Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* include/asm-generic/tlb.h
  3 *
  4 *	Generic TLB shootdown code
  5 *
  6 * Copyright 2001 Red Hat, Inc.
  7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
  8 *
  9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
 10 */
 11#ifndef _ASM_GENERIC__TLB_H
 12#define _ASM_GENERIC__TLB_H
 13
 14#include <linux/mmu_notifier.h>
 15#include <linux/swap.h>
 16#include <linux/hugetlb_inline.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19
 20/*
 21 * Blindly accessing user memory from NMI context can be dangerous
 22 * if we're in the middle of switching the current user task or switching
 23 * the loaded mm.
 24 */
 25#ifndef nmi_uaccess_okay
 26# define nmi_uaccess_okay() true
 27#endif
 28
 29#ifdef CONFIG_MMU
 30
 31/*
 32 * Generic MMU-gather implementation.
 33 *
 34 * The mmu_gather data structure is used by the mm code to implement the
 35 * correct and efficient ordering of freeing pages and TLB invalidations.
 36 *
 37 * This correct ordering is:
 38 *
 39 *  1) unhook page
 40 *  2) TLB invalidate page
 41 *  3) free page
 42 *
 43 * That is, we must never free a page before we have ensured there are no live
 44 * translations left to it. Otherwise it might be possible to observe (or
 45 * worse, change) the page content after it has been reused.
 46 *
 47 * The mmu_gather API consists of:
 48 *
 49 *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
 50 *
 51 *    start and finish a mmu_gather
 52 *
 53 *    Finish in particular will issue a (final) TLB invalidate and free
 54 *    all (remaining) queued pages.
 55 *
 56 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
 57 *
 58 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
 59 *    there's large holes between the VMAs.
 60 *
 61 *  - tlb_remove_table()
 62 *
 63 *    tlb_remove_table() is the basic primitive to free page-table directories
 64 *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
 65 *    tlb_remove_page() below, for when page directories are pages and have no
 66 *    additional constraints.
 67 *
 68 *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
 69 *
 70 *  - tlb_remove_page() / __tlb_remove_page()
 71 *  - tlb_remove_page_size() / __tlb_remove_page_size()
 72 *
 73 *    __tlb_remove_page_size() is the basic primitive that queues a page for
 74 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
 75 *    boolean indicating if the queue is (now) full and a call to
 76 *    tlb_flush_mmu() is required.
 77 *
 78 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
 79 *    tlb_flush_mmu() when required and has no return value.
 80 *
 81 *  - tlb_change_page_size()
 82 *
 83 *    call before __tlb_remove_page*() to set the current page-size; implies a
 84 *    possible tlb_flush_mmu() call.
 85 *
 86 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
 87 *
 88 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
 89 *                              related state, like the range)
 90 *
 91 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
 92 *			whatever pages are still batched.
 93 *
 94 *  - mmu_gather::fullmm
 95 *
 96 *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
 97 *    the entire mm; this allows a number of optimizations.
 98 *
 99 *    - We can ignore tlb_{start,end}_vma(); because we don't
100 *      care about ranges. Everything will be shot down.
101 *
102 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
103 *      and delay the invalidation until ASID space runs out.
104 *
105 *  - mmu_gather::need_flush_all
106 *
107 *    A flag that can be set by the arch code if it wants to force
108 *    flush the entire TLB irrespective of the range. For instance
109 *    x86-PAE needs this when changing top-level entries.
110 *
111 * And allows the architecture to provide and implement tlb_flush():
112 *
113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 * use of:
115 *
116 *  - mmu_gather::start / mmu_gather::end
117 *
118 *    which provides the range that needs to be flushed to cover the pages to
119 *    be freed.
120 *
121 *  - mmu_gather::freed_tables
122 *
123 *    set when we freed page table pages
124 *
125 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 *
127 *    returns the smallest TLB entry size unmapped in this range.
128 *
129 * If an architecture does not provide tlb_flush() a default implementation
130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 * specified, in which case we'll default to flush_tlb_mm().
132 *
133 * Additionally there are a few opt-in features:
134 *
135 *  MMU_GATHER_PAGE_SIZE
136 *
137 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 *  changes the size and provides mmu_gather::page_size to tlb_flush().
139 *
140 *  This might be useful if your architecture has size specific TLB
141 *  invalidation instructions.
142 *
143 *  MMU_GATHER_TABLE_FREE
144 *
145 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 *  for page directores (__p*_free_tlb()).
147 *
148 *  Useful if your architecture has non-page page directories.
149 *
150 *  When used, an architecture is expected to provide __tlb_remove_table()
151 *  which does the actual freeing of these pages.
152 *
153 *  MMU_GATHER_RCU_TABLE_FREE
154 *
155 *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 *  comment below).
157 *
158 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 *  and therefore doesn't naturally serialize with software page-table walkers.
160 *
161 *  MMU_GATHER_NO_FLUSH_CACHE
162 *
163 *  Indicates the architecture has flush_cache_range() but it needs *NOT* be called
164 *  before unmapping a VMA.
165 *
166 *  NOTE: strictly speaking we shouldn't have this knob and instead rely on
167 *	  flush_cache_range() being a NOP, except Sparc64 seems to be
168 *	  different here.
