Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/mm_inline.h>
  13#include <linux/hugetlb.h>
  14#include <linux/shm.h>
  15#include <linux/ksm.h>
  16#include <linux/mman.h>
  17#include <linux/swap.h>
  18#include <linux/capability.h>
  19#include <linux/fs.h>
  20#include <linux/swapops.h>
  21#include <linux/highmem.h>
  22#include <linux/security.h>
  23#include <linux/syscalls.h>
  24#include <linux/mmu_notifier.h>
  25#include <linux/uaccess.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/tlb.h>
  31#include <asm/pgalloc.h>
  32
  33#include "internal.h"
  34
  35static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  36{
  37	pgd_t *pgd;
  38	p4d_t *p4d;
  39	pud_t *pud;
  40
  41	pgd = pgd_offset(mm, addr);
  42	if (pgd_none_or_clear_bad(pgd))
  43		return NULL;
  44
  45	p4d = p4d_offset(pgd, addr);
  46	if (p4d_none_or_clear_bad(p4d))
  47		return NULL;
  48
  49	pud = pud_offset(p4d, addr);
  50	if (pud_none_or_clear_bad(pud))
  51		return NULL;
  52
  53	return pud;
  54}
  55
  56static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  57{
  58	pud_t *pud;
  59	pmd_t *pmd;
  60
  61	pud = get_old_pud(mm, addr);
  62	if (!pud)
  63		return NULL;
  64
  65	pmd = pmd_offset(pud, addr);
  66	if (pmd_none(*pmd))
  67		return NULL;
  68
  69	return pmd;
  70}
  71
  72static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  73			    unsigned long addr)
  74{
  75	pgd_t *pgd;
  76	p4d_t *p4d;
  77
  78	pgd = pgd_offset(mm, addr);
  79	p4d = p4d_alloc(mm, pgd, addr);
  80	if (!p4d)
  81		return NULL;
  82
  83	return pud_alloc(mm, p4d, addr);
  84}
  85
  86static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  87			    unsigned long addr)
  88{
  89	pud_t *pud;
  90	pmd_t *pmd;
  91
  92	pud = alloc_new_pud(mm, vma, addr);
  93	if (!pud)
  94		return NULL;
  95
  96	pmd = pmd_alloc(mm, pud, addr);
  97	if (!pmd)
  98		return NULL;
  99
 100	VM_BUG_ON(pmd_trans_huge(*pmd));
 101
 102	return pmd;
 103}
 104
 105static void take_rmap_locks(struct vm_area_struct *vma)
 106{
 107	if (vma->vm_file)
 108		i_mmap_lock_write(vma->vm_file->f_mapping);
 109	if (vma->anon_vma)
 110		anon_vma_lock_write(vma->anon_vma);
 111}
 112
 113static void drop_rmap_locks(struct vm_area_struct *vma)
 114{
 115	if (vma->anon_vma)
 116		anon_vma_unlock_write(vma->anon_vma);
 117	if (vma->vm_file)
 118		i_mmap_unlock_write(vma->vm_file->f_mapping);
 119}
 120
 121static pte_t move_soft_dirty_pte(pte_t pte)
 122{
 123	/*
 124	 * Set soft dirty bit so we can notice
 125	 * in userspace the ptes were moved.
 126	 */
 127#ifdef CONFIG_MEM_SOFT_DIRTY
 128	if (pte_present(pte))
 129		pte = pte_mksoft_dirty(pte);
 130	else if (is_swap_pte(pte))
 131		pte = pte_swp_mksoft_dirty(pte);
 132#endif
 133	return pte;
 134}
 135
 136static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 137		unsigned long old_addr, unsigned long old_end,
 138		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 139		unsigned long new_addr, bool need_rmap_locks)
 140{
 141	struct mm_struct *mm = vma->vm_mm;
 142	pte_t *old_pte, *new_pte, pte;
 143	spinlock_t *old_ptl, *new_ptl;
 144	bool force_flush = false;
 145	unsigned long len = old_end - old_addr;
 
 146
 147	/*
 148	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 149	 * locks to ensure that rmap will always observe either the old or the
 150	 * new ptes. This is the easiest way to avoid races with
 151	 * truncate_pagecache(), page migration, etc...
 152	 *
 153	 * When need_rmap_locks is false, we use other ways to avoid
 154	 * such races:
 155	 *
 156	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 157	 *   which rmap call sites look for using vma_is_temporary_stack().
 158	 *
 159	 * - During mremap(), new_vma is often known to be placed after vma
 160	 *   in rmap traversal order. This ensures rmap will always observe
 161	 *   either the old pte, or the new pte, or both (the page table locks
 162	 *   serialize access to individual ptes, but only rmap traversal
 163	 *   order guarantees that we won't miss both the old and new ptes).
 164	 */
 165	if (need_rmap_locks)
 166		take_rmap_locks(vma);
 167
 168	/*
 169	 * We don't have to worry about the ordering of src and dst
 170	 * pte locks because exclusive mmap_lock prevents deadlock.
 171	 */
 172	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 173	new_pte = pte_offset_map(new_pmd, new_addr);
 174	new_ptl = pte_lockptr(mm, new_pmd);
 
 
 
 
 
 
 
 
 175	if (new_ptl != old_ptl)
 176		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 177	flush_tlb_batched_pending(vma->vm_mm);
 178	arch_enter_lazy_mmu_mode();
 179
 180	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 181				   new_pte++, new_addr += PAGE_SIZE) {
 182		if (pte_none(*old_pte))
 183			continue;
 184
 185		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 186		/*
 187		 * If we are remapping a valid PTE, make sure
 188		 * to flush TLB before we drop the PTL for the
 189		 * PTE.
 190		 *
 191		 * NOTE! Both old and new PTL matter: the old one
 192		 * for racing with page_mkclean(), the new one to
 193		 * make sure the physical page stays valid until
 194		 * the TLB entry for the old mapping has been
 195		 * flushed.
 196		 */
 197		if (pte_present(pte))
 198			force_flush = true;
 199		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
 200		pte = move_soft_dirty_pte(pte);
 201		set_pte_at(mm, new_addr, new_pte, pte);
 202	}
 203
 204	arch_leave_lazy_mmu_mode();
 205	if (force_flush)
 206		flush_tlb_range(vma, old_end - len, old_end);
 207	if (new_ptl != old_ptl)
 208		spin_unlock(new_ptl);
 209	pte_unmap(new_pte - 1);
 210	pte_unmap_unlock(old_pte - 1, old_ptl);
 
 211	if (need_rmap_locks)
 212		drop_rmap_locks(vma);
 
