Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * 2002-10-15  Posix Clocks & timers
   4 *                           by George Anzinger george@mvista.com
   5 *			     Copyright (C) 2002 2003 by MontaVista Software.
   6 *
   7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
   8 *			     Copyright (C) 2004 Boris Hu
   9 *
  10 * These are all the functions necessary to implement POSIX clocks & timers
  11 */
  12#include <linux/mm.h>
  13#include <linux/interrupt.h>
  14#include <linux/slab.h>
  15#include <linux/time.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/task.h>
  18
  19#include <linux/uaccess.h>
  20#include <linux/list.h>
  21#include <linux/init.h>
  22#include <linux/compiler.h>
  23#include <linux/hash.h>
  24#include <linux/posix-clock.h>
  25#include <linux/posix-timers.h>
  26#include <linux/syscalls.h>
  27#include <linux/wait.h>
  28#include <linux/workqueue.h>
  29#include <linux/export.h>
  30#include <linux/hashtable.h>
  31#include <linux/compat.h>
  32#include <linux/nospec.h>
  33#include <linux/time_namespace.h>
  34
  35#include "timekeeping.h"
  36#include "posix-timers.h"
  37
  38/*
  39 * Management arrays for POSIX timers. Timers are now kept in static hash table
  40 * with 512 entries.
  41 * Timer ids are allocated by local routine, which selects proper hash head by
  42 * key, constructed from current->signal address and per signal struct counter.
  43 * This keeps timer ids unique per process, but now they can intersect between
  44 * processes.
  45 */
  46
  47/*
  48 * Lets keep our timers in a slab cache :-)
 
 
 
 
 
 
  49 */
  50static struct kmem_cache *posix_timers_cache;
  51
  52static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  53static DEFINE_SPINLOCK(hash_lock);
  54
  55static const struct k_clock * const posix_clocks[];
  56static const struct k_clock *clockid_to_kclock(const clockid_t id);
  57static const struct k_clock clock_realtime, clock_monotonic;
  58
  59/*
  60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  61 * SIGEV values.  Here we put out an error if this assumption fails.
  62 */
  63#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  64                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  65#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  66#endif
  67
  68/*
  69 * The timer ID is turned into a timer address by idr_find().
  70 * Verifying a valid ID consists of:
  71 *
  72 * a) checking that idr_find() returns other than -1.
  73 * b) checking that the timer id matches the one in the timer itself.
  74 * c) that the timer owner is in the callers thread group.
  75 */
  76
  77/*
  78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  79 *	    to implement others.  This structure defines the various
  80 *	    clocks.
  81 *
  82 * RESOLUTION: Clock resolution is used to round up timer and interval
  83 *	    times, NOT to report clock times, which are reported with as
  84 *	    much resolution as the system can muster.  In some cases this
  85 *	    resolution may depend on the underlying clock hardware and
  86 *	    may not be quantifiable until run time, and only then is the
  87 *	    necessary code is written.	The standard says we should say
  88 *	    something about this issue in the documentation...
  89 *
  90 * FUNCTIONS: The CLOCKs structure defines possible functions to
  91 *	    handle various clock functions.
  92 *
  93 *	    The standard POSIX timer management code assumes the
  94 *	    following: 1.) The k_itimer struct (sched.h) is used for
  95 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
  96 *	    it_pid fields are not modified by timer code.
  97 *
  98 * Permissions: It is assumed that the clock_settime() function defined
  99 *	    for each clock will take care of permission checks.	 Some
 100 *	    clocks may be set able by any user (i.e. local process
 101 *	    clocks) others not.	 Currently the only set able clock we
 102 *	    have is CLOCK_REALTIME and its high res counter part, both of
 103 *	    which we beg off on and pass to do_sys_settimeofday().
 104 */
 105static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 106
 107#define lock_timer(tid, flags)						   \
 108({	struct k_itimer *__timr;					   \
 109	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 110	__timr;								   \
 111})
 112
 113static int hash(struct signal_struct *sig, unsigned int nr)
 114{
 115	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 116}
 117
 118static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 119					    struct signal_struct *sig,
 120					    timer_t id)
 121{
 122	struct k_itimer *timer;
 123
 124	hlist_for_each_entry_rcu(timer, head, t_hash,
 125				 lockdep_is_held(&hash_lock)) {
 126		if ((timer->it_signal == sig) && (timer->it_id == id))
 127			return timer;
 128	}
 129	return NULL;
 130}
 131
 132static struct k_itimer *posix_timer_by_id(timer_t id)
 133{
 134	struct signal_struct *sig = current->signal;
 135	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 136
 137	return __posix_timers_find(head, sig, id);
 138}
 139
 140static int posix_timer_add(struct k_itimer *timer)
 141{
 142	struct signal_struct *sig = current->signal;
 143	int first_free_id = sig->posix_timer_id;
 144	struct hlist_head *head;
 145	int ret = -ENOENT;
 146
 147	do {
 
 
 
 
 148		spin_lock(&hash_lock);
 149		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 150		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 
 
 
 
 
 151			hlist_add_head_rcu(&timer->t_hash, head);
 152			ret = sig->posix_timer_id;
 
 153		}
 154		if (++sig->posix_timer_id < 0)
 155			sig->posix_timer_id = 0;
 156		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 157			/* Loop over all possible ids completed */
 158			ret = -EAGAIN;
 159		spin_unlock(&hash_lock);
 160	} while (ret == -ENOENT);
 161	return ret;
 
 162}
 163
 164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 165{
 166	spin_unlock_irqrestore(&timr->it_lock, flags);
 167}
 168
 169/* Get clock_realtime */
 170static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
 171{
 172	ktime_get_real_ts64(tp);
 173	return 0;
 174}
 175
 176static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
 177{
 178	return ktime_get_real();
 179}
 180
 181/* Set clock_realtime */
 182static int posix_clock_realtime_set(const clockid_t which_clock,
 183				    const struct timespec64 *tp)
 184{
 185	return do_sys_settimeofday64(tp, NULL);
 186}
 187
 188static int posix_clock_realtime_adj(const clockid_t which_clock,
 189				    struct __kernel_timex *t)
 190{
 191	return do_adjtimex(t);
 192}
 193
 194/*
 195 * Get monotonic time for posix timers
 196 */
 197static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
 198{
 199	ktime_get_ts64(tp);
 200	timens_add_monotonic(tp);
 201	return 0;
 202}
 203
 204static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
 205{
 206	return ktime_get();
 207}
 208
 209/*
 210 * Get monotonic-raw time for posix timers
 211 */
 212static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 213{
 214	ktime_get_raw_ts64(tp);
 215	timens_add_monotonic(tp);
 216	return 0;
 217}
 218
 219
 220static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 221{
 222	ktime_get_coarse_real_ts64(tp);
 223	return 0;
 224}
 225
 226static int posix_get_monotonic_coarse(clockid_t which_clock,
 227						struct timespec64 *tp)
 228{
 229	ktime_get_coarse_ts64(tp);
 230	timens_add_monotonic(tp);
 231	return 0;
 232}
 233
 234static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 235{
 236	*tp = ktime_to_timespec64(KTIME_LOW_RES);
 237	return 0;
 238}
 239
 240static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
 241{
 242	ktime_get_boottime_ts64(tp);
 243	timens_add_boottime(tp);
 244	return 0;
 245}
 246
 247static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
 248{
 249	return ktime_get_boottime();
 250}
 251
 252static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
 253{
 254	ktime_get_clocktai_ts64(tp);
 255	return 0;
 256}
 257
 258static ktime_t posix_get_tai_ktime(clockid_t which_clock)
 259{
 260	return ktime_get_clocktai();
 261}
 262
 263static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 264{
 265	tp->tv_sec = 0;
 266	tp->tv_nsec = hrtimer_resolution;
 267	return 0;
 268}
 269
 270/*
 271 * Initialize everything, well, just everything in Posix clocks/timers ;)
 272 */
 273static __init int init_posix_timers(void)
 274{
 275	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 276					sizeof(struct k_itimer), 0,
 277					SLAB_PANIC | SLAB_ACCOUNT, NULL);
 278	return 0;
 279}
 280__initcall(init_posix_timers);
 281
 282/*
 283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 284 * are of type int. Clamp the overrun value to INT_MAX
 285 */
 286static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 287{
 288	s64 sum = timr->it_overrun_last + (s64)baseval;
 289
 290	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 291}
 292
 293static void common_hrtimer_rearm(struct k_itimer *timr)
 294{
 295	struct hrtimer *timer = &timr->it.real.timer;
 296
 297	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 298					    timr->it_interval);
 299	hrtimer_restart(timer);
 300}
 301
 302/*
 303 * This function is exported for use by the signal deliver code.  It is
 304 * called just prior to the info block being released and passes that
 305 * block to us.  It's function is to update the overrun entry AND to
 306 * restart the timer.  It should only be called if the timer is to be
 307 * restarted (i.e. we have flagged this in the sys_private entry of the
 308 * info block).
 309 *
 310 * To protect against the timer going away while the interrupt is queued,
 311 * we require that the it_requeue_pending flag be set.
 312 */
 313void posixtimer_rearm(struct kernel_siginfo *info)
 314{
 315	struct k_itimer *timr;
 316	unsigned long flags;
 317
 318	timr = lock_timer(info->si_tid, &flags);
 319	if (!timr)
 320		return;
 321
 322	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 323		timr->kclock->timer_rearm(timr);
 324
 325		timr->it_active = 1;
 326		timr->it_overrun_last = timr->it_overrun;
 327		timr->it_overrun = -1LL;
 328		++timr->it_requeue_pending;
 329
 330		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 331	}
 332
 333	unlock_timer(timr, flags);
 334}
 335
 336int posix_timer_event(struct k_itimer *timr, int si_private)
 337{
 338	enum pid_type type;
 339	int ret;
 340	/*
 341	 * FIXME: if ->sigq is queued we can race with
 342	 * dequeue_signal()->posixtimer_rearm().
 343	 *
 344	 * If dequeue_signal() sees the "right" value of
 345	 * si_sys_private it calls posixtimer_rearm().
 346	 * We re-queue ->sigq and drop ->it_lock().
 347	 * posixtimer_rearm() locks the timer
 348	 * and re-schedules it while ->sigq is pending.
 349	 * Not really bad, but not that we want.
 350	 */
 351	timr->sigq->info.si_sys_private = si_private;
 352
 353	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 354	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 355	/* If we failed to send the signal the timer stops. */
 356	return ret > 0;
 357}
 358
 359/*
 360 * This function gets called when a POSIX.1b interval timer expires.  It
 361 * is used as a callback from the kernel internal timer.  The
 362 * run_timer_list code ALWAYS calls with interrupts on.
 363
 364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 365 */
 366static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 367{
 
 368	struct k_itimer *timr;
 369	unsigned long flags;
 370	int si_private = 0;
 371	enum hrtimer_restart ret = HRTIMER_NORESTART;
 372
 373	timr = container_of(timer, struct k_itimer, it.real.timer);
 374	spin_lock_irqsave(&timr->it_lock, flags);
 375
 376	timr->it_active = 0;
 377	if (timr->it_interval != 0)
 378		si_private = ++timr->it_requeue_pending;
 379
 380	if (posix_timer_event(timr, si_private)) {
 381		/*
 382		 * signal was not sent because of sig_ignor
 383		 * we will not get a call back to restart it AND
 384		 * it should be restarted.
 
