Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12#include <linux/module.h>
13#include <linux/jhash.h>
14
15#include <net/inet_connection_sock.h>
16#include <net/inet_hashtables.h>
17#include <net/inet_timewait_sock.h>
18#include <net/ip.h>
19#include <net/route.h>
20#include <net/tcp_states.h>
21#include <net/xfrm.h>
22#include <net/tcp.h>
23#include <net/sock_reuseport.h>
24#include <net/addrconf.h>
25
26#if IS_ENABLED(CONFIG_IPV6)
27/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40{
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71}
72#endif
73
74/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81{
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89}
90
91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93{
94#if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104#endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108}
109EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111bool inet_rcv_saddr_any(const struct sock *sk)
112{
113#if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116#endif
117 return !sk->sk_rcv_saddr;
118}
119
120void inet_get_local_port_range(struct net *net, int *low, int *high)
121{
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130}
131EXPORT_SYMBOL(inet_get_local_port_range);
132
133static bool inet_use_bhash2_on_bind(const struct sock *sk)
134{
135#if IS_ENABLED(CONFIG_IPV6)
136 if (sk->sk_family == AF_INET6) {
137 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
138
139 return addr_type != IPV6_ADDR_ANY &&
140 addr_type != IPV6_ADDR_MAPPED;
141 }
142#endif
143 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
144}
145
146static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
147 kuid_t sk_uid, bool relax,
148 bool reuseport_cb_ok, bool reuseport_ok)
149{
150 int bound_dev_if2;
151
152 if (sk == sk2)
153 return false;
154
155 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156
157 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
158 sk->sk_bound_dev_if == bound_dev_if2) {
159 if (sk->sk_reuse && sk2->sk_reuse &&
160 sk2->sk_state != TCP_LISTEN) {
161 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
162 sk2->sk_reuseport && reuseport_cb_ok &&
163 (sk2->sk_state == TCP_TIME_WAIT ||
164 uid_eq(sk_uid, sock_i_uid(sk2)))))
165 return true;
166 } else if (!reuseport_ok || !sk->sk_reuseport ||
167 !sk2->sk_reuseport || !reuseport_cb_ok ||
168 (sk2->sk_state != TCP_TIME_WAIT &&
169 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
170 return true;
171 }
172 }
173 return false;
174}
175
176static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
177 kuid_t sk_uid, bool relax,
178 bool reuseport_cb_ok, bool reuseport_ok)
179{
180 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
181 return false;
182
183 return inet_bind_conflict(sk, sk2, sk_uid, relax,
184 reuseport_cb_ok, reuseport_ok);
185}
186
187static bool inet_bhash2_conflict(const struct sock *sk,
188 const struct inet_bind2_bucket *tb2,
189 kuid_t sk_uid,
190 bool relax, bool reuseport_cb_ok,
191 bool reuseport_ok)
192{
193 struct inet_timewait_sock *tw2;
194 struct sock *sk2;
195
196 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
197 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
198 reuseport_cb_ok, reuseport_ok))
199 return true;
200 }
201
202 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
203 sk2 = (struct sock *)tw2;
204
205 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
206 reuseport_cb_ok, reuseport_ok))
207 return true;
208 }
209
210 return false;
211}
212
213/* This should be called only when the tb and tb2 hashbuckets' locks are held */
214static int inet_csk_bind_conflict(const struct sock *sk,
215 const struct inet_bind_bucket *tb,
216 const struct inet_bind2_bucket *tb2, /* may be null */
217 bool relax, bool reuseport_ok)
218{
219 bool reuseport_cb_ok;
220 struct sock_reuseport *reuseport_cb;
221 kuid_t uid = sock_i_uid((struct sock *)sk);
222
223 rcu_read_lock();
224 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
225 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
226 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
227 rcu_read_unlock();
228
229 /*
230 * Unlike other sk lookup places we do not check
231 * for sk_net here, since _all_ the socks listed
232 * in tb->owners and tb2->owners list belong
233 * to the same net - the one this bucket belongs to.
234 */
235
236 if (!inet_use_bhash2_on_bind(sk)) {
237 struct sock *sk2;
238
239 sk_for_each_bound(sk2, &tb->owners)
240 if (inet_bind_conflict(sk, sk2, uid, relax,
241 reuseport_cb_ok, reuseport_ok) &&
242 inet_rcv_saddr_equal(sk, sk2, true))
243 return true;
244
245 return false;
246 }
247
248 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
249 * ipv4) should have been checked already. We need to do these two
250 * checks separately because their spinlocks have to be acquired/released
251 * independently of each other, to prevent possible deadlocks
252 */
253 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
254 reuseport_ok);
255}
256
257/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
258 * INADDR_ANY (if ipv4) socket.
259 *
260 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
261 * against concurrent binds on the port for addr any
262 */
263static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
264 bool relax, bool reuseport_ok)
265{
266 kuid_t uid = sock_i_uid((struct sock *)sk);
267 const struct net *net = sock_net(sk);
268 struct sock_reuseport *reuseport_cb;
269 struct inet_bind_hashbucket *head2;
270 struct inet_bind2_bucket *tb2;
271 bool reuseport_cb_ok;
272
273 rcu_read_lock();
274 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
275 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
276 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
277 rcu_read_unlock();
278
279 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
280
281 spin_lock(&head2->lock);
282
283 inet_bind_bucket_for_each(tb2, &head2->chain)
284 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
285 break;
286
287 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
288 reuseport_ok)) {
289 spin_unlock(&head2->lock);
290 return true;
291 }
292
293 spin_unlock(&head2->lock);
294 return false;
295}
296
297/*
298 * Find an open port number for the socket. Returns with the
299 * inet_bind_hashbucket locks held if successful.
300 */
301static struct inet_bind_hashbucket *
302inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
303 struct inet_bind2_bucket **tb2_ret,
304 struct inet_bind_hashbucket **head2_ret, int *port_ret)
305{
306 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
307 int i, low, high, attempt_half, port, l3mdev;
308 struct inet_bind_hashbucket *head, *head2;
309 struct net *net = sock_net(sk);
310 struct inet_bind2_bucket *tb2;
311 struct inet_bind_bucket *tb;
312 u32 remaining, offset;
313 bool relax = false;
314
315 l3mdev = inet_sk_bound_l3mdev(sk);
316ports_exhausted:
317 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
318other_half_scan:
319 inet_get_local_port_range(net, &low, &high);
320 high++; /* [32768, 60999] -> [32768, 61000[ */
321 if (high - low < 4)
322 attempt_half = 0;
323 if (attempt_half) {
324 int half = low + (((high - low) >> 2) << 1);
325
326 if (attempt_half == 1)
327 high = half;
328 else
329 low = half;
330 }
331 remaining = high - low;
332 if (likely(remaining > 1))
333 remaining &= ~1U;
334
335 offset = get_random_u32_below(remaining);
336 /* __inet_hash_connect() favors ports having @low parity
337 * We do the opposite to not pollute connect() users.
338 */
339 offset |= 1U;
340
341other_parity_scan:
342 port = low + offset;
343 for (i = 0; i < remaining; i += 2, port += 2) {
344 if (unlikely(port >= high))
345 port -= remaining;
346 if (inet_is_local_reserved_port(net, port))
347 continue;
348 head = &hinfo->bhash[inet_bhashfn(net, port,
349 hinfo->bhash_size)];
350 spin_lock_bh(&head->lock);
351 if (inet_use_bhash2_on_bind(sk)) {
352 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
353 goto next_port;
354 }
355
356 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
357 spin_lock(&head2->lock);
358 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
359 inet_bind_bucket_for_each(tb, &head->chain)
360 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
361 if (!inet_csk_bind_conflict(sk, tb, tb2,
362 relax, false))
363 goto success;
364 spin_unlock(&head2->lock);
365 goto next_port;
366 }
367 tb = NULL;
368 goto success;
369next_port:
370 spin_unlock_bh(&head->lock);
371 cond_resched();
372 }
373
374 offset--;
375 if (!(offset & 1))
376 goto other_parity_scan;
377
378 if (attempt_half == 1) {
379 /* OK we now try the upper half of the range */
380 attempt_half = 2;
381 goto other_half_scan;
382 }
383
384 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
385 /* We still have a chance to connect to different destinations */
386 relax = true;
387 goto ports_exhausted;
388 }
389 return NULL;
390success:
391 *port_ret = port;
392 *tb_ret = tb;
393 *tb2_ret = tb2;
394 *head2_ret = head2;
395 return head;
396}
397
398static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
399 struct sock *sk)
400{
401 kuid_t uid = sock_i_uid(sk);
402
403 if (tb->fastreuseport <= 0)
404 return 0;
405 if (!sk->sk_reuseport)
406 return 0;
407 if (rcu_access_pointer(sk->sk_reuseport_cb))
408 return 0;
409 if (!uid_eq(tb->fastuid, uid))
410 return 0;
411 /* We only need to check the rcv_saddr if this tb was once marked
412 * without fastreuseport and then was reset, as we can only know that
413 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
414 * owners list.
415 */
416 if (tb->fastreuseport == FASTREUSEPORT_ANY)
417 return 1;
418#if IS_ENABLED(CONFIG_IPV6)
419 if (tb->fast_sk_family == AF_INET6)
420 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
421 inet6_rcv_saddr(sk),
422 tb->fast_rcv_saddr,
423 sk->sk_rcv_saddr,
424 tb->fast_ipv6_only,
425 ipv6_only_sock(sk), true, false);
426#endif
427 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
428 ipv6_only_sock(sk), true, false);
429}
430
431void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
432 struct sock *sk)
433{
434 kuid_t uid = sock_i_uid(sk);
435 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
436
437 if (hlist_empty(&tb->owners)) {
438 tb->fastreuse = reuse;
439 if (sk->sk_reuseport) {
440 tb->fastreuseport = FASTREUSEPORT_ANY;
441 tb->fastuid = uid;
442 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
443 tb->fast_ipv6_only = ipv6_only_sock(sk);
444 tb->fast_sk_family = sk->sk_family;
445#if IS_ENABLED(CONFIG_IPV6)
446 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
447#endif
448 } else {
449 tb->fastreuseport = 0;
450 }
451 } else {
452 if (!reuse)
453 tb->fastreuse = 0;
454 if (sk->sk_reuseport) {
455 /* We didn't match or we don't have fastreuseport set on
456 * the tb, but we have sk_reuseport set on this socket
457 * and we know that there are no bind conflicts with
458 * this socket in this tb, so reset our tb's reuseport
459 * settings so that any subsequent sockets that match
460 * our current socket will be put on the fast path.
