Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* AFS File Server client stubs
3 *
4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/sched.h>
11#include <linux/circ_buf.h>
12#include <linux/iversion.h>
13#include <linux/netfs.h>
14#include "internal.h"
15#include "afs_fs.h"
16#include "xdr_fs.h"
17
18/*
19 * decode an AFSFid block
20 */
21static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid)
22{
23 const __be32 *bp = *_bp;
24
25 fid->vid = ntohl(*bp++);
26 fid->vnode = ntohl(*bp++);
27 fid->unique = ntohl(*bp++);
28 *_bp = bp;
29}
30
31/*
32 * Dump a bad file status record.
33 */
34static void xdr_dump_bad(const __be32 *bp)
35{
36 __be32 x[4];
37 int i;
38
39 pr_notice("AFS XDR: Bad status record\n");
40 for (i = 0; i < 5 * 4 * 4; i += 16) {
41 memcpy(x, bp, 16);
42 bp += 4;
43 pr_notice("%03x: %08x %08x %08x %08x\n",
44 i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
45 }
46
47 memcpy(x, bp, 4);
48 pr_notice("0x50: %08x\n", ntohl(x[0]));
49}
50
51/*
52 * decode an AFSFetchStatus block
53 */
54static void xdr_decode_AFSFetchStatus(const __be32 **_bp,
55 struct afs_call *call,
56 struct afs_status_cb *scb)
57{
58 const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp;
59 struct afs_file_status *status = &scb->status;
60 bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus);
61 u64 data_version, size;
62 u32 type, abort_code;
63
64 abort_code = ntohl(xdr->abort_code);
65
66 if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) {
67 if (xdr->if_version == htonl(0) &&
68 abort_code != 0 &&
69 inline_error) {
70 /* The OpenAFS fileserver has a bug in FS.InlineBulkStatus
71 * whereby it doesn't set the interface version in the error
72 * case.
73 */
74 status->abort_code = abort_code;
75 scb->have_error = true;
76 goto advance;
77 }
78
79 pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version));
80 goto bad;
81 }
82
83 if (abort_code != 0 && inline_error) {
84 status->abort_code = abort_code;
85 scb->have_error = true;
86 goto advance;
87 }
88
89 type = ntohl(xdr->type);
90 switch (type) {
91 case AFS_FTYPE_FILE:
92 case AFS_FTYPE_DIR:
93 case AFS_FTYPE_SYMLINK:
94 status->type = type;
95 break;
96 default:
97 goto bad;
98 }
99
100 status->nlink = ntohl(xdr->nlink);
101 status->author = ntohl(xdr->author);
102 status->owner = ntohl(xdr->owner);
103 status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
104 status->anon_access = ntohl(xdr->anon_access);
105 status->mode = ntohl(xdr->mode) & S_IALLUGO;
106 status->group = ntohl(xdr->group);
107 status->lock_count = ntohl(xdr->lock_count);
108
109 status->mtime_client.tv_sec = ntohl(xdr->mtime_client);
110 status->mtime_client.tv_nsec = 0;
111 status->mtime_server.tv_sec = ntohl(xdr->mtime_server);
112 status->mtime_server.tv_nsec = 0;
113
114 size = (u64)ntohl(xdr->size_lo);
115 size |= (u64)ntohl(xdr->size_hi) << 32;
116 status->size = size;
117
118 data_version = (u64)ntohl(xdr->data_version_lo);
119 data_version |= (u64)ntohl(xdr->data_version_hi) << 32;
120 status->data_version = data_version;
121 scb->have_status = true;
122advance:
123 *_bp = (const void *)*_bp + sizeof(*xdr);
124 return;
125
126bad:
127 xdr_dump_bad(*_bp);
128 afs_protocol_error(call, afs_eproto_bad_status);
129 goto advance;
130}
131
132static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry)
133{
134 return ktime_divns(call->issue_time, NSEC_PER_SEC) + expiry;
135}
136
137static void xdr_decode_AFSCallBack(const __be32 **_bp,
138 struct afs_call *call,
139 struct afs_status_cb *scb)
140{
141 struct afs_callback *cb = &scb->callback;
142 const __be32 *bp = *_bp;
143
144 bp++; /* version */
145 cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++));
146 bp++; /* type */
147 scb->have_cb = true;
148 *_bp = bp;
149}
150
151/*
152 * decode an AFSVolSync block
153 */
154static void xdr_decode_AFSVolSync(const __be32 **_bp,
155 struct afs_volsync *volsync)
156{
157 const __be32 *bp = *_bp;
158 u32 creation;
159
160 creation = ntohl(*bp++);
161 bp++; /* spare2 */
162 bp++; /* spare3 */
163 bp++; /* spare4 */
164 bp++; /* spare5 */
165 bp++; /* spare6 */
166 *_bp = bp;
167
168 if (volsync)
169 volsync->creation = creation;
170}
171
172/*
173 * encode the requested attributes into an AFSStoreStatus block
174 */
175static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr)
176{
177 __be32 *bp = *_bp;
178 u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0;
179
180 mask = 0;
181 if (attr->ia_valid & ATTR_MTIME) {
182 mask |= AFS_SET_MTIME;
183 mtime = attr->ia_mtime.tv_sec;
184 }
185
186 if (attr->ia_valid & ATTR_UID) {
187 mask |= AFS_SET_OWNER;
188 owner = from_kuid(&init_user_ns, attr->ia_uid);
189 }
190
191 if (attr->ia_valid & ATTR_GID) {
192 mask |= AFS_SET_GROUP;
193 group = from_kgid(&init_user_ns, attr->ia_gid);
194 }
195
196 if (attr->ia_valid & ATTR_MODE) {
197 mask |= AFS_SET_MODE;
198 mode = attr->ia_mode & S_IALLUGO;
199 }
200
201 *bp++ = htonl(mask);
202 *bp++ = htonl(mtime);
203 *bp++ = htonl(owner);
204 *bp++ = htonl(group);
205 *bp++ = htonl(mode);
206 *bp++ = 0; /* segment size */
207 *_bp = bp;
208}
209
210/*
211 * decode an AFSFetchVolumeStatus block
212 */
213static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp,
214 struct afs_volume_status *vs)
215{
216 const __be32 *bp = *_bp;
217
218 vs->vid = ntohl(*bp++);
219 vs->parent_id = ntohl(*bp++);
220 vs->online = ntohl(*bp++);
221 vs->in_service = ntohl(*bp++);
222 vs->blessed = ntohl(*bp++);
223 vs->needs_salvage = ntohl(*bp++);
224 vs->type = ntohl(*bp++);
225 vs->min_quota = ntohl(*bp++);
226 vs->max_quota = ntohl(*bp++);
227 vs->blocks_in_use = ntohl(*bp++);
228 vs->part_blocks_avail = ntohl(*bp++);
229 vs->part_max_blocks = ntohl(*bp++);
230 vs->vol_copy_date = 0;
231 vs->vol_backup_date = 0;
232 *_bp = bp;
233}
234
235/*
236 * deliver reply data to an FS.FetchStatus
237 */
238static int afs_deliver_fs_fetch_status(struct afs_call *call)
239{
240 struct afs_operation *op = call->op;
241 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
242 const __be32 *bp;
243 int ret;
244
245 ret = afs_transfer_reply(call);
246 if (ret < 0)
247 return ret;
248
249 /* unmarshall the reply once we've received all of it */
250 bp = call->buffer;
251 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
252 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
253 xdr_decode_AFSVolSync(&bp, &op->volsync);
254
255 _leave(" = 0 [done]");
256 return 0;
257}
258
259/*
260 * FS.FetchStatus operation type
261 */
262static const struct afs_call_type afs_RXFSFetchStatus = {
263 .name = "FS.FetchStatus",
264 .op = afs_FS_FetchStatus,
265 .deliver = afs_deliver_fs_fetch_status,
266 .destructor = afs_flat_call_destructor,
267};
268
269/*
270 * fetch the status information for a file
271 */
272void afs_fs_fetch_status(struct afs_operation *op)
273{
274 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
275 struct afs_call *call;
276 __be32 *bp;
277
278 _enter(",%x,{%llx:%llu},,",
279 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
280
281 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchStatus,
282 16, (21 + 3 + 6) * 4);
283 if (!call)
284 return afs_op_nomem(op);
285
286 /* marshall the parameters */
287 bp = call->request;
288 bp[0] = htonl(FSFETCHSTATUS);
289 bp[1] = htonl(vp->fid.vid);
290 bp[2] = htonl(vp->fid.vnode);
291 bp[3] = htonl(vp->fid.unique);
292
293 trace_afs_make_fs_call(call, &vp->fid);
294 afs_make_op_call(op, call, GFP_NOFS);
295}
296
297/*
298 * deliver reply data to an FS.FetchData
299 */
300static int afs_deliver_fs_fetch_data(struct afs_call *call)
301{
302 struct afs_operation *op = call->op;
303 struct afs_vnode_param *vp = &op->file[0];
304 struct afs_read *req = op->fetch.req;
305 const __be32 *bp;
306 int ret;
307
308 _enter("{%u,%zu,%zu/%llu}",
309 call->unmarshall, call->iov_len, iov_iter_count(call->iter),
310 req->actual_len);
311
312 switch (call->unmarshall) {
313 case 0:
314 req->actual_len = 0;
315 call->unmarshall++;
316 if (call->operation_ID == FSFETCHDATA64) {
317 afs_extract_to_tmp64(call);
318 } else {
319 call->tmp_u = htonl(0);
320 afs_extract_to_tmp(call);
321 }
322 fallthrough;
323
324 /* Extract the returned data length into
325 * ->actual_len. This may indicate more or less data than was
326 * requested will be returned.
327 */
328 case 1:
329 _debug("extract data length");
330 ret = afs_extract_data(call, true);
331 if (ret < 0)
332 return ret;
333
334 req->actual_len = be64_to_cpu(call->tmp64);
335 _debug("DATA length: %llu", req->actual_len);
336
337 if (req->actual_len == 0)
338 goto no_more_data;
339
340 call->iter = req->iter;
341 call->iov_len = min(req->actual_len, req->len);
342 call->unmarshall++;
343 fallthrough;
344
345 /* extract the returned data */
346 case 2:
347 _debug("extract data %zu/%llu",
348 iov_iter_count(call->iter), req->actual_len);
349
350 ret = afs_extract_data(call, true);
351 if (ret < 0)
352 return ret;
353
354 call->iter = &call->def_iter;
355 if (req->actual_len <= req->len)
356 goto no_more_data;
357
358 /* Discard any excess data the server gave us */
359 afs_extract_discard(call, req->actual_len - req->len);
360 call->unmarshall = 3;
361 fallthrough;
362
363 case 3:
364 _debug("extract discard %zu/%llu",
365 iov_iter_count(call->iter), req->actual_len - req->len);
366
367 ret = afs_extract_data(call, true);
368 if (ret < 0)
369 return ret;
370
371 no_more_data:
372 call->unmarshall = 4;
373 afs_extract_to_buf(call, (21 + 3 + 6) * 4);
374 fallthrough;
375
376 /* extract the metadata */
377 case 4:
378 ret = afs_extract_data(call, false);
379 if (ret < 0)
380 return ret;
381
382 bp = call->buffer;
383 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
384 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
385 xdr_decode_AFSVolSync(&bp, &op->volsync);
386
387 req->data_version = vp->scb.status.data_version;
388 req->file_size = vp->scb.status.size;
389
390 call->unmarshall++;
391 fallthrough;
392
393 case 5:
394 break;
395 }
396
397 _leave(" = 0 [done]");
398 return 0;
399}
400
401/*
402 * FS.FetchData operation type
403 */
404static const struct afs_call_type afs_RXFSFetchData = {
405 .name = "FS.FetchData",
406 .op = afs_FS_FetchData,
407 .deliver = afs_deliver_fs_fetch_data,
408 .destructor = afs_flat_call_destructor,
409};
410
411static const struct afs_call_type afs_RXFSFetchData64 = {
412 .name = "FS.FetchData64",
413 .op = afs_FS_FetchData64,
414 .deliver = afs_deliver_fs_fetch_data,
415 .destructor = afs_flat_call_destructor,
416};
417
418/*
419 * fetch data from a very large file
420 */
421static void afs_fs_fetch_data64(struct afs_operation *op)
422{
423 struct afs_vnode_param *vp = &op->file[0];
424 struct afs_read *req = op->fetch.req;
425 struct afs_call *call;
426 __be32 *bp;
427
428 _enter("");
429
430 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4);
431 if (!call)
432 return afs_op_nomem(op);
433
434 /* marshall the parameters */
435 bp = call->request;
436 bp[0] = htonl(FSFETCHDATA64);
437 bp[1] = htonl(vp->fid.vid);
438 bp[2] = htonl(vp->fid.vnode);
439 bp[3] = htonl(vp->fid.unique);
440 bp[4] = htonl(upper_32_bits(req->pos));
441 bp[5] = htonl(lower_32_bits(req->pos));
442 bp[6] = 0;
443 bp[7] = htonl(lower_32_bits(req->len));
444
445 trace_afs_make_fs_call(call, &vp->fid);
446 afs_make_op_call(op, call, GFP_NOFS);
447}
448
449/*
450 * fetch data from a file
451 */
452void afs_fs_fetch_data(struct afs_operation *op)
453{
454 struct afs_vnode_param *vp = &op->file[0];
455 struct afs_call *call;
456 struct afs_read *req = op->fetch.req;
457 __be32 *bp;
458
459 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
460 return afs_fs_fetch_data64(op);
461
462 _enter("");
463
464 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4);
465 if (!call)
466 return afs_op_nomem(op);
467
468 req->call_debug_id = call->debug_id;
469
470 /* marshall the parameters */
471 bp = call->request;
472 bp[0] = htonl(FSFETCHDATA);
473 bp[1] = htonl(vp->fid.vid);
474 bp[2] = htonl(vp->fid.vnode);
475 bp[3] = htonl(vp->fid.unique);
476 bp[4] = htonl(lower_32_bits(req->pos));
477 bp[5] = htonl(lower_32_bits(req->len));
478
479 trace_afs_make_fs_call(call, &vp->fid);
480 afs_make_op_call(op, call, GFP_NOFS);
481}
482
483/*
484 * deliver reply data to an FS.CreateFile or an FS.MakeDir
485 */
486static int afs_deliver_fs_create_vnode(struct afs_call *call)
487{
488 struct afs_operation *op = call->op;
489 struct afs_vnode_param *dvp = &op->file[0];
490 struct afs_vnode_param *vp = &op->file[1];
491 const __be32 *bp;
492 int ret;
493
494 ret = afs_transfer_reply(call);
495 if (ret < 0)
496 return ret;
497
498 /* unmarshall the reply once we've received all of it */
499 bp = call->buffer;
500 xdr_decode_AFSFid(&bp, &op->file[1].fid);
501 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
502 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
503 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
504 xdr_decode_AFSVolSync(&bp, &op->volsync);
505
506 _leave(" = 0 [done]");
507 return 0;
508}
509
510/*
511 * FS.CreateFile and FS.MakeDir operation type
512 */
513static const struct afs_call_type afs_RXFSCreateFile = {
514 .name = "FS.CreateFile",
515 .op = afs_FS_CreateFile,
516 .deliver = afs_deliver_fs_create_vnode,
517 .destructor = afs_flat_call_destructor,
518};
519
520/*
521 * Create a file.
522 */
523void afs_fs_create_file(struct afs_operation *op)
524{
525 const struct qstr *name = &op->dentry->d_name;
526 struct afs_vnode_param *dvp = &op->file[0];
527 struct afs_call *call;
528 size_t namesz, reqsz, padsz;
529 __be32 *bp;
530
531 _enter("");
532
533 namesz = name->len;
534 padsz = (4 - (namesz & 3)) & 3;
535 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
536
537 call = afs_alloc_flat_call(op->net, &afs_RXFSCreateFile,
538 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
539 if (!call)
540 return afs_op_nomem(op);
541
542 /* marshall the parameters */
543 bp = call->request;
544 *bp++ = htonl(FSCREATEFILE);
545 *bp++ = htonl(dvp->fid.vid);
546 *bp++ = htonl(dvp->fid.vnode);
547 *bp++ = htonl(dvp->fid.unique);
548 *bp++ = htonl(namesz);
549 memcpy(bp, name->name, namesz);
550 bp = (void *) bp + namesz;
551 if (padsz > 0) {
552 memset(bp, 0, padsz);
553 bp = (void *) bp + padsz;
554 }
555 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
556 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
557 *bp++ = 0; /* owner */
558 *bp++ = 0; /* group */
559 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
560 *bp++ = 0; /* segment size */
561
562 trace_afs_make_fs_call1(call, &dvp->fid, name);
563 afs_make_op_call(op, call, GFP_NOFS);
564}
565
566static const struct afs_call_type afs_RXFSMakeDir = {
567 .name = "FS.MakeDir",
568 .op = afs_FS_MakeDir,
569 .deliver = afs_deliver_fs_create_vnode,
570 .destructor = afs_flat_call_destructor,
571};
572
573/*
574 * Create a new directory
575 */
576void afs_fs_make_dir(struct afs_operation *op)
577{
578 const struct qstr *name = &op->dentry->d_name;
579 struct afs_vnode_param *dvp = &op->file[0];
580 struct afs_call *call;
581 size_t namesz, reqsz, padsz;
582 __be32 *bp;
583
584 _enter("");
585
586 namesz = name->len;
587 padsz = (4 - (namesz & 3)) & 3;
588 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
589
590 call = afs_alloc_flat_call(op->net, &afs_RXFSMakeDir,
591 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
592 if (!call)
593 return afs_op_nomem(op);
594
595 /* marshall the parameters */
596 bp = call->request;
597 *bp++ = htonl(FSMAKEDIR);
598 *bp++ = htonl(dvp->fid.vid);
599 *bp++ = htonl(dvp->fid.vnode);
600 *bp++ = htonl(dvp->fid.unique);
601 *bp++ = htonl(namesz);
602 memcpy(bp, name->name, namesz);
603 bp = (void *) bp + namesz;
604 if (padsz > 0) {
605 memset(bp, 0, padsz);
606 bp = (void *) bp + padsz;
607 }
608 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
609 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
610 *bp++ = 0; /* owner */
611 *bp++ = 0; /* group */
612 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
613 *bp++ = 0; /* segment size */
614
615 trace_afs_make_fs_call1(call, &dvp->fid, name);
616 afs_make_op_call(op, call, GFP_NOFS);
617}
618
619/*
620 * Deliver reply data to any operation that returns status and volume sync.
