Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11#define PMUNAME "arm_spe"
12#define DRVNAME PMUNAME "_pmu"
13#define pr_fmt(fmt) DRVNAME ": " fmt
14
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/capability.h>
18#include <linux/cpuhotplug.h>
19#include <linux/cpumask.h>
20#include <linux/device.h>
21#include <linux/errno.h>
22#include <linux/interrupt.h>
23#include <linux/irq.h>
24#include <linux/kernel.h>
25#include <linux/list.h>
26#include <linux/module.h>
27#include <linux/of_address.h>
28#include <linux/of_device.h>
29#include <linux/perf_event.h>
30#include <linux/perf/arm_pmu.h>
31#include <linux/platform_device.h>
32#include <linux/printk.h>
33#include <linux/slab.h>
34#include <linux/smp.h>
35#include <linux/vmalloc.h>
36
37#include <asm/barrier.h>
38#include <asm/cpufeature.h>
39#include <asm/mmu.h>
40#include <asm/sysreg.h>
41
42/*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perfmon_capable(),
45 * in the context of the event owner, once, during the event_init().
46 */
47#define SPE_PMU_HW_FLAGS_CX 0x00001
48
49static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
51static void set_spe_event_has_cx(struct perf_event *event)
52{
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55}
56
57static bool get_spe_event_has_cx(struct perf_event *event)
58{
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60}
61
62#define ARM_SPE_BUF_PAD_BYTE 0
63
64struct arm_spe_pmu_buf {
65 int nr_pages;
66 bool snapshot;
67 void *base;
68};
69
70struct arm_spe_pmu {
71 struct pmu pmu;
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
75
76 int irq; /* PPI */
77 u16 pmsver;
78 u16 min_period;
79 u16 counter_sz;
80
81#define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82#define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83#define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84#define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85#define SPE_PMU_FEAT_LDS (1UL << 4)
86#define SPE_PMU_FEAT_ERND (1UL << 5)
87#define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
88 u64 features;
89
90 u16 max_record_sz;
91 u16 align;
92 struct perf_output_handle __percpu *handle;
93};
94
95#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
96
97/* Convert a free-running index from perf into an SPE buffer offset */
98#define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
99
100/* Keep track of our dynamic hotplug state */
101static enum cpuhp_state arm_spe_pmu_online;
102
103enum arm_spe_pmu_buf_fault_action {
104 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
105 SPE_PMU_BUF_FAULT_ACT_FATAL,
106 SPE_PMU_BUF_FAULT_ACT_OK,
107};
108
109/* This sysfs gunk was really good fun to write. */
110enum arm_spe_pmu_capabilities {
111 SPE_PMU_CAP_ARCH_INST = 0,
112 SPE_PMU_CAP_ERND,
113 SPE_PMU_CAP_FEAT_MAX,
114 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
115 SPE_PMU_CAP_MIN_IVAL,
116};
117
118static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
119 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
120 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
121};
122
123static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
124{
125 if (cap < SPE_PMU_CAP_FEAT_MAX)
126 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
127
128 switch (cap) {
129 case SPE_PMU_CAP_CNT_SZ:
130 return spe_pmu->counter_sz;
131 case SPE_PMU_CAP_MIN_IVAL:
132 return spe_pmu->min_period;
133 default:
134 WARN(1, "unknown cap %d\n", cap);
135 }
136
137 return 0;
138}
139
140static ssize_t arm_spe_pmu_cap_show(struct device *dev,
141 struct device_attribute *attr,
142 char *buf)
143{
144 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
145 struct dev_ext_attribute *ea =
146 container_of(attr, struct dev_ext_attribute, attr);
147 int cap = (long)ea->var;
148
149 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
150}
151
152#define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
153 &((struct dev_ext_attribute[]) { \
154 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
155 })[0].attr.attr
156
157#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
158 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
159
160static struct attribute *arm_spe_pmu_cap_attr[] = {
161 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
162 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
163 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
164 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
165 NULL,
166};
167
168static const struct attribute_group arm_spe_pmu_cap_group = {
169 .name = "caps",
170 .attrs = arm_spe_pmu_cap_attr,
171};
172
173/* User ABI */
174#define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
175#define ATTR_CFG_FLD_ts_enable_LO 0
176#define ATTR_CFG_FLD_ts_enable_HI 0
177#define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
178#define ATTR_CFG_FLD_pa_enable_LO 1
179#define ATTR_CFG_FLD_pa_enable_HI 1
180#define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
181#define ATTR_CFG_FLD_pct_enable_LO 2
182#define ATTR_CFG_FLD_pct_enable_HI 2
183#define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
184#define ATTR_CFG_FLD_jitter_LO 16
185#define ATTR_CFG_FLD_jitter_HI 16
186#define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
187#define ATTR_CFG_FLD_branch_filter_LO 32
188#define ATTR_CFG_FLD_branch_filter_HI 32
189#define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
190#define ATTR_CFG_FLD_load_filter_LO 33
191#define ATTR_CFG_FLD_load_filter_HI 33
192#define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
193#define ATTR_CFG_FLD_store_filter_LO 34
194#define ATTR_CFG_FLD_store_filter_HI 34
195
196#define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
197#define ATTR_CFG_FLD_event_filter_LO 0
198#define ATTR_CFG_FLD_event_filter_HI 63
199
200#define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
201#define ATTR_CFG_FLD_min_latency_LO 0
202#define ATTR_CFG_FLD_min_latency_HI 11
203
204/* Why does everything I do descend into this? */
205#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
206 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
207
208#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
209 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
210
211#define GEN_PMU_FORMAT_ATTR(name) \
212 PMU_FORMAT_ATTR(name, \
213 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
214 ATTR_CFG_FLD_##name##_LO, \
215 ATTR_CFG_FLD_##name##_HI))
216
217#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
218 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
219
220#define ATTR_CFG_GET_FLD(attr, name) \
221 _ATTR_CFG_GET_FLD(attr, \
222 ATTR_CFG_FLD_##name##_CFG, \
223 ATTR_CFG_FLD_##name##_LO, \
224 ATTR_CFG_FLD_##name##_HI)
225
226GEN_PMU_FORMAT_ATTR(ts_enable);
227GEN_PMU_FORMAT_ATTR(pa_enable);
228GEN_PMU_FORMAT_ATTR(pct_enable);
229GEN_PMU_FORMAT_ATTR(jitter);
230GEN_PMU_FORMAT_ATTR(branch_filter);
231GEN_PMU_FORMAT_ATTR(load_filter);
232GEN_PMU_FORMAT_ATTR(store_filter);
233GEN_PMU_FORMAT_ATTR(event_filter);
234GEN_PMU_FORMAT_ATTR(min_latency);
235
236static struct attribute *arm_spe_pmu_formats_attr[] = {
237 &format_attr_ts_enable.attr,
238 &format_attr_pa_enable.attr,
239 &format_attr_pct_enable.attr,
240 &format_attr_jitter.attr,
241 &format_attr_branch_filter.attr,
242 &format_attr_load_filter.attr,
243 &format_attr_store_filter.attr,
244 &format_attr_event_filter.attr,
245 &format_attr_min_latency.attr,
246 NULL,
247};
248
249static const struct attribute_group arm_spe_pmu_format_group = {
250 .name = "format",
251 .attrs = arm_spe_pmu_formats_attr,
252};
253
254static ssize_t cpumask_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
256{
257 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
258
259 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
260}
261static DEVICE_ATTR_RO(cpumask);
262
263static struct attribute *arm_spe_pmu_attrs[] = {
264 &dev_attr_cpumask.attr,
265 NULL,
266};
267
268static const struct attribute_group arm_spe_pmu_group = {
269 .attrs = arm_spe_pmu_attrs,
270};
271
272static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
273 &arm_spe_pmu_group,
274 &arm_spe_pmu_cap_group,
275 &arm_spe_pmu_format_group,
276 NULL,
277};
278
279/* Convert between user ABI and register values */
280static u64 arm_spe_event_to_pmscr(struct perf_event *event)
281{
282 struct perf_event_attr *attr = &event->attr;
283 u64 reg = 0;
284
285 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
286 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
287 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
288
289 if (!attr->exclude_user)
290 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
291
292 if (!attr->exclude_kernel)
293 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
294
295 if (get_spe_event_has_cx(event))
296 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
297
298 return reg;
299}
300
301static void arm_spe_event_sanitise_period(struct perf_event *event)
302{
303 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
304 u64 period = event->hw.sample_period;
305 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
306 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
307
308 if (period < spe_pmu->min_period)
309 period = spe_pmu->min_period;
310 else if (period > max_period)
311 period = max_period;
312 else
313 period &= max_period;
314
315 event->hw.sample_period = period;
316}
317
318static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
319{
320 struct perf_event_attr *attr = &event->attr;
321 u64 reg = 0;
322
323 arm_spe_event_sanitise_period(event);
324
325 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
326 reg |= event->hw.sample_period;
327
328 return reg;
329}
330
331static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
332{
333 struct perf_event_attr *attr = &event->attr;
334 u64 reg = 0;
335
336 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
337 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
338 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
339
340 if (reg)
341 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
342
343 if (ATTR_CFG_GET_FLD(attr, event_filter))
344 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
345
346 if (ATTR_CFG_GET_FLD(attr, min_latency))
347 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
348
349 return reg;
350}
351
352static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
353{
354 struct perf_event_attr *attr = &event->attr;
355 return ATTR_CFG_GET_FLD(attr, event_filter);
356}
357
358static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
359{
360 struct perf_event_attr *attr = &event->attr;
361 return ATTR_CFG_GET_FLD(attr, min_latency)
362 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
363}
364
365static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
366{
367 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
368 u64 head = PERF_IDX2OFF(handle->head, buf);
369
370 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
371 if (!buf->snapshot)
372 perf_aux_output_skip(handle, len);
373}
374
375static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
376{
377 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
378 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
379 u64 head = PERF_IDX2OFF(handle->head, buf);
380 u64 limit = buf->nr_pages * PAGE_SIZE;
381
382 /*
383 * The trace format isn't parseable in reverse, so clamp
384 * the limit to half of the buffer size in snapshot mode
385 * so that the worst case is half a buffer of records, as
386 * opposed to a single record.