169 *
170 *  MMU_GATHER_MERGE_VMAS
171 *
172 *  Indicates the architecture wants to merge ranges over VMAs; typical when
173 *  multiple range invalidates are more expensive than a full invalidate.
174 *
175 *  MMU_GATHER_NO_RANGE
176 *
177 *  Use this if your architecture lacks an efficient flush_tlb_range(). This
178 *  option implies MMU_GATHER_MERGE_VMAS above.
179 *
180 *  MMU_GATHER_NO_GATHER
181 *
182 *  If the option is set the mmu_gather will not track individual pages for
183 *  delayed page free anymore. A platform that enables the option needs to
184 *  provide its own implementation of the __tlb_remove_page_size() function to
185 *  free pages.
186 *
187 *  This is useful if your architecture already flushes TLB entries in the
188 *  various ptep_get_and_clear() functions.
189 */
190
191#ifdef CONFIG_MMU_GATHER_TABLE_FREE
192
193struct mmu_table_batch {
194#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
195	struct rcu_head		rcu;
196#endif
197	unsigned int		nr;
198	void			*tables[];
199};
200
201#define MAX_TABLE_BATCH		\
202	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
203
204extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
205
206#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
207
208/*
209 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
210 * page directories and we can use the normal page batching to free them.
211 */
212#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
213
214#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
215
216#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
217/*
218 * This allows an architecture that does not use the linux page-tables for
219 * hardware to skip the TLBI when freeing page tables.
220 */
221#ifndef tlb_needs_table_invalidate
222#define tlb_needs_table_invalidate() (true)
223#endif
224
225void tlb_remove_table_sync_one(void);
226
227#else
228
229#ifdef tlb_needs_table_invalidate
230#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
231#endif
232
233static inline void tlb_remove_table_sync_one(void) { }
234
235#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
236
237
238#ifndef CONFIG_MMU_GATHER_NO_GATHER
239/*
240 * If we can't allocate a page to make a big batch of page pointers
241 * to work on, then just handle a few from the on-stack structure.
242 */
243#define MMU_GATHER_BUNDLE	8
244
245struct mmu_gather_batch {
246	struct mmu_gather_batch	*next;
247	unsigned int		nr;
248	unsigned int		max;
249	struct encoded_page	*encoded_pages[];
250};
251
252#define MAX_GATHER_BATCH	\
253	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
254
255/*
256 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
257 * lockups for non-preemptible kernels on huge machines when a lot of memory
258 * is zapped during unmapping.
259 * 10K pages freed at once should be safe even without a preemption point.
260 */
261#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
262
263extern bool __tlb_remove_page_size(struct mmu_gather *tlb,
264				   struct encoded_page *page,
265				   int page_size);
266
267#ifdef CONFIG_SMP
268/*
269 * This both sets 'delayed_rmap', and returns true. It would be an inline
270 * function, except we define it before the 'struct mmu_gather'.
271 */
272#define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
273extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
274#endif
275
276#endif
277
278/*
279 * We have a no-op version of the rmap removal that doesn't
280 * delay anything. That is used on S390, which flushes remote
281 * TLBs synchronously, and on UP, which doesn't have any
282 * remote TLBs to flush and is not preemptible due to this
283 * all happening under the page table lock.
284 */
285#ifndef tlb_delay_rmap
286#define tlb_delay_rmap(tlb) (false)
287static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
288#endif
289
290/*
291 * struct mmu_gather is an opaque type used by the mm code for passing around
292 * any data needed by arch specific code for tlb_remove_page.
293 */
294struct mmu_gather {
295	struct mm_struct	*mm;
296
297#ifdef CONFIG_MMU_GATHER_TABLE_FREE
298	struct mmu_table_batch	*batch;
299#endif
300
301	unsigned long		start;
302	unsigned long		end;
303	/*
304	 * we are in the middle of an operation to clear
305	 * a full mm and can make some optimizations
306	 */
307	unsigned int		fullmm : 1;
308
309	/*
310	 * we have performed an operation which
311	 * requires a complete flush of the tlb
312	 */
313	unsigned int		need_flush_all : 1;
314
315	/*
316	 * we have removed page directories
317	 */
318	unsigned int		freed_tables : 1;
319
320	/*
321	 * Do we have pending delayed rmap removals?
322	 */
323	unsigned int		delayed_rmap : 1;
324
325	/*
326	 * at which levels have we cleared entries?