621 */
622static int afs_deliver_fs_file_status_and_vol(struct afs_call *call)
623{
624 struct afs_operation *op = call->op;
625 struct afs_vnode_param *vp = &op->file[0];
626 const __be32 *bp;
627 int ret;
628
629 ret = afs_transfer_reply(call);
630 if (ret < 0)
631 return ret;
632
633 /* unmarshall the reply once we've received all of it */
634 bp = call->buffer;
635 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
636 xdr_decode_AFSVolSync(&bp, &op->volsync);
637
638 _leave(" = 0 [done]");
639 return 0;
640}
641
642/*
643 * FS.RemoveFile operation type
644 */
645static const struct afs_call_type afs_RXFSRemoveFile = {
646 .name = "FS.RemoveFile",
647 .op = afs_FS_RemoveFile,
648 .deliver = afs_deliver_fs_file_status_and_vol,
649 .destructor = afs_flat_call_destructor,
650};
651
652/*
653 * Remove a file.
654 */
655void afs_fs_remove_file(struct afs_operation *op)
656{
657 const struct qstr *name = &op->dentry->d_name;
658 struct afs_vnode_param *dvp = &op->file[0];
659 struct afs_call *call;
660 size_t namesz, reqsz, padsz;
661 __be32 *bp;
662
663 _enter("");
664
665 namesz = name->len;
666 padsz = (4 - (namesz & 3)) & 3;
667 reqsz = (5 * 4) + namesz + padsz;
668
669 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveFile,
670 reqsz, (21 + 6) * 4);
671 if (!call)
672 return afs_op_nomem(op);
673
674 /* marshall the parameters */
675 bp = call->request;
676 *bp++ = htonl(FSREMOVEFILE);
677 *bp++ = htonl(dvp->fid.vid);
678 *bp++ = htonl(dvp->fid.vnode);
679 *bp++ = htonl(dvp->fid.unique);
680 *bp++ = htonl(namesz);
681 memcpy(bp, name->name, namesz);
682 bp = (void *) bp + namesz;
683 if (padsz > 0) {
684 memset(bp, 0, padsz);
685 bp = (void *) bp + padsz;
686 }
687
688 trace_afs_make_fs_call1(call, &dvp->fid, name);
689 afs_make_op_call(op, call, GFP_NOFS);
690}
691
692static const struct afs_call_type afs_RXFSRemoveDir = {
693 .name = "FS.RemoveDir",
694 .op = afs_FS_RemoveDir,
695 .deliver = afs_deliver_fs_file_status_and_vol,
696 .destructor = afs_flat_call_destructor,
697};
698
699/*
700 * Remove a directory.
701 */
702void afs_fs_remove_dir(struct afs_operation *op)
703{
704 const struct qstr *name = &op->dentry->d_name;
705 struct afs_vnode_param *dvp = &op->file[0];
706 struct afs_call *call;
707 size_t namesz, reqsz, padsz;
708 __be32 *bp;
709
710 _enter("");
711
712 namesz = name->len;
713 padsz = (4 - (namesz & 3)) & 3;
714 reqsz = (5 * 4) + namesz + padsz;
715
716 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveDir,
717 reqsz, (21 + 6) * 4);
718 if (!call)
719 return afs_op_nomem(op);
720
721 /* marshall the parameters */
722 bp = call->request;
723 *bp++ = htonl(FSREMOVEDIR);
724 *bp++ = htonl(dvp->fid.vid);
725 *bp++ = htonl(dvp->fid.vnode);
726 *bp++ = htonl(dvp->fid.unique);
727 *bp++ = htonl(namesz);
728 memcpy(bp, name->name, namesz);
729 bp = (void *) bp + namesz;
730 if (padsz > 0) {
731 memset(bp, 0, padsz);
732 bp = (void *) bp + padsz;
733 }
734
735 trace_afs_make_fs_call1(call, &dvp->fid, name);
736 afs_make_op_call(op, call, GFP_NOFS);
737}
738
739/*
740 * deliver reply data to an FS.Link
741 */
742static int afs_deliver_fs_link(struct afs_call *call)
743{
744 struct afs_operation *op = call->op;
745 struct afs_vnode_param *dvp = &op->file[0];
746 struct afs_vnode_param *vp = &op->file[1];
747 const __be32 *bp;
748 int ret;
749
750 _enter("{%u}", call->unmarshall);
751
752 ret = afs_transfer_reply(call);
753 if (ret < 0)
754 return ret;
755
756 /* unmarshall the reply once we've received all of it */
757 bp = call->buffer;
758 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
759 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
760 xdr_decode_AFSVolSync(&bp, &op->volsync);
761
762 _leave(" = 0 [done]");
763 return 0;
764}
765
766/*
767 * FS.Link operation type
768 */
769static const struct afs_call_type afs_RXFSLink = {
770 .name = "FS.Link",
771 .op = afs_FS_Link,
772 .deliver = afs_deliver_fs_link,
773 .destructor = afs_flat_call_destructor,
774};
775
776/*
777 * make a hard link
778 */
779void afs_fs_link(struct afs_operation *op)
780{
781 const struct qstr *name = &op->dentry->d_name;
782 struct afs_vnode_param *dvp = &op->file[0];
783 struct afs_vnode_param *vp = &op->file[1];
784 struct afs_call *call;
785 size_t namesz, reqsz, padsz;
786 __be32 *bp;
787
788 _enter("");
789
790 namesz = name->len;
791 padsz = (4 - (namesz & 3)) & 3;
792 reqsz = (5 * 4) + namesz + padsz + (3 * 4);
793
794 call = afs_alloc_flat_call(op->net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4);
795 if (!call)
796 return afs_op_nomem(op);
797
798 /* marshall the parameters */
799 bp = call->request;
800 *bp++ = htonl(FSLINK);
801 *bp++ = htonl(dvp->fid.vid);
802 *bp++ = htonl(dvp->fid.vnode);
803 *bp++ = htonl(dvp->fid.unique);
804 *bp++ = htonl(namesz);
805 memcpy(bp, name->name, namesz);
806 bp = (void *) bp + namesz;
807 if (padsz > 0) {
808 memset(bp, 0, padsz);
809 bp = (void *) bp + padsz;
810 }
811 *bp++ = htonl(vp->fid.vid);
812 *bp++ = htonl(vp->fid.vnode);
813 *bp++ = htonl(vp->fid.unique);
814
815 trace_afs_make_fs_call1(call, &vp->fid, name);
816 afs_make_op_call(op, call, GFP_NOFS);
817}
818
819/*
820 * deliver reply data to an FS.Symlink
821 */
822static int afs_deliver_fs_symlink(struct afs_call *call)
823{
824 struct afs_operation *op = call->op;
825 struct afs_vnode_param *dvp = &op->file[0];
826 struct afs_vnode_param *vp = &op->file[1];
827 const __be32 *bp;
828 int ret;
829
830 _enter("{%u}", call->unmarshall);
831
832 ret = afs_transfer_reply(call);
833 if (ret < 0)
834 return ret;
835
836 /* unmarshall the reply once we've received all of it */
837 bp = call->buffer;
838 xdr_decode_AFSFid(&bp, &vp->fid);
839 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
840 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
841 xdr_decode_AFSVolSync(&bp, &op->volsync);
842
843 _leave(" = 0 [done]");
844 return 0;
845}
846
847/*
848 * FS.Symlink operation type
849 */
850static const struct afs_call_type afs_RXFSSymlink = {
851 .name = "FS.Symlink",
852 .op = afs_FS_Symlink,
853 .deliver = afs_deliver_fs_symlink,
854 .destructor = afs_flat_call_destructor,
855};
856
857/*
858 * create a symbolic link
859 */
860void afs_fs_symlink(struct afs_operation *op)
861{
862 const struct qstr *name = &op->dentry->d_name;
863 struct afs_vnode_param *dvp = &op->file[0];
864 struct afs_call *call;
865 size_t namesz, reqsz, padsz, c_namesz, c_padsz;
866 __be32 *bp;
867
868 _enter("");
869
870 namesz = name->len;
871 padsz = (4 - (namesz & 3)) & 3;
872
873 c_namesz = strlen(op->create.symlink);
874 c_padsz = (4 - (c_namesz & 3)) & 3;
875
876 reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4);
877
878 call = afs_alloc_flat_call(op->net, &afs_RXFSSymlink, reqsz,
879 (3 + 21 + 21 + 6) * 4);
880 if (!call)
881 return afs_op_nomem(op);
882
883 /* marshall the parameters */
884 bp = call->request;
885 *bp++ = htonl(FSSYMLINK);
886 *bp++ = htonl(dvp->fid.vid);
887 *bp++ = htonl(dvp->fid.vnode);
888 *bp++ = htonl(dvp->fid.unique);
889 *bp++ = htonl(namesz);
890 memcpy(bp, name->name, namesz);
891 bp = (void *) bp + namesz;
892 if (padsz > 0) {
893 memset(bp, 0, padsz);
894 bp = (void *) bp + padsz;
895 }
896 *bp++ = htonl(c_namesz);
897 memcpy(bp, op->create.symlink, c_namesz);
898 bp = (void *) bp + c_namesz;
899 if (c_padsz > 0) {
900 memset(bp, 0, c_padsz);
901 bp = (void *) bp + c_padsz;
902 }
903 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
904 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
905 *bp++ = 0; /* owner */
906 *bp++ = 0; /* group */
907 *bp++ = htonl(S_IRWXUGO); /* unix mode */
908 *bp++ = 0; /* segment size */
909
910 trace_afs_make_fs_call1(call, &dvp->fid, name);
911 afs_make_op_call(op, call, GFP_NOFS);
912}
913
914/*
915 * deliver reply data to an FS.Rename
916 */
917static int afs_deliver_fs_rename(struct afs_call *call)
918{
919 struct afs_operation *op = call->op;
920 struct afs_vnode_param *orig_dvp = &op->file[0];
921 struct afs_vnode_param *new_dvp = &op->file[1];
922 const __be32 *bp;
923 int ret;
924
925 ret = afs_transfer_reply(call);
926 if (ret < 0)
927 return ret;
928
929 bp = call->buffer;
930 /* If the two dirs are the same, we have two copies of the same status
931 * report, so we just decode it twice.
932 */
933 xdr_decode_AFSFetchStatus(&bp, call, &orig_dvp->scb);
934 xdr_decode_AFSFetchStatus(&bp, call, &new_dvp->scb);
935 xdr_decode_AFSVolSync(&bp, &op->volsync);
936
937 _leave(" = 0 [done]");
938 return 0;
939}
940
941/*
942 * FS.Rename operation type
943 */
944static const struct afs_call_type afs_RXFSRename = {
945 .name = "FS.Rename",
946 .op = afs_FS_Rename,
947 .deliver = afs_deliver_fs_rename,
948 .destructor = afs_flat_call_destructor,
949};
950
951/*
952 * Rename/move a file or directory.
953 */
954void afs_fs_rename(struct afs_operation *op)
955{
956 struct afs_vnode_param *orig_dvp = &op->file[0];
957 struct afs_vnode_param *new_dvp = &op->file[1];
958 const struct qstr *orig_name = &op->dentry->d_name;
959 const struct qstr *new_name = &op->dentry_2->d_name;
960 struct afs_call *call;
961 size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz;
962 __be32 *bp;
963
964 _enter("");
965
966 o_namesz = orig_name->len;
967 o_padsz = (4 - (o_namesz & 3)) & 3;
968
969 n_namesz = new_name->len;
970 n_padsz = (4 - (n_namesz & 3)) & 3;
971
972 reqsz = (4 * 4) +
973 4 + o_namesz + o_padsz +
974 (3 * 4) +
975 4 + n_namesz + n_padsz;
976
977 call = afs_alloc_flat_call(op->net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4);
978 if (!call)
979 return afs_op_nomem(op);
980
981 /* marshall the parameters */
982 bp = call->request;
983 *bp++ = htonl(FSRENAME);
984 *bp++ = htonl(orig_dvp->fid.vid);
985 *bp++ = htonl(orig_dvp->fid.vnode);
986 *bp++ = htonl(orig_dvp->fid.unique);
987 *bp++ = htonl(o_namesz);
988 memcpy(bp, orig_name->name, o_namesz);
989 bp = (void *) bp + o_namesz;
990 if (o_padsz > 0) {
991 memset(bp, 0, o_padsz);
992 bp = (void *) bp + o_padsz;
993 }
994
995 *bp++ = htonl(new_dvp->fid.vid);
996 *bp++ = htonl(new_dvp->fid.vnode);
997 *bp++ = htonl(new_dvp->fid.unique);
998 *bp++ = htonl(n_namesz);
999 memcpy(bp, new_name->name, n_namesz);
1000 bp = (void *) bp + n_namesz;
1001 if (n_padsz > 0) {
1002 memset(bp, 0, n_padsz);
1003 bp = (void *) bp + n_padsz;
1004 }
1005
1006 trace_afs_make_fs_call2(call, &orig_dvp->fid, orig_name, new_name);
1007 afs_make_op_call(op, call, GFP_NOFS);
1008}
1009
1010/*
1011 * Deliver reply data to FS.StoreData or FS.StoreStatus
1012 */
1013static int afs_deliver_fs_store_data(struct afs_call *call)
1014{
1015 struct afs_operation *op = call->op;
1016 struct afs_vnode_param *vp = &op->file[0];
1017 const __be32 *bp;
1018 int ret;
1019
1020 _enter("");
1021
1022 ret = afs_transfer_reply(call);
1023 if (ret < 0)
1024 return ret;
1025
1026 /* unmarshall the reply once we've received all of it */
1027 bp = call->buffer;
1028 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1029 xdr_decode_AFSVolSync(&bp, &op->volsync);
1030
1031 _leave(" = 0 [done]");
1032 return 0;
1033}
1034
1035/*
1036 * FS.StoreData operation type
1037 */
1038static const struct afs_call_type afs_RXFSStoreData = {
1039 .name = "FS.StoreData",
1040 .op = afs_FS_StoreData,
1041 .deliver = afs_deliver_fs_store_data,
1042 .destructor = afs_flat_call_destructor,
1043};
1044
1045static const struct afs_call_type afs_RXFSStoreData64 = {
1046 .name = "FS.StoreData64",
1047 .op = afs_FS_StoreData64,
1048 .deliver = afs_deliver_fs_store_data,
1049 .destructor = afs_flat_call_destructor,
1050};
1051
1052/*
1053 * store a set of pages to a very large file
1054 */
1055static void afs_fs_store_data64(struct afs_operation *op)
1056{
1057 struct afs_vnode_param *vp = &op->file[0];
1058 struct afs_call *call;
1059 __be32 *bp;
1060
1061 _enter(",%x,{%llx:%llu},,",
1062 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1063
1064 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64,
1065 (4 + 6 + 3 * 2) * 4,
1066 (21 + 6) * 4);
1067 if (!call)
1068 return afs_op_nomem(op);
1069
1070 call->write_iter = op->store.write_iter;
1071
1072 /* marshall the parameters */
1073 bp = call->request;
1074 *bp++ = htonl(FSSTOREDATA64);
1075 *bp++ = htonl(vp->fid.vid);
1076 *bp++ = htonl(vp->fid.vnode);
1077 *bp++ = htonl(vp->fid.unique);
1078
1079 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1080 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1081 *bp++ = 0; /* owner */
1082 *bp++ = 0; /* group */
1083 *bp++ = 0; /* unix mode */
1084 *bp++ = 0; /* segment size */
1085
1086 *bp++ = htonl(upper_32_bits(op->store.pos));
1087 *bp++ = htonl(lower_32_bits(op->store.pos));
1088 *bp++ = htonl(upper_32_bits(op->store.size));
1089 *bp++ = htonl(lower_32_bits(op->store.size));
1090 *bp++ = htonl(upper_32_bits(op->store.i_size));
1091 *bp++ = htonl(lower_32_bits(op->store.i_size));
1092
1093 trace_afs_make_fs_call(call, &vp->fid);
1094 afs_make_op_call(op, call, GFP_NOFS);
1095}
1096
1097/*
1098 * Write data to a file on the server.
