Linux Audio

Check our new training course

Loading...
v6.2
 
   1/*
   2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   3 * Copyright (C) 2016-2017 Milan Broz
   4 * Copyright (C) 2016-2017 Mikulas Patocka
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-bio-record.h"
  10
  11#include <linux/compiler.h>
  12#include <linux/module.h>
  13#include <linux/device-mapper.h>
  14#include <linux/dm-io.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sort.h>
  17#include <linux/rbtree.h>
  18#include <linux/delay.h>
  19#include <linux/random.h>
  20#include <linux/reboot.h>
  21#include <crypto/hash.h>
  22#include <crypto/skcipher.h>
  23#include <linux/async_tx.h>
  24#include <linux/dm-bufio.h>
  25
  26#include "dm-audit.h"
  27
  28#define DM_MSG_PREFIX "integrity"
  29
  30#define DEFAULT_INTERLEAVE_SECTORS	32768
  31#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  32#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  33#define DEFAULT_BUFFER_SECTORS		128
  34#define DEFAULT_JOURNAL_WATERMARK	50
  35#define DEFAULT_SYNC_MSEC		10000
  36#define DEFAULT_MAX_JOURNAL_SECTORS	131072
  37#define MIN_LOG2_INTERLEAVE_SECTORS	3
  38#define MAX_LOG2_INTERLEAVE_SECTORS	31
  39#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  40#define RECALC_SECTORS			32768
  41#define RECALC_WRITE_SUPER		16
  42#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  43#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  44#define DISCARD_FILLER			0xf6
  45#define SALT_SIZE			16
  46
  47/*
  48 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  49 * so it should not be enabled in the official kernel
  50 */
  51//#define DEBUG_PRINT
  52//#define INTERNAL_VERIFY
  53
  54/*
  55 * On disk structures
  56 */
  57
  58#define SB_MAGIC			"integrt"
  59#define SB_VERSION_1			1
  60#define SB_VERSION_2			2
  61#define SB_VERSION_3			3
  62#define SB_VERSION_4			4
  63#define SB_VERSION_5			5
  64#define SB_SECTORS			8
  65#define MAX_SECTORS_PER_BLOCK		8
  66
  67struct superblock {
  68	__u8 magic[8];
  69	__u8 version;
  70	__u8 log2_interleave_sectors;
  71	__le16 integrity_tag_size;
  72	__le32 journal_sections;
  73	__le64 provided_data_sectors;	/* userspace uses this value */
  74	__le32 flags;
  75	__u8 log2_sectors_per_block;
  76	__u8 log2_blocks_per_bitmap_bit;
  77	__u8 pad[2];
  78	__le64 recalc_sector;
  79	__u8 pad2[8];
  80	__u8 salt[SALT_SIZE];
  81};
  82
  83#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  84#define SB_FLAG_RECALCULATING		0x2
  85#define SB_FLAG_DIRTY_BITMAP		0x4
  86#define SB_FLAG_FIXED_PADDING		0x8
  87#define SB_FLAG_FIXED_HMAC		0x10
  88
  89#define	JOURNAL_ENTRY_ROUNDUP		8
  90
  91typedef __le64 commit_id_t;
  92#define JOURNAL_MAC_PER_SECTOR		8
  93
  94struct journal_entry {
  95	union {
  96		struct {
  97			__le32 sector_lo;
  98			__le32 sector_hi;
  99		} s;
 100		__le64 sector;
 101	} u;
 102	commit_id_t last_bytes[];
 103	/* __u8 tag[0]; */
 104};
 105
 106#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 107
 108#if BITS_PER_LONG == 64
 109#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 110#else
 111#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 112#endif
 113#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 114#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 115#define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
 116#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 117#define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
 118
 119#define JOURNAL_BLOCK_SECTORS		8
 120#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 121#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 122
 123struct journal_sector {
 124	struct_group(sectors,
 125		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 126		__u8 mac[JOURNAL_MAC_PER_SECTOR];
 127	);
 128	commit_id_t commit_id;
 129};
 130
 131#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 132
 133#define METADATA_PADDING_SECTORS	8
 134
 135#define N_COMMIT_IDS			4
 136
 137static unsigned char prev_commit_seq(unsigned char seq)
 138{
 139	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 140}
 141
 142static unsigned char next_commit_seq(unsigned char seq)
 143{
 144	return (seq + 1) % N_COMMIT_IDS;
 145}
 146
 147/*
 148 * In-memory structures
 149 */
 150
 151struct journal_node {
 152	struct rb_node node;
 153	sector_t sector;
 154};
 155
 156struct alg_spec {
 157	char *alg_string;
 158	char *key_string;
 159	__u8 *key;
 160	unsigned key_size;
 161};
 162
 163struct dm_integrity_c {
 164	struct dm_dev *dev;
 165	struct dm_dev *meta_dev;
 166	unsigned tag_size;
 167	__s8 log2_tag_size;
 168	sector_t start;
 169	mempool_t journal_io_mempool;
 170	struct dm_io_client *io;
 171	struct dm_bufio_client *bufio;
 172	struct workqueue_struct *metadata_wq;
 173	struct superblock *sb;
 174	unsigned journal_pages;
 175	unsigned n_bitmap_blocks;
 176
 177	struct page_list *journal;
 178	struct page_list *journal_io;
 179	struct page_list *journal_xor;
 180	struct page_list *recalc_bitmap;
 181	struct page_list *may_write_bitmap;
 182	struct bitmap_block_status *bbs;
 183	unsigned bitmap_flush_interval;
 184	int synchronous_mode;
 185	struct bio_list synchronous_bios;
 186	struct delayed_work bitmap_flush_work;
 187
 188	struct crypto_skcipher *journal_crypt;
 189	struct scatterlist **journal_scatterlist;
 190	struct scatterlist **journal_io_scatterlist;
 191	struct skcipher_request **sk_requests;
 192
 193	struct crypto_shash *journal_mac;
 194
 195	struct journal_node *journal_tree;
 196	struct rb_root journal_tree_root;
 197
 198	sector_t provided_data_sectors;
 199
 200	unsigned short journal_entry_size;
 201	unsigned char journal_entries_per_sector;
 202	unsigned char journal_section_entries;
 203	unsigned short journal_section_sectors;
 204	unsigned journal_sections;
 205	unsigned journal_entries;
 206	sector_t data_device_sectors;
 207	sector_t meta_device_sectors;
 208	unsigned initial_sectors;
 209	unsigned metadata_run;
 210	__s8 log2_metadata_run;
 211	__u8 log2_buffer_sectors;
 212	__u8 sectors_per_block;
 213	__u8 log2_blocks_per_bitmap_bit;
 214
 215	unsigned char mode;
 216
 217	int failed;
 218
 219	struct crypto_shash *internal_hash;
 220
 221	struct dm_target *ti;
 222
 223	/* these variables are locked with endio_wait.lock */
 224	struct rb_root in_progress;
 225	struct list_head wait_list;
 226	wait_queue_head_t endio_wait;
 227	struct workqueue_struct *wait_wq;
 228	struct workqueue_struct *offload_wq;
 229
 230	unsigned char commit_seq;
 231	commit_id_t commit_ids[N_COMMIT_IDS];
 232
 233	unsigned committed_section;
 234	unsigned n_committed_sections;
 235
 236	unsigned uncommitted_section;
 237	unsigned n_uncommitted_sections;
 238
 239	unsigned free_section;
 240	unsigned char free_section_entry;
 241	unsigned free_sectors;
 242
 243	unsigned free_sectors_threshold;
 244
 245	struct workqueue_struct *commit_wq;
 246	struct work_struct commit_work;
 247
 248	struct workqueue_struct *writer_wq;
 249	struct work_struct writer_work;
 250
 251	struct workqueue_struct *recalc_wq;
 252	struct work_struct recalc_work;
 253	u8 *recalc_buffer;
 254	u8 *recalc_tags;
 255
 256	struct bio_list flush_bio_list;
 257
 258	unsigned long autocommit_jiffies;
 259	struct timer_list autocommit_timer;
 260	unsigned autocommit_msec;
 261
 262	wait_queue_head_t copy_to_journal_wait;
 263
 264	struct completion crypto_backoff;
 265
 266	bool wrote_to_journal;
 267	bool journal_uptodate;
 268	bool just_formatted;
 269	bool recalculate_flag;
 270	bool reset_recalculate_flag;
 271	bool discard;
 272	bool fix_padding;
 273	bool fix_hmac;
 274	bool legacy_recalculate;
 275
 276	struct alg_spec internal_hash_alg;
 277	struct alg_spec journal_crypt_alg;
 278	struct alg_spec journal_mac_alg;
 279
 280	atomic64_t number_of_mismatches;
 281
 