461 *
462 * If we reset we need to set FASTREUSEPORT_STRICT so we
463 * do extra checking for all subsequent sk_reuseport
464 * socks.
465 */
466 if (!sk_reuseport_match(tb, sk)) {
467 tb->fastreuseport = FASTREUSEPORT_STRICT;
468 tb->fastuid = uid;
469 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 tb->fast_ipv6_only = ipv6_only_sock(sk);
471 tb->fast_sk_family = sk->sk_family;
472#if IS_ENABLED(CONFIG_IPV6)
473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474#endif
475 }
476 } else {
477 tb->fastreuseport = 0;
478 }
479 }
480}
481
482/* Obtain a reference to a local port for the given sock,
483 * if snum is zero it means select any available local port.
484 * We try to allocate an odd port (and leave even ports for connect())
485 */
486int inet_csk_get_port(struct sock *sk, unsigned short snum)
487{
488 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
489 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
490 bool found_port = false, check_bind_conflict = true;
491 bool bhash_created = false, bhash2_created = false;
492 int ret = -EADDRINUSE, port = snum, l3mdev;
493 struct inet_bind_hashbucket *head, *head2;
494 struct inet_bind2_bucket *tb2 = NULL;
495 struct inet_bind_bucket *tb = NULL;
496 bool head2_lock_acquired = false;
497 struct net *net = sock_net(sk);
498
499 l3mdev = inet_sk_bound_l3mdev(sk);
500
501 if (!port) {
502 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
503 if (!head)
504 return ret;
505
506 head2_lock_acquired = true;
507
508 if (tb && tb2)
509 goto success;
510 found_port = true;
511 } else {
512 head = &hinfo->bhash[inet_bhashfn(net, port,
513 hinfo->bhash_size)];
514 spin_lock_bh(&head->lock);
515 inet_bind_bucket_for_each(tb, &head->chain)
516 if (inet_bind_bucket_match(tb, net, port, l3mdev))
517 break;
518 }
519
520 if (!tb) {
521 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
522 head, port, l3mdev);
523 if (!tb)
524 goto fail_unlock;
525 bhash_created = true;
526 }
527
528 if (!found_port) {
529 if (!hlist_empty(&tb->owners)) {
530 if (sk->sk_reuse == SK_FORCE_REUSE ||
531 (tb->fastreuse > 0 && reuse) ||
532 sk_reuseport_match(tb, sk))
533 check_bind_conflict = false;
534 }
535
536 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
537 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
538 goto fail_unlock;
539 }
540
541 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
542 spin_lock(&head2->lock);
543 head2_lock_acquired = true;
544 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
545 }
546
547 if (!tb2) {
548 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
549 net, head2, port, l3mdev, sk);
550 if (!tb2)
551 goto fail_unlock;
552 bhash2_created = true;
553 }
554
555 if (!found_port && check_bind_conflict) {
556 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
557 goto fail_unlock;
558 }
559
560success:
561 inet_csk_update_fastreuse(tb, sk);
562
563 if (!inet_csk(sk)->icsk_bind_hash)
564 inet_bind_hash(sk, tb, tb2, port);
565 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
566 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
567 ret = 0;
568
569fail_unlock:
570 if (ret) {
571 if (bhash_created)
572 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
573 if (bhash2_created)
574 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
575 tb2);
576 }
577 if (head2_lock_acquired)
578 spin_unlock(&head2->lock);
579 spin_unlock_bh(&head->lock);
580 return ret;
581}
582EXPORT_SYMBOL_GPL(inet_csk_get_port);
583
584/*
585 * Wait for an incoming connection, avoid race conditions. This must be called
586 * with the socket locked.
587 */
588static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
589{
590 struct inet_connection_sock *icsk = inet_csk(sk);
591 DEFINE_WAIT(wait);
592 int err;
593
594 /*
595 * True wake-one mechanism for incoming connections: only
596 * one process gets woken up, not the 'whole herd'.
597 * Since we do not 'race & poll' for established sockets
598 * anymore, the common case will execute the loop only once.
599 *
600 * Subtle issue: "add_wait_queue_exclusive()" will be added
601 * after any current non-exclusive waiters, and we know that
602 * it will always _stay_ after any new non-exclusive waiters
603 * because all non-exclusive waiters are added at the
604 * beginning of the wait-queue. As such, it's ok to "drop"
605 * our exclusiveness temporarily when we get woken up without
606 * having to remove and re-insert us on the wait queue.
607 */
608 for (;;) {
609 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
610 TASK_INTERRUPTIBLE);
611 release_sock(sk);
612 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
613 timeo = schedule_timeout(timeo);
614 sched_annotate_sleep();
615 lock_sock(sk);
616 err = 0;
617 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
618 break;
619 err = -EINVAL;
620 if (sk->sk_state != TCP_LISTEN)
621 break;
622 err = sock_intr_errno(timeo);
623 if (signal_pending(current))
624 break;
625 err = -EAGAIN;
626 if (!timeo)
627 break;
628 }
629 finish_wait(sk_sleep(sk), &wait);
630 return err;
631}
632
633/*
634 * This will accept the next outstanding connection.
635 */
636struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
637{
638 struct inet_connection_sock *icsk = inet_csk(sk);
639 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
640 struct request_sock *req;
641 struct sock *newsk;
642 int error;
643
644 lock_sock(sk);
645
646 /* We need to make sure that this socket is listening,
647 * and that it has something pending.
648 */
649 error = -EINVAL;
650 if (sk->sk_state != TCP_LISTEN)
651 goto out_err;
652
653 /* Find already established connection */
654 if (reqsk_queue_empty(queue)) {
655 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
656
657 /* If this is a non blocking socket don't sleep */
658 error = -EAGAIN;
659 if (!timeo)
660 goto out_err;
661
662 error = inet_csk_wait_for_connect(sk, timeo);
663 if (error)
664 goto out_err;
665 }
666 req = reqsk_queue_remove(queue, sk);
667 newsk = req->sk;
668
669 if (sk->sk_protocol == IPPROTO_TCP &&
670 tcp_rsk(req)->tfo_listener) {
671 spin_lock_bh(&queue->fastopenq.lock);
672 if (tcp_rsk(req)->tfo_listener) {
673 /* We are still waiting for the final ACK from 3WHS
674 * so can't free req now. Instead, we set req->sk to
675 * NULL to signify that the child socket is taken
676 * so reqsk_fastopen_remove() will free the req
677 * when 3WHS finishes (or is aborted).
678 */
679 req->sk = NULL;
680 req = NULL;
681 }
682 spin_unlock_bh(&queue->fastopenq.lock);
683 }
684
685out:
686 release_sock(sk);
687 if (newsk && mem_cgroup_sockets_enabled) {
688 int amt;
689
690 /* atomically get the memory usage, set and charge the
691 * newsk->sk_memcg.
692 */
693 lock_sock(newsk);
694
695 /* The socket has not been accepted yet, no need to look at
696 * newsk->sk_wmem_queued.
697 */
698 amt = sk_mem_pages(newsk->sk_forward_alloc +
699 atomic_read(&newsk->sk_rmem_alloc));
700 mem_cgroup_sk_alloc(newsk);
701 if (newsk->sk_memcg && amt)
702 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
703 GFP_KERNEL | __GFP_NOFAIL);
704
705 release_sock(newsk);
706 }
707 if (req)
708 reqsk_put(req);
709 return newsk;
710out_err:
711 newsk = NULL;
712 req = NULL;
713 *err = error;
714 goto out;
715}
716EXPORT_SYMBOL(inet_csk_accept);
717
718/*
719 * Using different timers for retransmit, delayed acks and probes
720 * We may wish use just one timer maintaining a list of expire jiffies
721 * to optimize.
722 */
723void inet_csk_init_xmit_timers(struct sock *sk,
724 void (*retransmit_handler)(struct timer_list *t),
725 void (*delack_handler)(struct timer_list *t),
726 void (*keepalive_handler)(struct timer_list *t))
727{
728 struct inet_connection_sock *icsk = inet_csk(sk);
729
730 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
731 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
732 timer_setup(&sk->sk_timer, keepalive_handler, 0);
733 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
734}
735EXPORT_SYMBOL(inet_csk_init_xmit_timers);
736
737void inet_csk_clear_xmit_timers(struct sock *sk)
738{
739 struct inet_connection_sock *icsk = inet_csk(sk);
740
741 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
742
743 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
744 sk_stop_timer(sk, &icsk->icsk_delack_timer);
745 sk_stop_timer(sk, &sk->sk_timer);
746}
747EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
748
749void inet_csk_delete_keepalive_timer(struct sock *sk)
750{
751 sk_stop_timer(sk, &sk->sk_timer);
752}
753EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
754
755void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
756{
757 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
758}
759EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
760
761struct dst_entry *inet_csk_route_req(const struct sock *sk,
762 struct flowi4 *fl4,
763 const struct request_sock *req)
764{
765 const struct inet_request_sock *ireq = inet_rsk(req);
766 struct net *net = read_pnet(&ireq->ireq_net);
767 struct ip_options_rcu *opt;
768 struct rtable *rt;
769
770 rcu_read_lock();
771 opt = rcu_dereference(ireq->ireq_opt);
772
773 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
774 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
775 sk->sk_protocol, inet_sk_flowi_flags(sk),
776 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
777 ireq->ir_loc_addr, ireq->ir_rmt_port,
778 htons(ireq->ir_num), sk->sk_uid);
779 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
780 rt = ip_route_output_flow(net, fl4, sk);
781 if (IS_ERR(rt))
782 goto no_route;
783 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
784 goto route_err;
785 rcu_read_unlock();
786 return &rt->dst;
787
788route_err:
789 ip_rt_put(rt);
790no_route:
791 rcu_read_unlock();
792 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
793 return NULL;
794}
795EXPORT_SYMBOL_GPL(inet_csk_route_req);
796
797struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
798 struct sock *newsk,
799 const struct request_sock *req)
800{
801 const struct inet_request_sock *ireq = inet_rsk(req);
802 struct net *net = read_pnet(&ireq->ireq_net);
803 struct inet_sock *newinet = inet_sk(newsk);
804 struct ip_options_rcu *opt;
805 struct flowi4 *fl4;
806 struct rtable *rt;
807
808 opt = rcu_dereference(ireq->ireq_opt);
809 fl4 = &newinet->cork.fl.u.ip4;
810
811 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
812 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
813 sk->sk_protocol, inet_sk_flowi_flags(sk),
814 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
815 ireq->ir_loc_addr, ireq->ir_rmt_port,
816 htons(ireq->ir_num), sk->sk_uid);
817 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
818 rt = ip_route_output_flow(net, fl4, sk);
819 if (IS_ERR(rt))
820 goto no_route;
821 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
822 goto route_err;
823 return &rt->dst;
824
825route_err:
826 ip_rt_put(rt);
827no_route:
828 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
829 return NULL;
830}
831EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
832
833/* Decide when to expire the request and when to resend SYN-ACK */
834static void syn_ack_recalc(struct request_sock *req,
835 const int max_syn_ack_retries,
836 const u8 rskq_defer_accept,
837 int *expire, int *resend)
838{
839 if (!rskq_defer_accept) {
840 *expire = req->num_timeout >= max_syn_ack_retries;
841 *resend = 1;
842 return;
843 }
844 *expire = req->num_timeout >= max_syn_ack_retries &&
845 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
846 /* Do not resend while waiting for data after ACK,
847 * start to resend on end of deferring period to give
848 * last chance for data or ACK to create established socket.