 385		 */
 386		if (timr->it_interval != 0) {
 387			ktime_t now = hrtimer_cb_get_time(timer);
 388
 389			/*
 390			 * FIXME: What we really want, is to stop this
 391			 * timer completely and restart it in case the
 392			 * SIG_IGN is removed. This is a non trivial
 393			 * change which involves sighand locking
 394			 * (sigh !), which we don't want to do late in
 395			 * the release cycle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 396			 *
 397			 * For now we just let timers with an interval
 398			 * less than a jiffie expire every jiffie to
 399			 * avoid softirq starvation in case of SIG_IGN
 400			 * and a very small interval, which would put
 401			 * the timer right back on the softirq pending
 402			 * list. By moving now ahead of time we trick
 403			 * hrtimer_forward() to expire the timer
 404			 * later, while we still maintain the overrun
 405			 * accuracy, but have some inconsistency in
 406			 * the timer_gettime() case. This is at least
 407			 * better than a starved softirq. A more
 408			 * complex fix which solves also another related
 409			 * inconsistency is already in the pipeline.
 410			 */
 411#ifdef CONFIG_HIGH_RES_TIMERS
 412			{
 413				ktime_t kj = NSEC_PER_SEC / HZ;
 414
 415				if (timr->it_interval < kj)
 416					now = ktime_add(now, kj);
 417			}
 418#endif
 419			timr->it_overrun += hrtimer_forward(timer, now,
 420							    timr->it_interval);
 421			ret = HRTIMER_RESTART;
 422			++timr->it_requeue_pending;
 423			timr->it_active = 1;
 424		}
 425	}
 426
 427	unlock_timer(timr, flags);
 428	return ret;
 429}
 430
 431static struct pid *good_sigevent(sigevent_t * event)
 432{
 433	struct pid *pid = task_tgid(current);
 434	struct task_struct *rtn;
 435
 436	switch (event->sigev_notify) {
 437	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 438		pid = find_vpid(event->sigev_notify_thread_id);
 439		rtn = pid_task(pid, PIDTYPE_PID);
 440		if (!rtn || !same_thread_group(rtn, current))
 441			return NULL;
 442		fallthrough;
 443	case SIGEV_SIGNAL:
 444	case SIGEV_THREAD:
 445		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 446			return NULL;
 447		fallthrough;
 448	case SIGEV_NONE:
 449		return pid;
 450	default:
 451		return NULL;
 452	}
 453}
 454
 455static struct k_itimer * alloc_posix_timer(void)
 456{
 457	struct k_itimer *tmr;
 458	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 459	if (!tmr)
 460		return tmr;
 461	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 462		kmem_cache_free(posix_timers_cache, tmr);
 463		return NULL;
 464	}
 465	clear_siginfo(&tmr->sigq->info);
 466	return tmr;
 467}
 468
 469static void k_itimer_rcu_free(struct rcu_head *head)
 470{
 471	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
 472
 473	kmem_cache_free(posix_timers_cache, tmr);
 474}
 475
 476#define IT_ID_SET	1
 477#define IT_ID_NOT_SET	0
 478static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 479{
 480	if (it_id_set) {
 481		unsigned long flags;
 482		spin_lock_irqsave(&hash_lock, flags);
 483		hlist_del_rcu(&tmr->t_hash);
 484		spin_unlock_irqrestore(&hash_lock, flags);
 485	}
 486	put_pid(tmr->it_pid);
 487	sigqueue_free(tmr->sigq);
 488	call_rcu(&tmr->rcu, k_itimer_rcu_free);
 489}
 490
 
 
 
 
 
 
 
 
 491static int common_timer_create(struct k_itimer *new_timer)
 492{
 493	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 494	return 0;
 495}
 496
 497/* Create a POSIX.1b interval timer. */
 498static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 499			   timer_t __user *created_timer_id)
 500{
 501	const struct k_clock *kc = clockid_to_kclock(which_clock);
 502	struct k_itimer *new_timer;
 503	int error, new_timer_id;
 504	int it_id_set = IT_ID_NOT_SET;
 505
 506	if (!kc)
 507		return -EINVAL;
 508	if (!kc->timer_create)
 509		return -EOPNOTSUPP;
 510
 511	new_timer = alloc_posix_timer();
 512	if (unlikely(!new_timer))
 513		return -EAGAIN;
 514
 515	spin_lock_init(&new_timer->it_lock);
 
 
 
 
 
 
 516	new_timer_id = posix_timer_add(new_timer);
 517	if (new_timer_id < 0) {
 518		error = new_timer_id;
 519		goto out;
 520	}
 521
 522	it_id_set = IT_ID_SET;
 523	new_timer->it_id = (timer_t) new_timer_id;
 524	new_timer->it_clock = which_clock;
 525	new_timer->kclock = kc;
 526	new_timer->it_overrun = -1LL;
 527
 528	if (event) {
 529		rcu_read_lock();
 530		new_timer->it_pid = get_pid(good_sigevent(event));
 531		rcu_read_unlock();
 532		if (!new_timer->it_pid) {
 533			error = -EINVAL;
 534			goto out;
 535		}
 536		new_timer->it_sigev_notify     = event->sigev_notify;
 537		new_timer->sigq->info.si_signo = event->sigev_signo;
 538		new_timer->sigq->info.si_value = event->sigev_value;
 539	} else {
 540		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 541		new_timer->sigq->info.si_signo = SIGALRM;
 542		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 543		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 544		new_timer->it_pid = get_pid(task_tgid(current));
 545	}
 546
 547	new_timer->sigq->info.si_tid   = new_timer->it_id;
 548	new_timer->sigq->info.si_code  = SI_TIMER;
 549
 550	if (copy_to_user(created_timer_id,
 551			 &new_timer_id, sizeof (new_timer_id))) {
 552		error = -EFAULT;
 553		goto out;
 554	}
 555
 
 
 
 
 
 
 556	error = kc->timer_create(new_timer);
 557	if (error)
 558		goto out;
 559
 560	spin_lock_irq(&current->sighand->siglock);
 561	new_timer->it_signal = current->signal;
 
 562	list_add(&new_timer->list, &current->signal->posix_timers);
 563	spin_unlock_irq(&current->sighand->siglock);
 564
 565	return 0;
 566	/*
 567	 * In the case of the timer belonging to another task, after
 568	 * the task is unlocked, the timer is owned by the other task
 569	 * and may cease to exist at any time.  Don't use or modify
 570	 * new_timer after the unlock call.
 571	 */
 
 572out:
 573	release_posix_timer(new_timer, it_id_set);
 574	return error;
 575}
 576
 577SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 578		struct sigevent __user *, timer_event_spec,
 579		timer_t __user *, created_timer_id)
 580{
 581	if (timer_event_spec) {
 582		sigevent_t event;
 583
 584		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 585			return -EFAULT;
 586		return do_timer_create(which_clock, &event, created_timer_id);
 587	}
 588	return do_timer_create(which_clock, NULL, created_timer_id);
 589}
 590
 591#ifdef CONFIG_COMPAT
 592COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 593		       struct compat_sigevent __user *, timer_event_spec,
 594		       timer_t __user *, created_timer_id)
 595{
 596	if (timer_event_spec) {
 597		sigevent_t event;
 598
 599		if (get_compat_sigevent(&event, timer_event_spec))
 600			return -EFAULT;
 601		return do_timer_create(which_clock, &event, created_timer_id);
 602	}
 603	return do_timer_create(which_clock, NULL, created_timer_id);
 604}
 605#endif
 606
 607/*
 608 * Locking issues: We need to protect the result of the id look up until
 609 * we get the timer locked down so it is not deleted under us.  The
 610 * removal is done under the idr spinlock so we use that here to bridge
 611 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 612 * be release with out holding the timer lock.
 613 */
 614static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 615{
 616	struct k_itimer *timr;
 617
 618	/*
 619	 * timer_t could be any type >= int and we want to make sure any
 620	 * @timer_id outside positive int range fails lookup.
 621	 */
 622	if ((unsigned long long)timer_id > INT_MAX)
 623		return NULL;
 624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625	rcu_read_lock();
 626	timr = posix_timer_by_id(timer_id);
 627	if (timr) {
 628		spin_lock_irqsave(&timr->it_lock, *flags);
 
 
 
 
 629		if (timr->it_signal == current->signal) {
 630			rcu_read_unlock();
 631			return timr;
 632		}
 633		spin_unlock_irqrestore(&timr->it_lock, *flags);
 634	}
 635	rcu_read_unlock();
 636
 637	return NULL;
 638}
 639
 640static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 641{
 642	struct hrtimer *timer = &timr->it.real.timer;
 643
 644	return __hrtimer_expires_remaining_adjusted(timer, now);
 645}
 646
 647static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 648{
 649	struct hrtimer *timer = &timr->it.real.timer;
 650
 651	return hrtimer_forward(timer, now, timr->it_interval);
 652}
 653
 654/*
 655 * Get the time remaining on a POSIX.1b interval timer.  This function
 656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 657 * mess with irq.
 658 *
 659 * We have a couple of messes to clean up here.  First there is the case
 660 * of a timer that has a requeue pending.  These timers should appear to
 661 * be in the timer list with an expiry as if we were to requeue them
 662 * now.
 663 *
 664 * The second issue is the SIGEV_NONE timer which may be active but is
 665 * not really ever put in the timer list (to save system resources).
 666 * This timer may be expired, and if so, we will do it here.  Otherwise
 667 * it is the same as a requeue pending timer WRT to what we should
 668 * report.
 669 */
 670void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 671{
 672	const struct k_clock *kc = timr->kclock;
 673	ktime_t now, remaining, iv;
 674	bool sig_none;
 675
 676	sig_none = timr->it_sigev_notify == SIGEV_NONE;
 677	iv = timr->it_interval;
 678
 679	/* interval timer ? */
 680	if (iv) {
 681		cur_setting->it_interval = ktime_to_timespec64(iv);
 682	} else if (!timr->it_active) {
 683		/*
 684		 * SIGEV_NONE oneshot timers are never queued. Check them
 685		 * below.
 
 
 
 
 686		 */
 687		if (!sig_none)
 688			return;
 689	}
 690
 691	now = kc->clock_get_ktime(timr->it_clock);
 692
 693	/*
 694	 * When a requeue is pending or this is a SIGEV_NONE timer move the
 695	 * expiry time forward by intervals, so expiry is > now.
 
 696	 */
 697	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 698		timr->it_overrun += kc->timer_forward(timr, now);
 699
 700	remaining = kc->timer_remaining(timr, now);
 701	/* Return 0 only, when the timer is expired and not pending */
 
 
 
 
 
 
 
 
 702	if (remaining <= 0) {
 703		/*
 704		 * A single shot SIGEV_NONE timer must return 0, when
 705		 * it is expired !
 
 
 706		 */
 707		if (!sig_none)
 708			cur_setting->it_value.tv_nsec = 1;
 709	} else {
 710		cur_setting->it_value = ktime_to_timespec64(remaining);
 711	}
 712}
 713
 714/* Get the time remaining on a POSIX.1b interval timer. */
 715static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 716{
 717	struct k_itimer *timr;
 718	const struct k_clock *kc;
 
 719	unsigned long flags;
 720	int ret = 0;
 721
 722	timr = lock_timer(timer_id, &flags);
 723	if (!timr)
 724		return -EINVAL;
 725
 726	memset(setting, 0, sizeof(*setting));
 727	kc = timr->kclock;
 728	if (WARN_ON_ONCE(!kc || !kc->timer_get))
 729		ret = -EINVAL;
 730	else
 731		kc->timer_get(timr, setting);
 732
 733	unlock_timer(timr, flags);
 734	return ret;
 735}
 736
 737/* Get the time remaining on a POSIX.1b interval timer. */
 738SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 739		struct __kernel_itimerspec __user *, setting)
 740{
 741	struct itimerspec64 cur_setting;
 742
 743	int ret = do_timer_gettime(timer_id, &cur_setting);
 744	if (!ret) {
 745		if (put_itimerspec64(&cur_setting, setting))
 746			ret = -EFAULT;
 747	}
 748	return ret;
 749}
 750
 751#ifdef CONFIG_COMPAT_32BIT_TIME
 752
 753SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 754		struct old_itimerspec32 __user *, setting)
 755{
 756	struct itimerspec64 cur_setting;
 757
 758	int ret = do_timer_gettime(timer_id, &cur_setting);
 759	if (!ret) {
 760		if (put_old_itimerspec32(&cur_setting, setting))
 761			ret = -EFAULT;
 762	}
 763	return ret;
 764}
 765
 766#endif
 767
 768/*
 769 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 770 * be the overrun of the timer last delivered.  At the same time we are
 771 * accumulating overruns on the next timer.  The overrun is frozen when
 772 * the signal is delivered, either at the notify time (if the info block
 773 * is not queued) or at the actual delivery time (as we are informed by
 774 * the call back to posixtimer_rearm().  So all we need to do is
 775 * to pick up the frozen overrun.
 
