Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RISC-V performance counter support.
  4 *
  5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
  6 *
  7 * This code is based on ARM perf event code which is in turn based on
  8 * sparc64 and x86 code.
  9 */
 10
 11#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
 12
 13#include <linux/mod_devicetable.h>
 14#include <linux/perf/riscv_pmu.h>
 15#include <linux/platform_device.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/of_irq.h>
 19#include <linux/of.h>
 20#include <linux/cpu_pm.h>
 21#include <linux/sched/clock.h>
 22
 23#include <asm/errata_list.h>
 24#include <asm/sbi.h>
 25#include <asm/hwcap.h>
 
 
 
 
 
 
 
 
 26
 27PMU_FORMAT_ATTR(event, "config:0-47");
 28PMU_FORMAT_ATTR(firmware, "config:63");
 29
 30static struct attribute *riscv_arch_formats_attr[] = {
 31	&format_attr_event.attr,
 32	&format_attr_firmware.attr,
 33	NULL,
 34};
 35
 36static struct attribute_group riscv_pmu_format_group = {
 37	.name = "format",
 38	.attrs = riscv_arch_formats_attr,
 39};
 40
 41static const struct attribute_group *riscv_pmu_attr_groups[] = {
 42	&riscv_pmu_format_group,
 43	NULL,
 44};
 45
 
 
 
 46/*
 47 * RISC-V doesn't have hetergenous harts yet. This need to be part of
 48 * per_cpu in case of harts with different pmu counters
 49 */
 50static union sbi_pmu_ctr_info *pmu_ctr_list;
 51static bool riscv_pmu_use_irq;
 52static unsigned int riscv_pmu_irq_num;
 53static unsigned int riscv_pmu_irq;
 54
 
 
 
 55struct sbi_pmu_event_data {
 56	union {
 57		union {
 58			struct hw_gen_event {
 59				uint32_t event_code:16;
 60				uint32_t event_type:4;
 61				uint32_t reserved:12;
 62			} hw_gen_event;
 63			struct hw_cache_event {
 64				uint32_t result_id:1;
 65				uint32_t op_id:2;
 66				uint32_t cache_id:13;
 67				uint32_t event_type:4;
 68				uint32_t reserved:12;
 69			} hw_cache_event;
 70		};
 71		uint32_t event_idx;
 72	};
 73};
 74
 75static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
 76	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
 77							SBI_PMU_HW_CPU_CYCLES,
 78							SBI_PMU_EVENT_TYPE_HW, 0}},
 79	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
 80							SBI_PMU_HW_INSTRUCTIONS,
 81							SBI_PMU_EVENT_TYPE_HW, 0}},
 82	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
 83							SBI_PMU_HW_CACHE_REFERENCES,
 84							SBI_PMU_EVENT_TYPE_HW, 0}},
 85	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
 86							SBI_PMU_HW_CACHE_MISSES,
 87							SBI_PMU_EVENT_TYPE_HW, 0}},
 88	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
 89							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
 90							SBI_PMU_EVENT_TYPE_HW, 0}},
 91	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
 92							SBI_PMU_HW_BRANCH_MISSES,
 93							SBI_PMU_EVENT_TYPE_HW, 0}},
 94	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
 95							SBI_PMU_HW_BUS_CYCLES,
 96							SBI_PMU_EVENT_TYPE_HW, 0}},
 97	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
 98							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
 99							SBI_PMU_EVENT_TYPE_HW, 0}},
100	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
101							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
102							SBI_PMU_EVENT_TYPE_HW, 0}},
103	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
104							SBI_PMU_HW_REF_CPU_CYCLES,
105							SBI_PMU_EVENT_TYPE_HW, 0}},
106};
107
108#define C(x) PERF_COUNT_HW_CACHE_##x
109static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
110[PERF_COUNT_HW_CACHE_OP_MAX]
111[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
112	[C(L1D)] = {
113		[C(OP_READ)] = {
114			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
115					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
116			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
117					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
118		},
119		[C(OP_WRITE)] = {
120			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
121					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
122			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
123					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
124		},
125		[C(OP_PREFETCH)] = {
126			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
127					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
128			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
129					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
130		},
131	},
132	[C(L1I)] = {
133		[C(OP_READ)] = {
134			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
135					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
136			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
137					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
138		},
139		[C(OP_WRITE)] = {
140			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
141					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
142			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
143					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
144		},
145		[C(OP_PREFETCH)] = {
146			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
147					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
148			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
149					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
150		},
151	},
152	[C(LL)] = {
153		[C(OP_READ)] = {
154			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
155					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
156			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
157					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
158		},
159		[C(OP_WRITE)] = {
160			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
161					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
162			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
163					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
164		},
165		[C(OP_PREFETCH)] = {
166			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
167					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
168			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
169					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
170		},
171	},
172	[C(DTLB)] = {
173		[C(OP_READ)] = {
174			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
175					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
176			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
177					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
178		},
179		[C(OP_WRITE)] = {
180			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
181					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
182			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
183					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
184		},
185		[C(OP_PREFETCH)] = {
186			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
187					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
188			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
189					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
190		},
191	},
192	[C(ITLB)] = {
193		[C(OP_READ)] = {
194			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
195					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
196			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
197					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
198		},
199		[C(OP_WRITE)] = {
200			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
201					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
202			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
203					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
204		},
205		[C(OP_PREFETCH)] = {
206			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
207					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
208			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
209					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
210		},
211	},
212	[C(BPU)] = {
213		[C(OP_READ)] = {
214			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
215					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
216			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
217					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
218		},
219		[C(OP_WRITE)] = {
220			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
221					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
222			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
223					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
224		},
225		[C(OP_PREFETCH)] = {
226			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
227					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
228			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
229					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
230		},
231	},
232	[C(NODE)] = {
233		[C(OP_READ)] = {
234			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
235					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
236			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
237					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
238		},
239		[C(OP_WRITE)] = {
240			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
241					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
242			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
243					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
244		},
245		[C(OP_PREFETCH)] = {
246			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
247					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
248			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
249					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
250		},
251	},
252};
253
254static int pmu_sbi_ctr_get_width(int idx)
255{
256	return pmu_ctr_list[idx].width;
257}
258
259static bool pmu_sbi_ctr_is_fw(int cidx)
260{
261	union sbi_pmu_ctr_info *info;
262
263	info = &pmu_ctr_list[cidx];
264	if (!info)
265		return false;
266
267	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
268}
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270static int pmu_sbi_ctr_get_idx(struct perf_event *event)
271{
272	struct hw_perf_event *hwc = &event->hw;
273	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
274	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
275	struct sbiret ret;
276	int idx;
277	uint64_t cbase = 0;
278	unsigned long cflags = 0;
279
280	if (event->attr.exclude_kernel)
281		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
282	if (event->attr.exclude_user)
283		cflags |= SBI_PMU_CFG_FLAG_SET_UINH;
 
 
 
 
 
 
 