849 */
850 *resend = !inet_rsk(req)->acked ||
851 req->num_timeout >= rskq_defer_accept - 1;
852}
853
854int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
855{
856 int err = req->rsk_ops->rtx_syn_ack(parent, req);
857
858 if (!err)
859 req->num_retrans++;
860 return err;
861}
862EXPORT_SYMBOL(inet_rtx_syn_ack);
863
864static struct request_sock *inet_reqsk_clone(struct request_sock *req,
865 struct sock *sk)
866{
867 struct sock *req_sk, *nreq_sk;
868 struct request_sock *nreq;
869
870 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
871 if (!nreq) {
872 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873
874 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
875 sock_put(sk);
876 return NULL;
877 }
878
879 req_sk = req_to_sk(req);
880 nreq_sk = req_to_sk(nreq);
881
882 memcpy(nreq_sk, req_sk,
883 offsetof(struct sock, sk_dontcopy_begin));
884 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
885 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
886
887 sk_node_init(&nreq_sk->sk_node);
888 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
889#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
890 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
891#endif
892 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
893
894 nreq->rsk_listener = sk;
895
896 /* We need not acquire fastopenq->lock
897 * because the child socket is locked in inet_csk_listen_stop().
898 */
899 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
900 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
901
902 return nreq;
903}
904
905static void reqsk_queue_migrated(struct request_sock_queue *queue,
906 const struct request_sock *req)
907{
908 if (req->num_timeout == 0)
909 atomic_inc(&queue->young);
910 atomic_inc(&queue->qlen);
911}
912
913static void reqsk_migrate_reset(struct request_sock *req)
914{
915 req->saved_syn = NULL;
916#if IS_ENABLED(CONFIG_IPV6)
917 inet_rsk(req)->ipv6_opt = NULL;
918 inet_rsk(req)->pktopts = NULL;
919#else
920 inet_rsk(req)->ireq_opt = NULL;
921#endif
922}
923
924/* return true if req was found in the ehash table */
925static bool reqsk_queue_unlink(struct request_sock *req)
926{
927 struct sock *sk = req_to_sk(req);
928 bool found = false;
929
930 if (sk_hashed(sk)) {
931 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
932 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
933
934 spin_lock(lock);
935 found = __sk_nulls_del_node_init_rcu(sk);
936 spin_unlock(lock);
937 }
938 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
939 reqsk_put(req);
940 return found;
941}
942
943bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
944{
945 bool unlinked = reqsk_queue_unlink(req);
946
947 if (unlinked) {
948 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
949 reqsk_put(req);
950 }
951 return unlinked;
952}
953EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
954
955void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
956{
957 inet_csk_reqsk_queue_drop(sk, req);
958 reqsk_put(req);
959}
960EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
961
962static void reqsk_timer_handler(struct timer_list *t)
963{
964 struct request_sock *req = from_timer(req, t, rsk_timer);
965 struct request_sock *nreq = NULL, *oreq = req;
966 struct sock *sk_listener = req->rsk_listener;
967 struct inet_connection_sock *icsk;
968 struct request_sock_queue *queue;
969 struct net *net;
970 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
971
972 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
973 struct sock *nsk;
974
975 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
976 if (!nsk)
977 goto drop;
978
979 nreq = inet_reqsk_clone(req, nsk);
980 if (!nreq)
981 goto drop;
982
983 /* The new timer for the cloned req can decrease the 2
984 * by calling inet_csk_reqsk_queue_drop_and_put(), so
985 * hold another count to prevent use-after-free and
986 * call reqsk_put() just before return.
987 */
988 refcount_set(&nreq->rsk_refcnt, 2 + 1);
989 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
990 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
991
992 req = nreq;
993 sk_listener = nsk;
994 }
995
996 icsk = inet_csk(sk_listener);
997 net = sock_net(sk_listener);
998 max_syn_ack_retries = icsk->icsk_syn_retries ? :
999 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1000 /* Normally all the openreqs are young and become mature
1001 * (i.e. converted to established socket) for first timeout.
1002 * If synack was not acknowledged for 1 second, it means
1003 * one of the following things: synack was lost, ack was lost,
1004 * rtt is high or nobody planned to ack (i.e. synflood).
1005 * When server is a bit loaded, queue is populated with old
1006 * open requests, reducing effective size of queue.
1007 * When server is well loaded, queue size reduces to zero
1008 * after several minutes of work. It is not synflood,
1009 * it is normal operation. The solution is pruning
1010 * too old entries overriding normal timeout, when
1011 * situation becomes dangerous.
1012 *
1013 * Essentially, we reserve half of room for young
1014 * embrions; and abort old ones without pity, if old
1015 * ones are about to clog our table.
1016 */
1017 queue = &icsk->icsk_accept_queue;
1018 qlen = reqsk_queue_len(queue);
1019 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1020 int young = reqsk_queue_len_young(queue) << 1;
1021
1022 while (max_syn_ack_retries > 2) {
1023 if (qlen < young)
1024 break;
1025 max_syn_ack_retries--;
1026 young <<= 1;
1027 }
1028 }
1029 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1030 &expire, &resend);
1031 req->rsk_ops->syn_ack_timeout(req);
1032 if (!expire &&
1033 (!resend ||
1034 !inet_rtx_syn_ack(sk_listener, req) ||
1035 inet_rsk(req)->acked)) {
1036 if (req->num_timeout++ == 0)
1037 atomic_dec(&queue->young);
1038 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1039
1040 if (!nreq)
1041 return;
1042
1043 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1044 /* delete timer */
1045 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1046 goto no_ownership;
1047 }
1048
1049 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1050 reqsk_migrate_reset(oreq);
1051 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1052 reqsk_put(oreq);
1053
1054 reqsk_put(nreq);
1055 return;
1056 }
1057
1058 /* Even if we can clone the req, we may need not retransmit any more
1059 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1060 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1061 */
1062 if (nreq) {
1063 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1064no_ownership:
1065 reqsk_migrate_reset(nreq);
1066 reqsk_queue_removed(queue, nreq);
1067 __reqsk_free(nreq);
1068 }
1069
1070drop:
1071 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1072}
1073
1074static void reqsk_queue_hash_req(struct request_sock *req,
1075 unsigned long timeout)
1076{
1077 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1078 mod_timer(&req->rsk_timer, jiffies + timeout);
1079
1080 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1081 /* before letting lookups find us, make sure all req fields
1082 * are committed to memory and refcnt initialized.
1083 */
1084 smp_wmb();
1085 refcount_set(&req->rsk_refcnt, 2 + 1);
1086}
1087
1088void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1089 unsigned long timeout)
1090{
1091 reqsk_queue_hash_req(req, timeout);
1092 inet_csk_reqsk_queue_added(sk);
1093}
1094EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1095
1096static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1097 const gfp_t priority)
1098{
1099 struct inet_connection_sock *icsk = inet_csk(newsk);
1100
1101 if (!icsk->icsk_ulp_ops)
1102 return;
1103
1104 if (icsk->icsk_ulp_ops->clone)
1105 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1106}
1107
1108/**
1109 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1110 * @sk: the socket to clone
1111 * @req: request_sock
1112 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1113 *
1114 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1115 */
1116struct sock *inet_csk_clone_lock(const struct sock *sk,
1117 const struct request_sock *req,
1118 const gfp_t priority)
1119{
1120 struct sock *newsk = sk_clone_lock(sk, priority);
1121
1122 if (newsk) {
1123 struct inet_connection_sock *newicsk = inet_csk(newsk);
1124
1125 inet_sk_set_state(newsk, TCP_SYN_RECV);
1126 newicsk->icsk_bind_hash = NULL;
1127 newicsk->icsk_bind2_hash = NULL;
1128
1129 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1130 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1131 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1132
1133 /* listeners have SOCK_RCU_FREE, not the children */
1134 sock_reset_flag(newsk, SOCK_RCU_FREE);
1135
1136 inet_sk(newsk)->mc_list = NULL;
1137
1138 newsk->sk_mark = inet_rsk(req)->ir_mark;
1139 atomic64_set(&newsk->sk_cookie,
1140 atomic64_read(&inet_rsk(req)->ir_cookie));
1141
1142 newicsk->icsk_retransmits = 0;
1143 newicsk->icsk_backoff = 0;
1144 newicsk->icsk_probes_out = 0;
1145 newicsk->icsk_probes_tstamp = 0;
1146
1147 /* Deinitialize accept_queue to trap illegal accesses. */
1148 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1149
1150 inet_clone_ulp(req, newsk, priority);
1151
1152 security_inet_csk_clone(newsk, req);
1153 }
1154 return newsk;
1155}
1156EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1157
1158/*
1159 * At this point, there should be no process reference to this
1160 * socket, and thus no user references at all. Therefore we
1161 * can assume the socket waitqueue is inactive and nobody will
1162 * try to jump onto it.