1099 */
1100void afs_fs_store_data(struct afs_operation *op)
1101{
1102 struct afs_vnode_param *vp = &op->file[0];
1103 struct afs_call *call;
1104 __be32 *bp;
1105
1106 _enter(",%x,{%llx:%llu},,",
1107 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1108
1109 _debug("size %llx, at %llx, i_size %llx",
1110 (unsigned long long)op->store.size,
1111 (unsigned long long)op->store.pos,
1112 (unsigned long long)op->store.i_size);
1113
1114 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1115 return afs_fs_store_data64(op);
1116
1117 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData,
1118 (4 + 6 + 3) * 4,
1119 (21 + 6) * 4);
1120 if (!call)
1121 return afs_op_nomem(op);
1122
1123 call->write_iter = op->store.write_iter;
1124
1125 /* marshall the parameters */
1126 bp = call->request;
1127 *bp++ = htonl(FSSTOREDATA);
1128 *bp++ = htonl(vp->fid.vid);
1129 *bp++ = htonl(vp->fid.vnode);
1130 *bp++ = htonl(vp->fid.unique);
1131
1132 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1133 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1134 *bp++ = 0; /* owner */
1135 *bp++ = 0; /* group */
1136 *bp++ = 0; /* unix mode */
1137 *bp++ = 0; /* segment size */
1138
1139 *bp++ = htonl(lower_32_bits(op->store.pos));
1140 *bp++ = htonl(lower_32_bits(op->store.size));
1141 *bp++ = htonl(lower_32_bits(op->store.i_size));
1142
1143 trace_afs_make_fs_call(call, &vp->fid);
1144 afs_make_op_call(op, call, GFP_NOFS);
1145}
1146
1147/*
1148 * FS.StoreStatus operation type
1149 */
1150static const struct afs_call_type afs_RXFSStoreStatus = {
1151 .name = "FS.StoreStatus",
1152 .op = afs_FS_StoreStatus,
1153 .deliver = afs_deliver_fs_store_data,
1154 .destructor = afs_flat_call_destructor,
1155};
1156
1157static const struct afs_call_type afs_RXFSStoreData_as_Status = {
1158 .name = "FS.StoreData",
1159 .op = afs_FS_StoreData,
1160 .deliver = afs_deliver_fs_store_data,
1161 .destructor = afs_flat_call_destructor,
1162};
1163
1164static const struct afs_call_type afs_RXFSStoreData64_as_Status = {
1165 .name = "FS.StoreData64",
1166 .op = afs_FS_StoreData64,
1167 .deliver = afs_deliver_fs_store_data,
1168 .destructor = afs_flat_call_destructor,
1169};
1170
1171/*
1172 * set the attributes on a very large file, using FS.StoreData rather than
1173 * FS.StoreStatus so as to alter the file size also
1174 */
1175static void afs_fs_setattr_size64(struct afs_operation *op)
1176{
1177 struct afs_vnode_param *vp = &op->file[0];
1178 struct afs_call *call;
1179 struct iattr *attr = op->setattr.attr;
1180 __be32 *bp;
1181
1182 _enter(",%x,{%llx:%llu},,",
1183 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1184
1185 ASSERT(attr->ia_valid & ATTR_SIZE);
1186
1187 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64_as_Status,
1188 (4 + 6 + 3 * 2) * 4,
1189 (21 + 6) * 4);
1190 if (!call)
1191 return afs_op_nomem(op);
1192
1193 /* marshall the parameters */
1194 bp = call->request;
1195 *bp++ = htonl(FSSTOREDATA64);
1196 *bp++ = htonl(vp->fid.vid);
1197 *bp++ = htonl(vp->fid.vnode);
1198 *bp++ = htonl(vp->fid.unique);
1199
1200 xdr_encode_AFS_StoreStatus(&bp, attr);
1201
1202 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* position of start of write */
1203 *bp++ = htonl(lower_32_bits(attr->ia_size));
1204 *bp++ = 0; /* size of write */
1205 *bp++ = 0;
1206 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* new file length */
1207 *bp++ = htonl(lower_32_bits(attr->ia_size));
1208
1209 trace_afs_make_fs_call(call, &vp->fid);
1210 afs_make_op_call(op, call, GFP_NOFS);
1211}
1212
1213/*
1214 * set the attributes on a file, using FS.StoreData rather than FS.StoreStatus
1215 * so as to alter the file size also
1216 */
1217static void afs_fs_setattr_size(struct afs_operation *op)
1218{
1219 struct afs_vnode_param *vp = &op->file[0];
1220 struct afs_call *call;
1221 struct iattr *attr = op->setattr.attr;
1222 __be32 *bp;
1223
1224 _enter(",%x,{%llx:%llu},,",
1225 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1226
1227 ASSERT(attr->ia_valid & ATTR_SIZE);
1228 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1229 return afs_fs_setattr_size64(op);
1230
1231 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData_as_Status,
1232 (4 + 6 + 3) * 4,
1233 (21 + 6) * 4);
1234 if (!call)
1235 return afs_op_nomem(op);
1236
1237 /* marshall the parameters */
1238 bp = call->request;
1239 *bp++ = htonl(FSSTOREDATA);
1240 *bp++ = htonl(vp->fid.vid);
1241 *bp++ = htonl(vp->fid.vnode);
1242 *bp++ = htonl(vp->fid.unique);
1243
1244 xdr_encode_AFS_StoreStatus(&bp, attr);
1245
1246 *bp++ = htonl(attr->ia_size); /* position of start of write */
1247 *bp++ = 0; /* size of write */
1248 *bp++ = htonl(attr->ia_size); /* new file length */
1249
1250 trace_afs_make_fs_call(call, &vp->fid);
1251 afs_make_op_call(op, call, GFP_NOFS);
1252}
1253
1254/*
1255 * set the attributes on a file, using FS.StoreData if there's a change in file
1256 * size, and FS.StoreStatus otherwise
1257 */
1258void afs_fs_setattr(struct afs_operation *op)
1259{
1260 struct afs_vnode_param *vp = &op->file[0];
1261 struct afs_call *call;
1262 struct iattr *attr = op->setattr.attr;
1263 __be32 *bp;
1264
1265 if (attr->ia_valid & ATTR_SIZE)
1266 return afs_fs_setattr_size(op);
1267
1268 _enter(",%x,{%llx:%llu},,",
1269 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1270
1271 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreStatus,
1272 (4 + 6) * 4,
1273 (21 + 6) * 4);
1274 if (!call)
1275 return afs_op_nomem(op);
1276
1277 /* marshall the parameters */
1278 bp = call->request;
1279 *bp++ = htonl(FSSTORESTATUS);
1280 *bp++ = htonl(vp->fid.vid);
1281 *bp++ = htonl(vp->fid.vnode);
1282 *bp++ = htonl(vp->fid.unique);
1283
1284 xdr_encode_AFS_StoreStatus(&bp, op->setattr.attr);
1285
1286 trace_afs_make_fs_call(call, &vp->fid);
1287 afs_make_op_call(op, call, GFP_NOFS);
1288}
1289
1290/*
1291 * deliver reply data to an FS.GetVolumeStatus
1292 */
1293static int afs_deliver_fs_get_volume_status(struct afs_call *call)
1294{
1295 struct afs_operation *op = call->op;
1296 const __be32 *bp;
1297 char *p;
1298 u32 size;
1299 int ret;
1300
1301 _enter("{%u}", call->unmarshall);
1302
1303 switch (call->unmarshall) {
1304 case 0:
1305 call->unmarshall++;
1306 afs_extract_to_buf(call, 12 * 4);
1307 fallthrough;
1308
1309 /* extract the returned status record */
1310 case 1:
1311 _debug("extract status");
1312 ret = afs_extract_data(call, true);
1313 if (ret < 0)
1314 return ret;
1315
1316 bp = call->buffer;
1317 xdr_decode_AFSFetchVolumeStatus(&bp, &op->volstatus.vs);
1318 call->unmarshall++;
1319 afs_extract_to_tmp(call);
1320 fallthrough;
1321
1322 /* extract the volume name length */
1323 case 2:
1324 ret = afs_extract_data(call, true);
1325 if (ret < 0)
1326 return ret;
1327
1328 call->count = ntohl(call->tmp);
1329 _debug("volname length: %u", call->count);
1330 if (call->count >= AFSNAMEMAX)
1331 return afs_protocol_error(call, afs_eproto_volname_len);
1332 size = (call->count + 3) & ~3; /* It's padded */
1333 afs_extract_to_buf(call, size);
1334 call->unmarshall++;
1335 fallthrough;
1336
1337 /* extract the volume name */
1338 case 3:
1339 _debug("extract volname");
1340 ret = afs_extract_data(call, true);
1341 if (ret < 0)
1342 return ret;
1343
1344 p = call->buffer;
1345 p[call->count] = 0;
1346 _debug("volname '%s'", p);
1347 afs_extract_to_tmp(call);
1348 call->unmarshall++;
1349 fallthrough;
1350
1351 /* extract the offline message length */
1352 case 4:
1353 ret = afs_extract_data(call, true);
1354 if (ret < 0)
1355 return ret;
1356
1357 call->count = ntohl(call->tmp);
1358 _debug("offline msg length: %u", call->count);
1359 if (call->count >= AFSNAMEMAX)
1360 return afs_protocol_error(call, afs_eproto_offline_msg_len);
1361 size = (call->count + 3) & ~3; /* It's padded */
1362 afs_extract_to_buf(call, size);
1363 call->unmarshall++;
1364 fallthrough;
1365
1366 /* extract the offline message */
1367 case 5:
1368 _debug("extract offline");
1369 ret = afs_extract_data(call, true);
1370 if (ret < 0)
1371 return ret;
1372
1373 p = call->buffer;
1374 p[call->count] = 0;
1375 _debug("offline '%s'", p);
1376
1377 afs_extract_to_tmp(call);
1378 call->unmarshall++;
1379 fallthrough;
1380
1381 /* extract the message of the day length */
1382 case 6:
1383 ret = afs_extract_data(call, true);
1384 if (ret < 0)
1385 return ret;
1386
1387 call->count = ntohl(call->tmp);
1388 _debug("motd length: %u", call->count);
1389 if (call->count >= AFSNAMEMAX)
1390 return afs_protocol_error(call, afs_eproto_motd_len);
1391 size = (call->count + 3) & ~3; /* It's padded */
1392 afs_extract_to_buf(call, size);
1393 call->unmarshall++;
1394 fallthrough;
1395
1396 /* extract the message of the day */
1397 case 7:
1398 _debug("extract motd");
1399 ret = afs_extract_data(call, false);
1400 if (ret < 0)
1401 return ret;
1402
1403 p = call->buffer;
1404 p[call->count] = 0;
1405 _debug("motd '%s'", p);
1406
1407 call->unmarshall++;
1408 fallthrough;
1409
1410 case 8:
1411 break;
1412 }
1413
1414 _leave(" = 0 [done]");
1415 return 0;
1416}
1417
1418/*
1419 * FS.GetVolumeStatus operation type
1420 */
1421static const struct afs_call_type afs_RXFSGetVolumeStatus = {
1422 .name = "FS.GetVolumeStatus",
1423 .op = afs_FS_GetVolumeStatus,
1424 .deliver = afs_deliver_fs_get_volume_status,
1425 .destructor = afs_flat_call_destructor,
1426};
1427
1428/*
1429 * fetch the status of a volume
1430 */
1431void afs_fs_get_volume_status(struct afs_operation *op)
1432{
1433 struct afs_vnode_param *vp = &op->file[0];
1434 struct afs_call *call;
1435 __be32 *bp;
1436
1437 _enter("");
1438
1439 call = afs_alloc_flat_call(op->net, &afs_RXFSGetVolumeStatus, 2 * 4,
1440 max(12 * 4, AFSOPAQUEMAX + 1));
1441 if (!call)
1442 return afs_op_nomem(op);
1443
1444 /* marshall the parameters */
1445 bp = call->request;
1446 bp[0] = htonl(FSGETVOLUMESTATUS);
1447 bp[1] = htonl(vp->fid.vid);
1448
1449 trace_afs_make_fs_call(call, &vp->fid);
1450 afs_make_op_call(op, call, GFP_NOFS);
1451}
1452
1453/*
1454 * deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock
1455 */
1456static int afs_deliver_fs_xxxx_lock(struct afs_call *call)
1457{
1458 struct afs_operation *op = call->op;
1459 const __be32 *bp;
1460 int ret;
1461
1462 _enter("{%u}", call->unmarshall);
1463
1464 ret = afs_transfer_reply(call);
1465 if (ret < 0)
1466 return ret;
1467
1468 /* unmarshall the reply once we've received all of it */
1469 bp = call->buffer;
1470 xdr_decode_AFSVolSync(&bp, &op->volsync);
1471
1472 _leave(" = 0 [done]");
1473 return 0;
1474}
1475
1476/*
1477 * FS.SetLock operation type
1478 */
1479static const struct afs_call_type afs_RXFSSetLock = {
1480 .name = "FS.SetLock",
1481 .op = afs_FS_SetLock,
1482 .deliver = afs_deliver_fs_xxxx_lock,
1483 .done = afs_lock_op_done,
1484 .destructor = afs_flat_call_destructor,
1485};
1486
1487/*
1488 * FS.ExtendLock operation type
1489 */
1490static const struct afs_call_type afs_RXFSExtendLock = {
1491 .name = "FS.ExtendLock",
1492 .op = afs_FS_ExtendLock,
1493 .deliver = afs_deliver_fs_xxxx_lock,
1494 .done = afs_lock_op_done,
1495 .destructor = afs_flat_call_destructor,
1496};
1497
1498/*
1499 * FS.ReleaseLock operation type
1500 */
1501static const struct afs_call_type afs_RXFSReleaseLock = {
1502 .name = "FS.ReleaseLock",
1503 .op = afs_FS_ReleaseLock,
1504 .deliver = afs_deliver_fs_xxxx_lock,
1505 .destructor = afs_flat_call_destructor,
1506};
1507
1508/*
1509 * Set a lock on a file
1510 */
1511void afs_fs_set_lock(struct afs_operation *op)
1512{
1513 struct afs_vnode_param *vp = &op->file[0];
1514 struct afs_call *call;
1515 __be32 *bp;
1516
1517 _enter("");
1518
1519 call = afs_alloc_flat_call(op->net, &afs_RXFSSetLock, 5 * 4, 6 * 4);
1520 if (!call)
1521 return afs_op_nomem(op);
1522
1523 /* marshall the parameters */
1524 bp = call->request;
1525 *bp++ = htonl(FSSETLOCK);
1526 *bp++ = htonl(vp->fid.vid);
1527 *bp++ = htonl(vp->fid.vnode);
1528 *bp++ = htonl(vp->fid.unique);
1529 *bp++ = htonl(op->lock.type);
1530
1531 trace_afs_make_fs_calli(call, &vp->fid, op->lock.type);
1532 afs_make_op_call(op, call, GFP_NOFS);
1533}
1534
1535/*
1536 * extend a lock on a file
1537 */
1538void afs_fs_extend_lock(struct afs_operation *op)
1539{
1540 struct afs_vnode_param *vp = &op->file[0];
1541 struct afs_call *call;
1542 __be32 *bp;
1543
1544 _enter("");
1545
1546 call = afs_alloc_flat_call(op->net, &afs_RXFSExtendLock, 4 * 4, 6 * 4);
1547 if (!call)
1548 return afs_op_nomem(op);
1549
1550 /* marshall the parameters */
1551 bp = call->request;
1552 *bp++ = htonl(FSEXTENDLOCK);
1553 *bp++ = htonl(vp->fid.vid);
1554 *bp++ = htonl(vp->fid.vnode);
1555 *bp++ = htonl(vp->fid.unique);
1556
1557 trace_afs_make_fs_call(call, &vp->fid);
1558 afs_make_op_call(op, call, GFP_NOFS);
1559}
1560
1561/*
1562 * release a lock on a file
1563 */
1564void afs_fs_release_lock(struct afs_operation *op)
1565{
1566 struct afs_vnode_param *vp = &op->file[0];
1567 struct afs_call *call;
1568 __be32 *bp;
1569
1570 _enter("");
1571
1572 call = afs_alloc_flat_call(op->net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4);
1573 if (!call)
1574 return afs_op_nomem(op);
1575
1576 /* marshall the parameters */
1577 bp = call->request;
1578 *bp++ = htonl(FSRELEASELOCK);
1579 *bp++ = htonl(vp->fid.vid);
1580 *bp++ = htonl(vp->fid.vnode);
1581 *bp++ = htonl(vp->fid.unique);
1582
1583 trace_afs_make_fs_call(call, &vp->fid);
1584 afs_make_op_call(op, call, GFP_NOFS);
1585}
1586
1587/*
1588 * Deliver reply data to an FS.GiveUpAllCallBacks operation.
