Box::leak`.
347            unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
348        }
349    }
350}
351
352impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
353    fn from(item: UniqueArc<T>) -> Self {
354        item.inner
355    }
356}
357
358impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
359    fn from(item: Pin<UniqueArc<T>>) -> Self {
360        // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
361        unsafe { Pin::into_inner_unchecked(item).inner }
362    }
363}
364
365/// A borrowed reference to an [`Arc`] instance.
366///
367/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
368/// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
369///
370/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
371/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
372/// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
373/// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
374/// needed.
375///
376/// # Invariants
377///
378/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
379/// lifetime of the [`ArcBorrow`] instance.
380///
381/// # Example
382///
383/// ```
384/// use kernel::sync::{Arc, ArcBorrow};
385///
386/// struct Example;
387///
388/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
389///     e.into()
390/// }
391///
392/// let obj = Arc::try_new(Example)?;
393/// let cloned = do_something(obj.as_arc_borrow());
394///
395/// // Assert that both `obj` and `cloned` point to the same underlying object.
396/// assert!(core::ptr::eq(&*obj, &*cloned));
397/// # Ok::<(), Error>(())
398/// ```
399///
400/// Using `ArcBorrow<T>` as the type of `self`:
401///
402/// ```
403/// use kernel::sync::{Arc, ArcBorrow};
404///
405/// struct Example {
406///     a: u32,
407///     b: u32,
408/// }
409///
410/// impl Example {
411///     fn use_reference(self: ArcBorrow<'_, Self>) {
412///         // ...
413///     }
414/// }
415///
416/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
417/// obj.as_arc_borrow().use_reference();
418/// # Ok::<(), Error>(())
419/// ```
420pub struct ArcBorrow<'a, T: ?Sized + 'a> {
421    inner: NonNull<ArcInner<T>>,
422    _p: PhantomData<&'a ()>,
423}
424
425// This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
426impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
427
428// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
429// `ArcBorrow<U>`.
430impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
431    for ArcBorrow<'_, T>
432{
433}
434
435impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
436    fn clone(&self) -> Self {
437        *self
438    }
439}
440
441impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
442
443impl<T: ?Sized> ArcBorrow<'_, T> {
444    /// Creates a new [`ArcBorrow`] instance.
445    ///
446    /// # Safety
447    ///
448    /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
449    /// 1. That `inner` remains valid;
450    /// 2. That no mutable references to `inner` are created.
451    unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
452        // INVARIANT: The safety requirements guarantee the invariants.
453        Self {
454            inner,
455            _p: PhantomData,
456        }
457    }
458}
459
460impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
461    fn from(b: ArcBorrow<'_, T>) -> Self {
462        // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
463        // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
464        // increment.
465        ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
466            .deref()
467            .clone()
468    }
469}
470
471impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
472    type Target = T;
473
474    fn deref(&self) -> &Self::Target {
475        // SAFETY: By the type invariant, the underlying object is still alive with no mutable
476        // references to it, so it is safe to create a shared reference.
477        unsafe { &self.inner.as_ref().data }
478    }
479}
480
481/// A refcounted object that is known to have a refcount of 1.
482///
483/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
484///
485/// # Invariants
486///
487/// `inner` always has a reference count of 1.
488///
489/// # Examples
490///
491/// In the following example, we make changes to the inner object before turning it into an
492/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
493/// cannot fail.
494///
495/// ```
496/// use kernel::sync::{Arc, UniqueArc};
497///
498/// struct Example {
499///     a: u32,
500///     b: u32,
501/// }
502///
503/// fn test() -> Result<Arc<Example>> {
504///     let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
505///     x.a += 1;
506///     x.b += 1;
507///     Ok(x.into())
508/// }
509///
510/// # test().unwrap();
511/// ```
512///
513/// In the following example we first allocate memory for a ref-counted `Example` but we don't
514/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
515/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
516/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
517///
518/// ```
519/// use kernel::sync::{Arc, UniqueArc};
520///
521/// struct Example {
522///     a: u32,
523///     b: u32,
524/// }
525///
526/// fn test() -> Result<Arc<Example>> {
527///     let x = UniqueArc::try_new_uninit()?;
528///     Ok(x.write(Example { a: 10, b: 20 }).into())
529/// }
530///
531/// # test().unwrap();
532/// ```
533///
534/// In the last example below, the caller gets a pinned instance of `Example` while converting to
535/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
536/// initialisation, for example, when initialising fields that are wrapped in locks.