 
 
 
 
 
284
285	/* retrieve the available counter index */
286#if defined(CONFIG_32BIT)
287	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
288			rvpmu->cmask, cflags, hwc->event_base, hwc->config,
289			hwc->config >> 32);
290#else
291	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
292			rvpmu->cmask, cflags, hwc->event_base, hwc->config, 0);
293#endif
294	if (ret.error) {
295		pr_debug("Not able to find a counter for event %lx config %llx\n",
296			hwc->event_base, hwc->config);
297		return sbi_err_map_linux_errno(ret.error);
298	}
299
300	idx = ret.value;
301	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
302		return -ENOENT;
303
304	/* Additional sanity check for the counter id */
305	if (pmu_sbi_ctr_is_fw(idx)) {
306		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
307			return idx;
308	} else {
309		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
310			return idx;
311	}
312
313	return -ENOENT;
314}
315
316static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
317{
318
319	struct hw_perf_event *hwc = &event->hw;
320	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
321	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
322	int idx = hwc->idx;
323
324	if (pmu_sbi_ctr_is_fw(idx))
325		clear_bit(idx, cpuc->used_fw_ctrs);
326	else
327		clear_bit(idx, cpuc->used_hw_ctrs);
328}
329
330static int pmu_event_find_cache(u64 config)
331{
332	unsigned int cache_type, cache_op, cache_result, ret;
333
334	cache_type = (config >>  0) & 0xff;
335	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
336		return -EINVAL;
337
338	cache_op = (config >>  8) & 0xff;
339	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
340		return -EINVAL;
341
342	cache_result = (config >> 16) & 0xff;
343	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
344		return -EINVAL;
345
346	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
347
348	return ret;
349}
350
351static bool pmu_sbi_is_fw_event(struct perf_event *event)
352{
353	u32 type = event->attr.type;
354	u64 config = event->attr.config;
355
356	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
357		return true;
358	else
359		return false;
360}
361
362static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
363{
364	u32 type = event->attr.type;
365	u64 config = event->attr.config;
366	int bSoftware;
367	u64 raw_config_val;
368	int ret;
369
370	switch (type) {
371	case PERF_TYPE_HARDWARE:
372		if (config >= PERF_COUNT_HW_MAX)
373			return -EINVAL;
374		ret = pmu_hw_event_map[event->attr.config].event_idx;
375		break;
376	case PERF_TYPE_HW_CACHE:
377		ret = pmu_event_find_cache(config);
378		break;
379	case PERF_TYPE_RAW:
380		/*
381		 * As per SBI specification, the upper 16 bits must be unused for
382		 * a raw event. Use the MSB (63b) to distinguish between hardware
383		 * raw event and firmware events.
384		 */
385		bSoftware = config >> 63;
386		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
387		if (bSoftware) {
388			if (raw_config_val < SBI_PMU_FW_MAX)
389				ret = (raw_config_val & 0xFFFF) |
390				      (SBI_PMU_EVENT_TYPE_FW << 16);
391			else
392				return -EINVAL;
393		} else {
394			ret = RISCV_PMU_RAW_EVENT_IDX;
395			*econfig = raw_config_val;
396		}
397		break;
398	default:
399		ret = -EINVAL;
400		break;
401	}
402
403	return ret;
404}
405
406static u64 pmu_sbi_ctr_read(struct perf_event *event)
407{
408	struct hw_perf_event *hwc = &event->hw;
409	int idx = hwc->idx;
410	struct sbiret ret;
411	union sbi_pmu_ctr_info info;
412	u64 val = 0;
413
414	if (pmu_sbi_is_fw_event(event)) {
415		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
416				hwc->idx, 0, 0, 0, 0, 0);
417		if (!ret.error)
418			val = ret.value;
419	} else {
420		info = pmu_ctr_list[idx];
421		val = riscv_pmu_ctr_read_csr(info.csr);
422		if (IS_ENABLED(CONFIG_32BIT))
423			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
424	}
425
426	return val;
427}
428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
430{
431	struct sbiret ret;
432	struct hw_perf_event *hwc = &event->hw;
433	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
434
435#if defined(CONFIG_32BIT)
436	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
437			1, flag, ival, ival >> 32, 0);
438#else
439	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
440			1, flag, ival, 0, 0);
441#endif
442	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
443		pr_err("Starting counter idx %d failed with error %d\n",
444			hwc->idx, sbi_err_map_linux_errno(ret.error));
 
 
 
 
445}
446
447static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
448{
449	struct sbiret ret;
450	struct hw_perf_event *hwc = &event->hw;
451
 
 
 
 
452	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
453	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
454		flag != SBI_PMU_STOP_FLAG_RESET)
455		pr_err("Stopping counter idx %d failed with error %d\n",
456			hwc->idx, sbi_err_map_linux_errno(ret.error));
457}
458
459static int pmu_sbi_find_num_ctrs(void)
460{
461	struct sbiret ret;
462
463	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
464	if (!ret.error)
465		return ret.value;
466	else
467		return sbi_err_map_linux_errno(ret.error);
468}
469
470static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
471{
472	struct sbiret ret;
473	int i, num_hw_ctr = 0, num_fw_ctr = 0;
474	union sbi_pmu_ctr_info cinfo;
475
476	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
477	if (!pmu_ctr_list)
478		return -ENOMEM;
479
480	for (i = 0; i < nctr; i++) {
481		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
482		if (ret.error)
483			/* The logical counter ids are not expected to be contiguous */
484			continue;
485
486		*mask |= BIT(i);
487
488		cinfo.value = ret.value;
489		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
490			num_fw_ctr++;
491		else
492			num_hw_ctr++;
493		pmu_ctr_list[i].value = cinfo.value;
494	}
495
496	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
497
498	return 0;
499}
500
501static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
502{
503	/*
504	 * No need to check the error because we are disabling all the counters
505	 * which may include counters that are not enabled yet.
506	 */
507	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
508		  0, pmu->cmask, 0, 0, 0, 0);
509}
510
511static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
512{
513	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
514
515	/* No need to check the error here as we can't do anything about the error */
516	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
517		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
518}
519
520/*
521 * This function starts all the used counters in two step approach.
522 * Any counter that did not overflow can be start in a single step
523 * while the overflowed counters need to be started with updated initialization
524 * value.
525 */
526static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
527					       unsigned long ctr_ovf_mask)
528{
529	int idx = 0;
530	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
531	struct perf_event *event;
532	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
533	unsigned long ctr_start_mask = 0;
534	uint64_t max_period;
535	struct hw_perf_event *hwc;
536	u64 init_val = 0;
537
538	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
539
540	/* Start all the counters that did not overflow in a single shot */
541	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
542		  0, 0, 0, 0);
543
544	/* Reinitialize and start all the counter that overflowed */
545	while (ctr_ovf_mask) {
546		if (ctr_ovf_mask & 0x01) {
547			event = cpu_hw_evt->events[idx];
548			hwc = &event->hw;
549			max_period = riscv_pmu_ctr_get_width_mask(event);
550			init_val = local64_read(&hwc->prev_count) & max_period;
551#if defined(CONFIG_32BIT)
552			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
553				  flag, init_val, init_val >> 32, 0);
554#else
555			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
556				  flag, init_val, 0, 0);
557#endif
558			perf_event_update_userpage(event);
559		}
560		ctr_ovf_mask = ctr_ovf_mask >> 1;
561		idx++;
562	}
563}
564
565static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
566{
567	struct perf_sample_data data;
568	struct pt_regs *regs;
569	struct hw_perf_event *hw_evt;
570	union sbi_pmu_ctr_info *info;
571	int lidx, hidx, fidx;
572	struct riscv_pmu *pmu;
573	struct perf_event *event;
574	unsigned long overflow;
575	unsigned long overflowed_ctrs = 0;
576	struct cpu_hw_events *cpu_hw_evt = dev;
577	u64 start_clock = sched_clock();
578
579	if (WARN_ON_ONCE(!cpu_hw_evt))
580		return IRQ_NONE;
581
582	/* Firmware counter don't support overflow yet */
583	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
 