327	 */
328	unsigned int		cleared_ptes : 1;
329	unsigned int		cleared_pmds : 1;
330	unsigned int		cleared_puds : 1;
331	unsigned int		cleared_p4ds : 1;
332
333	/*
334	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
335	 */
336	unsigned int		vma_exec : 1;
337	unsigned int		vma_huge : 1;
338	unsigned int		vma_pfn  : 1;
339
340	unsigned int		batch_count;
341
342#ifndef CONFIG_MMU_GATHER_NO_GATHER
343	struct mmu_gather_batch *active;
344	struct mmu_gather_batch	local;
345	struct page		*__pages[MMU_GATHER_BUNDLE];
346
347#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
348	unsigned int page_size;
349#endif
350#endif
351};
352
353void tlb_flush_mmu(struct mmu_gather *tlb);
354
355static inline void __tlb_adjust_range(struct mmu_gather *tlb,
356				      unsigned long address,
357				      unsigned int range_size)
358{
359	tlb->start = min(tlb->start, address);
360	tlb->end = max(tlb->end, address + range_size);
361}
362
363static inline void __tlb_reset_range(struct mmu_gather *tlb)
364{
365	if (tlb->fullmm) {
366		tlb->start = tlb->end = ~0;
367	} else {
368		tlb->start = TASK_SIZE;
369		tlb->end = 0;
370	}
371	tlb->freed_tables = 0;
372	tlb->cleared_ptes = 0;
373	tlb->cleared_pmds = 0;
374	tlb->cleared_puds = 0;
375	tlb->cleared_p4ds = 0;
376	/*
377	 * Do not reset mmu_gather::vma_* fields here, we do not
378	 * call into tlb_start_vma() again to set them if there is an
379	 * intermediate flush.
380	 */
381}
382
383#ifdef CONFIG_MMU_GATHER_NO_RANGE
384
385#if defined(tlb_flush)
386#error MMU_GATHER_NO_RANGE relies on default tlb_flush()
387#endif
388
389/*
390 * When an architecture does not have efficient means of range flushing TLBs
391 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
392 * range small. We equally don't have to worry about page granularity or other
393 * things.
394 *
395 * All we need to do is issue a full flush for any !0 range.
396 */
397static inline void tlb_flush(struct mmu_gather *tlb)
398{
399	if (tlb->end)
400		flush_tlb_mm(tlb->mm);
401}
402
403#else /* CONFIG_MMU_GATHER_NO_RANGE */
404
405#ifndef tlb_flush
406/*
407 * When an architecture does not provide its own tlb_flush() implementation
408 * but does have a reasonably efficient flush_vma_range() implementation
409 * use that.
410 */
411static inline void tlb_flush(struct mmu_gather *tlb)
412{
413	if (tlb->fullmm || tlb->need_flush_all) {
414		flush_tlb_mm(tlb->mm);
415	} else if (tlb->end) {
416		struct vm_area_struct vma = {
417			.vm_mm = tlb->mm,
418			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
419				    (tlb->vma_huge ? VM_HUGETLB : 0),
420		};
421
422		flush_tlb_range(&vma, tlb->start, tlb->end);
423	}
424}
425#endif
426
427#endif /* CONFIG_MMU_GATHER_NO_RANGE */
428
429static inline void
430tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
431{
432	/*
433	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
434	 * mips-4k) flush only large pages.
435	 *
436	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
437	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
438	 * range.
439	 *
440	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
441	 * these values the batch is empty.
442	 */
443	tlb->vma_huge = is_vm_hugetlb_page(vma);
444	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
445	tlb->vma_pfn  = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
446}
447
448static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
449{
450	/*
451	 * Anything calling __tlb_adjust_range() also sets at least one of
452	 * these bits.
453	 */
454	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
455	      tlb->cleared_puds || tlb->cleared_p4ds))
456		return;
457
458	tlb_flush(tlb);
459	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
460	__tlb_reset_range(tlb);
461}
462
463static inline void tlb_remove_page_size(struct mmu_gather *tlb,
464					struct page *page, int page_size)
465{
466	if (__tlb_remove_page_size(tlb, encode_page(page, 0), page_size))
467		tlb_flush_mmu(tlb);
468}
469
470static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page, unsigned int flags)
471{
472	return __tlb_remove_page_size(tlb, encode_page(page, flags), PAGE_SIZE);
473}
474
475/* tlb_remove_page
476 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
477 *	required.
478 */
479static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
480{
481	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
482}
483
484static inline void tlb_change_page_size(struct mmu_gather *tlb,
485						     unsigned int page_size)
486{
487#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
488	if (tlb->page_size && tlb->page_size != page_size) {
489		if (!tlb->fullmm && !tlb->need_flush_all)
490			tlb_flush_mmu(tlb);
491	}
492
493	tlb->page_size = page_size;
494#endif
495}
496
497static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
498{
499	if (tlb->cleared_ptes)
500		return PAGE_SHIFT;
501	if (tlb->cleared_pmds)
502		return PMD_SHIFT;
503	if (tlb->cleared_puds)
504		return PUD_SHIFT;
505	if (tlb->cleared_p4ds)
506		return P4D_SHIFT;
507
508	return PAGE_SHIFT;
509}
510
511static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
512{
513	return 1UL << tlb_get_unmap_shift(tlb);
514}
515
516/*
517 * In the case of tlb vma handling, we can optimise these away in the
518 * case where we're doing a full MM flush.  When we're doing a munmap,
519 * the vmas are adjusted to only cover the region to be torn down.
520 */
521static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
522{
523	if (tlb->fullmm)
524		return;
525
526	tlb_update_vma_flags(tlb, vma);
527#ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
528	flush_cache_range(vma, vma->vm_start, vma->vm_end);
529#endif
530}
531
532static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
533{
534	if (tlb->fullmm)
535		return;
536
537	/*
538	 * VM_PFNMAP is more fragile because the core mm will not track the
539	 * page mapcount -- there might not be page-frames for these PFNs after
540	 * all. Force flush TLBs for such ranges to avoid munmap() vs
541	 * unmap_mapping_range() races.