 
 282	struct notifier_block reboot_notifier;
 283};
 284
 285struct dm_integrity_range {
 286	sector_t logical_sector;
 287	sector_t n_sectors;
 288	bool waiting;
 289	union {
 290		struct rb_node node;
 291		struct {
 292			struct task_struct *task;
 293			struct list_head wait_entry;
 294		};
 295	};
 296};
 297
 298struct dm_integrity_io {
 299	struct work_struct work;
 300
 301	struct dm_integrity_c *ic;
 302	enum req_op op;
 303	bool fua;
 304
 305	struct dm_integrity_range range;
 306
 307	sector_t metadata_block;
 308	unsigned metadata_offset;
 309
 310	atomic_t in_flight;
 311	blk_status_t bi_status;
 312
 313	struct completion *completion;
 314
 315	struct dm_bio_details bio_details;
 316};
 317
 318struct journal_completion {
 319	struct dm_integrity_c *ic;
 320	atomic_t in_flight;
 321	struct completion comp;
 322};
 323
 324struct journal_io {
 325	struct dm_integrity_range range;
 326	struct journal_completion *comp;
 327};
 328
 329struct bitmap_block_status {
 330	struct work_struct work;
 331	struct dm_integrity_c *ic;
 332	unsigned idx;
 333	unsigned long *bitmap;
 334	struct bio_list bio_queue;
 335	spinlock_t bio_queue_lock;
 336
 337};
 338
 339static struct kmem_cache *journal_io_cache;
 340
 341#define JOURNAL_IO_MEMPOOL	32
 342
 343#ifdef DEBUG_PRINT
 344#define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
 345static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
 346{
 347	va_list args;
 348	va_start(args, msg);
 349	vprintk(msg, args);
 350	va_end(args);
 351	if (len)
 352		pr_cont(":");
 353	while (len) {
 354		pr_cont(" %02x", *bytes);
 355		bytes++;
 356		len--;
 357	}
 358	pr_cont("\n");
 359}
 360#define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
 361#else
 362#define DEBUG_print(x, ...)			do { } while (0)
 363#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 364#endif
 365
 366static void dm_integrity_prepare(struct request *rq)
 367{
 368}
 369
 370static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
 371{
 372}
 373
 374/*
 375 * DM Integrity profile, protection is performed layer above (dm-crypt)
 376 */
 377static const struct blk_integrity_profile dm_integrity_profile = {
 378	.name			= "DM-DIF-EXT-TAG",
 379	.generate_fn		= NULL,
 380	.verify_fn		= NULL,
 381	.prepare_fn		= dm_integrity_prepare,
 382	.complete_fn		= dm_integrity_complete,
 383};
 384
 385static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 386static void integrity_bio_wait(struct work_struct *w);
 387static void dm_integrity_dtr(struct dm_target *ti);
 388
 389static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 390{
 391	if (err == -EILSEQ)
 392		atomic64_inc(&ic->number_of_mismatches);
 393	if (!cmpxchg(&ic->failed, 0, err))
 394		DMERR("Error on %s: %d", msg, err);
 395}
 396
 397static int dm_integrity_failed(struct dm_integrity_c *ic)
 398{
 399	return READ_ONCE(ic->failed);
 400}
 401
 402static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
 403{
 404	if (ic->legacy_recalculate)
 405		return false;
 406	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
 407	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
 408	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
 409		return true;
 410	return false;
 411}
 412
 413static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
 414					  unsigned j, unsigned char seq)
 415{
 416	/*
 417	 * Xor the number with section and sector, so that if a piece of
 418	 * journal is written at wrong place, it is detected.
 419	 */
 420	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 421}
 422
 423static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 424				sector_t *area, sector_t *offset)
 425{
 426	if (!ic->meta_dev) {
 427		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 428		*area = data_sector >> log2_interleave_sectors;
 429		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
 430	} else {
 431		*area = 0;
 432		*offset = data_sector;
 433	}
 434}
 435
 436#define sector_to_block(ic, n)						\
 437do {									\
 438	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
 439	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 440} while (0)
 441
 442static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 443					    sector_t offset, unsigned *metadata_offset)
 444{
 445	__u64 ms;
 446	unsigned mo;
 447
 448	ms = area << ic->sb->log2_interleave_sectors;
 449	if (likely(ic->log2_metadata_run >= 0))
 450		ms += area << ic->log2_metadata_run;
 451	else
 452		ms += area * ic->metadata_run;
 453	ms >>= ic->log2_buffer_sectors;
 454
 455	sector_to_block(ic, offset);
 456
 457	if (likely(ic->log2_tag_size >= 0)) {
 458		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 459		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 460	} else {
 461		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 462		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 463	}
 464	*metadata_offset = mo;
 465	return ms;
 466}
 467
 468static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 469{
 470	sector_t result;
 471
 472	if (ic->meta_dev)
 473		return offset;
 474
 475	result = area << ic->sb->log2_interleave_sectors;
 476	if (likely(ic->log2_metadata_run >= 0))
 477		result += (area + 1) << ic->log2_metadata_run;
 478	else
 479		result += (area + 1) * ic->metadata_run;
 480
 481	result += (sector_t)ic->initial_sectors + offset;
 482	result += ic->start;
 483
 484	return result;
 485}
 486
 487static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
 488{
 489	if (unlikely(*sec_ptr >= ic->journal_sections))
 490		*sec_ptr -= ic->journal_sections;
 491}
 492
 493static void sb_set_version(struct dm_integrity_c *ic)
 494{
 495	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
 496		ic->sb->version = SB_VERSION_5;
 497	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 498		ic->sb->version = SB_VERSION_4;
 499	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 500		ic->sb->version = SB_VERSION_3;
 501	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 502		ic->sb->version = SB_VERSION_2;
 503	else
 504		ic->sb->version = SB_VERSION_1;
 505}
 506
 507static int sb_mac(struct dm_integrity_c *ic, bool wr)
 508{
 509	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 510	int r;
 511	unsigned size = crypto_shash_digestsize(ic->journal_mac);
 
 
 512
 513	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
 514		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
 515		return -EINVAL;
 516	}
 517
 518	desc->tfm = ic->journal_mac;
 519
 520	r = crypto_shash_init(desc);
 521	if (unlikely(r < 0)) {
 522		dm_integrity_io_error(ic, "crypto_shash_init", r);
 523		return r;
 524	}
 525
 526	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
 527	if (unlikely(r < 0)) {
 528		dm_integrity_io_error(ic, "crypto_shash_update", r);
 529		return r;
 530	}
 531
 532	if (likely(wr)) {
 533		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
 534		if (unlikely(r < 0)) {
 535			dm_integrity_io_error(ic, "crypto_shash_final", r);
 536			return r;
 537		}
 538	} else {
 539		__u8 result[HASH_MAX_DIGESTSIZE];
 540		r = crypto_shash_final(desc, result);
 
 541		if (unlikely(r < 0)) {
 542			dm_integrity_io_error(ic, "crypto_shash_final", r);
 543			return r;
 544		}
 545		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
 546			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
 547			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
 548			return -EILSEQ;
 549		}
 550	}
 551
 552	return 0;
 553}
 554
 555static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
 556{
 557	struct dm_io_request io_req;
 558	struct dm_io_region io_loc;
 559	const enum req_op op = opf & REQ_OP_MASK;
 560	int r;
 561
 562	io_req.bi_opf = opf;
 563	io_req.mem.type = DM_IO_KMEM;
 564	io_req.mem.ptr.addr = ic->sb;
 565	io_req.notify.fn = NULL;
 566	io_req.client = ic->io;
 567	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 568	io_loc.sector = ic->start;
 569	io_loc.count = SB_SECTORS;
 570
 571	if (op == REQ_OP_WRITE) {
 572		sb_set_version(ic);
 573		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 574			r = sb_mac(ic, true);
 575			if (unlikely(r))
 576				return r;
 577		}
 578	}
 579
 580	r = dm_io(&io_req, 1, &io_loc, NULL);
 581	if (unlikely(r))
 582		return r;
 583
 584	if (op == REQ_OP_READ) {
 585		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 586			r = sb_mac(ic, false);
 587			if (unlikely(r))
 588				return r;
 589		}
 590	}
 591
 592	return 0;
 593}
 594
 595#define BITMAP_OP_TEST_ALL_SET		0
 596#define BITMAP_OP_TEST_ALL_CLEAR	1
 597#define BITMAP_OP_SET			2
 598#define BITMAP_OP_CLEAR			3
 599
 600static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 601			    sector_t sector, sector_t n_sectors, int mode)
 602{
 603	unsigned long bit, end_bit, this_end_bit, page, end_page;
 604	unsigned long *data;
 605
 606	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 607		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 608			sector,
 609			n_sectors,
 610			ic->sb->log2_sectors_per_block,
 611			ic->log2_blocks_per_bitmap_bit,
 612			mode);
 613		BUG();
 614	}
 615
 616	if (unlikely(!n_sectors))
 617		return true;
 618
 619	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 620	end_bit = (sector + n_sectors - 1) >>
 621		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 622
 623	page = bit / (PAGE_SIZE * 8);
 624	bit %= PAGE_SIZE * 8;
 625
 626	end_page = end_bit / (PAGE_SIZE * 8);
 627	end_bit %= PAGE_SIZE * 8;
 628
 629repeat:
 630	if (page < end_page) {
 631		this_end_bit = PAGE_SIZE * 8 - 1;
 632	} else {
 633		this_end_bit = end_bit;
 634	}
 635
 636	data = lowmem_page_address(bitmap[page].page);
 637
 638	if (mode == BITMAP_OP_TEST_ALL_SET) {
 639		while (bit <= this_end_bit) {
 640			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 641				do {
 642					if (data[bit / BITS_PER_LONG] != -1)
 643						return false;
 644					bit += BITS_PER_LONG;
 645				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 646				continue;
 647			}
 648			if (!test_bit(bit, data))
 649				return false;
 650			bit++;
 651		}
 652	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 653		while (bit <= this_end_bit) {
 654			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 655				do {
 656					if (data[bit / BITS_PER_LONG] != 0)
 657						return false;
 658					bit += BITS_PER_LONG;
 659				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 660				continue;
 661			}
 662			if (test_bit(bit, data))
 663				return false;
 664			bit++;
 665		}
 666	} else if (mode == BITMAP_OP_SET) {
 667		while (bit <= this_end_bit) {
 668			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 669				do {
 670					data[bit / BITS_PER_LONG] = -1;
 671					bit += BITS_PER_LONG;
 672				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 673				continue;
 674			}
 675			__set_bit(bit, data);
 676			bit++;
 677		}
 678	} else if (mode == BITMAP_OP_CLEAR) {
 679		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 680			clear_page(data);
 681		else while (bit <= this_end_bit) {
 682			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 683				do {
 684					data[bit / BITS_PER_LONG] = 0;
 685					bit += BITS_PER_LONG;
 686				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 687				continue;
 
 
 
 
 688			}
 689			__clear_bit(bit, data);
 690			bit++;
 691		}
 692	} else {
 693		BUG();
 694	}
 695
 696	if (unlikely(page < end_page)) {
 697		bit = 0;
 698		page++;
 699		goto repeat;
 700	}
 701
 702	return true;
 703}
 704
 705static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 706{
 707	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 708	unsigned i;
 709
 710	for (i = 0; i < n_bitmap_pages; i++) {
 711		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 712		unsigned long *src_data = lowmem_page_address(src[i].page);
 