 
 
 
 
584	event = cpu_hw_evt->events[fidx];
585	if (!event) {
586		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
587		return IRQ_NONE;
588	}
589
590	pmu = to_riscv_pmu(event->pmu);
591	pmu_sbi_stop_hw_ctrs(pmu);
592
593	/* Overflow status register should only be read after counter are stopped */
594	ALT_SBI_PMU_OVERFLOW(overflow);
595
596	/*
597	 * Overflow interrupt pending bit should only be cleared after stopping
598	 * all the counters to avoid any race condition.
599	 */
600	csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
601
602	/* No overflow bit is set */
603	if (!overflow)
604		return IRQ_NONE;
605
606	regs = get_irq_regs();
607
608	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
609		struct perf_event *event = cpu_hw_evt->events[lidx];
610
611		/* Skip if invalid event or user did not request a sampling */
612		if (!event || !is_sampling_event(event))
613			continue;
614
615		info = &pmu_ctr_list[lidx];
616		/* Do a sanity check */
617		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
618			continue;
619
620		/* compute hardware counter index */
621		hidx = info->csr - CSR_CYCLE;
622		/* check if the corresponding bit is set in sscountovf */
623		if (!(overflow & (1 << hidx)))
624			continue;
625
626		/*
627		 * Keep a track of overflowed counters so that they can be started
628		 * with updated initial value.
629		 */
630		overflowed_ctrs |= 1 << lidx;
631		hw_evt = &event->hw;
632		riscv_pmu_event_update(event);
633		perf_sample_data_init(&data, 0, hw_evt->last_period);
634		if (riscv_pmu_event_set_period(event)) {
635			/*
636			 * Unlike other ISAs, RISC-V don't have to disable interrupts
637			 * to avoid throttling here. As per the specification, the
638			 * interrupt remains disabled until the OF bit is set.
639			 * Interrupts are enabled again only during the start.
640			 * TODO: We will need to stop the guest counters once
641			 * virtualization support is added.
642			 */
643			perf_event_overflow(event, &data, regs);
644		}
645	}
646
647	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
648	perf_sample_event_took(sched_clock() - start_clock);
649
650	return IRQ_HANDLED;
651}
652
653static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
654{
655	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
656	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
657
658	/*
659	 * Enable the access for CYCLE, TIME, and INSTRET CSRs from userspace,
660	 * as is necessary to maintain uABI compatibility.
661	 */
662	csr_write(CSR_SCOUNTEREN, 0x7);
 
 
 
663
664	/* Stop all the counters so that they can be enabled from perf */
665	pmu_sbi_stop_all(pmu);
666
667	if (riscv_pmu_use_irq) {
668		cpu_hw_evt->irq = riscv_pmu_irq;
669		csr_clear(CSR_IP, BIT(riscv_pmu_irq_num));
670		csr_set(CSR_IE, BIT(riscv_pmu_irq_num));
671		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
672	}
673
674	return 0;
675}
676
677static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
678{
679	if (riscv_pmu_use_irq) {
680		disable_percpu_irq(riscv_pmu_irq);
681		csr_clear(CSR_IE, BIT(riscv_pmu_irq_num));
682	}
683
684	/* Disable all counters access for user mode now */
685	csr_write(CSR_SCOUNTEREN, 0x0);
686
687	return 0;
688}
689
690static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
691{
692	int ret;
693	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
694	struct device_node *cpu, *child;
695	struct irq_domain *domain = NULL;
696
697	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
698		riscv_pmu_irq_num = RV_IRQ_PMU;
699		riscv_pmu_use_irq = true;
700	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
701		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
702		   riscv_cached_marchid(0) == 0 &&
703		   riscv_cached_mimpid(0) == 0) {
704		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
705		riscv_pmu_use_irq = true;
706	}
707
708	if (!riscv_pmu_use_irq)
709		return -EOPNOTSUPP;
710
711	for_each_of_cpu_node(cpu) {
712		child = of_get_compatible_child(cpu, "riscv,cpu-intc");
713		if (!child) {
714			pr_err("Failed to find INTC node\n");
715			of_node_put(cpu);
716			return -ENODEV;
717		}
718		domain = irq_find_host(child);
719		of_node_put(child);
720		if (domain) {
721			of_node_put(cpu);
722			break;
723		}
724	}
725	if (!domain) {
726		pr_err("Failed to find INTC IRQ root domain\n");
727		return -ENODEV;
728	}
729
730	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
731	if (!riscv_pmu_irq) {
732		pr_err("Failed to map PMU interrupt for node\n");
733		return -ENODEV;
734	}
735
736	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
737	if (ret) {
738		pr_err("registering percpu irq failed [%d]\n", ret);
739		return ret;
740	}
741
742	return 0;
743}
744
745#ifdef CONFIG_CPU_PM
746static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
747				void *v)
748{
749	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
750	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
751	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
752	struct perf_event *event;
753	int idx;
754
755	if (!enabled)
756		return NOTIFY_OK;
757
758	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
759		event = cpuc->events[idx];
760		if (!event)
761			continue;
762
763		switch (cmd) {
764		case CPU_PM_ENTER:
765			/*
766			 * Stop and update the counter
767			 */
768			riscv_pmu_stop(event, PERF_EF_UPDATE);
769			break;
770		case CPU_PM_EXIT:
771		case CPU_PM_ENTER_FAILED:
772			/*
773			 * Restore and enable the counter.
774			 *
775			 * Requires RCU read locking to be functional,
776			 * wrap the call within RCU_NONIDLE to make the
777			 * RCU subsystem aware this cpu is not idle from
778			 * an RCU perspective for the riscv_pmu_start() call
779			 * duration.
780			 */
781			RCU_NONIDLE(riscv_pmu_start(event, PERF_EF_RELOAD));
782			break;
783		default:
784			break;
785		}
786	}
787
788	return NOTIFY_OK;
789}
790
791static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
792{
793	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
794	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
795}
796
797static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
798{
799	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
800}
801#else
802static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
803static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
804#endif
805
806static void riscv_pmu_destroy(struct riscv_pmu *pmu)
807{
808	riscv_pm_pmu_unregister(pmu);
809	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
810}
811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812static int pmu_sbi_device_probe(struct platform_device *pdev)
813{
814	struct riscv_pmu *pmu = NULL;
815	unsigned long cmask = 0;
816	int ret = -ENODEV;
817	int num_counters;
818
819	pr_info("SBI PMU extension is available\n");
820	pmu = riscv_pmu_alloc();
821	if (!pmu)
822		return -ENOMEM;
823
824	num_counters = pmu_sbi_find_num_ctrs();
825	if (num_counters < 0) {
826		pr_err("SBI PMU extension doesn't provide any counters\n");
827		goto out_free;
828	}
829
 