 213}
 214
 215#ifndef arch_supports_page_table_move
 216#define arch_supports_page_table_move arch_supports_page_table_move
 217static inline bool arch_supports_page_table_move(void)
 218{
 219	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 220		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 221}
 222#endif
 223
 224#ifdef CONFIG_HAVE_MOVE_PMD
 225static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 226		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 227{
 228	spinlock_t *old_ptl, *new_ptl;
 229	struct mm_struct *mm = vma->vm_mm;
 230	pmd_t pmd;
 231
 232	if (!arch_supports_page_table_move())
 233		return false;
 234	/*
 235	 * The destination pmd shouldn't be established, free_pgtables()
 236	 * should have released it.
 237	 *
 238	 * However, there's a case during execve() where we use mremap
 239	 * to move the initial stack, and in that case the target area
 240	 * may overlap the source area (always moving down).
 241	 *
 242	 * If everything is PMD-aligned, that works fine, as moving
 243	 * each pmd down will clear the source pmd. But if we first
 244	 * have a few 4kB-only pages that get moved down, and then
 245	 * hit the "now the rest is PMD-aligned, let's do everything
 246	 * one pmd at a time", we will still have the old (now empty
 247	 * of any 4kB pages, but still there) PMD in the page table
 248	 * tree.
 249	 *
 250	 * Warn on it once - because we really should try to figure
 251	 * out how to do this better - but then say "I won't move
 252	 * this pmd".
 253	 *
 254	 * One alternative might be to just unmap the target pmd at
 255	 * this point, and verify that it really is empty. We'll see.
 256	 */
 257	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 258		return false;
 259
 260	/*
 261	 * We don't have to worry about the ordering of src and dst
 262	 * ptlocks because exclusive mmap_lock prevents deadlock.
 263	 */
 264	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 265	new_ptl = pmd_lockptr(mm, new_pmd);
 266	if (new_ptl != old_ptl)
 267		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 268
 269	/* Clear the pmd */
 270	pmd = *old_pmd;
 271	pmd_clear(old_pmd);
 272
 273	VM_BUG_ON(!pmd_none(*new_pmd));
 274
 275	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 276	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 277	if (new_ptl != old_ptl)
 278		spin_unlock(new_ptl);
 279	spin_unlock(old_ptl);
 280
 281	return true;
 282}
 283#else
 284static inline bool move_normal_pmd(struct vm_area_struct *vma,
 285		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 286		pmd_t *new_pmd)
 287{
 288	return false;
 289}
 290#endif
 291
 292#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 293static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 294		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 295{
 296	spinlock_t *old_ptl, *new_ptl;
 297	struct mm_struct *mm = vma->vm_mm;
 298	pud_t pud;
 299
 300	if (!arch_supports_page_table_move())
 301		return false;
 302	/*
 303	 * The destination pud shouldn't be established, free_pgtables()
 304	 * should have released it.
 305	 */
 306	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 307		return false;
 308
 309	/*
 310	 * We don't have to worry about the ordering of src and dst
 311	 * ptlocks because exclusive mmap_lock prevents deadlock.
 312	 */
 313	old_ptl = pud_lock(vma->vm_mm, old_pud);
 314	new_ptl = pud_lockptr(mm, new_pud);
 315	if (new_ptl != old_ptl)
 316		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 317
 318	/* Clear the pud */
 319	pud = *old_pud;
 320	pud_clear(old_pud);
 321
 322	VM_BUG_ON(!pud_none(*new_pud));
 323
 324	pud_populate(mm, new_pud, pud_pgtable(pud));
 325	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 326	if (new_ptl != old_ptl)
 327		spin_unlock(new_ptl);
 328	spin_unlock(old_ptl);
 329
 330	return true;
 331}
 332#else
 333static inline bool move_normal_pud(struct vm_area_struct *vma,
 334		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 335		pud_t *new_pud)
 336{
 337	return false;
 338}
 339#endif
 340
 341#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 342static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 343			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 344{
 345	spinlock_t *old_ptl, *new_ptl;
 346	struct mm_struct *mm = vma->vm_mm;
 347	pud_t pud;
 348
 349	/*
 350	 * The destination pud shouldn't be established, free_pgtables()
 351	 * should have released it.
 352	 */
 353	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 354		return false;
 355
 356	/*
 357	 * We don't have to worry about the ordering of src and dst
 358	 * ptlocks because exclusive mmap_lock prevents deadlock.
 359	 */
 360	old_ptl = pud_lock(vma->vm_mm, old_pud);
 361	new_ptl = pud_lockptr(mm, new_pud);
 362	if (new_ptl != old_ptl)
 363		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 364
 365	/* Clear the pud */
 366	pud = *old_pud;
 367	pud_clear(old_pud);
 368
 369	VM_BUG_ON(!pud_none(*new_pud));
 370
 371	/* Set the new pud */
 372	/* mark soft_ditry when we add pud level soft dirty support */
 373	set_pud_at(mm, new_addr, new_pud, pud);
 374	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 375	if (new_ptl != old_ptl)
 376		spin_unlock(new_ptl);
 377	spin_unlock(old_ptl);
 378
 379	return true;
 380}
 381#else
 382static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 383			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 384{
 385	WARN_ON_ONCE(1);
 386	return false;
 387
 388}
 389#endif
 390
 391enum pgt_entry {
 392	NORMAL_PMD,
 393	HPAGE_PMD,
 394	NORMAL_PUD,
 395	HPAGE_PUD,
 396};
 397
 398/*
 399 * Returns an extent of the corresponding size for the pgt_entry specified if
 400 * valid. Else returns a smaller extent bounded by the end of the source and
 401 * destination pgt_entry.
 402 */
 403static __always_inline unsigned long get_extent(enum pgt_entry entry,
 404			unsigned long old_addr, unsigned long old_end,
 405			unsigned long new_addr)
 406{
 407	unsigned long next, extent, mask, size;
 408
 409	switch (entry) {
 410	case HPAGE_PMD:
 411	case NORMAL_PMD:
 412		mask = PMD_MASK;
 413		size = PMD_SIZE;
 414		break;
 415	case HPAGE_PUD:
 416	case NORMAL_PUD:
 417		mask = PUD_MASK;
 418		size = PUD_SIZE;
 419		break;
 420	default:
 421		BUILD_BUG();
 422		break;
 423	}
 424
 425	next = (old_addr + size) & mask;
 426	/* even if next overflowed, extent below will be ok */
 427	extent = next - old_addr;
 428	if (extent > old_end - old_addr)
 429		extent = old_end - old_addr;
 430	next = (new_addr + size) & mask;
 431	if (extent > next - new_addr)
 432		extent = next - new_addr;
 433	return extent;
 434}
 435
 436/*
 437 * Attempts to speedup the move by moving entry at the level corresponding to
 438 * pgt_entry. Returns true if the move was successful, else false.
 439 */
 440static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 441			unsigned long old_addr, unsigned long new_addr,
 442			void *old_entry, void *new_entry, bool need_rmap_locks)
 443{
 444	bool moved = false;
 445
 446	/* See comment in move_ptes() */
 447	if (need_rmap_locks)
 448		take_rmap_locks(vma);
 449
 450	switch (entry) {
 451	case NORMAL_PMD:
 452		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 453					new_entry);
 454		break;
 455	case NORMAL_PUD:
 456		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 457					new_entry);
 458		break;
 459	case HPAGE_PMD:
 460		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 461			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 462				      new_entry);
 463		break;
 464	case HPAGE_PUD:
 465		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 466			move_huge_pud(vma, old_addr, new_addr, old_entry,
 467				      new_entry);
 468		break;
 469
 470	default:
 471		WARN_ON_ONCE(1);
 472		break;
 473	}
 474
 475	if (need_rmap_locks)
 476		drop_rmap_locks(vma);
 477
 478	return moved;
 479}
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481unsigned long move_page_tables(struct vm_area_struct *vma,
 482		unsigned long old_addr, struct vm_area_struct *new_vma,
 483		unsigned long new_addr, unsigned long len,
 484		bool need_rmap_locks)
 485{
 486	unsigned long extent, old_end;
 487	struct mmu_notifier_range range;
 488	pmd_t *old_pmd, *new_pmd;
 489	pud_t *old_pud, *new_pud;
 490
 491	if (!len)
 492		return 0;
 493
 494	old_end = old_addr + len;
 495
 496	if (is_vm_hugetlb_page(vma))
 497		return move_hugetlb_page_tables(vma, new_vma, old_addr,
 498						new_addr, len);
 499
 
 
 
 
 
 
 
 
 500	flush_cache_range(vma, old_addr, old_end);
 501	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
 502				old_addr, old_end);
 503	mmu_notifier_invalidate_range_start(&range);
 504
 505	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 506		cond_resched();
 507		/*
 508		 * If extent is PUD-sized try to speed up the move by moving at the
 509		 * PUD level if possible.
 510		 */
 511		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 512
 513		old_pud = get_old_pud(vma->vm_mm, old_addr);
 514		if (!old_pud)
 515			continue;
 516		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 517		if (!new_pud)
 518			break;
 519		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 520			if (extent == HPAGE_PUD_SIZE) {
 521				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 522					       old_pud, new_pud, need_rmap_locks);
 523				/* We ignore and continue on error? */
 524				continue;
 525			}
 526		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 527
 528			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 529					   old_pud, new_pud, true))
 530				continue;
 531		}
 532
 533		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 534		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 535		if (!old_pmd)
 536			continue;
 537		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 538		if (!new_pmd)
 539			break;
 
 540		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 541		    pmd_devmap(*old_pmd)) {
 542			if (extent == HPAGE_PMD_SIZE &&
 543			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 544					   old_pmd, new_pmd, need_rmap_locks))
 545				continue;
 546			split_huge_pmd(vma, old_pmd, old_addr);
 547			if (pmd_trans_unstable(old_pmd))
 548				continue;
 549		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 550			   extent == PMD_SIZE) {
 551			/*
 552			 * If the extent is PMD-sized, try to speed the move by
 553			 * moving at the PMD level if possible.
 554			 */
 555			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 556					   old_pmd, new_pmd, true))
 557				continue;
 558		}
 559
 
 560		if (pte_alloc(new_vma->vm_mm, new_pmd))
 561			break;
 562		move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
 563			  new_pmd, new_addr, need_rmap_locks);
 
 564	}
 565
 566	mmu_notifier_invalidate_range_end(&range);
 567
 
 
 
 
 
 
 
 568	return len + old_addr - old_end;	/* how much done */
 569}
 570
 571static unsigned long move_vma(struct vm_area_struct *vma,
 572		unsigned long old_addr, unsigned long old_len,
 573		unsigned long new_len, unsigned long new_addr,
 574		bool *locked, unsigned long flags,
 575		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 576{
 577	long to_account = new_len - old_len;
 578	struct mm_struct *mm = vma->vm_mm;
 579	struct vm_area_struct *new_vma;
 580	unsigned long vm_flags = vma->vm_flags;
 581	unsigned long new_pgoff;
 582	unsigned long moved_len;
 583	unsigned long excess = 0;
 
 584	unsigned long hiwater_vm;
 585	int split = 0;
 586	int err = 0;
 587	bool need_rmap_locks;
 