1589 */
1590static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call)
1591{
1592 return afs_transfer_reply(call);
1593}
1594
1595/*
1596 * FS.GiveUpAllCallBacks operation type
1597 */
1598static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = {
1599 .name = "FS.GiveUpAllCallBacks",
1600 .op = afs_FS_GiveUpAllCallBacks,
1601 .deliver = afs_deliver_fs_give_up_all_callbacks,
1602 .destructor = afs_flat_call_destructor,
1603};
1604
1605/*
1606 * Flush all the callbacks we have on a server.
1607 */
1608int afs_fs_give_up_all_callbacks(struct afs_net *net,
1609 struct afs_server *server,
1610 struct afs_addr_cursor *ac,
1611 struct key *key)
1612{
1613 struct afs_call *call;
1614 __be32 *bp;
1615
1616 _enter("");
1617
1618 call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0);
1619 if (!call)
1620 return -ENOMEM;
1621
1622 call->key = key;
1623
1624 /* marshall the parameters */
1625 bp = call->request;
1626 *bp++ = htonl(FSGIVEUPALLCALLBACKS);
1627
1628 call->server = afs_use_server(server, afs_server_trace_give_up_cb);
1629 afs_make_call(ac, call, GFP_NOFS);
1630 return afs_wait_for_call_to_complete(call, ac);
1631}
1632
1633/*
1634 * Deliver reply data to an FS.GetCapabilities operation.
1635 */
1636static int afs_deliver_fs_get_capabilities(struct afs_call *call)
1637{
1638 u32 count;
1639 int ret;
1640
1641 _enter("{%u,%zu}", call->unmarshall, iov_iter_count(call->iter));
1642
1643 switch (call->unmarshall) {
1644 case 0:
1645 afs_extract_to_tmp(call);
1646 call->unmarshall++;
1647 fallthrough;
1648
1649 /* Extract the capabilities word count */
1650 case 1:
1651 ret = afs_extract_data(call, true);
1652 if (ret < 0)
1653 return ret;
1654
1655 count = ntohl(call->tmp);
1656 call->count = count;
1657 call->count2 = count;
1658 if (count == 0) {
1659 call->unmarshall = 4;
1660 call->tmp = 0;
1661 break;
1662 }
1663
1664 /* Extract the first word of the capabilities to call->tmp */
1665 afs_extract_to_tmp(call);
1666 call->unmarshall++;
1667 fallthrough;
1668
1669 case 2:
1670 ret = afs_extract_data(call, false);
1671 if (ret < 0)
1672 return ret;
1673
1674 afs_extract_discard(call, (count - 1) * sizeof(__be32));
1675 call->unmarshall++;
1676 fallthrough;
1677
1678 /* Extract remaining capabilities words */
1679 case 3:
1680 ret = afs_extract_data(call, false);
1681 if (ret < 0)
1682 return ret;
1683
1684 call->unmarshall++;
1685 break;
1686 }
1687
1688 _leave(" = 0 [done]");
1689 return 0;
1690}
1691
1692/*
1693 * FS.GetCapabilities operation type
1694 */
1695static const struct afs_call_type afs_RXFSGetCapabilities = {
1696 .name = "FS.GetCapabilities",
1697 .op = afs_FS_GetCapabilities,
1698 .deliver = afs_deliver_fs_get_capabilities,
1699 .done = afs_fileserver_probe_result,
1700 .destructor = afs_flat_call_destructor,
1701};
1702
1703/*
1704 * Probe a fileserver for the capabilities that it supports. This RPC can
1705 * reply with up to 196 words. The operation is asynchronous and if we managed
1706 * to allocate a call, true is returned the result is delivered through the
1707 * ->done() - otherwise we return false to indicate we didn't even try.
1708 */
1709bool afs_fs_get_capabilities(struct afs_net *net, struct afs_server *server,
1710 struct afs_addr_cursor *ac, struct key *key)
1711{
1712 struct afs_call *call;
1713 __be32 *bp;
1714
1715 _enter("");
1716
1717 call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4);
1718 if (!call)
1719 return false;
1720
1721 call->key = key;
1722 call->server = afs_use_server(server, afs_server_trace_get_caps);
1723 call->upgrade = true;
1724 call->async = true;
1725 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
1726
1727 /* marshall the parameters */
1728 bp = call->request;
1729 *bp++ = htonl(FSGETCAPABILITIES);
1730
1731 trace_afs_make_fs_call(call, NULL);
1732 afs_make_call(ac, call, GFP_NOFS);
1733 afs_put_call(call);
1734 return true;
1735}
1736
1737/*
1738 * Deliver reply data to an FS.InlineBulkStatus call
1739 */
1740static int afs_deliver_fs_inline_bulk_status(struct afs_call *call)
1741{
1742 struct afs_operation *op = call->op;
1743 struct afs_status_cb *scb;
1744 const __be32 *bp;
1745 u32 tmp;
1746 int ret;
1747
1748 _enter("{%u}", call->unmarshall);
1749
1750 switch (call->unmarshall) {
1751 case 0:
1752 afs_extract_to_tmp(call);
1753 call->unmarshall++;
1754 fallthrough;
1755
1756 /* Extract the file status count and array in two steps */
1757 case 1:
1758 _debug("extract status count");
1759 ret = afs_extract_data(call, true);
1760 if (ret < 0)
1761 return ret;
1762
1763 tmp = ntohl(call->tmp);
1764 _debug("status count: %u/%u", tmp, op->nr_files);
1765 if (tmp != op->nr_files)
1766 return afs_protocol_error(call, afs_eproto_ibulkst_count);
1767
1768 call->count = 0;
1769 call->unmarshall++;
1770 more_counts:
1771 afs_extract_to_buf(call, 21 * sizeof(__be32));
1772 fallthrough;
1773
1774 case 2:
1775 _debug("extract status array %u", call->count);
1776 ret = afs_extract_data(call, true);
1777 if (ret < 0)
1778 return ret;
1779
1780 switch (call->count) {
1781 case 0:
1782 scb = &op->file[0].scb;
1783 break;
1784 case 1:
1785 scb = &op->file[1].scb;
1786 break;
1787 default:
1788 scb = &op->more_files[call->count - 2].scb;
1789 break;
1790 }
1791
1792 bp = call->buffer;
1793 xdr_decode_AFSFetchStatus(&bp, call, scb);
1794
1795 call->count++;
1796 if (call->count < op->nr_files)
1797 goto more_counts;
1798
1799 call->count = 0;
1800 call->unmarshall++;
1801 afs_extract_to_tmp(call);
1802 fallthrough;
1803
1804 /* Extract the callback count and array in two steps */
1805 case 3:
1806 _debug("extract CB count");
1807 ret = afs_extract_data(call, true);
1808 if (ret < 0)
1809 return ret;
1810
1811 tmp = ntohl(call->tmp);
1812 _debug("CB count: %u", tmp);
1813 if (tmp != op->nr_files)
1814 return afs_protocol_error(call, afs_eproto_ibulkst_cb_count);
1815 call->count = 0;
1816 call->unmarshall++;
1817 more_cbs:
1818 afs_extract_to_buf(call, 3 * sizeof(__be32));
1819 fallthrough;
1820
1821 case 4:
1822 _debug("extract CB array");
1823 ret = afs_extract_data(call, true);
1824 if (ret < 0)
1825 return ret;
1826
1827 _debug("unmarshall CB array");
1828 switch (call->count) {
1829 case 0:
1830 scb = &op->file[0].scb;
1831 break;
1832 case 1:
1833 scb = &op->file[1].scb;
1834 break;
1835 default:
1836 scb = &op->more_files[call->count - 2].scb;
1837 break;
1838 }
1839
1840 bp = call->buffer;
1841 xdr_decode_AFSCallBack(&bp, call, scb);
1842 call->count++;
1843 if (call->count < op->nr_files)
1844 goto more_cbs;
1845
1846 afs_extract_to_buf(call, 6 * sizeof(__be32));
1847 call->unmarshall++;
1848 fallthrough;
1849
1850 case 5:
1851 ret = afs_extract_data(call, false);
1852 if (ret < 0)
1853 return ret;
1854
1855 bp = call->buffer;
1856 xdr_decode_AFSVolSync(&bp, &op->volsync);
1857
1858 call->unmarshall++;
1859 fallthrough;
1860
1861 case 6:
1862 break;
1863 }
1864
1865 _leave(" = 0 [done]");
1866 return 0;
1867}
1868
1869static void afs_done_fs_inline_bulk_status(struct afs_call *call)
1870{
1871 if (call->error == -ECONNABORTED &&
1872 call->abort_code == RX_INVALID_OPERATION) {
1873 set_bit(AFS_SERVER_FL_NO_IBULK, &call->server->flags);
1874 if (call->op)
1875 set_bit(AFS_VOLUME_MAYBE_NO_IBULK, &call->op->volume->flags);
1876 }
1877}
1878
1879/*
1880 * FS.InlineBulkStatus operation type
1881 */
1882static const struct afs_call_type afs_RXFSInlineBulkStatus = {
1883 .name = "FS.InlineBulkStatus",
1884 .op = afs_FS_InlineBulkStatus,
1885 .deliver = afs_deliver_fs_inline_bulk_status,
1886 .done = afs_done_fs_inline_bulk_status,
1887 .destructor = afs_flat_call_destructor,
1888};
1889
1890/*
1891 * Fetch the status information for up to 50 files
1892 */
1893void afs_fs_inline_bulk_status(struct afs_operation *op)
1894{
1895 struct afs_vnode_param *dvp = &op->file[0];
1896 struct afs_vnode_param *vp = &op->file[1];
1897 struct afs_call *call;
1898 __be32 *bp;
1899 int i;
1900
1901 if (test_bit(AFS_SERVER_FL_NO_IBULK, &op->server->flags)) {
1902 op->error = -ENOTSUPP;
1903 return;
1904 }
1905
1906 _enter(",%x,{%llx:%llu},%u",
1907 key_serial(op->key), vp->fid.vid, vp->fid.vnode, op->nr_files);
1908
1909 call = afs_alloc_flat_call(op->net, &afs_RXFSInlineBulkStatus,
1910 (2 + op->nr_files * 3) * 4,
1911 21 * 4);
1912 if (!call)
1913 return afs_op_nomem(op);
1914
1915 /* marshall the parameters */
1916 bp = call->request;
1917 *bp++ = htonl(FSINLINEBULKSTATUS);
1918 *bp++ = htonl(op->nr_files);
1919 *bp++ = htonl(dvp->fid.vid);
1920 *bp++ = htonl(dvp->fid.vnode);
1921 *bp++ = htonl(dvp->fid.unique);
1922 *bp++ = htonl(vp->fid.vid);
1923 *bp++ = htonl(vp->fid.vnode);
1924 *bp++ = htonl(vp->fid.unique);
1925 for (i = 0; i < op->nr_files - 2; i++) {
1926 *bp++ = htonl(op->more_files[i].fid.vid);
1927 *bp++ = htonl(op->more_files[i].fid.vnode);
1928 *bp++ = htonl(op->more_files[i].fid.unique);
1929 }
1930
1931 trace_afs_make_fs_call(call, &vp->fid);
1932 afs_make_op_call(op, call, GFP_NOFS);
1933}
1934
1935/*
1936 * deliver reply data to an FS.FetchACL
1937 */
1938static int afs_deliver_fs_fetch_acl(struct afs_call *call)
1939{
1940 struct afs_operation *op = call->op;
1941 struct afs_vnode_param *vp = &op->file[0];
1942 struct afs_acl *acl;
1943 const __be32 *bp;
1944 unsigned int size;
1945 int ret;
1946
1947 _enter("{%u}", call->unmarshall);
1948
1949 switch (call->unmarshall) {
1950 case 0:
1951 afs_extract_to_tmp(call);
1952 call->unmarshall++;
1953 fallthrough;
1954
1955 /* extract the returned data length */
1956 case 1:
1957 ret = afs_extract_data(call, true);
1958 if (ret < 0)
1959 return ret;
1960
1961 size = call->count2 = ntohl(call->tmp);
1962 size = round_up(size, 4);
1963
1964 acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
1965 if (!acl)
1966 return -ENOMEM;
1967 op->acl = acl;
1968 acl->size = call->count2;
1969 afs_extract_begin(call, acl->data, size);
1970 call->unmarshall++;
1971 fallthrough;
1972
1973 /* extract the returned data */
1974 case 2:
1975 ret = afs_extract_data(call, true);
1976 if (ret < 0)
1977 return ret;
1978
1979 afs_extract_to_buf(call, (21 + 6) * 4);
1980 call->unmarshall++;
1981 fallthrough;
1982
1983 /* extract the metadata */
1984 case 3:
1985 ret = afs_extract_data(call, false);
1986 if (ret < 0)
1987 return ret;
1988
1989 bp = call->buffer;
1990 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1991 xdr_decode_AFSVolSync(&bp, &op->volsync);
1992
1993 call->unmarshall++;
1994 fallthrough;
1995
1996 case 4:
1997 break;
1998 }
1999
2000 _leave(" = 0 [done]");
2001 return 0;
2002}
2003
2004/*
2005 * FS.FetchACL operation type
2006 */
2007static const struct afs_call_type afs_RXFSFetchACL = {
2008 .name = "FS.FetchACL",
2009 .op = afs_FS_FetchACL,
2010 .deliver = afs_deliver_fs_fetch_acl,
2011};
2012
2013/*
2014 * Fetch the ACL for a file.
2015 */
2016void afs_fs_fetch_acl(struct afs_operation *op)
2017{
2018 struct afs_vnode_param *vp = &op->file[0];
2019 struct afs_call *call;
2020 __be32 *bp;
2021
2022 _enter(",%x,{%llx:%llu},,",
2023 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2024
2025 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchACL, 16, (21 + 6) * 4);
2026 if (!call)
2027 return afs_op_nomem(op);
2028
2029 /* marshall the parameters */
2030 bp = call->request;
2031 bp[0] = htonl(FSFETCHACL);
2032 bp[1] = htonl(vp->fid.vid);
2033 bp[2] = htonl(vp->fid.vnode);
2034 bp[3] = htonl(vp->fid.unique);
2035
2036 trace_afs_make_fs_call(call, &vp->fid);
2037 afs_make_op_call(op, call, GFP_KERNEL);
2038}
2039
2040/*
2041 * FS.StoreACL operation type
2042 */
2043static const struct afs_call_type afs_RXFSStoreACL = {
2044 .name = "FS.StoreACL",
2045 .op = afs_FS_StoreACL,
2046 .deliver = afs_deliver_fs_file_status_and_vol,
2047 .destructor = afs_flat_call_destructor,
2048};
2049
2050/*
2051 * Fetch the ACL for a file.
2052 */
2053void afs_fs_store_acl(struct afs_operation *op)
2054{
2055 struct afs_vnode_param *vp = &op->file[0];
2056 struct afs_call *call;
2057 const struct afs_acl *acl = op->acl;
2058 size_t size;
2059 __be32 *bp;
2060
2061 _enter(",%x,{%llx:%llu},,",
2062 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2063
2064 size = round_up(acl->size, 4);
2065 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreACL,
2066 5 * 4 + size, (21 + 6) * 4);
2067 if (!call)
2068 return afs_op_nomem(op);
2069
2070 /* marshall the parameters */
2071 bp = call->request;
2072 bp[0] = htonl(FSSTOREACL);
2073 bp[1] = htonl(vp->fid.vid);
2074 bp[2] = htonl(vp->fid.vnode);
2075 bp[3] = htonl(vp->fid.unique);
2076 bp[4] = htonl(acl->size);
2077 memcpy(&bp[5], acl->data, acl->size);
2078 if (acl->size != size)
2079 memset((void *)&bp[5] + acl->size, 0, size - acl->size);
2080
2081 trace_afs_make_fs_call(call, &vp->fid);
2082 afs_make_op_call(op, call, GFP_KERNEL);
2083}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* AFS File Server client stubs
3 *
4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/sched.h>
11#include <linux/circ_buf.h>
12#include <linux/iversion.h>
13#include <linux/netfs.h>
14#include "internal.h"
15#include "afs_fs.h"
16#include "xdr_fs.h"
17
18/*
19 * decode an AFSFid block
20 */
21static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid)
22{
23 const __be32 *bp = *_bp;
24
25 fid->vid = ntohl(*bp++);
26 fid->vnode = ntohl(*bp++);
27 fid->unique = ntohl(*bp++);
28 *_bp = bp;
29}
30
31/*
32 * Dump a bad file status record.