 
 
 
 
 
830	/* cache all the information about counters now */
831	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
832		goto out_free;
833
834	ret = pmu_sbi_setup_irqs(pmu, pdev);
835	if (ret < 0) {
836		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
837		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
838		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
839	}
840
841	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
842	pmu->cmask = cmask;
843	pmu->ctr_start = pmu_sbi_ctr_start;
844	pmu->ctr_stop = pmu_sbi_ctr_stop;
845	pmu->event_map = pmu_sbi_event_map;
846	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
847	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
848	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
849	pmu->ctr_read = pmu_sbi_ctr_read;
 
 
 
 
850
851	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
852	if (ret)
853		return ret;
854
855	ret = riscv_pm_pmu_register(pmu);
856	if (ret)
857		goto out_unregister;
858
859	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
860	if (ret)
861		goto out_unregister;
862
 
 
863	return 0;
864
865out_unregister:
866	riscv_pmu_destroy(pmu);
867
868out_free:
869	kfree(pmu);
870	return ret;
871}
872
873static struct platform_driver pmu_sbi_driver = {
874	.probe		= pmu_sbi_device_probe,
875	.driver		= {
876		.name	= RISCV_PMU_PDEV_NAME,
877	},
878};
879
880static int __init pmu_sbi_devinit(void)
881{
882	int ret;
883	struct platform_device *pdev;
884
885	if (sbi_spec_version < sbi_mk_version(0, 3) ||
886	    sbi_probe_extension(SBI_EXT_PMU) <= 0) {
887		return 0;
888	}
889
890	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
891				      "perf/riscv/pmu:starting",
892				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
893	if (ret) {
894		pr_err("CPU hotplug notifier could not be registered: %d\n",
895		       ret);
896		return ret;
897	}
898
899	ret = platform_driver_register(&pmu_sbi_driver);
900	if (ret)
901		return ret;
902
903	pdev = platform_device_register_simple(RISCV_PMU_PDEV_NAME, -1, NULL, 0);
904	if (IS_ERR(pdev)) {
905		platform_driver_unregister(&pmu_sbi_driver);
906		return PTR_ERR(pdev);
907	}
908
909	/* Notify legacy implementation that SBI pmu is available*/
910	riscv_pmu_legacy_skip_init();
911
912	return ret;
913}
914device_initcall(pmu_sbi_devinit)
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RISC-V performance counter support.
   4 *
   5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
   6 *
   7 * This code is based on ARM perf event code which is in turn based on
   8 * sparc64 and x86 code.
   9 */
  10
  11#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
  12
  13#include <linux/mod_devicetable.h>
  14#include <linux/perf/riscv_pmu.h>
  15#include <linux/platform_device.h>
  16#include <linux/irq.h>
  17#include <linux/irqdomain.h>
  18#include <linux/of_irq.h>
  19#include <linux/of.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/sched/clock.h>
  22
  23#include <asm/errata_list.h>
  24#include <asm/sbi.h>
  25#include <asm/cpufeature.h>
  26
  27#define SYSCTL_NO_USER_ACCESS	0
  28#define SYSCTL_USER_ACCESS	1
  29#define SYSCTL_LEGACY		2
  30
  31#define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
  32#define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
  33#define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
  34
  35PMU_FORMAT_ATTR(event, "config:0-47");
  36PMU_FORMAT_ATTR(firmware, "config:63");
  37
  38static struct attribute *riscv_arch_formats_attr[] = {
  39	&format_attr_event.attr,
  40	&format_attr_firmware.attr,
  41	NULL,
  42};
  43
  44static struct attribute_group riscv_pmu_format_group = {
  45	.name = "format",
  46	.attrs = riscv_arch_formats_attr,
  47};
  48
  49static const struct attribute_group *riscv_pmu_attr_groups[] = {
  50	&riscv_pmu_format_group,
  51	NULL,
  52};
  53
  54/* Allow user mode access by default */
  55static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
  56
  57/*
  58 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
  59 * per_cpu in case of harts with different pmu counters
  60 */
  61static union sbi_pmu_ctr_info *pmu_ctr_list;
  62static bool riscv_pmu_use_irq;
  63static unsigned int riscv_pmu_irq_num;
  64static unsigned int riscv_pmu_irq;
  65
  66/* Cache the available counters in a bitmask */
  67static unsigned long cmask;
  68
  69struct sbi_pmu_event_data {
  70	union {
  71		union {
  72			struct hw_gen_event {
  73				uint32_t event_code:16;
  74				uint32_t event_type:4;
  75				uint32_t reserved:12;
  76			} hw_gen_event;
  77			struct hw_cache_event {
  78				uint32_t result_id:1;
  79				uint32_t op_id:2;
  80				uint32_t cache_id:13;
  81				uint32_t event_type:4;
  82				uint32_t reserved:12;
  83			} hw_cache_event;
  84		};
  85		uint32_t event_idx;
  86	};
  87};
  88
  89static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
  90	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
  91							SBI_PMU_HW_CPU_CYCLES,
  92							SBI_PMU_EVENT_TYPE_HW, 0}},
  93	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
  94							SBI_PMU_HW_INSTRUCTIONS,
  95							SBI_PMU_EVENT_TYPE_HW, 0}},
  96	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
  97							SBI_PMU_HW_CACHE_REFERENCES,
  98							SBI_PMU_EVENT_TYPE_HW, 0}},
  99	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
 100							SBI_PMU_HW_CACHE_MISSES,
 101							SBI_PMU_EVENT_TYPE_HW, 0}},
 102	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
 103							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
 104							SBI_PMU_EVENT_TYPE_HW, 0}},
 105	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
 106							SBI_PMU_HW_BRANCH_MISSES,
 107							SBI_PMU_EVENT_TYPE_HW, 0}},
 108	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
 109							SBI_PMU_HW_BUS_CYCLES,
 110							SBI_PMU_EVENT_TYPE_HW, 0}},
 111	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
 112							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
 113							SBI_PMU_EVENT_TYPE_HW, 0}},
 114	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
 115							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
 116							SBI_PMU_EVENT_TYPE_HW, 0}},
 117	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
 118							SBI_PMU_HW_REF_CPU_CYCLES,
 119							SBI_PMU_EVENT_TYPE_HW, 0}},
 120};
 121
 122#define C(x) PERF_COUNT_HW_CACHE_##x
 123static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
 124[PERF_COUNT_HW_CACHE_OP_MAX]
 125[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 126	[C(L1D)] = {
 127		[C(OP_READ)] = {
 128			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 129					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 130			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 131					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 132		},
 133		[C(OP_WRITE)] = {
 134			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 135					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 136			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 137					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 138		},
 139		[C(OP_PREFETCH)] = {
 140			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 141					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 142			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 143					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 144		},
 145	},
 146	[C(L1I)] = {
 147		[C(OP_READ)] = {
 148			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
 149					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 150			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
 151					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 152		},
 153		[C(OP_WRITE)] = {
 154			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 155					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 156			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 157					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 158		},
 159		[C(OP_PREFETCH)] = {
 160			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 161					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 162			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 163					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 164		},
 165	},
 166	[C(LL)] = {
 167		[C(OP_READ)] = {
 168			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 169					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 170			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 171					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 172		},
 173		[C(OP_WRITE)] = {
 174			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 175					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 176			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 177					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 178		},
 179		[C(OP_PREFETCH)] = {
 180			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 181					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 182			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 183					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 184		},
 185	},
 186	[C(DTLB)] = {
 187		[C(OP_READ)] = {
 188			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 189					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 190			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 191					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 192		},