1163 */
1164void inet_csk_destroy_sock(struct sock *sk)
1165{
1166 WARN_ON(sk->sk_state != TCP_CLOSE);
1167 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1168
1169 /* It cannot be in hash table! */
1170 WARN_ON(!sk_unhashed(sk));
1171
1172 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1173 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1174
1175 sk->sk_prot->destroy(sk);
1176
1177 sk_stream_kill_queues(sk);
1178
1179 xfrm_sk_free_policy(sk);
1180
1181 sk_refcnt_debug_release(sk);
1182
1183 this_cpu_dec(*sk->sk_prot->orphan_count);
1184
1185 sock_put(sk);
1186}
1187EXPORT_SYMBOL(inet_csk_destroy_sock);
1188
1189/* This function allows to force a closure of a socket after the call to
1190 * tcp/dccp_create_openreq_child().
1191 */
1192void inet_csk_prepare_forced_close(struct sock *sk)
1193 __releases(&sk->sk_lock.slock)
1194{
1195 /* sk_clone_lock locked the socket and set refcnt to 2 */
1196 bh_unlock_sock(sk);
1197 sock_put(sk);
1198 inet_csk_prepare_for_destroy_sock(sk);
1199 inet_sk(sk)->inet_num = 0;
1200}
1201EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1202
1203static int inet_ulp_can_listen(const struct sock *sk)
1204{
1205 const struct inet_connection_sock *icsk = inet_csk(sk);
1206
1207 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1208 return -EINVAL;
1209
1210 return 0;
1211}
1212
1213int inet_csk_listen_start(struct sock *sk)
1214{
1215 struct inet_connection_sock *icsk = inet_csk(sk);
1216 struct inet_sock *inet = inet_sk(sk);
1217 int err;
1218
1219 err = inet_ulp_can_listen(sk);
1220 if (unlikely(err))
1221 return err;
1222
1223 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1224
1225 sk->sk_ack_backlog = 0;
1226 inet_csk_delack_init(sk);
1227
1228 /* There is race window here: we announce ourselves listening,
1229 * but this transition is still not validated by get_port().
1230 * It is OK, because this socket enters to hash table only
1231 * after validation is complete.
1232 */
1233 inet_sk_state_store(sk, TCP_LISTEN);
1234 err = sk->sk_prot->get_port(sk, inet->inet_num);
1235 if (!err) {
1236 inet->inet_sport = htons(inet->inet_num);
1237
1238 sk_dst_reset(sk);
1239 err = sk->sk_prot->hash(sk);
1240
1241 if (likely(!err))
1242 return 0;
1243 }
1244
1245 inet_sk_set_state(sk, TCP_CLOSE);
1246 return err;
1247}
1248EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1249
1250static void inet_child_forget(struct sock *sk, struct request_sock *req,
1251 struct sock *child)
1252{
1253 sk->sk_prot->disconnect(child, O_NONBLOCK);
1254
1255 sock_orphan(child);
1256
1257 this_cpu_inc(*sk->sk_prot->orphan_count);
1258
1259 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1260 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1261 BUG_ON(sk != req->rsk_listener);
1262
1263 /* Paranoid, to prevent race condition if
1264 * an inbound pkt destined for child is
1265 * blocked by sock lock in tcp_v4_rcv().
1266 * Also to satisfy an assertion in
1267 * tcp_v4_destroy_sock().
1268 */
1269 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1270 }
1271 inet_csk_destroy_sock(child);
1272}
1273
1274struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1275 struct request_sock *req,
1276 struct sock *child)
1277{
1278 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1279
1280 spin_lock(&queue->rskq_lock);
1281 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1282 inet_child_forget(sk, req, child);
1283 child = NULL;
1284 } else {
1285 req->sk = child;
1286 req->dl_next = NULL;
1287 if (queue->rskq_accept_head == NULL)
1288 WRITE_ONCE(queue->rskq_accept_head, req);
1289 else
1290 queue->rskq_accept_tail->dl_next = req;
1291 queue->rskq_accept_tail = req;
1292 sk_acceptq_added(sk);
1293 }
1294 spin_unlock(&queue->rskq_lock);
1295 return child;
1296}
1297EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1298
1299struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1300 struct request_sock *req, bool own_req)
1301{
1302 if (own_req) {
1303 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1304 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1305
1306 if (sk != req->rsk_listener) {
1307 /* another listening sk has been selected,
1308 * migrate the req to it.
1309 */
1310 struct request_sock *nreq;
1311
1312 /* hold a refcnt for the nreq->rsk_listener
1313 * which is assigned in inet_reqsk_clone()
1314 */
1315 sock_hold(sk);
1316 nreq = inet_reqsk_clone(req, sk);
1317 if (!nreq) {
1318 inet_child_forget(sk, req, child);
1319 goto child_put;
1320 }
1321
1322 refcount_set(&nreq->rsk_refcnt, 1);
1323 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1324 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1325 reqsk_migrate_reset(req);
1326 reqsk_put(req);
1327 return child;
1328 }
1329
1330 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1331 reqsk_migrate_reset(nreq);
1332 __reqsk_free(nreq);
1333 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1334 return child;
1335 }
1336 }
1337 /* Too bad, another child took ownership of the request, undo. */
1338child_put:
1339 bh_unlock_sock(child);
1340 sock_put(child);
1341 return NULL;
1342}
1343EXPORT_SYMBOL(inet_csk_complete_hashdance);
1344
1345/*
1346 * This routine closes sockets which have been at least partially
1347 * opened, but not yet accepted.
1348 */
1349void inet_csk_listen_stop(struct sock *sk)
1350{
1351 struct inet_connection_sock *icsk = inet_csk(sk);
1352 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1353 struct request_sock *next, *req;
1354
1355 /* Following specs, it would be better either to send FIN
1356 * (and enter FIN-WAIT-1, it is normal close)
1357 * or to send active reset (abort).
1358 * Certainly, it is pretty dangerous while synflood, but it is
1359 * bad justification for our negligence 8)
1360 * To be honest, we are not able to make either
1361 * of the variants now. --ANK
1362 */
1363 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1364 struct sock *child = req->sk, *nsk;
1365 struct request_sock *nreq;
1366
1367 local_bh_disable();
1368 bh_lock_sock(child);
1369 WARN_ON(sock_owned_by_user(child));
1370 sock_hold(child);
1371
1372 nsk = reuseport_migrate_sock(sk, child, NULL);
1373 if (nsk) {
1374 nreq = inet_reqsk_clone(req, nsk);
1375 if (nreq) {
1376 refcount_set(&nreq->rsk_refcnt, 1);
1377
1378 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1379 __NET_INC_STATS(sock_net(nsk),
1380 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1381 reqsk_migrate_reset(req);
1382 } else {
1383 __NET_INC_STATS(sock_net(nsk),
1384 LINUX_MIB_TCPMIGRATEREQFAILURE);
1385 reqsk_migrate_reset(nreq);
1386 __reqsk_free(nreq);
1387 }
1388
1389 /* inet_csk_reqsk_queue_add() has already
1390 * called inet_child_forget() on failure case.