 
 
 
 
 
 
 
 
 776 */
 777SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 778{
 779	struct k_itimer *timr;
 780	int overrun;
 781	unsigned long flags;
 
 782
 783	timr = lock_timer(timer_id, &flags);
 784	if (!timr)
 785		return -EINVAL;
 786
 787	overrun = timer_overrun_to_int(timr, 0);
 788	unlock_timer(timr, flags);
 789
 790	return overrun;
 791}
 792
 793static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 794			       bool absolute, bool sigev_none)
 795{
 796	struct hrtimer *timer = &timr->it.real.timer;
 797	enum hrtimer_mode mode;
 798
 799	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 800	/*
 801	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 802	 * clock modifications, so they become CLOCK_MONOTONIC based under the
 803	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
 804	 * functions which use timr->kclock->clock_get_*() work.
 805	 *
 806	 * Note: it_clock stays unmodified, because the next timer_set() might
 807	 * use ABSTIME, so it needs to switch back.
 808	 */
 809	if (timr->it_clock == CLOCK_REALTIME)
 810		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 811
 812	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 813	timr->it.real.timer.function = posix_timer_fn;
 814
 815	if (!absolute)
 816		expires = ktime_add_safe(expires, timer->base->get_time());
 817	hrtimer_set_expires(timer, expires);
 818
 819	if (!sigev_none)
 820		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 821}
 822
 823static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 824{
 825	return hrtimer_try_to_cancel(&timr->it.real.timer);
 826}
 827
 828static void common_timer_wait_running(struct k_itimer *timer)
 829{
 830	hrtimer_cancel_wait_running(&timer->it.real.timer);
 831}
 832
 833/*
 834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
 835 * case it gets preempted while executing a timer callback. See comments in
 836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
 837 * cpu_relax().
 
 
 
 
 
 
 
 
 838 */
 839static struct k_itimer *timer_wait_running(struct k_itimer *timer,
 840					   unsigned long *flags)
 841{
 842	const struct k_clock *kc = READ_ONCE(timer->kclock);
 843	timer_t timer_id = READ_ONCE(timer->it_id);
 844
 845	/* Prevent kfree(timer) after dropping the lock */
 846	rcu_read_lock();
 847	unlock_timer(timer, *flags);
 848
 
 
 
 
 849	if (!WARN_ON_ONCE(!kc->timer_wait_running))
 850		kc->timer_wait_running(timer);
 851
 852	rcu_read_unlock();
 853	/* Relock the timer. It might be not longer hashed. */
 854	return lock_timer(timer_id, flags);
 855}
 856
 857/* Set a POSIX.1b interval timer. */
 858int common_timer_set(struct k_itimer *timr, int flags,
 859		     struct itimerspec64 *new_setting,
 860		     struct itimerspec64 *old_setting)
 861{
 862	const struct k_clock *kc = timr->kclock;
 863	bool sigev_none;
 864	ktime_t expires;
 865
 866	if (old_setting)
 867		common_timer_get(timr, old_setting);
 868
 869	/* Prevent rearming by clearing the interval */
 870	timr->it_interval = 0;
 871	/*
 872	 * Careful here. On SMP systems the timer expiry function could be
 873	 * active and spinning on timr->it_lock.
 874	 */
 875	if (kc->timer_try_to_cancel(timr) < 0)
 876		return TIMER_RETRY;
 877
 878	timr->it_active = 0;
 879	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 880		~REQUEUE_PENDING;
 881	timr->it_overrun_last = 0;
 882
 883	/* Switch off the timer when it_value is zero */
 884	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 885		return 0;
 886
 887	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 888	expires = timespec64_to_ktime(new_setting->it_value);
 889	if (flags & TIMER_ABSTIME)
 890		expires = timens_ktime_to_host(timr->it_clock, expires);
 891	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 892
 893	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 894	timr->it_active = !sigev_none;
 895	return 0;
 896}
 897
 898static int do_timer_settime(timer_t timer_id, int tmr_flags,
 899			    struct itimerspec64 *new_spec64,
 900			    struct itimerspec64 *old_spec64)
 901{
 902	const struct k_clock *kc;
 903	struct k_itimer *timr;
 904	unsigned long flags;
 905	int error = 0;
 906
 907	if (!timespec64_valid(&new_spec64->it_interval) ||
 908	    !timespec64_valid(&new_spec64->it_value))
 909		return -EINVAL;
 910
 911	if (old_spec64)
 912		memset(old_spec64, 0, sizeof(*old_spec64));
 913
 914	timr = lock_timer(timer_id, &flags);
 915retry:
 916	if (!timr)
 917		return -EINVAL;
 918
 919	kc = timr->kclock;
 920	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 921		error = -EINVAL;
 922	else
 923		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
 924
 925	if (error == TIMER_RETRY) {
 926		// We already got the old time...
 927		old_spec64 = NULL;
 928		/* Unlocks and relocks the timer if it still exists */
 929		timr = timer_wait_running(timr, &flags);
 930		goto retry;
 931	}
 932	unlock_timer(timr, flags);
 933
 934	return error;
 935}
 936
 937/* Set a POSIX.1b interval timer */
 938SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 939		const struct __kernel_itimerspec __user *, new_setting,
 940		struct __kernel_itimerspec __user *, old_setting)
 941{
 942	struct itimerspec64 new_spec, old_spec;
 943	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
 944	int error = 0;
 945
 946	if (!new_setting)
 947		return -EINVAL;
 948
 949	if (get_itimerspec64(&new_spec, new_setting))
 950		return -EFAULT;
 951
 
 952	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 953	if (!error && old_setting) {
 954		if (put_itimerspec64(&old_spec, old_setting))
 955			error = -EFAULT;
 956	}
 957	return error;
 958}
 959
 960#ifdef CONFIG_COMPAT_32BIT_TIME
 961SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 962		struct old_itimerspec32 __user *, new,
 963		struct old_itimerspec32 __user *, old)
 964{
 965	struct itimerspec64 new_spec, old_spec;
 966	struct itimerspec64 *rtn = old ? &old_spec : NULL;
 967	int error = 0;
 968
 969	if (!new)
 970		return -EINVAL;
 971	if (get_old_itimerspec32(&new_spec, new))
 972		return -EFAULT;
 973
 974	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 975	if (!error && old) {
 976		if (put_old_itimerspec32(&old_spec, old))
 977			error = -EFAULT;
 978	}
 979	return error;
 980}
 981#endif
 982
 983int common_timer_del(struct k_itimer *timer)
 984{
 985	const struct k_clock *kc = timer->kclock;
 986
 987	timer->it_interval = 0;
 988	if (kc->timer_try_to_cancel(timer) < 0)
 989		return TIMER_RETRY;
 990	timer->it_active = 0;
 991	return 0;
 992}
 993
 994static inline int timer_delete_hook(struct k_itimer *timer)
 995{
 996	const struct k_clock *kc = timer->kclock;
 997
 998	if (WARN_ON_ONCE(!kc || !kc->timer_del))
 999		return -EINVAL;
1000	return kc->timer_del(timer);
1001}
1002
1003/* Delete a POSIX.1b interval timer. */
1004SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1005{
1006	struct k_itimer *timer;
1007	unsigned long flags;
1008
1009	timer = lock_timer(timer_id, &flags);
1010
1011retry_delete:
1012	if (!timer)
1013		return -EINVAL;
1014
1015	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1016		/* Unlocks and relocks the timer if it still exists */
1017		timer = timer_wait_running(timer, &flags);
1018		goto retry_delete;
1019	}
1020
1021	spin_lock(&current->sighand->siglock);
1022	list_del(&timer->list);
1023	spin_unlock(&current->sighand->siglock);
1024	/*
1025	 * This keeps any tasks waiting on the spin lock from thinking
1026	 * they got something (see the lock code above).
1027	 */
1028	timer->it_signal = NULL;
1029
1030	unlock_timer(timer, flags);
1031	release_posix_timer(timer, IT_ID_SET);
1032	return 0;
1033}
1034
1035/*
1036 * return timer owned by the process, used by exit_itimers
 
1037 */
1038static void itimer_delete(struct k_itimer *timer)
1039{
1040retry_delete:
1041	spin_lock_irq(&timer->it_lock);
 
 
 
 
1042
 
 
 
 
 
 
 
1043	if (timer_delete_hook(timer) == TIMER_RETRY) {
1044		spin_unlock_irq(&timer->it_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1045		goto retry_delete;
1046	}
1047	list_del(&timer->list);
1048
1049	spin_unlock_irq(&timer->it_lock);
1050	release_posix_timer(timer, IT_ID_SET);
 
 
 
 
 
 
 
 
1051}
1052
1053/*
1054 * This is called by do_exit or de_thread, only when nobody else can
1055 * modify the signal->posix_timers list. Yet we need sighand->siglock
1056 * to prevent the race with /proc/pid/timers.
1057 */
1058void exit_itimers(struct task_struct *tsk)
1059{
1060	struct list_head timers;
1061	struct k_itimer *tmr;
1062
1063	if (list_empty(&tsk->signal->posix_timers))
1064		return;
1065
 
1066	spin_lock_irq(&tsk->sighand->siglock);
1067	list_replace_init(&tsk->signal->posix_timers, &timers);
1068	spin_unlock_irq(&tsk->sighand->siglock);
1069
 
1070	while (!list_empty(&timers)) {
1071		tmr = list_first_entry(&timers, struct k_itimer, list);
1072		itimer_delete(tmr);
1073	}
1074}
1075
1076SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1077		const struct __kernel_timespec __user *, tp)
1078{
1079	const struct k_clock *kc = clockid_to_kclock(which_clock);
1080	struct timespec64 new_tp;
1081
1082	if (!kc || !kc->clock_set)
1083		return -EINVAL;
1084
1085	if (get_timespec64(&new_tp, tp))
1086		return -EFAULT;
1087
 
 
 