 193		[C(OP_WRITE)] = {
 194			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 195					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 196			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 197					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 198		},
 199		[C(OP_PREFETCH)] = {
 200			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 201					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 202			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 203					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 204		},
 205	},
 206	[C(ITLB)] = {
 207		[C(OP_READ)] = {
 208			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 209					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 210			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 211					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 212		},
 213		[C(OP_WRITE)] = {
 214			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 215					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 216			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 217					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 218		},
 219		[C(OP_PREFETCH)] = {
 220			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 221					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 222			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 223					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 224		},
 225	},
 226	[C(BPU)] = {
 227		[C(OP_READ)] = {
 228			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 229					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 230			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 231					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 232		},
 233		[C(OP_WRITE)] = {
 234			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 235					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 236			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 237					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 238		},
 239		[C(OP_PREFETCH)] = {
 240			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 241					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 242			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 243					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 244		},
 245	},
 246	[C(NODE)] = {
 247		[C(OP_READ)] = {
 248			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 249					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 250			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 251					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 252		},
 253		[C(OP_WRITE)] = {
 254			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 255					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 256			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 257					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 258		},
 259		[C(OP_PREFETCH)] = {
 260			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 261					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 262			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 263					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 264		},
 265	},
 266};
 267
 268static int pmu_sbi_ctr_get_width(int idx)
 269{
 270	return pmu_ctr_list[idx].width;
 271}
 272
 273static bool pmu_sbi_ctr_is_fw(int cidx)
 274{
 275	union sbi_pmu_ctr_info *info;
 276
 277	info = &pmu_ctr_list[cidx];
 278	if (!info)
 279		return false;
 280
 281	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
 282}
 283
 284/*
 285 * Returns the counter width of a programmable counter and number of hardware
 286 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
 287 * return the counter width of the first programmable counter.
 288 */
 289int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
 290{
 291	int i;
 292	union sbi_pmu_ctr_info *info;
 293	u32 hpm_width = 0, hpm_count = 0;
 294
 295	if (!cmask)
 296		return -EINVAL;
 297
 298	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
 299		info = &pmu_ctr_list[i];
 300		if (!info)
 301			continue;
 302		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
 303			hpm_width = info->width;
 304		if (info->type == SBI_PMU_CTR_TYPE_HW)
 305			hpm_count++;
 306	}
 307
 308	*hw_ctr_width = hpm_width;
 309	*num_hw_ctr = hpm_count;
 310
 311	return 0;
 312}
 313EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
 314
 315static uint8_t pmu_sbi_csr_index(struct perf_event *event)
 316{
 317	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
 318}
 319
 320static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
 321{
 322	unsigned long cflags = 0;
 323	bool guest_events = false;
 324
 325	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
 326		guest_events = true;
 327	if (event->attr.exclude_kernel)
 328		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
 329	if (event->attr.exclude_user)
 330		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
 331	if (guest_events && event->attr.exclude_hv)
 332		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
 333	if (event->attr.exclude_host)
 334		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
 335	if (event->attr.exclude_guest)
 336		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
 337
 338	return cflags;
 339}
 340
 341static int pmu_sbi_ctr_get_idx(struct perf_event *event)
 342{
 343	struct hw_perf_event *hwc = &event->hw;
 344	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 345	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 346	struct sbiret ret;
 347	int idx;
 348	uint64_t cbase = 0, cmask = rvpmu->cmask;
 349	unsigned long cflags = 0;
 350
 351	cflags = pmu_sbi_get_filter_flags(event);
 352
 353	/*
 354	 * In legacy mode, we have to force the fixed counters for those events
 355	 * but not in the user access mode as we want to use the other counters
 356	 * that support sampling/filtering.
 357	 */
 358	if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
 359		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
 360			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 361			cmask = 1;
 362		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
 363			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 364			cmask = 1UL << (CSR_INSTRET - CSR_CYCLE);
 365		}
 366	}
 367
 368	/* retrieve the available counter index */
 369#if defined(CONFIG_32BIT)
 370	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 371			cmask, cflags, hwc->event_base, hwc->config,
 372			hwc->config >> 32);
 373#else
 374	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 375			cmask, cflags, hwc->event_base, hwc->config, 0);
 376#endif
 377	if (ret.error) {
 378		pr_debug("Not able to find a counter for event %lx config %llx\n",
 379			hwc->event_base, hwc->config);
 380		return sbi_err_map_linux_errno(ret.error);
 381	}
 382
 383	idx = ret.value;
 384	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
 385		return -ENOENT;
 386
 387	/* Additional sanity check for the counter id */
 388	if (pmu_sbi_ctr_is_fw(idx)) {
 389		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
 390			return idx;
 391	} else {
 392		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
 393			return idx;
 394	}
 395
 396	return -ENOENT;
 397}
 398
 399static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
 400{
 401
 402	struct hw_perf_event *hwc = &event->hw;
 403	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 404	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 405	int idx = hwc->idx;
 406
 407	if (pmu_sbi_ctr_is_fw(idx))
 408		clear_bit(idx, cpuc->used_fw_ctrs);
 409	else
 410		clear_bit(idx, cpuc->used_hw_ctrs);
 411}
 412
 413static int pmu_event_find_cache(u64 config)
 414{
 415	unsigned int cache_type, cache_op, cache_result, ret;
 416
 417	cache_type = (config >>  0) & 0xff;
 418	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 419		return -EINVAL;
 420
 421	cache_op = (config >>  8) & 0xff;
 422	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 423		return -EINVAL;
 424
 425	cache_result = (config >> 16) & 0xff;
 426	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 427		return -EINVAL;
 428
 429	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
 430
 431	return ret;
 432}
 433
 434static bool pmu_sbi_is_fw_event(struct perf_event *event)
 435{
 436	u32 type = event->attr.type;
 437	u64 config = event->attr.config;
 438
 439	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
 440		return true;
 441	else
 442		return false;
 443}
 444
 445static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
 446{
 447	u32 type = event->attr.type;
 448	u64 config = event->attr.config;
 449	int bSoftware;
 450	u64 raw_config_val;
 451	int ret;
 452
 453	switch (type) {
 454	case PERF_TYPE_HARDWARE:
 455		if (config >= PERF_COUNT_HW_MAX)
 456			return -EINVAL;
 457		ret = pmu_hw_event_map[event->attr.config].event_idx;
 458		break;
 459	case PERF_TYPE_HW_CACHE:
 460		ret = pmu_event_find_cache(config);
 461		break;
 462	case PERF_TYPE_RAW:
 463		/*
 464		 * As per SBI specification, the upper 16 bits must be unused for
 465		 * a raw event. Use the MSB (63b) to distinguish between hardware
 466		 * raw event and firmware events.
 467		 */
 468		bSoftware = config >> 63;
 469		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
 470		if (bSoftware) {
 471			ret = (raw_config_val & 0xFFFF) |
 472				(SBI_PMU_EVENT_TYPE_FW << 16);
 