33 */
34static void xdr_dump_bad(const __be32 *bp)
35{
36 __be32 x[4];
37 int i;
38
39 pr_notice("AFS XDR: Bad status record\n");
40 for (i = 0; i < 5 * 4 * 4; i += 16) {
41 memcpy(x, bp, 16);
42 bp += 4;
43 pr_notice("%03x: %08x %08x %08x %08x\n",
44 i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
45 }
46
47 memcpy(x, bp, 4);
48 pr_notice("0x50: %08x\n", ntohl(x[0]));
49}
50
51/*
52 * decode an AFSFetchStatus block
53 */
54static void xdr_decode_AFSFetchStatus(const __be32 **_bp,
55 struct afs_call *call,
56 struct afs_status_cb *scb)
57{
58 const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp;
59 struct afs_file_status *status = &scb->status;
60 bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus);
61 u64 data_version, size;
62 u32 type, abort_code;
63
64 abort_code = ntohl(xdr->abort_code);
65
66 if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) {
67 if (xdr->if_version == htonl(0) &&
68 abort_code != 0 &&
69 inline_error) {
70 /* The OpenAFS fileserver has a bug in FS.InlineBulkStatus
71 * whereby it doesn't set the interface version in the error
72 * case.
73 */
74 status->abort_code = abort_code;
75 scb->have_error = true;
76 goto advance;
77 }
78
79 pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version));
80 goto bad;
81 }
82
83 if (abort_code != 0 && inline_error) {
84 status->abort_code = abort_code;
85 scb->have_error = true;
86 goto advance;
87 }
88
89 type = ntohl(xdr->type);
90 switch (type) {
91 case AFS_FTYPE_FILE:
92 case AFS_FTYPE_DIR:
93 case AFS_FTYPE_SYMLINK:
94 status->type = type;
95 break;
96 default:
97 goto bad;
98 }
99
100 status->nlink = ntohl(xdr->nlink);
101 status->author = ntohl(xdr->author);
102 status->owner = ntohl(xdr->owner);
103 status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
104 status->anon_access = ntohl(xdr->anon_access);
105 status->mode = ntohl(xdr->mode) & S_IALLUGO;
106 status->group = ntohl(xdr->group);
107 status->lock_count = ntohl(xdr->lock_count);
108
109 status->mtime_client.tv_sec = ntohl(xdr->mtime_client);
110 status->mtime_client.tv_nsec = 0;
111 status->mtime_server.tv_sec = ntohl(xdr->mtime_server);
112 status->mtime_server.tv_nsec = 0;
113
114 size = (u64)ntohl(xdr->size_lo);
115 size |= (u64)ntohl(xdr->size_hi) << 32;
116 status->size = size;
117
118 data_version = (u64)ntohl(xdr->data_version_lo);
119 data_version |= (u64)ntohl(xdr->data_version_hi) << 32;
120 status->data_version = data_version;
121 scb->have_status = true;
122advance:
123 *_bp = (const void *)*_bp + sizeof(*xdr);
124 return;
125
126bad:
127 xdr_dump_bad(*_bp);
128 afs_protocol_error(call, afs_eproto_bad_status);
129 goto advance;
130}
131
132static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry)
133{
134 return ktime_divns(call->issue_time, NSEC_PER_SEC) + expiry;
135}
136
137static void xdr_decode_AFSCallBack(const __be32 **_bp,
138 struct afs_call *call,
139 struct afs_status_cb *scb)
140{
141 struct afs_callback *cb = &scb->callback;
142 const __be32 *bp = *_bp;
143
144 bp++; /* version */
145 cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++));
146 bp++; /* type */
147 scb->have_cb = true;
148 *_bp = bp;
149}
150
151/*
152 * decode an AFSVolSync block
153 */
154static void xdr_decode_AFSVolSync(const __be32 **_bp,
155 struct afs_volsync *volsync)
156{
157 const __be32 *bp = *_bp;
158 u32 creation;
159
160 creation = ntohl(*bp++);
161 bp++; /* spare2 */
162 bp++; /* spare3 */
163 bp++; /* spare4 */
164 bp++; /* spare5 */
165 bp++; /* spare6 */
166 *_bp = bp;
167
168 if (volsync)
169 volsync->creation = creation;
170}
171
172/*
173 * encode the requested attributes into an AFSStoreStatus block
174 */
175static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr)
176{
177 __be32 *bp = *_bp;
178 u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0;
179
180 mask = 0;
181 if (attr->ia_valid & ATTR_MTIME) {
182 mask |= AFS_SET_MTIME;
183 mtime = attr->ia_mtime.tv_sec;
184 }
185
186 if (attr->ia_valid & ATTR_UID) {
187 mask |= AFS_SET_OWNER;
188 owner = from_kuid(&init_user_ns, attr->ia_uid);
189 }
190
191 if (attr->ia_valid & ATTR_GID) {
192 mask |= AFS_SET_GROUP;
193 group = from_kgid(&init_user_ns, attr->ia_gid);
194 }
195
196 if (attr->ia_valid & ATTR_MODE) {
197 mask |= AFS_SET_MODE;
198 mode = attr->ia_mode & S_IALLUGO;
199 }
200
201 *bp++ = htonl(mask);
202 *bp++ = htonl(mtime);
203 *bp++ = htonl(owner);
204 *bp++ = htonl(group);
205 *bp++ = htonl(mode);
206 *bp++ = 0; /* segment size */
207 *_bp = bp;
208}
209
210/*
211 * decode an AFSFetchVolumeStatus block
212 */
213static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp,
214 struct afs_volume_status *vs)
215{
216 const __be32 *bp = *_bp;
217
218 vs->vid = ntohl(*bp++);
219 vs->parent_id = ntohl(*bp++);
220 vs->online = ntohl(*bp++);
221 vs->in_service = ntohl(*bp++);
222 vs->blessed = ntohl(*bp++);
223 vs->needs_salvage = ntohl(*bp++);
224 vs->type = ntohl(*bp++);
225 vs->min_quota = ntohl(*bp++);
226 vs->max_quota = ntohl(*bp++);
227 vs->blocks_in_use = ntohl(*bp++);
228 vs->part_blocks_avail = ntohl(*bp++);
229 vs->part_max_blocks = ntohl(*bp++);
230 vs->vol_copy_date = 0;
231 vs->vol_backup_date = 0;
232 *_bp = bp;
233}
234
235/*
236 * deliver reply data to an FS.FetchStatus
237 */
238static int afs_deliver_fs_fetch_status(struct afs_call *call)
239{
240 struct afs_operation *op = call->op;
241 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
242 const __be32 *bp;
243 int ret;
244
245 ret = afs_transfer_reply(call);
246 if (ret < 0)
247 return ret;
248
249 /* unmarshall the reply once we've received all of it */
250 bp = call->buffer;
251 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
252 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
253 xdr_decode_AFSVolSync(&bp, &op->volsync);
254
255 _leave(" = 0 [done]");
256 return 0;
257}
258
259/*
260 * FS.FetchStatus operation type
261 */
262static const struct afs_call_type afs_RXFSFetchStatus = {
263 .name = "FS.FetchStatus",
264 .op = afs_FS_FetchStatus,
265 .deliver = afs_deliver_fs_fetch_status,
266 .destructor = afs_flat_call_destructor,
267};
268
269/*
270 * fetch the status information for a file
271 */
272void afs_fs_fetch_status(struct afs_operation *op)
273{
274 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
275 struct afs_call *call;
276 __be32 *bp;
277
278 _enter(",%x,{%llx:%llu},,",
279 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
280
281 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchStatus,
282 16, (21 + 3 + 6) * 4);
283 if (!call)
284 return afs_op_nomem(op);
285
286 /* marshall the parameters */
287 bp = call->request;
288 bp[0] = htonl(FSFETCHSTATUS);
289 bp[1] = htonl(vp->fid.vid);
290 bp[2] = htonl(vp->fid.vnode);
291 bp[3] = htonl(vp->fid.unique);
292
293 call->fid = vp->fid;
294 trace_afs_make_fs_call(call, &vp->fid);
295 afs_make_op_call(op, call, GFP_NOFS);
296}
297
298/*
299 * deliver reply data to an FS.FetchData
300 */
301static int afs_deliver_fs_fetch_data(struct afs_call *call)
302{
303 struct afs_operation *op = call->op;
304 struct afs_vnode_param *vp = &op->file[0];
305 struct afs_read *req = op->fetch.req;
306 const __be32 *bp;
307 int ret;
308
309 _enter("{%u,%zu,%zu/%llu}",
310 call->unmarshall, call->iov_len, iov_iter_count(call->iter),
311 req->actual_len);
312
313 switch (call->unmarshall) {
314 case 0:
315 req->actual_len = 0;
316 call->unmarshall++;
317 if (call->operation_ID == FSFETCHDATA64) {
318 afs_extract_to_tmp64(call);
319 } else {
320 call->tmp_u = htonl(0);
321 afs_extract_to_tmp(call);
322 }
323 fallthrough;
324
325 /* Extract the returned data length into
326 * ->actual_len. This may indicate more or less data than was
327 * requested will be returned.
328 */
329 case 1:
330 _debug("extract data length");
331 ret = afs_extract_data(call, true);
332 if (ret < 0)
333 return ret;
334
335 req->actual_len = be64_to_cpu(call->tmp64);
336 _debug("DATA length: %llu", req->actual_len);
337
338 if (req->actual_len == 0)
339 goto no_more_data;
340
341 call->iter = req->iter;
342 call->iov_len = min(req->actual_len, req->len);
343 call->unmarshall++;
344 fallthrough;
345
346 /* extract the returned data */
347 case 2:
348 _debug("extract data %zu/%llu",
349 iov_iter_count(call->iter), req->actual_len);
350
351 ret = afs_extract_data(call, true);
352 if (ret < 0)
353 return ret;
354
355 call->iter = &call->def_iter;
356 if (req->actual_len <= req->len)
357 goto no_more_data;
358
359 /* Discard any excess data the server gave us */
360 afs_extract_discard(call, req->actual_len - req->len);
361 call->unmarshall = 3;
362 fallthrough;
363
364 case 3:
365 _debug("extract discard %zu/%llu",
366 iov_iter_count(call->iter), req->actual_len - req->len);
367
368 ret = afs_extract_data(call, true);
369 if (ret < 0)
370 return ret;
371
372 no_more_data:
373 call->unmarshall = 4;
374 afs_extract_to_buf(call, (21 + 3 + 6) * 4);
375 fallthrough;
376
377 /* extract the metadata */
378 case 4:
379 ret = afs_extract_data(call, false);
380 if (ret < 0)
381 return ret;
382
383 bp = call->buffer;
384 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
385 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
386 xdr_decode_AFSVolSync(&bp, &op->volsync);
387
388 req->data_version = vp->scb.status.data_version;
389 req->file_size = vp->scb.status.size;
390
391 call->unmarshall++;
392 fallthrough;
393
394 case 5:
395 break;
396 }
397
398 _leave(" = 0 [done]");
399 return 0;
400}
401
402/*
403 * FS.FetchData operation type
404 */
405static const struct afs_call_type afs_RXFSFetchData = {
406 .name = "FS.FetchData",
407 .op = afs_FS_FetchData,
408 .deliver = afs_deliver_fs_fetch_data,
409 .destructor = afs_flat_call_destructor,
410};
411
412static const struct afs_call_type afs_RXFSFetchData64 = {
413 .name = "FS.FetchData64",
414 .op = afs_FS_FetchData64,
415 .deliver = afs_deliver_fs_fetch_data,
416 .destructor = afs_flat_call_destructor,
417};
418
419/*
420 * fetch data from a very large file
421 */
422static void afs_fs_fetch_data64(struct afs_operation *op)
423{
424 struct afs_vnode_param *vp = &op->file[0];
425 struct afs_read *req = op->fetch.req;
426 struct afs_call *call;
427 __be32 *bp;
428
429 _enter("");
430
431 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4);
432 if (!call)
433 return afs_op_nomem(op);
434
435 /* marshall the parameters */
436 bp = call->request;
437 bp[0] = htonl(FSFETCHDATA64);
438 bp[1] = htonl(vp->fid.vid);
439 bp[2] = htonl(vp->fid.vnode);
440 bp[3] = htonl(vp->fid.unique);
441 bp[4] = htonl(upper_32_bits(req->pos));
442 bp[5] = htonl(lower_32_bits(req->pos));
443 bp[6] = 0;
444 bp[7] = htonl(lower_32_bits(req->len));
445
446 call->fid = vp->fid;
447 trace_afs_make_fs_call(call, &vp->fid);
448 afs_make_op_call(op, call, GFP_NOFS);
449}
450
451/*
452 * fetch data from a file
453 */
454void afs_fs_fetch_data(struct afs_operation *op)
455{
456 struct afs_vnode_param *vp = &op->file[0];
457 struct afs_call *call;
458 struct afs_read *req = op->fetch.req;
459 __be32 *bp;
460
461 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
462 return afs_fs_fetch_data64(op);
463
464 _enter("");
465
466 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4);
467 if (!call)
468 return afs_op_nomem(op);
469
470 req->call_debug_id = call->debug_id;
471
472 /* marshall the parameters */
473 bp = call->request;
474 bp[0] = htonl(FSFETCHDATA);
475 bp[1] = htonl(vp->fid.vid);
476 bp[2] = htonl(vp->fid.vnode);
477 bp[3] = htonl(vp->fid.unique);
478 bp[4] = htonl(lower_32_bits(req->pos));
479 bp[5] = htonl(lower_32_bits(req->len));
480
481 call->fid = vp->fid;
482 trace_afs_make_fs_call(call, &vp->fid);
483 afs_make_op_call(op, call, GFP_NOFS);
484}
485
486/*
487 * deliver reply data to an FS.CreateFile or an FS.MakeDir
488 */
489static int afs_deliver_fs_create_vnode(struct afs_call *call)
490{
491 struct afs_operation *op = call->op;
492 struct afs_vnode_param *dvp = &op->file[0];
493 struct afs_vnode_param *vp = &op->file[1];
494 const __be32 *bp;
495 int ret;
496
497 ret = afs_transfer_reply(call);
498 if (ret < 0)
499 return ret;
500
501 /* unmarshall the reply once we've received all of it */
502 bp = call->buffer;
503 xdr_decode_AFSFid(&bp, &op->file[1].fid);
504 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
505 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
506 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
507 xdr_decode_AFSVolSync(&bp, &op->volsync);
508
509 _leave(" = 0 [done]");
510 return 0;
511}
512
513/*
514 * FS.CreateFile and FS.MakeDir operation type
515 */
516static const struct afs_call_type afs_RXFSCreateFile = {
517 .name = "FS.CreateFile",
518 .op = afs_FS_CreateFile,
519 .deliver = afs_deliver_fs_create_vnode,
520 .destructor = afs_flat_call_destructor,
521};
522
523/*
524 * Create a file.
525 */
526void afs_fs_create_file(struct afs_operation *op)
527{
528 const struct qstr *name = &op->dentry->d_name;
529 struct afs_vnode_param *dvp = &op->file[0];
530 struct afs_call *call;
531 size_t namesz, reqsz, padsz;
532 __be32 *bp;
533
534 _enter("");
535
536 namesz = name->len;
537 padsz = (4 - (namesz & 3)) & 3;
538 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
539
540 call = afs_alloc_flat_call(op->net, &afs_RXFSCreateFile,
541 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
542 if (!call)
543 return afs_op_nomem(op);
544
545 /* marshall the parameters */
546 bp = call->request;
547 *bp++ = htonl(FSCREATEFILE);
548 *bp++ = htonl(dvp->fid.vid);
549 *bp++ = htonl(dvp->fid.vnode);
550 *bp++ = htonl(dvp->fid.unique);
551 *bp++ = htonl(namesz);
552 memcpy(bp, name->name, namesz);
553 bp = (void *) bp + namesz;
554 if (padsz > 0) {
555 memset(bp, 0, padsz);
556 bp = (void *) bp + padsz;
557 }
558 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
559 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
560 *bp++ = 0; /* owner */
561 *bp++ = 0; /* group */
562 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
563 *bp++ = 0; /* segment size */
564
565 call->fid = dvp->fid;
566 trace_afs_make_fs_call1(call, &dvp->fid, name);
567 afs_make_op_call(op, call, GFP_NOFS);
568}
569
570static const struct afs_call_type afs_RXFSMakeDir = {
571 .name = "FS.MakeDir",
572 .op = afs_FS_MakeDir,
573 .deliver = afs_deliver_fs_create_vnode,
574 .destructor = afs_flat_call_destructor,
575};
576
577/*
578 * Create a new directory
579 */
580void afs_fs_make_dir(struct afs_operation *op)
581{
582 const struct qstr *name = &op->dentry->d_name;
583 struct afs_vnode_param *dvp = &op->file[0];
584 struct afs_call *call;
585 size_t namesz, reqsz, padsz;
586 __be32 *bp;
587
588 _enter("");
589
590 namesz = name->len;
591 padsz = (4 - (namesz & 3)) & 3;
592 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
593
594 call = afs_alloc_flat_call(op->net, &afs_RXFSMakeDir,
595 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
596 if (!call)
597 return afs_op_nomem(op);
598
599 /* marshall the parameters */
600 bp = call->request;
601 *bp++ = htonl(FSMAKEDIR);
602 *bp++ = htonl(dvp->fid.vid);
603 *bp++ = htonl(dvp->fid.vnode);
604 *bp++ = htonl(dvp->fid.unique);
605 *bp++ = htonl(namesz);
606 memcpy(bp, name->name, namesz);
607 bp = (void *) bp + namesz;
608 if (padsz > 0) {
609 memset(bp, 0, padsz);
610 bp = (void *) bp + padsz;
611 }
612 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
613 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
614 *bp++ = 0; /* owner */
615 *bp++ = 0; /* group */
616 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
617 *bp++ = 0; /* segment size */
618
619 call->fid = dvp->fid;
620 trace_afs_make_fs_call1(call, &dvp->fid, name);
621 afs_make_op_call(op, call, GFP_NOFS);
622}
623
624/*
625 * Deliver reply data to any operation that returns status and volume sync.