 713		copy_page(dst_data, src_data);
 714	}
 715}
 716
 717static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 718{
 719	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 720	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 721
 722	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 723	return &ic->bbs[bitmap_block];
 724}
 725
 726static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 727				 bool e, const char *function)
 728{
 729#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 730	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 731
 732	if (unlikely(section >= ic->journal_sections) ||
 733	    unlikely(offset >= limit)) {
 734		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 735		       function, section, offset, ic->journal_sections, limit);
 736		BUG();
 737	}
 738#endif
 739}
 740
 741static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 742			       unsigned *pl_index, unsigned *pl_offset)
 743{
 744	unsigned sector;
 745
 746	access_journal_check(ic, section, offset, false, "page_list_location");
 747
 748	sector = section * ic->journal_section_sectors + offset;
 749
 750	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 751	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 752}
 753
 754static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 755					       unsigned section, unsigned offset, unsigned *n_sectors)
 756{
 757	unsigned pl_index, pl_offset;
 758	char *va;
 759
 760	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 761
 762	if (n_sectors)
 763		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 764
 765	va = lowmem_page_address(pl[pl_index].page);
 766
 767	return (struct journal_sector *)(va + pl_offset);
 768}
 769
 770static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
 771{
 772	return access_page_list(ic, ic->journal, section, offset, NULL);
 773}
 774
 775static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
 776{
 777	unsigned rel_sector, offset;
 778	struct journal_sector *js;
 779
 780	access_journal_check(ic, section, n, true, "access_journal_entry");
 781
 782	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 783	offset = n / JOURNAL_BLOCK_SECTORS;
 784
 785	js = access_journal(ic, section, rel_sector);
 786	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 787}
 788
 789static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
 790{
 791	n <<= ic->sb->log2_sectors_per_block;
 792
 793	n += JOURNAL_BLOCK_SECTORS;
 794
 795	access_journal_check(ic, section, n, false, "access_journal_data");
 796
 797	return access_journal(ic, section, n);
 798}
 799
 800static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
 801{
 802	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 803	int r;
 804	unsigned j, size;
 805
 806	desc->tfm = ic->journal_mac;
 807
 808	r = crypto_shash_init(desc);
 809	if (unlikely(r < 0)) {
 810		dm_integrity_io_error(ic, "crypto_shash_init", r);
 811		goto err;
 812	}
 813
 814	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 815		__le64 section_le;
 816
 817		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
 818		if (unlikely(r < 0)) {
 819			dm_integrity_io_error(ic, "crypto_shash_update", r);
 820			goto err;
 821		}
 822
 823		section_le = cpu_to_le64(section);
 824		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
 825		if (unlikely(r < 0)) {
 826			dm_integrity_io_error(ic, "crypto_shash_update", r);
 827			goto err;
 828		}
 829	}
 830
 831	for (j = 0; j < ic->journal_section_entries; j++) {
 832		struct journal_entry *je = access_journal_entry(ic, section, j);
 833		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
 
 834		if (unlikely(r < 0)) {
 835			dm_integrity_io_error(ic, "crypto_shash_update", r);
 836			goto err;
 837		}
 838	}
 839
 840	size = crypto_shash_digestsize(ic->journal_mac);
 841
 842	if (likely(size <= JOURNAL_MAC_SIZE)) {
 843		r = crypto_shash_final(desc, result);
 844		if (unlikely(r < 0)) {
 845			dm_integrity_io_error(ic, "crypto_shash_final", r);
 846			goto err;
 847		}
 848		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 849	} else {
 850		__u8 digest[HASH_MAX_DIGESTSIZE];
 851
 852		if (WARN_ON(size > sizeof(digest))) {
 853			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 854			goto err;
 855		}
 856		r = crypto_shash_final(desc, digest);
 857		if (unlikely(r < 0)) {
 858			dm_integrity_io_error(ic, "crypto_shash_final", r);
 859			goto err;
 860		}
 861		memcpy(result, digest, JOURNAL_MAC_SIZE);
 862	}
 863
 864	return;
 865err:
 866	memset(result, 0, JOURNAL_MAC_SIZE);
 867}
 868
 869static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
 870{
 871	__u8 result[JOURNAL_MAC_SIZE];
 872	unsigned j;
 873
 874	if (!ic->journal_mac)
 875		return;
 876
 877	section_mac(ic, section, result);
 878
 879	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 880		struct journal_sector *js = access_journal(ic, section, j);
 881
 882		if (likely(wr))
 883			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 884		else {
 885			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
 886				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 887				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
 888			}
 889		}
 890	}
 891}
 892
 893static void complete_journal_op(void *context)
 894{
 895	struct journal_completion *comp = context;
 
 896	BUG_ON(!atomic_read(&comp->in_flight));
 897	if (likely(atomic_dec_and_test(&comp->in_flight)))
 898		complete(&comp->comp);
 899}
 900
 901static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 902			unsigned n_sections, struct journal_completion *comp)
 903{
 904	struct async_submit_ctl submit;
 905	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 906	unsigned pl_index, pl_offset, section_index;
 907	struct page_list *source_pl, *target_pl;
 908
 909	if (likely(encrypt)) {
 910		source_pl = ic->journal;
 911		target_pl = ic->journal_io;
 912	} else {
 913		source_pl = ic->journal_io;
 914		target_pl = ic->journal;
 915	}
 916
 917	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 918
 919	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 920
 921	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 922
 923	section_index = pl_index;
 924
 925	do {
 926		size_t this_step;
 927		struct page *src_pages[2];
 928		struct page *dst_page;
 929
 930		while (unlikely(pl_index == section_index)) {
 931			unsigned dummy;
 
 932			if (likely(encrypt))
 933				rw_section_mac(ic, section, true);
 934			section++;
 935			n_sections--;
 936			if (!n_sections)
 937				break;
 938			page_list_location(ic, section, 0, &section_index, &dummy);
 939		}
 940
 941		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 942		dst_page = target_pl[pl_index].page;
 943		src_pages[0] = source_pl[pl_index].page;
 944		src_pages[1] = ic->journal_xor[pl_index].page;
 945
 946		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 947
 948		pl_index++;
 949		pl_offset = 0;
 950		n_bytes -= this_step;
 951	} while (n_bytes);
 952
 953	BUG_ON(n_sections);
 954
 955	async_tx_issue_pending_all();
 956}
 957
 958static void complete_journal_encrypt(struct crypto_async_request *req, int err)
 959{
 960	struct journal_completion *comp = req->data;
 
 961	if (unlikely(err)) {
 962		if (likely(err == -EINPROGRESS)) {
 963			complete(&comp->ic->crypto_backoff);
 964			return;
 965		}
 966		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 967	}
 968	complete_journal_op(comp);
 969}
 970
 971static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 972{
 973	int r;
 
 974	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 975				      complete_journal_encrypt, comp);
 976	if (likely(encrypt))
 977		r = crypto_skcipher_encrypt(req);
 978	else
 979		r = crypto_skcipher_decrypt(req);
 980	if (likely(!r))
 981		return false;
 982	if (likely(r == -EINPROGRESS))
 983		return true;
 984	if (likely(r == -EBUSY)) {
 985		wait_for_completion(&comp->ic->crypto_backoff);
 986		reinit_completion(&comp->ic->crypto_backoff);
 987		return true;
 988	}
 989	dm_integrity_io_error(comp->ic, "encrypt", r);
 990	return false;
 991}
 992
 993static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 994			  unsigned n_sections, struct journal_completion *comp)
 995{
 996	struct scatterlist **source_sg;
 997	struct scatterlist **target_sg;
 998
 999	atomic_add(2, &comp->in_flight);
1000
1001	if (likely(encrypt)) {
1002		source_sg = ic->journal_scatterlist;
1003		target_sg = ic->journal_io_scatterlist;
1004	} else {
1005		source_sg = ic->journal_io_scatterlist;
1006		target_sg = ic->journal_scatterlist;
1007	}
1008
1009	do {
1010		struct skcipher_request *req;
1011		unsigned ivsize;
1012		char *iv;
1013
1014		if (likely(encrypt))
1015			rw_section_mac(ic, section, true);
1016
1017		req = ic->sk_requests[section];
1018		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1019		iv = req->iv;
1020
1021		memcpy(iv, iv + ivsize, ivsize);
1022
1023		req->src = source_sg[section];
1024		req->dst = target_sg[section];
1025
1026		if (unlikely(do_crypt(encrypt, req, comp)))
1027			atomic_inc(&comp->in_flight);
1028
1029		section++;
1030		n_sections--;
1031	} while (n_sections);
1032
1033	atomic_dec(&comp->in_flight);
1034	complete_journal_op(comp);
1035}
1036
1037static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1038			    unsigned n_sections, struct journal_completion *comp)
1039{
1040	if (ic->journal_xor)
1041		return xor_journal(ic, encrypt, section, n_sections, comp);
1042	else
1043		return crypt_journal(ic, encrypt, section, n_sections, comp);
1044}
1045
1046static void complete_journal_io(unsigned long error, void *context)
1047{
1048	struct journal_completion *comp = context;
 
1049	if (unlikely(error != 0))
1050		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1051	complete_journal_op(comp);
1052}
1053
1054static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1055			       unsigned sector, unsigned n_sectors,
1056			       struct journal_completion *comp)
1057{
1058	struct dm_io_request io_req;
1059	struct dm_io_region io_loc;
1060	unsigned pl_index, pl_offset;
1061	int r;
1062
1063	if (unlikely(dm_integrity_failed(ic))) {
1064		if (comp)
1065			complete_journal_io(-1UL, comp);
1066		return;
1067	}
1068
1069	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1070	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1071
1072	io_req.bi_opf = opf;
1073	io_req.mem.type = DM_IO_PAGE_LIST;
1074	if (ic->journal_io)
1075		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1076	else
1077		io_req.mem.ptr.pl = &ic->journal[pl_index];
1078	io_req.mem.offset = pl_offset;
1079	if (likely(comp != NULL)) {
1080		io_req.notify.fn = complete_journal_io;
1081		io_req.notify.context = comp;
1082	} else {
1083		io_req.notify.fn = NULL;
1084	}
1085	io_req.client = ic->io;
1086	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1087	io_loc.sector = ic->start + SB_SECTORS + sector;
1088	io_loc.count = n_sectors;
1089
1090	r = dm_io(&io_req, 1, &io_loc, NULL);
1091	if (unlikely(r)) {
1092		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1093				      "reading journal" : "writing journal", r);
1094		if (comp) {
1095			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1096			complete_journal_io(-1UL, comp);
1097		}
1098	}
1099}
1100
1101static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1102		       unsigned section, unsigned n_sections,
1103		       struct journal_completion *comp)
1104{
1105	unsigned sector, n_sectors;
1106
1107	sector = section * ic->journal_section_sectors;
1108	n_sectors = n_sections * ic->journal_section_sectors;
1109
1110	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1111}
1112
1113static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1114{
1115	struct journal_completion io_comp;
1116	struct journal_completion crypt_comp_1;
1117	struct journal_completion crypt_comp_2;
1118	unsigned i;
1119
1120	io_comp.ic = ic;
1121	init_completion(&io_comp.comp);
1122
1123	if (commit_start + commit_sections <= ic->journal_sections) {
1124		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1125		if (ic->journal_io) {
1126			crypt_comp_1.ic = ic;
1127			init_completion(&crypt_comp_1.comp);
1128			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1130			wait_for_completion_io(&crypt_comp_1.comp);
1131		} else {
1132			for (i = 0; i < commit_sections; i++)
1133				rw_section_mac(ic, commit_start + i, true);
1134		}
1135		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1136			   commit_sections, &io_comp);
1137	} else {
1138		unsigned to_end;
 
