Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#include <linux/bpf.h>
   5#include <linux/btf.h>
   6#include <linux/bpf-cgroup.h>
   7#include <linux/cgroup.h>
   8#include <linux/rcupdate.h>
   9#include <linux/random.h>
  10#include <linux/smp.h>
  11#include <linux/topology.h>
  12#include <linux/ktime.h>
  13#include <linux/sched.h>
  14#include <linux/uidgid.h>
  15#include <linux/filter.h>
  16#include <linux/ctype.h>
  17#include <linux/jiffies.h>
  18#include <linux/pid_namespace.h>
  19#include <linux/poison.h>
  20#include <linux/proc_ns.h>
 
  21#include <linux/security.h>
  22#include <linux/btf_ids.h>
  23#include <linux/bpf_mem_alloc.h>
 
  24
  25#include "../../lib/kstrtox.h"
  26
  27/* If kernel subsystem is allowing eBPF programs to call this function,
  28 * inside its own verifier_ops->get_func_proto() callback it should return
  29 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
  30 *
  31 * Different map implementations will rely on rcu in map methods
  32 * lookup/update/delete, therefore eBPF programs must run under rcu lock
  33 * if program is allowed to access maps, so check rcu_read_lock_held in
  34 * all three functions.
  35 */
  36BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
  37{
  38	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 
  39	return (unsigned long) map->ops->map_lookup_elem(map, key);
  40}
  41
  42const struct bpf_func_proto bpf_map_lookup_elem_proto = {
  43	.func		= bpf_map_lookup_elem,
  44	.gpl_only	= false,
  45	.pkt_access	= true,
  46	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
  47	.arg1_type	= ARG_CONST_MAP_PTR,
  48	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  49};
  50
  51BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
  52	   void *, value, u64, flags)
  53{
  54	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 
  55	return map->ops->map_update_elem(map, key, value, flags);
  56}
  57
  58const struct bpf_func_proto bpf_map_update_elem_proto = {
  59	.func		= bpf_map_update_elem,
  60	.gpl_only	= false,
  61	.pkt_access	= true,
  62	.ret_type	= RET_INTEGER,
  63	.arg1_type	= ARG_CONST_MAP_PTR,
  64	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  65	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
  66	.arg4_type	= ARG_ANYTHING,
  67};
  68
  69BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
  70{
  71	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 
  72	return map->ops->map_delete_elem(map, key);
  73}
  74
  75const struct bpf_func_proto bpf_map_delete_elem_proto = {
  76	.func		= bpf_map_delete_elem,
  77	.gpl_only	= false,
  78	.pkt_access	= true,
  79	.ret_type	= RET_INTEGER,
  80	.arg1_type	= ARG_CONST_MAP_PTR,
  81	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  82};
  83
  84BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
  85{
  86	return map->ops->map_push_elem(map, value, flags);
  87}
  88
  89const struct bpf_func_proto bpf_map_push_elem_proto = {
  90	.func		= bpf_map_push_elem,
  91	.gpl_only	= false,
  92	.pkt_access	= true,
  93	.ret_type	= RET_INTEGER,
  94	.arg1_type	= ARG_CONST_MAP_PTR,
  95	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
  96	.arg3_type	= ARG_ANYTHING,
  97};
  98
  99BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
 100{
 101	return map->ops->map_pop_elem(map, value);
 102}
 103
 104const struct bpf_func_proto bpf_map_pop_elem_proto = {
 105	.func		= bpf_map_pop_elem,
 106	.gpl_only	= false,
 107	.ret_type	= RET_INTEGER,
 108	.arg1_type	= ARG_CONST_MAP_PTR,
 109	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
 110};
 111
 112BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
 113{
 114	return map->ops->map_peek_elem(map, value);
 115}
 116
 117const struct bpf_func_proto bpf_map_peek_elem_proto = {
 118	.func		= bpf_map_peek_elem,
 119	.gpl_only	= false,
 120	.ret_type	= RET_INTEGER,
 121	.arg1_type	= ARG_CONST_MAP_PTR,
 122	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
 123};
 124
 125BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
 126{
 127	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 128	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
 129}
 130
 131const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
 132	.func		= bpf_map_lookup_percpu_elem,
 133	.gpl_only	= false,
 134	.pkt_access	= true,
 135	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
 136	.arg1_type	= ARG_CONST_MAP_PTR,
 137	.arg2_type	= ARG_PTR_TO_MAP_KEY,
 138	.arg3_type	= ARG_ANYTHING,
 139};
 140
 141const struct bpf_func_proto bpf_get_prandom_u32_proto = {
 142	.func		= bpf_user_rnd_u32,
 143	.gpl_only	= false,
 144	.ret_type	= RET_INTEGER,
 145};
 146
 147BPF_CALL_0(bpf_get_smp_processor_id)
 148{
 149	return smp_processor_id();
 150}
 151
 152const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
 153	.func		= bpf_get_smp_processor_id,
 154	.gpl_only	= false,
 155	.ret_type	= RET_INTEGER,
 156};
 157
 158BPF_CALL_0(bpf_get_numa_node_id)
 159{
 160	return numa_node_id();
 161}
 162
 163const struct bpf_func_proto bpf_get_numa_node_id_proto = {
 164	.func		= bpf_get_numa_node_id,
 165	.gpl_only	= false,
 166	.ret_type	= RET_INTEGER,
 167};
 168
 169BPF_CALL_0(bpf_ktime_get_ns)
 170{
 171	/* NMI safe access to clock monotonic */
 172	return ktime_get_mono_fast_ns();
 173}
 174
 175const struct bpf_func_proto bpf_ktime_get_ns_proto = {
 176	.func		= bpf_ktime_get_ns,
 177	.gpl_only	= false,
 178	.ret_type	= RET_INTEGER,
 179};
 180
 181BPF_CALL_0(bpf_ktime_get_boot_ns)
 182{
 183	/* NMI safe access to clock boottime */
 184	return ktime_get_boot_fast_ns();
 185}
 186
 187const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
 188	.func		= bpf_ktime_get_boot_ns,
 189	.gpl_only	= false,
 190	.ret_type	= RET_INTEGER,
 191};
 192
 193BPF_CALL_0(bpf_ktime_get_coarse_ns)
 194{
 195	return ktime_get_coarse_ns();
 196}
 197
 198const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
 199	.func		= bpf_ktime_get_coarse_ns,
 200	.gpl_only	= false,
 201	.ret_type	= RET_INTEGER,
 202};
 203
 204BPF_CALL_0(bpf_ktime_get_tai_ns)
 205{
 206	/* NMI safe access to clock tai */
 207	return ktime_get_tai_fast_ns();
 208}
 209
 210const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
 211	.func		= bpf_ktime_get_tai_ns,
 212	.gpl_only	= false,
 213	.ret_type	= RET_INTEGER,
 214};
 215
 216BPF_CALL_0(bpf_get_current_pid_tgid)
 217{
 218	struct task_struct *task = current;
 219
 220	if (unlikely(!task))
 221		return -EINVAL;
 222
 223	return (u64) task->tgid << 32 | task->pid;
 224}
 225
 226const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
 227	.func		= bpf_get_current_pid_tgid,
 228	.gpl_only	= false,
 229	.ret_type	= RET_INTEGER,
 230};
 231
 232BPF_CALL_0(bpf_get_current_uid_gid)
 233{
 234	struct task_struct *task = current;
 235	kuid_t uid;
 236	kgid_t gid;
 237
 238	if (unlikely(!task))
 239		return -EINVAL;
 240
 241	current_uid_gid(&uid, &gid);
 242	return (u64) from_kgid(&init_user_ns, gid) << 32 |
 243		     from_kuid(&init_user_ns, uid);
 244}
 245
 246const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
 247	.func		= bpf_get_current_uid_gid,
 248	.gpl_only	= false,
 249	.ret_type	= RET_INTEGER,
 250};
 251
 252BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
 253{
 254	struct task_struct *task = current;
 255
 256	if (unlikely(!task))
 257		goto err_clear;
 258
 259	/* Verifier guarantees that size > 0 */
 260	strscpy(buf, task->comm, size);
 261	return 0;
 262err_clear:
 263	memset(buf, 0, size);
 264	return -EINVAL;
 265}
 266
 267const struct bpf_func_proto bpf_get_current_comm_proto = {
 268	.func		= bpf_get_current_comm,
 269	.gpl_only	= false,
 270	.ret_type	= RET_INTEGER,
 271	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 272	.arg2_type	= ARG_CONST_SIZE,
 273};
 274
 275#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
 276
 277static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 278{
 279	arch_spinlock_t *l = (void *)lock;
 280	union {
 281		__u32 val;
 282		arch_spinlock_t lock;
 283	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
 284
 285	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
 286	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
 287	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
 
 288	arch_spin_lock(l);
 289}
 290
 291static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 292{
 293	arch_spinlock_t *l = (void *)lock;
 294
 295	arch_spin_unlock(l);
 
 296}
 297
 298#else
 299
 300static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 301{
 302	atomic_t *l = (void *)lock;
 303
 304	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
 305	do {
 306		atomic_cond_read_relaxed(l, !VAL);
 307	} while (atomic_xchg(l, 1));
 308}
 309
 310static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 311{
 312	atomic_t *l = (void *)lock;
 313
 314	atomic_set_release(l, 0);
 315}
 316
 317#endif
 318
 319static DEFINE_PER_CPU(unsigned long, irqsave_flags);
 320
 321static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
 322{
 323	unsigned long flags;
 324
 325	local_irq_save(flags);
 326	__bpf_spin_lock(lock);
 327	__this_cpu_write(irqsave_flags, flags);
 328}
 329
 330notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
 331{
 332	__bpf_spin_lock_irqsave(lock);
 333	return 0;
 334}
 335
 336const struct bpf_func_proto bpf_spin_lock_proto = {
 337	.func		= bpf_spin_lock,
 338	.gpl_only	= false,
 339	.ret_type	= RET_VOID,
 340	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
 341	.arg1_btf_id    = BPF_PTR_POISON,
 342};
 343
 344static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
 345{
 346	unsigned long flags;
 347
 348	flags = __this_cpu_read(irqsave_flags);
 349	__bpf_spin_unlock(lock);
 350	local_irq_restore(flags);
 351}
 352
 353notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
 354{
 355	__bpf_spin_unlock_irqrestore(lock);
 356	return 0;
 357}
 358
 359const struct bpf_func_proto bpf_spin_unlock_proto = {
 360	.func		= bpf_spin_unlock,
 361	.gpl_only	= false,
 362	.ret_type	= RET_VOID,
 363	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
 364	.arg1_btf_id    = BPF_PTR_POISON,
 365};
 366
 367void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
 368			   bool lock_src)
 369{
 370	struct bpf_spin_lock *lock;
 371
 372	if (lock_src)
 373		lock = src + map->record->spin_lock_off;
 374	else
 375		lock = dst + map->record->spin_lock_off;
 376	preempt_disable();
 377	__bpf_spin_lock_irqsave(lock);
 378	copy_map_value(map, dst, src);
 379	__bpf_spin_unlock_irqrestore(lock);
 380	preempt_enable();
 381}
 382
 383BPF_CALL_0(bpf_jiffies64)
 384{
 385	return get_jiffies_64();
 386}
 387
 388const struct bpf_func_proto bpf_jiffies64_proto = {
 389	.func		= bpf_jiffies64,
 390	.gpl_only	= false,
 391	.ret_type	= RET_INTEGER,
 392};
 393
 394#ifdef CONFIG_CGROUPS
 395BPF_CALL_0(bpf_get_current_cgroup_id)
 396{
 397	struct cgroup *cgrp;
 398	u64 cgrp_id;
 399
 400	rcu_read_lock();
 401	cgrp = task_dfl_cgroup(current);
 402	cgrp_id = cgroup_id(cgrp);
 403	rcu_read_unlock();
 404
 405	return cgrp_id;
 406}
 407
 408const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
 409	.func		= bpf_get_current_cgroup_id,
 410	.gpl_only	= false,
 411	.ret_type	= RET_INTEGER,
 412};
 413
 414BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
 415{
 416	struct cgroup *cgrp;
 417	struct cgroup *ancestor;
 418	u64 cgrp_id;
 419
 420	rcu_read_lock();
 421	cgrp = task_dfl_cgroup(current);
 422	ancestor = cgroup_ancestor(cgrp, ancestor_level);
 423	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
 424	rcu_read_unlock();
 425
 426	return cgrp_id;
 427}
 428
 429const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
 430	.func		= bpf_get_current_ancestor_cgroup_id,
 431	.gpl_only	= false,
 432	.ret_type	= RET_INTEGER,
 433	.arg1_type	= ARG_ANYTHING,
 434};
 435#endif /* CONFIG_CGROUPS */
 436
 437#define BPF_STRTOX_BASE_MASK 0x1F
 438
 439static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
 440			  unsigned long long *res, bool *is_negative)
 441{
 442	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
 443	const char *cur_buf = buf;
 444	size_t cur_len = buf_len;
 445	unsigned int consumed;
 446	size_t val_len;
 447	char str[64];
 448
 449	if (!buf || !buf_len || !res || !is_negative)
 450		return -EINVAL;
 451
 452	if (base != 0 && base != 8 && base != 10 && base != 16)
 453		return -EINVAL;
 454
 455	if (flags & ~BPF_STRTOX_BASE_MASK)
 456		return -EINVAL;
 457
 458	while (cur_buf < buf + buf_len && isspace(*cur_buf))
 459		++cur_buf;
 460
 461	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
 462	if (*is_negative)
 463		++cur_buf;
 464
 465	consumed = cur_buf - buf;
 466	cur_len -= consumed;
 467	if (!cur_len)
 468		return -EINVAL;
 469
 470	cur_len = min(cur_len, sizeof(str) - 1);
 471	memcpy(str, cur_buf, cur_len);
 472	str[cur_len] = '\0';
 473	cur_buf = str;
 474
 475	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
 476	val_len = _parse_integer(cur_buf, base, res);
 477
 478	if (val_len & KSTRTOX_OVERFLOW)
 479		return -ERANGE;
 480
 481	if (val_len == 0)
 482		return -EINVAL;
 483
 484	cur_buf += val_len;
 485	consumed += cur_buf - str;
 486
 487	return consumed;
 488}
 489
 490static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
 491			 long long *res)
 492{
 493	unsigned long long _res;
 494	bool is_negative;
 495	int err;
 496
 497	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 498	if (err < 0)
 499		return err;
 500	if (is_negative) {
 501		if ((long long)-_res > 0)
 502			return -ERANGE;
 503		*res = -_res;
 504	} else {
 505		if ((long long)_res < 0)
 506			return -ERANGE;
 507		*res = _res;
 508	}
 509	return err;
 510}
 511
 512BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
 513	   long *, res)
 514{
 515	long long _res;
 516	int err;
 517
 518	err = __bpf_strtoll(buf, buf_len, flags, &_res);
 519	if (err < 0)
 520		return err;
 521	if (_res != (long)_res)
 522		return -ERANGE;
 523	*res = _res;
 524	return err;
 525}
 526
 527const struct bpf_func_proto bpf_strtol_proto = {
 528	.func		= bpf_strtol,
 529	.gpl_only	= false,
 530	.ret_type	= RET_INTEGER,
 531	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 532	.arg2_type	= ARG_CONST_SIZE,
 533	.arg3_type	= ARG_ANYTHING,
 534	.arg4_type	= ARG_PTR_TO_LONG,
 535};
 536
 537BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
 538	   unsigned long *, res)
 539{
 540	unsigned long long _res;
 541	bool is_negative;
 542	int err;
 543
 544	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 545	if (err < 0)
 546		return err;
 547	if (is_negative)
 548		return -EINVAL;
 549	if (_res != (unsigned long)_res)
 550		return -ERANGE;
 551	*res = _res;
 552	return err;
 553}
 554
 555const struct bpf_func_proto bpf_strtoul_proto = {
 556	.func		= bpf_strtoul,
 557	.gpl_only	= false,
 558	.ret_type	= RET_INTEGER,
 559	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 560	.arg2_type	= ARG_CONST_SIZE,
 561	.arg3_type	= ARG_ANYTHING,
 562	.arg4_type	= ARG_PTR_TO_LONG,
 563};
 564
 565BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
 566{
 567	return strncmp(s1, s2, s1_sz);
 568}
 569
 570static const struct bpf_func_proto bpf_strncmp_proto = {
 571	.func		= bpf_strncmp,
 572	.gpl_only	= false,
 573	.ret_type	= RET_INTEGER,
 574	.arg1_type	= ARG_PTR_TO_MEM,
 575	.arg2_type	= ARG_CONST_SIZE,
 576	.arg3_type	= ARG_PTR_TO_CONST_STR,
 577};
 578
 579BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
 580	   struct bpf_pidns_info *, nsdata, u32, size)
 581{
 582	struct task_struct *task = current;
 583	struct pid_namespace *pidns;
 584	int err = -EINVAL;
 585
 586	if (unlikely(size != sizeof(struct bpf_pidns_info)))
 587		goto clear;
 588
 589	if (unlikely((u64)(dev_t)dev != dev))
 590		goto clear;
 591
 592	if (unlikely(!task))
 593		goto clear;
 594
 595	pidns = task_active_pid_ns(task);
 596	if (unlikely(!pidns)) {
 597		err = -ENOENT;
 598		goto clear;
 599	}
 600
 601	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
 602		goto clear;
 603
 604	nsdata->pid = task_pid_nr_ns(task, pidns);
 605	nsdata->tgid = task_tgid_nr_ns(task, pidns);
 606	return 0;
 607clear:
 608	memset((void *)nsdata, 0, (size_t) size);
 609	return err;
 610}
 611
 612const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
 613	.func		= bpf_get_ns_current_pid_tgid,
 614	.gpl_only	= false,
 615	.ret_type	= RET_INTEGER,
 616	.arg1_type	= ARG_ANYTHING,
 617	.arg2_type	= ARG_ANYTHING,
 618	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
 619	.arg4_type      = ARG_CONST_SIZE,
 620};
 621
 622static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 623	.func		= bpf_get_raw_cpu_id,
 624	.gpl_only	= false,
 625	.ret_type	= RET_INTEGER,
 626};
 627
 628BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
 629	   u64, flags, void *, data, u64, size)
 630{
 631	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 632		return -EINVAL;
 633
 634	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
 635}
 636
 637const struct bpf_func_proto bpf_event_output_data_proto =  {
 638	.func		= bpf_event_output_data,
 639	.gpl_only       = true,
 640	.ret_type       = RET_INTEGER,
 641	.arg1_type      = ARG_PTR_TO_CTX,
 642	.arg2_type      = ARG_CONST_MAP_PTR,
 643	.arg3_type      = ARG_ANYTHING,
 644	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
 645	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 646};
 647
 648BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
 649	   const void __user *, user_ptr)
 650{
 651	int ret = copy_from_user(dst, user_ptr, size);
 652
 653	if (unlikely(ret)) {
 654		memset(dst, 0, size);
 655		ret = -EFAULT;
 656	}
 657
 658	return ret;
 659}
 660
 661const struct bpf_func_proto bpf_copy_from_user_proto = {
 662	.func		= bpf_copy_from_user,
 663	.gpl_only	= false,
 664	.might_sleep	= true,
 665	.ret_type	= RET_INTEGER,
 666	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 667	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 668	.arg3_type	= ARG_ANYTHING,
 669};
 670
 671BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
 672	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
 673{
 674	int ret;
 675
 676	/* flags is not used yet */
 677	if (unlikely(flags))
 678		return -EINVAL;
 679
 680	if (unlikely(!size))
 681		return 0;
 682
 683	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
 684	if (ret == size)
 685		return 0;
 686
 687	memset(dst, 0, size);
 688	/* Return -EFAULT for partial read */
 689	return ret < 0 ? ret : -EFAULT;
 690}
 691
 692const struct bpf_func_proto bpf_copy_from_user_task_proto = {
 693	.func		= bpf_copy_from_user_task,
 694	.gpl_only	= true,
 695	.might_sleep	= true,
 696	.ret_type	= RET_INTEGER,
 697	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 698	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 699	.arg3_type	= ARG_ANYTHING,
 700	.arg4_type	= ARG_PTR_TO_BTF_ID,
 701	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 702	.arg5_type	= ARG_ANYTHING
 703};
 704
 705BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
 706{
 707	if (cpu >= nr_cpu_ids)
 708		return (unsigned long)NULL;
 709
 710	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
 711}
 712
 713const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
 714	.func		= bpf_per_cpu_ptr,
 715	.gpl_only	= false,
 716	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
 717	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
 718	.arg2_type	= ARG_ANYTHING,
 719};
 720
 721BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
 722{
 723	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
 724}
 725
 726const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
 727	.func		= bpf_this_cpu_ptr,
 728	.gpl_only	= false,
 729	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
 730	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
 731};
 732
 733static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 734		size_t bufsz)
 735{
 736	void __user *user_ptr = (__force void __user *)unsafe_ptr;
 737
 738	buf[0] = 0;
 739
 740	switch (fmt_ptype) {
 741	case 's':
 742#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 743		if ((unsigned long)unsafe_ptr < TASK_SIZE)
 744			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 745		fallthrough;
 746#endif
 747	case 'k':
 748		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 749	case 'u':
 750		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 751	}
 752
 753	return -EINVAL;
 754}
 755
 756/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
 757 * arguments representation.
 758 */
 759#define MAX_BPRINTF_BUF_LEN	512
 760
 761/* Support executing three nested bprintf helper calls on a given CPU */
 762#define MAX_BPRINTF_NEST_LEVEL	3
 763struct bpf_bprintf_buffers {
 764	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
 