542	 */
543	if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) {
544		/*
545		 * Do a TLB flush and reset the range at VMA boundaries; this avoids
546		 * the ranges growing with the unused space between consecutive VMAs.
547		 */
548		tlb_flush_mmu_tlbonly(tlb);
549	}
550}
551
552/*
553 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
554 * and set corresponding cleared_*.
555 */
556static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
557				     unsigned long address, unsigned long size)
558{
559	__tlb_adjust_range(tlb, address, size);
560	tlb->cleared_ptes = 1;
561}
562
563static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
564				     unsigned long address, unsigned long size)
565{
566	__tlb_adjust_range(tlb, address, size);
567	tlb->cleared_pmds = 1;
568}
569
570static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
571				     unsigned long address, unsigned long size)
572{
573	__tlb_adjust_range(tlb, address, size);
574	tlb->cleared_puds = 1;
575}
576
577static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
578				     unsigned long address, unsigned long size)
579{
580	__tlb_adjust_range(tlb, address, size);
581	tlb->cleared_p4ds = 1;
582}
583
584#ifndef __tlb_remove_tlb_entry
585#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
586#endif
587
588/**
589 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
590 *
591 * Record the fact that pte's were really unmapped by updating the range,
592 * so we can later optimise away the tlb invalidate.   This helps when
593 * userspace is unmapping already-unmapped pages, which happens quite a lot.
594 */
595#define tlb_remove_tlb_entry(tlb, ptep, address)		\
596	do {							\
597		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
598		__tlb_remove_tlb_entry(tlb, ptep, address);	\
599	} while (0)
600
601#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
602	do {							\
603		unsigned long _sz = huge_page_size(h);		\
604		if (_sz >= P4D_SIZE)				\
605			tlb_flush_p4d_range(tlb, address, _sz);	\
606		else if (_sz >= PUD_SIZE)			\
607			tlb_flush_pud_range(tlb, address, _sz);	\
608		else if (_sz >= PMD_SIZE)			\
609			tlb_flush_pmd_range(tlb, address, _sz);	\
610		else						\
611			tlb_flush_pte_range(tlb, address, _sz);	\
612		__tlb_remove_tlb_entry(tlb, ptep, address);	\
613	} while (0)
614
615/**
616 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
617 * This is a nop so far, because only x86 needs it.
618 */
619#ifndef __tlb_remove_pmd_tlb_entry
620#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
621#endif
622
623#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
624	do {								\
625		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
626		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
627	} while (0)
628
629/**
630 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
631 * invalidation. This is a nop so far, because only x86 needs it.
632 */
633#ifndef __tlb_remove_pud_tlb_entry
634#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
635#endif
636
637#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
638	do {								\
639		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
640		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
641	} while (0)
642
643/*
644 * For things like page tables caches (ie caching addresses "inside" the
645 * page tables, like x86 does), for legacy reasons, flushing an
646 * individual page had better flush the page table caches behind it. This
647 * is definitely how x86 works, for example. And if you have an
648 * architected non-legacy page table cache (which I'm not aware of
649 * anybody actually doing), you're going to have some architecturally
650 * explicit flushing for that, likely *separate* from a regular TLB entry
651 * flush, and thus you'd need more than just some range expansion..
652 *
653 * So if we ever find an architecture
654 * that would want something that odd, I think it is up to that
655 * architecture to do its own odd thing, not cause pain for others
656 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
657 *
658 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
659 */
660
661#ifndef pte_free_tlb
662#define pte_free_tlb(tlb, ptep, address)			\
663	do {							\
664		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
665		tlb->freed_tables = 1;				\
666		__pte_free_tlb(tlb, ptep, address);		\
667	} while (0)
668#endif
669
670#ifndef pmd_free_tlb
671#define pmd_free_tlb(tlb, pmdp, address)			\
672	do {							\
673		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
674		tlb->freed_tables = 1;				\
675		__pmd_free_tlb(tlb, pmdp, address);		\
676	} while (0)
677#endif
678
679#ifndef pud_free_tlb
680#define pud_free_tlb(tlb, pudp, address)			\
681	do {							\
682		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
683		tlb->freed_tables = 1;				\
684		__pud_free_tlb(tlb, pudp, address);		\
685	} while (0)
686#endif
687
688#ifndef p4d_free_tlb
689#define p4d_free_tlb(tlb, pudp, address)			\
690	do {							\
691		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
692		tlb->freed_tables = 1;				\
693		__p4d_free_tlb(tlb, pudp, address);		\
694	} while (0)
695#endif
696
697#ifndef pte_needs_flush
698static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
699{
700	return true;
701}
702#endif
703
704#ifndef huge_pmd_needs_flush
705static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
706{
707	return true;
708}
709#endif
710
711#endif /* CONFIG_MMU */
712
713#endif /* _ASM_GENERIC__TLB_H */
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* include/asm-generic/tlb.h
  3 *
  4 *	Generic TLB shootdown code
  5 *
  6 * Copyright 2001 Red Hat, Inc.