1391 */
1392 goto skip_child_forget;
1393 }
1394 }
1395
1396 inet_child_forget(sk, req, child);
1397skip_child_forget:
1398 reqsk_put(req);
1399 bh_unlock_sock(child);
1400 local_bh_enable();
1401 sock_put(child);
1402
1403 cond_resched();
1404 }
1405 if (queue->fastopenq.rskq_rst_head) {
1406 /* Free all the reqs queued in rskq_rst_head. */
1407 spin_lock_bh(&queue->fastopenq.lock);
1408 req = queue->fastopenq.rskq_rst_head;
1409 queue->fastopenq.rskq_rst_head = NULL;
1410 spin_unlock_bh(&queue->fastopenq.lock);
1411 while (req != NULL) {
1412 next = req->dl_next;
1413 reqsk_put(req);
1414 req = next;
1415 }
1416 }
1417 WARN_ON_ONCE(sk->sk_ack_backlog);
1418}
1419EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1420
1421void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1422{
1423 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1424 const struct inet_sock *inet = inet_sk(sk);
1425
1426 sin->sin_family = AF_INET;
1427 sin->sin_addr.s_addr = inet->inet_daddr;
1428 sin->sin_port = inet->inet_dport;
1429}
1430EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1431
1432static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1433{
1434 const struct inet_sock *inet = inet_sk(sk);
1435 const struct ip_options_rcu *inet_opt;
1436 __be32 daddr = inet->inet_daddr;
1437 struct flowi4 *fl4;
1438 struct rtable *rt;
1439
1440 rcu_read_lock();
1441 inet_opt = rcu_dereference(inet->inet_opt);
1442 if (inet_opt && inet_opt->opt.srr)
1443 daddr = inet_opt->opt.faddr;
1444 fl4 = &fl->u.ip4;
1445 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1446 inet->inet_saddr, inet->inet_dport,
1447 inet->inet_sport, sk->sk_protocol,
1448 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1449 if (IS_ERR(rt))
1450 rt = NULL;
1451 if (rt)
1452 sk_setup_caps(sk, &rt->dst);
1453 rcu_read_unlock();
1454
1455 return &rt->dst;
1456}
1457
1458struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1459{
1460 struct dst_entry *dst = __sk_dst_check(sk, 0);
1461 struct inet_sock *inet = inet_sk(sk);
1462
1463 if (!dst) {
1464 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1465 if (!dst)
1466 goto out;
1467 }
1468 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1469
1470 dst = __sk_dst_check(sk, 0);
1471 if (!dst)
1472 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1473out:
1474 return dst;
1475}
1476EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12#include <linux/module.h>
13#include <linux/jhash.h>
14
15#include <net/inet_connection_sock.h>
16#include <net/inet_hashtables.h>
17#include <net/inet_timewait_sock.h>
18#include <net/ip.h>
19#include <net/route.h>
20#include <net/tcp_states.h>
21#include <net/xfrm.h>
22#include <net/tcp.h>
23#include <net/sock_reuseport.h>
24#include <net/addrconf.h>
25
26#if IS_ENABLED(CONFIG_IPV6)
27/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40{
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71}
72#endif
73
74/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81{
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89}
90
91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93{
94#if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104#endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108}
109EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111bool inet_rcv_saddr_any(const struct sock *sk)
112{
113#if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116#endif
117 return !sk->sk_rcv_saddr;
118}
119
120/**
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
122 * @sk: socket
123 * @low: pointer to low port
124 * @high: pointer to high port
125 *
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129 */
130bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131{
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
134 u32 sk_range;
135
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
142
143 if (lo <= sk_lo && sk_lo <= hi)
144 lo = sk_lo;
145 if (lo <= sk_hi && sk_hi <= hi)
146 hi = sk_hi;
147 local_range = true;
148 }
149
150 *low = lo;
151 *high = hi;
152 return local_range;
153}
154EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156static bool inet_use_bhash2_on_bind(const struct sock *sk)
157{
158#if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162 if (addr_type == IPV6_ADDR_ANY)
163 return false;
164
165 if (addr_type != IPV6_ADDR_MAPPED)
166 return true;
167 }
168#endif
169 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170}
171
172static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 kuid_t sk_uid, bool relax,
174 bool reuseport_cb_ok, bool reuseport_ok)
175{
176 int bound_dev_if2;
177
178 if (sk == sk2)
179 return false;
180
181 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 sk->sk_bound_dev_if == bound_dev_if2) {
185 if (sk->sk_reuse && sk2->sk_reuse &&
186 sk2->sk_state != TCP_LISTEN) {
187 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 sk2->sk_reuseport && reuseport_cb_ok &&
189 (sk2->sk_state == TCP_TIME_WAIT ||
190 uid_eq(sk_uid, sock_i_uid(sk2)))))
191 return true;
192 } else if (!reuseport_ok || !sk->sk_reuseport ||
193 !sk2->sk_reuseport || !reuseport_cb_ok ||
194 (sk2->sk_state != TCP_TIME_WAIT &&
195 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 return true;
197 }
198 }
199 return false;
200}
201
202static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 kuid_t sk_uid, bool relax,
204 bool reuseport_cb_ok, bool reuseport_ok)
205{
206 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
207 return false;
208
209 return inet_bind_conflict(sk, sk2, sk_uid, relax,
210 reuseport_cb_ok, reuseport_ok);
211}
212
213static bool inet_bhash2_conflict(const struct sock *sk,
214 const struct inet_bind2_bucket *tb2,
215 kuid_t sk_uid,
216 bool relax, bool reuseport_cb_ok,
217 bool reuseport_ok)
218{
219 struct sock *sk2;
220
221 sk_for_each_bound(sk2, &tb2->owners) {
222 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
223 reuseport_cb_ok, reuseport_ok))
224 return true;
225 }
226
227 return false;
228}
229
230#define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
231 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
232 sk_for_each_bound(sk2, &(__tb2)->owners)
233
234/* This should be called only when the tb and tb2 hashbuckets' locks are held */
235static int inet_csk_bind_conflict(const struct sock *sk,
236 const struct inet_bind_bucket *tb,
237 const struct inet_bind2_bucket *tb2, /* may be null */
238 bool relax, bool reuseport_ok)
239{
240 kuid_t uid = sock_i_uid((struct sock *)sk);
241 struct sock_reuseport *reuseport_cb;
242 bool reuseport_cb_ok;
243 struct sock *sk2;
244
245 rcu_read_lock();
246 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
247 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
248 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
249 rcu_read_unlock();
250
251 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
252 * ipv4) should have been checked already. We need to do these two
253 * checks separately because their spinlocks have to be acquired/released
254 * independently of each other, to prevent possible deadlocks
255 */
256 if (inet_use_bhash2_on_bind(sk))
257 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
258 reuseport_cb_ok, reuseport_ok);
259
260 /* Unlike other sk lookup places we do not check
261 * for sk_net here, since _all_ the socks listed
262 * in tb->owners and tb2->owners list belong
263 * to the same net - the one this bucket belongs to.
264 */
265 sk_for_each_bound_bhash(sk2, tb2, tb) {
266 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
267 continue;
268
269 if (inet_rcv_saddr_equal(sk, sk2, true))
270 return true;
271 }
272
273 return false;
274}
275
276/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
277 * INADDR_ANY (if ipv4) socket.
278 *
279 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
280 * against concurrent binds on the port for addr any
281 */
282static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
283 bool relax, bool reuseport_ok)
284{
285 kuid_t uid = sock_i_uid((struct sock *)sk);
286 const struct net *net = sock_net(sk);
287 struct sock_reuseport *reuseport_cb;
288 struct inet_bind_hashbucket *head2;
289 struct inet_bind2_bucket *tb2;
290 bool reuseport_cb_ok;
291
292 rcu_read_lock();
293 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
294 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
295 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
296 rcu_read_unlock();
297
298 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
299
300 spin_lock(&head2->lock);
301
302 inet_bind_bucket_for_each(tb2, &head2->chain)
303 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
304 break;
305
306 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
307 reuseport_ok)) {
308 spin_unlock(&head2->lock);
309 return true;
310 }
311
312 spin_unlock(&head2->lock);
313 return false;
314}
315
316/*
317 * Find an open port number for the socket. Returns with the
318 * inet_bind_hashbucket locks held if successful.
319 */
320static struct inet_bind_hashbucket *
321inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
322 struct inet_bind2_bucket **tb2_ret,
323 struct inet_bind_hashbucket **head2_ret, int *port_ret)
324{
325 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
326 int i, low, high, attempt_half, port, l3mdev;
327 struct inet_bind_hashbucket *head, *head2;
328 struct net *net = sock_net(sk);
329 struct inet_bind2_bucket *tb2;
330 struct inet_bind_bucket *tb;
331 u32 remaining, offset;
332 bool relax = false;
333
334 l3mdev = inet_sk_bound_l3mdev(sk);
335ports_exhausted:
336 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
337other_half_scan:
338 inet_sk_get_local_port_range(sk, &low, &high);
339 high++; /* [32768, 60999] -> [32768, 61000[ */
340 if (high - low < 4)
341 attempt_half = 0;
342 if (attempt_half) {
343 int half = low + (((high - low) >> 2) << 1);
344
345 if (attempt_half == 1)
346 high = half;
347 else
348 low = half;
349 }
350 remaining = high - low;
351 if (likely(remaining > 1))
352 remaining &= ~1U;
353
354 offset = get_random_u32_below(remaining);
355 /* __inet_hash_connect() favors ports having @low parity
356 * We do the opposite to not pollute connect() users.
357 */
358 offset |= 1U;
359
360other_parity_scan:
361 port = low + offset;
362 for (i = 0; i < remaining; i += 2, port += 2) {
363 if (unlikely(port >= high))
364 port -= remaining;
365 if (inet_is_local_reserved_port(net, port))
366 continue;
367 head = &hinfo->bhash[inet_bhashfn(net, port,
368 hinfo->bhash_size)];
369 spin_lock_bh(&head->lock);
370 if (inet_use_bhash2_on_bind(sk)) {
371 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
372 goto next_port;
373 }
374
375 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
376 spin_lock(&head2->lock);
377 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
378 inet_bind_bucket_for_each(tb, &head->chain)
379 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
380 if (!inet_csk_bind_conflict(sk, tb, tb2,
381 relax, false))
382 goto success;
383 spin_unlock(&head2->lock);
384 goto next_port;
385 }
386 tb = NULL;
387 goto success;
388next_port:
389 spin_unlock_bh(&head->lock);
390 cond_resched();
391 }
392
393 offset--;
394 if (!(offset & 1))
395 goto other_parity_scan;
396
397 if (attempt_half == 1) {
398 /* OK we now try the upper half of the range */
399 attempt_half = 2;
400 goto other_half_scan;
401 }
402
403 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
404 /* We still have a chance to connect to different destinations */
405 relax = true;
406 goto ports_exhausted;
407 }
408 return NULL;
409success:
410 *port_ret = port;
411 *tb_ret = tb;
412 *tb2_ret = tb2;
413 *head2_ret = head2;
414 return head;
415}
416
417static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
418 struct sock *sk)
419{
420 kuid_t uid = sock_i_uid(sk);
421
422 if (tb->fastreuseport <= 0)
423 return 0;
424 if (!sk->sk_reuseport)
425 return 0;
426 if (rcu_access_pointer(sk->sk_reuseport_cb))
427 return 0;
428 if (!uid_eq(tb->fastuid, uid))
429 return 0;
430 /* We only need to check the rcv_saddr if this tb was once marked
431 * without fastreuseport and then was reset, as we can only know that
432 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
433 * owners list.
434 */
435 if (tb->fastreuseport == FASTREUSEPORT_ANY)
436 return 1;
437#if IS_ENABLED(CONFIG_IPV6)
438 if (tb->fast_sk_family == AF_INET6)
439 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
440 inet6_rcv_saddr(sk),
441 tb->fast_rcv_saddr,
442 sk->sk_rcv_saddr,
443 tb->fast_ipv6_only,
444 ipv6_only_sock(sk), true, false);
445#endif
446 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
447 ipv6_only_sock(sk), true, false);
448}
449
450void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
451 struct sock *sk)
452{
453 kuid_t uid = sock_i_uid(sk);
454 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
455
456 if (hlist_empty(&tb->bhash2)) {
457 tb->fastreuse = reuse;
458 if (sk->sk_reuseport) {
459 tb->fastreuseport = FASTREUSEPORT_ANY;
460 tb->fastuid = uid;
461 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
462 tb->fast_ipv6_only = ipv6_only_sock(sk);
463 tb->fast_sk_family = sk->sk_family;
464#if IS_ENABLED(CONFIG_IPV6)
465 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
466#endif
467 } else {
468 tb->fastreuseport = 0;
469 }
470 } else {
471 if (!reuse)
472 tb->fastreuse = 0;
473 if (sk->sk_reuseport) {
474 /* We didn't match or we don't have fastreuseport set on
475 * the tb, but we have sk_reuseport set on this socket
476 * and we know that there are no bind conflicts with
477 * this socket in this tb, so reset our tb's reuseport
478 * settings so that any subsequent sockets that match
479 * our current socket will be put on the fast path.