387 */
388 if (head < limit >> 1)
389 limit >>= 1;
390
391 /*
392 * If we're within max_record_sz of the limit, we must
393 * pad, move the head index and recompute the limit.
394 */
395 if (limit - head < spe_pmu->max_record_sz) {
396 arm_spe_pmu_pad_buf(handle, limit - head);
397 handle->head = PERF_IDX2OFF(limit, buf);
398 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
399 }
400
401 return limit;
402}
403
404static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
405{
406 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
408 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
409 u64 limit = bufsize;
410 u64 head, tail, wakeup;
411
412 /*
413 * The head can be misaligned for two reasons:
414 *
415 * 1. The hardware left PMBPTR pointing to the first byte after
416 * a record when generating a buffer management event.
417 *
418 * 2. We used perf_aux_output_skip to consume handle->size bytes
419 * and CIRC_SPACE was used to compute the size, which always
420 * leaves one entry free.
421 *
422 * Deal with this by padding to the next alignment boundary and
423 * moving the head index. If we run out of buffer space, we'll
424 * reduce handle->size to zero and end up reporting truncation.
425 */
426 head = PERF_IDX2OFF(handle->head, buf);
427 if (!IS_ALIGNED(head, spe_pmu->align)) {
428 unsigned long delta = roundup(head, spe_pmu->align) - head;
429
430 delta = min(delta, handle->size);
431 arm_spe_pmu_pad_buf(handle, delta);
432 head = PERF_IDX2OFF(handle->head, buf);
433 }
434
435 /* If we've run out of free space, then nothing more to do */
436 if (!handle->size)
437 goto no_space;
438
439 /* Compute the tail and wakeup indices now that we've aligned head */
440 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
441 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
442
443 /*
444 * Avoid clobbering unconsumed data. We know we have space, so
445 * if we see head == tail we know that the buffer is empty. If
446 * head > tail, then there's nothing to clobber prior to
447 * wrapping.
448 */
449 if (head < tail)
450 limit = round_down(tail, PAGE_SIZE);
451
452 /*
453 * Wakeup may be arbitrarily far into the future. If it's not in
454 * the current generation, either we'll wrap before hitting it,
455 * or it's in the past and has been handled already.
456 *
457 * If there's a wakeup before we wrap, arrange to be woken up by
458 * the page boundary following it. Keep the tail boundary if
459 * that's lower.
460 */
461 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
462 limit = min(limit, round_up(wakeup, PAGE_SIZE));
463
464 if (limit > head)
465 return limit;
466
467 arm_spe_pmu_pad_buf(handle, handle->size);
468no_space:
469 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
470 perf_aux_output_end(handle, 0);
471 return 0;
472}
473
474static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
475{
476 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
477 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
478 u64 limit = __arm_spe_pmu_next_off(handle);
479 u64 head = PERF_IDX2OFF(handle->head, buf);
480
481 /*
482 * If the head has come too close to the end of the buffer,
483 * then pad to the end and recompute the limit.
484 */
485 if (limit && (limit - head < spe_pmu->max_record_sz)) {
486 arm_spe_pmu_pad_buf(handle, limit - head);
487 limit = __arm_spe_pmu_next_off(handle);
488 }
489
490 return limit;
491}
492
493static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
494 struct perf_event *event)
495{
496 u64 base, limit;
497 struct arm_spe_pmu_buf *buf;
498
499 /* Start a new aux session */
500 buf = perf_aux_output_begin(handle, event);
501 if (!buf) {
502 event->hw.state |= PERF_HES_STOPPED;
503 /*
504 * We still need to clear the limit pointer, since the
505 * profiler might only be disabled by virtue of a fault.
506 */
507 limit = 0;
508 goto out_write_limit;
509 }
510
511 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
512 : arm_spe_pmu_next_off(handle);
513 if (limit)
514 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
515
516 limit += (u64)buf->base;
517 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
518 write_sysreg_s(base, SYS_PMBPTR_EL1);
519
520out_write_limit:
521 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
522}
523
524static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
525{
526 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
527 u64 offset, size;
528
529 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
530 size = offset - PERF_IDX2OFF(handle->head, buf);
531
532 if (buf->snapshot)
533 handle->head = offset;
534
535 perf_aux_output_end(handle, size);
536}
537
538static void arm_spe_pmu_disable_and_drain_local(void)
539{
540 /* Disable profiling at EL0 and EL1 */
541 write_sysreg_s(0, SYS_PMSCR_EL1);
542 isb();
543
544 /* Drain any buffered data */
545 psb_csync();
546 dsb(nsh);
547
548 /* Disable the profiling buffer */
549 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
550 isb();
551}
552
553/* IRQ handling */
554static enum arm_spe_pmu_buf_fault_action
555arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
556{
557 const char *err_str;
558 u64 pmbsr;
559 enum arm_spe_pmu_buf_fault_action ret;
560
561 /*
562 * Ensure new profiling data is visible to the CPU and any external
563 * aborts have been resolved.
564 */
565 psb_csync();
566 dsb(nsh);
567
568 /* Ensure hardware updates to PMBPTR_EL1 are visible */
569 isb();
570
571 /* Service required? */
572 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
573 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
574 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
575
576 /*
577 * If we've lost data, disable profiling and also set the PARTIAL
578 * flag to indicate that the last record is corrupted.
579 */
580 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
581 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
582 PERF_AUX_FLAG_PARTIAL);
583
584 /* Report collisions to userspace so that it can up the period */
585 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
586 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
587
588 /* We only expect buffer management events */
589 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
590 case SYS_PMBSR_EL1_EC_BUF:
591 /* Handled below */
592 break;
593 case SYS_PMBSR_EL1_EC_FAULT_S1:
594 case SYS_PMBSR_EL1_EC_FAULT_S2:
595 err_str = "Unexpected buffer fault";
596 goto out_err;
597 default:
598 err_str = "Unknown error code";
599 goto out_err;
600 }
601
602 /* Buffer management event */
603 switch (pmbsr &
604 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
605 case SYS_PMBSR_EL1_BUF_BSC_FULL:
606 ret = SPE_PMU_BUF_FAULT_ACT_OK;
607 goto out_stop;
608 default:
609 err_str = "Unknown buffer status code";
610 }
611
612out_err:
613 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
614 err_str, smp_processor_id(), pmbsr,
615 read_sysreg_s(SYS_PMBPTR_EL1),
616 read_sysreg_s(SYS_PMBLIMITR_EL1));
617 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
618
619out_stop:
620 arm_spe_perf_aux_output_end(handle);
621 return ret;
622}
623
624static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
625{
626 struct perf_output_handle *handle = dev;
627 struct perf_event *event = handle->event;
628 enum arm_spe_pmu_buf_fault_action act;
629
630 if (!perf_get_aux(handle))
631 return IRQ_NONE;
632
633 act = arm_spe_pmu_buf_get_fault_act(handle);
634 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
635 return IRQ_NONE;
636
637 /*
638 * Ensure perf callbacks have completed, which may disable the
639 * profiling buffer in response to a TRUNCATION flag.
640 */
641 irq_work_run();
642
643 switch (act) {
644 case SPE_PMU_BUF_FAULT_ACT_FATAL:
645 /*
646 * If a fatal exception occurred then leaving the profiling
647 * buffer enabled is a recipe waiting to happen. Since
648 * fatal faults don't always imply truncation, make sure
649 * that the profiling buffer is disabled explicitly before
650 * clearing the syndrome register.
651 */
652 arm_spe_pmu_disable_and_drain_local();
653 break;
654 case SPE_PMU_BUF_FAULT_ACT_OK:
655 /*
656 * We handled the fault (the buffer was full), so resume
657 * profiling as long as we didn't detect truncation.