  7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
  8 *
  9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
 10 */
 11#ifndef _ASM_GENERIC__TLB_H
 12#define _ASM_GENERIC__TLB_H
 13
 14#include <linux/mmu_notifier.h>
 15#include <linux/swap.h>
 16#include <linux/hugetlb_inline.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19
 20/*
 21 * Blindly accessing user memory from NMI context can be dangerous
 22 * if we're in the middle of switching the current user task or switching
 23 * the loaded mm.
 24 */
 25#ifndef nmi_uaccess_okay
 26# define nmi_uaccess_okay() true
 27#endif
 28
 29#ifdef CONFIG_MMU
 30
 31/*
 32 * Generic MMU-gather implementation.
 33 *
 34 * The mmu_gather data structure is used by the mm code to implement the
 35 * correct and efficient ordering of freeing pages and TLB invalidations.
 36 *
 37 * This correct ordering is:
 38 *
 39 *  1) unhook page
 40 *  2) TLB invalidate page
 41 *  3) free page
 42 *
 43 * That is, we must never free a page before we have ensured there are no live
 44 * translations left to it. Otherwise it might be possible to observe (or
 45 * worse, change) the page content after it has been reused.
 46 *
 47 * The mmu_gather API consists of:
 48 *
 49 *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
 50 *
 51 *    start and finish a mmu_gather
 52 *
 53 *    Finish in particular will issue a (final) TLB invalidate and free
 54 *    all (remaining) queued pages.
 55 *
 56 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
 57 *
 58 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
 59 *    there's large holes between the VMAs.
 60 *
 61 *  - tlb_remove_table()
 62 *
 63 *    tlb_remove_table() is the basic primitive to free page-table directories
 64 *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
 65 *    tlb_remove_page() below, for when page directories are pages and have no
 66 *    additional constraints.
 67 *
 68 *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
 69 *
 70 *  - tlb_remove_page() / __tlb_remove_page()
 71 *  - tlb_remove_page_size() / __tlb_remove_page_size()
 72 *
 73 *    __tlb_remove_page_size() is the basic primitive that queues a page for
 74 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
 75 *    boolean indicating if the queue is (now) full and a call to
 76 *    tlb_flush_mmu() is required.
 77 *
 78 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
 79 *    tlb_flush_mmu() when required and has no return value.
 80 *
 81 *  - tlb_change_page_size()
 82 *
 83 *    call before __tlb_remove_page*() to set the current page-size; implies a
 84 *    possible tlb_flush_mmu() call.
 85 *
 86 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
 87 *
 88 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
 89 *                              related state, like the range)
 90 *
 91 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
 92 *			whatever pages are still batched.
 93 *
 94 *  - mmu_gather::fullmm
 95 *
 96 *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
 97 *    the entire mm; this allows a number of optimizations.
 98 *
 99 *    - We can ignore tlb_{start,end}_vma(); because we don't
100 *      care about ranges. Everything will be shot down.
101 *
102 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
103 *      and delay the invalidation until ASID space runs out.
104 *
105 *  - mmu_gather::need_flush_all
106 *
107 *    A flag that can be set by the arch code if it wants to force
108 *    flush the entire TLB irrespective of the range. For instance
109 *    x86-PAE needs this when changing top-level entries.
110 *
111 * And allows the architecture to provide and implement tlb_flush():
112 *
113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 * use of:
115 *
116 *  - mmu_gather::start / mmu_gather::end
117 *
118 *    which provides the range that needs to be flushed to cover the pages to
119 *    be freed.
120 *
121 *  - mmu_gather::freed_tables
122 *
123 *    set when we freed page table pages
124 *
125 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 *
127 *    returns the smallest TLB entry size unmapped in this range.
128 *
129 * If an architecture does not provide tlb_flush() a default implementation
130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 * specified, in which case we'll default to flush_tlb_mm().
132 *
133 * Additionally there are a few opt-in features:
134 *
135 *  MMU_GATHER_PAGE_SIZE
136 *
137 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 *  changes the size and provides mmu_gather::page_size to tlb_flush().
139 *
140 *  This might be useful if your architecture has size specific TLB
141 *  invalidation instructions.
142 *
143 *  MMU_GATHER_TABLE_FREE
144 *
145 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 *  for page directores (__p*_free_tlb()).
147 *
148 *  Useful if your architecture has non-page page directories.
149 *
150 *  When used, an architecture is expected to provide __tlb_remove_table()
151 *  which does the actual freeing of these pages.
152 *
153 *  MMU_GATHER_RCU_TABLE_FREE
154 *
155 *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 *  comment below).
157 *
158 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 *  and therefore doesn't naturally serialize with software page-table walkers.
160 *
161 *  MMU_GATHER_NO_FLUSH_CACHE
162 *
163 *  Indicates the architecture has flush_cache_range() but it needs *NOT* be called
164 *  before unmapping a VMA.
165 *
166 *  NOTE: strictly speaking we shouldn't have this knob and instead rely on
167 *	  flush_cache_range() being a NOP, except Sparc64 seems to be
168 *	  different here.