 
1088	return kc->clock_set(which_clock, &new_tp);
1089}
1090
1091SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1092		struct __kernel_timespec __user *, tp)
1093{
1094	const struct k_clock *kc = clockid_to_kclock(which_clock);
1095	struct timespec64 kernel_tp;
1096	int error;
1097
1098	if (!kc)
1099		return -EINVAL;
1100
1101	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1102
1103	if (!error && put_timespec64(&kernel_tp, tp))
1104		error = -EFAULT;
1105
1106	return error;
1107}
1108
1109int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1110{
1111	const struct k_clock *kc = clockid_to_kclock(which_clock);
1112
1113	if (!kc)
1114		return -EINVAL;
1115	if (!kc->clock_adj)
1116		return -EOPNOTSUPP;
1117
1118	return kc->clock_adj(which_clock, ktx);
1119}
1120
1121SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1122		struct __kernel_timex __user *, utx)
1123{
1124	struct __kernel_timex ktx;
1125	int err;
1126
1127	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1128		return -EFAULT;
1129
1130	err = do_clock_adjtime(which_clock, &ktx);
1131
1132	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1133		return -EFAULT;
1134
1135	return err;
1136}
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1139		struct __kernel_timespec __user *, tp)
1140{
1141	const struct k_clock *kc = clockid_to_kclock(which_clock);
1142	struct timespec64 rtn_tp;
1143	int error;
1144
1145	if (!kc)
1146		return -EINVAL;
1147
1148	error = kc->clock_getres(which_clock, &rtn_tp);
1149
1150	if (!error && tp && put_timespec64(&rtn_tp, tp))
1151		error = -EFAULT;
1152
1153	return error;
1154}
1155
1156#ifdef CONFIG_COMPAT_32BIT_TIME
1157
1158SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1159		struct old_timespec32 __user *, tp)
1160{
1161	const struct k_clock *kc = clockid_to_kclock(which_clock);
1162	struct timespec64 ts;
1163
1164	if (!kc || !kc->clock_set)
1165		return -EINVAL;
1166
1167	if (get_old_timespec32(&ts, tp))
1168		return -EFAULT;
1169
1170	return kc->clock_set(which_clock, &ts);
1171}
1172
1173SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1174		struct old_timespec32 __user *, tp)
1175{
1176	const struct k_clock *kc = clockid_to_kclock(which_clock);
1177	struct timespec64 ts;
1178	int err;
1179
1180	if (!kc)
1181		return -EINVAL;
1182
1183	err = kc->clock_get_timespec(which_clock, &ts);
1184
1185	if (!err && put_old_timespec32(&ts, tp))
1186		err = -EFAULT;
1187
1188	return err;
1189}
1190
1191SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1192		struct old_timex32 __user *, utp)
1193{
1194	struct __kernel_timex ktx;
1195	int err;
1196
1197	err = get_old_timex32(&ktx, utp);
1198	if (err)
1199		return err;
1200
1201	err = do_clock_adjtime(which_clock, &ktx);
1202
1203	if (err >= 0 && put_old_timex32(utp, &ktx))
1204		return -EFAULT;
1205
1206	return err;
1207}
1208
1209SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1210		struct old_timespec32 __user *, tp)
1211{
1212	const struct k_clock *kc = clockid_to_kclock(which_clock);
1213	struct timespec64 ts;
1214	int err;
1215
1216	if (!kc)
1217		return -EINVAL;
1218
1219	err = kc->clock_getres(which_clock, &ts);
1220	if (!err && tp && put_old_timespec32(&ts, tp))
1221		return -EFAULT;
1222
1223	return err;
1224}
1225
1226#endif
1227
1228/*
1229 * nanosleep for monotonic and realtime clocks
1230 */
1231static int common_nsleep(const clockid_t which_clock, int flags,
1232			 const struct timespec64 *rqtp)
1233{
1234	ktime_t texp = timespec64_to_ktime(*rqtp);
1235
1236	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1237				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1238				 which_clock);
1239}
1240
 
 
 
 
 
1241static int common_nsleep_timens(const clockid_t which_clock, int flags,
1242			 const struct timespec64 *rqtp)
1243{
1244	ktime_t texp = timespec64_to_ktime(*rqtp);
1245
1246	if (flags & TIMER_ABSTIME)
1247		texp = timens_ktime_to_host(which_clock, texp);
1248
1249	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1250				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1251				 which_clock);
1252}
1253
1254SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1255		const struct __kernel_timespec __user *, rqtp,
1256		struct __kernel_timespec __user *, rmtp)
1257{
1258	const struct k_clock *kc = clockid_to_kclock(which_clock);
1259	struct timespec64 t;
1260
1261	if (!kc)
1262		return -EINVAL;
1263	if (!kc->nsleep)
1264		return -EOPNOTSUPP;
1265
1266	if (get_timespec64(&t, rqtp))
1267		return -EFAULT;
1268
1269	if (!timespec64_valid(&t))
1270		return -EINVAL;
1271	if (flags & TIMER_ABSTIME)
1272		rmtp = NULL;
 
1273	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1274	current->restart_block.nanosleep.rmtp = rmtp;
1275
1276	return kc->nsleep(which_clock, flags, &t);
1277}
1278
1279#ifdef CONFIG_COMPAT_32BIT_TIME
1280
1281SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1282		struct old_timespec32 __user *, rqtp,
1283		struct old_timespec32 __user *, rmtp)
1284{
1285	const struct k_clock *kc = clockid_to_kclock(which_clock);
1286	struct timespec64 t;
1287
1288	if (!kc)
1289		return -EINVAL;
1290	if (!kc->nsleep)
1291		return -EOPNOTSUPP;
1292
1293	if (get_old_timespec32(&t, rqtp))
1294		return -EFAULT;
1295
1296	if (!timespec64_valid(&t))
1297		return -EINVAL;
1298	if (flags & TIMER_ABSTIME)
1299		rmtp = NULL;
 
1300	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1301	current->restart_block.nanosleep.compat_rmtp = rmtp;
1302
1303	return kc->nsleep(which_clock, flags, &t);
1304}
1305
1306#endif
1307
1308static const struct k_clock clock_realtime = {
1309	.clock_getres		= posix_get_hrtimer_res,
1310	.clock_get_timespec	= posix_get_realtime_timespec,
1311	.clock_get_ktime	= posix_get_realtime_ktime,
1312	.clock_set		= posix_clock_realtime_set,
1313	.clock_adj		= posix_clock_realtime_adj,
1314	.nsleep			= common_nsleep,
1315	.timer_create		= common_timer_create,
1316	.timer_set		= common_timer_set,
1317	.timer_get		= common_timer_get,
1318	.timer_del		= common_timer_del,
1319	.timer_rearm		= common_hrtimer_rearm,
1320	.timer_forward		= common_hrtimer_forward,
1321	.timer_remaining	= common_hrtimer_remaining,
1322	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1323	.timer_wait_running	= common_timer_wait_running,
1324	.timer_arm		= common_hrtimer_arm,
1325};
1326
1327static const struct k_clock clock_monotonic = {
1328	.clock_getres		= posix_get_hrtimer_res,
1329	.clock_get_timespec	= posix_get_monotonic_timespec,
1330	.clock_get_ktime	= posix_get_monotonic_ktime,
1331	.nsleep			= common_nsleep_timens,
1332	.timer_create		= common_timer_create,
1333	.timer_set		= common_timer_set,
1334	.timer_get		= common_timer_get,
1335	.timer_del		= common_timer_del,
1336	.timer_rearm		= common_hrtimer_rearm,
1337	.timer_forward		= common_hrtimer_forward,
1338	.timer_remaining	= common_hrtimer_remaining,
1339	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1340	.timer_wait_running	= common_timer_wait_running,
1341	.timer_arm		= common_hrtimer_arm,
1342};
1343
1344static const struct k_clock clock_monotonic_raw = {
1345	.clock_getres		= posix_get_hrtimer_res,
1346	.clock_get_timespec	= posix_get_monotonic_raw,
1347};
1348
1349static const struct k_clock clock_realtime_coarse = {
1350	.clock_getres		= posix_get_coarse_res,
1351	.clock_get_timespec	= posix_get_realtime_coarse,
1352};
1353
1354static const struct k_clock clock_monotonic_coarse = {
1355	.clock_getres		= posix_get_coarse_res,
1356	.clock_get_timespec	= posix_get_monotonic_coarse,
1357};
1358
1359static const struct k_clock clock_tai = {
1360	.clock_getres		= posix_get_hrtimer_res,
1361	.clock_get_ktime	= posix_get_tai_ktime,
1362	.clock_get_timespec	= posix_get_tai_timespec,
1363	.nsleep			= common_nsleep,
1364	.timer_create		= common_timer_create,
1365	.timer_set		= common_timer_set,
1366	.timer_get		= common_timer_get,
1367	.timer_del		= common_timer_del,
1368	.timer_rearm		= common_hrtimer_rearm,
1369	.timer_forward		= common_hrtimer_forward,
1370	.timer_remaining	= common_hrtimer_remaining,
1371	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1372	.timer_wait_running	= common_timer_wait_running,
1373	.timer_arm		= common_hrtimer_arm,
1374};
1375
1376static const struct k_clock clock_boottime = {
1377	.clock_getres		= posix_get_hrtimer_res,
1378	.clock_get_ktime	= posix_get_boottime_ktime,
1379	.clock_get_timespec	= posix_get_boottime_timespec,
1380	.nsleep			= common_nsleep_timens,
1381	.timer_create		= common_timer_create,
1382	.timer_set		= common_timer_set,
1383	.timer_get		= common_timer_get,
1384	.timer_del		= common_timer_del,
1385	.timer_rearm		= common_hrtimer_rearm,
1386	.timer_forward		= common_hrtimer_forward,
1387	.timer_remaining	= common_hrtimer_remaining,
1388	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1389	.timer_wait_running	= common_timer_wait_running,
1390	.timer_arm		= common_hrtimer_arm,
1391};
1392
1393static const struct k_clock * const posix_clocks[] = {
1394	[CLOCK_REALTIME]		= &clock_realtime,
1395	[CLOCK_MONOTONIC]		= &clock_monotonic,
1396	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1397	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1398	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1399	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1400	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1401	[CLOCK_BOOTTIME]		= &clock_boottime,
1402	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1403	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1404	[CLOCK_TAI]			= &clock_tai,
1405};
1406
1407static const struct k_clock *clockid_to_kclock(const clockid_t id)
1408{
1409	clockid_t idx = id;
1410
1411	if (id < 0) {
1412		return (id & CLOCKFD_MASK) == CLOCKFD ?
1413			&clock_posix_dynamic : &clock_posix_cpu;
1414	}
1415
1416	if (id >= ARRAY_SIZE(posix_clocks))
1417		return NULL;
1418
1419	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1420}
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * 2002-10-15  Posix Clocks & timers
   4 *                           by George Anzinger george@mvista.com
   5 *			     Copyright (C) 2002 2003 by MontaVista Software.
   6 *
   7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
   8 *			     Copyright (C) 2004 Boris Hu
   9 *
  10 * These are all the functions necessary to implement POSIX clocks & timers
  11 */
  12#include <linux/mm.h>
  13#include <linux/interrupt.h>
  14#include <linux/slab.h>
  15#include <linux/time.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/task.h>
  18
  19#include <linux/uaccess.h>
  20#include <linux/list.h>
  21#include <linux/init.h>
  22#include <linux/compiler.h>
  23#include <linux/hash.h>
  24#include <linux/posix-clock.h>
  25#include <linux/posix-timers.h>
  26#include <linux/syscalls.h>
  27#include <linux/wait.h>
  28#include <linux/workqueue.h>
  29#include <linux/export.h>
  30#include <linux/hashtable.h>
  31#include <linux/compat.h>
  32#include <linux/nospec.h>
  33#include <linux/time_namespace.h>
  34
  35#include "timekeeping.h"
  36#include "posix-timers.h"
  37
  38static struct kmem_cache *posix_timers_cache;
 
 
 
 
 
 
 
  39
  40/*
  41 * Timers are managed in a hash table for lockless lookup. The hash key is
  42 * constructed from current::signal and the timer ID and the timer is
  43 * matched against current::signal and the timer ID when walking the hash
  44 * bucket list.
  45 *
  46 * This allows checkpoint/restore to reconstruct the exact timer IDs for
  47 * a process.
  48 */
 
 
  49static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  50static DEFINE_SPINLOCK(hash_lock);
  51
  52static const struct k_clock * const posix_clocks[];
  53static const struct k_clock *clockid_to_kclock(const clockid_t id);
  54static const struct k_clock clock_realtime, clock_monotonic;
  55
  56/* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
 
 
 