658 * PMBPTR might be misaligned, but we'll burn that bridge
659 * when we get to it.
660 */
661 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
662 arm_spe_perf_aux_output_begin(handle, event);
663 isb();
664 }
665 break;
666 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
667 /* We've seen you before, but GCC has the memory of a sieve. */
668 break;
669 }
670
671 /* The buffer pointers are now sane, so resume profiling. */
672 write_sysreg_s(0, SYS_PMBSR_EL1);
673 return IRQ_HANDLED;
674}
675
676static u64 arm_spe_pmsevfr_res0(u16 pmsver)
677{
678 switch (pmsver) {
679 case ID_AA64DFR0_EL1_PMSVer_IMP:
680 return SYS_PMSEVFR_EL1_RES0_8_2;
681 case ID_AA64DFR0_EL1_PMSVer_V1P1:
682 /* Return the highest version we support in default */
683 default:
684 return SYS_PMSEVFR_EL1_RES0_8_3;
685 }
686}
687
688/* Perf callbacks */
689static int arm_spe_pmu_event_init(struct perf_event *event)
690{
691 u64 reg;
692 struct perf_event_attr *attr = &event->attr;
693 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
694
695 /* This is, of course, deeply driver-specific */
696 if (attr->type != event->pmu->type)
697 return -ENOENT;
698
699 if (event->cpu >= 0 &&
700 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
701 return -ENOENT;
702
703 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
704 return -EOPNOTSUPP;
705
706 if (attr->exclude_idle)
707 return -EOPNOTSUPP;
708
709 /*
710 * Feedback-directed frequency throttling doesn't work when we
711 * have a buffer of samples. We'd need to manually count the
712 * samples in the buffer when it fills up and adjust the event
713 * count to reflect that. Instead, just force the user to specify
714 * a sample period.
715 */
716 if (attr->freq)
717 return -EINVAL;
718
719 reg = arm_spe_event_to_pmsfcr(event);
720 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
721 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
722 return -EOPNOTSUPP;
723
724 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
725 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
726 return -EOPNOTSUPP;
727
728 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
729 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
730 return -EOPNOTSUPP;
731
732 set_spe_event_has_cx(event);
733 reg = arm_spe_event_to_pmscr(event);
734 if (!perfmon_capable() &&
735 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
736 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
737 return -EACCES;
738
739 return 0;
740}
741
742static void arm_spe_pmu_start(struct perf_event *event, int flags)
743{
744 u64 reg;
745 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
746 struct hw_perf_event *hwc = &event->hw;
747 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
748
749 hwc->state = 0;
750 arm_spe_perf_aux_output_begin(handle, event);
751 if (hwc->state)
752 return;
753
754 reg = arm_spe_event_to_pmsfcr(event);
755 write_sysreg_s(reg, SYS_PMSFCR_EL1);
756
757 reg = arm_spe_event_to_pmsevfr(event);
758 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
759
760 reg = arm_spe_event_to_pmslatfr(event);
761 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
762
763 if (flags & PERF_EF_RELOAD) {
764 reg = arm_spe_event_to_pmsirr(event);
765 write_sysreg_s(reg, SYS_PMSIRR_EL1);
766 isb();
767 reg = local64_read(&hwc->period_left);
768 write_sysreg_s(reg, SYS_PMSICR_EL1);
769 }
770
771 reg = arm_spe_event_to_pmscr(event);
772 isb();
773 write_sysreg_s(reg, SYS_PMSCR_EL1);
774}
775
776static void arm_spe_pmu_stop(struct perf_event *event, int flags)
777{
778 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
779 struct hw_perf_event *hwc = &event->hw;
780 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
781
782 /* If we're already stopped, then nothing to do */
783 if (hwc->state & PERF_HES_STOPPED)
784 return;
785
786 /* Stop all trace generation */
787 arm_spe_pmu_disable_and_drain_local();
788
789 if (flags & PERF_EF_UPDATE) {
790 /*
791 * If there's a fault pending then ensure we contain it
792 * to this buffer, since we might be on the context-switch
793 * path.
794 */
795 if (perf_get_aux(handle)) {
796 enum arm_spe_pmu_buf_fault_action act;
797
798 act = arm_spe_pmu_buf_get_fault_act(handle);
799 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
800 arm_spe_perf_aux_output_end(handle);
801 else
802 write_sysreg_s(0, SYS_PMBSR_EL1);
803 }
804
805 /*
806 * This may also contain ECOUNT, but nobody else should
807 * be looking at period_left, since we forbid frequency
808 * based sampling.
809 */
810 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
811 hwc->state |= PERF_HES_UPTODATE;
812 }
813
814 hwc->state |= PERF_HES_STOPPED;
815}
816
817static int arm_spe_pmu_add(struct perf_event *event, int flags)
818{
819 int ret = 0;
820 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
821 struct hw_perf_event *hwc = &event->hw;
822 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
823
824 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
825 return -ENOENT;
826
827 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
828
829 if (flags & PERF_EF_START) {
830 arm_spe_pmu_start(event, PERF_EF_RELOAD);
831 if (hwc->state & PERF_HES_STOPPED)
832 ret = -EINVAL;
833 }
834
835 return ret;
836}
837
838static void arm_spe_pmu_del(struct perf_event *event, int flags)
839{
840 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
841}
842
843static void arm_spe_pmu_read(struct perf_event *event)
844{
845}
846
847static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
848 int nr_pages, bool snapshot)
849{
850 int i, cpu = event->cpu;
851 struct page **pglist;
852 struct arm_spe_pmu_buf *buf;
853
854 /* We need at least two pages for this to work. */
855 if (nr_pages < 2)
856 return NULL;
857
858 /*
859 * We require an even number of pages for snapshot mode, so that
860 * we can effectively treat the buffer as consisting of two equal
861 * parts and give userspace a fighting chance of getting some
862 * useful data out of it.
863 */
864 if (snapshot && (nr_pages & 1))
865 return NULL;
866
867 if (cpu == -1)
868 cpu = raw_smp_processor_id();
869
870 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
871 if (!buf)
872 return NULL;
873
874 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
875 if (!pglist)
876 goto out_free_buf;
877
878 for (i = 0; i < nr_pages; ++i)
879 pglist[i] = virt_to_page(pages[i]);
880
881 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
882 if (!buf->base)
883 goto out_free_pglist;
884
885 buf->nr_pages = nr_pages;
886 buf->snapshot = snapshot;
887
888 kfree(pglist);
889 return buf;
890
891out_free_pglist:
892 kfree(pglist);
893out_free_buf:
894 kfree(buf);
895 return NULL;
896}
897
898static void arm_spe_pmu_free_aux(void *aux)
899{
900 struct arm_spe_pmu_buf *buf = aux;
901
902 vunmap(buf->base);
903 kfree(buf);
904}
905
906/* Initialisation and teardown functions */
907static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
908{
909 static atomic_t pmu_idx = ATOMIC_INIT(-1);
910
911 int idx;
912 char *name;
913 struct device *dev = &spe_pmu->pdev->dev;
914
915 spe_pmu->pmu = (struct pmu) {
916 .module = THIS_MODULE,
917 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
918 .attr_groups = arm_spe_pmu_attr_groups,
919 /*
920 * We hitch a ride on the software context here, so that
921 * we can support per-task profiling (which is not possible
922 * with the invalid context as it doesn't get sched callbacks).
923 * This requires that userspace either uses a dummy event for
924 * perf_event_open, since the aux buffer is not setup until
925 * a subsequent mmap, or creates the profiling event in a
926 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
927 * once the buffer has been created.