1139		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1140		to_end = ic->journal_sections - commit_start;
1141		if (ic->journal_io) {
1142			crypt_comp_1.ic = ic;
1143			init_completion(&crypt_comp_1.comp);
1144			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1145			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1146			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1147				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1148					   commit_start, to_end, &io_comp);
1149				reinit_completion(&crypt_comp_1.comp);
1150				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1151				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1152				wait_for_completion_io(&crypt_comp_1.comp);
1153			} else {
1154				crypt_comp_2.ic = ic;
1155				init_completion(&crypt_comp_2.comp);
1156				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1157				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1158				wait_for_completion_io(&crypt_comp_1.comp);
1159				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1160				wait_for_completion_io(&crypt_comp_2.comp);
1161			}
1162		} else {
1163			for (i = 0; i < to_end; i++)
1164				rw_section_mac(ic, commit_start + i, true);
1165			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1166			for (i = 0; i < commit_sections - to_end; i++)
1167				rw_section_mac(ic, i, true);
1168		}
1169		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1170	}
1171
1172	wait_for_completion_io(&io_comp.comp);
1173}
1174
1175static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1176			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1177{
1178	struct dm_io_request io_req;
1179	struct dm_io_region io_loc;
1180	int r;
1181	unsigned sector, pl_index, pl_offset;
1182
1183	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1184
1185	if (unlikely(dm_integrity_failed(ic))) {
1186		fn(-1UL, data);
1187		return;
1188	}
1189
1190	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1191
1192	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1193	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1194
1195	io_req.bi_opf = REQ_OP_WRITE;
1196	io_req.mem.type = DM_IO_PAGE_LIST;
1197	io_req.mem.ptr.pl = &ic->journal[pl_index];
1198	io_req.mem.offset = pl_offset;
1199	io_req.notify.fn = fn;
1200	io_req.notify.context = data;
1201	io_req.client = ic->io;
1202	io_loc.bdev = ic->dev->bdev;
1203	io_loc.sector = target;
1204	io_loc.count = n_sectors;
1205
1206	r = dm_io(&io_req, 1, &io_loc, NULL);
1207	if (unlikely(r)) {
1208		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1209		fn(-1UL, data);
1210	}
1211}
1212
1213static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1214{
1215	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1216	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1217}
1218
1219static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1220{
1221	struct rb_node **n = &ic->in_progress.rb_node;
1222	struct rb_node *parent;
1223
1224	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1225
1226	if (likely(check_waiting)) {
1227		struct dm_integrity_range *range;
 
1228		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1229			if (unlikely(ranges_overlap(range, new_range)))
1230				return false;
1231		}
1232	}
1233
1234	parent = NULL;
1235
1236	while (*n) {
1237		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1238
1239		parent = *n;
1240		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1241			n = &range->node.rb_left;
1242		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1243			n = &range->node.rb_right;
1244		} else {
1245			return false;
1246		}
1247	}
1248
1249	rb_link_node(&new_range->node, parent, n);
1250	rb_insert_color(&new_range->node, &ic->in_progress);
1251
1252	return true;
1253}
1254
1255static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1256{
1257	rb_erase(&range->node, &ic->in_progress);
1258	while (unlikely(!list_empty(&ic->wait_list))) {
1259		struct dm_integrity_range *last_range =
1260			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1261		struct task_struct *last_range_task;
 
1262		last_range_task = last_range->task;
1263		list_del(&last_range->wait_entry);
1264		if (!add_new_range(ic, last_range, false)) {
1265			last_range->task = last_range_task;
1266			list_add(&last_range->wait_entry, &ic->wait_list);
1267			break;
1268		}
1269		last_range->waiting = false;
1270		wake_up_process(last_range_task);
1271	}
1272}
1273
1274static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1275{
1276	unsigned long flags;
1277
1278	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1279	remove_range_unlocked(ic, range);
1280	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1281}
1282
1283static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1284{
1285	new_range->waiting = true;
1286	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1287	new_range->task = current;
1288	do {
1289		__set_current_state(TASK_UNINTERRUPTIBLE);
1290		spin_unlock_irq(&ic->endio_wait.lock);
1291		io_schedule();
1292		spin_lock_irq(&ic->endio_wait.lock);
1293	} while (unlikely(new_range->waiting));
1294}
1295
1296static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1297{
1298	if (unlikely(!add_new_range(ic, new_range, true)))
1299		wait_and_add_new_range(ic, new_range);
1300}
1301
1302static void init_journal_node(struct journal_node *node)
1303{
1304	RB_CLEAR_NODE(&node->node);
1305	node->sector = (sector_t)-1;
1306}
1307
1308static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1309{
1310	struct rb_node **link;
1311	struct rb_node *parent;
1312
1313	node->sector = sector;
1314	BUG_ON(!RB_EMPTY_NODE(&node->node));
1315
1316	link = &ic->journal_tree_root.rb_node;
1317	parent = NULL;
1318
1319	while (*link) {
1320		struct journal_node *j;
 
1321		parent = *link;
1322		j = container_of(parent, struct journal_node, node);
1323		if (sector < j->sector)
1324			link = &j->node.rb_left;
1325		else
1326			link = &j->node.rb_right;
1327	}
1328
1329	rb_link_node(&node->node, parent, link);
1330	rb_insert_color(&node->node, &ic->journal_tree_root);
1331}
1332
1333static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1334{
1335	BUG_ON(RB_EMPTY_NODE(&node->node));
1336	rb_erase(&node->node, &ic->journal_tree_root);
1337	init_journal_node(node);
1338}
1339
1340#define NOT_FOUND	(-1U)
1341
1342static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1343{
1344	struct rb_node *n = ic->journal_tree_root.rb_node;
1345	unsigned found = NOT_FOUND;
 
1346	*next_sector = (sector_t)-1;
1347	while (n) {
1348		struct journal_node *j = container_of(n, struct journal_node, node);
1349		if (sector == j->sector) {
 
1350			found = j - ic->journal_tree;
1351		}
1352		if (sector < j->sector) {
1353			*next_sector = j->sector;
1354			n = j->node.rb_left;
1355		} else {
1356			n = j->node.rb_right;
1357		}
1358	}
1359
1360	return found;
1361}
1362
1363static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1364{
1365	struct journal_node *node, *next_node;
1366	struct rb_node *next;
1367
1368	if (unlikely(pos >= ic->journal_entries))
1369		return false;
1370	node = &ic->journal_tree[pos];
1371	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372		return false;
1373	if (unlikely(node->sector != sector))
1374		return false;
1375
1376	next = rb_next(&node->node);
1377	if (unlikely(!next))
1378		return true;
1379
1380	next_node = container_of(next, struct journal_node, node);
1381	return next_node->sector != sector;
1382}
1383
1384static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385{
1386	struct rb_node *next;
1387	struct journal_node *next_node;
1388	unsigned next_section;
1389
1390	BUG_ON(RB_EMPTY_NODE(&node->node));
1391
1392	next = rb_next(&node->node);
1393	if (unlikely(!next))
1394		return false;
1395
1396	next_node = container_of(next, struct journal_node, node);
1397
1398	if (next_node->sector != node->sector)
1399		return false;
1400
1401	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402	if (next_section >= ic->committed_section &&
1403	    next_section < ic->committed_section + ic->n_committed_sections)
1404		return true;
1405	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406		return true;
1407
1408	return false;
1409}
1410
1411#define TAG_READ	0
1412#define TAG_WRITE	1
1413#define TAG_CMP		2
1414
1415static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416			       unsigned *metadata_offset, unsigned total_size, int op)
1417{
1418#define MAY_BE_FILLER		1
1419#define MAY_BE_HASH		2
1420	unsigned hash_offset = 0;
1421	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422
1423	do {
1424		unsigned char *data, *dp;
1425		struct dm_buffer *b;
1426		unsigned to_copy;
1427		int r;
1428
1429		r = dm_integrity_failed(ic);
1430		if (unlikely(r))
1431			return r;
1432
1433		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434		if (IS_ERR(data))
1435			return PTR_ERR(data);
1436
1437		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438		dp = data + *metadata_offset;
1439		if (op == TAG_READ) {
1440			memcpy(tag, dp, to_copy);
1441		} else if (op == TAG_WRITE) {
1442			if (memcmp(dp, tag, to_copy)) {
1443				memcpy(dp, tag, to_copy);
1444				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445			}
1446		} else {
1447			/* e.g.: op == TAG_CMP */
1448
1449			if (likely(is_power_of_2(ic->tag_size))) {
1450				if (unlikely(memcmp(dp, tag, to_copy)))
1451					if (unlikely(!ic->discard) ||
1452					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453						goto thorough_test;
1454				}
1455			} else {
1456				unsigned i, ts;
1457thorough_test:
1458				ts = total_size;
1459
1460				for (i = 0; i < to_copy; i++, ts--) {
1461					if (unlikely(dp[i] != tag[i]))
1462						may_be &= ~MAY_BE_HASH;
1463					if (likely(dp[i] != DISCARD_FILLER))
1464						may_be &= ~MAY_BE_FILLER;
1465					hash_offset++;
1466					if (unlikely(hash_offset == ic->tag_size)) {
1467						if (unlikely(!may_be)) {
1468							dm_bufio_release(b);
1469							return ts;
1470						}
1471						hash_offset = 0;
1472						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473					}
1474				}
1475			}
1476		}
1477		dm_bufio_release(b);
1478
1479		tag += to_copy;
1480		*metadata_offset += to_copy;
1481		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482			(*metadata_block)++;
1483			*metadata_offset = 0;
1484		}
1485
1486		if (unlikely(!is_power_of_2(ic->tag_size))) {
1487			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488		}
1489
1490		total_size -= to_copy;
1491	} while (unlikely(total_size));
1492
1493	return 0;
1494#undef MAY_BE_FILLER
1495#undef MAY_BE_HASH
1496}
1497
1498struct flush_request {
1499	struct dm_io_request io_req;
1500	struct dm_io_region io_reg;
1501	struct dm_integrity_c *ic;
1502	struct completion comp;
1503};
1504
1505static void flush_notify(unsigned long error, void *fr_)
1506{
1507	struct flush_request *fr = fr_;
 