626 */
627static int afs_deliver_fs_file_status_and_vol(struct afs_call *call)
628{
629 struct afs_operation *op = call->op;
630 struct afs_vnode_param *vp = &op->file[0];
631 const __be32 *bp;
632 int ret;
633
634 ret = afs_transfer_reply(call);
635 if (ret < 0)
636 return ret;
637
638 /* unmarshall the reply once we've received all of it */
639 bp = call->buffer;
640 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
641 xdr_decode_AFSVolSync(&bp, &op->volsync);
642
643 _leave(" = 0 [done]");
644 return 0;
645}
646
647/*
648 * FS.RemoveFile operation type
649 */
650static const struct afs_call_type afs_RXFSRemoveFile = {
651 .name = "FS.RemoveFile",
652 .op = afs_FS_RemoveFile,
653 .deliver = afs_deliver_fs_file_status_and_vol,
654 .destructor = afs_flat_call_destructor,
655};
656
657/*
658 * Remove a file.
659 */
660void afs_fs_remove_file(struct afs_operation *op)
661{
662 const struct qstr *name = &op->dentry->d_name;
663 struct afs_vnode_param *dvp = &op->file[0];
664 struct afs_call *call;
665 size_t namesz, reqsz, padsz;
666 __be32 *bp;
667
668 _enter("");
669
670 namesz = name->len;
671 padsz = (4 - (namesz & 3)) & 3;
672 reqsz = (5 * 4) + namesz + padsz;
673
674 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveFile,
675 reqsz, (21 + 6) * 4);
676 if (!call)
677 return afs_op_nomem(op);
678
679 /* marshall the parameters */
680 bp = call->request;
681 *bp++ = htonl(FSREMOVEFILE);
682 *bp++ = htonl(dvp->fid.vid);
683 *bp++ = htonl(dvp->fid.vnode);
684 *bp++ = htonl(dvp->fid.unique);
685 *bp++ = htonl(namesz);
686 memcpy(bp, name->name, namesz);
687 bp = (void *) bp + namesz;
688 if (padsz > 0) {
689 memset(bp, 0, padsz);
690 bp = (void *) bp + padsz;
691 }
692
693 call->fid = dvp->fid;
694 trace_afs_make_fs_call1(call, &dvp->fid, name);
695 afs_make_op_call(op, call, GFP_NOFS);
696}
697
698static const struct afs_call_type afs_RXFSRemoveDir = {
699 .name = "FS.RemoveDir",
700 .op = afs_FS_RemoveDir,
701 .deliver = afs_deliver_fs_file_status_and_vol,
702 .destructor = afs_flat_call_destructor,
703};
704
705/*
706 * Remove a directory.
707 */
708void afs_fs_remove_dir(struct afs_operation *op)
709{
710 const struct qstr *name = &op->dentry->d_name;
711 struct afs_vnode_param *dvp = &op->file[0];
712 struct afs_call *call;
713 size_t namesz, reqsz, padsz;
714 __be32 *bp;
715
716 _enter("");
717
718 namesz = name->len;
719 padsz = (4 - (namesz & 3)) & 3;
720 reqsz = (5 * 4) + namesz + padsz;
721
722 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveDir,
723 reqsz, (21 + 6) * 4);
724 if (!call)
725 return afs_op_nomem(op);
726
727 /* marshall the parameters */
728 bp = call->request;
729 *bp++ = htonl(FSREMOVEDIR);
730 *bp++ = htonl(dvp->fid.vid);
731 *bp++ = htonl(dvp->fid.vnode);
732 *bp++ = htonl(dvp->fid.unique);
733 *bp++ = htonl(namesz);
734 memcpy(bp, name->name, namesz);
735 bp = (void *) bp + namesz;
736 if (padsz > 0) {
737 memset(bp, 0, padsz);
738 bp = (void *) bp + padsz;
739 }
740
741 call->fid = dvp->fid;
742 trace_afs_make_fs_call1(call, &dvp->fid, name);
743 afs_make_op_call(op, call, GFP_NOFS);
744}
745
746/*
747 * deliver reply data to an FS.Link
748 */
749static int afs_deliver_fs_link(struct afs_call *call)
750{
751 struct afs_operation *op = call->op;
752 struct afs_vnode_param *dvp = &op->file[0];
753 struct afs_vnode_param *vp = &op->file[1];
754 const __be32 *bp;
755 int ret;
756
757 _enter("{%u}", call->unmarshall);
758
759 ret = afs_transfer_reply(call);
760 if (ret < 0)
761 return ret;
762
763 /* unmarshall the reply once we've received all of it */
764 bp = call->buffer;
765 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
766 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
767 xdr_decode_AFSVolSync(&bp, &op->volsync);
768
769 _leave(" = 0 [done]");
770 return 0;
771}
772
773/*
774 * FS.Link operation type
775 */
776static const struct afs_call_type afs_RXFSLink = {
777 .name = "FS.Link",
778 .op = afs_FS_Link,
779 .deliver = afs_deliver_fs_link,
780 .destructor = afs_flat_call_destructor,
781};
782
783/*
784 * make a hard link
785 */
786void afs_fs_link(struct afs_operation *op)
787{
788 const struct qstr *name = &op->dentry->d_name;
789 struct afs_vnode_param *dvp = &op->file[0];
790 struct afs_vnode_param *vp = &op->file[1];
791 struct afs_call *call;
792 size_t namesz, reqsz, padsz;
793 __be32 *bp;
794
795 _enter("");
796
797 namesz = name->len;
798 padsz = (4 - (namesz & 3)) & 3;
799 reqsz = (5 * 4) + namesz + padsz + (3 * 4);
800
801 call = afs_alloc_flat_call(op->net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4);
802 if (!call)
803 return afs_op_nomem(op);
804
805 /* marshall the parameters */
806 bp = call->request;
807 *bp++ = htonl(FSLINK);
808 *bp++ = htonl(dvp->fid.vid);
809 *bp++ = htonl(dvp->fid.vnode);
810 *bp++ = htonl(dvp->fid.unique);
811 *bp++ = htonl(namesz);
812 memcpy(bp, name->name, namesz);
813 bp = (void *) bp + namesz;
814 if (padsz > 0) {
815 memset(bp, 0, padsz);
816 bp = (void *) bp + padsz;
817 }
818 *bp++ = htonl(vp->fid.vid);
819 *bp++ = htonl(vp->fid.vnode);
820 *bp++ = htonl(vp->fid.unique);
821
822 call->fid = vp->fid;
823 trace_afs_make_fs_call1(call, &vp->fid, name);
824 afs_make_op_call(op, call, GFP_NOFS);
825}
826
827/*
828 * deliver reply data to an FS.Symlink
829 */
830static int afs_deliver_fs_symlink(struct afs_call *call)
831{
832 struct afs_operation *op = call->op;
833 struct afs_vnode_param *dvp = &op->file[0];
834 struct afs_vnode_param *vp = &op->file[1];
835 const __be32 *bp;
836 int ret;
837
838 _enter("{%u}", call->unmarshall);
839
840 ret = afs_transfer_reply(call);
841 if (ret < 0)
842 return ret;
843
844 /* unmarshall the reply once we've received all of it */
845 bp = call->buffer;
846 xdr_decode_AFSFid(&bp, &vp->fid);
847 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
848 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
849 xdr_decode_AFSVolSync(&bp, &op->volsync);
850
851 _leave(" = 0 [done]");
852 return 0;
853}
854
855/*
856 * FS.Symlink operation type
857 */
858static const struct afs_call_type afs_RXFSSymlink = {
859 .name = "FS.Symlink",
860 .op = afs_FS_Symlink,
861 .deliver = afs_deliver_fs_symlink,
862 .destructor = afs_flat_call_destructor,
863};
864
865/*
866 * create a symbolic link
867 */
868void afs_fs_symlink(struct afs_operation *op)
869{
870 const struct qstr *name = &op->dentry->d_name;
871 struct afs_vnode_param *dvp = &op->file[0];
872 struct afs_call *call;
873 size_t namesz, reqsz, padsz, c_namesz, c_padsz;
874 __be32 *bp;
875
876 _enter("");
877
878 namesz = name->len;
879 padsz = (4 - (namesz & 3)) & 3;
880
881 c_namesz = strlen(op->create.symlink);
882 c_padsz = (4 - (c_namesz & 3)) & 3;
883
884 reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4);
885
886 call = afs_alloc_flat_call(op->net, &afs_RXFSSymlink, reqsz,
887 (3 + 21 + 21 + 6) * 4);
888 if (!call)
889 return afs_op_nomem(op);
890
891 /* marshall the parameters */
892 bp = call->request;
893 *bp++ = htonl(FSSYMLINK);
894 *bp++ = htonl(dvp->fid.vid);
895 *bp++ = htonl(dvp->fid.vnode);
896 *bp++ = htonl(dvp->fid.unique);
897 *bp++ = htonl(namesz);
898 memcpy(bp, name->name, namesz);
899 bp = (void *) bp + namesz;
900 if (padsz > 0) {
901 memset(bp, 0, padsz);
902 bp = (void *) bp + padsz;
903 }
904 *bp++ = htonl(c_namesz);
905 memcpy(bp, op->create.symlink, c_namesz);
906 bp = (void *) bp + c_namesz;
907 if (c_padsz > 0) {
908 memset(bp, 0, c_padsz);
909 bp = (void *) bp + c_padsz;
910 }
911 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
912 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
913 *bp++ = 0; /* owner */
914 *bp++ = 0; /* group */
915 *bp++ = htonl(S_IRWXUGO); /* unix mode */
916 *bp++ = 0; /* segment size */
917
918 call->fid = dvp->fid;
919 trace_afs_make_fs_call1(call, &dvp->fid, name);
920 afs_make_op_call(op, call, GFP_NOFS);
921}
922
923/*
924 * deliver reply data to an FS.Rename
925 */
926static int afs_deliver_fs_rename(struct afs_call *call)
927{
928 struct afs_operation *op = call->op;
929 struct afs_vnode_param *orig_dvp = &op->file[0];
930 struct afs_vnode_param *new_dvp = &op->file[1];
931 const __be32 *bp;
932 int ret;
933
934 ret = afs_transfer_reply(call);
935 if (ret < 0)
936 return ret;
937
938 bp = call->buffer;
939 /* If the two dirs are the same, we have two copies of the same status
940 * report, so we just decode it twice.
941 */
942 xdr_decode_AFSFetchStatus(&bp, call, &orig_dvp->scb);
943 xdr_decode_AFSFetchStatus(&bp, call, &new_dvp->scb);
944 xdr_decode_AFSVolSync(&bp, &op->volsync);
945
946 _leave(" = 0 [done]");
947 return 0;
948}
949
950/*
951 * FS.Rename operation type
952 */
953static const struct afs_call_type afs_RXFSRename = {
954 .name = "FS.Rename",
955 .op = afs_FS_Rename,
956 .deliver = afs_deliver_fs_rename,
957 .destructor = afs_flat_call_destructor,
958};
959
960/*
961 * Rename/move a file or directory.
962 */
963void afs_fs_rename(struct afs_operation *op)
964{
965 struct afs_vnode_param *orig_dvp = &op->file[0];
966 struct afs_vnode_param *new_dvp = &op->file[1];
967 const struct qstr *orig_name = &op->dentry->d_name;
968 const struct qstr *new_name = &op->dentry_2->d_name;
969 struct afs_call *call;
970 size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz;
971 __be32 *bp;
972
973 _enter("");
974
975 o_namesz = orig_name->len;
976 o_padsz = (4 - (o_namesz & 3)) & 3;
977
978 n_namesz = new_name->len;
979 n_padsz = (4 - (n_namesz & 3)) & 3;
980
981 reqsz = (4 * 4) +
982 4 + o_namesz + o_padsz +
983 (3 * 4) +
984 4 + n_namesz + n_padsz;
985
986 call = afs_alloc_flat_call(op->net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4);
987 if (!call)
988 return afs_op_nomem(op);
989
990 /* marshall the parameters */
991 bp = call->request;
992 *bp++ = htonl(FSRENAME);
993 *bp++ = htonl(orig_dvp->fid.vid);
994 *bp++ = htonl(orig_dvp->fid.vnode);
995 *bp++ = htonl(orig_dvp->fid.unique);
996 *bp++ = htonl(o_namesz);
997 memcpy(bp, orig_name->name, o_namesz);
998 bp = (void *) bp + o_namesz;
999 if (o_padsz > 0) {
1000 memset(bp, 0, o_padsz);
1001 bp = (void *) bp + o_padsz;
1002 }
1003
1004 *bp++ = htonl(new_dvp->fid.vid);
1005 *bp++ = htonl(new_dvp->fid.vnode);
1006 *bp++ = htonl(new_dvp->fid.unique);
1007 *bp++ = htonl(n_namesz);
1008 memcpy(bp, new_name->name, n_namesz);
1009 bp = (void *) bp + n_namesz;
1010 if (n_padsz > 0) {
1011 memset(bp, 0, n_padsz);
1012 bp = (void *) bp + n_padsz;
1013 }
1014
1015 call->fid = orig_dvp->fid;
1016 trace_afs_make_fs_call2(call, &orig_dvp->fid, orig_name, new_name);
1017 afs_make_op_call(op, call, GFP_NOFS);
1018}
1019
1020/*
1021 * Deliver reply data to FS.StoreData or FS.StoreStatus
1022 */
1023static int afs_deliver_fs_store_data(struct afs_call *call)
1024{
1025 struct afs_operation *op = call->op;
1026 struct afs_vnode_param *vp = &op->file[0];
1027 const __be32 *bp;
1028 int ret;
1029
1030 _enter("");
1031
1032 ret = afs_transfer_reply(call);
1033 if (ret < 0)
1034 return ret;
1035
1036 /* unmarshall the reply once we've received all of it */
1037 bp = call->buffer;
1038 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1039 xdr_decode_AFSVolSync(&bp, &op->volsync);
1040
1041 _leave(" = 0 [done]");
1042 return 0;
1043}
1044
1045/*
1046 * FS.StoreData operation type
1047 */
1048static const struct afs_call_type afs_RXFSStoreData = {
1049 .name = "FS.StoreData",
1050 .op = afs_FS_StoreData,
1051 .deliver = afs_deliver_fs_store_data,
1052 .destructor = afs_flat_call_destructor,
1053};
1054
1055static const struct afs_call_type afs_RXFSStoreData64 = {
1056 .name = "FS.StoreData64",
1057 .op = afs_FS_StoreData64,
1058 .deliver = afs_deliver_fs_store_data,
1059 .destructor = afs_flat_call_destructor,
1060};
1061
1062/*
1063 * store a set of pages to a very large file
1064 */
1065static void afs_fs_store_data64(struct afs_operation *op)
1066{
1067 struct afs_vnode_param *vp = &op->file[0];
1068 struct afs_call *call;
1069 __be32 *bp;
1070
1071 _enter(",%x,{%llx:%llu},,",
1072 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1073
1074 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64,
1075 (4 + 6 + 3 * 2) * 4,
1076 (21 + 6) * 4);
1077 if (!call)
1078 return afs_op_nomem(op);
1079
1080 call->write_iter = op->store.write_iter;
1081
1082 /* marshall the parameters */
1083 bp = call->request;
1084 *bp++ = htonl(FSSTOREDATA64);
1085 *bp++ = htonl(vp->fid.vid);
1086 *bp++ = htonl(vp->fid.vnode);
1087 *bp++ = htonl(vp->fid.unique);
1088
1089 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1090 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1091 *bp++ = 0; /* owner */
1092 *bp++ = 0; /* group */
1093 *bp++ = 0; /* unix mode */
1094 *bp++ = 0; /* segment size */
1095
1096 *bp++ = htonl(upper_32_bits(op->store.pos));
1097 *bp++ = htonl(lower_32_bits(op->store.pos));
1098 *bp++ = htonl(upper_32_bits(op->store.size));
1099 *bp++ = htonl(lower_32_bits(op->store.size));
1100 *bp++ = htonl(upper_32_bits(op->store.i_size));
1101 *bp++ = htonl(lower_32_bits(op->store.i_size));
1102
1103 call->fid = vp->fid;
1104 trace_afs_make_fs_call(call, &vp->fid);
1105 afs_make_op_call(op, call, GFP_NOFS);
1106}
1107
1108/*
1109 * Write data to a file on the server.