 
 
 473		} else {
 474			ret = RISCV_PMU_RAW_EVENT_IDX;
 475			*econfig = raw_config_val;
 476		}
 477		break;
 478	default:
 479		ret = -EINVAL;
 480		break;
 481	}
 482
 483	return ret;
 484}
 485
 486static u64 pmu_sbi_ctr_read(struct perf_event *event)
 487{
 488	struct hw_perf_event *hwc = &event->hw;
 489	int idx = hwc->idx;
 490	struct sbiret ret;
 491	union sbi_pmu_ctr_info info;
 492	u64 val = 0;
 493
 494	if (pmu_sbi_is_fw_event(event)) {
 495		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
 496				hwc->idx, 0, 0, 0, 0, 0);
 497		if (!ret.error)
 498			val = ret.value;
 499	} else {
 500		info = pmu_ctr_list[idx];
 501		val = riscv_pmu_ctr_read_csr(info.csr);
 502		if (IS_ENABLED(CONFIG_32BIT))
 503			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
 504	}
 505
 506	return val;
 507}
 508
 509static void pmu_sbi_set_scounteren(void *arg)
 510{
 511	struct perf_event *event = (struct perf_event *)arg;
 512
 513	if (event->hw.idx != -1)
 514		csr_write(CSR_SCOUNTEREN,
 515			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
 516}
 517
 518static void pmu_sbi_reset_scounteren(void *arg)
 519{
 520	struct perf_event *event = (struct perf_event *)arg;
 521
 522	if (event->hw.idx != -1)
 523		csr_write(CSR_SCOUNTEREN,
 524			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
 525}
 526
 527static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
 528{
 529	struct sbiret ret;
 530	struct hw_perf_event *hwc = &event->hw;
 531	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 532
 533#if defined(CONFIG_32BIT)
 534	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 535			1, flag, ival, ival >> 32, 0);
 536#else
 537	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 538			1, flag, ival, 0, 0);
 539#endif
 540	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
 541		pr_err("Starting counter idx %d failed with error %d\n",
 542			hwc->idx, sbi_err_map_linux_errno(ret.error));
 543
 544	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 545	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 546		pmu_sbi_set_scounteren((void *)event);
 547}
 548
 549static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
 550{
 551	struct sbiret ret;
 552	struct hw_perf_event *hwc = &event->hw;
 553
 554	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 555	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 556		pmu_sbi_reset_scounteren((void *)event);
 557
 558	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
 559	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
 560		flag != SBI_PMU_STOP_FLAG_RESET)
 561		pr_err("Stopping counter idx %d failed with error %d\n",
 562			hwc->idx, sbi_err_map_linux_errno(ret.error));
 563}
 564
 565static int pmu_sbi_find_num_ctrs(void)
 566{
 567	struct sbiret ret;
 568
 569	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
 570	if (!ret.error)
 571		return ret.value;
 572	else
 573		return sbi_err_map_linux_errno(ret.error);
 574}
 575
 576static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
 577{
 578	struct sbiret ret;
 579	int i, num_hw_ctr = 0, num_fw_ctr = 0;
 580	union sbi_pmu_ctr_info cinfo;
 581
 582	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
 583	if (!pmu_ctr_list)
 584		return -ENOMEM;
 585
 586	for (i = 0; i < nctr; i++) {
 587		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
 588		if (ret.error)
 589			/* The logical counter ids are not expected to be contiguous */
 590			continue;
 591
 592		*mask |= BIT(i);
 593
 594		cinfo.value = ret.value;
 595		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
 596			num_fw_ctr++;
 597		else
 598			num_hw_ctr++;
 599		pmu_ctr_list[i].value = cinfo.value;
 600	}
 601
 602	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
 603
 604	return 0;
 605}
 606
 607static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
 608{
 609	/*
 610	 * No need to check the error because we are disabling all the counters
 611	 * which may include counters that are not enabled yet.
 612	 */
 613	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
 614		  0, pmu->cmask, 0, 0, 0, 0);
 615}
 616
 617static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
 618{
 619	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 620
 621	/* No need to check the error here as we can't do anything about the error */
 622	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
 623		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
 624}
 625
 626/*
 627 * This function starts all the used counters in two step approach.
 628 * Any counter that did not overflow can be start in a single step
 629 * while the overflowed counters need to be started with updated initialization
 630 * value.
 631 */
 632static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
 633					       unsigned long ctr_ovf_mask)
 634{
 635	int idx = 0;
 636	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 637	struct perf_event *event;
 638	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 639	unsigned long ctr_start_mask = 0;
 640	uint64_t max_period;
 641	struct hw_perf_event *hwc;
 642	u64 init_val = 0;
 643
 644	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
 645
 646	/* Start all the counters that did not overflow in a single shot */
 647	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
 648		  0, 0, 0, 0);
 649
 650	/* Reinitialize and start all the counter that overflowed */
 651	while (ctr_ovf_mask) {
 652		if (ctr_ovf_mask & 0x01) {
 653			event = cpu_hw_evt->events[idx];
 654			hwc = &event->hw;
 655			max_period = riscv_pmu_ctr_get_width_mask(event);
 656			init_val = local64_read(&hwc->prev_count) & max_period;
 657#if defined(CONFIG_32BIT)
 658			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 659				  flag, init_val, init_val >> 32, 0);
 660#else
 661			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 662				  flag, init_val, 0, 0);
 663#endif
 664			perf_event_update_userpage(event);
 665		}
 666		ctr_ovf_mask = ctr_ovf_mask >> 1;
 667		idx++;
 668	}
 669}
 670
 671static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
 672{
 673	struct perf_sample_data data;
 674	struct pt_regs *regs;
 675	struct hw_perf_event *hw_evt;
 676	union sbi_pmu_ctr_info *info;
 677	int lidx, hidx, fidx;
 678	struct riscv_pmu *pmu;
 679	struct perf_event *event;
 680	unsigned long overflow;
 681	unsigned long overflowed_ctrs = 0;
 682	struct cpu_hw_events *cpu_hw_evt = dev;
 683	u64 start_clock = sched_clock();
 684
 685	if (WARN_ON_ONCE(!cpu_hw_evt))
 686		return IRQ_NONE;
 687
 688	/* Firmware counter don't support overflow yet */
 689	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
 690	if (fidx == RISCV_MAX_COUNTERS) {
 691		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 692		return IRQ_NONE;
 693	}
 694
 695	event = cpu_hw_evt->events[fidx];
 696	if (!event) {
 697		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 698		return IRQ_NONE;
 699	}
 700
 701	pmu = to_riscv_pmu(event->pmu);
 702	pmu_sbi_stop_hw_ctrs(pmu);
 703
 704	/* Overflow status register should only be read after counter are stopped */
 705	ALT_SBI_PMU_OVERFLOW(overflow);
 706
 707	/*
 708	 * Overflow interrupt pending bit should only be cleared after stopping
 709	 * all the counters to avoid any race condition.
 710	 */
 711	csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 712
 713	/* No overflow bit is set */
 714	if (!overflow)
 715		return IRQ_NONE;
 716
 717	regs = get_irq_regs();
 718
 719	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
 720		struct perf_event *event = cpu_hw_evt->events[lidx];
 721
 722		/* Skip if invalid event or user did not request a sampling */
 723		if (!event || !is_sampling_event(event))
 724			continue;
 725
 726		info = &pmu_ctr_list[lidx];
 727		/* Do a sanity check */
 728		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
 729			continue;
 730
 731		/* compute hardware counter index */
 732		hidx = info->csr - CSR_CYCLE;
 733		/* check if the corresponding bit is set in sscountovf */
 734		if (!(overflow & BIT(hidx)))
 735			continue;
 736
 737		/*
 738		 * Keep a track of overflowed counters so that they can be started
 739		 * with updated initial value.
 740		 */
 741		overflowed_ctrs |= BIT(lidx);
 742		hw_evt = &event->hw;
 743		riscv_pmu_event_update(event);
 744		perf_sample_data_init(&data, 0, hw_evt->last_period);
 745		if (riscv_pmu_event_set_period(event)) {
 746			/*
 747			 * Unlike other ISAs, RISC-V don't have to disable interrupts
 748			 * to avoid throttling here. As per the specification, the
 749			 * interrupt remains disabled until the OF bit is set.
 750			 * Interrupts are enabled again only during the start.
 751			 * TODO: We will need to stop the guest counters once
 752			 * virtualization support is added.
 753			 */
 754			perf_event_overflow(event, &data, regs);
 755		}
 756	}
 757
 758	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
 759	perf_sample_event_took(sched_clock() - start_clock);
 760
 761	return IRQ_HANDLED;
 762}
 763
 764static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
 765{
 766	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
 767	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 768
 769	/*
 770	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
 771	 * legacy option but that will be removed in the future.
 772	 */
 773	if (sysctl_perf_user_access == SYSCTL_LEGACY)
 774		csr_write(CSR_SCOUNTEREN, 0x7);
 775	else
 776		csr_write(CSR_SCOUNTEREN, 0x2);
 777
 778	/* Stop all the counters so that they can be enabled from perf */
 779	pmu_sbi_stop_all(pmu);
 780
 781	if (riscv_pmu_use_irq) {
 782		cpu_hw_evt->irq = riscv_pmu_irq;
 783		csr_clear(CSR_IP, BIT(riscv_pmu_irq_num));
 784		csr_set(CSR_IE, BIT(riscv_pmu_irq_num));
 785		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
 786	}
 787
 788	return 0;
 789}
 790
 791static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
 792{
 793	if (riscv_pmu_use_irq) {
 794		disable_percpu_irq(riscv_pmu_irq);
 795		csr_clear(CSR_IE, BIT(riscv_pmu_irq_num));
 796	}
 797
 798	/* Disable all counters access for user mode now */
 799	csr_write(CSR_SCOUNTEREN, 0x0);
 800
 801	return 0;
 802}
 803
 804static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
 805{
 806	int ret;
 807	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
 