1508	if (unlikely(error != 0))
1509		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510	complete(&fr->comp);
1511}
1512
1513static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514{
1515	int r;
1516
1517	struct flush_request fr;
1518
1519	if (!ic->meta_dev)
1520		flush_data = false;
1521	if (flush_data) {
1522		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1523		fr.io_req.mem.type = DM_IO_KMEM,
1524		fr.io_req.mem.ptr.addr = NULL,
1525		fr.io_req.notify.fn = flush_notify,
1526		fr.io_req.notify.context = &fr;
1527		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1528		fr.io_reg.bdev = ic->dev->bdev,
1529		fr.io_reg.sector = 0,
1530		fr.io_reg.count = 0,
1531		fr.ic = ic;
1532		init_completion(&fr.comp);
1533		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1534		BUG_ON(r);
1535	}
1536
1537	r = dm_bufio_write_dirty_buffers(ic->bufio);
1538	if (unlikely(r))
1539		dm_integrity_io_error(ic, "writing tags", r);
1540
1541	if (flush_data)
1542		wait_for_completion(&fr.comp);
1543}
1544
1545static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1546{
1547	DECLARE_WAITQUEUE(wait, current);
 
1548	__add_wait_queue(&ic->endio_wait, &wait);
1549	__set_current_state(TASK_UNINTERRUPTIBLE);
1550	spin_unlock_irq(&ic->endio_wait.lock);
1551	io_schedule();
1552	spin_lock_irq(&ic->endio_wait.lock);
1553	__remove_wait_queue(&ic->endio_wait, &wait);
1554}
1555
1556static void autocommit_fn(struct timer_list *t)
1557{
1558	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559
1560	if (likely(!dm_integrity_failed(ic)))
1561		queue_work(ic->commit_wq, &ic->commit_work);
1562}
1563
1564static void schedule_autocommit(struct dm_integrity_c *ic)
1565{
1566	if (!timer_pending(&ic->autocommit_timer))
1567		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568}
1569
1570static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571{
1572	struct bio *bio;
1573	unsigned long flags;
1574
1575	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577	bio_list_add(&ic->flush_bio_list, bio);
1578	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579
1580	queue_work(ic->commit_wq, &ic->commit_work);
1581}
1582
1583static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584{
1585	int r = dm_integrity_failed(ic);
 
 
1586	if (unlikely(r) && !bio->bi_status)
1587		bio->bi_status = errno_to_blk_status(r);
1588	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1589		unsigned long flags;
 
1590		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591		bio_list_add(&ic->synchronous_bios, bio);
1592		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1593		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1594		return;
1595	}
1596	bio_endio(bio);
1597}
1598
1599static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1600{
1601	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1602
1603	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1604		submit_flush_bio(ic, dio);
1605	else
1606		do_endio(ic, bio);
1607}
1608
1609static void dec_in_flight(struct dm_integrity_io *dio)
1610{
1611	if (atomic_dec_and_test(&dio->in_flight)) {
1612		struct dm_integrity_c *ic = dio->ic;
1613		struct bio *bio;
1614
1615		remove_range(ic, &dio->range);
1616
1617		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1618			schedule_autocommit(ic);
1619
1620		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1621
1622		if (unlikely(dio->bi_status) && !bio->bi_status)
1623			bio->bi_status = dio->bi_status;
1624		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1625			dio->range.logical_sector += dio->range.n_sectors;
1626			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1627			INIT_WORK(&dio->work, integrity_bio_wait);
1628			queue_work(ic->offload_wq, &dio->work);
1629			return;
1630		}
1631		do_endio_flush(ic, dio);
1632	}
1633}
1634
1635static void integrity_end_io(struct bio *bio)
1636{
1637	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1638
1639	dm_bio_restore(&dio->bio_details, bio);
1640	if (bio->bi_integrity)
1641		bio->bi_opf |= REQ_INTEGRITY;
1642
1643	if (dio->completion)
1644		complete(dio->completion);
1645
1646	dec_in_flight(dio);
1647}
1648
1649static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1650				      const char *data, char *result)
1651{
1652	__le64 sector_le = cpu_to_le64(sector);
1653	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1654	int r;
1655	unsigned digest_size;
1656
1657	req->tfm = ic->internal_hash;
1658
1659	r = crypto_shash_init(req);
1660	if (unlikely(r < 0)) {
1661		dm_integrity_io_error(ic, "crypto_shash_init", r);
1662		goto failed;
1663	}
1664
1665	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1666		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1667		if (unlikely(r < 0)) {
1668			dm_integrity_io_error(ic, "crypto_shash_update", r);
1669			goto failed;
1670		}
1671	}
1672
1673	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1674	if (unlikely(r < 0)) {
1675		dm_integrity_io_error(ic, "crypto_shash_update", r);
1676		goto failed;
1677	}
1678
1679	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1680	if (unlikely(r < 0)) {
1681		dm_integrity_io_error(ic, "crypto_shash_update", r);
1682		goto failed;
1683	}
1684
1685	r = crypto_shash_final(req, result);
1686	if (unlikely(r < 0)) {
1687		dm_integrity_io_error(ic, "crypto_shash_final", r);
1688		goto failed;
1689	}
1690
1691	digest_size = crypto_shash_digestsize(ic->internal_hash);
1692	if (unlikely(digest_size < ic->tag_size))
1693		memset(result + digest_size, 0, ic->tag_size - digest_size);
1694
1695	return;
1696
1697failed:
1698	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1699	get_random_bytes(result, ic->tag_size);
1700}
1701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702static void integrity_metadata(struct work_struct *w)
1703{
1704	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1705	struct dm_integrity_c *ic = dio->ic;
1706
1707	int r;
1708
1709	if (ic->internal_hash) {
1710		struct bvec_iter iter;
1711		struct bio_vec bv;
1712		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1713		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1714		char *checksums;
1715		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1716		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1717		sector_t sector;
1718		unsigned sectors_to_process;
1719
1720		if (unlikely(ic->mode == 'R'))
1721			goto skip_io;
1722
1723		if (likely(dio->op != REQ_OP_DISCARD))
1724			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1725					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726		else
1727			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1728		if (!checksums) {
1729			checksums = checksums_onstack;
1730			if (WARN_ON(extra_space &&
1731				    digest_size > sizeof(checksums_onstack))) {
1732				r = -EINVAL;
1733				goto error;
1734			}
1735		}
1736
1737		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1738			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1739			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1740			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1741			unsigned max_blocks = max_size / ic->tag_size;
1742			memset(checksums, DISCARD_FILLER, max_size);
1743
1744			while (bi_size) {
1745				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
 
1746				this_step_blocks = min(this_step_blocks, max_blocks);
1747				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1748							this_step_blocks * ic->tag_size, TAG_WRITE);
1749				if (unlikely(r)) {
1750					if (likely(checksums != checksums_onstack))
1751						kfree(checksums);
1752					goto error;
1753				}
1754
1755				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1756					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1757					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1758					BUG();
1759				}*/
1760				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1761				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1762			}
1763
1764			if (likely(checksums != checksums_onstack))
1765				kfree(checksums);
1766			goto skip_io;
1767		}
1768
1769		sector = dio->range.logical_sector;
1770		sectors_to_process = dio->range.n_sectors;
1771
1772		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1773			unsigned pos;
 
1774			char *mem, *checksums_ptr;
1775
1776again:
1777			mem = bvec_kmap_local(&bv);
1778			pos = 0;
1779			checksums_ptr = checksums;
1780			do {
1781				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1782				checksums_ptr += ic->tag_size;
1783				sectors_to_process -= ic->sectors_per_block;
1784				pos += ic->sectors_per_block << SECTOR_SHIFT;
1785				sector += ic->sectors_per_block;
1786			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1787			kunmap_local(mem);
1788
1789			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1790						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1791			if (unlikely(r)) {
1792				if (r > 0) {
1793					sector_t s;
1794
1795					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1796					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1797						    bio->bi_bdev, s);
1798					r = -EILSEQ;
1799					atomic64_inc(&ic->number_of_mismatches);
1800					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1801							 bio, s, 0);
1802				}
1803				if (likely(checksums != checksums_onstack))
1804					kfree(checksums);
1805				goto error;
1806			}
1807
1808			if (!sectors_to_process)
1809				break;
1810
1811			if (unlikely(pos < bv.bv_len)) {
1812				bv.bv_offset += pos;
1813				bv.bv_len -= pos;
1814				goto again;
1815			}
1816		}
1817
1818		if (likely(checksums != checksums_onstack))
1819			kfree(checksums);
1820	} else {
1821		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1822
1823		if (bip) {
1824			struct bio_vec biv;
1825			struct bvec_iter iter;
1826			unsigned data_to_process = dio->range.n_sectors;
 
1827			sector_to_block(ic, data_to_process);
1828			data_to_process *= ic->tag_size;
1829
1830			bip_for_each_vec(biv, bip, iter) {
1831				unsigned char *tag;
1832				unsigned this_len;
1833
1834				BUG_ON(PageHighMem(biv.bv_page));
1835				tag = bvec_virt(&biv);
1836				this_len = min(biv.bv_len, data_to_process);
1837				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1838							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1839				if (unlikely(r))
1840					goto error;
1841				data_to_process -= this_len;
1842				if (!data_to_process)
1843					break;
1844			}
1845		}
1846	}
1847skip_io:
1848	dec_in_flight(dio);
1849	return;
1850error:
1851	dio->bi_status = errno_to_blk_status(r);
1852	dec_in_flight(dio);
1853}
1854
1855static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1856{
1857	struct dm_integrity_c *ic = ti->private;
1858	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1859	struct bio_integrity_payload *bip;
1860
1861	sector_t area, offset;
1862
1863	dio->ic = ic;
1864	dio->bi_status = 0;
1865	dio->op = bio_op(bio);
1866
1867	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1868		if (ti->max_io_len) {
1869			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1870			unsigned log2_max_io_len = __fls(ti->max_io_len);
1871			sector_t start_boundary = sec >> log2_max_io_len;
1872			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
 