 588
 589	/*
 590	 * We'd prefer to avoid failure later on in do_munmap:
 591	 * which may split one vma into three before unmapping.
 592	 */
 593	if (mm->map_count >= sysctl_max_map_count - 3)
 594		return -ENOMEM;
 595
 596	if (unlikely(flags & MREMAP_DONTUNMAP))
 597		to_account = new_len;
 598
 599	if (vma->vm_ops && vma->vm_ops->may_split) {
 600		if (vma->vm_start != old_addr)
 601			err = vma->vm_ops->may_split(vma, old_addr);
 602		if (!err && vma->vm_end != old_addr + old_len)
 603			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 604		if (err)
 605			return err;
 606	}
 607
 608	/*
 609	 * Advise KSM to break any KSM pages in the area to be moved:
 610	 * it would be confusing if they were to turn up at the new
 611	 * location, where they happen to coincide with different KSM
 612	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 613	 * so KSM can come around to merge on vma and new_vma afterwards.
 614	 */
 615	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 616						MADV_UNMERGEABLE, &vm_flags);
 617	if (err)
 618		return err;
 619
 620	if (vm_flags & VM_ACCOUNT) {
 621		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
 622			return -ENOMEM;
 623	}
 624
 
 625	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 626	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 627			   &need_rmap_locks);
 628	if (!new_vma) {
 629		if (vm_flags & VM_ACCOUNT)
 630			vm_unacct_memory(to_account >> PAGE_SHIFT);
 631		return -ENOMEM;
 632	}
 633
 634	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 635				     need_rmap_locks);
 636	if (moved_len < old_len) {
 637		err = -ENOMEM;
 638	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 639		err = vma->vm_ops->mremap(new_vma);
 640	}
 641
 642	if (unlikely(err)) {
 643		/*
 644		 * On error, move entries back from new area to old,
 645		 * which will succeed since page tables still there,
 646		 * and then proceed to unmap new area instead of old.
 647		 */
 648		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 649				 true);
 650		vma = new_vma;
 651		old_len = new_len;
 652		old_addr = new_addr;
 653		new_addr = err;
 654	} else {
 655		mremap_userfaultfd_prep(new_vma, uf);
 656	}
 657
 658	if (is_vm_hugetlb_page(vma)) {
 659		clear_vma_resv_huge_pages(vma);
 660	}
 661
 662	/* Conceal VM_ACCOUNT so old reservation is not undone */
 663	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 664		vma->vm_flags &= ~VM_ACCOUNT;
 665		excess = vma->vm_end - vma->vm_start - old_len;
 666		if (old_addr > vma->vm_start &&
 667		    old_addr + old_len < vma->vm_end)
 668			split = 1;
 669	}
 670
 671	/*
 672	 * If we failed to move page tables we still do total_vm increment
 673	 * since do_munmap() will decrement it by old_len == new_len.
 674	 *
 675	 * Since total_vm is about to be raised artificially high for a
 676	 * moment, we need to restore high watermark afterwards: if stats
 677	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 678	 * If this were a serious issue, we'd add a flag to do_munmap().
 679	 */
 680	hiwater_vm = mm->hiwater_vm;
 681	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 682
 683	/* Tell pfnmap has moved from this vma */
 684	if (unlikely(vma->vm_flags & VM_PFNMAP))
 685		untrack_pfn_moved(vma);
 686
 687	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 688		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 689		vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 690
 691		/*
 692		 * anon_vma links of the old vma is no longer needed after its page
 693		 * table has been moved.
 694		 */
 695		if (new_vma != vma && vma->vm_start == old_addr &&
 696			vma->vm_end == (old_addr + old_len))
 697			unlink_anon_vmas(vma);
 698
 699		/* Because we won't unmap we don't need to touch locked_vm */
 700		return new_addr;
 701	}
 702
 703	if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
 
 704		/* OOM: unable to split vma, just get accounts right */
 705		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 706			vm_acct_memory(old_len >> PAGE_SHIFT);
 707		excess = 0;
 708	}
 709
 710	if (vm_flags & VM_LOCKED) {
 711		mm->locked_vm += new_len >> PAGE_SHIFT;
 712		*locked = true;
 713	}
 714
 715	mm->hiwater_vm = hiwater_vm;
 716
 717	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 718	if (excess) {
 719		vma->vm_flags |= VM_ACCOUNT;
 720		if (split)
 721			find_vma(mm, vma->vm_end)->vm_flags |= VM_ACCOUNT;
 
 
 
 
 722	}
 723
 724	return new_addr;
 725}
 726
 727static struct vm_area_struct *vma_to_resize(unsigned long addr,
 728	unsigned long old_len, unsigned long new_len, unsigned long flags)
 729{
 730	struct mm_struct *mm = current->mm;
 731	struct vm_area_struct *vma;
 732	unsigned long pgoff;
 733
 734	vma = vma_lookup(mm, addr);
 735	if (!vma)
 736		return ERR_PTR(-EFAULT);
 737
 738	/*
 739	 * !old_len is a special case where an attempt is made to 'duplicate'
 740	 * a mapping.  This makes no sense for private mappings as it will
 741	 * instead create a fresh/new mapping unrelated to the original.  This
 742	 * is contrary to the basic idea of mremap which creates new mappings
 743	 * based on the original.  There are no known use cases for this
 744	 * behavior.  As a result, fail such attempts.
 745	 */
 746	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 747		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 748		return ERR_PTR(-EINVAL);
 749	}
 750
 751	if ((flags & MREMAP_DONTUNMAP) &&
 752			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 753		return ERR_PTR(-EINVAL);
 754
 755	/* We can't remap across vm area boundaries */
 756	if (old_len > vma->vm_end - addr)
 757		return ERR_PTR(-EFAULT);
 758
 759	if (new_len == old_len)
 760		return vma;
 761
 762	/* Need to be careful about a growing mapping */
 763	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 764	pgoff += vma->vm_pgoff;
 765	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 766		return ERR_PTR(-EINVAL);
 767
 768	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 769		return ERR_PTR(-EFAULT);
 770
 771	if (mlock_future_check(mm, vma->vm_flags, new_len - old_len))
 772		return ERR_PTR(-EAGAIN);
 773
 774	if (!may_expand_vm(mm, vma->vm_flags,
 775				(new_len - old_len) >> PAGE_SHIFT))
 776		return ERR_PTR(-ENOMEM);
 777
 778	return vma;
 779}
 780
 781static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 782		unsigned long new_addr, unsigned long new_len, bool *locked,
 783		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 784		struct list_head *uf_unmap_early,
 785		struct list_head *uf_unmap)
 786{
 787	struct mm_struct *mm = current->mm;
 788	struct vm_area_struct *vma;
 789	unsigned long ret = -EINVAL;
 790	unsigned long map_flags = 0;
 791
 792	if (offset_in_page(new_addr))
 793		goto out;
 794
 795	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 796		goto out;
 797
 798	/* Ensure the old/new locations do not overlap */
 799	if (addr + old_len > new_addr && new_addr + new_len > addr)
 800		goto out;
 801
 802	/*
 803	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 804	 * it will bail out at the very beginning.
 805	 * That is a problem if we have already unmaped the regions here
 806	 * (new_addr, and old_addr), because userspace will not know the
 807	 * state of the vma's after it gets -ENOMEM.
 808	 * So, to avoid such scenario we can pre-compute if the whole
 809	 * operation has high chances to success map-wise.
 810	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 811	 * split in 3 before unmapping it.
 812	 * That means 2 more maps (1 for each) to the ones we already hold.
 813	 * Check whether current map count plus 2 still leads us to 4 maps below
 814	 * the threshold, otherwise return -ENOMEM here to be more safe.
 815	 */
 816	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 817		return -ENOMEM;
 818
 819	if (flags & MREMAP_FIXED) {
 820		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 821		if (ret)
 822			goto out;
 823	}
 824
 825	if (old_len > new_len) {
 826		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 827		if (ret)
 828			goto out;
 829		old_len = new_len;
 830	}
 831
 832	vma = vma_to_resize(addr, old_len, new_len, flags);
 833	if (IS_ERR(vma)) {
 834		ret = PTR_ERR(vma);
 835		goto out;
 836	}
 837
 838	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 839	if (flags & MREMAP_DONTUNMAP &&
 840		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
 841		ret = -ENOMEM;
 842		goto out;
 843	}
 844
 845	if (flags & MREMAP_FIXED)
 846		map_flags |= MAP_FIXED;
 847
 848	if (vma->vm_flags & VM_MAYSHARE)
 849		map_flags |= MAP_SHARED;
 850
 851	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
 852				((addr - vma->vm_start) >> PAGE_SHIFT),
 853				map_flags);
 854	if (IS_ERR_VALUE(ret))
 855		goto out;
 856
 857	/* We got a new mapping */
 858	if (!(flags & MREMAP_FIXED))
 859		new_addr = ret;
 860
 861	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
 862		       uf_unmap);
 863
 864out:
 865	return ret;
 866}
 867
 868static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
 869{
 870	unsigned long end = vma->vm_end + delta;
 871
 872	if (end < vma->vm_end) /* overflow */
 873		return 0;
 874	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
 875		return 0;
 876	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
 877			      0, MAP_FIXED) & ~PAGE_MASK)
 878		return 0;
 879	return 1;
 880}
 881
 882/*
 883 * Expand (or shrink) an existing mapping, potentially moving it at the
 884 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
 885 *
 886 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
 887 * This option implies MREMAP_MAYMOVE.
 888 */
 889SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
 890		unsigned long, new_len, unsigned long, flags,
 891		unsigned long, new_addr)
 892{
 893	struct mm_struct *mm = current->mm;
 894	struct vm_area_struct *vma;
 895	unsigned long ret = -EINVAL;
 896	bool locked = false;
 897	bool downgraded = false;
 898	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
 899	LIST_HEAD(uf_unmap_early);
 900	LIST_HEAD(uf_unmap);
 901
 902	/*
 903	 * There is a deliberate asymmetry here: we strip the pointer tag
 904	 * from the old address but leave the new address alone. This is
 905	 * for consistency with mmap(), where we prevent the creation of
 906	 * aliasing mappings in userspace by leaving the tag bits of the
 907	 * mapping address intact. A non-zero tag will cause the subsequent
 908	 * range checks to reject the address as invalid.
 909	 *
 910	 * See Documentation/arm64/tagged-address-abi.rst for more information.
 