 765};
 766static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
 
 767static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
 768
 769static int try_get_fmt_tmp_buf(char **tmp_buf)
 770{
 771	struct bpf_bprintf_buffers *bufs;
 772	int nest_level;
 773
 774	preempt_disable();
 775	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
 776	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
 777		this_cpu_dec(bpf_bprintf_nest_level);
 778		preempt_enable();
 779		return -EBUSY;
 780	}
 781	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
 782	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
 783
 784	return 0;
 785}
 786
 787void bpf_bprintf_cleanup(void)
 788{
 789	if (this_cpu_read(bpf_bprintf_nest_level)) {
 790		this_cpu_dec(bpf_bprintf_nest_level);
 791		preempt_enable();
 792	}
 
 
 793}
 794
 795/*
 796 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
 797 *
 798 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
 799 *
 800 * This can be used in two ways:
 801 * - Format string verification only: when bin_args is NULL
 802 * - Arguments preparation: in addition to the above verification, it writes in
 803 *   bin_args a binary representation of arguments usable by bstr_printf where
 804 *   pointers from BPF have been sanitized.
 805 *
 806 * In argument preparation mode, if 0 is returned, safe temporary buffers are
 807 * allocated and bpf_bprintf_cleanup should be called to free them after use.
 808 */
 809int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
 810			u32 **bin_args, u32 num_args)
 811{
 
 812	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
 
 813	size_t sizeof_cur_arg, sizeof_cur_ip;
 814	int err, i, num_spec = 0;
 815	u64 cur_arg;
 816	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
 817
 818	fmt_end = strnchr(fmt, fmt_size, 0);
 819	if (!fmt_end)
 820		return -EINVAL;
 821	fmt_size = fmt_end - fmt;
 822
 823	if (bin_args) {
 824		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
 825			return -EBUSY;
 826
 827		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
 828		*bin_args = (u32 *)tmp_buf;
 
 
 
 829	}
 830
 
 
 
 831	for (i = 0; i < fmt_size; i++) {
 832		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 833			err = -EINVAL;
 834			goto out;
 835		}
 836
 837		if (fmt[i] != '%')
 838			continue;
 839
 840		if (fmt[i + 1] == '%') {
 841			i++;
 842			continue;
 843		}
 844
 845		if (num_spec >= num_args) {
 846			err = -EINVAL;
 847			goto out;
 848		}
 849
 850		/* The string is zero-terminated so if fmt[i] != 0, we can
 851		 * always access fmt[i + 1], in the worst case it will be a 0
 852		 */
 853		i++;
 854
 855		/* skip optional "[0 +-][num]" width formatting field */
 856		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 857		       fmt[i] == ' ')
 858			i++;
 859		if (fmt[i] >= '1' && fmt[i] <= '9') {
 860			i++;
 861			while (fmt[i] >= '0' && fmt[i] <= '9')
 862				i++;
 863		}
 864
 865		if (fmt[i] == 'p') {
 866			sizeof_cur_arg = sizeof(long);
 867
 868			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
 869			    fmt[i + 2] == 's') {
 870				fmt_ptype = fmt[i + 1];
 871				i += 2;
 872				goto fmt_str;
 873			}
 874
 875			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
 876			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
 877			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
 878			    fmt[i + 1] == 'S') {
 879				/* just kernel pointers */
 880				if (tmp_buf)
 881					cur_arg = raw_args[num_spec];
 882				i++;
 883				goto nocopy_fmt;
 884			}
 885
 886			if (fmt[i + 1] == 'B') {
 887				if (tmp_buf)  {
 888					err = snprintf(tmp_buf,
 889						       (tmp_buf_end - tmp_buf),
 890						       "%pB",
 891						       (void *)(long)raw_args[num_spec]);
 892					tmp_buf += (err + 1);
 893				}
 894
 895				i++;
 896				num_spec++;
 897				continue;
 898			}
 899
 900			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 901			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
 902			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
 903				err = -EINVAL;
 904				goto out;
 905			}
 906
 907			i += 2;
 908			if (!tmp_buf)
 909				goto nocopy_fmt;
 910
 911			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
 912			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
 913				err = -ENOSPC;
 914				goto out;
 915			}
 916
 917			unsafe_ptr = (char *)(long)raw_args[num_spec];
 918			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
 919						       sizeof_cur_ip);
 920			if (err < 0)
 921				memset(cur_ip, 0, sizeof_cur_ip);
 922
 923			/* hack: bstr_printf expects IP addresses to be
 924			 * pre-formatted as strings, ironically, the easiest way
 925			 * to do that is to call snprintf.
 926			 */
 927			ip_spec[2] = fmt[i - 1];
 928			ip_spec[3] = fmt[i];
 929			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
 930				       ip_spec, &cur_ip);
 931
 932			tmp_buf += err + 1;
 933			num_spec++;
 934
 935			continue;
 936		} else if (fmt[i] == 's') {
 937			fmt_ptype = fmt[i];
 938fmt_str:
 939			if (fmt[i + 1] != 0 &&
 940			    !isspace(fmt[i + 1]) &&
 941			    !ispunct(fmt[i + 1])) {
 942				err = -EINVAL;
 943				goto out;
 944			}
 945
 946			if (!tmp_buf)
 947				goto nocopy_fmt;
 948
 949			if (tmp_buf_end == tmp_buf) {
 950				err = -ENOSPC;
 951				goto out;
 952			}
 953
 954			unsafe_ptr = (char *)(long)raw_args[num_spec];
 955			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
 956						    fmt_ptype,
 957						    tmp_buf_end - tmp_buf);
 958			if (err < 0) {
 959				tmp_buf[0] = '\0';
 960				err = 1;
 961			}
 962
 963			tmp_buf += err;
 964			num_spec++;
 965
 966			continue;
 967		} else if (fmt[i] == 'c') {
 968			if (!tmp_buf)
 969				goto nocopy_fmt;
 970
 971			if (tmp_buf_end == tmp_buf) {
 972				err = -ENOSPC;
 973				goto out;
 974			}
 975
 976			*tmp_buf = raw_args[num_spec];
 977			tmp_buf++;
 978			num_spec++;
 979
 980			continue;
 981		}
 982
 983		sizeof_cur_arg = sizeof(int);
 984
 985		if (fmt[i] == 'l') {
 986			sizeof_cur_arg = sizeof(long);
 987			i++;
 988		}
 989		if (fmt[i] == 'l') {
 990			sizeof_cur_arg = sizeof(long long);
 991			i++;
 992		}
 993
 994		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
 995		    fmt[i] != 'x' && fmt[i] != 'X') {
 996			err = -EINVAL;
 997			goto out;
 998		}
 999
1000		if (tmp_buf)
1001			cur_arg = raw_args[num_spec];
1002nocopy_fmt:
1003		if (tmp_buf) {
1004			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1005			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1006				err = -ENOSPC;
1007				goto out;
1008			}
1009
1010			if (sizeof_cur_arg == 8) {
1011				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1012				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1013			} else {
1014				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1015			}
1016			tmp_buf += sizeof_cur_arg;
1017		}
1018		num_spec++;
1019	}
1020
1021	err = 0;
1022out:
1023	if (err)
1024		bpf_bprintf_cleanup();
1025	return err;
1026}
1027
1028BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1029	   const void *, data, u32, data_len)
1030{
 
 
 
1031	int err, num_args;
1032	u32 *bin_args;
1033
1034	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1035	    (data_len && !data))
1036		return -EINVAL;
1037	num_args = data_len / 8;
1038
1039	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1040	 * can safely give an unbounded size.
1041	 */
1042	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1043	if (err < 0)
1044		return err;
1045
1046	err = bstr_printf(str, str_size, fmt, bin_args);
1047
1048	bpf_bprintf_cleanup();
1049
1050	return err + 1;
1051}
1052
1053const struct bpf_func_proto bpf_snprintf_proto = {
1054	.func		= bpf_snprintf,
1055	.gpl_only	= true,
1056	.ret_type	= RET_INTEGER,
1057	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1058	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1059	.arg3_type	= ARG_PTR_TO_CONST_STR,
1060	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1061	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1062};
1063
1064/* BPF map elements can contain 'struct bpf_timer'.
1065 * Such map owns all of its BPF timers.
1066 * 'struct bpf_timer' is allocated as part of map element allocation
1067 * and it's zero initialized.
1068 * That space is used to keep 'struct bpf_timer_kern'.
1069 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1070 * remembers 'struct bpf_map *' pointer it's part of.
1071 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1072 * bpf_timer_start() arms the timer.
1073 * If user space reference to a map goes to zero at this point
1074 * ops->map_release_uref callback is responsible for cancelling the timers,
1075 * freeing their memory, and decrementing prog's refcnts.
1076 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1077 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1078 * freeing the timers when inner map is replaced or deleted by user space.
1079 */
1080struct bpf_hrtimer {
1081	struct hrtimer timer;
1082	struct bpf_map *map;
1083	struct bpf_prog *prog;
1084	void __rcu *callback_fn;
1085	void *value;
 
1086};
1087
1088/* the actual struct hidden inside uapi struct bpf_timer */
1089struct bpf_timer_kern {
1090	struct bpf_hrtimer *timer;
1091	/* bpf_spin_lock is used here instead of spinlock_t to make
1092	 * sure that it always fits into space reserved by struct bpf_timer
1093	 * regardless of LOCKDEP and spinlock debug flags.
1094	 */
1095	struct bpf_spin_lock lock;
1096} __attribute__((aligned(8)));
1097
1098static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1099
1100static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1101{
1102	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1103	struct bpf_map *map = t->map;
1104	void *value = t->value;
1105	bpf_callback_t callback_fn;
1106	void *key;
1107	u32 idx;
1108
1109	BTF_TYPE_EMIT(struct bpf_timer);
1110	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1111	if (!callback_fn)
1112		goto out;
1113
1114	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1115	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1116	 * Remember the timer this callback is servicing to prevent
1117	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1118	 * bpf_map_delete_elem() on the same timer.
1119	 */
1120	this_cpu_write(hrtimer_running, t);
1121	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1122		struct bpf_array *array = container_of(map, struct bpf_array, map);
1123
1124		/* compute the key */
1125		idx = ((char *)value - array->value) / array->elem_size;
1126		key = &idx;
1127	} else { /* hash or lru */
1128		key = value - round_up(map->key_size, 8);
1129	}
1130
1131	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1132	/* The verifier checked that return value is zero. */
1133
1134	this_cpu_write(hrtimer_running, NULL);
1135out:
1136	return HRTIMER_NORESTART;
1137}
1138
1139BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1140	   u64, flags)
1141{
1142	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1143	struct bpf_hrtimer *t;
1144	int ret = 0;
1145
1146	BUILD_BUG_ON(MAX_CLOCKS != 16);
1147	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1148	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1149
1150	if (in_nmi())
1151		return -EOPNOTSUPP;
1152
1153	if (flags >= MAX_CLOCKS ||
1154	    /* similar to timerfd except _ALARM variants are not supported */
1155	    (clockid != CLOCK_MONOTONIC &&
1156	     clockid != CLOCK_REALTIME &&
1157	     clockid != CLOCK_BOOTTIME))
1158		return -EINVAL;
1159	__bpf_spin_lock_irqsave(&timer->lock);
1160	t = timer->timer;
1161	if (t) {
1162		ret = -EBUSY;
1163		goto out;
1164	}
1165	if (!atomic64_read(&map->usercnt)) {
1166		/* maps with timers must be either held by user space
1167		 * or pinned in bpffs.
1168		 */
1169		ret = -EPERM;
1170		goto out;
1171	}
1172	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1173	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1174	if (!t) {
1175		ret = -ENOMEM;
1176		goto out;
1177	}
1178	t->value = (void *)timer - map->record->timer_off;
1179	t->map = map;
1180	t->prog = NULL;
1181	rcu_assign_pointer(t->callback_fn, NULL);
1182	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1183	t->timer.function = bpf_timer_cb;
1184	timer->timer = t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185out:
1186	__bpf_spin_unlock_irqrestore(&timer->lock);
1187	return ret;
1188}
1189
1190static const struct bpf_func_proto bpf_timer_init_proto = {
1191	.func		= bpf_timer_init,
1192	.gpl_only	= true,
1193	.ret_type	= RET_INTEGER,
1194	.arg1_type	= ARG_PTR_TO_TIMER,
1195	.arg2_type	= ARG_CONST_MAP_PTR,
1196	.arg3_type	= ARG_ANYTHING,
1197};
1198
1199BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1200	   struct bpf_prog_aux *, aux)
1201{
1202	struct bpf_prog *prev, *prog = aux->prog;
1203	struct bpf_hrtimer *t;
1204	int ret = 0;
1205
1206	if (in_nmi())
1207		return -EOPNOTSUPP;
1208	__bpf_spin_lock_irqsave(&timer->lock);
1209	t = timer->timer;
1210	if (!t) {
1211		ret = -EINVAL;
1212		goto out;
1213	}
1214	if (!atomic64_read(&t->map->usercnt)) {
1215		/* maps with timers must be either held by user space
1216		 * or pinned in bpffs. Otherwise timer might still be
1217		 * running even when bpf prog is detached and user space
1218		 * is gone, since map_release_uref won't ever be called.
1219		 */
1220		ret = -EPERM;
1221		goto out;
1222	}
1223	prev = t->prog;
1224	if (prev != prog) {
1225		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1226		 * can pick different callback_fn-s within the same prog.
1227		 */
1228		prog = bpf_prog_inc_not_zero(prog);
1229		if (IS_ERR(prog)) {
1230			ret = PTR_ERR(prog);
1231			goto out;
1232		}
1233		if (prev)
1234			/* Drop prev prog refcnt when swapping with new prog */
1235			bpf_prog_put(prev);
1236		t->prog = prog;
1237	}
1238	rcu_assign_pointer(t->callback_fn, callback_fn);
1239out:
1240	__bpf_spin_unlock_irqrestore(&timer->lock);
1241	return ret;
1242}
1243
1244static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1245	.func		= bpf_timer_set_callback,
1246	.gpl_only	= true,
1247	.ret_type	= RET_INTEGER,
1248	.arg1_type	= ARG_PTR_TO_TIMER,
1249	.arg2_type	= ARG_PTR_TO_FUNC,
1250};
1251
1252BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1253{
1254	struct bpf_hrtimer *t;
1255	int ret = 0;
 