480 *
481 * If we reset we need to set FASTREUSEPORT_STRICT so we
482 * do extra checking for all subsequent sk_reuseport
483 * socks.
484 */
485 if (!sk_reuseport_match(tb, sk)) {
486 tb->fastreuseport = FASTREUSEPORT_STRICT;
487 tb->fastuid = uid;
488 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
489 tb->fast_ipv6_only = ipv6_only_sock(sk);
490 tb->fast_sk_family = sk->sk_family;
491#if IS_ENABLED(CONFIG_IPV6)
492 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
493#endif
494 }
495 } else {
496 tb->fastreuseport = 0;
497 }
498 }
499}
500
501/* Obtain a reference to a local port for the given sock,
502 * if snum is zero it means select any available local port.
503 * We try to allocate an odd port (and leave even ports for connect())
504 */
505int inet_csk_get_port(struct sock *sk, unsigned short snum)
506{
507 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
508 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
509 bool found_port = false, check_bind_conflict = true;
510 bool bhash_created = false, bhash2_created = false;
511 int ret = -EADDRINUSE, port = snum, l3mdev;
512 struct inet_bind_hashbucket *head, *head2;
513 struct inet_bind2_bucket *tb2 = NULL;
514 struct inet_bind_bucket *tb = NULL;
515 bool head2_lock_acquired = false;
516 struct net *net = sock_net(sk);
517
518 l3mdev = inet_sk_bound_l3mdev(sk);
519
520 if (!port) {
521 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
522 if (!head)
523 return ret;
524
525 head2_lock_acquired = true;
526
527 if (tb && tb2)
528 goto success;
529 found_port = true;
530 } else {
531 head = &hinfo->bhash[inet_bhashfn(net, port,
532 hinfo->bhash_size)];
533 spin_lock_bh(&head->lock);
534 inet_bind_bucket_for_each(tb, &head->chain)
535 if (inet_bind_bucket_match(tb, net, port, l3mdev))
536 break;
537 }
538
539 if (!tb) {
540 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
541 head, port, l3mdev);
542 if (!tb)
543 goto fail_unlock;
544 bhash_created = true;
545 }
546
547 if (!found_port) {
548 if (!hlist_empty(&tb->bhash2)) {
549 if (sk->sk_reuse == SK_FORCE_REUSE ||
550 (tb->fastreuse > 0 && reuse) ||
551 sk_reuseport_match(tb, sk))
552 check_bind_conflict = false;
553 }
554
555 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
556 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
557 goto fail_unlock;
558 }
559
560 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
561 spin_lock(&head2->lock);
562 head2_lock_acquired = true;
563 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
564 }
565
566 if (!tb2) {
567 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
568 net, head2, tb, sk);
569 if (!tb2)
570 goto fail_unlock;
571 bhash2_created = true;
572 }
573
574 if (!found_port && check_bind_conflict) {
575 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
576 goto fail_unlock;
577 }
578
579success:
580 inet_csk_update_fastreuse(tb, sk);
581
582 if (!inet_csk(sk)->icsk_bind_hash)
583 inet_bind_hash(sk, tb, tb2, port);
584 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
585 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
586 ret = 0;
587
588fail_unlock:
589 if (ret) {
590 if (bhash2_created)
591 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
592 if (bhash_created)
593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594 }
595 if (head2_lock_acquired)
596 spin_unlock(&head2->lock);
597 spin_unlock_bh(&head->lock);
598 return ret;
599}
600EXPORT_SYMBOL_GPL(inet_csk_get_port);
601
602/*
603 * Wait for an incoming connection, avoid race conditions. This must be called
604 * with the socket locked.
605 */
606static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
607{
608 struct inet_connection_sock *icsk = inet_csk(sk);
609 DEFINE_WAIT(wait);
610 int err;
611
612 /*
613 * True wake-one mechanism for incoming connections: only
614 * one process gets woken up, not the 'whole herd'.
615 * Since we do not 'race & poll' for established sockets
616 * anymore, the common case will execute the loop only once.
617 *
618 * Subtle issue: "add_wait_queue_exclusive()" will be added
619 * after any current non-exclusive waiters, and we know that
620 * it will always _stay_ after any new non-exclusive waiters
621 * because all non-exclusive waiters are added at the
622 * beginning of the wait-queue. As such, it's ok to "drop"
623 * our exclusiveness temporarily when we get woken up without
624 * having to remove and re-insert us on the wait queue.
625 */
626 for (;;) {
627 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
628 TASK_INTERRUPTIBLE);
629 release_sock(sk);
630 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
631 timeo = schedule_timeout(timeo);
632 sched_annotate_sleep();
633 lock_sock(sk);
634 err = 0;
635 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
636 break;
637 err = -EINVAL;
638 if (sk->sk_state != TCP_LISTEN)
639 break;
640 err = sock_intr_errno(timeo);
641 if (signal_pending(current))
642 break;
643 err = -EAGAIN;
644 if (!timeo)
645 break;
646 }
647 finish_wait(sk_sleep(sk), &wait);
648 return err;
649}
650
651/*
652 * This will accept the next outstanding connection.
653 */
654struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
655{
656 struct inet_connection_sock *icsk = inet_csk(sk);
657 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
658 struct request_sock *req;
659 struct sock *newsk;
660 int error;
661
662 lock_sock(sk);
663
664 /* We need to make sure that this socket is listening,
665 * and that it has something pending.
666 */
667 error = -EINVAL;
668 if (sk->sk_state != TCP_LISTEN)
669 goto out_err;
670
671 /* Find already established connection */
672 if (reqsk_queue_empty(queue)) {
673 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
674
675 /* If this is a non blocking socket don't sleep */
676 error = -EAGAIN;
677 if (!timeo)
678 goto out_err;
679
680 error = inet_csk_wait_for_connect(sk, timeo);
681 if (error)
682 goto out_err;
683 }
684 req = reqsk_queue_remove(queue, sk);
685 newsk = req->sk;
686
687 if (sk->sk_protocol == IPPROTO_TCP &&
688 tcp_rsk(req)->tfo_listener) {
689 spin_lock_bh(&queue->fastopenq.lock);
690 if (tcp_rsk(req)->tfo_listener) {
691 /* We are still waiting for the final ACK from 3WHS
692 * so can't free req now. Instead, we set req->sk to
693 * NULL to signify that the child socket is taken
694 * so reqsk_fastopen_remove() will free the req
695 * when 3WHS finishes (or is aborted).
696 */
697 req->sk = NULL;
698 req = NULL;
699 }
700 spin_unlock_bh(&queue->fastopenq.lock);
701 }
702
703out:
704 release_sock(sk);
705 if (newsk && mem_cgroup_sockets_enabled) {
706 int amt = 0;
707
708 /* atomically get the memory usage, set and charge the
709 * newsk->sk_memcg.
710 */
711 lock_sock(newsk);
712
713 mem_cgroup_sk_alloc(newsk);
714 if (newsk->sk_memcg) {
715 /* The socket has not been accepted yet, no need
716 * to look at newsk->sk_wmem_queued.
717 */
718 amt = sk_mem_pages(newsk->sk_forward_alloc +
719 atomic_read(&newsk->sk_rmem_alloc));
720 }
721
722 if (amt)
723 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
724 GFP_KERNEL | __GFP_NOFAIL);
725
726 release_sock(newsk);
727 }
728 if (req)
729 reqsk_put(req);
730
731 if (newsk)
732 inet_init_csk_locks(newsk);
733
734 return newsk;
735out_err:
736 newsk = NULL;
737 req = NULL;
738 *err = error;
739 goto out;
740}
741EXPORT_SYMBOL(inet_csk_accept);
742
743/*
744 * Using different timers for retransmit, delayed acks and probes
745 * We may wish use just one timer maintaining a list of expire jiffies
746 * to optimize.