  57#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  58			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  59#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  60#endif
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
  63
  64#define lock_timer(tid, flags)						   \
  65({	struct k_itimer *__timr;					   \
  66	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
  67	__timr;								   \
  68})
  69
  70static int hash(struct signal_struct *sig, unsigned int nr)
  71{
  72	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
  73}
  74
  75static struct k_itimer *__posix_timers_find(struct hlist_head *head,
  76					    struct signal_struct *sig,
  77					    timer_t id)
  78{
  79	struct k_itimer *timer;
  80
  81	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
  82		/* timer->it_signal can be set concurrently */
  83		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
  84			return timer;
  85	}
  86	return NULL;
  87}
  88
  89static struct k_itimer *posix_timer_by_id(timer_t id)
  90{
  91	struct signal_struct *sig = current->signal;
  92	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
  93
  94	return __posix_timers_find(head, sig, id);
  95}
  96
  97static int posix_timer_add(struct k_itimer *timer)
  98{
  99	struct signal_struct *sig = current->signal;
 
 100	struct hlist_head *head;
 101	unsigned int cnt, id;
 102
 103	/*
 104	 * FIXME: Replace this by a per signal struct xarray once there is
 105	 * a plan to handle the resulting CRIU regression gracefully.
 106	 */
 107	for (cnt = 0; cnt <= INT_MAX; cnt++) {
 108		spin_lock(&hash_lock);
 109		id = sig->next_posix_timer_id;
 110
 111		/* Write the next ID back. Clamp it to the positive space */
 112		sig->next_posix_timer_id = (id + 1) & INT_MAX;
 113
 114		head = &posix_timers_hashtable[hash(sig, id)];
 115		if (!__posix_timers_find(head, sig, id)) {
 116			hlist_add_head_rcu(&timer->t_hash, head);
 117			spin_unlock(&hash_lock);
 118			return id;
 119		}
 
 
 
 
 
 120		spin_unlock(&hash_lock);
 121	}
 122	/* POSIX return code when no timer ID could be allocated */
 123	return -EAGAIN;
 124}
 125
 126static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 127{
 128	spin_unlock_irqrestore(&timr->it_lock, flags);
 129}
 130
 
 131static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
 132{
 133	ktime_get_real_ts64(tp);
 134	return 0;
 135}
 136
 137static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
 138{
 139	return ktime_get_real();
 140}
 141
 
 142static int posix_clock_realtime_set(const clockid_t which_clock,
 143				    const struct timespec64 *tp)
 144{
 145	return do_sys_settimeofday64(tp, NULL);
 146}
 147
 148static int posix_clock_realtime_adj(const clockid_t which_clock,
 149				    struct __kernel_timex *t)
 150{
 151	return do_adjtimex(t);
 152}
 153
 
 
 
 154static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
 155{
 156	ktime_get_ts64(tp);
 157	timens_add_monotonic(tp);
 158	return 0;
 159}
 160
 161static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
 162{
 163	return ktime_get();
 164}
 165
 
 
 
 166static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 167{
 168	ktime_get_raw_ts64(tp);
 169	timens_add_monotonic(tp);
 170	return 0;
 171}
 172
 
 173static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 174{
 175	ktime_get_coarse_real_ts64(tp);
 176	return 0;
 177}
 178
 179static int posix_get_monotonic_coarse(clockid_t which_clock,
 180						struct timespec64 *tp)
 181{
 182	ktime_get_coarse_ts64(tp);
 183	timens_add_monotonic(tp);
 184	return 0;
 185}
 186
 187static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 188{
 189	*tp = ktime_to_timespec64(KTIME_LOW_RES);
 190	return 0;
 191}
 192
 193static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
 194{
 195	ktime_get_boottime_ts64(tp);
 196	timens_add_boottime(tp);
 197	return 0;
 198}
 199
 200static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
 201{
 202	return ktime_get_boottime();
 203}
 204
 205static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
 206{
 207	ktime_get_clocktai_ts64(tp);
 208	return 0;
 209}
 210
 211static ktime_t posix_get_tai_ktime(clockid_t which_clock)
 212{
 213	return ktime_get_clocktai();
 214}
 215
 216static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 217{
 218	tp->tv_sec = 0;
 219	tp->tv_nsec = hrtimer_resolution;
 220	return 0;
 221}
 222
 
 
 
 223static __init int init_posix_timers(void)
 224{
 225	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 226					sizeof(struct k_itimer), 0,
 227					SLAB_PANIC | SLAB_ACCOUNT, NULL);
 228	return 0;
 229}
 230__initcall(init_posix_timers);
 231
 232/*
 233 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
 234 * are of type int. Clamp the overrun value to INT_MAX
 235 */
 236static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
 237{
 238	s64 sum = timr->it_overrun_last + (s64)baseval;
 239
 240	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
 241}
 242
 243static void common_hrtimer_rearm(struct k_itimer *timr)
 244{
 245	struct hrtimer *timer = &timr->it.real.timer;
 246
 247	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 248					    timr->it_interval);
 249	hrtimer_restart(timer);
 250}
 251
 252/*
 253 * This function is called from the signal delivery code if
 254 * info->si_sys_private is not zero, which indicates that the timer has to
 255 * be rearmed. Restart the timer and update info::si_overrun.
 
 
 
 
 
 
 256 */
 257void posixtimer_rearm(struct kernel_siginfo *info)
 258{
 259	struct k_itimer *timr;
 260	unsigned long flags;
 261
 262	timr = lock_timer(info->si_tid, &flags);
 263	if (!timr)
 264		return;
 265
 266	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
 267		timr->kclock->timer_rearm(timr);
 268
 269		timr->it_active = 1;
 270		timr->it_overrun_last = timr->it_overrun;
 271		timr->it_overrun = -1LL;
 272		++timr->it_requeue_pending;
 273
 274		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
 275	}
 276
 277	unlock_timer(timr, flags);
 278}
 279
 280int posix_timer_event(struct k_itimer *timr, int si_private)
 281{
 282	enum pid_type type;
 283	int ret;
 284	/*
 285	 * FIXME: if ->sigq is queued we can race with
 286	 * dequeue_signal()->posixtimer_rearm().
 287	 *
 288	 * If dequeue_signal() sees the "right" value of
 289	 * si_sys_private it calls posixtimer_rearm().
 290	 * We re-queue ->sigq and drop ->it_lock().
 291	 * posixtimer_rearm() locks the timer
 292	 * and re-schedules it while ->sigq is pending.
 293	 * Not really bad, but not that we want.
 294	 */
 295	timr->sigq->info.si_sys_private = si_private;
 296
 297	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
 298	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
 299	/* If we failed to send the signal the timer stops. */
 300	return ret > 0;
 301}
 302
 303/*
 304 * This function gets called when a POSIX.1b interval timer expires from
 305 * the HRTIMER interrupt (soft interrupt on RT kernels).
 306 *
 307 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
 308 * based timers.
 309 */
 310static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 311{
 312	enum hrtimer_restart ret = HRTIMER_NORESTART;
 313	struct k_itimer *timr;
 314	unsigned long flags;
 315	int si_private = 0;
 
 316
 317	timr = container_of(timer, struct k_itimer, it.real.timer);
 318	spin_lock_irqsave(&timr->it_lock, flags);
 319
 320	timr->it_active = 0;
 321	if (timr->it_interval != 0)
 322		si_private = ++timr->it_requeue_pending;
 323
 324	if (posix_timer_event(timr, si_private)) {
 325		/*
 326		 * The signal was not queued due to SIG_IGN. As a
 327		 * consequence the timer is not going to be rearmed from
 328		 * the signal delivery path. But as a real signal handler
 329		 * can be installed later the timer must be rearmed here.
 330		 */
 331		if (timr->it_interval != 0) {
 332			ktime_t now = hrtimer_cb_get_time(timer);
 333
 334			/*
 335			 * FIXME: What we really want, is to stop this
 336			 * timer completely and restart it in case the
 337			 * SIG_IGN is removed. This is a non trivial
 338			 * change to the signal handling code.
 339			 *
 340			 * For now let timers with an interval less than a
 341			 * jiffie expire every jiffie and recheck for a
 342			 * valid signal handler.
 343			 *
 344			 * This avoids interrupt starvation in case of a
 345			 * very small interval, which would expire the
 346			 * timer immediately again.
 347			 *
 348			 * Moving now ahead of time by one jiffie tricks
 349			 * hrtimer_forward() to expire the timer later,
 350			 * while it still maintains the overrun accuracy
 351			 * for the price of a slight inconsistency in the
 352			 * timer_gettime() case. This is at least better
 353			 * than a timer storm.
 354			 *
 355			 * Only required when high resolution timers are
 356			 * enabled as the periodic tick based timers are
 357			 * automatically aligned to the next tick.
 
 
 
 
 
 
 
 
 
 
 358			 */
 359			if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
 360				ktime_t kj = TICK_NSEC;
 
 361
 362				if (timr->it_interval < kj)
 363					now = ktime_add(now, kj);
 364			}
 365
 366			timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
 
 367			ret = HRTIMER_RESTART;
 368			++timr->it_requeue_pending;
 369			timr->it_active = 1;
 370		}
 371	}
 372
 373	unlock_timer(timr, flags);
 374	return ret;
 375}
 376
 377static struct pid *good_sigevent(sigevent_t * event)
 378{
 379	struct pid *pid = task_tgid(current);
 380	struct task_struct *rtn;
 381
 382	switch (event->sigev_notify) {
 383	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
 384		pid = find_vpid(event->sigev_notify_thread_id);
 385		rtn = pid_task(pid, PIDTYPE_PID);
 386		if (!rtn || !same_thread_group(rtn, current))
 387			return NULL;
 388		fallthrough;
 389	case SIGEV_SIGNAL:
 390	case SIGEV_THREAD:
 391		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
 392			return NULL;
 393		fallthrough;
 394	case SIGEV_NONE:
 395		return pid;
 396	default:
 397		return NULL;
 398	}
 399}
 400
 401static struct k_itimer * alloc_posix_timer(void)
 402{
 403	struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 404
 405	if (!tmr)
 406		return tmr;
 407	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 408		kmem_cache_free(posix_timers_cache, tmr);
 409		return NULL;
 410	}
 411	clear_siginfo(&tmr->sigq->info);
 412	return tmr;
 413}
 414
 415static void k_itimer_rcu_free(struct rcu_head *head)
 416{
 417	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
 418
 419	kmem_cache_free(posix_timers_cache, tmr);
 420}
 421
 422static void posix_timer_free(struct k_itimer *tmr)
 423{
 
 
 
 
 
 
 
 
 424	put_pid(tmr->it_pid);
 425	sigqueue_free(tmr->sigq);
 426	call_rcu(&tmr->rcu, k_itimer_rcu_free);
 427}
 428
 429static void posix_timer_unhash_and_free(struct k_itimer *tmr)
 430{
 431	spin_lock(&hash_lock);
 432	hlist_del_rcu(&tmr->t_hash);
 433	spin_unlock(&hash_lock);
 434	posix_timer_free(tmr);
 435}
 436
 437static int common_timer_create(struct k_itimer *new_timer)
 438{
 439	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 440	return 0;
 441}
 442
 443/* Create a POSIX.1b interval timer. */
 444static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 445			   timer_t __user *created_timer_id)
 446{
 447	const struct k_clock *kc = clockid_to_kclock(which_clock);
 448	struct k_itimer *new_timer;
 449	int error, new_timer_id;
 
 450
 451	if (!kc)
 452		return -EINVAL;
 453	if (!kc->timer_create)
 454		return -EOPNOTSUPP;
 455
 456	new_timer = alloc_posix_timer();
 457	if (unlikely(!new_timer))
 458		return -EAGAIN;
 459
 460	spin_lock_init(&new_timer->it_lock);
 461
 462	/*
 463	 * Add the timer to the hash table. The timer is not yet valid
 464	 * because new_timer::it_signal is still NULL. The timer id is also
 465	 * not yet visible to user space.
 466	 */
 467	new_timer_id = posix_timer_add(new_timer);
 468	if (new_timer_id < 0) {
 469		posix_timer_free(new_timer);
 470		return new_timer_id;
 471	}
 472
 