1256
1257	if (in_nmi())
1258		return -EOPNOTSUPP;
1259	if (flags)
1260		return -EINVAL;
1261	__bpf_spin_lock_irqsave(&timer->lock);
1262	t = timer->timer;
1263	if (!t || !t->prog) {
1264		ret = -EINVAL;
1265		goto out;
1266	}
1267	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
 
 
 
 
 
 
 
 
 
1268out:
1269	__bpf_spin_unlock_irqrestore(&timer->lock);
1270	return ret;
1271}
1272
1273static const struct bpf_func_proto bpf_timer_start_proto = {
1274	.func		= bpf_timer_start,
1275	.gpl_only	= true,
1276	.ret_type	= RET_INTEGER,
1277	.arg1_type	= ARG_PTR_TO_TIMER,
1278	.arg2_type	= ARG_ANYTHING,
1279	.arg3_type	= ARG_ANYTHING,
1280};
1281
1282static void drop_prog_refcnt(struct bpf_hrtimer *t)
1283{
1284	struct bpf_prog *prog = t->prog;
1285
1286	if (prog) {
1287		bpf_prog_put(prog);
1288		t->prog = NULL;
1289		rcu_assign_pointer(t->callback_fn, NULL);
1290	}
1291}
1292
1293BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1294{
1295	struct bpf_hrtimer *t;
1296	int ret = 0;
1297
1298	if (in_nmi())
1299		return -EOPNOTSUPP;
 
1300	__bpf_spin_lock_irqsave(&timer->lock);
1301	t = timer->timer;
1302	if (!t) {
1303		ret = -EINVAL;
1304		goto out;
1305	}
1306	if (this_cpu_read(hrtimer_running) == t) {
1307		/* If bpf callback_fn is trying to bpf_timer_cancel()
1308		 * its own timer the hrtimer_cancel() will deadlock
1309		 * since it waits for callback_fn to finish
1310		 */
1311		ret = -EDEADLK;
1312		goto out;
1313	}
1314	drop_prog_refcnt(t);
1315out:
1316	__bpf_spin_unlock_irqrestore(&timer->lock);
1317	/* Cancel the timer and wait for associated callback to finish
1318	 * if it was running.
1319	 */
1320	ret = ret ?: hrtimer_cancel(&t->timer);
 
1321	return ret;
1322}
1323
1324static const struct bpf_func_proto bpf_timer_cancel_proto = {
1325	.func		= bpf_timer_cancel,
1326	.gpl_only	= true,
1327	.ret_type	= RET_INTEGER,
1328	.arg1_type	= ARG_PTR_TO_TIMER,
1329};
1330
1331/* This function is called by map_delete/update_elem for individual element and
1332 * by ops->map_release_uref when the user space reference to a map reaches zero.
1333 */
1334void bpf_timer_cancel_and_free(void *val)
1335{
1336	struct bpf_timer_kern *timer = val;
1337	struct bpf_hrtimer *t;
1338
1339	/* Performance optimization: read timer->timer without lock first. */
1340	if (!READ_ONCE(timer->timer))
1341		return;
1342
1343	__bpf_spin_lock_irqsave(&timer->lock);
1344	/* re-read it under lock */
1345	t = timer->timer;
1346	if (!t)
1347		goto out;
1348	drop_prog_refcnt(t);
1349	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1350	 * this timer, since it won't be initialized.
1351	 */
1352	timer->timer = NULL;
1353out:
1354	__bpf_spin_unlock_irqrestore(&timer->lock);
1355	if (!t)
1356		return;
1357	/* Cancel the timer and wait for callback to complete if it was running.
1358	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1359	 * right after for both preallocated and non-preallocated maps.
1360	 * The timer->timer = NULL was already done and no code path can
1361	 * see address 't' anymore.
1362	 *
1363	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1364	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1365	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1366	 * return -1). Though callback_fn is still running on this cpu it's
1367	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1368	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1369	 * since timer->timer = NULL was already done. The timer will be
1370	 * effectively cancelled because bpf_timer_cb() will return
1371	 * HRTIMER_NORESTART.
1372	 */
1373	if (this_cpu_read(hrtimer_running) != t)
1374		hrtimer_cancel(&t->timer);
1375	kfree(t);
1376}
1377
1378BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1379{
1380	unsigned long *kptr = map_value;
1381
1382	return xchg(kptr, (unsigned long)ptr);
1383}
1384
1385/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1386 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1387 * denote type that verifier will determine.
1388 */
1389static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1390	.func         = bpf_kptr_xchg,
1391	.gpl_only     = false,
1392	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1393	.ret_btf_id   = BPF_PTR_POISON,
1394	.arg1_type    = ARG_PTR_TO_KPTR,
1395	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1396	.arg2_btf_id  = BPF_PTR_POISON,
1397};
1398
1399/* Since the upper 8 bits of dynptr->size is reserved, the
1400 * maximum supported size is 2^24 - 1.
1401 */
1402#define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1403#define DYNPTR_TYPE_SHIFT	28
1404#define DYNPTR_SIZE_MASK	0xFFFFFF
1405#define DYNPTR_RDONLY_BIT	BIT(31)
1406
1407static bool bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1408{
1409	return ptr->size & DYNPTR_RDONLY_BIT;
1410}
1411
 
 
 
 
 
1412static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1413{
1414	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1415}
1416
1417u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr)
 
 
 
 
 
1418{
1419	return ptr->size & DYNPTR_SIZE_MASK;
1420}
1421
 
 
 
 
 
 
 
1422int bpf_dynptr_check_size(u32 size)
1423{
1424	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1425}
1426
1427void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1428		     enum bpf_dynptr_type type, u32 offset, u32 size)
1429{
1430	ptr->data = data;
1431	ptr->offset = offset;
1432	ptr->size = size;
1433	bpf_dynptr_set_type(ptr, type);
1434}
1435
1436void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1437{
1438	memset(ptr, 0, sizeof(*ptr));
1439}
1440
1441static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1442{
1443	u32 size = bpf_dynptr_get_size(ptr);
1444
1445	if (len > size || offset > size - len)
1446		return -E2BIG;
1447
1448	return 0;
1449}
1450
1451BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1452{
1453	int err;
1454
1455	BTF_TYPE_EMIT(struct bpf_dynptr);
1456
1457	err = bpf_dynptr_check_size(size);
1458	if (err)
1459		goto error;
1460
1461	/* flags is currently unsupported */
1462	if (flags) {
1463		err = -EINVAL;
1464		goto error;
1465	}
1466
1467	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1468
1469	return 0;
1470
1471error:
1472	bpf_dynptr_set_null(ptr);
1473	return err;
1474}
1475
1476static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1477	.func		= bpf_dynptr_from_mem,
1478	.gpl_only	= false,
1479	.ret_type	= RET_INTEGER,
1480	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1481	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1482	.arg3_type	= ARG_ANYTHING,
1483	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1484};
1485
1486BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1487	   u32, offset, u64, flags)
1488{
 
1489	int err;
1490
1491	if (!src->data || flags)
1492		return -EINVAL;
1493
1494	err = bpf_dynptr_check_off_len(src, offset, len);
1495	if (err)
1496		return err;
1497
1498	/* Source and destination may possibly overlap, hence use memmove to
1499	 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1500	 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1501	 */
1502	memmove(dst, src->data + src->offset + offset, len);
1503
1504	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507static const struct bpf_func_proto bpf_dynptr_read_proto = {
1508	.func		= bpf_dynptr_read,
1509	.gpl_only	= false,
1510	.ret_type	= RET_INTEGER,
1511	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1512	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1513	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1514	.arg4_type	= ARG_ANYTHING,
1515	.arg5_type	= ARG_ANYTHING,
1516};
1517
1518BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1519	   u32, len, u64, flags)
1520{
 
1521	int err;
1522
1523	if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1524		return -EINVAL;
1525
1526	err = bpf_dynptr_check_off_len(dst, offset, len);
1527	if (err)
1528		return err;
1529
1530	/* Source and destination may possibly overlap, hence use memmove to
1531	 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1532	 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1533	 */
1534	memmove(dst->data + dst->offset + offset, src, len);
1535
1536	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537}
1538
1539static const struct bpf_func_proto bpf_dynptr_write_proto = {
1540	.func		= bpf_dynptr_write,
1541	.gpl_only	= false,
1542	.ret_type	= RET_INTEGER,
1543	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1544	.arg2_type	= ARG_ANYTHING,
1545	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1546	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1547	.arg5_type	= ARG_ANYTHING,
1548};
1549
1550BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1551{
 
1552	int err;
1553
1554	if (!ptr->data)
1555		return 0;
1556
1557	err = bpf_dynptr_check_off_len(ptr, offset, len);
1558	if (err)
1559		return 0;
1560
1561	if (bpf_dynptr_is_rdonly(ptr))
1562		return 0;
1563
1564	return (unsigned long)(ptr->data + ptr->offset + offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567static const struct bpf_func_proto bpf_dynptr_data_proto = {
1568	.func		= bpf_dynptr_data,
1569	.gpl_only	= false,
1570	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1571	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1572	.arg2_type	= ARG_ANYTHING,
1573	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1574};
1575
1576const struct bpf_func_proto bpf_get_current_task_proto __weak;
1577const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1578const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1579const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1580const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1581const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1582const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1583
1584const struct bpf_func_proto *
1585bpf_base_func_proto(enum bpf_func_id func_id)
1586{
1587	switch (func_id) {
1588	case BPF_FUNC_map_lookup_elem:
1589		return &bpf_map_lookup_elem_proto;
1590	case BPF_FUNC_map_update_elem:
1591		return &bpf_map_update_elem_proto;
1592	case BPF_FUNC_map_delete_elem:
1593		return &bpf_map_delete_elem_proto;
1594	case BPF_FUNC_map_push_elem:
1595		return &bpf_map_push_elem_proto;
1596	case BPF_FUNC_map_pop_elem:
1597		return &bpf_map_pop_elem_proto;
1598	case BPF_FUNC_map_peek_elem:
1599		return &bpf_map_peek_elem_proto;
1600	case BPF_FUNC_map_lookup_percpu_elem:
1601		return &bpf_map_lookup_percpu_elem_proto;
1602	case BPF_FUNC_get_prandom_u32:
1603		return &bpf_get_prandom_u32_proto;
1604	case BPF_FUNC_get_smp_processor_id:
1605		return &bpf_get_raw_smp_processor_id_proto;
1606	case BPF_FUNC_get_numa_node_id:
1607		return &bpf_get_numa_node_id_proto;
1608	case BPF_FUNC_tail_call:
1609		return &bpf_tail_call_proto;
1610	case BPF_FUNC_ktime_get_ns:
1611		return &bpf_ktime_get_ns_proto;
1612	case BPF_FUNC_ktime_get_boot_ns:
1613		return &bpf_ktime_get_boot_ns_proto;
1614	case BPF_FUNC_ktime_get_tai_ns:
1615		return &bpf_ktime_get_tai_ns_proto;
1616	case BPF_FUNC_ringbuf_output:
1617		return &bpf_ringbuf_output_proto;
1618	case BPF_FUNC_ringbuf_reserve:
1619		return &bpf_ringbuf_reserve_proto;
1620	case BPF_FUNC_ringbuf_submit:
1621		return &bpf_ringbuf_submit_proto;
1622	case BPF_FUNC_ringbuf_discard:
1623		return &bpf_ringbuf_discard_proto;
1624	case BPF_FUNC_ringbuf_query:
1625		return &bpf_ringbuf_query_proto;
1626	case BPF_FUNC_strncmp:
1627		return &bpf_strncmp_proto;
1628	case BPF_FUNC_strtol:
1629		return &bpf_strtol_proto;
1630	case BPF_FUNC_strtoul:
1631		return &bpf_strtoul_proto;
1632	default:
1633		break;
1634	}
1635
1636	if (!bpf_capable())
1637		return NULL;
1638
1639	switch (func_id) {
1640	case BPF_FUNC_spin_lock:
1641		return &bpf_spin_lock_proto;
1642	case BPF_FUNC_spin_unlock:
1643		return &bpf_spin_unlock_proto;
1644	case BPF_FUNC_jiffies64:
1645		return &bpf_jiffies64_proto;
1646	case BPF_FUNC_per_cpu_ptr:
1647		return &bpf_per_cpu_ptr_proto;
1648	case BPF_FUNC_this_cpu_ptr:
1649		return &bpf_this_cpu_ptr_proto;
1650	case BPF_FUNC_timer_init:
1651		return &bpf_timer_init_proto;
1652	case BPF_FUNC_timer_set_callback:
1653		return &bpf_timer_set_callback_proto;
1654	case BPF_FUNC_timer_start:
1655		return &bpf_timer_start_proto;
1656	case BPF_FUNC_timer_cancel:
1657		return &bpf_timer_cancel_proto;
1658	case BPF_FUNC_kptr_xchg:
1659		return &bpf_kptr_xchg_proto;
1660	case BPF_FUNC_for_each_map_elem:
1661		return &bpf_for_each_map_elem_proto;
1662	case BPF_FUNC_loop:
1663		return &bpf_loop_proto;
1664	case BPF_FUNC_user_ringbuf_drain:
1665		return &bpf_user_ringbuf_drain_proto;
1666	case BPF_FUNC_ringbuf_reserve_dynptr:
1667		return &bpf_ringbuf_reserve_dynptr_proto;
1668	case BPF_FUNC_ringbuf_submit_dynptr:
1669		return &bpf_ringbuf_submit_dynptr_proto;
1670	case BPF_FUNC_ringbuf_discard_dynptr:
1671		return &bpf_ringbuf_discard_dynptr_proto;
1672	case BPF_FUNC_dynptr_from_mem:
1673		return &bpf_dynptr_from_mem_proto;
1674	case BPF_FUNC_dynptr_read:
1675		return &bpf_dynptr_read_proto;
1676	case BPF_FUNC_dynptr_write:
1677		return &bpf_dynptr_write_proto;
1678	case BPF_FUNC_dynptr_data:
1679		return &bpf_dynptr_data_proto;
1680#ifdef CONFIG_CGROUPS
1681	case BPF_FUNC_cgrp_storage_get:
1682		return &bpf_cgrp_storage_get_proto;
1683	case BPF_FUNC_cgrp_storage_delete:
1684		return &bpf_cgrp_storage_delete_proto;
 
 
 
 
1685#endif
1686	default:
1687		break;
1688	}
1689
1690	if (!perfmon_capable())
1691		return NULL;
1692
1693	switch (func_id) {
1694	case BPF_FUNC_trace_printk:
1695		return bpf_get_trace_printk_proto();
1696	case BPF_FUNC_get_current_task:
1697		return &bpf_get_current_task_proto;
1698	case BPF_FUNC_get_current_task_btf:
1699		return &bpf_get_current_task_btf_proto;
1700	case BPF_FUNC_probe_read_user:
1701		return &bpf_probe_read_user_proto;
1702	case BPF_FUNC_probe_read_kernel:
1703		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1704		       NULL : &bpf_probe_read_kernel_proto;
1705	case BPF_FUNC_probe_read_user_str:
1706		return &bpf_probe_read_user_str_proto;
1707	case BPF_FUNC_probe_read_kernel_str:
1708		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1709		       NULL : &bpf_probe_read_kernel_str_proto;
1710	case BPF_FUNC_snprintf_btf:
1711		return &bpf_snprintf_btf_proto;
1712	case BPF_FUNC_snprintf:
1713		return &bpf_snprintf_proto;
1714	case BPF_FUNC_task_pt_regs:
1715		return &bpf_task_pt_regs_proto;
1716	case BPF_FUNC_trace_vprintk:
1717		return bpf_get_trace_vprintk_proto();
1718	default:
1719		return NULL;
1720	}
1721}
1722
1723void bpf_list_head_free(const struct btf_field *field, void *list_head,
1724			struct bpf_spin_lock *spin_lock)
1725{
1726	struct list_head *head = list_head, *orig_head = list_head;
1727
1728	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1729	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1730
1731	/* Do the actual list draining outside the lock to not hold the lock for
1732	 * too long, and also prevent deadlocks if tracing programs end up
1733	 * executing on entry/exit of functions called inside the critical
1734	 * section, and end up doing map ops that call bpf_list_head_free for
1735	 * the same map value again.
1736	 */
1737	__bpf_spin_lock_irqsave(spin_lock);
1738	if (!head->next || list_empty(head))
1739		goto unlock;
1740	head = head->next;
1741unlock:
1742	INIT_LIST_HEAD(orig_head);
1743	__bpf_spin_unlock_irqrestore(spin_lock);
1744
1745	while (head != orig_head) {
1746		void *obj = head;
1747
1748		obj -= field->list_head.node_offset;
1749		head = head->next;
1750		/* The contained type can also have resources, including a
1751		 * bpf_list_head which needs to be freed.
1752		 */
1753		bpf_obj_free_fields(field->list_head.value_rec, obj);
1754		/* bpf_mem_free requires migrate_disable(), since we can be
1755		 * called from map free path as well apart from BPF program (as
1756		 * part of map ops doing bpf_obj_free_fields).
1757		 */
1758		migrate_disable();
1759		bpf_mem_free(&bpf_global_ma, obj);
1760		migrate_enable();
1761	}
1762}
1763
1764__diag_push();
1765__diag_ignore_all("-Wmissing-prototypes",
1766		  "Global functions as their definitions will be in vmlinux BTF");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767
1768void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
 
 
 
 
 
 
 
 
 
 
 
 
 
1769{
1770	struct btf_struct_meta *meta = meta__ign;
1771	u64 size = local_type_id__k;
1772	void *p;
1773
1774	p = bpf_mem_alloc(&bpf_global_ma, size);
1775	if (!p)
1776		return NULL;
1777	if (meta)
1778		bpf_obj_init(meta->field_offs, p);
1779	return p;
1780}
1781
1782void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783{
1784	struct btf_struct_meta *meta = meta__ign;
1785	void *p = p__alloc;
1786
1787	if (meta)
1788		bpf_obj_free_fields(meta->record, p);
1789	bpf_mem_free(&bpf_global_ma, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790}
1791
1792static void __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail)
 