 911	 */
 912	addr = untagged_addr(addr);
 913
 914	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
 915		return ret;
 916
 917	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
 918		return ret;
 919
 920	/*
 921	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
 922	 * in the process.
 923	 */
 924	if (flags & MREMAP_DONTUNMAP &&
 925			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
 926		return ret;
 927
 928
 929	if (offset_in_page(addr))
 930		return ret;
 931
 932	old_len = PAGE_ALIGN(old_len);
 933	new_len = PAGE_ALIGN(new_len);
 934
 935	/*
 936	 * We allow a zero old-len as a special case
 937	 * for DOS-emu "duplicate shm area" thing. But
 938	 * a zero new-len is nonsensical.
 939	 */
 940	if (!new_len)
 941		return ret;
 942
 943	if (mmap_write_lock_killable(current->mm))
 944		return -EINTR;
 945	vma = vma_lookup(mm, addr);
 946	if (!vma) {
 947		ret = -EFAULT;
 948		goto out;
 949	}
 950
 951	if (is_vm_hugetlb_page(vma)) {
 952		struct hstate *h __maybe_unused = hstate_vma(vma);
 953
 954		old_len = ALIGN(old_len, huge_page_size(h));
 955		new_len = ALIGN(new_len, huge_page_size(h));
 956
 957		/* addrs must be huge page aligned */
 958		if (addr & ~huge_page_mask(h))
 959			goto out;
 960		if (new_addr & ~huge_page_mask(h))
 961			goto out;
 962
 963		/*
 964		 * Don't allow remap expansion, because the underlying hugetlb
 965		 * reservation is not yet capable to handle split reservation.
 966		 */
 967		if (new_len > old_len)
 968			goto out;
 969	}
 970
 971	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
 972		ret = mremap_to(addr, old_len, new_addr, new_len,
 973				&locked, flags, &uf, &uf_unmap_early,
 974				&uf_unmap);
 975		goto out;
 976	}
 977
 978	/*
 979	 * Always allow a shrinking remap: that just unmaps
 980	 * the unnecessary pages..
 981	 * do_mas_munmap does all the needed commit accounting, and
 982	 * downgrades mmap_lock to read if so directed.
 983	 */
 984	if (old_len >= new_len) {
 985		int retval;
 986		MA_STATE(mas, &mm->mm_mt, addr + new_len, addr + new_len);
 987
 988		retval = do_mas_munmap(&mas, mm, addr + new_len,
 989				       old_len - new_len, &uf_unmap, true);
 990		/* Returning 1 indicates mmap_lock is downgraded to read. */
 991		if (retval == 1) {
 992			downgraded = true;
 993		} else if (retval < 0 && old_len != new_len) {
 994			ret = retval;
 995			goto out;
 996		}
 997
 
 
 
 
 
 998		ret = addr;
 999		goto out;
1000	}
1001
1002	/*
1003	 * Ok, we need to grow..
1004	 */
1005	vma = vma_to_resize(addr, old_len, new_len, flags);
1006	if (IS_ERR(vma)) {
1007		ret = PTR_ERR(vma);
1008		goto out;
1009	}
1010
1011	/* old_len exactly to the end of the area..
1012	 */
1013	if (old_len == vma->vm_end - addr) {
 
 
1014		/* can we just expand the current mapping? */
1015		if (vma_expandable(vma, new_len - old_len)) {
1016			long pages = (new_len - old_len) >> PAGE_SHIFT;
1017			unsigned long extension_start = addr + old_len;
1018			unsigned long extension_end = addr + new_len;
1019			pgoff_t extension_pgoff = vma->vm_pgoff +
1020				((extension_start - vma->vm_start) >> PAGE_SHIFT);
1021
1022			if (vma->vm_flags & VM_ACCOUNT) {
1023				if (security_vm_enough_memory_mm(mm, pages)) {
1024					ret = -ENOMEM;
1025					goto out;
1026				}
 
1027			}
1028
1029			/*
1030			 * Function vma_merge() is called on the extension we
1031			 * are adding to the already existing vma, vma_merge()
1032			 * will merge this extension with the already existing
1033			 * vma (expand operation itself) and possibly also with
1034			 * the next vma if it becomes adjacent to the expanded
1035			 * vma and  otherwise compatible.
1036			 *
1037			 * However, vma_merge() can currently fail due to
1038			 * is_mergeable_vma() check for vm_ops->close (see the
1039			 * comment there). Yet this should not prevent vma
1040			 * expanding, so perform a simple expand for such vma.
1041			 * Ideally the check for close op should be only done
1042			 * when a vma would be actually removed due to a merge.
1043			 */
1044			if (!vma->vm_ops || !vma->vm_ops->close) {
1045				vma = vma_merge(mm, vma, extension_start, extension_end,
1046					vma->vm_flags, vma->anon_vma, vma->vm_file,
1047					extension_pgoff, vma_policy(vma),
1048					vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1049			} else if (vma_adjust(vma, vma->vm_start, addr + new_len,
1050				   vma->vm_pgoff, NULL)) {
1051				vma = NULL;
1052			}
1053			if (!vma) {
1054				vm_unacct_memory(pages);
1055				ret = -ENOMEM;
1056				goto out;
1057			}
1058
1059			vm_stat_account(mm, vma->vm_flags, pages);
1060			if (vma->vm_flags & VM_LOCKED) {
1061				mm->locked_vm += pages;
1062				locked = true;
1063				new_addr = addr;
1064			}
1065			ret = addr;
1066			goto out;
1067		}
1068	}
1069
1070	/*
1071	 * We weren't able to just expand or shrink the area,
1072	 * we need to create a new one and move it..
1073	 */
1074	ret = -ENOMEM;
1075	if (flags & MREMAP_MAYMOVE) {
1076		unsigned long map_flags = 0;
1077		if (vma->vm_flags & VM_MAYSHARE)
1078			map_flags |= MAP_SHARED;
1079
1080		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1081					vma->vm_pgoff +
1082					((addr - vma->vm_start) >> PAGE_SHIFT),
1083					map_flags);
1084		if (IS_ERR_VALUE(new_addr)) {
1085			ret = new_addr;
1086			goto out;
1087		}
1088
1089		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1090			       &locked, flags, &uf, &uf_unmap);
1091	}
1092out:
1093	if (offset_in_page(ret))
1094		locked = false;
1095	if (downgraded)
1096		mmap_read_unlock(current->mm);
1097	else
1098		mmap_write_unlock(current->mm);
1099	if (locked && new_len > old_len)
1100		mm_populate(new_addr + old_len, new_len - old_len);
 