 473	new_timer->it_id = (timer_t) new_timer_id;
 474	new_timer->it_clock = which_clock;
 475	new_timer->kclock = kc;
 476	new_timer->it_overrun = -1LL;
 477
 478	if (event) {
 479		rcu_read_lock();
 480		new_timer->it_pid = get_pid(good_sigevent(event));
 481		rcu_read_unlock();
 482		if (!new_timer->it_pid) {
 483			error = -EINVAL;
 484			goto out;
 485		}
 486		new_timer->it_sigev_notify     = event->sigev_notify;
 487		new_timer->sigq->info.si_signo = event->sigev_signo;
 488		new_timer->sigq->info.si_value = event->sigev_value;
 489	} else {
 490		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 491		new_timer->sigq->info.si_signo = SIGALRM;
 492		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 493		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 494		new_timer->it_pid = get_pid(task_tgid(current));
 495	}
 496
 497	new_timer->sigq->info.si_tid   = new_timer->it_id;
 498	new_timer->sigq->info.si_code  = SI_TIMER;
 499
 500	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
 
 501		error = -EFAULT;
 502		goto out;
 503	}
 504	/*
 505	 * After succesful copy out, the timer ID is visible to user space
 506	 * now but not yet valid because new_timer::signal is still NULL.
 507	 *
 508	 * Complete the initialization with the clock specific create
 509	 * callback.
 510	 */
 511	error = kc->timer_create(new_timer);
 512	if (error)
 513		goto out;
 514
 515	spin_lock_irq(&current->sighand->siglock);
 516	/* This makes the timer valid in the hash table */
 517	WRITE_ONCE(new_timer->it_signal, current->signal);
 518	list_add(&new_timer->list, &current->signal->posix_timers);
 519	spin_unlock_irq(&current->sighand->siglock);
 
 
 520	/*
 521	 * After unlocking sighand::siglock @new_timer is subject to
 522	 * concurrent removal and cannot be touched anymore
 
 
 523	 */
 524	return 0;
 525out:
 526	posix_timer_unhash_and_free(new_timer);
 527	return error;
 528}
 529
 530SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 531		struct sigevent __user *, timer_event_spec,
 532		timer_t __user *, created_timer_id)
 533{
 534	if (timer_event_spec) {
 535		sigevent_t event;
 536
 537		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 538			return -EFAULT;
 539		return do_timer_create(which_clock, &event, created_timer_id);
 540	}
 541	return do_timer_create(which_clock, NULL, created_timer_id);
 542}
 543
 544#ifdef CONFIG_COMPAT
 545COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 546		       struct compat_sigevent __user *, timer_event_spec,
 547		       timer_t __user *, created_timer_id)
 548{
 549	if (timer_event_spec) {
 550		sigevent_t event;
 551
 552		if (get_compat_sigevent(&event, timer_event_spec))
 553			return -EFAULT;
 554		return do_timer_create(which_clock, &event, created_timer_id);
 555	}
 556	return do_timer_create(which_clock, NULL, created_timer_id);
 557}
 558#endif
 559
 
 
 
 
 
 
 
 560static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 561{
 562	struct k_itimer *timr;
 563
 564	/*
 565	 * timer_t could be any type >= int and we want to make sure any
 566	 * @timer_id outside positive int range fails lookup.
 567	 */
 568	if ((unsigned long long)timer_id > INT_MAX)
 569		return NULL;
 570
 571	/*
 572	 * The hash lookup and the timers are RCU protected.
 573	 *
 574	 * Timers are added to the hash in invalid state where
 575	 * timr::it_signal == NULL. timer::it_signal is only set after the
 576	 * rest of the initialization succeeded.
 577	 *
 578	 * Timer destruction happens in steps:
 579	 *  1) Set timr::it_signal to NULL with timr::it_lock held
 580	 *  2) Release timr::it_lock
 581	 *  3) Remove from the hash under hash_lock
 582	 *  4) Call RCU for removal after the grace period
 583	 *
 584	 * Holding rcu_read_lock() accross the lookup ensures that
 585	 * the timer cannot be freed.
 586	 *
 587	 * The lookup validates locklessly that timr::it_signal ==
 588	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
 589	 * can't change, but timr::it_signal becomes NULL during
 590	 * destruction.
 591	 */
 592	rcu_read_lock();
 593	timr = posix_timer_by_id(timer_id);
 594	if (timr) {
 595		spin_lock_irqsave(&timr->it_lock, *flags);
 596		/*
 597		 * Validate under timr::it_lock that timr::it_signal is
 598		 * still valid. Pairs with #1 above.
 599		 */
 600		if (timr->it_signal == current->signal) {
 601			rcu_read_unlock();
 602			return timr;
 603		}
 604		spin_unlock_irqrestore(&timr->it_lock, *flags);
 605	}
 606	rcu_read_unlock();
 607
 608	return NULL;
 609}
 610
 611static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 612{
 613	struct hrtimer *timer = &timr->it.real.timer;
 614
 615	return __hrtimer_expires_remaining_adjusted(timer, now);
 616}
 617
 618static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 619{
 620	struct hrtimer *timer = &timr->it.real.timer;
 621
 622	return hrtimer_forward(timer, now, timr->it_interval);
 623}
 624
 625/*
 626 * Get the time remaining on a POSIX.1b interval timer.
 627 *
 628 * Two issues to handle here:
 629 *
 630 *  1) The timer has a requeue pending. The return value must appear as
 631 *     if the timer has been requeued right now.
 632 *
 633 *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
 634 *     into the hrtimer queue and therefore never expired. Emulate expiry
 635 *     here taking #1 into account.
 
 
 
 
 636 */
 637void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 638{
 639	const struct k_clock *kc = timr->kclock;
 640	ktime_t now, remaining, iv;
 641	bool sig_none;
 642
 643	sig_none = timr->it_sigev_notify == SIGEV_NONE;
 644	iv = timr->it_interval;
 645
 646	/* interval timer ? */
 647	if (iv) {
 648		cur_setting->it_interval = ktime_to_timespec64(iv);
 649	} else if (!timr->it_active) {
 650		/*
 651		 * SIGEV_NONE oneshot timers are never queued and therefore
 652		 * timr->it_active is always false. The check below
 653		 * vs. remaining time will handle this case.
 654		 *
 655		 * For all other timers there is nothing to update here, so
 656		 * return.
 657		 */
 658		if (!sig_none)
 659			return;
 660	}
 661
 662	now = kc->clock_get_ktime(timr->it_clock);
 663
 664	/*
 665	 * If this is an interval timer and either has requeue pending or
 666	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
 667	 * so expiry is > now.
 668	 */
 669	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 670		timr->it_overrun += kc->timer_forward(timr, now);
 671
 672	remaining = kc->timer_remaining(timr, now);
 673	/*
 674	 * As @now is retrieved before a possible timer_forward() and
 675	 * cannot be reevaluated by the compiler @remaining is based on the
 676	 * same @now value. Therefore @remaining is consistent vs. @now.
 677	 *
 678	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
 679	 * remaining time <= 0 because timer_forward() guarantees to move
 680	 * them forward so that the next timer expiry is > @now.
 681	 */
 682	if (remaining <= 0) {
 683		/*
 684		 * A single shot SIGEV_NONE timer must return 0, when it is
 685		 * expired! Timers which have a real signal delivery mode
 686		 * must return a remaining time greater than 0 because the
 687		 * signal has not yet been delivered.
 688		 */
 689		if (!sig_none)
 690			cur_setting->it_value.tv_nsec = 1;
 691	} else {
 692		cur_setting->it_value = ktime_to_timespec64(remaining);
 693	}
 694}
 695
 
 696static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 697{
 
 698	const struct k_clock *kc;
 699	struct k_itimer *timr;
 700	unsigned long flags;
 701	int ret = 0;
 702
 703	timr = lock_timer(timer_id, &flags);
 704	if (!timr)
 705		return -EINVAL;
 706
 707	memset(setting, 0, sizeof(*setting));
 708	kc = timr->kclock;
 709	if (WARN_ON_ONCE(!kc || !kc->timer_get))
 710		ret = -EINVAL;
 711	else
 712		kc->timer_get(timr, setting);
 713
 714	unlock_timer(timr, flags);
 715	return ret;
 716}
 717
 718/* Get the time remaining on a POSIX.1b interval timer. */
 719SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 720		struct __kernel_itimerspec __user *, setting)
 721{
 722	struct itimerspec64 cur_setting;
 723
 724	int ret = do_timer_gettime(timer_id, &cur_setting);
 725	if (!ret) {
 726		if (put_itimerspec64(&cur_setting, setting))
 727			ret = -EFAULT;
 728	}
 729	return ret;
 730}
 731
 732#ifdef CONFIG_COMPAT_32BIT_TIME
 733
 734SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
 735		struct old_itimerspec32 __user *, setting)
 736{
 737	struct itimerspec64 cur_setting;
 738
 739	int ret = do_timer_gettime(timer_id, &cur_setting);
 740	if (!ret) {
 741		if (put_old_itimerspec32(&cur_setting, setting))
 742			ret = -EFAULT;
 743	}
 744	return ret;
 745}
 746
 747#endif
 748
 749/**
 750 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
 751 * @timer_id:	The timer ID which identifies the timer
 752 *
 753 * The "overrun count" of a timer is one plus the number of expiration
 754 * intervals which have elapsed between the first expiry, which queues the
 755 * signal and the actual signal delivery. On signal delivery the "overrun
 756 * count" is calculated and cached, so it can be returned directly here.
 757 *
 758 * As this is relative to the last queued signal the returned overrun count
 759 * is meaningless outside of the signal delivery path and even there it
 760 * does not accurately reflect the current state when user space evaluates
 761 * it.
 762 *
 763 * Returns:
 764 *	-EINVAL		@timer_id is invalid
 765 *	1..INT_MAX	The number of overruns related to the last delivered signal
 766 */
 767SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 768{
 769	struct k_itimer *timr;
 