 
1793{
1794	struct list_head *n = (void *)node, *h = (void *)head;
1795
 
 
 
1796	if (unlikely(!h->next))
1797		INIT_LIST_HEAD(h);
1798	if (unlikely(!n->next))
1799		INIT_LIST_HEAD(n);
 
 
 
 
 
 
 
 
1800	tail ? list_add_tail(n, h) : list_add(n, h);
 
 
 
1801}
1802
1803void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node)
 
 
1804{
1805	return __bpf_list_add(node, head, false);
 
 
 
1806}
1807
1808void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node)
 
 
1809{
1810	return __bpf_list_add(node, head, true);
 
 
 
1811}
1812
1813static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
1814{
1815	struct list_head *n, *h = (void *)head;
 
1816
 
 
 
1817	if (unlikely(!h->next))
1818		INIT_LIST_HEAD(h);
1819	if (list_empty(h))
1820		return NULL;
 
1821	n = tail ? h->prev : h->next;
 
 
 
 
1822	list_del_init(n);
 
1823	return (struct bpf_list_node *)n;
1824}
1825
1826struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
1827{
1828	return __bpf_list_del(head, false);
1829}
1830
1831struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
1832{
1833	return __bpf_list_del(head, true);
1834}
1835
1836/**
1837 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
1838 * kfunc which is not stored in a map as a kptr, must be released by calling
1839 * bpf_task_release().
1840 * @p: The task on which a reference is being acquired.
1841 */
1842struct task_struct *bpf_task_acquire(struct task_struct *p)
1843{
1844	return get_task_struct(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
1845}
1846
1847/**
1848 * bpf_task_acquire_not_zero - Acquire a reference to a rcu task object. A task
1849 * acquired by this kfunc which is not stored in a map as a kptr, must be
1850 * released by calling bpf_task_release().
1851 * @p: The task on which a reference is being acquired.
1852 */
1853struct task_struct *bpf_task_acquire_not_zero(struct task_struct *p)
1854{
1855	/* For the time being this function returns NULL, as it's not currently
1856	 * possible to safely acquire a reference to a task with RCU protection
1857	 * using get_task_struct() and put_task_struct(). This is due to the
1858	 * slightly odd mechanics of p->rcu_users, and how task RCU protection
1859	 * works.
1860	 *
1861	 * A struct task_struct is refcounted by two different refcount_t
1862	 * fields:
1863	 *
1864	 * 1. p->usage:     The "true" refcount field which tracks a task's
1865	 *		    lifetime. The task is freed as soon as this
1866	 *		    refcount drops to 0.
1867	 *
1868	 * 2. p->rcu_users: An "RCU users" refcount field which is statically
1869	 *		    initialized to 2, and is co-located in a union with
1870	 *		    a struct rcu_head field (p->rcu). p->rcu_users
1871	 *		    essentially encapsulates a single p->usage
1872	 *		    refcount, and when p->rcu_users goes to 0, an RCU
1873	 *		    callback is scheduled on the struct rcu_head which
1874	 *		    decrements the p->usage refcount.
1875	 *
1876	 * There are two important implications to this task refcounting logic
1877	 * described above. The first is that
1878	 * refcount_inc_not_zero(&p->rcu_users) cannot be used anywhere, as
1879	 * after the refcount goes to 0, the RCU callback being scheduled will
1880	 * cause the memory backing the refcount to again be nonzero due to the
1881	 * fields sharing a union. The other is that we can't rely on RCU to
1882	 * guarantee that a task is valid in a BPF program. This is because a
1883	 * task could have already transitioned to being in the TASK_DEAD
1884	 * state, had its rcu_users refcount go to 0, and its rcu callback
1885	 * invoked in which it drops its single p->usage reference. At this
1886	 * point the task will be freed as soon as the last p->usage reference
1887	 * goes to 0, without waiting for another RCU gp to elapse. The only
1888	 * way that a BPF program can guarantee that a task is valid is in this
1889	 * scenario is to hold a p->usage refcount itself.
1890	 *
1891	 * Until we're able to resolve this issue, either by pulling
1892	 * p->rcu_users and p->rcu out of the union, or by getting rid of
1893	 * p->usage and just using p->rcu_users for refcounting, we'll just
1894	 * return NULL here.
1895	 */
1896	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * bpf_task_kptr_get - Acquire a reference on a struct task_struct kptr. A task
1901 * kptr acquired by this kfunc which is not subsequently stored in a map, must
1902 * be released by calling bpf_task_release().
1903 * @pp: A pointer to a task kptr on which a reference is being acquired.
1904 */
1905struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
1906{
1907	/* We must return NULL here until we have clarity on how to properly
1908	 * leverage RCU for ensuring a task's lifetime. See the comment above
1909	 * in bpf_task_acquire_not_zero() for more details.
1910	 */
1911	return NULL;
1912}
1913
1914/**
1915 * bpf_task_release - Release the reference acquired on a task.
1916 * @p: The task on which a reference is being released.
1917 */
1918void bpf_task_release(struct task_struct *p)
1919{
1920	if (!p)
1921		return;
1922
1923	put_task_struct(p);
 
 
1924}
 
1925
1926#ifdef CONFIG_CGROUPS
1927/**
1928 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
1929 * this kfunc which is not stored in a map as a kptr, must be released by
1930 * calling bpf_cgroup_release().
1931 * @cgrp: The cgroup on which a reference is being acquired.
1932 */
1933struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
1934{
1935	cgroup_get(cgrp);
1936	return cgrp;
1937}
1938
1939/**
1940 * bpf_cgroup_kptr_get - Acquire a reference on a struct cgroup kptr. A cgroup
1941 * kptr acquired by this kfunc which is not subsequently stored in a map, must
1942 * be released by calling bpf_cgroup_release().
1943 * @cgrpp: A pointer to a cgroup kptr on which a reference is being acquired.
1944 */
1945struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp)
1946{
1947	struct cgroup *cgrp;
1948
1949	rcu_read_lock();
1950	/* Another context could remove the cgroup from the map and release it
1951	 * at any time, including after we've done the lookup above. This is
1952	 * safe because we're in an RCU read region, so the cgroup is
1953	 * guaranteed to remain valid until at least the rcu_read_unlock()
1954	 * below.
1955	 */
1956	cgrp = READ_ONCE(*cgrpp);
1957
1958	if (cgrp && !cgroup_tryget(cgrp))
1959		/* If the cgroup had been removed from the map and freed as
1960		 * described above, cgroup_tryget() will return false. The
1961		 * cgroup will be freed at some point after the current RCU gp
1962		 * has ended, so just return NULL to the user.
1963		 */
1964		cgrp = NULL;
1965	rcu_read_unlock();
1966
1967	return cgrp;
1968}
1969
1970/**
1971 * bpf_cgroup_release - Release the reference acquired on a cgroup.
1972 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
1973 * not be freed until the current grace period has ended, even if its refcount
1974 * drops to 0.
1975 * @cgrp: The cgroup on which a reference is being released.
1976 */
1977void bpf_cgroup_release(struct cgroup *cgrp)
1978{
1979	if (!cgrp)
1980		return;
1981
 
 
1982	cgroup_put(cgrp);
1983}
 
1984
1985/**
1986 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
1987 * array. A cgroup returned by this kfunc which is not subsequently stored in a
1988 * map, must be released by calling bpf_cgroup_release().
1989 * @cgrp: The cgroup for which we're performing a lookup.
1990 * @level: The level of ancestor to look up.
1991 */
1992struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
1993{
1994	struct cgroup *ancestor;
1995
1996	if (level > cgrp->level || level < 0)
1997		return NULL;
1998
 
1999	ancestor = cgrp->ancestors[level];
2000	cgroup_get(ancestor);
 
2001	return ancestor;
2002}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003#endif /* CONFIG_CGROUPS */
2004
2005/**
2006 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2007 * in the root pid namespace idr. If a task is returned, it must either be
2008 * stored in a map, or released with bpf_task_release().
2009 * @pid: The pid of the task being looked up.
2010 */
2011struct task_struct *bpf_task_from_pid(s32 pid)
2012{
2013	struct task_struct *p;
2014
2015	rcu_read_lock();
2016	p = find_task_by_pid_ns(pid, &init_pid_ns);
2017	if (p)
2018		bpf_task_acquire(p);
2019	rcu_read_unlock();
2020
2021	return p;
2022}
2023
2024void *bpf_cast_to_kern_ctx(void *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025{
2026	return obj;
2027}
2028
2029void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2030{
2031	return obj__ign;
2032}
2033
2034void bpf_rcu_read_lock(void)
2035{
2036	rcu_read_lock();
2037}
2038
2039void bpf_rcu_read_unlock(void)
2040{
2041	rcu_read_unlock();
2042}
2043
2044__diag_pop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046BTF_SET8_START(generic_btf_ids)
2047#ifdef CONFIG_KEXEC_CORE
2048BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2049#endif
2050BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
 
2051BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2052BTF_ID_FLAGS(func, bpf_list_push_front)
2053BTF_ID_FLAGS(func, bpf_list_push_back)
 
 
2054BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2055BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2056BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
2057BTF_ID_FLAGS(func, bpf_task_acquire_not_zero, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2058BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
2059BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
 
 
 
 
2060#ifdef CONFIG_CGROUPS
2061BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
2062BTF_ID_FLAGS(func, bpf_cgroup_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
2063BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2064BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_TRUSTED_ARGS | KF_RET_NULL)
 
 
 
2065#endif
2066BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
 
2067BTF_SET8_END(generic_btf_ids)
2068
2069static const struct btf_kfunc_id_set generic_kfunc_set = {
2070	.owner = THIS_MODULE,
2071	.set   = &generic_btf_ids,
2072};
2073
2074
2075BTF_ID_LIST(generic_dtor_ids)
2076BTF_ID(struct, task_struct)
2077BTF_ID(func, bpf_task_release)
2078#ifdef CONFIG_CGROUPS
2079BTF_ID(struct, cgroup)
2080BTF_ID(func, bpf_cgroup_release)
2081#endif
2082
2083BTF_SET8_START(common_btf_ids)
2084BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2085BTF_ID_FLAGS(func, bpf_rdonly_cast)
2086BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2087BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088BTF_SET8_END(common_btf_ids)
2089
2090static const struct btf_kfunc_id_set common_kfunc_set = {
2091	.owner = THIS_MODULE,
2092	.set   = &common_btf_ids,
2093};
2094
2095static int __init kfunc_init(void)
2096{
2097	int ret;
2098	const struct btf_id_dtor_kfunc generic_dtors[] = {
2099		{
2100			.btf_id       = generic_dtor_ids[0],
2101			.kfunc_btf_id = generic_dtor_ids[1]
2102		},
2103#ifdef CONFIG_CGROUPS
2104		{
2105			.btf_id       = generic_dtor_ids[2],
2106			.kfunc_btf_id = generic_dtor_ids[3]
2107		},
2108#endif
2109	};
2110
2111	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2112	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
 