169 *
170 *  MMU_GATHER_MERGE_VMAS
171 *
172 *  Indicates the architecture wants to merge ranges over VMAs; typical when
173 *  multiple range invalidates are more expensive than a full invalidate.
174 *
175 *  MMU_GATHER_NO_RANGE
176 *
177 *  Use this if your architecture lacks an efficient flush_tlb_range(). This
178 *  option implies MMU_GATHER_MERGE_VMAS above.
179 *
180 *  MMU_GATHER_NO_GATHER
181 *
182 *  If the option is set the mmu_gather will not track individual pages for
183 *  delayed page free anymore. A platform that enables the option needs to
184 *  provide its own implementation of the __tlb_remove_page_size() function to
185 *  free pages.
186 *
187 *  This is useful if your architecture already flushes TLB entries in the
188 *  various ptep_get_and_clear() functions.
189 */
190
191#ifdef CONFIG_MMU_GATHER_TABLE_FREE
192
193struct mmu_table_batch {
194#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
195	struct rcu_head		rcu;
196#endif
197	unsigned int		nr;
198	void			*tables[];
199};
200
201#define MAX_TABLE_BATCH		\
202	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
203
204extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
205
206#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
207
208/*
209 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
210 * page directories and we can use the normal page batching to free them.
211 */
212#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
213
214#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
215
216#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
217/*
218 * This allows an architecture that does not use the linux page-tables for
219 * hardware to skip the TLBI when freeing page tables.
220 */
221#ifndef tlb_needs_table_invalidate
222#define tlb_needs_table_invalidate() (true)
223#endif
224
225void tlb_remove_table_sync_one(void);
226
227#else
228
229#ifdef tlb_needs_table_invalidate
230#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
231#endif
232
233static inline void tlb_remove_table_sync_one(void) { }
234
235#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
236
237
238#ifndef CONFIG_MMU_GATHER_NO_GATHER
239/*
240 * If we can't allocate a page to make a big batch of page pointers
241 * to work on, then just handle a few from the on-stack structure.
242 */
243#define MMU_GATHER_BUNDLE	8
244
245struct mmu_gather_batch {
246	struct mmu_gather_batch	*next;
247	unsigned int		nr;
248	unsigned int		max;
249	struct encoded_page	*encoded_pages[];
250};
251
252#define MAX_GATHER_BATCH	\
253	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
254
255/*
256 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
257 * lockups for non-preemptible kernels on huge machines when a lot of memory
258 * is zapped during unmapping.
259 * 10K pages freed at once should be safe even without a preemption point.
260 */
261#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
262
263extern bool __tlb_remove_page_size(struct mmu_gather *tlb,
264				   struct encoded_page *page,
265				   int page_size);
266
267#ifdef CONFIG_SMP
268/*
269 * This both sets 'delayed_rmap', and returns true. It would be an inline
270 * function, except we define it before the 'struct mmu_gather'.
271 */
272#define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
273extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
274#endif
275
276#endif
277
278/*
279 * We have a no-op version of the rmap removal that doesn't
280 * delay anything. That is used on S390, which flushes remote
281 * TLBs synchronously, and on UP, which doesn't have any
282 * remote TLBs to flush and is not preemptible due to this
283 * all happening under the page table lock.
284 */
285#ifndef tlb_delay_rmap
286#define tlb_delay_rmap(tlb) (false)
287static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
288#endif
289
290/*
291 * struct mmu_gather is an opaque type used by the mm code for passing around
292 * any data needed by arch specific code for tlb_remove_page.
293 */
294struct mmu_gather {
295	struct mm_struct	*mm;
296
297#ifdef CONFIG_MMU_GATHER_TABLE_FREE
298	struct mmu_table_batch	*batch;
299#endif
300
301	unsigned long		start;
302	unsigned long		end;
303	/*
304	 * we are in the middle of an operation to clear
305	 * a full mm and can make some optimizations
306	 */
307	unsigned int		fullmm : 1;
308
309	/*
310	 * we have performed an operation which
311	 * requires a complete flush of the tlb
312	 */
313	unsigned int		need_flush_all : 1;
314
315	/*
316	 * we have removed page directories
317	 */
318	unsigned int		freed_tables : 1;
319
320	/*
321	 * Do we have pending delayed rmap removals?
322	 */
323	unsigned int		delayed_rmap : 1;
324
325	/*
326	 * at which levels have we cleared entries?
327	 */
328	unsigned int		cleared_ptes : 1;
329	unsigned int		cleared_pmds : 1;
330	unsigned int		cleared_puds : 1;
331	unsigned int		cleared_p4ds : 1;
332
333	/*
334	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
335	 */
336	unsigned int		vma_exec : 1;
337	unsigned int		vma_huge : 1;
338	unsigned int		vma_pfn  : 1;
339
340	unsigned int		batch_count;
341
342#ifndef CONFIG_MMU_GATHER_NO_GATHER
343	struct mmu_gather_batch *active;
344	struct mmu_gather_batch	local;
345	struct page		*__pages[MMU_GATHER_BUNDLE];
346
347#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
348	unsigned int page_size;
349#endif
350#endif
351};
352
353void tlb_flush_mmu(struct mmu_gather *tlb);
354
355static inline void __tlb_adjust_range(struct mmu_gather *tlb,
356				      unsigned long address,
357				      unsigned int range_size)
358{
359	tlb->start = min(tlb->start, address);
360	tlb->end = max(tlb->end, address + range_size);
361}
362
363static inline void __tlb_reset_range(struct mmu_gather *tlb)
364{
365	if (tlb->fullmm) {
366		tlb->start = tlb->end = ~0;
367	} else {
368		tlb->start = TASK_SIZE;
369		tlb->end = 0;
370	}
371	tlb->freed_tables = 0;
372	tlb->cleared_ptes = 0;
373	tlb->cleared_pmds = 0;
374	tlb->cleared_puds = 0;
375	tlb->cleared_p4ds = 0;
376	/*
377	 * Do not reset mmu_gather::vma_* fields here, we do not
378	 * call into tlb_start_vma() again to set them if there is an
379	 * intermediate flush.