 770	unsigned long flags;
 771	int overrun;
 772
 773	timr = lock_timer(timer_id, &flags);
 774	if (!timr)
 775		return -EINVAL;
 776
 777	overrun = timer_overrun_to_int(timr, 0);
 778	unlock_timer(timr, flags);
 779
 780	return overrun;
 781}
 782
 783static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 784			       bool absolute, bool sigev_none)
 785{
 786	struct hrtimer *timer = &timr->it.real.timer;
 787	enum hrtimer_mode mode;
 788
 789	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 790	/*
 791	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 792	 * clock modifications, so they become CLOCK_MONOTONIC based under the
 793	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
 794	 * functions which use timr->kclock->clock_get_*() work.
 795	 *
 796	 * Note: it_clock stays unmodified, because the next timer_set() might
 797	 * use ABSTIME, so it needs to switch back.
 798	 */
 799	if (timr->it_clock == CLOCK_REALTIME)
 800		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 801
 802	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 803	timr->it.real.timer.function = posix_timer_fn;
 804
 805	if (!absolute)
 806		expires = ktime_add_safe(expires, timer->base->get_time());
 807	hrtimer_set_expires(timer, expires);
 808
 809	if (!sigev_none)
 810		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 811}
 812
 813static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 814{
 815	return hrtimer_try_to_cancel(&timr->it.real.timer);
 816}
 817
 818static void common_timer_wait_running(struct k_itimer *timer)
 819{
 820	hrtimer_cancel_wait_running(&timer->it.real.timer);
 821}
 822
 823/*
 824 * On PREEMPT_RT this prevents priority inversion and a potential livelock
 825 * against the ksoftirqd thread in case that ksoftirqd gets preempted while
 826 * executing a hrtimer callback.
 827 *
 828 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
 829 * just results in a cpu_relax().
 830 *
 831 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
 832 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
 833 * prevents spinning on an eventually scheduled out task and a livelock
 834 * when the task which tries to delete or disarm the timer has preempted
 835 * the task which runs the expiry in task work context.
 836 */
 837static struct k_itimer *timer_wait_running(struct k_itimer *timer,
 838					   unsigned long *flags)
 839{
 840	const struct k_clock *kc = READ_ONCE(timer->kclock);
 841	timer_t timer_id = READ_ONCE(timer->it_id);
 842
 843	/* Prevent kfree(timer) after dropping the lock */
 844	rcu_read_lock();
 845	unlock_timer(timer, *flags);
 846
 847	/*
 848	 * kc->timer_wait_running() might drop RCU lock. So @timer
 849	 * cannot be touched anymore after the function returns!
 850	 */
 851	if (!WARN_ON_ONCE(!kc->timer_wait_running))
 852		kc->timer_wait_running(timer);
 853
 854	rcu_read_unlock();
 855	/* Relock the timer. It might be not longer hashed. */
 856	return lock_timer(timer_id, flags);
 857}
 858
 859/* Set a POSIX.1b interval timer. */
 860int common_timer_set(struct k_itimer *timr, int flags,
 861		     struct itimerspec64 *new_setting,
 862		     struct itimerspec64 *old_setting)
 863{
 864	const struct k_clock *kc = timr->kclock;
 865	bool sigev_none;
 866	ktime_t expires;
 867
 868	if (old_setting)
 869		common_timer_get(timr, old_setting);
 870
 871	/* Prevent rearming by clearing the interval */
 872	timr->it_interval = 0;
 873	/*
 874	 * Careful here. On SMP systems the timer expiry function could be
 875	 * active and spinning on timr->it_lock.
 876	 */
 877	if (kc->timer_try_to_cancel(timr) < 0)
 878		return TIMER_RETRY;
 879
 880	timr->it_active = 0;
 881	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 882		~REQUEUE_PENDING;
 883	timr->it_overrun_last = 0;
 884
 885	/* Switch off the timer when it_value is zero */
 886	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 887		return 0;
 888
 889	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 890	expires = timespec64_to_ktime(new_setting->it_value);
 891	if (flags & TIMER_ABSTIME)
 892		expires = timens_ktime_to_host(timr->it_clock, expires);
 893	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
 894
 895	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 896	timr->it_active = !sigev_none;
 897	return 0;
 898}
 899
 900static int do_timer_settime(timer_t timer_id, int tmr_flags,
 901			    struct itimerspec64 *new_spec64,
 902			    struct itimerspec64 *old_spec64)
 903{
 904	const struct k_clock *kc;
 905	struct k_itimer *timr;
 906	unsigned long flags;
 907	int error = 0;
 908
 909	if (!timespec64_valid(&new_spec64->it_interval) ||
 910	    !timespec64_valid(&new_spec64->it_value))
 911		return -EINVAL;
 912
 913	if (old_spec64)
 914		memset(old_spec64, 0, sizeof(*old_spec64));
 915
 916	timr = lock_timer(timer_id, &flags);
 917retry:
 918	if (!timr)
 919		return -EINVAL;
 920
 921	kc = timr->kclock;
 922	if (WARN_ON_ONCE(!kc || !kc->timer_set))
 923		error = -EINVAL;
 924	else
 925		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
 926
 927	if (error == TIMER_RETRY) {
 928		// We already got the old time...
 929		old_spec64 = NULL;
 930		/* Unlocks and relocks the timer if it still exists */
 931		timr = timer_wait_running(timr, &flags);
 932		goto retry;
 933	}
 934	unlock_timer(timr, flags);
 935
 936	return error;
 937}
 938
 939/* Set a POSIX.1b interval timer */
 940SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 941		const struct __kernel_itimerspec __user *, new_setting,
 942		struct __kernel_itimerspec __user *, old_setting)
 943{
 944	struct itimerspec64 new_spec, old_spec, *rtn;
 