2113	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2114	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2115						  ARRAY_SIZE(generic_dtors),
2116						  THIS_MODULE);
2117	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2118}
2119
2120late_initcall(kfunc_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#include <linux/bpf.h>
   5#include <linux/btf.h>
   6#include <linux/bpf-cgroup.h>
   7#include <linux/cgroup.h>
   8#include <linux/rcupdate.h>
   9#include <linux/random.h>
  10#include <linux/smp.h>
  11#include <linux/topology.h>
  12#include <linux/ktime.h>
  13#include <linux/sched.h>
  14#include <linux/uidgid.h>
  15#include <linux/filter.h>
  16#include <linux/ctype.h>
  17#include <linux/jiffies.h>
  18#include <linux/pid_namespace.h>
  19#include <linux/poison.h>
  20#include <linux/proc_ns.h>
  21#include <linux/sched/task.h>
  22#include <linux/security.h>
  23#include <linux/btf_ids.h>
  24#include <linux/bpf_mem_alloc.h>
  25#include <linux/kasan.h>
  26
  27#include "../../lib/kstrtox.h"
  28
  29/* If kernel subsystem is allowing eBPF programs to call this function,
  30 * inside its own verifier_ops->get_func_proto() callback it should return
  31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
  32 *
  33 * Different map implementations will rely on rcu in map methods
  34 * lookup/update/delete, therefore eBPF programs must run under rcu lock
  35 * if program is allowed to access maps, so check rcu_read_lock_held() or
  36 * rcu_read_lock_trace_held() in all three functions.
  37 */
  38BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
  39{
  40	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
  41		     !rcu_read_lock_bh_held());
  42	return (unsigned long) map->ops->map_lookup_elem(map, key);
  43}
  44
  45const struct bpf_func_proto bpf_map_lookup_elem_proto = {
  46	.func		= bpf_map_lookup_elem,
  47	.gpl_only	= false,
  48	.pkt_access	= true,
  49	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
  50	.arg1_type	= ARG_CONST_MAP_PTR,
  51	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  52};
  53
  54BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
  55	   void *, value, u64, flags)
  56{
  57	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
  58		     !rcu_read_lock_bh_held());
  59	return map->ops->map_update_elem(map, key, value, flags);
  60}
  61
  62const struct bpf_func_proto bpf_map_update_elem_proto = {
  63	.func		= bpf_map_update_elem,
  64	.gpl_only	= false,
  65	.pkt_access	= true,
  66	.ret_type	= RET_INTEGER,
  67	.arg1_type	= ARG_CONST_MAP_PTR,
  68	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  69	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
  70	.arg4_type	= ARG_ANYTHING,
  71};
  72
  73BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
  74{
  75	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
  76		     !rcu_read_lock_bh_held());
  77	return map->ops->map_delete_elem(map, key);
  78}
  79
  80const struct bpf_func_proto bpf_map_delete_elem_proto = {
  81	.func		= bpf_map_delete_elem,
  82	.gpl_only	= false,
  83	.pkt_access	= true,
  84	.ret_type	= RET_INTEGER,
  85	.arg1_type	= ARG_CONST_MAP_PTR,
  86	.arg2_type	= ARG_PTR_TO_MAP_KEY,
  87};
  88
  89BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
  90{
  91	return map->ops->map_push_elem(map, value, flags);
  92}
  93
  94const struct bpf_func_proto bpf_map_push_elem_proto = {
  95	.func		= bpf_map_push_elem,
  96	.gpl_only	= false,
  97	.pkt_access	= true,
  98	.ret_type	= RET_INTEGER,
  99	.arg1_type	= ARG_CONST_MAP_PTR,
 100	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
 101	.arg3_type	= ARG_ANYTHING,
 102};
 103
 104BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
 105{
 106	return map->ops->map_pop_elem(map, value);
 107}
 108
 109const struct bpf_func_proto bpf_map_pop_elem_proto = {
 110	.func		= bpf_map_pop_elem,
 111	.gpl_only	= false,
 112	.ret_type	= RET_INTEGER,
 113	.arg1_type	= ARG_CONST_MAP_PTR,
 114	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
 115};
 116
 117BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
 118{
 119	return map->ops->map_peek_elem(map, value);
 120}
 121
 122const struct bpf_func_proto bpf_map_peek_elem_proto = {
 123	.func		= bpf_map_peek_elem,
 124	.gpl_only	= false,
 125	.ret_type	= RET_INTEGER,
 126	.arg1_type	= ARG_CONST_MAP_PTR,
 127	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
 128};
 129
 130BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
 131{
 132	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 133	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
 134}
 135
 136const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
 137	.func		= bpf_map_lookup_percpu_elem,
 138	.gpl_only	= false,
 139	.pkt_access	= true,
 140	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
 141	.arg1_type	= ARG_CONST_MAP_PTR,
 142	.arg2_type	= ARG_PTR_TO_MAP_KEY,
 143	.arg3_type	= ARG_ANYTHING,
 144};
 145
 146const struct bpf_func_proto bpf_get_prandom_u32_proto = {
 147	.func		= bpf_user_rnd_u32,
 148	.gpl_only	= false,
 149	.ret_type	= RET_INTEGER,
 150};
 151
 152BPF_CALL_0(bpf_get_smp_processor_id)
 153{
 154	return smp_processor_id();
 155}
 156
 157const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
 158	.func		= bpf_get_smp_processor_id,
 159	.gpl_only	= false,
 160	.ret_type	= RET_INTEGER,
 161};
 162
 163BPF_CALL_0(bpf_get_numa_node_id)
 164{
 165	return numa_node_id();
 166}
 167
 168const struct bpf_func_proto bpf_get_numa_node_id_proto = {
 169	.func		= bpf_get_numa_node_id,
 170	.gpl_only	= false,
 171	.ret_type	= RET_INTEGER,
 172};
 173
 174BPF_CALL_0(bpf_ktime_get_ns)
 175{
 176	/* NMI safe access to clock monotonic */
 177	return ktime_get_mono_fast_ns();
 178}
 179
 180const struct bpf_func_proto bpf_ktime_get_ns_proto = {
 181	.func		= bpf_ktime_get_ns,
 182	.gpl_only	= false,
 183	.ret_type	= RET_INTEGER,
 184};
 185
 186BPF_CALL_0(bpf_ktime_get_boot_ns)
 187{
 188	/* NMI safe access to clock boottime */
 189	return ktime_get_boot_fast_ns();
 190}
 191
 192const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
 193	.func		= bpf_ktime_get_boot_ns,
 194	.gpl_only	= false,
 195	.ret_type	= RET_INTEGER,
 196};
 197
 198BPF_CALL_0(bpf_ktime_get_coarse_ns)
 199{
 200	return ktime_get_coarse_ns();
 201}
 202
 203const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
 204	.func		= bpf_ktime_get_coarse_ns,
 205	.gpl_only	= false,
 206	.ret_type	= RET_INTEGER,
 207};
 208
 209BPF_CALL_0(bpf_ktime_get_tai_ns)
 210{
 211	/* NMI safe access to clock tai */
 212	return ktime_get_tai_fast_ns();
 213}
 214
 215const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
 216	.func		= bpf_ktime_get_tai_ns,
 217	.gpl_only	= false,
 218	.ret_type	= RET_INTEGER,
 219};
 220
 221BPF_CALL_0(bpf_get_current_pid_tgid)
 222{
 223	struct task_struct *task = current;
 224
 225	if (unlikely(!task))
 226		return -EINVAL;
 227
 228	return (u64) task->tgid << 32 | task->pid;
 229}
 230
 231const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
 232	.func		= bpf_get_current_pid_tgid,
 233	.gpl_only	= false,
 234	.ret_type	= RET_INTEGER,
 235};
 236
 237BPF_CALL_0(bpf_get_current_uid_gid)
 238{
 239	struct task_struct *task = current;
 240	kuid_t uid;
 241	kgid_t gid;
 242
 243	if (unlikely(!task))
 244		return -EINVAL;
 245
 246	current_uid_gid(&uid, &gid);
 247	return (u64) from_kgid(&init_user_ns, gid) << 32 |
 248		     from_kuid(&init_user_ns, uid);
 249}
 250
 251const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
 252	.func		= bpf_get_current_uid_gid,
 253	.gpl_only	= false,
 254	.ret_type	= RET_INTEGER,
 255};
 256
 257BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
 258{
 259	struct task_struct *task = current;
 260
 261	if (unlikely(!task))
 262		goto err_clear;
 263
 264	/* Verifier guarantees that size > 0 */
 265	strscpy_pad(buf, task->comm, size);
 266	return 0;
 267err_clear:
 268	memset(buf, 0, size);
 269	return -EINVAL;
 270}
 271
 272const struct bpf_func_proto bpf_get_current_comm_proto = {
 273	.func		= bpf_get_current_comm,
 274	.gpl_only	= false,
 275	.ret_type	= RET_INTEGER,
 276	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 277	.arg2_type	= ARG_CONST_SIZE,
 278};
 279
 280#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
 281
 282static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 283{
 284	arch_spinlock_t *l = (void *)lock;
 285	union {
 286		__u32 val;
 287		arch_spinlock_t lock;
 288	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
 289
 290	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
 291	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
 292	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
 293	preempt_disable();
 294	arch_spin_lock(l);
 295}
 296
 297static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 298{
 299	arch_spinlock_t *l = (void *)lock;
 300
 301	arch_spin_unlock(l);
 302	preempt_enable();
 303}
 304
 305#else
 306
 307static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
 308{
 309	atomic_t *l = (void *)lock;
 310
 311	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
 312	do {
 313		atomic_cond_read_relaxed(l, !VAL);
 314	} while (atomic_xchg(l, 1));
 315}
 316
 317static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
 318{
 319	atomic_t *l = (void *)lock;
 320
 321	atomic_set_release(l, 0);
 322}
 323
 324#endif
 325
 326static DEFINE_PER_CPU(unsigned long, irqsave_flags);
 327
 328static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
 329{
 330	unsigned long flags;
 331
 332	local_irq_save(flags);
 333	__bpf_spin_lock(lock);
 334	__this_cpu_write(irqsave_flags, flags);
 335}
 336
 337notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
 338{
 339	__bpf_spin_lock_irqsave(lock);
 340	return 0;
 341}
 342
 343const struct bpf_func_proto bpf_spin_lock_proto = {
 344	.func		= bpf_spin_lock,
 345	.gpl_only	= false,
 346	.ret_type	= RET_VOID,
 347	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
 348	.arg1_btf_id    = BPF_PTR_POISON,
 349};
 350
 351static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
 352{
 353	unsigned long flags;
 354
 355	flags = __this_cpu_read(irqsave_flags);
 356	__bpf_spin_unlock(lock);
 357	local_irq_restore(flags);
 358}
 359
 360notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
 361{
 362	__bpf_spin_unlock_irqrestore(lock);
 363	return 0;
 364}
 365
 366const struct bpf_func_proto bpf_spin_unlock_proto = {
 367	.func		= bpf_spin_unlock,
 368	.gpl_only	= false,
 369	.ret_type	= RET_VOID,
 370	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
 371	.arg1_btf_id    = BPF_PTR_POISON,
 372};
 373
 374void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
 375			   bool lock_src)
 376{
 377	struct bpf_spin_lock *lock;
 378
 379	if (lock_src)
 380		lock = src + map->record->spin_lock_off;
 381	else
 382		lock = dst + map->record->spin_lock_off;
 383	preempt_disable();
 384	__bpf_spin_lock_irqsave(lock);
 385	copy_map_value(map, dst, src);
 386	__bpf_spin_unlock_irqrestore(lock);
 387	preempt_enable();
 388}
 389
 390BPF_CALL_0(bpf_jiffies64)
 391{
 392	return get_jiffies_64();
 393}
 394
 395const struct bpf_func_proto bpf_jiffies64_proto = {
 396	.func		= bpf_jiffies64,
 397	.gpl_only	= false,
 398	.ret_type	= RET_INTEGER,
 399};
 400
 401#ifdef CONFIG_CGROUPS
 402BPF_CALL_0(bpf_get_current_cgroup_id)
 403{
 404	struct cgroup *cgrp;
 405	u64 cgrp_id;
 406
 407	rcu_read_lock();
 408	cgrp = task_dfl_cgroup(current);
 409	cgrp_id = cgroup_id(cgrp);
 410	rcu_read_unlock();
 411
 412	return cgrp_id;
 413}
 414
 415const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
 416	.func		= bpf_get_current_cgroup_id,
 417	.gpl_only	= false,
 418	.ret_type	= RET_INTEGER,
 419};
 420
 421BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
 422{
 423	struct cgroup *cgrp;
 424	struct cgroup *ancestor;
 425	u64 cgrp_id;
 426
 427	rcu_read_lock();
 428	cgrp = task_dfl_cgroup(current);
 429	ancestor = cgroup_ancestor(cgrp, ancestor_level);
 430	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
 431	rcu_read_unlock();
 432
 433	return cgrp_id;
 434}
 435
 436const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
 437	.func		= bpf_get_current_ancestor_cgroup_id,
 438	.gpl_only	= false,
 439	.ret_type	= RET_INTEGER,
 440	.arg1_type	= ARG_ANYTHING,
 441};
 442#endif /* CONFIG_CGROUPS */
 443
 444#define BPF_STRTOX_BASE_MASK 0x1F
 445
 446static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
 447			  unsigned long long *res, bool *is_negative)
 448{
 449	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
 450	const char *cur_buf = buf;
 451	size_t cur_len = buf_len;
 452	unsigned int consumed;
 453	size_t val_len;
 454	char str[64];
 455
 456	if (!buf || !buf_len || !res || !is_negative)
 457		return -EINVAL;
 458
 459	if (base != 0 && base != 8 && base != 10 && base != 16)
 460		return -EINVAL;
 461
 462	if (flags & ~BPF_STRTOX_BASE_MASK)
 463		return -EINVAL;
 464
 465	while (cur_buf < buf + buf_len && isspace(*cur_buf))
 466		++cur_buf;
 467
 468	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
 469	if (*is_negative)
 470		++cur_buf;
 471
 472	consumed = cur_buf - buf;
 473	cur_len -= consumed;
 474	if (!cur_len)
 475		return -EINVAL;
 476
 477	cur_len = min(cur_len, sizeof(str) - 1);
 478	memcpy(str, cur_buf, cur_len);
 479	str[cur_len] = '\0';
 480	cur_buf = str;
 481
 482	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
 483	val_len = _parse_integer(cur_buf, base, res);
 484
 485	if (val_len & KSTRTOX_OVERFLOW)
 486		return -ERANGE;
 487
 488	if (val_len == 0)
 489		return -EINVAL;
 490
 491	cur_buf += val_len;
 492	consumed += cur_buf - str;
 493
 494	return consumed;
 495}
 496
 497static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
 498			 long long *res)
 499{
 500	unsigned long long _res;
 501	bool is_negative;
 502	int err;
 503
 504	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 505	if (err < 0)
 506		return err;
 507	if (is_negative) {
 508		if ((long long)-_res > 0)
 509			return -ERANGE;
 510		*res = -_res;
 511	} else {
 512		if ((long long)_res < 0)
 513			return -ERANGE;
 514		*res = _res;
 515	}
 516	return err;
 517}
 518
 519BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
 520	   long *, res)
 521{
 522	long long _res;
 523	int err;
 524
 525	err = __bpf_strtoll(buf, buf_len, flags, &_res);
 526	if (err < 0)
 527		return err;
 528	if (_res != (long)_res)
 529		return -ERANGE;
 530	*res = _res;
 531	return err;
 532}
 533
 534const struct bpf_func_proto bpf_strtol_proto = {
 535	.func		= bpf_strtol,
 536	.gpl_only	= false,
 537	.ret_type	= RET_INTEGER,
 538	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 539	.arg2_type	= ARG_CONST_SIZE,
 540	.arg3_type	= ARG_ANYTHING,
 541	.arg4_type	= ARG_PTR_TO_LONG,
 542};
 543
 544BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
 545	   unsigned long *, res)
 546{
 547	unsigned long long _res;
 548	bool is_negative;
 549	int err;
 550
 551	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
 552	if (err < 0)
 553		return err;
 554	if (is_negative)
 555		return -EINVAL;
 556	if (_res != (unsigned long)_res)
 557		return -ERANGE;
 558	*res = _res;
 559	return err;
 560}
 561
 562const struct bpf_func_proto bpf_strtoul_proto = {
 563	.func		= bpf_strtoul,
 564	.gpl_only	= false,
 565	.ret_type	= RET_INTEGER,
 566	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 567	.arg2_type	= ARG_CONST_SIZE,
 568	.arg3_type	= ARG_ANYTHING,
 569	.arg4_type	= ARG_PTR_TO_LONG,
 570};
 571
 572BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
 573{
 574	return strncmp(s1, s2, s1_sz);
 575}
 576
 577static const struct bpf_func_proto bpf_strncmp_proto = {
 578	.func		= bpf_strncmp,
 579	.gpl_only	= false,
 580	.ret_type	= RET_INTEGER,
 581	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 582	.arg2_type	= ARG_CONST_SIZE,
 583	.arg3_type	= ARG_PTR_TO_CONST_STR,
 584};
 585
 586BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
 587	   struct bpf_pidns_info *, nsdata, u32, size)
 588{
 589	struct task_struct *task = current;
 590	struct pid_namespace *pidns;
 591	int err = -EINVAL;
 592
 593	if (unlikely(size != sizeof(struct bpf_pidns_info)))
 594		goto clear;
 595
 596	if (unlikely((u64)(dev_t)dev != dev))
 597		goto clear;
 598
 599	if (unlikely(!task))
 600		goto clear;
 601
 602	pidns = task_active_pid_ns(task);
 603	if (unlikely(!pidns)) {
 604		err = -ENOENT;
 605		goto clear;
 606	}
 607
 608	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
 609		goto clear;
 610
 611	nsdata->pid = task_pid_nr_ns(task, pidns);
 612	nsdata->tgid = task_tgid_nr_ns(task, pidns);
 613	return 0;
 614clear:
 615	memset((void *)nsdata, 0, (size_t) size);
 616	return err;
 617}
 618
 619const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
 620	.func		= bpf_get_ns_current_pid_tgid,
 621	.gpl_only	= false,
 622	.ret_type	= RET_INTEGER,
 623	.arg1_type	= ARG_ANYTHING,
 624	.arg2_type	= ARG_ANYTHING,
 625	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
 626	.arg4_type      = ARG_CONST_SIZE,
 627};
 628
 629static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 630	.func		= bpf_get_raw_cpu_id,
 631	.gpl_only	= false,
 632	.ret_type	= RET_INTEGER,
 633};
 634
 635BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
 636	   u64, flags, void *, data, u64, size)
 637{
 638	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 639		return -EINVAL;
 640
 641	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
 642}
 643
 644const struct bpf_func_proto bpf_event_output_data_proto =  {
 645	.func		= bpf_event_output_data,
 646	.gpl_only       = true,
 647	.ret_type       = RET_INTEGER,
 648	.arg1_type      = ARG_PTR_TO_CTX,
 649	.arg2_type      = ARG_CONST_MAP_PTR,
 650	.arg3_type      = ARG_ANYTHING,
 651	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
 652	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 653};
 654
 655BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
 656	   const void __user *, user_ptr)
 657{
 658	int ret = copy_from_user(dst, user_ptr, size);
 659
 660	if (unlikely(ret)) {
 661		memset(dst, 0, size);
 662		ret = -EFAULT;
 663	}
 664
 665	return ret;
 666}
 667
 668const struct bpf_func_proto bpf_copy_from_user_proto = {
 669	.func		= bpf_copy_from_user,
 670	.gpl_only	= false,
 671	.might_sleep	= true,
 672	.ret_type	= RET_INTEGER,
 673	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 674	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 675	.arg3_type	= ARG_ANYTHING,
 676};
 677
 678BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
 679	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
 680{
 681	int ret;
 682
 683	/* flags is not used yet */
 684	if (unlikely(flags))
 685		return -EINVAL;
 686
 687	if (unlikely(!size))
 688		return 0;
 689
 690	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
 691	if (ret == size)
 692		return 0;
 693
 694	memset(dst, 0, size);
 695	/* Return -EFAULT for partial read */
 696	return ret < 0 ? ret : -EFAULT;
 697}
 698
 699const struct bpf_func_proto bpf_copy_from_user_task_proto = {
 700	.func		= bpf_copy_from_user_task,
 701	.gpl_only	= true,
 702	.might_sleep	= true,
 703	.ret_type	= RET_INTEGER,
 704	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 705	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 706	.arg3_type	= ARG_ANYTHING,
 707	.arg4_type	= ARG_PTR_TO_BTF_ID,
 708	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
 709	.arg5_type	= ARG_ANYTHING
 710};
 711
 712BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
 713{
 714	if (cpu >= nr_cpu_ids)
 715		return (unsigned long)NULL;
 716
 717	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
 718}
 719
 720const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
 721	.func		= bpf_per_cpu_ptr,
 722	.gpl_only	= false,
 723	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
 724	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
 725	.arg2_type	= ARG_ANYTHING,
 726};
 727
 728BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
 729{
 730	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
 731}
 732
 733const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
 734	.func		= bpf_this_cpu_ptr,
 735	.gpl_only	= false,
 736	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
 737	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
 738};
 739
 740static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 741		size_t bufsz)
 742{
 743	void __user *user_ptr = (__force void __user *)unsafe_ptr;
 744
 745	buf[0] = 0;
 746
 747	switch (fmt_ptype) {
 748	case 's':
 749#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 750		if ((unsigned long)unsafe_ptr < TASK_SIZE)
 751			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 752		fallthrough;
 753#endif
 754	case 'k':
 755		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 756	case 'u':
 757		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
 758	}
 759
 760	return -EINVAL;
 761}
 762
 763/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
 764 * arguments representation.
 765 */
 766#define MAX_BPRINTF_BIN_ARGS	512
 767
 768/* Support executing three nested bprintf helper calls on a given CPU */
 769#define MAX_BPRINTF_NEST_LEVEL	3
 770struct bpf_bprintf_buffers {
 771	char bin_args[MAX_BPRINTF_BIN_ARGS];
 772	char buf[MAX_BPRINTF_BUF];
 773};
 774
 775static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
 776static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
 777
 778static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
 779{
 
 780	int nest_level;
 781
 782	preempt_disable();
 783	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
 784	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
 785		this_cpu_dec(bpf_bprintf_nest_level);
 786		preempt_enable();
 787		return -EBUSY;
 788	}
 789	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
 
 790
 791	return 0;
 792}
 793
 794void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
 795{
 796	if (!data->bin_args && !data->buf)
 797		return;
 798	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
 799		return;
 800	this_cpu_dec(bpf_bprintf_nest_level);
 801	preempt_enable();
 802}
 803
 804/*
 805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
 806 *
 807 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
 808 *
 809 * This can be used in two ways:
 810 * - Format string verification only: when data->get_bin_args is false
 811 * - Arguments preparation: in addition to the above verification, it writes in
 812 *   data->bin_args a binary representation of arguments usable by bstr_printf
 813 *   where pointers from BPF have been sanitized.
 814 *
 815 * In argument preparation mode, if 0 is returned, safe temporary buffers are
 816 * allocated and bpf_bprintf_cleanup should be called to free them after use.
 817 */
 818int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
 819			u32 num_args, struct bpf_bprintf_data *data)
 820{
 821	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
 822	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
 823	struct bpf_bprintf_buffers *buffers = NULL;
 824	size_t sizeof_cur_arg, sizeof_cur_ip;
 825	int err, i, num_spec = 0;
 826	u64 cur_arg;
 827	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
 828
 829	fmt_end = strnchr(fmt, fmt_size, 0);
 830	if (!fmt_end)
 831		return -EINVAL;
 832	fmt_size = fmt_end - fmt;
 833
 834	if (get_buffers && try_get_buffers(&buffers))
 835		return -EBUSY;
 