 808	struct irq_domain *domain = NULL;
 809
 810	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
 811		riscv_pmu_irq_num = RV_IRQ_PMU;
 812		riscv_pmu_use_irq = true;
 813	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
 814		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
 815		   riscv_cached_marchid(0) == 0 &&
 816		   riscv_cached_mimpid(0) == 0) {
 817		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
 818		riscv_pmu_use_irq = true;
 819	}
 820
 821	if (!riscv_pmu_use_irq)
 822		return -EOPNOTSUPP;
 823
 824	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
 825					  DOMAIN_BUS_ANY);
 
 
 
 
 
 
 
 
 
 
 
 
 826	if (!domain) {
 827		pr_err("Failed to find INTC IRQ root domain\n");
 828		return -ENODEV;
 829	}
 830
 831	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
 832	if (!riscv_pmu_irq) {
 833		pr_err("Failed to map PMU interrupt for node\n");
 834		return -ENODEV;
 835	}
 836
 837	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
 838	if (ret) {
 839		pr_err("registering percpu irq failed [%d]\n", ret);
 840		return ret;
 841	}
 842
 843	return 0;
 844}
 845
 846#ifdef CONFIG_CPU_PM
 847static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 848				void *v)
 849{
 850	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
 851	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 852	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
 853	struct perf_event *event;
 854	int idx;
 855
 856	if (!enabled)
 857		return NOTIFY_OK;
 858
 859	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
 860		event = cpuc->events[idx];
 861		if (!event)
 862			continue;
 863
 864		switch (cmd) {
 865		case CPU_PM_ENTER:
 866			/*
 867			 * Stop and update the counter
 868			 */
 869			riscv_pmu_stop(event, PERF_EF_UPDATE);
 870			break;
 871		case CPU_PM_EXIT:
 872		case CPU_PM_ENTER_FAILED:
 873			/*
 874			 * Restore and enable the counter.
 