1873			if (start_boundary < end_boundary) {
1874				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
 
1875				dm_accept_partial_bio(bio, len);
1876			}
1877		}
1878	}
1879
1880	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1881		submit_flush_bio(ic, dio);
1882		return DM_MAPIO_SUBMITTED;
1883	}
1884
1885	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1886	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1887	if (unlikely(dio->fua)) {
1888		/*
1889		 * Don't pass down the FUA flag because we have to flush
1890		 * disk cache anyway.
1891		 */
1892		bio->bi_opf &= ~REQ_FUA;
1893	}
1894	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1895		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1896		      dio->range.logical_sector, bio_sectors(bio),
1897		      ic->provided_data_sectors);
1898		return DM_MAPIO_KILL;
1899	}
1900	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1901		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1902		      ic->sectors_per_block,
1903		      dio->range.logical_sector, bio_sectors(bio));
1904		return DM_MAPIO_KILL;
1905	}
1906
1907	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1908		struct bvec_iter iter;
1909		struct bio_vec bv;
 
1910		bio_for_each_segment(bv, bio, iter) {
1911			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1912				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1913					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1914				return DM_MAPIO_KILL;
1915			}
1916		}
1917	}
1918
1919	bip = bio_integrity(bio);
1920	if (!ic->internal_hash) {
1921		if (bip) {
1922			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
 
1923			if (ic->log2_tag_size >= 0)
1924				wanted_tag_size <<= ic->log2_tag_size;
1925			else
1926				wanted_tag_size *= ic->tag_size;
1927			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1928				DMERR("Invalid integrity data size %u, expected %u",
1929				      bip->bip_iter.bi_size, wanted_tag_size);
1930				return DM_MAPIO_KILL;
1931			}
1932		}
1933	} else {
1934		if (unlikely(bip != NULL)) {
1935			DMERR("Unexpected integrity data when using internal hash");
1936			return DM_MAPIO_KILL;
1937		}
1938	}
1939
1940	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1941		return DM_MAPIO_KILL;
1942
1943	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1944	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1945	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1946
1947	dm_integrity_map_continue(dio, true);
1948	return DM_MAPIO_SUBMITTED;
1949}
1950
1951static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1952				 unsigned journal_section, unsigned journal_entry)
1953{
1954	struct dm_integrity_c *ic = dio->ic;
1955	sector_t logical_sector;
1956	unsigned n_sectors;
1957
1958	logical_sector = dio->range.logical_sector;
1959	n_sectors = dio->range.n_sectors;
1960	do {
1961		struct bio_vec bv = bio_iovec(bio);
1962		char *mem;
1963
1964		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1965			bv.bv_len = n_sectors << SECTOR_SHIFT;
1966		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1967		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1968retry_kmap:
1969		mem = kmap_local_page(bv.bv_page);
1970		if (likely(dio->op == REQ_OP_WRITE))
1971			flush_dcache_page(bv.bv_page);
1972
1973		do {
1974			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1975
1976			if (unlikely(dio->op == REQ_OP_READ)) {
1977				struct journal_sector *js;
1978				char *mem_ptr;
1979				unsigned s;
1980
1981				if (unlikely(journal_entry_is_inprogress(je))) {
1982					flush_dcache_page(bv.bv_page);
1983					kunmap_local(mem);
1984
1985					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1986					goto retry_kmap;
1987				}
1988				smp_rmb();
1989				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1990				js = access_journal_data(ic, journal_section, journal_entry);
1991				mem_ptr = mem + bv.bv_offset;
1992				s = 0;
1993				do {
1994					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1995					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1996					js++;
1997					mem_ptr += 1 << SECTOR_SHIFT;
1998				} while (++s < ic->sectors_per_block);
1999#ifdef INTERNAL_VERIFY
2000				if (ic->internal_hash) {
2001					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2002
2003					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2004					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2005						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2006							    logical_sector);
2007						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2008								 bio, logical_sector, 0);
2009					}
2010				}
2011#endif
2012			}
2013
2014			if (!ic->internal_hash) {
2015				struct bio_integrity_payload *bip = bio_integrity(bio);
2016				unsigned tag_todo = ic->tag_size;
2017				char *tag_ptr = journal_entry_tag(ic, je);
2018
2019				if (bip) do {
2020					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2021					unsigned tag_now = min(biv.bv_len, tag_todo);
2022					char *tag_addr;
2023					BUG_ON(PageHighMem(biv.bv_page));
2024					tag_addr = bvec_virt(&biv);
2025					if (likely(dio->op == REQ_OP_WRITE))
2026						memcpy(tag_ptr, tag_addr, tag_now);
2027					else
2028						memcpy(tag_addr, tag_ptr, tag_now);
2029					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2030					tag_ptr += tag_now;
2031					tag_todo -= tag_now;
2032				} while (unlikely(tag_todo)); else {
2033					if (likely(dio->op == REQ_OP_WRITE))
2034						memset(tag_ptr, 0, tag_todo);
2035				}
 
2036			}
2037
2038			if (likely(dio->op == REQ_OP_WRITE)) {
2039				struct journal_sector *js;
2040				unsigned s;
2041
2042				js = access_journal_data(ic, journal_section, journal_entry);
2043				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2044
2045				s = 0;
2046				do {
2047					je->last_bytes[s] = js[s].commit_id;
2048				} while (++s < ic->sectors_per_block);
2049
2050				if (ic->internal_hash) {
2051					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
 
2052					if (unlikely(digest_size > ic->tag_size)) {
2053						char checksums_onstack[HASH_MAX_DIGESTSIZE];
 
2054						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2055						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2056					} else
2057						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2058				}
2059
2060				journal_entry_set_sector(je, logical_sector);
2061			}
2062			logical_sector += ic->sectors_per_block;
2063
2064			journal_entry++;
2065			if (unlikely(journal_entry == ic->journal_section_entries)) {
2066				journal_entry = 0;
2067				journal_section++;
2068				wraparound_section(ic, &journal_section);
2069			}
2070
2071			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2072		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2073
2074		if (unlikely(dio->op == REQ_OP_READ))
2075			flush_dcache_page(bv.bv_page);
2076		kunmap_local(mem);
2077	} while (n_sectors);
2078
2079	if (likely(dio->op == REQ_OP_WRITE)) {
2080		smp_mb();
2081		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2082			wake_up(&ic->copy_to_journal_wait);
2083		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2084			queue_work(ic->commit_wq, &ic->commit_work);
2085		} else {
2086			schedule_autocommit(ic);
2087		}
2088	} else {
2089		remove_range(ic, &dio->range);
2090	}
2091
2092	if (unlikely(bio->bi_iter.bi_size)) {
2093		sector_t area, offset;
2094
2095		dio->range.logical_sector = logical_sector;
2096		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2097		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2098		return true;
2099	}
2100
2101	return false;
2102}
2103
2104static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2105{
2106	struct dm_integrity_c *ic = dio->ic;
2107	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2108	unsigned journal_section, journal_entry;
2109	unsigned journal_read_pos;
2110	struct completion read_comp;
2111	bool discard_retried = false;
2112	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
 
2113	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2114		need_sync_io = true;
2115
2116	if (need_sync_io && from_map) {
2117		INIT_WORK(&dio->work, integrity_bio_wait);
2118		queue_work(ic->offload_wq, &dio->work);
2119		return;
2120	}
2121
2122lock_retry:
2123	spin_lock_irq(&ic->endio_wait.lock);
2124retry:
2125	if (unlikely(dm_integrity_failed(ic))) {
2126		spin_unlock_irq(&ic->endio_wait.lock);
2127		do_endio(ic, bio);
2128		return;
2129	}
2130	dio->range.n_sectors = bio_sectors(bio);
2131	journal_read_pos = NOT_FOUND;
2132	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2133		if (dio->op == REQ_OP_WRITE) {
2134			unsigned next_entry, i, pos;
2135			unsigned ws, we, range_sectors;
2136
2137			dio->range.n_sectors = min(dio->range.n_sectors,
2138						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2139			if (unlikely(!dio->range.n_sectors)) {
2140				if (from_map)
2141					goto offload_to_thread;
2142				sleep_on_endio_wait(ic);
2143				goto retry;
2144			}
2145			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2146			ic->free_sectors -= range_sectors;
2147			journal_section = ic->free_section;
2148			journal_entry = ic->free_section_entry;
2149
2150			next_entry = ic->free_section_entry + range_sectors;
2151			ic->free_section_entry = next_entry % ic->journal_section_entries;
2152			ic->free_section += next_entry / ic->journal_section_entries;
2153			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2154			wraparound_section(ic, &ic->free_section);
2155
2156			pos = journal_section * ic->journal_section_entries + journal_entry;
2157			ws = journal_section;
2158			we = journal_entry;
2159			i = 0;
2160			do {
2161				struct journal_entry *je;
2162
2163				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2164				pos++;
2165				if (unlikely(pos >= ic->journal_entries))
2166					pos = 0;
2167
2168				je = access_journal_entry(ic, ws, we);
2169				BUG_ON(!journal_entry_is_unused(je));
2170				journal_entry_set_inprogress(je);
2171				we++;
2172				if (unlikely(we == ic->journal_section_entries)) {
2173					we = 0;
2174					ws++;
2175					wraparound_section(ic, &ws);
2176				}
2177			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2178
2179			spin_unlock_irq(&ic->endio_wait.lock);
2180			goto journal_read_write;
2181		} else {
2182			sector_t next_sector;
 
2183			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2184			if (likely(journal_read_pos == NOT_FOUND)) {
2185				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2186					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2187			} else {
2188				unsigned i;
2189				unsigned jp = journal_read_pos + 1;
 