 836
 837	if (data->get_bin_args) {
 838		if (num_args)
 839			tmp_buf = buffers->bin_args;
 840		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
 841		data->bin_args = (u32 *)tmp_buf;
 842	}
 843
 844	if (data->get_buf)
 845		data->buf = buffers->buf;
 846
 847	for (i = 0; i < fmt_size; i++) {
 848		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 849			err = -EINVAL;
 850			goto out;
 851		}
 852
 853		if (fmt[i] != '%')
 854			continue;
 855
 856		if (fmt[i + 1] == '%') {
 857			i++;
 858			continue;
 859		}
 860
 861		if (num_spec >= num_args) {
 862			err = -EINVAL;
 863			goto out;
 864		}
 865
 866		/* The string is zero-terminated so if fmt[i] != 0, we can
 867		 * always access fmt[i + 1], in the worst case it will be a 0
 868		 */
 869		i++;
 870
 871		/* skip optional "[0 +-][num]" width formatting field */
 872		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 873		       fmt[i] == ' ')
 874			i++;
 875		if (fmt[i] >= '1' && fmt[i] <= '9') {
 876			i++;
 877			while (fmt[i] >= '0' && fmt[i] <= '9')
 878				i++;
 879		}
 880
 881		if (fmt[i] == 'p') {
 882			sizeof_cur_arg = sizeof(long);
 883
 884			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
 885			    fmt[i + 2] == 's') {
 886				fmt_ptype = fmt[i + 1];
 887				i += 2;
 888				goto fmt_str;
 889			}
 890
 891			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
 892			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
 893			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
 894			    fmt[i + 1] == 'S') {
 895				/* just kernel pointers */
 896				if (tmp_buf)
 897					cur_arg = raw_args[num_spec];
 898				i++;
 899				goto nocopy_fmt;
 900			}
 901
 902			if (fmt[i + 1] == 'B') {
 903				if (tmp_buf)  {
 904					err = snprintf(tmp_buf,
 905						       (tmp_buf_end - tmp_buf),
 906						       "%pB",
 907						       (void *)(long)raw_args[num_spec]);
 908					tmp_buf += (err + 1);
 909				}
 910
 911				i++;
 912				num_spec++;
 913				continue;
 914			}
 915
 916			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 917			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
 918			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
 919				err = -EINVAL;
 920				goto out;
 921			}
 922
 923			i += 2;
 924			if (!tmp_buf)
 925				goto nocopy_fmt;
 926
 927			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
 928			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
 929				err = -ENOSPC;
 930				goto out;
 931			}
 932
 933			unsafe_ptr = (char *)(long)raw_args[num_spec];
 934			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
 935						       sizeof_cur_ip);
 936			if (err < 0)
 937				memset(cur_ip, 0, sizeof_cur_ip);
 938
 939			/* hack: bstr_printf expects IP addresses to be
 940			 * pre-formatted as strings, ironically, the easiest way
 941			 * to do that is to call snprintf.
 942			 */
 943			ip_spec[2] = fmt[i - 1];
 944			ip_spec[3] = fmt[i];
 945			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
 946				       ip_spec, &cur_ip);
 947
 948			tmp_buf += err + 1;
 949			num_spec++;
 950
 951			continue;
 952		} else if (fmt[i] == 's') {
 953			fmt_ptype = fmt[i];
 954fmt_str:
 955			if (fmt[i + 1] != 0 &&
 956			    !isspace(fmt[i + 1]) &&
 957			    !ispunct(fmt[i + 1])) {
 958				err = -EINVAL;
 959				goto out;
 960			}
 961
 962			if (!tmp_buf)
 963				goto nocopy_fmt;
 964
 965			if (tmp_buf_end == tmp_buf) {
 966				err = -ENOSPC;
 967				goto out;
 968			}
 969
 970			unsafe_ptr = (char *)(long)raw_args[num_spec];
 971			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
 972						    fmt_ptype,
 973						    tmp_buf_end - tmp_buf);
 974			if (err < 0) {
 975				tmp_buf[0] = '\0';
 976				err = 1;
 977			}
 978
 979			tmp_buf += err;
 980			num_spec++;
 981
 982			continue;
 983		} else if (fmt[i] == 'c') {
 984			if (!tmp_buf)
 985				goto nocopy_fmt;
 986
 987			if (tmp_buf_end == tmp_buf) {
 988				err = -ENOSPC;
 989				goto out;
 990			}
 991
 992			*tmp_buf = raw_args[num_spec];
 993			tmp_buf++;
 994			num_spec++;
 995
 996			continue;
 997		}
 998
 999		sizeof_cur_arg = sizeof(int);
1000
1001		if (fmt[i] == 'l') {
1002			sizeof_cur_arg = sizeof(long);
1003			i++;
1004		}
1005		if (fmt[i] == 'l') {
1006			sizeof_cur_arg = sizeof(long long);
1007			i++;
1008		}
1009
1010		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1011		    fmt[i] != 'x' && fmt[i] != 'X') {
1012			err = -EINVAL;
1013			goto out;
1014		}
1015
1016		if (tmp_buf)
1017			cur_arg = raw_args[num_spec];
1018nocopy_fmt:
1019		if (tmp_buf) {
1020			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1021			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1022				err = -ENOSPC;
1023				goto out;
1024			}
1025
1026			if (sizeof_cur_arg == 8) {
1027				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1028				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1029			} else {
1030				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1031			}
1032			tmp_buf += sizeof_cur_arg;
1033		}
1034		num_spec++;
1035	}
1036
1037	err = 0;
1038out:
1039	if (err)
1040		bpf_bprintf_cleanup(data);
1041	return err;
1042}
1043
1044BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1045	   const void *, args, u32, data_len)
1046{
1047	struct bpf_bprintf_data data = {
1048		.get_bin_args	= true,
1049	};
1050	int err, num_args;
 
1051
1052	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1053	    (data_len && !args))
1054		return -EINVAL;
1055	num_args = data_len / 8;
1056
1057	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1058	 * can safely give an unbounded size.
1059	 */
1060	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1061	if (err < 0)
1062		return err;
1063
1064	err = bstr_printf(str, str_size, fmt, data.bin_args);
1065
1066	bpf_bprintf_cleanup(&data);
1067
1068	return err + 1;
1069}
1070
1071const struct bpf_func_proto bpf_snprintf_proto = {
1072	.func		= bpf_snprintf,
1073	.gpl_only	= true,
1074	.ret_type	= RET_INTEGER,
1075	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1076	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1077	.arg3_type	= ARG_PTR_TO_CONST_STR,
1078	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1079	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1080};
1081
1082/* BPF map elements can contain 'struct bpf_timer'.
1083 * Such map owns all of its BPF timers.
1084 * 'struct bpf_timer' is allocated as part of map element allocation
1085 * and it's zero initialized.
1086 * That space is used to keep 'struct bpf_timer_kern'.
1087 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1088 * remembers 'struct bpf_map *' pointer it's part of.
1089 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1090 * bpf_timer_start() arms the timer.
1091 * If user space reference to a map goes to zero at this point
1092 * ops->map_release_uref callback is responsible for cancelling the timers,
1093 * freeing their memory, and decrementing prog's refcnts.
1094 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1095 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1096 * freeing the timers when inner map is replaced or deleted by user space.
1097 */
1098struct bpf_hrtimer {
1099	struct hrtimer timer;
1100	struct bpf_map *map;
1101	struct bpf_prog *prog;
1102	void __rcu *callback_fn;
1103	void *value;
1104	struct rcu_head rcu;
1105};
1106
1107/* the actual struct hidden inside uapi struct bpf_timer */
1108struct bpf_timer_kern {
1109	struct bpf_hrtimer *timer;
1110	/* bpf_spin_lock is used here instead of spinlock_t to make
1111	 * sure that it always fits into space reserved by struct bpf_timer
1112	 * regardless of LOCKDEP and spinlock debug flags.
1113	 */
1114	struct bpf_spin_lock lock;
1115} __attribute__((aligned(8)));
1116
1117static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1118
1119static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1120{
1121	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1122	struct bpf_map *map = t->map;
1123	void *value = t->value;
1124	bpf_callback_t callback_fn;
1125	void *key;
1126	u32 idx;
1127
1128	BTF_TYPE_EMIT(struct bpf_timer);
1129	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1130	if (!callback_fn)
1131		goto out;
1132
1133	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1134	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1135	 * Remember the timer this callback is servicing to prevent
1136	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1137	 * bpf_map_delete_elem() on the same timer.
1138	 */
1139	this_cpu_write(hrtimer_running, t);
1140	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1141		struct bpf_array *array = container_of(map, struct bpf_array, map);
1142
1143		/* compute the key */
1144		idx = ((char *)value - array->value) / array->elem_size;
1145		key = &idx;
1146	} else { /* hash or lru */
1147		key = value - round_up(map->key_size, 8);
1148	}
1149
1150	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1151	/* The verifier checked that return value is zero. */
1152
1153	this_cpu_write(hrtimer_running, NULL);
1154out:
1155	return HRTIMER_NORESTART;
1156}
1157
1158BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1159	   u64, flags)
1160{
1161	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1162	struct bpf_hrtimer *t;
1163	int ret = 0;
1164
1165	BUILD_BUG_ON(MAX_CLOCKS != 16);
1166	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1167	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1168
1169	if (in_nmi())
1170		return -EOPNOTSUPP;
1171
1172	if (flags >= MAX_CLOCKS ||
1173	    /* similar to timerfd except _ALARM variants are not supported */
1174	    (clockid != CLOCK_MONOTONIC &&
1175	     clockid != CLOCK_REALTIME &&
1176	     clockid != CLOCK_BOOTTIME))
1177		return -EINVAL;
1178	__bpf_spin_lock_irqsave(&timer->lock);
1179	t = timer->timer;
1180	if (t) {
1181		ret = -EBUSY;
1182		goto out;
1183	}
 
 
 
 
 
 
 
1184	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1185	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1186	if (!t) {
1187		ret = -ENOMEM;
1188		goto out;
1189	}
1190	t->value = (void *)timer - map->record->timer_off;
1191	t->map = map;
1192	t->prog = NULL;
1193	rcu_assign_pointer(t->callback_fn, NULL);
1194	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1195	t->timer.function = bpf_timer_cb;
1196	WRITE_ONCE(timer->timer, t);
1197	/* Guarantee the order between timer->timer and map->usercnt. So
1198	 * when there are concurrent uref release and bpf timer init, either
1199	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1200	 * timer or atomic64_read() below returns a zero usercnt.
1201	 */
1202	smp_mb();
1203	if (!atomic64_read(&map->usercnt)) {
1204		/* maps with timers must be either held by user space
1205		 * or pinned in bpffs.
1206		 */
1207		WRITE_ONCE(timer->timer, NULL);
1208		kfree(t);
1209		ret = -EPERM;
1210	}
1211out:
1212	__bpf_spin_unlock_irqrestore(&timer->lock);
1213	return ret;
1214}
1215
1216static const struct bpf_func_proto bpf_timer_init_proto = {
1217	.func		= bpf_timer_init,
1218	.gpl_only	= true,
1219	.ret_type	= RET_INTEGER,
1220	.arg1_type	= ARG_PTR_TO_TIMER,
1221	.arg2_type	= ARG_CONST_MAP_PTR,
1222	.arg3_type	= ARG_ANYTHING,
1223};
1224
1225BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1226	   struct bpf_prog_aux *, aux)
1227{
1228	struct bpf_prog *prev, *prog = aux->prog;
1229	struct bpf_hrtimer *t;
1230	int ret = 0;
1231
1232	if (in_nmi())
1233		return -EOPNOTSUPP;
1234	__bpf_spin_lock_irqsave(&timer->lock);
1235	t = timer->timer;
1236	if (!t) {
1237		ret = -EINVAL;
1238		goto out;
1239	}
1240	if (!atomic64_read(&t->map->usercnt)) {
1241		/* maps with timers must be either held by user space
1242		 * or pinned in bpffs. Otherwise timer might still be
1243		 * running even when bpf prog is detached and user space
1244		 * is gone, since map_release_uref won't ever be called.
1245		 */
1246		ret = -EPERM;
1247		goto out;
1248	}
1249	prev = t->prog;
1250	if (prev != prog) {
1251		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1252		 * can pick different callback_fn-s within the same prog.
1253		 */
1254		prog = bpf_prog_inc_not_zero(prog);
1255		if (IS_ERR(prog)) {
1256			ret = PTR_ERR(prog);
1257			goto out;
1258		}
1259		if (prev)
1260			/* Drop prev prog refcnt when swapping with new prog */
1261			bpf_prog_put(prev);
1262		t->prog = prog;
1263	}
1264	rcu_assign_pointer(t->callback_fn, callback_fn);
1265out:
1266	__bpf_spin_unlock_irqrestore(&timer->lock);
1267	return ret;
1268}
1269
1270static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1271	.func		= bpf_timer_set_callback,
1272	.gpl_only	= true,
1273	.ret_type	= RET_INTEGER,
1274	.arg1_type	= ARG_PTR_TO_TIMER,
1275	.arg2_type	= ARG_PTR_TO_FUNC,
1276};
1277
1278BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1279{
1280	struct bpf_hrtimer *t;
1281	int ret = 0;
1282	enum hrtimer_mode mode;
1283
1284	if (in_nmi())
1285		return -EOPNOTSUPP;
1286	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1287		return -EINVAL;
1288	__bpf_spin_lock_irqsave(&timer->lock);
1289	t = timer->timer;
1290	if (!t || !t->prog) {
1291		ret = -EINVAL;
1292		goto out;
1293	}
1294
1295	if (flags & BPF_F_TIMER_ABS)
1296		mode = HRTIMER_MODE_ABS_SOFT;
1297	else
1298		mode = HRTIMER_MODE_REL_SOFT;
1299
1300	if (flags & BPF_F_TIMER_CPU_PIN)
1301		mode |= HRTIMER_MODE_PINNED;
1302
1303	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1304out:
1305	__bpf_spin_unlock_irqrestore(&timer->lock);
1306	return ret;
1307}
1308
1309static const struct bpf_func_proto bpf_timer_start_proto = {
1310	.func		= bpf_timer_start,
1311	.gpl_only	= true,
1312	.ret_type	= RET_INTEGER,
1313	.arg1_type	= ARG_PTR_TO_TIMER,
1314	.arg2_type	= ARG_ANYTHING,
1315	.arg3_type	= ARG_ANYTHING,
1316};
1317
1318static void drop_prog_refcnt(struct bpf_hrtimer *t)
1319{
1320	struct bpf_prog *prog = t->prog;
1321
1322	if (prog) {
1323		bpf_prog_put(prog);
1324		t->prog = NULL;
1325		rcu_assign_pointer(t->callback_fn, NULL);
1326	}
1327}
1328
1329BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1330{
1331	struct bpf_hrtimer *t;
1332	int ret = 0;
1333
1334	if (in_nmi())
1335		return -EOPNOTSUPP;
1336	rcu_read_lock();
1337	__bpf_spin_lock_irqsave(&timer->lock);
1338	t = timer->timer;
1339	if (!t) {
1340		ret = -EINVAL;
1341		goto out;
1342	}
1343	if (this_cpu_read(hrtimer_running) == t) {
1344		/* If bpf callback_fn is trying to bpf_timer_cancel()
1345		 * its own timer the hrtimer_cancel() will deadlock
1346		 * since it waits for callback_fn to finish
1347		 */
1348		ret = -EDEADLK;
1349		goto out;
1350	}
1351	drop_prog_refcnt(t);
1352out:
1353	__bpf_spin_unlock_irqrestore(&timer->lock);
1354	/* Cancel the timer and wait for associated callback to finish
1355	 * if it was running.
1356	 */
1357	ret = ret ?: hrtimer_cancel(&t->timer);
1358	rcu_read_unlock();
1359	return ret;
1360}
1361
1362static const struct bpf_func_proto bpf_timer_cancel_proto = {
1363	.func		= bpf_timer_cancel,
1364	.gpl_only	= true,
1365	.ret_type	= RET_INTEGER,
1366	.arg1_type	= ARG_PTR_TO_TIMER,
1367};
1368
1369/* This function is called by map_delete/update_elem for individual element and
1370 * by ops->map_release_uref when the user space reference to a map reaches zero.
1371 */
1372void bpf_timer_cancel_and_free(void *val)
1373{
1374	struct bpf_timer_kern *timer = val;
1375	struct bpf_hrtimer *t;
1376
1377	/* Performance optimization: read timer->timer without lock first. */
1378	if (!READ_ONCE(timer->timer))
1379		return;
1380
1381	__bpf_spin_lock_irqsave(&timer->lock);
1382	/* re-read it under lock */
1383	t = timer->timer;
1384	if (!t)
1385		goto out;
1386	drop_prog_refcnt(t);
1387	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1388	 * this timer, since it won't be initialized.
1389	 */
1390	WRITE_ONCE(timer->timer, NULL);
1391out:
1392	__bpf_spin_unlock_irqrestore(&timer->lock);
1393	if (!t)
1394		return;
1395	/* Cancel the timer and wait for callback to complete if it was running.
1396	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1397	 * right after for both preallocated and non-preallocated maps.
1398	 * The timer->timer = NULL was already done and no code path can
1399	 * see address 't' anymore.
1400	 *
1401	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1402	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1403	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1404	 * return -1). Though callback_fn is still running on this cpu it's
1405	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1406	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1407	 * since timer->timer = NULL was already done. The timer will be
1408	 * effectively cancelled because bpf_timer_cb() will return
1409	 * HRTIMER_NORESTART.
1410	 */
1411	if (this_cpu_read(hrtimer_running) != t)
1412		hrtimer_cancel(&t->timer);
1413	kfree_rcu(t, rcu);
1414}
1415
1416BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1417{
1418	unsigned long *kptr = map_value;
1419
1420	return xchg(kptr, (unsigned long)ptr);
1421}
1422
1423/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1424 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1425 * denote type that verifier will determine.
1426 */
1427static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1428	.func         = bpf_kptr_xchg,
1429	.gpl_only     = false,
1430	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1431	.ret_btf_id   = BPF_PTR_POISON,
1432	.arg1_type    = ARG_PTR_TO_KPTR,
1433	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1434	.arg2_btf_id  = BPF_PTR_POISON,
1435};
1436
1437/* Since the upper 8 bits of dynptr->size is reserved, the
1438 * maximum supported size is 2^24 - 1.
1439 */
1440#define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1441#define DYNPTR_TYPE_SHIFT	28
1442#define DYNPTR_SIZE_MASK	0xFFFFFF
1443#define DYNPTR_RDONLY_BIT	BIT(31)
1444
1445static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1446{
1447	return ptr->size & DYNPTR_RDONLY_BIT;
1448}
1449
1450void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1451{
1452	ptr->size |= DYNPTR_RDONLY_BIT;
1453}
1454
1455static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1456{
1457	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1458}
1459
1460static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1461{
1462	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1463}
1464
1465u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1466{
1467	return ptr->size & DYNPTR_SIZE_MASK;
1468}
1469
1470static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1471{
1472	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1473
1474	ptr->size = new_size | metadata;
1475}
1476
1477int bpf_dynptr_check_size(u32 size)
1478{
1479	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1480}
1481
1482void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1483		     enum bpf_dynptr_type type, u32 offset, u32 size)
1484{
1485	ptr->data = data;
1486	ptr->offset = offset;
1487	ptr->size = size;
1488	bpf_dynptr_set_type(ptr, type);
1489}
1490
1491void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1492{
1493	memset(ptr, 0, sizeof(*ptr));
1494}
1495
1496static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1497{
1498	u32 size = __bpf_dynptr_size(ptr);
1499
1500	if (len > size || offset > size - len)
1501		return -E2BIG;
1502
1503	return 0;
1504}
1505
1506BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1507{
1508	int err;
1509
1510	BTF_TYPE_EMIT(struct bpf_dynptr);
1511
1512	err = bpf_dynptr_check_size(size);
1513	if (err)
1514		goto error;
1515
1516	/* flags is currently unsupported */
1517	if (flags) {
1518		err = -EINVAL;
1519		goto error;
1520	}
1521
1522	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1523
1524	return 0;
1525
1526error:
1527	bpf_dynptr_set_null(ptr);
1528	return err;
1529}
1530
1531static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1532	.func		= bpf_dynptr_from_mem,
1533	.gpl_only	= false,
1534	.ret_type	= RET_INTEGER,
1535	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1536	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1537	.arg3_type	= ARG_ANYTHING,
1538	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1539};
1540
1541BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1542	   u32, offset, u64, flags)
1543{
1544	enum bpf_dynptr_type type;
1545	int err;
1546
1547	if (!src->data || flags)
1548		return -EINVAL;
1549
1550	err = bpf_dynptr_check_off_len(src, offset, len);
1551	if (err)
1552		return err;
1553
1554	type = bpf_dynptr_get_type(src);
 