928 */
929 .task_ctx_nr = perf_sw_context,
930 .event_init = arm_spe_pmu_event_init,
931 .add = arm_spe_pmu_add,
932 .del = arm_spe_pmu_del,
933 .start = arm_spe_pmu_start,
934 .stop = arm_spe_pmu_stop,
935 .read = arm_spe_pmu_read,
936 .setup_aux = arm_spe_pmu_setup_aux,
937 .free_aux = arm_spe_pmu_free_aux,
938 };
939
940 idx = atomic_inc_return(&pmu_idx);
941 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
942 if (!name) {
943 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
944 return -ENOMEM;
945 }
946
947 return perf_pmu_register(&spe_pmu->pmu, name, -1);
948}
949
950static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
951{
952 perf_pmu_unregister(&spe_pmu->pmu);
953}
954
955static void __arm_spe_pmu_dev_probe(void *info)
956{
957 int fld;
958 u64 reg;
959 struct arm_spe_pmu *spe_pmu = info;
960 struct device *dev = &spe_pmu->pdev->dev;
961
962 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
963 ID_AA64DFR0_EL1_PMSVer_SHIFT);
964 if (!fld) {
965 dev_err(dev,
966 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
967 fld, smp_processor_id());
968 return;
969 }
970 spe_pmu->pmsver = (u16)fld;
971
972 /* Read PMBIDR first to determine whether or not we have access */
973 reg = read_sysreg_s(SYS_PMBIDR_EL1);
974 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
975 dev_err(dev,
976 "profiling buffer owned by higher exception level\n");
977 return;
978 }
979
980 /* Minimum alignment. If it's out-of-range, then fail the probe */
981 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
982 spe_pmu->align = 1 << fld;
983 if (spe_pmu->align > SZ_2K) {
984 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
985 fld, smp_processor_id());
986 return;
987 }
988
989 /* It's now safe to read PMSIDR and figure out what we've got */
990 reg = read_sysreg_s(SYS_PMSIDR_EL1);
991 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
992 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
993
994 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
995 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
996
997 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
998 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
999
1000 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
1001 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1002
1003 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
1004 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1005
1006 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
1007 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1008
1009 /* This field has a spaced out encoding, so just use a look-up */
1010 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
1011 switch (fld) {
1012 case 0:
1013 spe_pmu->min_period = 256;
1014 break;
1015 case 2:
1016 spe_pmu->min_period = 512;
1017 break;
1018 case 3:
1019 spe_pmu->min_period = 768;
1020 break;
1021 case 4:
1022 spe_pmu->min_period = 1024;
1023 break;
1024 case 5:
1025 spe_pmu->min_period = 1536;
1026 break;
1027 case 6:
1028 spe_pmu->min_period = 2048;
1029 break;
1030 case 7:
1031 spe_pmu->min_period = 3072;
1032 break;
1033 default:
1034 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1035 fld);
1036 fallthrough;
1037 case 8:
1038 spe_pmu->min_period = 4096;
1039 }
1040
1041 /* Maximum record size. If it's out-of-range, then fail the probe */
1042 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1043 spe_pmu->max_record_sz = 1 << fld;
1044 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1045 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1046 fld, smp_processor_id());
1047 return;
1048 }
1049
1050 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1051 switch (fld) {
1052 default:
1053 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1054 fld);
1055 fallthrough;
1056 case 2:
1057 spe_pmu->counter_sz = 12;
1058 break;
1059 case 3:
1060 spe_pmu->counter_sz = 16;
1061 }
1062
1063 dev_info(dev,
1064 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1065 cpumask_pr_args(&spe_pmu->supported_cpus),
1066 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1067
1068 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1069}
1070
1071static void __arm_spe_pmu_reset_local(void)
1072{
1073 /*
1074 * This is probably overkill, as we have no idea where we're
1075 * draining any buffered data to...
1076 */
1077 arm_spe_pmu_disable_and_drain_local();
1078
1079 /* Reset the buffer base pointer */
1080 write_sysreg_s(0, SYS_PMBPTR_EL1);
1081 isb();
1082
1083 /* Clear any pending management interrupts */
1084 write_sysreg_s(0, SYS_PMBSR_EL1);
1085 isb();
1086}
1087
1088static void __arm_spe_pmu_setup_one(void *info)
1089{
1090 struct arm_spe_pmu *spe_pmu = info;
1091
1092 __arm_spe_pmu_reset_local();
1093 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1094}
1095
1096static void __arm_spe_pmu_stop_one(void *info)
1097{
1098 struct arm_spe_pmu *spe_pmu = info;
1099
1100 disable_percpu_irq(spe_pmu->irq);
1101 __arm_spe_pmu_reset_local();
1102}
1103
1104static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1105{
1106 struct arm_spe_pmu *spe_pmu;
1107
1108 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1109 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1110 return 0;
1111
1112 __arm_spe_pmu_setup_one(spe_pmu);
1113 return 0;
1114}
1115
1116static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1117{
1118 struct arm_spe_pmu *spe_pmu;
1119
1120 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1121 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1122 return 0;
1123
1124 __arm_spe_pmu_stop_one(spe_pmu);
1125 return 0;
1126}
1127
1128static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1129{
1130 int ret;
1131 cpumask_t *mask = &spe_pmu->supported_cpus;
1132
1133 /* Make sure we probe the hardware on a relevant CPU */
1134 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1135 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1136 return -ENXIO;
1137
1138 /* Request our PPIs (note that the IRQ is still disabled) */
1139 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1140 spe_pmu->handle);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Register our hotplug notifier now so we don't miss any events.
1146 * This will enable the IRQ for any supported CPUs that are already
1147 * up.
1148 */
1149 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1150 &spe_pmu->hotplug_node);
1151 if (ret)
1152 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1153
1154 return ret;
1155}
1156
1157static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1158{
1159 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1160 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1161}
1162
1163/* Driver and device probing */
1164static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1165{
1166 struct platform_device *pdev = spe_pmu->pdev;
1167 int irq = platform_get_irq(pdev, 0);
1168
1169 if (irq < 0)
1170 return -ENXIO;
1171
1172 if (!irq_is_percpu(irq)) {
1173 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1174 return -EINVAL;
1175 }
1176
1177 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1178 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1179 return -EINVAL;
1180 }
1181
1182 spe_pmu->irq = irq;
1183 return 0;
1184}
1185
1186static const struct of_device_id arm_spe_pmu_of_match[] = {
1187 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1188 { /* Sentinel */ },
1189};
1190MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1191
1192static const struct platform_device_id arm_spe_match[] = {
1193 { ARMV8_SPE_PDEV_NAME, 0},
1194 { }
1195};
1196MODULE_DEVICE_TABLE(platform, arm_spe_match);
1197
1198static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1199{
1200 int ret;
1201 struct arm_spe_pmu *spe_pmu;
1202 struct device *dev = &pdev->dev;
1203
1204 /*
1205 * If kernelspace is unmapped when running at EL0, then the SPE
1206 * buffer will fault and prematurely terminate the AUX session.
1207 */
1208 if (arm64_kernel_unmapped_at_el0()) {
1209 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1210 return -EPERM;
1211 }
1212
1213 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1214 if (!spe_pmu)
1215 return -ENOMEM;
1216
1217 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1218 if (!spe_pmu->handle)
1219 return -ENOMEM;
1220
1221 spe_pmu->pdev = pdev;
1222 platform_set_drvdata(pdev, spe_pmu);
1223
1224 ret = arm_spe_pmu_irq_probe(spe_pmu);
1225 if (ret)
1226 goto out_free_handle;
1227
1228 ret = arm_spe_pmu_dev_init(spe_pmu);
1229 if (ret)
1230 goto out_free_handle;
1231
1232 ret = arm_spe_pmu_perf_init(spe_pmu);
1233 if (ret)
1234 goto out_teardown_dev;
1235
1236 return 0;
1237
1238out_teardown_dev:
1239 arm_spe_pmu_dev_teardown(spe_pmu);
1240out_free_handle:
1241 free_percpu(spe_pmu->handle);
1242 return ret;
1243}
1244
1245static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1246{
1247 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1248
1249 arm_spe_pmu_perf_destroy(spe_pmu);
1250 arm_spe_pmu_dev_teardown(spe_pmu);
1251 free_percpu(spe_pmu->handle);
1252 return 0;
1253}
1254
1255static struct platform_driver arm_spe_pmu_driver = {
1256 .id_table = arm_spe_match,
1257 .driver = {
1258 .name = DRVNAME,
1259 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1260 .suppress_bind_attrs = true,
1261 },
1262 .probe = arm_spe_pmu_device_probe,
1263 .remove = arm_spe_pmu_device_remove,
1264};
1265
1266static int __init arm_spe_pmu_init(void)
1267{
1268 int ret;
1269
1270 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1271 arm_spe_pmu_cpu_startup,
1272 arm_spe_pmu_cpu_teardown);
1273 if (ret < 0)
1274 return ret;
1275 arm_spe_pmu_online = ret;
1276
1277 ret = platform_driver_register(&arm_spe_pmu_driver);
1278 if (ret)
1279 cpuhp_remove_multi_state(arm_spe_pmu_online);
1280
1281 return ret;
1282}
1283
1284static void __exit arm_spe_pmu_exit(void)
1285{
1286 platform_driver_unregister(&arm_spe_pmu_driver);
1287 cpuhp_remove_multi_state(arm_spe_pmu_online);
1288}
1289
1290module_init(arm_spe_pmu_init);
1291module_exit(arm_spe_pmu_exit);
1292
1293MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1294MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1295MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11#define PMUNAME "arm_spe"
12#define DRVNAME PMUNAME "_pmu"
13#define pr_fmt(fmt) DRVNAME ": " fmt
14
15#include <linux/bitfield.h>
16#include <linux/bitops.h>
17#include <linux/bug.h>
18#include <linux/capability.h>
19#include <linux/cpuhotplug.h>
20#include <linux/cpumask.h>
21#include <linux/device.h>
22#include <linux/errno.h>
23#include <linux/interrupt.h>
24#include <linux/irq.h>
25#include <linux/kernel.h>
26#include <linux/list.h>
27#include <linux/module.h>
28#include <linux/of.h>
29#include <linux/perf_event.h>
30#include <linux/perf/arm_pmu.h>
31#include <linux/platform_device.h>
32#include <linux/printk.h>
33#include <linux/slab.h>
34#include <linux/smp.h>
35#include <linux/vmalloc.h>
36
37#include <asm/barrier.h>
38#include <asm/cpufeature.h>
39#include <asm/mmu.h>
40#include <asm/sysreg.h>
41
42/*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perfmon_capable(),
45 * in the context of the event owner, once, during the event_init().