2190				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2191					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2192						break;
2193				}
2194				dio->range.n_sectors = i;
2195			}
2196		}
2197	}
2198	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2199		/*
2200		 * We must not sleep in the request routine because it could
2201		 * stall bios on current->bio_list.
2202		 * So, we offload the bio to a workqueue if we have to sleep.
2203		 */
2204		if (from_map) {
2205offload_to_thread:
2206			spin_unlock_irq(&ic->endio_wait.lock);
2207			INIT_WORK(&dio->work, integrity_bio_wait);
2208			queue_work(ic->wait_wq, &dio->work);
2209			return;
2210		}
2211		if (journal_read_pos != NOT_FOUND)
2212			dio->range.n_sectors = ic->sectors_per_block;
2213		wait_and_add_new_range(ic, &dio->range);
2214		/*
2215		 * wait_and_add_new_range drops the spinlock, so the journal
2216		 * may have been changed arbitrarily. We need to recheck.
2217		 * To simplify the code, we restrict I/O size to just one block.
2218		 */
2219		if (journal_read_pos != NOT_FOUND) {
2220			sector_t next_sector;
2221			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
 
 
2222			if (unlikely(new_pos != journal_read_pos)) {
2223				remove_range_unlocked(ic, &dio->range);
2224				goto retry;
2225			}
2226		}
2227	}
2228	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2229		sector_t next_sector;
2230		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
 
 
2231		if (unlikely(new_pos != NOT_FOUND) ||
2232		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2233			remove_range_unlocked(ic, &dio->range);
2234			spin_unlock_irq(&ic->endio_wait.lock);
2235			queue_work(ic->commit_wq, &ic->commit_work);
2236			flush_workqueue(ic->commit_wq);
2237			queue_work(ic->writer_wq, &ic->writer_work);
2238			flush_workqueue(ic->writer_wq);
2239			discard_retried = true;
2240			goto lock_retry;
2241		}
2242	}
2243	spin_unlock_irq(&ic->endio_wait.lock);
2244
2245	if (unlikely(journal_read_pos != NOT_FOUND)) {
2246		journal_section = journal_read_pos / ic->journal_section_entries;
2247		journal_entry = journal_read_pos % ic->journal_section_entries;
2248		goto journal_read_write;
2249	}
2250
2251	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2252		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2253				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2254			struct bitmap_block_status *bbs;
2255
2256			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2257			spin_lock(&bbs->bio_queue_lock);
2258			bio_list_add(&bbs->bio_queue, bio);
2259			spin_unlock(&bbs->bio_queue_lock);
2260			queue_work(ic->writer_wq, &bbs->work);
2261			return;
2262		}
2263	}
2264
2265	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2266
2267	if (need_sync_io) {
2268		init_completion(&read_comp);
2269		dio->completion = &read_comp;
2270	} else
2271		dio->completion = NULL;
2272
2273	dm_bio_record(&dio->bio_details, bio);
2274	bio_set_dev(bio, ic->dev->bdev);
2275	bio->bi_integrity = NULL;
2276	bio->bi_opf &= ~REQ_INTEGRITY;
2277	bio->bi_end_io = integrity_end_io;
2278	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2279
2280	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2281		integrity_metadata(&dio->work);
2282		dm_integrity_flush_buffers(ic, false);
2283
2284		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2285		dio->completion = NULL;
2286
2287		submit_bio_noacct(bio);
2288
2289		return;
2290	}
2291
2292	submit_bio_noacct(bio);
2293
2294	if (need_sync_io) {
2295		wait_for_completion_io(&read_comp);
2296		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2297		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2298			goto skip_check;
2299		if (ic->mode == 'B') {
2300			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2301					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2302				goto skip_check;
2303		}
2304
2305		if (likely(!bio->bi_status))
2306			integrity_metadata(&dio->work);
2307		else
2308skip_check:
2309			dec_in_flight(dio);
2310
2311	} else {
2312		INIT_WORK(&dio->work, integrity_metadata);
2313		queue_work(ic->metadata_wq, &dio->work);
2314	}
2315
2316	return;
2317
2318journal_read_write:
2319	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2320		goto lock_retry;
2321
2322	do_endio_flush(ic, dio);
2323}
2324
2325
2326static void integrity_bio_wait(struct work_struct *w)
2327{
2328	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2329
2330	dm_integrity_map_continue(dio, false);
2331}
2332
2333static void pad_uncommitted(struct dm_integrity_c *ic)
2334{
2335	if (ic->free_section_entry) {
2336		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2337		ic->free_section_entry = 0;
2338		ic->free_section++;
2339		wraparound_section(ic, &ic->free_section);
2340		ic->n_uncommitted_sections++;
2341	}
2342	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2343		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2344		    ic->journal_section_entries + ic->free_sectors)) {
2345		DMCRIT("journal_sections %u, journal_section_entries %u, "
2346		       "n_uncommitted_sections %u, n_committed_sections %u, "
2347		       "journal_section_entries %u, free_sectors %u",
2348		       ic->journal_sections, ic->journal_section_entries,
2349		       ic->n_uncommitted_sections, ic->n_committed_sections,
2350		       ic->journal_section_entries, ic->free_sectors);
2351	}
2352}
2353
2354static void integrity_commit(struct work_struct *w)
2355{
2356	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2357	unsigned commit_start, commit_sections;
2358	unsigned i, j, n;
2359	struct bio *flushes;
2360
2361	del_timer(&ic->autocommit_timer);
2362
2363	spin_lock_irq(&ic->endio_wait.lock);
2364	flushes = bio_list_get(&ic->flush_bio_list);
2365	if (unlikely(ic->mode != 'J')) {
2366		spin_unlock_irq(&ic->endio_wait.lock);
2367		dm_integrity_flush_buffers(ic, true);
2368		goto release_flush_bios;
2369	}
2370
2371	pad_uncommitted(ic);
2372	commit_start = ic->uncommitted_section;
2373	commit_sections = ic->n_uncommitted_sections;
2374	spin_unlock_irq(&ic->endio_wait.lock);
2375
2376	if (!commit_sections)
2377		goto release_flush_bios;
2378
2379	ic->wrote_to_journal = true;
2380
2381	i = commit_start;
2382	for (n = 0; n < commit_sections; n++) {
2383		for (j = 0; j < ic->journal_section_entries; j++) {
2384			struct journal_entry *je;
 
2385			je = access_journal_entry(ic, i, j);
2386			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2387		}
2388		for (j = 0; j < ic->journal_section_sectors; j++) {
2389			struct journal_sector *js;
 
2390			js = access_journal(ic, i, j);
2391			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2392		}
2393		i++;
2394		if (unlikely(i >= ic->journal_sections))
2395			ic->commit_seq = next_commit_seq(ic->commit_seq);
2396		wraparound_section(ic, &i);
2397	}
2398	smp_rmb();
2399
2400	write_journal(ic, commit_start, commit_sections);
2401
2402	spin_lock_irq(&ic->endio_wait.lock);
2403	ic->uncommitted_section += commit_sections;
2404	wraparound_section(ic, &ic->uncommitted_section);
2405	ic->n_uncommitted_sections -= commit_sections;
2406	ic->n_committed_sections += commit_sections;
2407	spin_unlock_irq(&ic->endio_wait.lock);
2408
2409	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2410		queue_work(ic->writer_wq, &ic->writer_work);
2411
2412release_flush_bios:
2413	while (flushes) {
2414		struct bio *next = flushes->bi_next;
 
2415		flushes->bi_next = NULL;
2416		do_endio(ic, flushes);
2417		flushes = next;
2418	}
2419}
2420
2421static void complete_copy_from_journal(unsigned long error, void *context)
2422{
2423	struct journal_io *io = context;
2424	struct journal_completion *comp = io->comp;
2425	struct dm_integrity_c *ic = comp->ic;
 
2426	remove_range(ic, &io->range);
2427	mempool_free(io, &ic->journal_io_mempool);
2428	if (unlikely(error != 0))
2429		dm_integrity_io_error(ic, "copying from journal", -EIO);
2430	complete_journal_op(comp);
2431}
2432
2433static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2434			       struct journal_entry *je)
2435{
2436	unsigned s = 0;
 
2437	do {
2438		js->commit_id = je->last_bytes[s];
2439		js++;
2440	} while (++s < ic->sectors_per_block);
2441}
2442
2443static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2444			     unsigned write_sections, bool from_replay)
2445{
2446	unsigned i, j, n;
2447	struct journal_completion comp;
2448	struct blk_plug plug;
2449
2450	blk_start_plug(&plug);
2451
2452	comp.ic = ic;
2453	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2454	init_completion(&comp.comp);
2455
2456	i = write_start;
2457	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2458#ifndef INTERNAL_VERIFY
2459		if (unlikely(from_replay))
2460#endif
2461			rw_section_mac(ic, i, false);
2462		for (j = 0; j < ic->journal_section_entries; j++) {
2463			struct journal_entry *je = access_journal_entry(ic, i, j);
2464			sector_t sec, area, offset;
2465			unsigned k, l, next_loop;
2466			sector_t metadata_block;
2467			unsigned metadata_offset;
2468			struct journal_io *io;
2469
2470			if (journal_entry_is_unused(je))
2471				continue;
2472			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2473			sec = journal_entry_get_sector(je);
2474			if (unlikely(from_replay)) {
2475				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2476					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2477					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2478				}
2479				if (unlikely(sec >= ic->provided_data_sectors)) {
2480					journal_entry_set_unused(je);
2481					continue;
2482				}
2483			}
2484			get_area_and_offset(ic, sec, &area, &offset);
2485			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2486			for (k = j + 1; k < ic->journal_section_entries; k++) {
2487				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2488				sector_t sec2, area2, offset2;
 