1110 */
1111void afs_fs_store_data(struct afs_operation *op)
1112{
1113 struct afs_vnode_param *vp = &op->file[0];
1114 struct afs_call *call;
1115 __be32 *bp;
1116
1117 _enter(",%x,{%llx:%llu},,",
1118 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1119
1120 _debug("size %llx, at %llx, i_size %llx",
1121 (unsigned long long)op->store.size,
1122 (unsigned long long)op->store.pos,
1123 (unsigned long long)op->store.i_size);
1124
1125 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1126 return afs_fs_store_data64(op);
1127
1128 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData,
1129 (4 + 6 + 3) * 4,
1130 (21 + 6) * 4);
1131 if (!call)
1132 return afs_op_nomem(op);
1133
1134 call->write_iter = op->store.write_iter;
1135
1136 /* marshall the parameters */
1137 bp = call->request;
1138 *bp++ = htonl(FSSTOREDATA);
1139 *bp++ = htonl(vp->fid.vid);
1140 *bp++ = htonl(vp->fid.vnode);
1141 *bp++ = htonl(vp->fid.unique);
1142
1143 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1144 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1145 *bp++ = 0; /* owner */
1146 *bp++ = 0; /* group */
1147 *bp++ = 0; /* unix mode */
1148 *bp++ = 0; /* segment size */
1149
1150 *bp++ = htonl(lower_32_bits(op->store.pos));
1151 *bp++ = htonl(lower_32_bits(op->store.size));
1152 *bp++ = htonl(lower_32_bits(op->store.i_size));
1153
1154 call->fid = vp->fid;
1155 trace_afs_make_fs_call(call, &vp->fid);
1156 afs_make_op_call(op, call, GFP_NOFS);
1157}
1158
1159/*
1160 * FS.StoreStatus operation type
1161 */
1162static const struct afs_call_type afs_RXFSStoreStatus = {
1163 .name = "FS.StoreStatus",
1164 .op = afs_FS_StoreStatus,
1165 .deliver = afs_deliver_fs_store_data,
1166 .destructor = afs_flat_call_destructor,
1167};
1168
1169static const struct afs_call_type afs_RXFSStoreData_as_Status = {
1170 .name = "FS.StoreData",
1171 .op = afs_FS_StoreData,
1172 .deliver = afs_deliver_fs_store_data,
1173 .destructor = afs_flat_call_destructor,
1174};
1175
1176static const struct afs_call_type afs_RXFSStoreData64_as_Status = {
1177 .name = "FS.StoreData64",
1178 .op = afs_FS_StoreData64,
1179 .deliver = afs_deliver_fs_store_data,
1180 .destructor = afs_flat_call_destructor,
1181};
1182
1183/*
1184 * set the attributes on a very large file, using FS.StoreData rather than
1185 * FS.StoreStatus so as to alter the file size also
1186 */
1187static void afs_fs_setattr_size64(struct afs_operation *op)
1188{
1189 struct afs_vnode_param *vp = &op->file[0];
1190 struct afs_call *call;
1191 struct iattr *attr = op->setattr.attr;
1192 __be32 *bp;
1193
1194 _enter(",%x,{%llx:%llu},,",
1195 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1196
1197 ASSERT(attr->ia_valid & ATTR_SIZE);
1198
1199 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64_as_Status,
1200 (4 + 6 + 3 * 2) * 4,
1201 (21 + 6) * 4);
1202 if (!call)
1203 return afs_op_nomem(op);
1204
1205 /* marshall the parameters */
1206 bp = call->request;
1207 *bp++ = htonl(FSSTOREDATA64);
1208 *bp++ = htonl(vp->fid.vid);
1209 *bp++ = htonl(vp->fid.vnode);
1210 *bp++ = htonl(vp->fid.unique);
1211
1212 xdr_encode_AFS_StoreStatus(&bp, attr);
1213
1214 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* position of start of write */
1215 *bp++ = htonl(lower_32_bits(attr->ia_size));
1216 *bp++ = 0; /* size of write */
1217 *bp++ = 0;
1218 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* new file length */
1219 *bp++ = htonl(lower_32_bits(attr->ia_size));
1220
1221 call->fid = vp->fid;
1222 trace_afs_make_fs_call(call, &vp->fid);
1223 afs_make_op_call(op, call, GFP_NOFS);
1224}
1225
1226/*
1227 * set the attributes on a file, using FS.StoreData rather than FS.StoreStatus
1228 * so as to alter the file size also
1229 */
1230static void afs_fs_setattr_size(struct afs_operation *op)
1231{
1232 struct afs_vnode_param *vp = &op->file[0];
1233 struct afs_call *call;
1234 struct iattr *attr = op->setattr.attr;
1235 __be32 *bp;
1236
1237 _enter(",%x,{%llx:%llu},,",
1238 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1239
1240 ASSERT(attr->ia_valid & ATTR_SIZE);
1241 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1242 return afs_fs_setattr_size64(op);
1243
1244 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData_as_Status,
1245 (4 + 6 + 3) * 4,
1246 (21 + 6) * 4);
1247 if (!call)
1248 return afs_op_nomem(op);
1249
1250 /* marshall the parameters */
1251 bp = call->request;
1252 *bp++ = htonl(FSSTOREDATA);
1253 *bp++ = htonl(vp->fid.vid);
1254 *bp++ = htonl(vp->fid.vnode);
1255 *bp++ = htonl(vp->fid.unique);
1256
1257 xdr_encode_AFS_StoreStatus(&bp, attr);
1258
1259 *bp++ = htonl(attr->ia_size); /* position of start of write */
1260 *bp++ = 0; /* size of write */
1261 *bp++ = htonl(attr->ia_size); /* new file length */
1262
1263 call->fid = vp->fid;
1264 trace_afs_make_fs_call(call, &vp->fid);
1265 afs_make_op_call(op, call, GFP_NOFS);
1266}
1267
1268/*
1269 * set the attributes on a file, using FS.StoreData if there's a change in file
1270 * size, and FS.StoreStatus otherwise
1271 */
1272void afs_fs_setattr(struct afs_operation *op)
1273{
1274 struct afs_vnode_param *vp = &op->file[0];
1275 struct afs_call *call;
1276 struct iattr *attr = op->setattr.attr;
1277 __be32 *bp;
1278
1279 if (attr->ia_valid & ATTR_SIZE)
1280 return afs_fs_setattr_size(op);
1281
1282 _enter(",%x,{%llx:%llu},,",
1283 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1284
1285 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreStatus,
1286 (4 + 6) * 4,
1287 (21 + 6) * 4);
1288 if (!call)
1289 return afs_op_nomem(op);
1290
1291 /* marshall the parameters */
1292 bp = call->request;
1293 *bp++ = htonl(FSSTORESTATUS);
1294 *bp++ = htonl(vp->fid.vid);
1295 *bp++ = htonl(vp->fid.vnode);
1296 *bp++ = htonl(vp->fid.unique);
1297
1298 xdr_encode_AFS_StoreStatus(&bp, op->setattr.attr);
1299
1300 call->fid = vp->fid;
1301 trace_afs_make_fs_call(call, &vp->fid);
1302 afs_make_op_call(op, call, GFP_NOFS);
1303}
1304
1305/*
1306 * deliver reply data to an FS.GetVolumeStatus
1307 */
1308static int afs_deliver_fs_get_volume_status(struct afs_call *call)
1309{
1310 struct afs_operation *op = call->op;
1311 const __be32 *bp;
1312 char *p;
1313 u32 size;
1314 int ret;
1315
1316 _enter("{%u}", call->unmarshall);
1317
1318 switch (call->unmarshall) {
1319 case 0:
1320 call->unmarshall++;
1321 afs_extract_to_buf(call, 12 * 4);
1322 fallthrough;
1323
1324 /* extract the returned status record */
1325 case 1:
1326 _debug("extract status");
1327 ret = afs_extract_data(call, true);
1328 if (ret < 0)
1329 return ret;
1330
1331 bp = call->buffer;
1332 xdr_decode_AFSFetchVolumeStatus(&bp, &op->volstatus.vs);
1333 call->unmarshall++;
1334 afs_extract_to_tmp(call);
1335 fallthrough;
1336
1337 /* extract the volume name length */
1338 case 2:
1339 ret = afs_extract_data(call, true);
1340 if (ret < 0)
1341 return ret;
1342
1343 call->count = ntohl(call->tmp);
1344 _debug("volname length: %u", call->count);
1345 if (call->count >= AFSNAMEMAX)
1346 return afs_protocol_error(call, afs_eproto_volname_len);
1347 size = (call->count + 3) & ~3; /* It's padded */
1348 afs_extract_to_buf(call, size);
1349 call->unmarshall++;
1350 fallthrough;
1351
1352 /* extract the volume name */
1353 case 3:
1354 _debug("extract volname");
1355 ret = afs_extract_data(call, true);
1356 if (ret < 0)
1357 return ret;
1358
1359 p = call->buffer;
1360 p[call->count] = 0;
1361 _debug("volname '%s'", p);
1362 afs_extract_to_tmp(call);
1363 call->unmarshall++;
1364 fallthrough;
1365
1366 /* extract the offline message length */
1367 case 4:
1368 ret = afs_extract_data(call, true);
1369 if (ret < 0)
1370 return ret;
1371
1372 call->count = ntohl(call->tmp);
1373 _debug("offline msg length: %u", call->count);
1374 if (call->count >= AFSNAMEMAX)
1375 return afs_protocol_error(call, afs_eproto_offline_msg_len);
1376 size = (call->count + 3) & ~3; /* It's padded */
1377 afs_extract_to_buf(call, size);
1378 call->unmarshall++;
1379 fallthrough;
1380
1381 /* extract the offline message */
1382 case 5:
1383 _debug("extract offline");
1384 ret = afs_extract_data(call, true);
1385 if (ret < 0)
1386 return ret;
1387
1388 p = call->buffer;
1389 p[call->count] = 0;
1390 _debug("offline '%s'", p);
1391
1392 afs_extract_to_tmp(call);
1393 call->unmarshall++;
1394 fallthrough;
1395
1396 /* extract the message of the day length */
1397 case 6:
1398 ret = afs_extract_data(call, true);
1399 if (ret < 0)
1400 return ret;
1401
1402 call->count = ntohl(call->tmp);
1403 _debug("motd length: %u", call->count);
1404 if (call->count >= AFSNAMEMAX)
1405 return afs_protocol_error(call, afs_eproto_motd_len);
1406 size = (call->count + 3) & ~3; /* It's padded */
1407 afs_extract_to_buf(call, size);
1408 call->unmarshall++;
1409 fallthrough;
1410
1411 /* extract the message of the day */
1412 case 7:
1413 _debug("extract motd");
1414 ret = afs_extract_data(call, false);
1415 if (ret < 0)
1416 return ret;
1417
1418 p = call->buffer;
1419 p[call->count] = 0;
1420 _debug("motd '%s'", p);
1421
1422 call->unmarshall++;
1423 fallthrough;
1424
1425 case 8:
1426 break;
1427 }
1428
1429 _leave(" = 0 [done]");
1430 return 0;
1431}
1432
1433/*
1434 * FS.GetVolumeStatus operation type
1435 */
1436static const struct afs_call_type afs_RXFSGetVolumeStatus = {
1437 .name = "FS.GetVolumeStatus",
1438 .op = afs_FS_GetVolumeStatus,
1439 .deliver = afs_deliver_fs_get_volume_status,
1440 .destructor = afs_flat_call_destructor,
1441};
1442
1443/*
1444 * fetch the status of a volume
1445 */
1446void afs_fs_get_volume_status(struct afs_operation *op)
1447{
1448 struct afs_vnode_param *vp = &op->file[0];
1449 struct afs_call *call;
1450 __be32 *bp;
1451
1452 _enter("");
1453
1454 call = afs_alloc_flat_call(op->net, &afs_RXFSGetVolumeStatus, 2 * 4,
1455 max(12 * 4, AFSOPAQUEMAX + 1));
1456 if (!call)
1457 return afs_op_nomem(op);
1458
1459 /* marshall the parameters */
1460 bp = call->request;
1461 bp[0] = htonl(FSGETVOLUMESTATUS);
1462 bp[1] = htonl(vp->fid.vid);
1463
1464 call->fid = vp->fid;
1465 trace_afs_make_fs_call(call, &vp->fid);
1466 afs_make_op_call(op, call, GFP_NOFS);
1467}
1468
1469/*
1470 * deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock
1471 */
1472static int afs_deliver_fs_xxxx_lock(struct afs_call *call)
1473{
1474 struct afs_operation *op = call->op;
1475 const __be32 *bp;
1476 int ret;
1477
1478 _enter("{%u}", call->unmarshall);
1479
1480 ret = afs_transfer_reply(call);
1481 if (ret < 0)
1482 return ret;
1483
1484 /* unmarshall the reply once we've received all of it */
1485 bp = call->buffer;
1486 xdr_decode_AFSVolSync(&bp, &op->volsync);
1487
1488 _leave(" = 0 [done]");
1489 return 0;
1490}
1491
1492/*
1493 * FS.SetLock operation type
1494 */
1495static const struct afs_call_type afs_RXFSSetLock = {
1496 .name = "FS.SetLock",
1497 .op = afs_FS_SetLock,
1498 .deliver = afs_deliver_fs_xxxx_lock,
1499 .done = afs_lock_op_done,
1500 .destructor = afs_flat_call_destructor,
1501};
1502
1503/*
1504 * FS.ExtendLock operation type
1505 */
1506static const struct afs_call_type afs_RXFSExtendLock = {
1507 .name = "FS.ExtendLock",
1508 .op = afs_FS_ExtendLock,
1509 .deliver = afs_deliver_fs_xxxx_lock,
1510 .done = afs_lock_op_done,
1511 .destructor = afs_flat_call_destructor,
1512};
1513
1514/*
1515 * FS.ReleaseLock operation type
1516 */
1517static const struct afs_call_type afs_RXFSReleaseLock = {
1518 .name = "FS.ReleaseLock",
1519 .op = afs_FS_ReleaseLock,
1520 .deliver = afs_deliver_fs_xxxx_lock,
1521 .destructor = afs_flat_call_destructor,
1522};
1523
1524/*
1525 * Set a lock on a file
1526 */
1527void afs_fs_set_lock(struct afs_operation *op)
1528{
1529 struct afs_vnode_param *vp = &op->file[0];
1530 struct afs_call *call;
1531 __be32 *bp;
1532
1533 _enter("");
1534
1535 call = afs_alloc_flat_call(op->net, &afs_RXFSSetLock, 5 * 4, 6 * 4);
1536 if (!call)
1537 return afs_op_nomem(op);
1538
1539 /* marshall the parameters */
1540 bp = call->request;
1541 *bp++ = htonl(FSSETLOCK);
1542 *bp++ = htonl(vp->fid.vid);
1543 *bp++ = htonl(vp->fid.vnode);
1544 *bp++ = htonl(vp->fid.unique);
1545 *bp++ = htonl(op->lock.type);
1546
1547 call->fid = vp->fid;
1548 trace_afs_make_fs_calli(call, &vp->fid, op->lock.type);
1549 afs_make_op_call(op, call, GFP_NOFS);
1550}
1551
1552/*
1553 * extend a lock on a file
1554 */
1555void afs_fs_extend_lock(struct afs_operation *op)
1556{
1557 struct afs_vnode_param *vp = &op->file[0];
1558 struct afs_call *call;
1559 __be32 *bp;
1560
1561 _enter("");
1562
1563 call = afs_alloc_flat_call(op->net, &afs_RXFSExtendLock, 4 * 4, 6 * 4);
1564 if (!call)
1565 return afs_op_nomem(op);
1566
1567 /* marshall the parameters */
1568 bp = call->request;
1569 *bp++ = htonl(FSEXTENDLOCK);
1570 *bp++ = htonl(vp->fid.vid);
1571 *bp++ = htonl(vp->fid.vnode);
1572 *bp++ = htonl(vp->fid.unique);
1573
1574 call->fid = vp->fid;
1575 trace_afs_make_fs_call(call, &vp->fid);
1576 afs_make_op_call(op, call, GFP_NOFS);
1577}
1578
1579/*
1580 * release a lock on a file
1581 */
1582void afs_fs_release_lock(struct afs_operation *op)
1583{
1584 struct afs_vnode_param *vp = &op->file[0];
1585 struct afs_call *call;
1586 __be32 *bp;
1587
1588 _enter("");
1589
1590 call = afs_alloc_flat_call(op->net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4);
1591 if (!call)
1592 return afs_op_nomem(op);
1593
1594 /* marshall the parameters */
1595 bp = call->request;
1596 *bp++ = htonl(FSRELEASELOCK);
1597 *bp++ = htonl(vp->fid.vid);
1598 *bp++ = htonl(vp->fid.vnode);
1599 *bp++ = htonl(vp->fid.unique);
1600
1601 call->fid = vp->fid;
1602 trace_afs_make_fs_call(call, &vp->fid);
1603 afs_make_op_call(op, call, GFP_NOFS);
1604}
1605
1606/*
1607 * Deliver reply data to an FS.GiveUpAllCallBacks operation.