 945	int error = 0;
 946
 947	if (!new_setting)
 948		return -EINVAL;
 949
 950	if (get_itimerspec64(&new_spec, new_setting))
 951		return -EFAULT;
 952
 953	rtn = old_setting ? &old_spec : NULL;
 954	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 955	if (!error && old_setting) {
 956		if (put_itimerspec64(&old_spec, old_setting))
 957			error = -EFAULT;
 958	}
 959	return error;
 960}
 961
 962#ifdef CONFIG_COMPAT_32BIT_TIME
 963SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
 964		struct old_itimerspec32 __user *, new,
 965		struct old_itimerspec32 __user *, old)
 966{
 967	struct itimerspec64 new_spec, old_spec;
 968	struct itimerspec64 *rtn = old ? &old_spec : NULL;
 969	int error = 0;
 970
 971	if (!new)
 972		return -EINVAL;
 973	if (get_old_itimerspec32(&new_spec, new))
 974		return -EFAULT;
 975
 976	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 977	if (!error && old) {
 978		if (put_old_itimerspec32(&old_spec, old))
 979			error = -EFAULT;
 980	}
 981	return error;
 982}
 983#endif
 984
 985int common_timer_del(struct k_itimer *timer)
 986{
 987	const struct k_clock *kc = timer->kclock;
 988
 989	timer->it_interval = 0;
 990	if (kc->timer_try_to_cancel(timer) < 0)
 991		return TIMER_RETRY;
 992	timer->it_active = 0;
 993	return 0;
 994}
 995
 996static inline int timer_delete_hook(struct k_itimer *timer)
 997{
 998	const struct k_clock *kc = timer->kclock;
 999
1000	if (WARN_ON_ONCE(!kc || !kc->timer_del))
1001		return -EINVAL;
1002	return kc->timer_del(timer);
1003}
1004
1005/* Delete a POSIX.1b interval timer. */
1006SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1007{
1008	struct k_itimer *timer;
1009	unsigned long flags;
1010
1011	timer = lock_timer(timer_id, &flags);
1012
1013retry_delete:
1014	if (!timer)
1015		return -EINVAL;
1016
1017	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1018		/* Unlocks and relocks the timer if it still exists */
1019		timer = timer_wait_running(timer, &flags);
1020		goto retry_delete;
1021	}
1022
1023	spin_lock(&current->sighand->siglock);
1024	list_del(&timer->list);
1025	spin_unlock(&current->sighand->siglock);
1026	/*
1027	 * A concurrent lookup could check timer::it_signal lockless. It
1028	 * will reevaluate with timer::it_lock held and observe the NULL.
1029	 */
1030	WRITE_ONCE(timer->it_signal, NULL);
1031
1032	unlock_timer(timer, flags);
1033	posix_timer_unhash_and_free(timer);
1034	return 0;
1035}
1036
1037/*
1038 * Delete a timer if it is armed, remove it from the hash and schedule it
1039 * for RCU freeing.
1040 */
1041static void itimer_delete(struct k_itimer *timer)
1042{
1043	unsigned long flags;
1044
1045	/*
1046	 * irqsave is required to make timer_wait_running() work.
1047	 */
1048	spin_lock_irqsave(&timer->it_lock, flags);
1049
1050retry_delete:
1051	/*
1052	 * Even if the timer is not longer accessible from other tasks
1053	 * it still might be armed and queued in the underlying timer
1054	 * mechanism. Worse, that timer mechanism might run the expiry
1055	 * function concurrently.
1056	 */
1057	if (timer_delete_hook(timer) == TIMER_RETRY) {
1058		/*
1059		 * Timer is expired concurrently, prevent livelocks
1060		 * and pointless spinning on RT.
1061		 *
1062		 * timer_wait_running() drops timer::it_lock, which opens
1063		 * the possibility for another task to delete the timer.
1064		 *
1065		 * That's not possible here because this is invoked from
1066		 * do_exit() only for the last thread of the thread group.
1067		 * So no other task can access and delete that timer.
1068		 */
1069		if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1070			return;
1071
1072		goto retry_delete;
1073	}
1074	list_del(&timer->list);
1075
1076	/*
1077	 * Setting timer::it_signal to NULL is technically not required
1078	 * here as nothing can access the timer anymore legitimately via
1079	 * the hash table. Set it to NULL nevertheless so that all deletion
1080	 * paths are consistent.
1081	 */
1082	WRITE_ONCE(timer->it_signal, NULL);
1083
1084	spin_unlock_irqrestore(&timer->it_lock, flags);
1085	posix_timer_unhash_and_free(timer);
1086}
1087
1088/*
1089 * Invoked from do_exit() when the last thread of a thread group exits.
1090 * At that point no other task can access the timers of the dying
1091 * task anymore.
1092 */
1093void exit_itimers(struct task_struct *tsk)
1094{
1095	struct list_head timers;
1096	struct k_itimer *tmr;
1097
1098	if (list_empty(&tsk->signal->posix_timers))
1099		return;
1100
1101	/* Protect against concurrent read via /proc/$PID/timers */
1102	spin_lock_irq(&tsk->sighand->siglock);
1103	list_replace_init(&tsk->signal->posix_timers, &timers);
1104	spin_unlock_irq(&tsk->sighand->siglock);
1105
1106	/* The timers are not longer accessible via tsk::signal */
1107	while (!list_empty(&timers)) {
1108		tmr = list_first_entry(&timers, struct k_itimer, list);
1109		itimer_delete(tmr);
1110	}
1111}
1112
1113SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1114		const struct __kernel_timespec __user *, tp)
1115{
1116	const struct k_clock *kc = clockid_to_kclock(which_clock);
1117	struct timespec64 new_tp;
1118
1119	if (!kc || !kc->clock_set)
1120		return -EINVAL;
1121
1122	if (get_timespec64(&new_tp, tp))
1123		return -EFAULT;
1124
1125	/*
1126	 * Permission checks have to be done inside the clock specific
1127	 * setter callback.
1128	 */
1129	return kc->clock_set(which_clock, &new_tp);
1130}
1131
1132SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1133		struct __kernel_timespec __user *, tp)
1134{
1135	const struct k_clock *kc = clockid_to_kclock(which_clock);
1136	struct timespec64 kernel_tp;
1137	int error;
1138
1139	if (!kc)
1140		return -EINVAL;
1141
1142	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1143
1144	if (!error && put_timespec64(&kernel_tp, tp))
1145		error = -EFAULT;
1146
1147	return error;
1148}
1149
1150int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1151{
1152	const struct k_clock *kc = clockid_to_kclock(which_clock);
1153
1154	if (!kc)
1155		return -EINVAL;
1156	if (!kc->clock_adj)
1157		return -EOPNOTSUPP;
1158
1159	return kc->clock_adj(which_clock, ktx);
1160}
1161
1162SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1163		struct __kernel_timex __user *, utx)
1164{
1165	struct __kernel_timex ktx;
1166	int err;
1167
1168	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1169		return -EFAULT;
1170
1171	err = do_clock_adjtime(which_clock, &ktx);
1172
1173	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1174		return -EFAULT;
1175
1176	return err;
1177}
1178
1179/**
1180 * sys_clock_getres - Get the resolution of a clock
1181 * @which_clock:	The clock to get the resolution for
1182 * @tp:			Pointer to a a user space timespec64 for storage
1183 *
1184 * POSIX defines:
1185 *
1186 * "The clock_getres() function shall return the resolution of any
1187 * clock. Clock resolutions are implementation-defined and cannot be set by
1188 * a process. If the argument res is not NULL, the resolution of the
1189 * specified clock shall be stored in the location pointed to by res. If
1190 * res is NULL, the clock resolution is not returned. If the time argument
1191 * of clock_settime() is not a multiple of res, then the value is truncated
1192 * to a multiple of res."
1193 *
1194 * Due to the various hardware constraints the real resolution can vary
1195 * wildly and even change during runtime when the underlying devices are
1196 * replaced. The kernel also can use hardware devices with different
1197 * resolutions for reading the time and for arming timers.
1198 *
1199 * The kernel therefore deviates from the POSIX spec in various aspects:
1200 *
1201 * 1) The resolution returned to user space
1202 *
1203 *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1204 *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1205 *    the kernel differentiates only two cases:
1206 *
1207 *    I)  Low resolution mode:
1208 *
1209 *	  When high resolution timers are disabled at compile or runtime
1210 *	  the resolution returned is nanoseconds per tick, which represents
1211 *	  the precision at which timers expire.
1212 *
1213 *    II) High resolution mode:
1214 *
1215 *	  When high resolution timers are enabled the resolution returned
1216 *	  is always one nanosecond independent of the actual resolution of
1217 *	  the underlying hardware devices.
1218 *
1219 *	  For CLOCK_*_ALARM the actual resolution depends on system
1220 *	  state. When system is running the resolution is the same as the
1221 *	  resolution of the other clocks. During suspend the actual
1222 *	  resolution is the resolution of the underlying RTC device which
1223 *	  might be way less precise than the clockevent device used during
1224 *	  running state.
1225 *
1226 *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1227 *   returned is always nanoseconds per tick.
1228 *
1229 *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1230 *   returned is always one nanosecond under the assumption that the
1231 *   underlying scheduler clock has a better resolution than nanoseconds
1232 *   per tick.
1233 *
1234 *   For dynamic POSIX clocks (PTP devices) the resolution returned is
1235 *   always one nanosecond.
1236 *
1237 * 2) Affect on sys_clock_settime()
1238 *
1239 *    The kernel does not truncate the time which is handed in to
1240 *    sys_clock_settime(). The kernel internal timekeeping is always using
1241 *    nanoseconds precision independent of the clocksource device which is
1242 *    used to read the time from. The resolution of that device only
1243 *    affects the presicion of the time returned by sys_clock_gettime().
1244 *
1245 * Returns:
1246 *	0		Success. @tp contains the resolution
1247 *	-EINVAL		@which_clock is not a valid clock ID
1248 *	-EFAULT		Copying the resolution to @tp faulted
1249 *	-ENODEV		Dynamic POSIX clock is not backed by a device
1250 *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
1251 */
1252SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1253		struct __kernel_timespec __user *, tp)
1254{
1255	const struct k_clock *kc = clockid_to_kclock(which_clock);
1256	struct timespec64 rtn_tp;
1257	int error;
1258
1259	if (!kc)
1260		return -EINVAL;
1261
1262	error = kc->clock_getres(which_clock, &rtn_tp);
1263
1264	if (!error && tp && put_timespec64(&rtn_tp, tp))
1265		error = -EFAULT;
1266
1267	return error;
1268}
1269
1270#ifdef CONFIG_COMPAT_32BIT_TIME
1271
1272SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1273		struct old_timespec32 __user *, tp)
1274{
1275	const struct k_clock *kc = clockid_to_kclock(which_clock);
1276	struct timespec64 ts;
1277
1278	if (!kc || !kc->clock_set)
1279		return -EINVAL;
1280
1281	if (get_old_timespec32(&ts, tp))
1282		return -EFAULT;
1283
1284	return kc->clock_set(which_clock, &ts);
1285}
1286
1287SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1288		struct old_timespec32 __user *, tp)
1289{
1290	const struct k_clock *kc = clockid_to_kclock(which_clock);
1291	struct timespec64 ts;
1292	int err;
1293
1294	if (!kc)
1295		return -EINVAL;
1296
1297	err = kc->clock_get_timespec(which_clock, &ts);
1298
1299	if (!err && put_old_timespec32(&ts, tp))
1300		err = -EFAULT;
1301
1302	return err;
1303}
1304
1305SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1306		struct old_timex32 __user *, utp)
1307{
1308	struct __kernel_timex ktx;
1309	int err;
1310
1311	err = get_old_timex32(&ktx, utp);
1312	if (err)
1313		return err;
1314
1315	err = do_clock_adjtime(which_clock, &ktx);
1316
1317	if (err >= 0 && put_old_timex32(utp, &ktx))
1318		return -EFAULT;
1319
1320	return err;
1321}
1322
1323SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1324		struct old_timespec32 __user *, tp)
1325{
1326	const struct k_clock *kc = clockid_to_kclock(which_clock);
1327	struct timespec64 ts;
1328	int err;
1329
1330	if (!kc)
1331		return -EINVAL;
1332
1333	err = kc->clock_getres(which_clock, &ts);
1334	if (!err && tp && put_old_timespec32(&ts, tp))
1335		return -EFAULT;
1336
1337	return err;
1338}
1339
1340#endif
1341
1342/*
1343 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1344 */
1345static int common_nsleep(const clockid_t which_clock, int flags,
1346			 const struct timespec64 *rqtp)
1347{
1348	ktime_t texp = timespec64_to_ktime(*rqtp);
1349
1350	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1351				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1352				 which_clock);
1353}
1354
1355/*
1356 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1357 *
1358 * Absolute nanosleeps for these clocks are time-namespace adjusted.
1359 */
1360static int common_nsleep_timens(const clockid_t which_clock, int flags,
1361				const struct timespec64 *rqtp)
1362{
1363	ktime_t texp = timespec64_to_ktime(*rqtp);
1364
1365	if (flags & TIMER_ABSTIME)
1366		texp = timens_ktime_to_host(which_clock, texp);
1367
1368	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1369				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1370				 which_clock);
1371}
1372
1373SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1374		const struct __kernel_timespec __user *, rqtp,
1375		struct __kernel_timespec __user *, rmtp)
1376{
1377	const struct k_clock *kc = clockid_to_kclock(which_clock);
1378	struct timespec64 t;
1379
1380	if (!kc)
1381		return -EINVAL;
1382	if (!kc->nsleep)
1383		return -EOPNOTSUPP;
1384
1385	if (get_timespec64(&t, rqtp))
1386		return -EFAULT;
1387
1388	if (!timespec64_valid(&t))
1389		return -EINVAL;
1390	if (flags & TIMER_ABSTIME)
1391		rmtp = NULL;
1392	current->restart_block.fn = do_no_restart_syscall;
1393	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1394	current->restart_block.nanosleep.rmtp = rmtp;
1395
1396	return kc->nsleep(which_clock, flags, &t);
1397}
1398
1399#ifdef CONFIG_COMPAT_32BIT_TIME
1400
1401SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1402		struct old_timespec32 __user *, rqtp,
1403		struct old_timespec32 __user *, rmtp)
1404{
1405	const struct k_clock *kc = clockid_to_kclock(which_clock);
1406	struct timespec64 t;
1407
1408	if (!kc)
1409		return -EINVAL;
1410	if (!kc->nsleep)
1411		return -EOPNOTSUPP;
1412
1413	if (get_old_timespec32(&t, rqtp))
1414		return -EFAULT;
1415
1416	if (!timespec64_valid(&t))
1417		return -EINVAL;
1418	if (flags & TIMER_ABSTIME)
1419		rmtp = NULL;
1420	current->restart_block.fn = do_no_restart_syscall;
1421	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1422	current->restart_block.nanosleep.compat_rmtp = rmtp;
1423
1424	return kc->nsleep(which_clock, flags, &t);
1425}
1426
1427#endif
1428
1429static const struct k_clock clock_realtime = {
1430	.clock_getres		= posix_get_hrtimer_res,
1431	.clock_get_timespec	= posix_get_realtime_timespec,
1432	.clock_get_ktime	= posix_get_realtime_ktime,
1433	.clock_set		= posix_clock_realtime_set,
1434	.clock_adj		= posix_clock_realtime_adj,
1435	.nsleep			= common_nsleep,
1436	.timer_create		= common_timer_create,
1437	.timer_set		= common_timer_set,
1438	.timer_get		= common_timer_get,
1439	.timer_del		= common_timer_del,
1440	.timer_rearm		= common_hrtimer_rearm,
1441	.timer_forward		= common_hrtimer_forward,
1442	.timer_remaining	= common_hrtimer_remaining,
1443	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1444	.timer_wait_running	= common_timer_wait_running,
1445	.timer_arm		= common_hrtimer_arm,
1446};
1447
1448static const struct k_clock clock_monotonic = {
1449	.clock_getres		= posix_get_hrtimer_res,
1450	.clock_get_timespec	= posix_get_monotonic_timespec,
1451	.clock_get_ktime	= posix_get_monotonic_ktime,
1452	.nsleep			= common_nsleep_timens,
1453	.timer_create		= common_timer_create,
1454	.timer_set		= common_timer_set,
1455	.timer_get		= common_timer_get,
1456	.timer_del		= common_timer_del,
1457	.timer_rearm		= common_hrtimer_rearm,
1458	.timer_forward		= common_hrtimer_forward,
1459	.timer_remaining	= common_hrtimer_remaining,
1460	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1461	.timer_wait_running	= common_timer_wait_running,
1462	.timer_arm		= common_hrtimer_arm,
1463};
1464
1465static const struct k_clock clock_monotonic_raw = {
1466	.clock_getres		= posix_get_hrtimer_res,
1467	.clock_get_timespec	= posix_get_monotonic_raw,
1468};
1469
1470static const struct k_clock clock_realtime_coarse = {
1471	.clock_getres		= posix_get_coarse_res,
1472	.clock_get_timespec	= posix_get_realtime_coarse,
1473};
1474
1475static const struct k_clock clock_monotonic_coarse = {
1476	.clock_getres		= posix_get_coarse_res,
1477	.clock_get_timespec	= posix_get_monotonic_coarse,
1478};
1479
1480static const struct k_clock clock_tai = {
1481	.clock_getres		= posix_get_hrtimer_res,
1482	.clock_get_ktime	= posix_get_tai_ktime,
1483	.clock_get_timespec	= posix_get_tai_timespec,
1484	.nsleep			= common_nsleep,
1485	.timer_create		= common_timer_create,
1486	.timer_set		= common_timer_set,
1487	.timer_get		= common_timer_get,
1488	.timer_del		= common_timer_del,
1489	.timer_rearm		= common_hrtimer_rearm,
1490	.timer_forward		= common_hrtimer_forward,
1491	.timer_remaining	= common_hrtimer_remaining,
1492	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1493	.timer_wait_running	= common_timer_wait_running,
1494	.timer_arm		= common_hrtimer_arm,
1495};
1496
1497static const struct k_clock clock_boottime = {
1498	.clock_getres		= posix_get_hrtimer_res,
1499	.clock_get_ktime	= posix_get_boottime_ktime,
1500	.clock_get_timespec	= posix_get_boottime_timespec,
1501	.nsleep			= common_nsleep_timens,
1502	.timer_create		= common_timer_create,
1503	.timer_set		= common_timer_set,
1504	.timer_get		= common_timer_get,
1505	.timer_del		= common_timer_del,
1506	.timer_rearm		= common_hrtimer_rearm,
1507	.timer_forward		= common_hrtimer_forward,
1508	.timer_remaining	= common_hrtimer_remaining,
1509	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1510	.timer_wait_running	= common_timer_wait_running,
1511	.timer_arm		= common_hrtimer_arm,
1512};
1513
1514static const struct k_clock * const posix_clocks[] = {
1515	[CLOCK_REALTIME]		= &clock_realtime,
1516	[CLOCK_MONOTONIC]		= &clock_monotonic,
1517	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1518	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1519	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1520	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1521	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1522	[CLOCK_BOOTTIME]		= &clock_boottime,
1523	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1524	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1525	[CLOCK_TAI]			= &clock_tai,
1526};
1527
1528static const struct k_clock *clockid_to_kclock(const clockid_t id)
1529{
1530	clockid_t idx = id;
1531
1532	if (id < 0) {
1533		return (id & CLOCKFD_MASK) == CLOCKFD ?
1534			&clock_posix_dynamic : &clock_posix_cpu;
1535	}
1536
1537	if (id >= ARRAY_SIZE(posix_clocks))
1538		return NULL;
1539
1540	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1541}