1101	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1102	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1103	userfaultfd_unmap_complete(mm, &uf_unmap);
1104	return ret;
1105}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/mm_inline.h>
  13#include <linux/hugetlb.h>
  14#include <linux/shm.h>
  15#include <linux/ksm.h>
  16#include <linux/mman.h>
  17#include <linux/swap.h>
  18#include <linux/capability.h>
  19#include <linux/fs.h>
  20#include <linux/swapops.h>
  21#include <linux/highmem.h>
  22#include <linux/security.h>
  23#include <linux/syscalls.h>
  24#include <linux/mmu_notifier.h>
  25#include <linux/uaccess.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/tlb.h>
  31#include <asm/pgalloc.h>
  32
  33#include "internal.h"
  34
  35static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  36{
  37	pgd_t *pgd;
  38	p4d_t *p4d;
  39	pud_t *pud;
  40
  41	pgd = pgd_offset(mm, addr);
  42	if (pgd_none_or_clear_bad(pgd))
  43		return NULL;
  44
  45	p4d = p4d_offset(pgd, addr);
  46	if (p4d_none_or_clear_bad(p4d))
  47		return NULL;
  48
  49	pud = pud_offset(p4d, addr);
  50	if (pud_none_or_clear_bad(pud))
  51		return NULL;
  52
  53	return pud;
  54}
  55
  56static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  57{
  58	pud_t *pud;
  59	pmd_t *pmd;
  60
  61	pud = get_old_pud(mm, addr);
  62	if (!pud)
  63		return NULL;
  64
  65	pmd = pmd_offset(pud, addr);
  66	if (pmd_none(*pmd))
  67		return NULL;
  68
  69	return pmd;
  70}
  71
  72static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  73			    unsigned long addr)
  74{
  75	pgd_t *pgd;
  76	p4d_t *p4d;
  77
  78	pgd = pgd_offset(mm, addr);
  79	p4d = p4d_alloc(mm, pgd, addr);
  80	if (!p4d)
  81		return NULL;
  82
  83	return pud_alloc(mm, p4d, addr);
  84}
  85
  86static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  87			    unsigned long addr)
  88{
  89	pud_t *pud;
  90	pmd_t *pmd;
  91
  92	pud = alloc_new_pud(mm, vma, addr);
  93	if (!pud)
  94		return NULL;
  95
  96	pmd = pmd_alloc(mm, pud, addr);
  97	if (!pmd)
  98		return NULL;
  99
 100	VM_BUG_ON(pmd_trans_huge(*pmd));
 101
 102	return pmd;
 103}
 104
 105static void take_rmap_locks(struct vm_area_struct *vma)
 106{
 107	if (vma->vm_file)
 108		i_mmap_lock_write(vma->vm_file->f_mapping);
 109	if (vma->anon_vma)
 110		anon_vma_lock_write(vma->anon_vma);
 111}
 112
 113static void drop_rmap_locks(struct vm_area_struct *vma)
 114{
 115	if (vma->anon_vma)
 116		anon_vma_unlock_write(vma->anon_vma);
 117	if (vma->vm_file)
 118		i_mmap_unlock_write(vma->vm_file->f_mapping);
 119}
 120
 121static pte_t move_soft_dirty_pte(pte_t pte)
 122{
 123	/*
 124	 * Set soft dirty bit so we can notice
 125	 * in userspace the ptes were moved.
 126	 */
 127#ifdef CONFIG_MEM_SOFT_DIRTY
 128	if (pte_present(pte))
 129		pte = pte_mksoft_dirty(pte);
 130	else if (is_swap_pte(pte))
 131		pte = pte_swp_mksoft_dirty(pte);
 132#endif
 133	return pte;
 134}
 135
 136static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 137		unsigned long old_addr, unsigned long old_end,
 138		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 139		unsigned long new_addr, bool need_rmap_locks)
 140{
 141	struct mm_struct *mm = vma->vm_mm;
 142	pte_t *old_pte, *new_pte, pte;
 143	spinlock_t *old_ptl, *new_ptl;
 144	bool force_flush = false;
 145	unsigned long len = old_end - old_addr;
 146	int err = 0;
 147
 148	/*
 149	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 150	 * locks to ensure that rmap will always observe either the old or the
 151	 * new ptes. This is the easiest way to avoid races with
 152	 * truncate_pagecache(), page migration, etc...
 153	 *
 154	 * When need_rmap_locks is false, we use other ways to avoid
 155	 * such races:
 156	 *
 157	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 158	 *   which rmap call sites look for using vma_is_temporary_stack().
 159	 *
 160	 * - During mremap(), new_vma is often known to be placed after vma
 161	 *   in rmap traversal order. This ensures rmap will always observe
 162	 *   either the old pte, or the new pte, or both (the page table locks
 163	 *   serialize access to individual ptes, but only rmap traversal
 164	 *   order guarantees that we won't miss both the old and new ptes).
 165	 */
 166	if (need_rmap_locks)
 167		take_rmap_locks(vma);
 168
 169	/*
 170	 * We don't have to worry about the ordering of src and dst
 171	 * pte locks because exclusive mmap_lock prevents deadlock.
 172	 */
 173	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 174	if (!old_pte) {
 175		err = -EAGAIN;
 176		goto out;
 177	}
 178	new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
 179	if (!new_pte) {
 180		pte_unmap_unlock(old_pte, old_ptl);
 181		err = -EAGAIN;
 182		goto out;
 183	}
 184	if (new_ptl != old_ptl)
 185		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 186	flush_tlb_batched_pending(vma->vm_mm);
 187	arch_enter_lazy_mmu_mode();
 188
 189	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 190				   new_pte++, new_addr += PAGE_SIZE) {
 191		if (pte_none(ptep_get(old_pte)))
 192			continue;
 193
 194		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 195		/*
 196		 * If we are remapping a valid PTE, make sure
 197		 * to flush TLB before we drop the PTL for the
 198		 * PTE.
 199		 *
 200		 * NOTE! Both old and new PTL matter: the old one
 201		 * for racing with page_mkclean(), the new one to
 202		 * make sure the physical page stays valid until
 203		 * the TLB entry for the old mapping has been
 204		 * flushed.
 205		 */
 206		if (pte_present(pte))
 207			force_flush = true;
 208		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
 209		pte = move_soft_dirty_pte(pte);
 210		set_pte_at(mm, new_addr, new_pte, pte);
 211	}
 212
 213	arch_leave_lazy_mmu_mode();
 214	if (force_flush)
 215		flush_tlb_range(vma, old_end - len, old_end);
 216	if (new_ptl != old_ptl)
 217		spin_unlock(new_ptl);
 218	pte_unmap(new_pte - 1);
 219	pte_unmap_unlock(old_pte - 1, old_ptl);
 220out:
 221	if (need_rmap_locks)
 222		drop_rmap_locks(vma);
 223	return err;
 224}
 225
 226#ifndef arch_supports_page_table_move
 227#define arch_supports_page_table_move arch_supports_page_table_move
 228static inline bool arch_supports_page_table_move(void)
 229{
 230	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 231		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 232}
 233#endif
 234
 235#ifdef CONFIG_HAVE_MOVE_PMD
 236static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 237		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 238{
 239	spinlock_t *old_ptl, *new_ptl;
 240	struct mm_struct *mm = vma->vm_mm;
 241	pmd_t pmd;
 242
 243	if (!arch_supports_page_table_move())
 244		return false;
 245	/*
 246	 * The destination pmd shouldn't be established, free_pgtables()
 247	 * should have released it.
 248	 *
 249	 * However, there's a case during execve() where we use mremap
 250	 * to move the initial stack, and in that case the target area
 251	 * may overlap the source area (always moving down).
 252	 *
 253	 * If everything is PMD-aligned, that works fine, as moving
 254	 * each pmd down will clear the source pmd. But if we first
 255	 * have a few 4kB-only pages that get moved down, and then
 256	 * hit the "now the rest is PMD-aligned, let's do everything
 257	 * one pmd at a time", we will still have the old (now empty
 258	 * of any 4kB pages, but still there) PMD in the page table
 259	 * tree.
 260	 *
 261	 * Warn on it once - because we really should try to figure
 262	 * out how to do this better - but then say "I won't move
 263	 * this pmd".
 264	 *
 265	 * One alternative might be to just unmap the target pmd at
 266	 * this point, and verify that it really is empty. We'll see.
 267	 */
 268	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 269		return false;
 270
 271	/*
 272	 * We don't have to worry about the ordering of src and dst
 273	 * ptlocks because exclusive mmap_lock prevents deadlock.
 274	 */
 275	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 276	new_ptl = pmd_lockptr(mm, new_pmd);
 277	if (new_ptl != old_ptl)
 278		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 279
 280	/* Clear the pmd */
 281	pmd = *old_pmd;
 282	pmd_clear(old_pmd);
 283
 284	VM_BUG_ON(!pmd_none(*new_pmd));
 285
 286	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 287	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 288	if (new_ptl != old_ptl)
 289		spin_unlock(new_ptl);
 290	spin_unlock(old_ptl);
 291
 292	return true;
 293}
 294#else
 295static inline bool move_normal_pmd(struct vm_area_struct *vma,
 296		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 297		pmd_t *new_pmd)
 298{
 299	return false;
 300}
 301#endif
 302
 303#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 304static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 305		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 306{
 307	spinlock_t *old_ptl, *new_ptl;
 308	struct mm_struct *mm = vma->vm_mm;
 309	pud_t pud;
 310
 311	if (!arch_supports_page_table_move())
 312		return false;
 313	/*
 314	 * The destination pud shouldn't be established, free_pgtables()
 315	 * should have released it.
 316	 */
 317	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 318		return false;
 319
 320	/*
 321	 * We don't have to worry about the ordering of src and dst
 322	 * ptlocks because exclusive mmap_lock prevents deadlock.
 323	 */
 324	old_ptl = pud_lock(vma->vm_mm, old_pud);
 325	new_ptl = pud_lockptr(mm, new_pud);
 326	if (new_ptl != old_ptl)
 327		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 328
 329	/* Clear the pud */
 330	pud = *old_pud;
 331	pud_clear(old_pud);
 332
 333	VM_BUG_ON(!pud_none(*new_pud));
 334
 335	pud_populate(mm, new_pud, pud_pgtable(pud));
 336	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 337	if (new_ptl != old_ptl)
 338		spin_unlock(new_ptl);
 339	spin_unlock(old_ptl);
 340
 341	return true;
 342}
 343#else
 344static inline bool move_normal_pud(struct vm_area_struct *vma,
 345		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 346		pud_t *new_pud)
 347{
 348	return false;
 349}
 350#endif
 351
 352#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 353static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 354			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 355{
 356	spinlock_t *old_ptl, *new_ptl;
 357	struct mm_struct *mm = vma->vm_mm;
 358	pud_t pud;
 359
 360	/*
 361	 * The destination pud shouldn't be established, free_pgtables()
 362	 * should have released it.
 363	 */
 364	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 365		return false;
 366
 367	/*
 368	 * We don't have to worry about the ordering of src and dst
 369	 * ptlocks because exclusive mmap_lock prevents deadlock.
 370	 */
 371	old_ptl = pud_lock(vma->vm_mm, old_pud);
 372	new_ptl = pud_lockptr(mm, new_pud);
 373	if (new_ptl != old_ptl)
 374		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 375
 376	/* Clear the pud */
 377	pud = *old_pud;
 378	pud_clear(old_pud);
 379
 380	VM_BUG_ON(!pud_none(*new_pud));
 381
 382	/* Set the new pud */
 383	/* mark soft_ditry when we add pud level soft dirty support */
 384	set_pud_at(mm, new_addr, new_pud, pud);
 385	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 386	if (new_ptl != old_ptl)
 387		spin_unlock(new_ptl);
 388	spin_unlock(old_ptl);
 389
 390	return true;
 391}
 392#else
 393static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 394			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 395{
 396	WARN_ON_ONCE(1);
 397	return false;
 398
 399}
 400#endif
 401
 402enum pgt_entry {
 403	NORMAL_PMD,
 404	HPAGE_PMD,
 405	NORMAL_PUD,
 406	HPAGE_PUD,
 407};
 408
 409/*
 410 * Returns an extent of the corresponding size for the pgt_entry specified if
 411 * valid. Else returns a smaller extent bounded by the end of the source and
 412 * destination pgt_entry.
 413 */
 414static __always_inline unsigned long get_extent(enum pgt_entry entry,
 415			unsigned long old_addr, unsigned long old_end,
 416			unsigned long new_addr)
 417{
 418	unsigned long next, extent, mask, size;
 419
 420	switch (entry) {
 421	case HPAGE_PMD:
 422	case NORMAL_PMD:
 423		mask = PMD_MASK;
 424		size = PMD_SIZE;
 425		break;
 426	case HPAGE_PUD:
 427	case NORMAL_PUD:
 428		mask = PUD_MASK;
 429		size = PUD_SIZE;
 430		break;
 431	default:
 432		BUILD_BUG();
 433		break;
 434	}
 435
 436	next = (old_addr + size) & mask;
 437	/* even if next overflowed, extent below will be ok */
 438	extent = next - old_addr;
 439	if (extent > old_end - old_addr)
 440		extent = old_end - old_addr;
 441	next = (new_addr + size) & mask;
 442	if (extent > next - new_addr)
 443		extent = next - new_addr;
 444	return extent;
 445}
 446
 447/*
 448 * Attempts to speedup the move by moving entry at the level corresponding to
 449 * pgt_entry. Returns true if the move was successful, else false.
 450 */
 451static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 452			unsigned long old_addr, unsigned long new_addr,
 453			void *old_entry, void *new_entry, bool need_rmap_locks)
 454{
 455	bool moved = false;
 456
 457	/* See comment in move_ptes() */
 458	if (need_rmap_locks)
 459		take_rmap_locks(vma);
 460
 461	switch (entry) {
 462	case NORMAL_PMD:
 463		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 464					new_entry);
 465		break;
 466	case NORMAL_PUD:
 467		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 468					new_entry);
 469		break;
 470	case HPAGE_PMD:
 471		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 472			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 473				      new_entry);
 474		break;
 475	case HPAGE_PUD:
 476		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 477			move_huge_pud(vma, old_addr, new_addr, old_entry,
 478				      new_entry);
 479		break;
 480
 481	default:
 482		WARN_ON_ONCE(1);
 483		break;
 484	}
 485
 486	if (need_rmap_locks)
 487		drop_rmap_locks(vma);
 488
 489	return moved;
 490}
 491
 492/*
 493 * A helper to check if aligning down is OK. The aligned address should fall
 494 * on *no mapping*. For the stack moving down, that's a special move within
 495 * the VMA that is created to span the source and destination of the move,
 496 * so we make an exception for it.
 497 */
 498static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
 499			    unsigned long mask, bool for_stack)
 500{
 501	unsigned long addr_masked = addr_to_align & mask;
 502
 503	/*
 504	 * If @addr_to_align of either source or destination is not the beginning
 505	 * of the corresponding VMA, we can't align down or we will destroy part
 506	 * of the current mapping.
 507	 */
 508	if (!for_stack && vma->vm_start != addr_to_align)
 509		return false;
 510
 511	/* In the stack case we explicitly permit in-VMA alignment. */
 512	if (for_stack && addr_masked >= vma->vm_start)
 513		return true;
 514
 515	/*
 516	 * Make sure the realignment doesn't cause the address to fall on an
 517	 * existing mapping.
 518	 */
 519	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
 520}
 521
 522/* Opportunistically realign to specified boundary for faster copy. */
 523static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
 524			     unsigned long *new_addr, struct vm_area_struct *new_vma,
 525			     unsigned long mask, bool for_stack)
 526{
 527	/* Skip if the addresses are already aligned. */
 528	if ((*old_addr & ~mask) == 0)
 529		return;
 530
 531	/* Only realign if the new and old addresses are mutually aligned. */
 532	if ((*old_addr & ~mask) != (*new_addr & ~mask))
 533		return;
 534
 535	/* Ensure realignment doesn't cause overlap with existing mappings. */
 536	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
 537	    !can_align_down(new_vma, *new_addr, mask, for_stack))
 538		return;
 539
 540	*old_addr = *old_addr & mask;
 541	*new_addr = *new_addr & mask;
 542}
 543
 544unsigned long move_page_tables(struct vm_area_struct *vma,
 545		unsigned long old_addr, struct vm_area_struct *new_vma,
 546		unsigned long new_addr, unsigned long len,
 547		bool need_rmap_locks, bool for_stack)
 548{
 549	unsigned long extent, old_end;
 550	struct mmu_notifier_range range;
 551	pmd_t *old_pmd, *new_pmd;
 552	pud_t *old_pud, *new_pud;
 553
 554	if (!len)
 555		return 0;
 556
 557	old_end = old_addr + len;
 558
 559	if (is_vm_hugetlb_page(vma))
 560		return move_hugetlb_page_tables(vma, new_vma, old_addr,
 561						new_addr, len);
 562
 563	/*
 564	 * If possible, realign addresses to PMD boundary for faster copy.
 565	 * Only realign if the mremap copying hits a PMD boundary.
 566	 */
 567	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
 568		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
 569				 for_stack);
 570
 571	flush_cache_range(vma, old_addr, old_end);
 572	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
 573				old_addr, old_end);
 574	mmu_notifier_invalidate_range_start(&range);
 575
 576	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 577		cond_resched();
 578		/*
 579		 * If extent is PUD-sized try to speed up the move by moving at the
 580		 * PUD level if possible.
 581		 */
 582		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 583
 584		old_pud = get_old_pud(vma->vm_mm, old_addr);
 585		if (!old_pud)
 586			continue;
 587		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 588		if (!new_pud)
 589			break;
 590		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 591			if (extent == HPAGE_PUD_SIZE) {
 592				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 593					       old_pud, new_pud, need_rmap_locks);
 594				/* We ignore and continue on error? */
 595				continue;
 596			}
 597		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 598
 599			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 600					   old_pud, new_pud, true))
 601				continue;
 602		}
 603
 604		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 605		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 606		if (!old_pmd)
 607			continue;
 608		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 609		if (!new_pmd)
 610			break;
 611again:
 612		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 613		    pmd_devmap(*old_pmd)) {
 614			if (extent == HPAGE_PMD_SIZE &&
 615			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 616					   old_pmd, new_pmd, need_rmap_locks))
 617				continue;
 618			split_huge_pmd(vma, old_pmd, old_addr);
 