 
 
 
 
 
 875			 */
 876			riscv_pmu_start(event, PERF_EF_RELOAD);
 877			break;
 878		default:
 879			break;
 880		}
 881	}
 882
 883	return NOTIFY_OK;
 884}
 885
 886static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
 887{
 888	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
 889	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
 890}
 891
 892static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
 893{
 894	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
 895}
 896#else
 897static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
 898static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
 899#endif
 900
 901static void riscv_pmu_destroy(struct riscv_pmu *pmu)
 902{
 903	riscv_pm_pmu_unregister(pmu);
 904	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
 905}
 906
 907static void pmu_sbi_event_init(struct perf_event *event)
 908{
 909	/*
 910	 * The permissions are set at event_init so that we do not depend
 911	 * on the sysctl value that can change.
 912	 */
 913	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
 914		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
 915	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
 916		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
 917	else
 918		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
 919}
 920
 921static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
 922{
 923	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 924		return;
 925
 926	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 927		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 928		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 929			return;
 930		}
 931	}
 932
 933	/*
 934	 * The user mmapped the event to directly access it: this is where
 935	 * we determine based on sysctl_perf_user_access if we grant userspace
 936	 * the direct access to this event. That means that within the same
 937	 * task, some events may be directly accessible and some other may not,
 938	 * if the user changes the value of sysctl_perf_user_accesss in the
 939	 * meantime.
 940	 */
 941
 942	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
 943
 944	/*
 945	 * We must enable userspace access *before* advertising in the user page
 946	 * that it is possible to do so to avoid any race.
 947	 * And we must notify all cpus here because threads that currently run
 948	 * on other cpus will try to directly access the counter too without
 949	 * calling pmu_sbi_ctr_start.
 950	 */
 951	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
 952		on_each_cpu_mask(mm_cpumask(mm),
 953				 pmu_sbi_set_scounteren, (void *)event, 1);
 954}
 955
 956static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
 957{
 958	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 959		return;
 960
 961	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 962		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 963		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 964			return;
 965		}
 966	}
 967
 968	/*
 969	 * Here we can directly remove user access since the user does not have
 970	 * access to the user page anymore so we avoid the racy window where the
 971	 * user could have read cap_user_rdpmc to true right before we disable
 972	 * it.
 973	 */
 974	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
 975
 976	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
 977		on_each_cpu_mask(mm_cpumask(mm),
 978				 pmu_sbi_reset_scounteren, (void *)event, 1);
 979}
 980
 981static void riscv_pmu_update_counter_access(void *info)
 982{
 983	if (sysctl_perf_user_access == SYSCTL_LEGACY)
 984		csr_write(CSR_SCOUNTEREN, 0x7);
 985	else
 986		csr_write(CSR_SCOUNTEREN, 0x2);
 987}
 988
 989static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
 990					      int write, void *buffer,
 991					      size_t *lenp, loff_t *ppos)
 992{
 993	int prev = sysctl_perf_user_access;
 994	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 995
 996	/*
 997	 * Test against the previous value since we clear SCOUNTEREN when
 998	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
 999	 * not do that if that was already the case.
1000	 */
1001	if (ret || !write || prev == sysctl_perf_user_access)
1002		return ret;
1003
1004	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1005
1006	return 0;
1007}
1008
1009static struct ctl_table sbi_pmu_sysctl_table[] = {
1010	{
1011		.procname       = "perf_user_access",
1012		.data		= &sysctl_perf_user_access,
1013		.maxlen		= sizeof(unsigned int),
1014		.mode           = 0644,
1015		.proc_handler	= riscv_pmu_proc_user_access_handler,
1016		.extra1		= SYSCTL_ZERO,
1017		.extra2		= SYSCTL_TWO,
1018	},
1019	{ }
1020};
1021
1022static int pmu_sbi_device_probe(struct platform_device *pdev)
1023{
1024	struct riscv_pmu *pmu = NULL;
 
1025	int ret = -ENODEV;
1026	int num_counters;
1027
1028	pr_info("SBI PMU extension is available\n");
1029	pmu = riscv_pmu_alloc();
1030	if (!pmu)
1031		return -ENOMEM;
1032
1033	num_counters = pmu_sbi_find_num_ctrs();
1034	if (num_counters < 0) {
1035		pr_err("SBI PMU extension doesn't provide any counters\n");
1036		goto out_free;
1037	}
1038
1039	/* It is possible to get from SBI more than max number of counters */
1040	if (num_counters > RISCV_MAX_COUNTERS) {
1041		num_counters = RISCV_MAX_COUNTERS;
1042		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1043	}
1044
1045	/* cache all the information about counters now */
1046	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1047		goto out_free;
1048
1049	ret = pmu_sbi_setup_irqs(pmu, pdev);
1050	if (ret < 0) {
1051		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1052		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1053		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1054	}
1055
1056	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1057	pmu->cmask = cmask;
1058	pmu->ctr_start = pmu_sbi_ctr_start;
1059	pmu->ctr_stop = pmu_sbi_ctr_stop;
1060	pmu->event_map = pmu_sbi_event_map;
1061	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1062	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1063	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1064	pmu->ctr_read = pmu_sbi_ctr_read;
1065	pmu->event_init = pmu_sbi_event_init;
1066	pmu->event_mapped = pmu_sbi_event_mapped;
1067	pmu->event_unmapped = pmu_sbi_event_unmapped;
1068	pmu->csr_index = pmu_sbi_csr_index;
1069
1070	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1071	if (ret)
1072		return ret;
1073
1074	ret = riscv_pm_pmu_register(pmu);
1075	if (ret)
1076		goto out_unregister;
1077
1078	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1079	if (ret)
1080		goto out_unregister;
1081
1082	register_sysctl("kernel", sbi_pmu_sysctl_table);
1083
1084	return 0;
1085
1086out_unregister:
1087	riscv_pmu_destroy(pmu);
1088
1089out_free:
1090	kfree(pmu);
1091	return ret;
1092}
1093
1094static struct platform_driver pmu_sbi_driver = {
1095	.probe		= pmu_sbi_device_probe,
1096	.driver		= {
1097		.name	= RISCV_PMU_SBI_PDEV_NAME,
1098	},
1099};
1100
1101static int __init pmu_sbi_devinit(void)
1102{
1103	int ret;
1104	struct platform_device *pdev;
1105
1106	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1107	    !sbi_probe_extension(SBI_EXT_PMU)) {
1108		return 0;
1109	}
1110
1111	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1112				      "perf/riscv/pmu:starting",
1113				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1114	if (ret) {
1115		pr_err("CPU hotplug notifier could not be registered: %d\n",
1116		       ret);
1117		return ret;
1118	}
1119
1120	ret = platform_driver_register(&pmu_sbi_driver);
1121	if (ret)
1122		return ret;
1123
1124	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1125	if (IS_ERR(pdev)) {
1126		platform_driver_unregister(&pmu_sbi_driver);
1127		return PTR_ERR(pdev);
1128	}
1129
1130	/* Notify legacy implementation that SBI pmu is available*/
1131	riscv_pmu_legacy_skip_init();
1132
1133	return ret;
1134}
1135device_initcall(pmu_sbi_devinit)