1608 */
1609static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call)
1610{
1611 return afs_transfer_reply(call);
1612}
1613
1614/*
1615 * FS.GiveUpAllCallBacks operation type
1616 */
1617static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = {
1618 .name = "FS.GiveUpAllCallBacks",
1619 .op = afs_FS_GiveUpAllCallBacks,
1620 .deliver = afs_deliver_fs_give_up_all_callbacks,
1621 .destructor = afs_flat_call_destructor,
1622};
1623
1624/*
1625 * Flush all the callbacks we have on a server.
1626 */
1627int afs_fs_give_up_all_callbacks(struct afs_net *net, struct afs_server *server,
1628 struct afs_address *addr, struct key *key)
1629{
1630 struct afs_call *call;
1631 __be32 *bp;
1632 int ret;
1633
1634 _enter("");
1635
1636 call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0);
1637 if (!call)
1638 return -ENOMEM;
1639
1640 call->key = key;
1641 call->peer = rxrpc_kernel_get_peer(addr->peer);
1642 call->service_id = server->service_id;
1643
1644 /* marshall the parameters */
1645 bp = call->request;
1646 *bp++ = htonl(FSGIVEUPALLCALLBACKS);
1647
1648 call->server = afs_use_server(server, afs_server_trace_give_up_cb);
1649 afs_make_call(call, GFP_NOFS);
1650 afs_wait_for_call_to_complete(call);
1651 ret = call->error;
1652 if (call->responded)
1653 set_bit(AFS_SERVER_FL_RESPONDING, &server->flags);
1654 afs_put_call(call);
1655 return ret;
1656}
1657
1658/*
1659 * Deliver reply data to an FS.GetCapabilities operation.
1660 */
1661static int afs_deliver_fs_get_capabilities(struct afs_call *call)
1662{
1663 u32 count;
1664 int ret;
1665
1666 _enter("{%u,%zu}", call->unmarshall, iov_iter_count(call->iter));
1667
1668 switch (call->unmarshall) {
1669 case 0:
1670 afs_extract_to_tmp(call);
1671 call->unmarshall++;
1672 fallthrough;
1673
1674 /* Extract the capabilities word count */
1675 case 1:
1676 ret = afs_extract_data(call, true);
1677 if (ret < 0)
1678 return ret;
1679
1680 count = ntohl(call->tmp);
1681 call->count = count;
1682 call->count2 = count;
1683 if (count == 0) {
1684 call->unmarshall = 4;
1685 call->tmp = 0;
1686 break;
1687 }
1688
1689 /* Extract the first word of the capabilities to call->tmp */
1690 afs_extract_to_tmp(call);
1691 call->unmarshall++;
1692 fallthrough;
1693
1694 case 2:
1695 ret = afs_extract_data(call, false);
1696 if (ret < 0)
1697 return ret;
1698
1699 afs_extract_discard(call, (count - 1) * sizeof(__be32));
1700 call->unmarshall++;
1701 fallthrough;
1702
1703 /* Extract remaining capabilities words */
1704 case 3:
1705 ret = afs_extract_data(call, false);
1706 if (ret < 0)
1707 return ret;
1708
1709 call->unmarshall++;
1710 break;
1711 }
1712
1713 _leave(" = 0 [done]");
1714 return 0;
1715}
1716
1717static void afs_fs_get_capabilities_destructor(struct afs_call *call)
1718{
1719 afs_put_endpoint_state(call->probe, afs_estate_trace_put_getcaps);
1720 afs_flat_call_destructor(call);
1721}
1722
1723/*
1724 * FS.GetCapabilities operation type
1725 */
1726static const struct afs_call_type afs_RXFSGetCapabilities = {
1727 .name = "FS.GetCapabilities",
1728 .op = afs_FS_GetCapabilities,
1729 .deliver = afs_deliver_fs_get_capabilities,
1730 .done = afs_fileserver_probe_result,
1731 .destructor = afs_fs_get_capabilities_destructor,
1732};
1733
1734/*
1735 * Probe a fileserver for the capabilities that it supports. This RPC can
1736 * reply with up to 196 words. The operation is asynchronous and if we managed
1737 * to allocate a call, true is returned the result is delivered through the
1738 * ->done() - otherwise we return false to indicate we didn't even try.
1739 */
1740bool afs_fs_get_capabilities(struct afs_net *net, struct afs_server *server,
1741 struct afs_endpoint_state *estate, unsigned int addr_index,
1742 struct key *key)
1743{
1744 struct afs_call *call;
1745 __be32 *bp;
1746
1747 _enter("");
1748
1749 call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4);
1750 if (!call)
1751 return false;
1752
1753 call->key = key;
1754 call->server = afs_use_server(server, afs_server_trace_get_caps);
1755 call->peer = rxrpc_kernel_get_peer(estate->addresses->addrs[addr_index].peer);
1756 call->probe = afs_get_endpoint_state(estate, afs_estate_trace_get_getcaps);
1757 call->probe_index = addr_index;
1758 call->service_id = server->service_id;
1759 call->upgrade = true;
1760 call->async = true;
1761 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
1762
1763 /* marshall the parameters */
1764 bp = call->request;
1765 *bp++ = htonl(FSGETCAPABILITIES);
1766
1767 trace_afs_make_fs_call(call, NULL);
1768 afs_make_call(call, GFP_NOFS);
1769 afs_put_call(call);
1770 return true;
1771}
1772
1773/*
1774 * Deliver reply data to an FS.InlineBulkStatus call
1775 */
1776static int afs_deliver_fs_inline_bulk_status(struct afs_call *call)
1777{
1778 struct afs_operation *op = call->op;
1779 struct afs_status_cb *scb;
1780 const __be32 *bp;
1781 u32 tmp;
1782 int ret;
1783
1784 _enter("{%u}", call->unmarshall);
1785
1786 switch (call->unmarshall) {
1787 case 0:
1788 afs_extract_to_tmp(call);
1789 call->unmarshall++;
1790 fallthrough;
1791
1792 /* Extract the file status count and array in two steps */
1793 case 1:
1794 _debug("extract status count");
1795 ret = afs_extract_data(call, true);
1796 if (ret < 0)
1797 return ret;
1798
1799 tmp = ntohl(call->tmp);
1800 _debug("status count: %u/%u", tmp, op->nr_files);
1801 if (tmp != op->nr_files)
1802 return afs_protocol_error(call, afs_eproto_ibulkst_count);
1803
1804 call->count = 0;
1805 call->unmarshall++;
1806 more_counts:
1807 afs_extract_to_buf(call, 21 * sizeof(__be32));
1808 fallthrough;
1809
1810 case 2:
1811 _debug("extract status array %u", call->count);
1812 ret = afs_extract_data(call, true);
1813 if (ret < 0)
1814 return ret;
1815
1816 switch (call->count) {
1817 case 0:
1818 scb = &op->file[0].scb;
1819 break;
1820 case 1:
1821 scb = &op->file[1].scb;
1822 break;
1823 default:
1824 scb = &op->more_files[call->count - 2].scb;
1825 break;
1826 }
1827
1828 bp = call->buffer;
1829 xdr_decode_AFSFetchStatus(&bp, call, scb);
1830
1831 call->count++;
1832 if (call->count < op->nr_files)
1833 goto more_counts;
1834
1835 call->count = 0;
1836 call->unmarshall++;
1837 afs_extract_to_tmp(call);
1838 fallthrough;
1839
1840 /* Extract the callback count and array in two steps */
1841 case 3:
1842 _debug("extract CB count");
1843 ret = afs_extract_data(call, true);
1844 if (ret < 0)
1845 return ret;
1846
1847 tmp = ntohl(call->tmp);
1848 _debug("CB count: %u", tmp);
1849 if (tmp != op->nr_files)
1850 return afs_protocol_error(call, afs_eproto_ibulkst_cb_count);
1851 call->count = 0;
1852 call->unmarshall++;
1853 more_cbs:
1854 afs_extract_to_buf(call, 3 * sizeof(__be32));
1855 fallthrough;
1856
1857 case 4:
1858 _debug("extract CB array");
1859 ret = afs_extract_data(call, true);
1860 if (ret < 0)
1861 return ret;
1862
1863 _debug("unmarshall CB array");
1864 switch (call->count) {
1865 case 0:
1866 scb = &op->file[0].scb;
1867 break;
1868 case 1:
1869 scb = &op->file[1].scb;
1870 break;
1871 default:
1872 scb = &op->more_files[call->count - 2].scb;
1873 break;
1874 }
1875
1876 bp = call->buffer;
1877 xdr_decode_AFSCallBack(&bp, call, scb);
1878 call->count++;
1879 if (call->count < op->nr_files)
1880 goto more_cbs;
1881
1882 afs_extract_to_buf(call, 6 * sizeof(__be32));
1883 call->unmarshall++;
1884 fallthrough;
1885
1886 case 5:
1887 ret = afs_extract_data(call, false);
1888 if (ret < 0)
1889 return ret;
1890
1891 bp = call->buffer;
1892 /* Unfortunately, prior to OpenAFS-1.6, volsync here is filled
1893 * with rubbish.
1894 */
1895 xdr_decode_AFSVolSync(&bp, NULL);
1896
1897 call->unmarshall++;
1898 fallthrough;
1899
1900 case 6:
1901 break;
1902 }
1903
1904 _leave(" = 0 [done]");
1905 return 0;
1906}
1907
1908static void afs_done_fs_inline_bulk_status(struct afs_call *call)
1909{
1910 if (call->error == -ECONNABORTED &&
1911 call->abort_code == RX_INVALID_OPERATION) {
1912 set_bit(AFS_SERVER_FL_NO_IBULK, &call->server->flags);
1913 if (call->op)
1914 set_bit(AFS_VOLUME_MAYBE_NO_IBULK, &call->op->volume->flags);
1915 }
1916}
1917
1918/*
1919 * FS.InlineBulkStatus operation type
1920 */
1921static const struct afs_call_type afs_RXFSInlineBulkStatus = {
1922 .name = "FS.InlineBulkStatus",
1923 .op = afs_FS_InlineBulkStatus,
1924 .deliver = afs_deliver_fs_inline_bulk_status,
1925 .done = afs_done_fs_inline_bulk_status,
1926 .destructor = afs_flat_call_destructor,
1927};
1928
1929/*
1930 * Fetch the status information for up to 50 files
1931 */
1932void afs_fs_inline_bulk_status(struct afs_operation *op)
1933{
1934 struct afs_vnode_param *dvp = &op->file[0];
1935 struct afs_vnode_param *vp = &op->file[1];
1936 struct afs_call *call;
1937 __be32 *bp;
1938 int i;
1939
1940 if (test_bit(AFS_SERVER_FL_NO_IBULK, &op->server->flags)) {
1941 afs_op_set_error(op, -ENOTSUPP);
1942 return;
1943 }
1944
1945 _enter(",%x,{%llx:%llu},%u",
1946 key_serial(op->key), vp->fid.vid, vp->fid.vnode, op->nr_files);
1947
1948 call = afs_alloc_flat_call(op->net, &afs_RXFSInlineBulkStatus,
1949 (2 + op->nr_files * 3) * 4,
1950 21 * 4);
1951 if (!call)
1952 return afs_op_nomem(op);
1953
1954 /* marshall the parameters */
1955 bp = call->request;
1956 *bp++ = htonl(FSINLINEBULKSTATUS);
1957 *bp++ = htonl(op->nr_files);
1958 *bp++ = htonl(dvp->fid.vid);
1959 *bp++ = htonl(dvp->fid.vnode);
1960 *bp++ = htonl(dvp->fid.unique);
1961 *bp++ = htonl(vp->fid.vid);
1962 *bp++ = htonl(vp->fid.vnode);
1963 *bp++ = htonl(vp->fid.unique);
1964 for (i = 0; i < op->nr_files - 2; i++) {
1965 *bp++ = htonl(op->more_files[i].fid.vid);
1966 *bp++ = htonl(op->more_files[i].fid.vnode);
1967 *bp++ = htonl(op->more_files[i].fid.unique);
1968 }
1969
1970 call->fid = vp->fid;
1971 trace_afs_make_fs_call(call, &vp->fid);
1972 afs_make_op_call(op, call, GFP_NOFS);
1973}
1974
1975/*
1976 * deliver reply data to an FS.FetchACL
1977 */
1978static int afs_deliver_fs_fetch_acl(struct afs_call *call)
1979{
1980 struct afs_operation *op = call->op;
1981 struct afs_vnode_param *vp = &op->file[0];
1982 struct afs_acl *acl;
1983 const __be32 *bp;
1984 unsigned int size;
1985 int ret;
1986
1987 _enter("{%u}", call->unmarshall);
1988
1989 switch (call->unmarshall) {
1990 case 0:
1991 afs_extract_to_tmp(call);
1992 call->unmarshall++;
1993 fallthrough;
1994
1995 /* extract the returned data length */
1996 case 1:
1997 ret = afs_extract_data(call, true);
1998 if (ret < 0)
1999 return ret;
2000
2001 size = call->count2 = ntohl(call->tmp);
2002 size = round_up(size, 4);
2003
2004 acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
2005 if (!acl)
2006 return -ENOMEM;
2007 op->acl = acl;
2008 acl->size = call->count2;
2009 afs_extract_begin(call, acl->data, size);
2010 call->unmarshall++;
2011 fallthrough;
2012
2013 /* extract the returned data */
2014 case 2:
2015 ret = afs_extract_data(call, true);
2016 if (ret < 0)
2017 return ret;
2018
2019 afs_extract_to_buf(call, (21 + 6) * 4);
2020 call->unmarshall++;
2021 fallthrough;
2022
2023 /* extract the metadata */
2024 case 3:
2025 ret = afs_extract_data(call, false);
2026 if (ret < 0)
2027 return ret;
2028
2029 bp = call->buffer;
2030 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
2031 xdr_decode_AFSVolSync(&bp, &op->volsync);
2032
2033 call->unmarshall++;
2034 fallthrough;
2035
2036 case 4:
2037 break;
2038 }
2039
2040 _leave(" = 0 [done]");
2041 return 0;
2042}
2043
2044/*
2045 * FS.FetchACL operation type
2046 */
2047static const struct afs_call_type afs_RXFSFetchACL = {
2048 .name = "FS.FetchACL",
2049 .op = afs_FS_FetchACL,
2050 .deliver = afs_deliver_fs_fetch_acl,
2051};
2052
2053/*
2054 * Fetch the ACL for a file.
2055 */
2056void afs_fs_fetch_acl(struct afs_operation *op)
2057{
2058 struct afs_vnode_param *vp = &op->file[0];
2059 struct afs_call *call;
2060 __be32 *bp;
2061
2062 _enter(",%x,{%llx:%llu},,",
2063 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2064
2065 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchACL, 16, (21 + 6) * 4);
2066 if (!call)
2067 return afs_op_nomem(op);
2068
2069 /* marshall the parameters */
2070 bp = call->request;
2071 bp[0] = htonl(FSFETCHACL);
2072 bp[1] = htonl(vp->fid.vid);
2073 bp[2] = htonl(vp->fid.vnode);
2074 bp[3] = htonl(vp->fid.unique);
2075
2076 call->fid = vp->fid;
2077 trace_afs_make_fs_call(call, &vp->fid);
2078 afs_make_op_call(op, call, GFP_KERNEL);
2079}
2080
2081/*
2082 * FS.StoreACL operation type
2083 */
2084static const struct afs_call_type afs_RXFSStoreACL = {
2085 .name = "FS.StoreACL",
2086 .op = afs_FS_StoreACL,
2087 .deliver = afs_deliver_fs_file_status_and_vol,
2088 .destructor = afs_flat_call_destructor,
2089};
2090
2091/*
2092 * Fetch the ACL for a file.
2093 */
2094void afs_fs_store_acl(struct afs_operation *op)
2095{
2096 struct afs_vnode_param *vp = &op->file[0];
2097 struct afs_call *call;
2098 const struct afs_acl *acl = op->acl;
2099 size_t size;
2100 __be32 *bp;
2101
2102 _enter(",%x,{%llx:%llu},,",
2103 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2104
2105 size = round_up(acl->size, 4);
2106 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreACL,
2107 5 * 4 + size, (21 + 6) * 4);
2108 if (!call)
2109 return afs_op_nomem(op);
2110
2111 /* marshall the parameters */
2112 bp = call->request;
2113 bp[0] = htonl(FSSTOREACL);
2114 bp[1] = htonl(vp->fid.vid);
2115 bp[2] = htonl(vp->fid.vnode);
2116 bp[3] = htonl(vp->fid.unique);
2117 bp[4] = htonl(acl->size);
2118 memcpy(&bp[5], acl->data, acl->size);
2119 if (acl->size != size)
2120 memset((void *)&bp[5] + acl->size, 0, size - acl->size);
2121
2122 call->fid = vp->fid;
2123 trace_afs_make_fs_call(call, &vp->fid);
2124 afs_make_op_call(op, call, GFP_KERNEL);
2125}