747 */
748void inet_csk_init_xmit_timers(struct sock *sk,
749 void (*retransmit_handler)(struct timer_list *t),
750 void (*delack_handler)(struct timer_list *t),
751 void (*keepalive_handler)(struct timer_list *t))
752{
753 struct inet_connection_sock *icsk = inet_csk(sk);
754
755 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
756 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
757 timer_setup(&sk->sk_timer, keepalive_handler, 0);
758 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
759}
760EXPORT_SYMBOL(inet_csk_init_xmit_timers);
761
762void inet_csk_clear_xmit_timers(struct sock *sk)
763{
764 struct inet_connection_sock *icsk = inet_csk(sk);
765
766 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
767
768 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
769 sk_stop_timer(sk, &icsk->icsk_delack_timer);
770 sk_stop_timer(sk, &sk->sk_timer);
771}
772EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
773
774void inet_csk_delete_keepalive_timer(struct sock *sk)
775{
776 sk_stop_timer(sk, &sk->sk_timer);
777}
778EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
779
780void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
781{
782 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
783}
784EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
785
786struct dst_entry *inet_csk_route_req(const struct sock *sk,
787 struct flowi4 *fl4,
788 const struct request_sock *req)
789{
790 const struct inet_request_sock *ireq = inet_rsk(req);
791 struct net *net = read_pnet(&ireq->ireq_net);
792 struct ip_options_rcu *opt;
793 struct rtable *rt;
794
795 rcu_read_lock();
796 opt = rcu_dereference(ireq->ireq_opt);
797
798 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
799 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
800 sk->sk_protocol, inet_sk_flowi_flags(sk),
801 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
802 ireq->ir_loc_addr, ireq->ir_rmt_port,
803 htons(ireq->ir_num), sk->sk_uid);
804 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
805 rt = ip_route_output_flow(net, fl4, sk);
806 if (IS_ERR(rt))
807 goto no_route;
808 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
809 goto route_err;
810 rcu_read_unlock();
811 return &rt->dst;
812
813route_err:
814 ip_rt_put(rt);
815no_route:
816 rcu_read_unlock();
817 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
818 return NULL;
819}
820EXPORT_SYMBOL_GPL(inet_csk_route_req);
821
822struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
823 struct sock *newsk,
824 const struct request_sock *req)
825{
826 const struct inet_request_sock *ireq = inet_rsk(req);
827 struct net *net = read_pnet(&ireq->ireq_net);
828 struct inet_sock *newinet = inet_sk(newsk);
829 struct ip_options_rcu *opt;
830 struct flowi4 *fl4;
831 struct rtable *rt;
832
833 opt = rcu_dereference(ireq->ireq_opt);
834 fl4 = &newinet->cork.fl.u.ip4;
835
836 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
837 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
838 sk->sk_protocol, inet_sk_flowi_flags(sk),
839 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
840 ireq->ir_loc_addr, ireq->ir_rmt_port,
841 htons(ireq->ir_num), sk->sk_uid);
842 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
843 rt = ip_route_output_flow(net, fl4, sk);
844 if (IS_ERR(rt))
845 goto no_route;
846 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
847 goto route_err;
848 return &rt->dst;
849
850route_err:
851 ip_rt_put(rt);
852no_route:
853 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
854 return NULL;
855}
856EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
857
858/* Decide when to expire the request and when to resend SYN-ACK */
859static void syn_ack_recalc(struct request_sock *req,
860 const int max_syn_ack_retries,
861 const u8 rskq_defer_accept,
862 int *expire, int *resend)
863{
864 if (!rskq_defer_accept) {
865 *expire = req->num_timeout >= max_syn_ack_retries;
866 *resend = 1;
867 return;
868 }
869 *expire = req->num_timeout >= max_syn_ack_retries &&
870 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
871 /* Do not resend while waiting for data after ACK,
872 * start to resend on end of deferring period to give
873 * last chance for data or ACK to create established socket.
874 */
875 *resend = !inet_rsk(req)->acked ||
876 req->num_timeout >= rskq_defer_accept - 1;
877}
878
879int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
880{
881 int err = req->rsk_ops->rtx_syn_ack(parent, req);
882
883 if (!err)
884 req->num_retrans++;
885 return err;
886}
887EXPORT_SYMBOL(inet_rtx_syn_ack);
888
889static struct request_sock *inet_reqsk_clone(struct request_sock *req,
890 struct sock *sk)
891{
892 struct sock *req_sk, *nreq_sk;
893 struct request_sock *nreq;
894
895 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
896 if (!nreq) {
897 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
898
899 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
900 sock_put(sk);
901 return NULL;
902 }
903
904 req_sk = req_to_sk(req);
905 nreq_sk = req_to_sk(nreq);
906
907 memcpy(nreq_sk, req_sk,
908 offsetof(struct sock, sk_dontcopy_begin));
909 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
910 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
911
912 sk_node_init(&nreq_sk->sk_node);
913 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
914#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
915 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
916#endif
917 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
918
919 nreq->rsk_listener = sk;
920
921 /* We need not acquire fastopenq->lock
922 * because the child socket is locked in inet_csk_listen_stop().
923 */
924 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
925 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
926
927 return nreq;
928}
929
930static void reqsk_queue_migrated(struct request_sock_queue *queue,
931 const struct request_sock *req)
932{
933 if (req->num_timeout == 0)
934 atomic_inc(&queue->young);
935 atomic_inc(&queue->qlen);
936}
937
938static void reqsk_migrate_reset(struct request_sock *req)
939{
940 req->saved_syn = NULL;
941#if IS_ENABLED(CONFIG_IPV6)
942 inet_rsk(req)->ipv6_opt = NULL;
943 inet_rsk(req)->pktopts = NULL;
944#else
945 inet_rsk(req)->ireq_opt = NULL;
946#endif
947}
948
949/* return true if req was found in the ehash table */
950static bool reqsk_queue_unlink(struct request_sock *req)
951{
952 struct sock *sk = req_to_sk(req);
953 bool found = false;
954
955 if (sk_hashed(sk)) {
956 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
957 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
958
959 spin_lock(lock);
960 found = __sk_nulls_del_node_init_rcu(sk);
961 spin_unlock(lock);
962 }
963 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
964 reqsk_put(req);
965 return found;
966}
967
968bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
969{
970 bool unlinked = reqsk_queue_unlink(req);
971
972 if (unlinked) {
973 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
974 reqsk_put(req);
975 }
976 return unlinked;
977}
978EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
979
980void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
981{
982 inet_csk_reqsk_queue_drop(sk, req);
983 reqsk_put(req);
984}
985EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
986
987static void reqsk_timer_handler(struct timer_list *t)
988{
989 struct request_sock *req = from_timer(req, t, rsk_timer);
990 struct request_sock *nreq = NULL, *oreq = req;
991 struct sock *sk_listener = req->rsk_listener;
992 struct inet_connection_sock *icsk;
993 struct request_sock_queue *queue;
994 struct net *net;
995 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
996
997 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
998 struct sock *nsk;
999
1000 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1001 if (!nsk)
1002 goto drop;
1003
1004 nreq = inet_reqsk_clone(req, nsk);
1005 if (!nreq)
1006 goto drop;
1007
1008 /* The new timer for the cloned req can decrease the 2
1009 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1010 * hold another count to prevent use-after-free and
1011 * call reqsk_put() just before return.
1012 */
1013 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1014 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1015 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1016
1017 req = nreq;
1018 sk_listener = nsk;
1019 }
1020
1021 icsk = inet_csk(sk_listener);
1022 net = sock_net(sk_listener);
1023 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1024 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1025 /* Normally all the openreqs are young and become mature
1026 * (i.e. converted to established socket) for first timeout.
1027 * If synack was not acknowledged for 1 second, it means
1028 * one of the following things: synack was lost, ack was lost,
1029 * rtt is high or nobody planned to ack (i.e. synflood).
1030 * When server is a bit loaded, queue is populated with old
1031 * open requests, reducing effective size of queue.
1032 * When server is well loaded, queue size reduces to zero
1033 * after several minutes of work. It is not synflood,
1034 * it is normal operation. The solution is pruning
1035 * too old entries overriding normal timeout, when
1036 * situation becomes dangerous.
1037 *
1038 * Essentially, we reserve half of room for young
1039 * embrions; and abort old ones without pity, if old
1040 * ones are about to clog our table.
1041 */
1042 queue = &icsk->icsk_accept_queue;
1043 qlen = reqsk_queue_len(queue);
1044 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1045 int young = reqsk_queue_len_young(queue) << 1;
1046
1047 while (max_syn_ack_retries > 2) {
1048 if (qlen < young)
1049 break;
1050 max_syn_ack_retries--;
1051 young <<= 1;
1052 }
1053 }
1054 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1055 &expire, &resend);
1056 req->rsk_ops->syn_ack_timeout(req);
1057 if (!expire &&
1058 (!resend ||
1059 !inet_rtx_syn_ack(sk_listener, req) ||
1060 inet_rsk(req)->acked)) {
1061 if (req->num_timeout++ == 0)
1062 atomic_dec(&queue->young);
1063 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1064
1065 if (!nreq)
1066 return;
1067
1068 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1069 /* delete timer */
1070 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1071 goto no_ownership;
1072 }
1073
1074 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1075 reqsk_migrate_reset(oreq);
1076 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1077 reqsk_put(oreq);
1078
1079 reqsk_put(nreq);
1080 return;
1081 }
1082
1083 /* Even if we can clone the req, we may need not retransmit any more
1084 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1085 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1086 */
1087 if (nreq) {
1088 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1089no_ownership:
1090 reqsk_migrate_reset(nreq);
1091 reqsk_queue_removed(queue, nreq);
1092 __reqsk_free(nreq);
1093 }
1094
1095drop:
1096 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1097}
1098
1099static void reqsk_queue_hash_req(struct request_sock *req,
1100 unsigned long timeout)
1101{
1102 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1103 mod_timer(&req->rsk_timer, jiffies + timeout);
1104
1105 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1106 /* before letting lookups find us, make sure all req fields
1107 * are committed to memory and refcnt initialized.
1108 */
1109 smp_wmb();
1110 refcount_set(&req->rsk_refcnt, 2 + 1);
1111}
1112
1113void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1114 unsigned long timeout)
1115{
1116 reqsk_queue_hash_req(req, timeout);
1117 inet_csk_reqsk_queue_added(sk);
1118}
1119EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1120
1121static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1122 const gfp_t priority)
1123{
1124 struct inet_connection_sock *icsk = inet_csk(newsk);
1125
1126 if (!icsk->icsk_ulp_ops)
1127 return;
1128
1129 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1130}
1131
1132/**
1133 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1134 * @sk: the socket to clone
1135 * @req: request_sock
1136 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1137 *
1138 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1139 */
1140struct sock *inet_csk_clone_lock(const struct sock *sk,
1141 const struct request_sock *req,
1142 const gfp_t priority)
1143{
1144 struct sock *newsk = sk_clone_lock(sk, priority);
1145
1146 if (newsk) {
1147 struct inet_connection_sock *newicsk = inet_csk(newsk);
1148
1149 inet_sk_set_state(newsk, TCP_SYN_RECV);
1150 newicsk->icsk_bind_hash = NULL;
1151 newicsk->icsk_bind2_hash = NULL;
1152
1153 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1154 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1155 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1156
1157 /* listeners have SOCK_RCU_FREE, not the children */
1158 sock_reset_flag(newsk, SOCK_RCU_FREE);
1159
1160 inet_sk(newsk)->mc_list = NULL;
1161
1162 newsk->sk_mark = inet_rsk(req)->ir_mark;
1163 atomic64_set(&newsk->sk_cookie,
1164 atomic64_read(&inet_rsk(req)->ir_cookie));
1165
1166 newicsk->icsk_retransmits = 0;
1167 newicsk->icsk_backoff = 0;
1168 newicsk->icsk_probes_out = 0;
1169 newicsk->icsk_probes_tstamp = 0;
1170
1171 /* Deinitialize accept_queue to trap illegal accesses. */
1172 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1173
1174 inet_clone_ulp(req, newsk, priority);
1175
1176 security_inet_csk_clone(newsk, req);
1177 }
1178 return newsk;
1179}
1180EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1181
1182/*
1183 * At this point, there should be no process reference to this
1184 * socket, and thus no user references at all. Therefore we
1185 * can assume the socket waitqueue is inactive and nobody will
1186 * try to jump onto it.