 
 
 
1555
1556	switch (type) {
1557	case BPF_DYNPTR_TYPE_LOCAL:
1558	case BPF_DYNPTR_TYPE_RINGBUF:
1559		/* Source and destination may possibly overlap, hence use memmove to
1560		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1561		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1562		 */
1563		memmove(dst, src->data + src->offset + offset, len);
1564		return 0;
1565	case BPF_DYNPTR_TYPE_SKB:
1566		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1567	case BPF_DYNPTR_TYPE_XDP:
1568		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1569	default:
1570		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1571		return -EFAULT;
1572	}
1573}
1574
1575static const struct bpf_func_proto bpf_dynptr_read_proto = {
1576	.func		= bpf_dynptr_read,
1577	.gpl_only	= false,
1578	.ret_type	= RET_INTEGER,
1579	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1580	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1581	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1582	.arg4_type	= ARG_ANYTHING,
1583	.arg5_type	= ARG_ANYTHING,
1584};
1585
1586BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1587	   u32, len, u64, flags)
1588{
1589	enum bpf_dynptr_type type;
1590	int err;
1591
1592	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1593		return -EINVAL;
1594
1595	err = bpf_dynptr_check_off_len(dst, offset, len);
1596	if (err)
1597		return err;
1598
1599	type = bpf_dynptr_get_type(dst);
 
 
 
 
1600
1601	switch (type) {
1602	case BPF_DYNPTR_TYPE_LOCAL:
1603	case BPF_DYNPTR_TYPE_RINGBUF:
1604		if (flags)
1605			return -EINVAL;
1606		/* Source and destination may possibly overlap, hence use memmove to
1607		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1608		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1609		 */
1610		memmove(dst->data + dst->offset + offset, src, len);
1611		return 0;
1612	case BPF_DYNPTR_TYPE_SKB:
1613		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1614					     flags);
1615	case BPF_DYNPTR_TYPE_XDP:
1616		if (flags)
1617			return -EINVAL;
1618		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1619	default:
1620		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1621		return -EFAULT;
1622	}
1623}
1624
1625static const struct bpf_func_proto bpf_dynptr_write_proto = {
1626	.func		= bpf_dynptr_write,
1627	.gpl_only	= false,
1628	.ret_type	= RET_INTEGER,
1629	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1630	.arg2_type	= ARG_ANYTHING,
1631	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1632	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1633	.arg5_type	= ARG_ANYTHING,
1634};
1635
1636BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1637{
1638	enum bpf_dynptr_type type;
1639	int err;
1640
1641	if (!ptr->data)
1642		return 0;
1643
1644	err = bpf_dynptr_check_off_len(ptr, offset, len);
1645	if (err)
1646		return 0;
1647
1648	if (__bpf_dynptr_is_rdonly(ptr))
1649		return 0;
1650
1651	type = bpf_dynptr_get_type(ptr);
1652
1653	switch (type) {
1654	case BPF_DYNPTR_TYPE_LOCAL:
1655	case BPF_DYNPTR_TYPE_RINGBUF:
1656		return (unsigned long)(ptr->data + ptr->offset + offset);
1657	case BPF_DYNPTR_TYPE_SKB:
1658	case BPF_DYNPTR_TYPE_XDP:
1659		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1660		return 0;
1661	default:
1662		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1663		return 0;
1664	}
1665}
1666
1667static const struct bpf_func_proto bpf_dynptr_data_proto = {
1668	.func		= bpf_dynptr_data,
1669	.gpl_only	= false,
1670	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1671	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1672	.arg2_type	= ARG_ANYTHING,
1673	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1674};
1675
1676const struct bpf_func_proto bpf_get_current_task_proto __weak;
1677const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1678const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1679const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1680const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1681const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1682const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1683
1684const struct bpf_func_proto *
1685bpf_base_func_proto(enum bpf_func_id func_id)
1686{
1687	switch (func_id) {
1688	case BPF_FUNC_map_lookup_elem:
1689		return &bpf_map_lookup_elem_proto;
1690	case BPF_FUNC_map_update_elem:
1691		return &bpf_map_update_elem_proto;
1692	case BPF_FUNC_map_delete_elem:
1693		return &bpf_map_delete_elem_proto;
1694	case BPF_FUNC_map_push_elem:
1695		return &bpf_map_push_elem_proto;
1696	case BPF_FUNC_map_pop_elem:
1697		return &bpf_map_pop_elem_proto;
1698	case BPF_FUNC_map_peek_elem:
1699		return &bpf_map_peek_elem_proto;
1700	case BPF_FUNC_map_lookup_percpu_elem:
1701		return &bpf_map_lookup_percpu_elem_proto;
1702	case BPF_FUNC_get_prandom_u32:
1703		return &bpf_get_prandom_u32_proto;
1704	case BPF_FUNC_get_smp_processor_id:
1705		return &bpf_get_raw_smp_processor_id_proto;
1706	case BPF_FUNC_get_numa_node_id:
1707		return &bpf_get_numa_node_id_proto;
1708	case BPF_FUNC_tail_call:
1709		return &bpf_tail_call_proto;
1710	case BPF_FUNC_ktime_get_ns:
1711		return &bpf_ktime_get_ns_proto;
1712	case BPF_FUNC_ktime_get_boot_ns:
1713		return &bpf_ktime_get_boot_ns_proto;
1714	case BPF_FUNC_ktime_get_tai_ns:
1715		return &bpf_ktime_get_tai_ns_proto;
1716	case BPF_FUNC_ringbuf_output:
1717		return &bpf_ringbuf_output_proto;
1718	case BPF_FUNC_ringbuf_reserve:
1719		return &bpf_ringbuf_reserve_proto;
1720	case BPF_FUNC_ringbuf_submit:
1721		return &bpf_ringbuf_submit_proto;
1722	case BPF_FUNC_ringbuf_discard:
1723		return &bpf_ringbuf_discard_proto;
1724	case BPF_FUNC_ringbuf_query:
1725		return &bpf_ringbuf_query_proto;
1726	case BPF_FUNC_strncmp:
1727		return &bpf_strncmp_proto;
1728	case BPF_FUNC_strtol:
1729		return &bpf_strtol_proto;
1730	case BPF_FUNC_strtoul:
1731		return &bpf_strtoul_proto;
1732	default:
1733		break;
1734	}
1735
1736	if (!bpf_capable())
1737		return NULL;
1738
1739	switch (func_id) {
1740	case BPF_FUNC_spin_lock:
1741		return &bpf_spin_lock_proto;
1742	case BPF_FUNC_spin_unlock:
1743		return &bpf_spin_unlock_proto;
1744	case BPF_FUNC_jiffies64:
1745		return &bpf_jiffies64_proto;
1746	case BPF_FUNC_per_cpu_ptr:
1747		return &bpf_per_cpu_ptr_proto;
1748	case BPF_FUNC_this_cpu_ptr:
1749		return &bpf_this_cpu_ptr_proto;
1750	case BPF_FUNC_timer_init:
1751		return &bpf_timer_init_proto;
1752	case BPF_FUNC_timer_set_callback:
1753		return &bpf_timer_set_callback_proto;
1754	case BPF_FUNC_timer_start:
1755		return &bpf_timer_start_proto;
1756	case BPF_FUNC_timer_cancel:
1757		return &bpf_timer_cancel_proto;
1758	case BPF_FUNC_kptr_xchg:
1759		return &bpf_kptr_xchg_proto;
1760	case BPF_FUNC_for_each_map_elem:
1761		return &bpf_for_each_map_elem_proto;
1762	case BPF_FUNC_loop:
1763		return &bpf_loop_proto;
1764	case BPF_FUNC_user_ringbuf_drain:
1765		return &bpf_user_ringbuf_drain_proto;
1766	case BPF_FUNC_ringbuf_reserve_dynptr:
1767		return &bpf_ringbuf_reserve_dynptr_proto;
1768	case BPF_FUNC_ringbuf_submit_dynptr:
1769		return &bpf_ringbuf_submit_dynptr_proto;
1770	case BPF_FUNC_ringbuf_discard_dynptr:
1771		return &bpf_ringbuf_discard_dynptr_proto;
1772	case BPF_FUNC_dynptr_from_mem:
1773		return &bpf_dynptr_from_mem_proto;
1774	case BPF_FUNC_dynptr_read:
1775		return &bpf_dynptr_read_proto;
1776	case BPF_FUNC_dynptr_write:
1777		return &bpf_dynptr_write_proto;
1778	case BPF_FUNC_dynptr_data:
1779		return &bpf_dynptr_data_proto;
1780#ifdef CONFIG_CGROUPS
1781	case BPF_FUNC_cgrp_storage_get:
1782		return &bpf_cgrp_storage_get_proto;
1783	case BPF_FUNC_cgrp_storage_delete:
1784		return &bpf_cgrp_storage_delete_proto;
1785	case BPF_FUNC_get_current_cgroup_id:
1786		return &bpf_get_current_cgroup_id_proto;
1787	case BPF_FUNC_get_current_ancestor_cgroup_id:
1788		return &bpf_get_current_ancestor_cgroup_id_proto;
1789#endif
1790	default:
1791		break;
1792	}
1793
1794	if (!perfmon_capable())
1795		return NULL;
1796
1797	switch (func_id) {
1798	case BPF_FUNC_trace_printk:
1799		return bpf_get_trace_printk_proto();
1800	case BPF_FUNC_get_current_task:
1801		return &bpf_get_current_task_proto;
1802	case BPF_FUNC_get_current_task_btf:
1803		return &bpf_get_current_task_btf_proto;
1804	case BPF_FUNC_probe_read_user:
1805		return &bpf_probe_read_user_proto;
1806	case BPF_FUNC_probe_read_kernel:
1807		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1808		       NULL : &bpf_probe_read_kernel_proto;
1809	case BPF_FUNC_probe_read_user_str:
1810		return &bpf_probe_read_user_str_proto;
1811	case BPF_FUNC_probe_read_kernel_str:
1812		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1813		       NULL : &bpf_probe_read_kernel_str_proto;
1814	case BPF_FUNC_snprintf_btf:
1815		return &bpf_snprintf_btf_proto;
1816	case BPF_FUNC_snprintf:
1817		return &bpf_snprintf_proto;
1818	case BPF_FUNC_task_pt_regs:
1819		return &bpf_task_pt_regs_proto;
1820	case BPF_FUNC_trace_vprintk:
1821		return bpf_get_trace_vprintk_proto();
1822	default:
1823		return NULL;
1824	}
1825}
1826
1827void bpf_list_head_free(const struct btf_field *field, void *list_head,
1828			struct bpf_spin_lock *spin_lock)
1829{
1830	struct list_head *head = list_head, *orig_head = list_head;
1831
1832	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1833	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1834
1835	/* Do the actual list draining outside the lock to not hold the lock for
1836	 * too long, and also prevent deadlocks if tracing programs end up
1837	 * executing on entry/exit of functions called inside the critical
1838	 * section, and end up doing map ops that call bpf_list_head_free for
1839	 * the same map value again.
1840	 */
1841	__bpf_spin_lock_irqsave(spin_lock);
1842	if (!head->next || list_empty(head))
1843		goto unlock;
1844	head = head->next;
1845unlock:
1846	INIT_LIST_HEAD(orig_head);
1847	__bpf_spin_unlock_irqrestore(spin_lock);
1848
1849	while (head != orig_head) {
1850		void *obj = head;
1851
1852		obj -= field->graph_root.node_offset;
1853		head = head->next;
1854		/* The contained type can also have resources, including a
1855		 * bpf_list_head which needs to be freed.
1856		 */
 
 
 
 
 
1857		migrate_disable();
1858		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
1859		migrate_enable();
1860	}
1861}
1862
1863/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1864 * 'rb_node *', so field name of rb_node within containing struct is not
1865 * needed.
1866 *
1867 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1868 * graph_root.node_offset, it's not necessary to know field name
1869 * or type of node struct
1870 */
1871#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1872	for (pos = rb_first_postorder(root); \
1873	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1874	    pos = n)
1875
1876void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1877		      struct bpf_spin_lock *spin_lock)
1878{
1879	struct rb_root_cached orig_root, *root = rb_root;
1880	struct rb_node *pos, *n;
1881	void *obj;
1882
1883	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1884	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1885
1886	__bpf_spin_lock_irqsave(spin_lock);
1887	orig_root = *root;
1888	*root = RB_ROOT_CACHED;
1889	__bpf_spin_unlock_irqrestore(spin_lock);
1890
1891	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1892		obj = pos;
1893		obj -= field->graph_root.node_offset;
1894
1895
1896		migrate_disable();
1897		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
1898		migrate_enable();
1899	}
1900}
1901
1902__bpf_kfunc_start_defs();
1903
1904__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1905{
1906	struct btf_struct_meta *meta = meta__ign;
1907	u64 size = local_type_id__k;
1908	void *p;
1909
1910	p = bpf_mem_alloc(&bpf_global_ma, size);
1911	if (!p)
1912		return NULL;
1913	if (meta)
1914		bpf_obj_init(meta->record, p);
1915	return p;
1916}
1917
1918__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1919{
1920	u64 size = local_type_id__k;
1921
1922	/* The verifier has ensured that meta__ign must be NULL */
1923	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
1924}
1925
1926/* Must be called under migrate_disable(), as required by bpf_mem_free */
1927void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
1928{
1929	struct bpf_mem_alloc *ma;
1930
1931	if (rec && rec->refcount_off >= 0 &&
1932	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1933		/* Object is refcounted and refcount_dec didn't result in 0
1934		 * refcount. Return without freeing the object
1935		 */
1936		return;
1937	}
1938
1939	if (rec)
1940		bpf_obj_free_fields(rec, p);
1941
1942	if (percpu)
1943		ma = &bpf_global_percpu_ma;
1944	else
1945		ma = &bpf_global_ma;
1946	bpf_mem_free_rcu(ma, p);
1947}
1948
1949__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1950{
1951	struct btf_struct_meta *meta = meta__ign;
1952	void *p = p__alloc;
1953
1954	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
1955}
1956
1957__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
1958{
1959	/* The verifier has ensured that meta__ign must be NULL */
1960	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
1961}
1962
1963__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
1964{
1965	struct btf_struct_meta *meta = meta__ign;
1966	struct bpf_refcount *ref;
1967
1968	/* Could just cast directly to refcount_t *, but need some code using
1969	 * bpf_refcount type so that it is emitted in vmlinux BTF
1970	 */
1971	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
1972	if (!refcount_inc_not_zero((refcount_t *)ref))
1973		return NULL;
1974
1975	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
1976	 * in verifier.c
1977	 */
1978	return (void *)p__refcounted_kptr;
1979}
1980
1981static int __bpf_list_add(struct bpf_list_node_kern *node,
1982			  struct bpf_list_head *head,
1983			  bool tail, struct btf_record *rec, u64 off)
1984{
1985	struct list_head *n = &node->list_head, *h = (void *)head;
1986
1987	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
1988	 * called on its fields, so init here
1989	 */
1990	if (unlikely(!h->next))
1991		INIT_LIST_HEAD(h);
1992
1993	/* node->owner != NULL implies !list_empty(n), no need to separately
1994	 * check the latter
1995	 */
1996	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
1997		/* Only called from BPF prog, no need to migrate_disable */
1998		__bpf_obj_drop_impl((void *)n - off, rec, false);
1999		return -EINVAL;
2000	}
2001
2002	tail ? list_add_tail(n, h) : list_add(n, h);
2003	WRITE_ONCE(node->owner, head);
2004
2005	return 0;
2006}
2007
2008__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2009					 struct bpf_list_node *node,
2010					 void *meta__ign, u64 off)
2011{
2012	struct bpf_list_node_kern *n = (void *)node;
2013	struct btf_struct_meta *meta = meta__ign;
2014
2015	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2016}
2017
2018__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2019					struct bpf_list_node *node,
2020					void *meta__ign, u64 off)
2021{
2022	struct bpf_list_node_kern *n = (void *)node;
2023	struct btf_struct_meta *meta = meta__ign;
2024
2025	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2026}
2027
2028static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2029{
2030	struct list_head *n, *h = (void *)head;
2031	struct bpf_list_node_kern *node;
2032
2033	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2034	 * called on its fields, so init here
2035	 */
2036	if (unlikely(!h->next))
2037		INIT_LIST_HEAD(h);
2038	if (list_empty(h))
2039		return NULL;
2040
2041	n = tail ? h->prev : h->next;
2042	node = container_of(n, struct bpf_list_node_kern, list_head);
2043	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2044		return NULL;
2045
2046	list_del_init(n);
2047	WRITE_ONCE(node->owner, NULL);
2048	return (struct bpf_list_node *)n;
2049}
2050
2051__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2052{
2053	return __bpf_list_del(head, false);
2054}
2055
2056__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2057{
2058	return __bpf_list_del(head, true);
2059}
2060
2061__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2062						  struct bpf_rb_node *node)
 