 
 619		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 620			   extent == PMD_SIZE) {
 621			/*
 622			 * If the extent is PMD-sized, try to speed the move by
 623			 * moving at the PMD level if possible.
 624			 */
 625			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 626					   old_pmd, new_pmd, true))
 627				continue;
 628		}
 629		if (pmd_none(*old_pmd))
 630			continue;
 631		if (pte_alloc(new_vma->vm_mm, new_pmd))
 632			break;
 633		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
 634			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
 635			goto again;
 636	}
 637
 638	mmu_notifier_invalidate_range_end(&range);
 639
 640	/*
 641	 * Prevent negative return values when {old,new}_addr was realigned
 642	 * but we broke out of the above loop for the first PMD itself.
 643	 */
 644	if (len + old_addr < old_end)
 645		return 0;
 646
 647	return len + old_addr - old_end;	/* how much done */
 648}
 649
 650static unsigned long move_vma(struct vm_area_struct *vma,
 651		unsigned long old_addr, unsigned long old_len,
 652		unsigned long new_len, unsigned long new_addr,
 653		bool *locked, unsigned long flags,
 654		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 655{
 656	long to_account = new_len - old_len;
 657	struct mm_struct *mm = vma->vm_mm;
 658	struct vm_area_struct *new_vma;
 659	unsigned long vm_flags = vma->vm_flags;
 660	unsigned long new_pgoff;
 661	unsigned long moved_len;
 662	unsigned long account_start = 0;
 663	unsigned long account_end = 0;
 664	unsigned long hiwater_vm;
 