1187 */
1188void inet_csk_destroy_sock(struct sock *sk)
1189{
1190 WARN_ON(sk->sk_state != TCP_CLOSE);
1191 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1192
1193 /* It cannot be in hash table! */
1194 WARN_ON(!sk_unhashed(sk));
1195
1196 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1197 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1198
1199 sk->sk_prot->destroy(sk);
1200
1201 sk_stream_kill_queues(sk);
1202
1203 xfrm_sk_free_policy(sk);
1204
1205 this_cpu_dec(*sk->sk_prot->orphan_count);
1206
1207 sock_put(sk);
1208}
1209EXPORT_SYMBOL(inet_csk_destroy_sock);
1210
1211/* This function allows to force a closure of a socket after the call to
1212 * tcp/dccp_create_openreq_child().
1213 */
1214void inet_csk_prepare_forced_close(struct sock *sk)
1215 __releases(&sk->sk_lock.slock)
1216{
1217 /* sk_clone_lock locked the socket and set refcnt to 2 */
1218 bh_unlock_sock(sk);
1219 sock_put(sk);
1220 inet_csk_prepare_for_destroy_sock(sk);
1221 inet_sk(sk)->inet_num = 0;
1222}
1223EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1224
1225static int inet_ulp_can_listen(const struct sock *sk)
1226{
1227 const struct inet_connection_sock *icsk = inet_csk(sk);
1228
1229 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1230 return -EINVAL;
1231
1232 return 0;
1233}
1234
1235int inet_csk_listen_start(struct sock *sk)
1236{
1237 struct inet_connection_sock *icsk = inet_csk(sk);
1238 struct inet_sock *inet = inet_sk(sk);
1239 int err;
1240
1241 err = inet_ulp_can_listen(sk);
1242 if (unlikely(err))
1243 return err;
1244
1245 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1246
1247 sk->sk_ack_backlog = 0;
1248 inet_csk_delack_init(sk);
1249
1250 /* There is race window here: we announce ourselves listening,
1251 * but this transition is still not validated by get_port().
1252 * It is OK, because this socket enters to hash table only
1253 * after validation is complete.
1254 */
1255 inet_sk_state_store(sk, TCP_LISTEN);
1256 err = sk->sk_prot->get_port(sk, inet->inet_num);
1257 if (!err) {
1258 inet->inet_sport = htons(inet->inet_num);
1259
1260 sk_dst_reset(sk);
1261 err = sk->sk_prot->hash(sk);
1262
1263 if (likely(!err))
1264 return 0;
1265 }
1266
1267 inet_sk_set_state(sk, TCP_CLOSE);
1268 return err;
1269}
1270EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1271
1272static void inet_child_forget(struct sock *sk, struct request_sock *req,
1273 struct sock *child)
1274{
1275 sk->sk_prot->disconnect(child, O_NONBLOCK);
1276
1277 sock_orphan(child);
1278
1279 this_cpu_inc(*sk->sk_prot->orphan_count);
1280
1281 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1282 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1283 BUG_ON(sk != req->rsk_listener);
1284
1285 /* Paranoid, to prevent race condition if
1286 * an inbound pkt destined for child is
1287 * blocked by sock lock in tcp_v4_rcv().
1288 * Also to satisfy an assertion in
1289 * tcp_v4_destroy_sock().
1290 */
1291 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1292 }
1293 inet_csk_destroy_sock(child);
1294}
1295
1296struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1297 struct request_sock *req,
1298 struct sock *child)
1299{
1300 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1301
1302 spin_lock(&queue->rskq_lock);
1303 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1304 inet_child_forget(sk, req, child);
1305 child = NULL;
1306 } else {
1307 req->sk = child;
1308 req->dl_next = NULL;
1309 if (queue->rskq_accept_head == NULL)
1310 WRITE_ONCE(queue->rskq_accept_head, req);
1311 else
1312 queue->rskq_accept_tail->dl_next = req;
1313 queue->rskq_accept_tail = req;
1314 sk_acceptq_added(sk);
1315 }
1316 spin_unlock(&queue->rskq_lock);
1317 return child;
1318}
1319EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1320
1321struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1322 struct request_sock *req, bool own_req)
1323{
1324 if (own_req) {
1325 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1326 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1327
1328 if (sk != req->rsk_listener) {
1329 /* another listening sk has been selected,
1330 * migrate the req to it.
1331 */
1332 struct request_sock *nreq;
1333
1334 /* hold a refcnt for the nreq->rsk_listener
1335 * which is assigned in inet_reqsk_clone()
1336 */
1337 sock_hold(sk);
1338 nreq = inet_reqsk_clone(req, sk);
1339 if (!nreq) {
1340 inet_child_forget(sk, req, child);
1341 goto child_put;
1342 }
1343
1344 refcount_set(&nreq->rsk_refcnt, 1);
1345 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1346 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1347 reqsk_migrate_reset(req);
1348 reqsk_put(req);
1349 return child;
1350 }
1351
1352 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1353 reqsk_migrate_reset(nreq);
1354 __reqsk_free(nreq);
1355 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1356 return child;
1357 }
1358 }
1359 /* Too bad, another child took ownership of the request, undo. */
1360child_put:
1361 bh_unlock_sock(child);
1362 sock_put(child);
1363 return NULL;
1364}
1365EXPORT_SYMBOL(inet_csk_complete_hashdance);
1366
1367/*
1368 * This routine closes sockets which have been at least partially
1369 * opened, but not yet accepted.
1370 */
1371void inet_csk_listen_stop(struct sock *sk)
1372{
1373 struct inet_connection_sock *icsk = inet_csk(sk);
1374 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1375 struct request_sock *next, *req;
1376
1377 /* Following specs, it would be better either to send FIN
1378 * (and enter FIN-WAIT-1, it is normal close)
1379 * or to send active reset (abort).
1380 * Certainly, it is pretty dangerous while synflood, but it is
1381 * bad justification for our negligence 8)
1382 * To be honest, we are not able to make either
1383 * of the variants now. --ANK
1384 */
1385 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1386 struct sock *child = req->sk, *nsk;
1387 struct request_sock *nreq;
1388
1389 local_bh_disable();
1390 bh_lock_sock(child);
1391 WARN_ON(sock_owned_by_user(child));
1392 sock_hold(child);
1393
1394 nsk = reuseport_migrate_sock(sk, child, NULL);
1395 if (nsk) {
1396 nreq = inet_reqsk_clone(req, nsk);
1397 if (nreq) {
1398 refcount_set(&nreq->rsk_refcnt, 1);
1399
1400 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1401 __NET_INC_STATS(sock_net(nsk),
1402 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1403 reqsk_migrate_reset(req);
1404 } else {
1405 __NET_INC_STATS(sock_net(nsk),
1406 LINUX_MIB_TCPMIGRATEREQFAILURE);
1407 reqsk_migrate_reset(nreq);
1408 __reqsk_free(nreq);
1409 }
1410
1411 /* inet_csk_reqsk_queue_add() has already
1412 * called inet_child_forget() on failure case.
1413 */
1414 goto skip_child_forget;
1415 }
1416 }
1417
1418 inet_child_forget(sk, req, child);
1419skip_child_forget:
1420 reqsk_put(req);
1421 bh_unlock_sock(child);
1422 local_bh_enable();
1423 sock_put(child);
1424
1425 cond_resched();
1426 }
1427 if (queue->fastopenq.rskq_rst_head) {
1428 /* Free all the reqs queued in rskq_rst_head. */
1429 spin_lock_bh(&queue->fastopenq.lock);
1430 req = queue->fastopenq.rskq_rst_head;
1431 queue->fastopenq.rskq_rst_head = NULL;
1432 spin_unlock_bh(&queue->fastopenq.lock);
1433 while (req != NULL) {
1434 next = req->dl_next;
1435 reqsk_put(req);
1436 req = next;
1437 }
1438 }
1439 WARN_ON_ONCE(sk->sk_ack_backlog);
1440}
1441EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1442
1443void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1444{
1445 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1446 const struct inet_sock *inet = inet_sk(sk);
1447
1448 sin->sin_family = AF_INET;
1449 sin->sin_addr.s_addr = inet->inet_daddr;
1450 sin->sin_port = inet->inet_dport;
1451}
1452EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1453
1454static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1455{
1456 const struct inet_sock *inet = inet_sk(sk);
1457 const struct ip_options_rcu *inet_opt;
1458 __be32 daddr = inet->inet_daddr;
1459 struct flowi4 *fl4;
1460 struct rtable *rt;
1461
1462 rcu_read_lock();
1463 inet_opt = rcu_dereference(inet->inet_opt);
1464 if (inet_opt && inet_opt->opt.srr)
1465 daddr = inet_opt->opt.faddr;
1466 fl4 = &fl->u.ip4;
1467 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1468 inet->inet_saddr, inet->inet_dport,
1469 inet->inet_sport, sk->sk_protocol,
1470 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1471 if (IS_ERR(rt))
1472 rt = NULL;
1473 if (rt)
1474 sk_setup_caps(sk, &rt->dst);
1475 rcu_read_unlock();
1476
1477 return &rt->dst;
1478}
1479
1480struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1481{
1482 struct dst_entry *dst = __sk_dst_check(sk, 0);
1483 struct inet_sock *inet = inet_sk(sk);
1484
1485 if (!dst) {
1486 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1487 if (!dst)
1488 goto out;
1489 }
1490 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1491
1492 dst = __sk_dst_check(sk, 0);
1493 if (!dst)
1494 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1495out:
1496 return dst;
1497}
1498EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);