 
 
 
 
2063{
2064	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2065	struct rb_root_cached *r = (struct rb_root_cached *)root;
2066	struct rb_node *n = &node_internal->rb_node;
2067
2068	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2069	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2070	 */
2071	if (READ_ONCE(node_internal->owner) != root)
2072		return NULL;
2073
2074	rb_erase_cached(n, r);
2075	RB_CLEAR_NODE(n);
2076	WRITE_ONCE(node_internal->owner, NULL);
2077	return (struct bpf_rb_node *)n;
2078}
2079
2080/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2081 * program
 
 
 
2082 */
2083static int __bpf_rbtree_add(struct bpf_rb_root *root,
2084			    struct bpf_rb_node_kern *node,
2085			    void *less, struct btf_record *rec, u64 off)
2086{
2087	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2088	struct rb_node *parent = NULL, *n = &node->rb_node;
2089	bpf_callback_t cb = (bpf_callback_t)less;
2090	bool leftmost = true;
2091
2092	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2093	 * check the latter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094	 */
2095	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2096		/* Only called from BPF prog, no need to migrate_disable */
2097		__bpf_obj_drop_impl((void *)n - off, rec, false);
2098		return -EINVAL;
2099	}
2100
2101	while (*link) {
2102		parent = *link;
2103		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2104			link = &parent->rb_left;
2105		} else {
2106			link = &parent->rb_right;
2107			leftmost = false;
2108		}
2109	}
2110
2111	rb_link_node(n, parent, link);
2112	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2113	WRITE_ONCE(node->owner, root);
2114	return 0;
2115}
2116
2117__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2118				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2119				    void *meta__ign, u64 off)
2120{
2121	struct btf_struct_meta *meta = meta__ign;
2122	struct bpf_rb_node_kern *n = (void *)node;
2123
2124	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2125}
2126
2127__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2128{
2129	struct rb_root_cached *r = (struct rb_root_cached *)root;
2130
2131	return (struct bpf_rb_node *)rb_first_cached(r);
2132}
2133
2134/**
2135 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2136 * kfunc which is not stored in a map as a kptr, must be released by calling
2137 * bpf_task_release().
2138 * @p: The task on which a reference is being acquired.
2139 */
2140__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2141{
2142	if (refcount_inc_not_zero(&p->rcu_users))
2143		return p;
 
 
2144	return NULL;
2145}
2146
2147/**
2148 * bpf_task_release - Release the reference acquired on a task.
2149 * @p: The task on which a reference is being released.
2150 */
2151__bpf_kfunc void bpf_task_release(struct task_struct *p)
2152{
2153	put_task_struct_rcu_user(p);
2154}
2155
2156__bpf_kfunc void bpf_task_release_dtor(void *p)
2157{
2158	put_task_struct_rcu_user(p);
2159}
2160CFI_NOSEAL(bpf_task_release_dtor);
2161
2162#ifdef CONFIG_CGROUPS
2163/**
2164 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2165 * this kfunc which is not stored in a map as a kptr, must be released by
2166 * calling bpf_cgroup_release().
2167 * @cgrp: The cgroup on which a reference is being acquired.
2168 */
2169__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	return cgroup_tryget(cgrp) ? cgrp : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172}
2173
2174/**
2175 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2176 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2177 * not be freed until the current grace period has ended, even if its refcount
2178 * drops to 0.
2179 * @cgrp: The cgroup on which a reference is being released.
2180 */
2181__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2182{
2183	cgroup_put(cgrp);
2184}
2185
2186__bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2187{
2188	cgroup_put(cgrp);
2189}
2190CFI_NOSEAL(bpf_cgroup_release_dtor);
2191
2192/**
2193 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2194 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2195 * map, must be released by calling bpf_cgroup_release().
2196 * @cgrp: The cgroup for which we're performing a lookup.
2197 * @level: The level of ancestor to look up.
2198 */
2199__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2200{
2201	struct cgroup *ancestor;
2202
2203	if (level > cgrp->level || level < 0)
2204		return NULL;
2205
2206	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2207	ancestor = cgrp->ancestors[level];
2208	if (!cgroup_tryget(ancestor))
2209		return NULL;
2210	return ancestor;
2211}
2212
2213/**
2214 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2215 * kfunc which is not subsequently stored in a map, must be released by calling
2216 * bpf_cgroup_release().
2217 * @cgid: cgroup id.
2218 */
2219__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2220{
2221	struct cgroup *cgrp;
2222
2223	cgrp = cgroup_get_from_id(cgid);
2224	if (IS_ERR(cgrp))
2225		return NULL;
2226	return cgrp;
2227}
2228
2229/**
2230 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2231 * task's membership of cgroup ancestry.
2232 * @task: the task to be tested
2233 * @ancestor: possible ancestor of @task's cgroup
2234 *
2235 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2236 * It follows all the same rules as cgroup_is_descendant, and only applies
2237 * to the default hierarchy.
2238 */
2239__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2240				       struct cgroup *ancestor)
2241{
2242	long ret;
2243
2244	rcu_read_lock();
2245	ret = task_under_cgroup_hierarchy(task, ancestor);
2246	rcu_read_unlock();
2247	return ret;
2248}
2249
2250/**
2251 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2252 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2253 * hierarchy ID.
2254 * @task: The target task
2255 * @hierarchy_id: The ID of a cgroup1 hierarchy
2256 *
2257 * On success, the cgroup is returen. On failure, NULL is returned.
2258 */
2259__bpf_kfunc struct cgroup *
2260bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2261{
2262	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2263
2264	if (IS_ERR(cgrp))
2265		return NULL;
2266	return cgrp;
2267}
2268#endif /* CONFIG_CGROUPS */
2269
2270/**
2271 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2272 * in the root pid namespace idr. If a task is returned, it must either be
2273 * stored in a map, or released with bpf_task_release().
2274 * @pid: The pid of the task being looked up.
2275 */
2276__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2277{
2278	struct task_struct *p;
2279
2280	rcu_read_lock();
2281	p = find_task_by_pid_ns(pid, &init_pid_ns);
2282	if (p)
2283		p = bpf_task_acquire(p);
2284	rcu_read_unlock();
2285
2286	return p;
2287}
2288
2289/**
2290 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2291 * @ptr: The dynptr whose data slice to retrieve
2292 * @offset: Offset into the dynptr
2293 * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2294 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2295 *               length of the requested slice. This must be a constant.
2296 *
2297 * For non-skb and non-xdp type dynptrs, there is no difference between
2298 * bpf_dynptr_slice and bpf_dynptr_data.
2299 *
2300 *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2301 *
2302 * If the intention is to write to the data slice, please use
2303 * bpf_dynptr_slice_rdwr.
2304 *
2305 * The user must check that the returned pointer is not null before using it.
2306 *
2307 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2308 * does not change the underlying packet data pointers, so a call to
2309 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2310 * the bpf program.
2311 *
2312 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2313 * data slice (can be either direct pointer to the data or a pointer to the user
2314 * provided buffer, with its contents containing the data, if unable to obtain
2315 * direct pointer)
2316 */
2317__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2318				   void *buffer__opt, u32 buffer__szk)
2319{
2320	enum bpf_dynptr_type type;
2321	u32 len = buffer__szk;
2322	int err;
2323
2324	if (!ptr->data)
2325		return NULL;
2326
2327	err = bpf_dynptr_check_off_len(ptr, offset, len);
2328	if (err)
2329		return NULL;
2330
2331	type = bpf_dynptr_get_type(ptr);
2332
2333	switch (type) {
2334	case BPF_DYNPTR_TYPE_LOCAL:
2335	case BPF_DYNPTR_TYPE_RINGBUF:
2336		return ptr->data + ptr->offset + offset;
2337	case BPF_DYNPTR_TYPE_SKB:
2338		if (buffer__opt)
2339			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2340		else
2341			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2342	case BPF_DYNPTR_TYPE_XDP:
2343	{
2344		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2345		if (!IS_ERR_OR_NULL(xdp_ptr))
2346			return xdp_ptr;
2347
2348		if (!buffer__opt)
2349			return NULL;
2350		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2351		return buffer__opt;
2352	}
2353	default:
2354		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2355		return NULL;
2356	}
2357}
2358
2359/**
2360 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2361 * @ptr: The dynptr whose data slice to retrieve
2362 * @offset: Offset into the dynptr
2363 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2364 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2365 *               length of the requested slice. This must be a constant.
2366 *
2367 * For non-skb and non-xdp type dynptrs, there is no difference between
2368 * bpf_dynptr_slice and bpf_dynptr_data.
2369 *
2370 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2371 *
2372 * The returned pointer is writable and may point to either directly the dynptr
2373 * data at the requested offset or to the buffer if unable to obtain a direct
2374 * data pointer to (example: the requested slice is to the paged area of an skb
2375 * packet). In the case where the returned pointer is to the buffer, the user
2376 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2377 * usually looks something like this pattern:
2378 *
2379 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2380 * if (!eth)
2381 *	return TC_ACT_SHOT;
2382 *
2383 * // mutate eth header //
2384 *
2385 * if (eth == buffer)
2386 *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2387 *
2388 * Please note that, as in the example above, the user must check that the
2389 * returned pointer is not null before using it.
2390 *
2391 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2392 * does not change the underlying packet data pointers, so a call to
2393 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2394 * the bpf program.
2395 *
2396 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2397 * data slice (can be either direct pointer to the data or a pointer to the user
2398 * provided buffer, with its contents containing the data, if unable to obtain
2399 * direct pointer)
2400 */
2401__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2402					void *buffer__opt, u32 buffer__szk)
2403{
2404	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2405		return NULL;
2406
2407	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2408	 *
2409	 * For skb-type dynptrs, it is safe to write into the returned pointer
2410	 * if the bpf program allows skb data writes. There are two possiblities
2411	 * that may occur when calling bpf_dynptr_slice_rdwr:
2412	 *
2413	 * 1) The requested slice is in the head of the skb. In this case, the
2414	 * returned pointer is directly to skb data, and if the skb is cloned, the
2415	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2416	 * The pointer can be directly written into.
2417	 *
2418	 * 2) Some portion of the requested slice is in the paged buffer area.
2419	 * In this case, the requested data will be copied out into the buffer
2420	 * and the returned pointer will be a pointer to the buffer. The skb
2421	 * will not be pulled. To persist the write, the user will need to call
2422	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2423	 *
2424	 * Similarly for xdp programs, if the requested slice is not across xdp
2425	 * fragments, then a direct pointer will be returned, otherwise the data
2426	 * will be copied out into the buffer and the user will need to call
2427	 * bpf_dynptr_write() to commit changes.
2428	 */
2429	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2430}
2431
2432__bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2433{
2434	u32 size;
2435
2436	if (!ptr->data || start > end)
2437		return -EINVAL;
2438
2439	size = __bpf_dynptr_size(ptr);
2440
2441	if (start > size || end > size)
2442		return -ERANGE;
2443
2444	ptr->offset += start;
2445	bpf_dynptr_set_size(ptr, end - start);
2446
2447	return 0;
2448}
2449
2450__bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2451{
2452	return !ptr->data;
2453}
2454
2455__bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2456{
2457	if (!ptr->data)
2458		return false;
2459
2460	return __bpf_dynptr_is_rdonly(ptr);
2461}
2462
2463__bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2464{
2465	if (!ptr->data)
2466		return -EINVAL;
2467
2468	return __bpf_dynptr_size(ptr);
2469}
2470
2471__bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2472				 struct bpf_dynptr_kern *clone__uninit)
2473{
2474	if (!ptr->data) {
2475		bpf_dynptr_set_null(clone__uninit);
2476		return -EINVAL;
2477	}
2478
2479	*clone__uninit = *ptr;
2480
2481	return 0;
2482}
2483
2484__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2485{
2486	return obj;
2487}
2488
2489__bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2490{
2491	return obj__ign;
2492}
2493
2494__bpf_kfunc void bpf_rcu_read_lock(void)
2495{
2496	rcu_read_lock();
2497}
2498
2499__bpf_kfunc void bpf_rcu_read_unlock(void)
2500{
2501	rcu_read_unlock();
2502}
2503
2504struct bpf_throw_ctx {
2505	struct bpf_prog_aux *aux;
2506	u64 sp;
2507	u64 bp;
2508	int cnt;
2509};
2510
2511static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2512{
2513	struct bpf_throw_ctx *ctx = cookie;
2514	struct bpf_prog *prog;
2515
2516	if (!is_bpf_text_address(ip))
2517		return !ctx->cnt;
2518	prog = bpf_prog_ksym_find(ip);
2519	ctx->cnt++;
2520	if (bpf_is_subprog(prog))
2521		return true;
2522	ctx->aux = prog->aux;
2523	ctx->sp = sp;
2524	ctx->bp = bp;
2525	return false;
2526}
2527
2528__bpf_kfunc void bpf_throw(u64 cookie)
2529{
2530	struct bpf_throw_ctx ctx = {};
2531
2532	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2533	WARN_ON_ONCE(!ctx.aux);
2534	if (ctx.aux)
2535		WARN_ON_ONCE(!ctx.aux->exception_boundary);
2536	WARN_ON_ONCE(!ctx.bp);
2537	WARN_ON_ONCE(!ctx.cnt);
2538	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2539	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2540	 * which skips compiler generated instrumentation to do the same.
2541	 */
2542	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2543	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2544	WARN(1, "A call to BPF exception callback should never return\n");
2545}
2546
2547__bpf_kfunc_end_defs();
2548
2549BTF_SET8_START(generic_btf_ids)
2550#ifdef CONFIG_KEXEC_CORE
2551BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2552#endif
2553BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2554BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2555BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2556BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
2557BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
2558BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2559BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2560BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2561BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2562BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
 
 
2563BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2564BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2565BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2566BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2567
2568#ifdef CONFIG_CGROUPS
2569BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
 
2570BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2571BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2572BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2573BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2574BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2575#endif
2576BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2577BTF_ID_FLAGS(func, bpf_throw)
2578BTF_SET8_END(generic_btf_ids)
2579
2580static const struct btf_kfunc_id_set generic_kfunc_set = {
2581	.owner = THIS_MODULE,
2582	.set   = &generic_btf_ids,
2583};
2584
2585
2586BTF_ID_LIST(generic_dtor_ids)
2587BTF_ID(struct, task_struct)
2588BTF_ID(func, bpf_task_release_dtor)
2589#ifdef CONFIG_CGROUPS
2590BTF_ID(struct, cgroup)
2591BTF_ID(func, bpf_cgroup_release_dtor)
2592#endif
2593
2594BTF_SET8_START(common_btf_ids)
2595BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2596BTF_ID_FLAGS(func, bpf_rdonly_cast)
2597BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2598BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2599BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2600BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2601BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2602BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2603BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2604BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
2605BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
2606BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
2607#ifdef CONFIG_CGROUPS
2608BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
2609BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
2610BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
2611BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2612BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
2613BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
2614#endif
2615BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2616BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
2617BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
2618BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2619BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2620BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2621BTF_ID_FLAGS(func, bpf_dynptr_size)
2622BTF_ID_FLAGS(func, bpf_dynptr_clone)
2623BTF_SET8_END(common_btf_ids)
2624
2625static const struct btf_kfunc_id_set common_kfunc_set = {
2626	.owner = THIS_MODULE,
2627	.set   = &common_btf_ids,
2628};
2629
2630static int __init kfunc_init(void)
2631{
2632	int ret;
2633	const struct btf_id_dtor_kfunc generic_dtors[] = {
2634		{
2635			.btf_id       = generic_dtor_ids[0],
2636			.kfunc_btf_id = generic_dtor_ids[1]
2637		},
2638#ifdef CONFIG_CGROUPS
2639		{
2640			.btf_id       = generic_dtor_ids[2],
2641			.kfunc_btf_id = generic_dtor_ids[3]
2642		},
2643#endif
2644	};
2645
2646	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2647	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2648	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
2649	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2650	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2651						  ARRAY_SIZE(generic_dtors),
2652						  THIS_MODULE);
2653	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2654}
2655
2656late_initcall(kfunc_init);
2657
2658/* Get a pointer to dynptr data up to len bytes for read only access. If
2659 * the dynptr doesn't have continuous data up to len bytes, return NULL.
2660 */
2661const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
2662{
2663	return bpf_dynptr_slice(ptr, 0, NULL, len);
2664}
2665
2666/* Get a pointer to dynptr data up to len bytes for read write access. If
2667 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
2668 * is read only, return NULL.
2669 */
2670void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
2671{
2672	if (__bpf_dynptr_is_rdonly(ptr))
2673		return NULL;
2674	return (void *)__bpf_dynptr_data(ptr, len);
2675}