537///
538/// ```
539/// use kernel::sync::{Arc, UniqueArc};
540///
541/// struct Example {
542///     a: u32,
543///     b: u32,
544/// }
545///
546/// fn test() -> Result<Arc<Example>> {
547///     let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
548///     // We can modify `pinned` because it is `Unpin`.
549///     pinned.as_mut().a += 1;
550///     Ok(pinned.into())
551/// }
552///
553/// # test().unwrap();
554/// ```
555pub struct UniqueArc<T: ?Sized> {
556    inner: Arc<T>,
557}
558
559impl<T> UniqueArc<T> {
560    /// Tries to allocate a new [`UniqueArc`] instance.
561    pub fn try_new(value: T) -> Result<Self, AllocError> {
562        Ok(Self {
563            // INVARIANT: The newly-created object has a ref-count of 1.
564            inner: Arc::try_new(value)?,
565        })
566    }
567
568    /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
569    pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
570        // INVARIANT: The refcount is initialised to a non-zero value.
571        let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
572            // SAFETY: There are no safety requirements for this FFI call.
573            refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
574            data <- init::uninit::<T, AllocError>(),
575        }? AllocError))?;
576        Ok(UniqueArc {
577            // INVARIANT: The newly-created object has a ref-count of 1.
578            // SAFETY: The pointer from the `Box` is valid.
579            inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
580        })
581    }
582}
583
584impl<T> UniqueArc<MaybeUninit<T>> {
585    /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
586    pub fn write(mut self, value: T) -> UniqueArc<T> {
587        self.deref_mut().write(value);
588        // SAFETY: We just wrote the value to be initialized.
589        unsafe { self.assume_init() }
590    }
591
592    /// Unsafely assume that `self` is initialized.
593    ///
594    /// # Safety
595    ///
596    /// The caller guarantees that the value behind this pointer has been initialized. It is
597    /// *immediate* UB to call this when the value is not initialized.
598    pub unsafe fn assume_init(self) -> UniqueArc<T> {
599        let inner = ManuallyDrop::new(self).inner.ptr;
600        UniqueArc {
601            // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
602            // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
603            inner: unsafe { Arc::from_inner(inner.cast()) },
604        }
605    }
606
607    /// Initialize `self` using the given initializer.
608    pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
609        // SAFETY: The supplied pointer is valid for initialization.
610        match unsafe { init.__init(self.as_mut_ptr()) } {
611            // SAFETY: Initialization completed successfully.
612            Ok(()) => Ok(unsafe { self.assume_init() }),
613            Err(err) => Err(err),
614        }
615    }
616
617    /// Pin-initialize `self` using the given pin-initializer.
618    pub fn pin_init_with<E>(
619        mut self,
620        init: impl PinInit<T, E>,
621    ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
622        // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
623        // to ensure it does not move.
624        match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
625            // SAFETY: Initialization completed successfully.
626            Ok(()) => Ok(unsafe { self.assume_init() }.into()),
627            Err(err) => Err(err),
628        }
629    }
630}
631
632impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
633    fn from(obj: UniqueArc<T>) -> Self {
634        // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
635        // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
636        unsafe { Pin::new_unchecked(obj) }
637    }
638}
639
640impl<T: ?Sized> Deref for UniqueArc<T> {
641    type Target = T;
642
643    fn deref(&self) -> &Self::Target {
644        self.inner.deref()
645    }
646}
647
648impl<T: ?Sized> DerefMut for UniqueArc<T> {
649    fn deref_mut(&mut self) -> &mut Self::Target {
650        // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
651        // it is safe to dereference it. Additionally, we know there is only one reference when
652        // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
653        unsafe { &mut self.inner.ptr.as_mut().data }
654    }
655}
656
657impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
658    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
659        fmt::Display::fmt(self.deref(), f)
660    }
661}
662
663impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
664    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
665        fmt::Display::fmt(self.deref(), f)
666    }
667}
668
669impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
670    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
671        fmt::Debug::fmt(self.deref(), f)
672    }
673}
674
675impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
676    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
677        fmt::Debug::fmt(self.deref(), f)
678    }
679}