380	 */
381}
382
383#ifdef CONFIG_MMU_GATHER_NO_RANGE
384
385#if defined(tlb_flush)
386#error MMU_GATHER_NO_RANGE relies on default tlb_flush()
387#endif
388
389/*
390 * When an architecture does not have efficient means of range flushing TLBs
391 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
392 * range small. We equally don't have to worry about page granularity or other
393 * things.
394 *
395 * All we need to do is issue a full flush for any !0 range.
396 */
397static inline void tlb_flush(struct mmu_gather *tlb)
398{
399	if (tlb->end)
400		flush_tlb_mm(tlb->mm);
401}
402
403#else /* CONFIG_MMU_GATHER_NO_RANGE */
404
405#ifndef tlb_flush
406/*
407 * When an architecture does not provide its own tlb_flush() implementation
408 * but does have a reasonably efficient flush_vma_range() implementation
409 * use that.
410 */
411static inline void tlb_flush(struct mmu_gather *tlb)
412{
413	if (tlb->fullmm || tlb->need_flush_all) {
414		flush_tlb_mm(tlb->mm);
415	} else if (tlb->end) {
416		struct vm_area_struct vma = {
417			.vm_mm = tlb->mm,
418			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
419				    (tlb->vma_huge ? VM_HUGETLB : 0),
420		};
421
422		flush_tlb_range(&vma, tlb->start, tlb->end);
423	}
424}
425#endif
426
427#endif /* CONFIG_MMU_GATHER_NO_RANGE */
428
429static inline void
430tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
431{
432	/*
433	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
434	 * mips-4k) flush only large pages.
435	 *
436	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
437	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
438	 * range.
439	 *
440	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
441	 * these values the batch is empty.
442	 */
443	tlb->vma_huge = is_vm_hugetlb_page(vma);
444	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
445	tlb->vma_pfn  = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
446}
447
448static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
449{
450	/*
451	 * Anything calling __tlb_adjust_range() also sets at least one of
452	 * these bits.
453	 */
454	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
455	      tlb->cleared_puds || tlb->cleared_p4ds))
456		return;
457
458	tlb_flush(tlb);
 
459	__tlb_reset_range(tlb);
460}
461
462static inline void tlb_remove_page_size(struct mmu_gather *tlb,
463					struct page *page, int page_size)
464{
465	if (__tlb_remove_page_size(tlb, encode_page(page, 0), page_size))
466		tlb_flush_mmu(tlb);
467}
468
469static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page, unsigned int flags)
470{
471	return __tlb_remove_page_size(tlb, encode_page(page, flags), PAGE_SIZE);
472}
473
474/* tlb_remove_page
475 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
476 *	required.
477 */
478static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
479{
480	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
481}
482
483static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, void *pt)
484{
485	tlb_remove_table(tlb, pt);
486}
487
488/* Like tlb_remove_ptdesc, but for page-like page directories. */
489static inline void tlb_remove_page_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt)
490{
491	tlb_remove_page(tlb, ptdesc_page(pt));
492}
493
494static inline void tlb_change_page_size(struct mmu_gather *tlb,
495						     unsigned int page_size)
496{
497#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
498	if (tlb->page_size && tlb->page_size != page_size) {
499		if (!tlb->fullmm && !tlb->need_flush_all)
500			tlb_flush_mmu(tlb);
501	}
502
503	tlb->page_size = page_size;
504#endif
505}
506
507static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
508{
509	if (tlb->cleared_ptes)
510		return PAGE_SHIFT;
511	if (tlb->cleared_pmds)
512		return PMD_SHIFT;
513	if (tlb->cleared_puds)
514		return PUD_SHIFT;
515	if (tlb->cleared_p4ds)
516		return P4D_SHIFT;
517
518	return PAGE_SHIFT;
519}
520
521static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
522{
523	return 1UL << tlb_get_unmap_shift(tlb);
524}
525
526/*
527 * In the case of tlb vma handling, we can optimise these away in the
528 * case where we're doing a full MM flush.  When we're doing a munmap,
529 * the vmas are adjusted to only cover the region to be torn down.