46 */
47#define SPE_PMU_HW_FLAGS_CX 0x00001
48
49static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
51static void set_spe_event_has_cx(struct perf_event *event)
52{
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55}
56
57static bool get_spe_event_has_cx(struct perf_event *event)
58{
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60}
61
62#define ARM_SPE_BUF_PAD_BYTE 0
63
64struct arm_spe_pmu_buf {
65 int nr_pages;
66 bool snapshot;
67 void *base;
68};
69
70struct arm_spe_pmu {
71 struct pmu pmu;
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
75
76 int irq; /* PPI */
77 u16 pmsver;
78 u16 min_period;
79 u16 counter_sz;
80
81#define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82#define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83#define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84#define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85#define SPE_PMU_FEAT_LDS (1UL << 4)
86#define SPE_PMU_FEAT_ERND (1UL << 5)
87#define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
88#define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
89 u64 features;
90
91 u16 max_record_sz;
92 u16 align;
93 struct perf_output_handle __percpu *handle;
94};
95
96#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97
98/* Convert a free-running index from perf into an SPE buffer offset */
99#define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100
101/* Keep track of our dynamic hotplug state */
102static enum cpuhp_state arm_spe_pmu_online;
103
104enum arm_spe_pmu_buf_fault_action {
105 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
106 SPE_PMU_BUF_FAULT_ACT_FATAL,
107 SPE_PMU_BUF_FAULT_ACT_OK,
108};
109
110/* This sysfs gunk was really good fun to write. */
111enum arm_spe_pmu_capabilities {
112 SPE_PMU_CAP_ARCH_INST = 0,
113 SPE_PMU_CAP_ERND,
114 SPE_PMU_CAP_FEAT_MAX,
115 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
116 SPE_PMU_CAP_MIN_IVAL,
117};
118
119static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
120 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
121 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
122};
123
124static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125{
126 if (cap < SPE_PMU_CAP_FEAT_MAX)
127 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
128
129 switch (cap) {
130 case SPE_PMU_CAP_CNT_SZ:
131 return spe_pmu->counter_sz;
132 case SPE_PMU_CAP_MIN_IVAL:
133 return spe_pmu->min_period;
134 default:
135 WARN(1, "unknown cap %d\n", cap);
136 }
137
138 return 0;
139}
140
141static ssize_t arm_spe_pmu_cap_show(struct device *dev,
142 struct device_attribute *attr,
143 char *buf)
144{
145 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
146 struct dev_ext_attribute *ea =
147 container_of(attr, struct dev_ext_attribute, attr);
148 int cap = (long)ea->var;
149
150 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
151}
152
153#define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
154 &((struct dev_ext_attribute[]) { \
155 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
156 })[0].attr.attr
157
158#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
159 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160
161static struct attribute *arm_spe_pmu_cap_attr[] = {
162 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
163 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
164 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
165 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166 NULL,
167};
168
169static const struct attribute_group arm_spe_pmu_cap_group = {
170 .name = "caps",
171 .attrs = arm_spe_pmu_cap_attr,
172};
173
174/* User ABI */
175#define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
176#define ATTR_CFG_FLD_ts_enable_LO 0
177#define ATTR_CFG_FLD_ts_enable_HI 0
178#define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
179#define ATTR_CFG_FLD_pa_enable_LO 1
180#define ATTR_CFG_FLD_pa_enable_HI 1
181#define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
182#define ATTR_CFG_FLD_pct_enable_LO 2
183#define ATTR_CFG_FLD_pct_enable_HI 2
184#define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
185#define ATTR_CFG_FLD_jitter_LO 16
186#define ATTR_CFG_FLD_jitter_HI 16
187#define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
188#define ATTR_CFG_FLD_branch_filter_LO 32
189#define ATTR_CFG_FLD_branch_filter_HI 32
190#define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
191#define ATTR_CFG_FLD_load_filter_LO 33
192#define ATTR_CFG_FLD_load_filter_HI 33
193#define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
194#define ATTR_CFG_FLD_store_filter_LO 34
195#define ATTR_CFG_FLD_store_filter_HI 34
196
197#define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
198#define ATTR_CFG_FLD_event_filter_LO 0
199#define ATTR_CFG_FLD_event_filter_HI 63
200
201#define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
202#define ATTR_CFG_FLD_min_latency_LO 0
203#define ATTR_CFG_FLD_min_latency_HI 11
204
205#define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
206#define ATTR_CFG_FLD_inv_event_filter_LO 0
207#define ATTR_CFG_FLD_inv_event_filter_HI 63
208
209GEN_PMU_FORMAT_ATTR(ts_enable);
210GEN_PMU_FORMAT_ATTR(pa_enable);
211GEN_PMU_FORMAT_ATTR(pct_enable);
212GEN_PMU_FORMAT_ATTR(jitter);
213GEN_PMU_FORMAT_ATTR(branch_filter);
214GEN_PMU_FORMAT_ATTR(load_filter);
215GEN_PMU_FORMAT_ATTR(store_filter);
216GEN_PMU_FORMAT_ATTR(event_filter);
217GEN_PMU_FORMAT_ATTR(inv_event_filter);
218GEN_PMU_FORMAT_ATTR(min_latency);
219
220static struct attribute *arm_spe_pmu_formats_attr[] = {
221 &format_attr_ts_enable.attr,
222 &format_attr_pa_enable.attr,
223 &format_attr_pct_enable.attr,
224 &format_attr_jitter.attr,
225 &format_attr_branch_filter.attr,
226 &format_attr_load_filter.attr,
227 &format_attr_store_filter.attr,
228 &format_attr_event_filter.attr,
229 &format_attr_inv_event_filter.attr,
230 &format_attr_min_latency.attr,
231 NULL,
232};
233
234static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
235 struct attribute *attr,
236 int unused)
237 {
238 struct device *dev = kobj_to_dev(kobj);
239 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240
241 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
242 return 0;
243
244 return attr->mode;
245}
246
247static const struct attribute_group arm_spe_pmu_format_group = {
248 .name = "format",
249 .is_visible = arm_spe_pmu_format_attr_is_visible,
250 .attrs = arm_spe_pmu_formats_attr,
251};
252
253static ssize_t cpumask_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255{
256 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
257
258 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
259}
260static DEVICE_ATTR_RO(cpumask);
261
262static struct attribute *arm_spe_pmu_attrs[] = {
263 &dev_attr_cpumask.attr,
264 NULL,
265};
266
267static const struct attribute_group arm_spe_pmu_group = {
268 .attrs = arm_spe_pmu_attrs,
269};
270
271static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
272 &arm_spe_pmu_group,
273 &arm_spe_pmu_cap_group,
274 &arm_spe_pmu_format_group,
275 NULL,
276};
277
278/* Convert between user ABI and register values */
279static u64 arm_spe_event_to_pmscr(struct perf_event *event)
280{
281 struct perf_event_attr *attr = &event->attr;
282 u64 reg = 0;
283
284 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
285 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
286 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
287
288 if (!attr->exclude_user)
289 reg |= PMSCR_EL1_E0SPE;
290
291 if (!attr->exclude_kernel)
292 reg |= PMSCR_EL1_E1SPE;
293
294 if (get_spe_event_has_cx(event))
295 reg |= PMSCR_EL1_CX;
296
297 return reg;
298}
299
300static void arm_spe_event_sanitise_period(struct perf_event *event)
301{
302 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
303 u64 period = event->hw.sample_period;
304 u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
305
306 if (period < spe_pmu->min_period)
307 period = spe_pmu->min_period;
308 else if (period > max_period)
309 period = max_period;
310 else
311 period &= max_period;
312
313 event->hw.sample_period = period;
314}
315
316static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
317{
318 struct perf_event_attr *attr = &event->attr;
319 u64 reg = 0;
320
321 arm_spe_event_sanitise_period(event);
322
323 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
324 reg |= event->hw.sample_period;
325
326 return reg;
327}
328
329static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
330{
331 struct perf_event_attr *attr = &event->attr;
332 u64 reg = 0;
333
334 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
335 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
336 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
337
338 if (reg)
339 reg |= PMSFCR_EL1_FT;
340
341 if (ATTR_CFG_GET_FLD(attr, event_filter))
342 reg |= PMSFCR_EL1_FE;
343
344 if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
345 reg |= PMSFCR_EL1_FnE;
346
347 if (ATTR_CFG_GET_FLD(attr, min_latency))
348 reg |= PMSFCR_EL1_FL;
349
350 return reg;
351}
352
353static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
354{
355 struct perf_event_attr *attr = &event->attr;
356 return ATTR_CFG_GET_FLD(attr, event_filter);
357}
358
359static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
360{
361 struct perf_event_attr *attr = &event->attr;
362 return ATTR_CFG_GET_FLD(attr, inv_event_filter);
363}
364
365static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
366{
367 struct perf_event_attr *attr = &event->attr;
368 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
369}
370
371static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
372{
373 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
374 u64 head = PERF_IDX2OFF(handle->head, buf);
375
376 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
377 if (!buf->snapshot)
378 perf_aux_output_skip(handle, len);
379}
380
381static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
382{
383 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
384 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
385 u64 head = PERF_IDX2OFF(handle->head, buf);
386 u64 limit = buf->nr_pages * PAGE_SIZE;
387
388 /*
389 * The trace format isn't parseable in reverse, so clamp
390 * the limit to half of the buffer size in snapshot mode
391 * so that the worst case is half a buffer of records, as
392 * opposed to a single record.