 665	int err = 0;
 666	bool need_rmap_locks;
 667	struct vma_iterator vmi;
 668
 669	/*
 670	 * We'd prefer to avoid failure later on in do_munmap:
 671	 * which may split one vma into three before unmapping.
 672	 */
 673	if (mm->map_count >= sysctl_max_map_count - 3)
 674		return -ENOMEM;
 675
 676	if (unlikely(flags & MREMAP_DONTUNMAP))
 677		to_account = new_len;
 678
 679	if (vma->vm_ops && vma->vm_ops->may_split) {
 680		if (vma->vm_start != old_addr)
 681			err = vma->vm_ops->may_split(vma, old_addr);
 682		if (!err && vma->vm_end != old_addr + old_len)
 683			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 684		if (err)
 685			return err;
 686	}
 687
 688	/*
 689	 * Advise KSM to break any KSM pages in the area to be moved:
 690	 * it would be confusing if they were to turn up at the new
 691	 * location, where they happen to coincide with different KSM
 692	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 693	 * so KSM can come around to merge on vma and new_vma afterwards.
 694	 */
 695	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 696						MADV_UNMERGEABLE, &vm_flags);
 697	if (err)
 698		return err;
 699
 700	if (vm_flags & VM_ACCOUNT) {
 701		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
 702			return -ENOMEM;
 703	}
 704
 705	vma_start_write(vma);
 706	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 707	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 708			   &need_rmap_locks);
 709	if (!new_vma) {
 710		if (vm_flags & VM_ACCOUNT)
 711			vm_unacct_memory(to_account >> PAGE_SHIFT);
 712		return -ENOMEM;
 713	}
 714
 715	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 716				     need_rmap_locks, false);
 717	if (moved_len < old_len) {
 718		err = -ENOMEM;
 719	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 720		err = vma->vm_ops->mremap(new_vma);
 721	}
 722
 723	if (unlikely(err)) {
 724		/*
 725		 * On error, move entries back from new area to old,
 726		 * which will succeed since page tables still there,
 727		 * and then proceed to unmap new area instead of old.
 728		 */
 729		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 730				 true, false);
 731		vma = new_vma;
 732		old_len = new_len;
 733		old_addr = new_addr;
 734		new_addr = err;
 735	} else {
 736		mremap_userfaultfd_prep(new_vma, uf);
 737	}
 738
 739	if (is_vm_hugetlb_page(vma)) {
 740		clear_vma_resv_huge_pages(vma);
 741	}
 742
 743	/* Conceal VM_ACCOUNT so old reservation is not undone */
 744	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 745		vm_flags_clear(vma, VM_ACCOUNT);
 746		if (vma->vm_start < old_addr)
 747			account_start = vma->vm_start;
 748		if (vma->vm_end > old_addr + old_len)
 749			account_end = vma->vm_end;
 750	}
 751
 752	/*
 753	 * If we failed to move page tables we still do total_vm increment
 754	 * since do_munmap() will decrement it by old_len == new_len.
 755	 *
 756	 * Since total_vm is about to be raised artificially high for a
 757	 * moment, we need to restore high watermark afterwards: if stats
 758	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 759	 * If this were a serious issue, we'd add a flag to do_munmap().
 760	 */
 761	hiwater_vm = mm->hiwater_vm;
 762	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 763
 764	/* Tell pfnmap has moved from this vma */
 765	if (unlikely(vma->vm_flags & VM_PFNMAP))
 766		untrack_pfn_clear(vma);
 767
 768	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 769		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 770		vm_flags_clear(vma, VM_LOCKED_MASK);
 771
 772		/*
 773		 * anon_vma links of the old vma is no longer needed after its page
 774		 * table has been moved.
 775		 */
 776		if (new_vma != vma && vma->vm_start == old_addr &&
 777			vma->vm_end == (old_addr + old_len))
 778			unlink_anon_vmas(vma);
 779
 780		/* Because we won't unmap we don't need to touch locked_vm */
 781		return new_addr;
 782	}
 783
 784	vma_iter_init(&vmi, mm, old_addr);
 785	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
 786		/* OOM: unable to split vma, just get accounts right */
 787		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 788			vm_acct_memory(old_len >> PAGE_SHIFT);
 789		account_start = account_end = 0;
 790	}
 791
 792	if (vm_flags & VM_LOCKED) {
 793		mm->locked_vm += new_len >> PAGE_SHIFT;
 794		*locked = true;
 795	}
 796
 797	mm->hiwater_vm = hiwater_vm;
 798
 799	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 800	if (account_start) {
 801		vma = vma_prev(&vmi);
 802		vm_flags_set(vma, VM_ACCOUNT);
 803	}
 804
 805	if (account_end) {
 806		vma = vma_next(&vmi);
 807		vm_flags_set(vma, VM_ACCOUNT);
 808	}
 809
 810	return new_addr;
 811}
 812
 813static struct vm_area_struct *vma_to_resize(unsigned long addr,
 814	unsigned long old_len, unsigned long new_len, unsigned long flags)
 815{
 816	struct mm_struct *mm = current->mm;
 817	struct vm_area_struct *vma;
 818	unsigned long pgoff;
 819
 820	vma = vma_lookup(mm, addr);
 821	if (!vma)
 822		return ERR_PTR(-EFAULT);
 823
 824	/*
 825	 * !old_len is a special case where an attempt is made to 'duplicate'
 826	 * a mapping.  This makes no sense for private mappings as it will
 827	 * instead create a fresh/new mapping unrelated to the original.  This
 828	 * is contrary to the basic idea of mremap which creates new mappings
 829	 * based on the original.  There are no known use cases for this
 830	 * behavior.  As a result, fail such attempts.
 831	 */
 832	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 833		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 834		return ERR_PTR(-EINVAL);
 835	}
 836
 837	if ((flags & MREMAP_DONTUNMAP) &&
 838			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 839		return ERR_PTR(-EINVAL);
 840
 841	/* We can't remap across vm area boundaries */
 842	if (old_len > vma->vm_end - addr)
 843		return ERR_PTR(-EFAULT);
 844
 845	if (new_len == old_len)
 846		return vma;
 847
 848	/* Need to be careful about a growing mapping */
 849	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 850	pgoff += vma->vm_pgoff;
 851	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 852		return ERR_PTR(-EINVAL);
 853
 854	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 855		return ERR_PTR(-EFAULT);
 856
 857	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
 858		return ERR_PTR(-EAGAIN);
 859
 860	if (!may_expand_vm(mm, vma->vm_flags,
 861				(new_len - old_len) >> PAGE_SHIFT))
 862		return ERR_PTR(-ENOMEM);
 863
 864	return vma;
 865}
 866
 867static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 868		unsigned long new_addr, unsigned long new_len, bool *locked,
 869		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 870		struct list_head *uf_unmap_early,
 871		struct list_head *uf_unmap)
 872{
 873	struct mm_struct *mm = current->mm;
 874	struct vm_area_struct *vma;
 875	unsigned long ret = -EINVAL;
 876	unsigned long map_flags = 0;
 877
 878	if (offset_in_page(new_addr))
 879		goto out;
 880
 881	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 882		goto out;
 883
 884	/* Ensure the old/new locations do not overlap */
 885	if (addr + old_len > new_addr && new_addr + new_len > addr)
 886		goto out;
 887
 888	/*
 889	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 890	 * it will bail out at the very beginning.
 891	 * That is a problem if we have already unmaped the regions here
 892	 * (new_addr, and old_addr), because userspace will not know the
 893	 * state of the vma's after it gets -ENOMEM.
 894	 * So, to avoid such scenario we can pre-compute if the whole
 895	 * operation has high chances to success map-wise.
 896	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 897	 * split in 3 before unmapping it.
 898	 * That means 2 more maps (1 for each) to the ones we already hold.
 899	 * Check whether current map count plus 2 still leads us to 4 maps below
 900	 * the threshold, otherwise return -ENOMEM here to be more safe.
 901	 */
 902	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 903		return -ENOMEM;
 904
 905	if (flags & MREMAP_FIXED) {
 906		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 907		if (ret)
 908			goto out;
 909	}
 910
 911	if (old_len > new_len) {
 912		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 913		if (ret)
 914			goto out;
 915		old_len = new_len;
 916	}
 917
 918	vma = vma_to_resize(addr, old_len, new_len, flags);
 919	if (IS_ERR(vma)) {
 920		ret = PTR_ERR(vma);
 921		goto out;
 922	}
 923
 924	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 925	if (flags & MREMAP_DONTUNMAP &&
 926		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	if (flags & MREMAP_FIXED)
 932		map_flags |= MAP_FIXED;
 933
 934	if (vma->vm_flags & VM_MAYSHARE)
 935		map_flags |= MAP_SHARED;
 936
 937	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
 938				((addr - vma->vm_start) >> PAGE_SHIFT),
 939				map_flags);
 940	if (IS_ERR_VALUE(ret))
 941		goto out;
 942
 943	/* We got a new mapping */
 944	if (!(flags & MREMAP_FIXED))
 945		new_addr = ret;
 946
 947	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
 948		       uf_unmap);
 949
 950out:
 951	return ret;
 952}
 953
 954static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
 955{
 956	unsigned long end = vma->vm_end + delta;
 957
 958	if (end < vma->vm_end) /* overflow */
 959		return 0;
 960	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
 961		return 0;
 962	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
 963			      0, MAP_FIXED) & ~PAGE_MASK)
 964		return 0;
 965	return 1;
 966}
 967
 968/*
 969 * Expand (or shrink) an existing mapping, potentially moving it at the
 970 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
 971 *
 972 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
 973 * This option implies MREMAP_MAYMOVE.
 974 */
 975SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
 976		unsigned long, new_len, unsigned long, flags,
 977		unsigned long, new_addr)
 978{
 979	struct mm_struct *mm = current->mm;
 980	struct vm_area_struct *vma;
 981	unsigned long ret = -EINVAL;
 982	bool locked = false;
 