530 */
531static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
532{
533	if (tlb->fullmm)
534		return;
535
536	tlb_update_vma_flags(tlb, vma);
537#ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
538	flush_cache_range(vma, vma->vm_start, vma->vm_end);
539#endif
540}
541
542static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
543{
544	if (tlb->fullmm)
545		return;
546
547	/*
548	 * VM_PFNMAP is more fragile because the core mm will not track the
549	 * page mapcount -- there might not be page-frames for these PFNs after
550	 * all. Force flush TLBs for such ranges to avoid munmap() vs
551	 * unmap_mapping_range() races.
552	 */
553	if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) {
554		/*
555		 * Do a TLB flush and reset the range at VMA boundaries; this avoids
556		 * the ranges growing with the unused space between consecutive VMAs.
557		 */
558		tlb_flush_mmu_tlbonly(tlb);
559	}
560}
561
562/*
563 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
564 * and set corresponding cleared_*.
565 */
566static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
567				     unsigned long address, unsigned long size)
568{
569	__tlb_adjust_range(tlb, address, size);
570	tlb->cleared_ptes = 1;
571}
572
573static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
574				     unsigned long address, unsigned long size)
575{
576	__tlb_adjust_range(tlb, address, size);
577	tlb->cleared_pmds = 1;
578}
579
580static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
581				     unsigned long address, unsigned long size)
582{
583	__tlb_adjust_range(tlb, address, size);
584	tlb->cleared_puds = 1;
585}
586
587static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
588				     unsigned long address, unsigned long size)
589{
590	__tlb_adjust_range(tlb, address, size);
591	tlb->cleared_p4ds = 1;
592}
593
594#ifndef __tlb_remove_tlb_entry
595#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
596#endif
597
598/**
599 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
600 *
601 * Record the fact that pte's were really unmapped by updating the range,
602 * so we can later optimise away the tlb invalidate.   This helps when
603 * userspace is unmapping already-unmapped pages, which happens quite a lot.
604 */
605#define tlb_remove_tlb_entry(tlb, ptep, address)		\
606	do {							\
607		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
608		__tlb_remove_tlb_entry(tlb, ptep, address);	\
609	} while (0)
610
611#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
612	do {							\
613		unsigned long _sz = huge_page_size(h);		\
614		if (_sz >= P4D_SIZE)				\
615			tlb_flush_p4d_range(tlb, address, _sz);	\
616		else if (_sz >= PUD_SIZE)			\
617			tlb_flush_pud_range(tlb, address, _sz);	\
618		else if (_sz >= PMD_SIZE)			\
619			tlb_flush_pmd_range(tlb, address, _sz);	\
620		else						\
621			tlb_flush_pte_range(tlb, address, _sz);	\
622		__tlb_remove_tlb_entry(tlb, ptep, address);	\
623	} while (0)
624
625/**
626 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
627 * This is a nop so far, because only x86 needs it.
628 */
629#ifndef __tlb_remove_pmd_tlb_entry
630#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
631#endif
632
633#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
634	do {								\
635		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
636		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
637	} while (0)
638
639/**
640 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
641 * invalidation. This is a nop so far, because only x86 needs it.
642 */
643#ifndef __tlb_remove_pud_tlb_entry
644#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
645#endif
646
647#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
648	do {								\
649		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
650		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
651	} while (0)
652
653/*
654 * For things like page tables caches (ie caching addresses "inside" the
655 * page tables, like x86 does), for legacy reasons, flushing an
656 * individual page had better flush the page table caches behind it. This
657 * is definitely how x86 works, for example. And if you have an
658 * architected non-legacy page table cache (which I'm not aware of
659 * anybody actually doing), you're going to have some architecturally
660 * explicit flushing for that, likely *separate* from a regular TLB entry
661 * flush, and thus you'd need more than just some range expansion..
662 *
663 * So if we ever find an architecture
664 * that would want something that odd, I think it is up to that
665 * architecture to do its own odd thing, not cause pain for others
666 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
667 *
668 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
669 */
670
671#ifndef pte_free_tlb
672#define pte_free_tlb(tlb, ptep, address)			\
673	do {							\
674		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
675		tlb->freed_tables = 1;				\
676		__pte_free_tlb(tlb, ptep, address);		\
677	} while (0)
678#endif
679
680#ifndef pmd_free_tlb
681#define pmd_free_tlb(tlb, pmdp, address)			\
682	do {							\
683		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
684		tlb->freed_tables = 1;				\
685		__pmd_free_tlb(tlb, pmdp, address);		\
686	} while (0)
687#endif
688
689#ifndef pud_free_tlb
690#define pud_free_tlb(tlb, pudp, address)			\
691	do {							\
692		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
693		tlb->freed_tables = 1;				\
694		__pud_free_tlb(tlb, pudp, address);		\
695	} while (0)
696#endif
697
698#ifndef p4d_free_tlb
699#define p4d_free_tlb(tlb, pudp, address)			\
700	do {							\
701		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
702		tlb->freed_tables = 1;				\
703		__p4d_free_tlb(tlb, pudp, address);		\
704	} while (0)
705#endif
706
707#ifndef pte_needs_flush
708static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
709{
710	return true;
711}
712#endif
713
714#ifndef huge_pmd_needs_flush
715static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
716{
717	return true;
718}
719#endif
720
721#endif /* CONFIG_MMU */
722
723#endif /* _ASM_GENERIC__TLB_H */