393 */
394 if (head < limit >> 1)
395 limit >>= 1;
396
397 /*
398 * If we're within max_record_sz of the limit, we must
399 * pad, move the head index and recompute the limit.
400 */
401 if (limit - head < spe_pmu->max_record_sz) {
402 arm_spe_pmu_pad_buf(handle, limit - head);
403 handle->head = PERF_IDX2OFF(limit, buf);
404 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
405 }
406
407 return limit;
408}
409
410static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
411{
412 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
413 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
414 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
415 u64 limit = bufsize;
416 u64 head, tail, wakeup;
417
418 /*
419 * The head can be misaligned for two reasons:
420 *
421 * 1. The hardware left PMBPTR pointing to the first byte after
422 * a record when generating a buffer management event.
423 *
424 * 2. We used perf_aux_output_skip to consume handle->size bytes
425 * and CIRC_SPACE was used to compute the size, which always
426 * leaves one entry free.
427 *
428 * Deal with this by padding to the next alignment boundary and
429 * moving the head index. If we run out of buffer space, we'll
430 * reduce handle->size to zero and end up reporting truncation.
431 */
432 head = PERF_IDX2OFF(handle->head, buf);
433 if (!IS_ALIGNED(head, spe_pmu->align)) {
434 unsigned long delta = roundup(head, spe_pmu->align) - head;
435
436 delta = min(delta, handle->size);
437 arm_spe_pmu_pad_buf(handle, delta);
438 head = PERF_IDX2OFF(handle->head, buf);
439 }
440
441 /* If we've run out of free space, then nothing more to do */
442 if (!handle->size)
443 goto no_space;
444
445 /* Compute the tail and wakeup indices now that we've aligned head */
446 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
447 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
448
449 /*
450 * Avoid clobbering unconsumed data. We know we have space, so
451 * if we see head == tail we know that the buffer is empty. If
452 * head > tail, then there's nothing to clobber prior to
453 * wrapping.
454 */
455 if (head < tail)
456 limit = round_down(tail, PAGE_SIZE);
457
458 /*
459 * Wakeup may be arbitrarily far into the future. If it's not in
460 * the current generation, either we'll wrap before hitting it,
461 * or it's in the past and has been handled already.
462 *
463 * If there's a wakeup before we wrap, arrange to be woken up by
464 * the page boundary following it. Keep the tail boundary if
465 * that's lower.
466 */
467 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
468 limit = min(limit, round_up(wakeup, PAGE_SIZE));
469
470 if (limit > head)
471 return limit;
472
473 arm_spe_pmu_pad_buf(handle, handle->size);
474no_space:
475 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
476 perf_aux_output_end(handle, 0);
477 return 0;
478}
479
480static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
481{
482 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
483 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
484 u64 limit = __arm_spe_pmu_next_off(handle);
485 u64 head = PERF_IDX2OFF(handle->head, buf);
486
487 /*
488 * If the head has come too close to the end of the buffer,
489 * then pad to the end and recompute the limit.
490 */
491 if (limit && (limit - head < spe_pmu->max_record_sz)) {
492 arm_spe_pmu_pad_buf(handle, limit - head);
493 limit = __arm_spe_pmu_next_off(handle);
494 }
495
496 return limit;
497}
498
499static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
500 struct perf_event *event)
501{
502 u64 base, limit;
503 struct arm_spe_pmu_buf *buf;
504
505 /* Start a new aux session */
506 buf = perf_aux_output_begin(handle, event);
507 if (!buf) {
508 event->hw.state |= PERF_HES_STOPPED;
509 /*
510 * We still need to clear the limit pointer, since the
511 * profiler might only be disabled by virtue of a fault.
512 */
513 limit = 0;
514 goto out_write_limit;
515 }
516
517 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
518 : arm_spe_pmu_next_off(handle);
519 if (limit)
520 limit |= PMBLIMITR_EL1_E;
521
522 limit += (u64)buf->base;
523 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
524 write_sysreg_s(base, SYS_PMBPTR_EL1);
525
526out_write_limit:
527 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
528}
529
530static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
531{
532 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
533 u64 offset, size;
534
535 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
536 size = offset - PERF_IDX2OFF(handle->head, buf);
537
538 if (buf->snapshot)
539 handle->head = offset;
540
541 perf_aux_output_end(handle, size);
542}
543
544static void arm_spe_pmu_disable_and_drain_local(void)
545{
546 /* Disable profiling at EL0 and EL1 */
547 write_sysreg_s(0, SYS_PMSCR_EL1);
548 isb();
549
550 /* Drain any buffered data */
551 psb_csync();
552 dsb(nsh);
553
554 /* Disable the profiling buffer */
555 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
556 isb();
557}
558
559/* IRQ handling */
560static enum arm_spe_pmu_buf_fault_action
561arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
562{
563 const char *err_str;
564 u64 pmbsr;
565 enum arm_spe_pmu_buf_fault_action ret;
566
567 /*
568 * Ensure new profiling data is visible to the CPU and any external
569 * aborts have been resolved.
570 */
571 psb_csync();
572 dsb(nsh);
573
574 /* Ensure hardware updates to PMBPTR_EL1 are visible */
575 isb();
576
577 /* Service required? */
578 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
579 if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
580 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
581
582 /*
583 * If we've lost data, disable profiling and also set the PARTIAL
584 * flag to indicate that the last record is corrupted.
585 */
586 if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
587 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
588 PERF_AUX_FLAG_PARTIAL);
589
590 /* Report collisions to userspace so that it can up the period */
591 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
592 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
593
594 /* We only expect buffer management events */
595 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
596 case PMBSR_EL1_EC_BUF:
597 /* Handled below */
598 break;
599 case PMBSR_EL1_EC_FAULT_S1:
600 case PMBSR_EL1_EC_FAULT_S2:
601 err_str = "Unexpected buffer fault";
602 goto out_err;
603 default:
604 err_str = "Unknown error code";
605 goto out_err;
606 }
607
608 /* Buffer management event */
609 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
610 case PMBSR_EL1_BUF_BSC_FULL:
611 ret = SPE_PMU_BUF_FAULT_ACT_OK;
612 goto out_stop;
613 default:
614 err_str = "Unknown buffer status code";
615 }
616
617out_err:
618 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
619 err_str, smp_processor_id(), pmbsr,
620 read_sysreg_s(SYS_PMBPTR_EL1),
621 read_sysreg_s(SYS_PMBLIMITR_EL1));
622 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
623
624out_stop:
625 arm_spe_perf_aux_output_end(handle);
626 return ret;
627}
628
629static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
630{
631 struct perf_output_handle *handle = dev;
632 struct perf_event *event = handle->event;
633 enum arm_spe_pmu_buf_fault_action act;
634
635 if (!perf_get_aux(handle))
636 return IRQ_NONE;
637
638 act = arm_spe_pmu_buf_get_fault_act(handle);
639 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
640 return IRQ_NONE;
641
642 /*
643 * Ensure perf callbacks have completed, which may disable the
644 * profiling buffer in response to a TRUNCATION flag.
645 */
646 irq_work_run();
647
648 switch (act) {
649 case SPE_PMU_BUF_FAULT_ACT_FATAL:
650 /*
651 * If a fatal exception occurred then leaving the profiling
652 * buffer enabled is a recipe waiting to happen. Since
653 * fatal faults don't always imply truncation, make sure
654 * that the profiling buffer is disabled explicitly before
655 * clearing the syndrome register.
656 */
657 arm_spe_pmu_disable_and_drain_local();
658 break;
659 case SPE_PMU_BUF_FAULT_ACT_OK:
660 /*
661 * We handled the fault (the buffer was full), so resume
662 * profiling as long as we didn't detect truncation.
663 * PMBPTR might be misaligned, but we'll burn that bridge
664 * when we get to it.