 983	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
 984	LIST_HEAD(uf_unmap_early);
 985	LIST_HEAD(uf_unmap);
 986
 987	/*
 988	 * There is a deliberate asymmetry here: we strip the pointer tag
 989	 * from the old address but leave the new address alone. This is
 990	 * for consistency with mmap(), where we prevent the creation of
 991	 * aliasing mappings in userspace by leaving the tag bits of the
 992	 * mapping address intact. A non-zero tag will cause the subsequent
 993	 * range checks to reject the address as invalid.
 994	 *
 995	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
 996	 * information.
 997	 */
 998	addr = untagged_addr(addr);
 999
1000	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1001		return ret;
1002
1003	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1004		return ret;
1005
1006	/*
1007	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1008	 * in the process.
1009	 */
1010	if (flags & MREMAP_DONTUNMAP &&
1011			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1012		return ret;
1013
1014
1015	if (offset_in_page(addr))
1016		return ret;
1017
1018	old_len = PAGE_ALIGN(old_len);
1019	new_len = PAGE_ALIGN(new_len);
1020
1021	/*
1022	 * We allow a zero old-len as a special case
1023	 * for DOS-emu "duplicate shm area" thing. But
1024	 * a zero new-len is nonsensical.
1025	 */
1026	if (!new_len)
1027		return ret;
1028
1029	if (mmap_write_lock_killable(current->mm))
1030		return -EINTR;
1031	vma = vma_lookup(mm, addr);
1032	if (!vma) {
1033		ret = -EFAULT;
1034		goto out;
1035	}
1036
1037	if (is_vm_hugetlb_page(vma)) {
1038		struct hstate *h __maybe_unused = hstate_vma(vma);
1039
1040		old_len = ALIGN(old_len, huge_page_size(h));
1041		new_len = ALIGN(new_len, huge_page_size(h));
1042
1043		/* addrs must be huge page aligned */
1044		if (addr & ~huge_page_mask(h))
1045			goto out;
1046		if (new_addr & ~huge_page_mask(h))
1047			goto out;
1048
1049		/*
1050		 * Don't allow remap expansion, because the underlying hugetlb
1051		 * reservation is not yet capable to handle split reservation.
1052		 */
1053		if (new_len > old_len)
1054			goto out;
1055	}
1056
1057	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1058		ret = mremap_to(addr, old_len, new_addr, new_len,
1059				&locked, flags, &uf, &uf_unmap_early,
1060				&uf_unmap);
1061		goto out;
1062	}
1063
1064	/*
1065	 * Always allow a shrinking remap: that just unmaps
1066	 * the unnecessary pages..
1067	 * do_vmi_munmap does all the needed commit accounting, and
1068	 * unlocks the mmap_lock if so directed.
1069	 */
1070	if (old_len >= new_len) {
1071		VMA_ITERATOR(vmi, mm, addr + new_len);
 
1072
1073		if (old_len == new_len) {
1074			ret = addr;
 
 
 
 
 
1075			goto out;
1076		}
1077
1078		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1079				    &uf_unmap, true);
1080		if (ret)
1081			goto out;
1082
1083		ret = addr;
1084		goto out_unlocked;
1085	}
1086
1087	/*
1088	 * Ok, we need to grow..
1089	 */
1090	vma = vma_to_resize(addr, old_len, new_len, flags);
1091	if (IS_ERR(vma)) {
1092		ret = PTR_ERR(vma);
1093		goto out;
1094	}
1095
1096	/* old_len exactly to the end of the area..
1097	 */
1098	if (old_len == vma->vm_end - addr) {
1099		unsigned long delta = new_len - old_len;
1100
1101		/* can we just expand the current mapping? */
1102		if (vma_expandable(vma, delta)) {
1103			long pages = delta >> PAGE_SHIFT;
1104			VMA_ITERATOR(vmi, mm, vma->vm_end);
1105			long charged = 0;
 
 
1106
1107			if (vma->vm_flags & VM_ACCOUNT) {
1108				if (security_vm_enough_memory_mm(mm, pages)) {
1109					ret = -ENOMEM;
1110					goto out;
1111				}
1112				charged = pages;
1113			}
1114
1115			/*
1116			 * Function vma_merge_extend() is called on the
1117			 * extension we are adding to the already existing vma,
1118			 * vma_merge_extend() will merge this extension with the
1119			 * already existing vma (expand operation itself) and
1120			 * possibly also with the next vma if it becomes
1121			 * adjacent to the expanded vma and otherwise
1122			 * compatible.
 
 
 
 
 
 
1123			 */
1124			vma = vma_merge_extend(&vmi, vma, delta);
 
 
 
 
 
 
 
 
1125			if (!vma) {
1126				vm_unacct_memory(charged);
1127				ret = -ENOMEM;
1128				goto out;
1129			}
1130
1131			vm_stat_account(mm, vma->vm_flags, pages);
1132			if (vma->vm_flags & VM_LOCKED) {
1133				mm->locked_vm += pages;
1134				locked = true;
1135				new_addr = addr;
1136			}
1137			ret = addr;
1138			goto out;
1139		}
1140	}
1141
1142	/*
1143	 * We weren't able to just expand or shrink the area,
1144	 * we need to create a new one and move it..
1145	 */
1146	ret = -ENOMEM;
1147	if (flags & MREMAP_MAYMOVE) {
1148		unsigned long map_flags = 0;
1149		if (vma->vm_flags & VM_MAYSHARE)
1150			map_flags |= MAP_SHARED;
1151
1152		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1153					vma->vm_pgoff +
1154					((addr - vma->vm_start) >> PAGE_SHIFT),
1155					map_flags);
1156		if (IS_ERR_VALUE(new_addr)) {
1157			ret = new_addr;
1158			goto out;
1159		}
1160
1161		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1162			       &locked, flags, &uf, &uf_unmap);
1163	}
1164out:
1165	if (offset_in_page(ret))
1166		locked = false;
1167	mmap_write_unlock(current->mm);
 
 
 
1168	if (locked && new_len > old_len)
1169		mm_populate(new_addr + old_len, new_len - old_len);
1170out_unlocked:
1171	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1172	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1173	userfaultfd_unmap_complete(mm, &uf_unmap);
1174	return ret;
1175}