665 */
666 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
667 arm_spe_perf_aux_output_begin(handle, event);
668 isb();
669 }
670 break;
671 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
672 /* We've seen you before, but GCC has the memory of a sieve. */
673 break;
674 }
675
676 /* The buffer pointers are now sane, so resume profiling. */
677 write_sysreg_s(0, SYS_PMBSR_EL1);
678 return IRQ_HANDLED;
679}
680
681static u64 arm_spe_pmsevfr_res0(u16 pmsver)
682{
683 switch (pmsver) {
684 case ID_AA64DFR0_EL1_PMSVer_IMP:
685 return PMSEVFR_EL1_RES0_IMP;
686 case ID_AA64DFR0_EL1_PMSVer_V1P1:
687 return PMSEVFR_EL1_RES0_V1P1;
688 case ID_AA64DFR0_EL1_PMSVer_V1P2:
689 /* Return the highest version we support in default */
690 default:
691 return PMSEVFR_EL1_RES0_V1P2;
692 }
693}
694
695/* Perf callbacks */
696static int arm_spe_pmu_event_init(struct perf_event *event)
697{
698 u64 reg;
699 struct perf_event_attr *attr = &event->attr;
700 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
701
702 /* This is, of course, deeply driver-specific */
703 if (attr->type != event->pmu->type)
704 return -ENOENT;
705
706 if (event->cpu >= 0 &&
707 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
708 return -ENOENT;
709
710 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
711 return -EOPNOTSUPP;
712
713 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
714 return -EOPNOTSUPP;
715
716 if (attr->exclude_idle)
717 return -EOPNOTSUPP;
718
719 /*
720 * Feedback-directed frequency throttling doesn't work when we
721 * have a buffer of samples. We'd need to manually count the
722 * samples in the buffer when it fills up and adjust the event
723 * count to reflect that. Instead, just force the user to specify
724 * a sample period.
725 */
726 if (attr->freq)
727 return -EINVAL;
728
729 reg = arm_spe_event_to_pmsfcr(event);
730 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
731 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
732 return -EOPNOTSUPP;
733
734 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
735 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
736 return -EOPNOTSUPP;
737
738 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
739 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
740 return -EOPNOTSUPP;
741
742 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
743 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
744 return -EOPNOTSUPP;
745
746 set_spe_event_has_cx(event);
747 reg = arm_spe_event_to_pmscr(event);
748 if (!perfmon_capable() &&
749 (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
750 return -EACCES;
751
752 return 0;
753}
754
755static void arm_spe_pmu_start(struct perf_event *event, int flags)
756{
757 u64 reg;
758 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759 struct hw_perf_event *hwc = &event->hw;
760 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
761
762 hwc->state = 0;
763 arm_spe_perf_aux_output_begin(handle, event);
764 if (hwc->state)
765 return;
766
767 reg = arm_spe_event_to_pmsfcr(event);
768 write_sysreg_s(reg, SYS_PMSFCR_EL1);
769
770 reg = arm_spe_event_to_pmsevfr(event);
771 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
772
773 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
774 reg = arm_spe_event_to_pmsnevfr(event);
775 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
776 }
777
778 reg = arm_spe_event_to_pmslatfr(event);
779 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
780
781 if (flags & PERF_EF_RELOAD) {
782 reg = arm_spe_event_to_pmsirr(event);
783 write_sysreg_s(reg, SYS_PMSIRR_EL1);
784 isb();
785 reg = local64_read(&hwc->period_left);
786 write_sysreg_s(reg, SYS_PMSICR_EL1);
787 }
788
789 reg = arm_spe_event_to_pmscr(event);
790 isb();
791 write_sysreg_s(reg, SYS_PMSCR_EL1);
792}
793
794static void arm_spe_pmu_stop(struct perf_event *event, int flags)
795{
796 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
797 struct hw_perf_event *hwc = &event->hw;
798 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
799
800 /* If we're already stopped, then nothing to do */
801 if (hwc->state & PERF_HES_STOPPED)
802 return;
803
804 /* Stop all trace generation */
805 arm_spe_pmu_disable_and_drain_local();
806
807 if (flags & PERF_EF_UPDATE) {
808 /*
809 * If there's a fault pending then ensure we contain it
810 * to this buffer, since we might be on the context-switch
811 * path.
812 */
813 if (perf_get_aux(handle)) {
814 enum arm_spe_pmu_buf_fault_action act;
815
816 act = arm_spe_pmu_buf_get_fault_act(handle);
817 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
818 arm_spe_perf_aux_output_end(handle);
819 else
820 write_sysreg_s(0, SYS_PMBSR_EL1);
821 }
822
823 /*
824 * This may also contain ECOUNT, but nobody else should
825 * be looking at period_left, since we forbid frequency
826 * based sampling.
827 */
828 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
829 hwc->state |= PERF_HES_UPTODATE;
830 }
831
832 hwc->state |= PERF_HES_STOPPED;
833}
834
835static int arm_spe_pmu_add(struct perf_event *event, int flags)
836{
837 int ret = 0;
838 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
839 struct hw_perf_event *hwc = &event->hw;
840 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
841
842 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
843 return -ENOENT;
844
845 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
846
847 if (flags & PERF_EF_START) {
848 arm_spe_pmu_start(event, PERF_EF_RELOAD);
849 if (hwc->state & PERF_HES_STOPPED)
850 ret = -EINVAL;
851 }
852
853 return ret;
854}
855
856static void arm_spe_pmu_del(struct perf_event *event, int flags)
857{
858 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
859}
860
861static void arm_spe_pmu_read(struct perf_event *event)
862{
863}
864
865static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
866 int nr_pages, bool snapshot)
867{
868 int i, cpu = event->cpu;
869 struct page **pglist;
870 struct arm_spe_pmu_buf *buf;
871
872 /* We need at least two pages for this to work. */
873 if (nr_pages < 2)
874 return NULL;
875
876 /*
877 * We require an even number of pages for snapshot mode, so that
878 * we can effectively treat the buffer as consisting of two equal
879 * parts and give userspace a fighting chance of getting some
880 * useful data out of it.
881 */
882 if (snapshot && (nr_pages & 1))
883 return NULL;
884
885 if (cpu == -1)
886 cpu = raw_smp_processor_id();
887
888 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
889 if (!buf)
890 return NULL;
891
892 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
893 if (!pglist)
894 goto out_free_buf;
895
896 for (i = 0; i < nr_pages; ++i)
897 pglist[i] = virt_to_page(pages[i]);
898
899 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
900 if (!buf->base)
901 goto out_free_pglist;
902
903 buf->nr_pages = nr_pages;
904 buf->snapshot = snapshot;
905
906 kfree(pglist);
907 return buf;
908
909out_free_pglist:
910 kfree(pglist);
911out_free_buf:
912 kfree(buf);
913 return NULL;
914}
915
916static void arm_spe_pmu_free_aux(void *aux)
917{
918 struct arm_spe_pmu_buf *buf = aux;
919
920 vunmap(buf->base);
921 kfree(buf);
922}
923
924/* Initialisation and teardown functions */
925static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
926{
927 static atomic_t pmu_idx = ATOMIC_INIT(-1);
928
929 int idx;
930 char *name;
931 struct device *dev = &spe_pmu->pdev->dev;
932
933 spe_pmu->pmu = (struct pmu) {
934 .module = THIS_MODULE,
935 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
936 .attr_groups = arm_spe_pmu_attr_groups,
937 /*
938 * We hitch a ride on the software context here, so that
939 * we can support per-task profiling (which is not possible
940 * with the invalid context as it doesn't get sched callbacks).
941 * This requires that userspace either uses a dummy event for
942 * perf_event_open, since the aux buffer is not setup until
943 * a subsequent mmap, or creates the profiling event in a
944 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
945 * once the buffer has been created.
946 */
947 .task_ctx_nr = perf_sw_context,
948 .event_init = arm_spe_pmu_event_init,
949 .add = arm_spe_pmu_add,
950 .del = arm_spe_pmu_del,
951 .start = arm_spe_pmu_start,
952 .stop = arm_spe_pmu_stop,
953 .read = arm_spe_pmu_read,
954 .setup_aux = arm_spe_pmu_setup_aux,
955 .free_aux = arm_spe_pmu_free_aux,
956 };
957
958 idx = atomic_inc_return(&pmu_idx);
959 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
960 if (!name) {
961 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
962 return -ENOMEM;
963 }
964
965 return perf_pmu_register(&spe_pmu->pmu, name, -1);
966}
967
968static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
969{
970 perf_pmu_unregister(&spe_pmu->pmu);
971}
972
973static void __arm_spe_pmu_dev_probe(void *info)
974{
975 int fld;
976 u64 reg;
977 struct arm_spe_pmu *spe_pmu = info;
978 struct device *dev = &spe_pmu->pdev->dev;
979
980 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
981 ID_AA64DFR0_EL1_PMSVer_SHIFT);
982 if (!fld) {
983 dev_err(dev,
984 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
985 fld, smp_processor_id());
986 return;
987 }
988 spe_pmu->pmsver = (u16)fld;
989
990 /* Read PMBIDR first to determine whether or not we have access */
991 reg = read_sysreg_s(SYS_PMBIDR_EL1);
992 if (FIELD_GET(PMBIDR_EL1_P, reg)) {
993 dev_err(dev,
994 "profiling buffer owned by higher exception level\n");
995 return;
996 }
997
998 /* Minimum alignment. If it's out-of-range, then fail the probe */
999 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1000 spe_pmu->align = 1 << fld;
1001 if (spe_pmu->align > SZ_2K) {
1002 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1003 fld, smp_processor_id());
1004 return;
1005 }
1006
1007 /* It's now safe to read PMSIDR and figure out what we've got */
1008 reg = read_sysreg_s(SYS_PMSIDR_EL1);
1009 if (FIELD_GET(PMSIDR_EL1_FE, reg))
1010 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1011
1012 if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1013 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1014
1015 if (FIELD_GET(PMSIDR_EL1_FT, reg))
1016 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1017
1018 if (FIELD_GET(PMSIDR_EL1_FL, reg))
1019 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1020
1021 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1022 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1023
1024 if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1025 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1026
1027 if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1028 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1029
1030 /* This field has a spaced out encoding, so just use a look-up */
1031 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1032 switch (fld) {
1033 case PMSIDR_EL1_INTERVAL_256:
1034 spe_pmu->min_period = 256;
1035 break;
1036 case PMSIDR_EL1_INTERVAL_512:
1037 spe_pmu->min_period = 512;
1038 break;
1039 case PMSIDR_EL1_INTERVAL_768:
1040 spe_pmu->min_period = 768;
1041 break;
1042 case PMSIDR_EL1_INTERVAL_1024:
1043 spe_pmu->min_period = 1024;
1044 break;
1045 case PMSIDR_EL1_INTERVAL_1536:
1046 spe_pmu->min_period = 1536;
1047 break;
1048 case PMSIDR_EL1_INTERVAL_2048:
1049 spe_pmu->min_period = 2048;
1050 break;
1051 case PMSIDR_EL1_INTERVAL_3072:
1052 spe_pmu->min_period = 3072;
1053 break;
1054 default:
1055 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1056 fld);
1057 fallthrough;
1058 case PMSIDR_EL1_INTERVAL_4096:
1059 spe_pmu->min_period = 4096;
1060 }
1061
1062 /* Maximum record size. If it's out-of-range, then fail the probe */
1063 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1064 spe_pmu->max_record_sz = 1 << fld;
1065 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1066 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1067 fld, smp_processor_id());
1068 return;
1069 }
1070
1071 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1072 switch (fld) {
1073 default:
1074 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1075 fld);
1076 fallthrough;
1077 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1078 spe_pmu->counter_sz = 12;
1079 break;
1080 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1081 spe_pmu->counter_sz = 16;
1082 }
1083
1084 dev_info(dev,
1085 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1086 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1087 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1088
1089 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1090}
1091
1092static void __arm_spe_pmu_reset_local(void)
1093{
1094 /*
1095 * This is probably overkill, as we have no idea where we're
1096 * draining any buffered data to...
1097 */
1098 arm_spe_pmu_disable_and_drain_local();
1099
1100 /* Reset the buffer base pointer */
1101 write_sysreg_s(0, SYS_PMBPTR_EL1);
1102 isb();
1103
1104 /* Clear any pending management interrupts */
1105 write_sysreg_s(0, SYS_PMBSR_EL1);
1106 isb();
1107}
1108
1109static void __arm_spe_pmu_setup_one(void *info)
1110{
1111 struct arm_spe_pmu *spe_pmu = info;
1112
1113 __arm_spe_pmu_reset_local();
1114 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1115}
1116
1117static void __arm_spe_pmu_stop_one(void *info)
1118{
1119 struct arm_spe_pmu *spe_pmu = info;
1120
1121 disable_percpu_irq(spe_pmu->irq);
1122 __arm_spe_pmu_reset_local();
1123}
1124
1125static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1126{
1127 struct arm_spe_pmu *spe_pmu;
1128
1129 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1130 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1131 return 0;
1132
1133 __arm_spe_pmu_setup_one(spe_pmu);
1134 return 0;
1135}
1136
1137static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1138{
1139 struct arm_spe_pmu *spe_pmu;
1140
1141 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1142 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1143 return 0;
1144
1145 __arm_spe_pmu_stop_one(spe_pmu);
1146 return 0;
1147}
1148
1149static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1150{
1151 int ret;
1152 cpumask_t *mask = &spe_pmu->supported_cpus;
1153
1154 /* Make sure we probe the hardware on a relevant CPU */
1155 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1156 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1157 return -ENXIO;
1158
1159 /* Request our PPIs (note that the IRQ is still disabled) */
1160 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1161 spe_pmu->handle);
1162 if (ret)
1163 return ret;
1164
1165 /*
1166 * Register our hotplug notifier now so we don't miss any events.
1167 * This will enable the IRQ for any supported CPUs that are already
1168 * up.
1169 */
1170 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1171 &spe_pmu->hotplug_node);
1172 if (ret)
1173 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1174
1175 return ret;
1176}
1177
1178static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1179{
1180 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1181 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1182}
1183
1184/* Driver and device probing */
1185static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1186{
1187 struct platform_device *pdev = spe_pmu->pdev;
1188 int irq = platform_get_irq(pdev, 0);
1189
1190 if (irq < 0)
1191 return -ENXIO;
1192
1193 if (!irq_is_percpu(irq)) {
1194 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1195 return -EINVAL;
1196 }
1197
1198 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1199 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1200 return -EINVAL;
1201 }
1202
1203 spe_pmu->irq = irq;
1204 return 0;
1205}
1206
1207static const struct of_device_id arm_spe_pmu_of_match[] = {
1208 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1209 { /* Sentinel */ },
1210};
1211MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1212
1213static const struct platform_device_id arm_spe_match[] = {
1214 { ARMV8_SPE_PDEV_NAME, 0},
1215 { }
1216};
1217MODULE_DEVICE_TABLE(platform, arm_spe_match);
1218
1219static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1220{
1221 int ret;
1222 struct arm_spe_pmu *spe_pmu;
1223 struct device *dev = &pdev->dev;
1224
1225 /*
1226 * If kernelspace is unmapped when running at EL0, then the SPE
1227 * buffer will fault and prematurely terminate the AUX session.
1228 */
1229 if (arm64_kernel_unmapped_at_el0()) {
1230 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1231 return -EPERM;
1232 }
1233
1234 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1235 if (!spe_pmu)
1236 return -ENOMEM;
1237
1238 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1239 if (!spe_pmu->handle)
1240 return -ENOMEM;
1241
1242 spe_pmu->pdev = pdev;
1243 platform_set_drvdata(pdev, spe_pmu);
1244
1245 ret = arm_spe_pmu_irq_probe(spe_pmu);
1246 if (ret)
1247 goto out_free_handle;
1248
1249 ret = arm_spe_pmu_dev_init(spe_pmu);
1250 if (ret)
1251 goto out_free_handle;
1252
1253 ret = arm_spe_pmu_perf_init(spe_pmu);
1254 if (ret)
1255 goto out_teardown_dev;
1256
1257 return 0;
1258
1259out_teardown_dev:
1260 arm_spe_pmu_dev_teardown(spe_pmu);
1261out_free_handle:
1262 free_percpu(spe_pmu->handle);
1263 return ret;
1264}
1265
1266static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1267{
1268 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1269
1270 arm_spe_pmu_perf_destroy(spe_pmu);
1271 arm_spe_pmu_dev_teardown(spe_pmu);
1272 free_percpu(spe_pmu->handle);
1273 return 0;
1274}
1275
1276static struct platform_driver arm_spe_pmu_driver = {
1277 .id_table = arm_spe_match,
1278 .driver = {
1279 .name = DRVNAME,
1280 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1281 .suppress_bind_attrs = true,
1282 },
1283 .probe = arm_spe_pmu_device_probe,
1284 .remove = arm_spe_pmu_device_remove,
1285};
1286
1287static int __init arm_spe_pmu_init(void)
1288{
1289 int ret;
1290
1291 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1292 arm_spe_pmu_cpu_startup,
1293 arm_spe_pmu_cpu_teardown);
1294 if (ret < 0)
1295 return ret;
1296 arm_spe_pmu_online = ret;
1297
1298 ret = platform_driver_register(&arm_spe_pmu_driver);
1299 if (ret)
1300 cpuhp_remove_multi_state(arm_spe_pmu_online);
1301
1302 return ret;
1303}
1304
1305static void __exit arm_spe_pmu_exit(void)
1306{
1307 platform_driver_unregister(&arm_spe_pmu_driver);
1308 cpuhp_remove_multi_state(arm_spe_pmu_online);
1309}
1310
1311module_init(arm_spe_pmu_init);
1312module_exit(arm_spe_pmu_exit);
1313
1314MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1315MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1316MODULE_LICENSE("GPL v2");