2489				if (journal_entry_is_unused(je2))
2490					break;
2491				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2492				sec2 = journal_entry_get_sector(je2);
2493				if (unlikely(sec2 >= ic->provided_data_sectors))
2494					break;
2495				get_area_and_offset(ic, sec2, &area2, &offset2);
2496				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2497					break;
2498				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2499			}
2500			next_loop = k - 1;
2501
2502			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2503			io->comp = &comp;
2504			io->range.logical_sector = sec;
2505			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2506
2507			spin_lock_irq(&ic->endio_wait.lock);
2508			add_new_range_and_wait(ic, &io->range);
2509
2510			if (likely(!from_replay)) {
2511				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2512
2513				/* don't write if there is newer committed sector */
2514				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2515					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2516
2517					journal_entry_set_unused(je2);
2518					remove_journal_node(ic, &section_node[j]);
2519					j++;
2520					sec += ic->sectors_per_block;
2521					offset += ic->sectors_per_block;
2522				}
2523				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2524					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2525
2526					journal_entry_set_unused(je2);
2527					remove_journal_node(ic, &section_node[k - 1]);
2528					k--;
2529				}
2530				if (j == k) {
2531					remove_range_unlocked(ic, &io->range);
2532					spin_unlock_irq(&ic->endio_wait.lock);
2533					mempool_free(io, &ic->journal_io_mempool);
2534					goto skip_io;
2535				}
2536				for (l = j; l < k; l++) {
2537					remove_journal_node(ic, &section_node[l]);
2538				}
2539			}
2540			spin_unlock_irq(&ic->endio_wait.lock);
2541
2542			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2543			for (l = j; l < k; l++) {
2544				int r;
2545				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2546
2547				if (
2548#ifndef INTERNAL_VERIFY
2549				    unlikely(from_replay) &&
2550#endif
2551				    ic->internal_hash) {
2552					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2553
2554					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2555								  (char *)access_journal_data(ic, i, l), test_tag);
2556					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2557						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2558						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2559					}
2560				}
2561
2562				journal_entry_set_unused(je2);
2563				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2564							ic->tag_size, TAG_WRITE);
2565				if (unlikely(r)) {
2566					dm_integrity_io_error(ic, "reading tags", r);
2567				}
2568			}
2569
2570			atomic_inc(&comp.in_flight);
2571			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2572					  (k - j) << ic->sb->log2_sectors_per_block,
2573					  get_data_sector(ic, area, offset),
2574					  complete_copy_from_journal, io);
2575skip_io:
2576			j = next_loop;
2577		}
2578	}
2579
2580	dm_bufio_write_dirty_buffers_async(ic->bufio);
2581
2582	blk_finish_plug(&plug);
2583
2584	complete_journal_op(&comp);
2585	wait_for_completion_io(&comp.comp);
2586
2587	dm_integrity_flush_buffers(ic, true);
2588}
2589
2590static void integrity_writer(struct work_struct *w)
2591{
2592	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2593	unsigned write_start, write_sections;
2594
2595	unsigned prev_free_sectors;
2596
2597	spin_lock_irq(&ic->endio_wait.lock);
2598	write_start = ic->committed_section;
2599	write_sections = ic->n_committed_sections;
2600	spin_unlock_irq(&ic->endio_wait.lock);
2601
2602	if (!write_sections)
2603		return;
2604
2605	do_journal_write(ic, write_start, write_sections, false);
2606
2607	spin_lock_irq(&ic->endio_wait.lock);
2608
2609	ic->committed_section += write_sections;
2610	wraparound_section(ic, &ic->committed_section);
2611	ic->n_committed_sections -= write_sections;
2612
2613	prev_free_sectors = ic->free_sectors;
2614	ic->free_sectors += write_sections * ic->journal_section_entries;
2615	if (unlikely(!prev_free_sectors))
2616		wake_up_locked(&ic->endio_wait);
2617
2618	spin_unlock_irq(&ic->endio_wait.lock);
2619}
2620
2621static void recalc_write_super(struct dm_integrity_c *ic)
2622{
2623	int r;
2624
2625	dm_integrity_flush_buffers(ic, false);
2626	if (dm_integrity_failed(ic))
2627		return;
2628
2629	r = sync_rw_sb(ic, REQ_OP_WRITE);
2630	if (unlikely(r))
2631		dm_integrity_io_error(ic, "writing superblock", r);
2632}
2633
2634static void integrity_recalc(struct work_struct *w)
2635{
2636	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
 
 
 
2637	struct dm_integrity_range range;
2638	struct dm_io_request io_req;
2639	struct dm_io_region io_loc;
2640	sector_t area, offset;
2641	sector_t metadata_block;
2642	unsigned metadata_offset;
2643	sector_t logical_sector, n_sectors;
2644	__u8 *t;
2645	unsigned i;
2646	int r;
2647	unsigned super_counter = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648
2649	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2650
2651	spin_lock_irq(&ic->endio_wait.lock);
2652
2653next_chunk:
2654
2655	if (unlikely(dm_post_suspending(ic->ti)))
2656		goto unlock_ret;
2657
2658	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2659	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2660		if (ic->mode == 'B') {
2661			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2662			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2663			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2664		}
2665		goto unlock_ret;
2666	}
2667
2668	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2669	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2670	if (!ic->meta_dev)
2671		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2672
2673	add_new_range_and_wait(ic, &range);
2674	spin_unlock_irq(&ic->endio_wait.lock);
2675	logical_sector = range.logical_sector;
2676	n_sectors = range.n_sectors;
2677
2678	if (ic->mode == 'B') {
2679		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2680			goto advance_and_next;
2681		}
2682		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2683				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2684			logical_sector += ic->sectors_per_block;
2685			n_sectors -= ic->sectors_per_block;
2686			cond_resched();
2687		}
2688		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2689				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2690			n_sectors -= ic->sectors_per_block;
2691			cond_resched();
2692		}
2693		get_area_and_offset(ic, logical_sector, &area, &offset);
2694	}
2695
2696	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2697
2698	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2699		recalc_write_super(ic);
2700		if (ic->mode == 'B') {
2701			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2702		}
2703		super_counter = 0;
2704	}
2705
2706	if (unlikely(dm_integrity_failed(ic)))
2707		goto err;
2708
2709	io_req.bi_opf = REQ_OP_READ;
2710	io_req.mem.type = DM_IO_VMA;
2711	io_req.mem.ptr.addr = ic->recalc_buffer;
2712	io_req.notify.fn = NULL;
2713	io_req.client = ic->io;
2714	io_loc.bdev = ic->dev->bdev;
2715	io_loc.sector = get_data_sector(ic, area, offset);
2716	io_loc.count = n_sectors;
2717
2718	r = dm_io(&io_req, 1, &io_loc, NULL);
2719	if (unlikely(r)) {
2720		dm_integrity_io_error(ic, "reading data", r);
2721		goto err;
2722	}
2723
2724	t = ic->recalc_tags;
2725	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2726		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2727		t += ic->tag_size;
2728	}
2729
2730	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2731
2732	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2733	if (unlikely(r)) {
2734		dm_integrity_io_error(ic, "writing tags", r);
2735		goto err;
2736	}
2737
2738	if (ic->mode == 'B') {
2739		sector_t start, end;
 
2740		start = (range.logical_sector >>
2741			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2742			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2743		end = ((range.logical_sector + range.n_sectors) >>
2744		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2745			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2746		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2747	}
2748
2749advance_and_next:
2750	cond_resched();
2751
2752	spin_lock_irq(&ic->endio_wait.lock);
2753	remove_range_unlocked(ic, &range);
2754	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2755	goto next_chunk;
2756
2757err:
2758	remove_range(ic, &range);
2759	return;
2760
2761unlock_ret:
2762	spin_unlock_irq(&ic->endio_wait.lock);
2763
2764	recalc_write_super(ic);
 
 
 
 
2765}
2766
2767static void bitmap_block_work(struct work_struct *w)
2768{
2769	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2770	struct dm_integrity_c *ic = bbs->ic;
2771	struct bio *bio;
2772	struct bio_list bio_queue;
2773	struct bio_list waiting;
2774
2775	bio_list_init(&waiting);
2776
2777	spin_lock(&bbs->bio_queue_lock);
2778	bio_queue = bbs->bio_queue;
2779	bio_list_init(&bbs->bio_queue);
2780	spin_unlock(&bbs->bio_queue_lock);
2781
2782	while ((bio = bio_list_pop(&bio_queue))) {
2783		struct dm_integrity_io *dio;
2784
2785		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2786
2787		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2788				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2789			remove_range(ic, &dio->range);
2790			INIT_WORK(&dio->work, integrity_bio_wait);
2791			queue_work(ic->offload_wq, &dio->work);
2792		} else {
2793			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2794					dio->range.n_sectors, BITMAP_OP_SET);
2795			bio_list_add(&waiting, bio);
2796		}
2797	}
2798
2799	if (bio_list_empty(&waiting))
2800		return;
2801
2802	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2803			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2804			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2805
2806	while ((bio = bio_list_pop(&waiting))) {
2807		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2808
2809		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2810				dio->range.n_sectors, BITMAP_OP_SET);
2811
2812		remove_range(ic, &dio->range);
2813		INIT_WORK(&dio->work, integrity_bio_wait);
2814		queue_work(ic->offload_wq, &dio->work);
2815	}
2816
2817	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2818}
2819
2820static void bitmap_flush_work(struct work_struct *work)
2821{
2822	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2823	struct dm_integrity_range range;
2824	unsigned long limit;
2825	struct bio *bio;
2826
2827	dm_integrity_flush_buffers(ic, false);
2828
2829	range.logical_sector = 0;
2830	range.n_sectors = ic->provided_data_sectors;
2831
2832	spin_lock_irq(&ic->endio_wait.lock);
2833	add_new_range_and_wait(ic, &range);
2834	spin_unlock_irq(&ic->endio_wait.lock);
2835
2836	dm_integrity_flush_buffers(ic, true);
2837
2838	limit = ic->provided_data_sectors;
2839	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2840		limit = le64_to_cpu(ic->sb->recalc_sector)
2841			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2842			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843	}
2844	/*DEBUG_print("zeroing journal\n");*/
2845	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2846	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2847
2848	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2849			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2850
2851	spin_lock_irq(&ic->endio_wait.lock);
2852	remove_range_unlocked(ic, &range);
2853	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2854		bio_endio(bio);
2855		spin_unlock_irq(&ic->endio_wait.lock);
2856		spin_lock_irq(&ic->endio_wait.lock);
2857	}
2858	spin_unlock_irq(&ic->endio_wait.lock);
2859}
2860
2861
2862static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2863			 unsigned n_sections, unsigned char commit_seq)
2864{
2865	unsigned i, j, n;
2866
2867	if (!n_sections)
2868		return;
2869
2870	for (n = 0; n < n_sections; n++) {
2871		i = start_section + n;
2872		wraparound_section(ic, &i);
2873		for (j = 0; j < ic->journal_section_sectors; j++) {
2874			struct journal_sector *js = access_journal(ic, i, j);
 
2875			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2876			memset(&js->sectors, 0, sizeof(js->sectors));
2877			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2878		}
2879		for (j = 0; j < ic->journal_section_entries; j++) {
2880			struct journal_entry *je = access_journal_entry(ic, i, j);
 
2881			journal_entry_set_unused(je);
2882		}
2883	}
2884
2885	write_journal(ic, start_section, n_sections);
2886}
2887
2888static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2889{
2890	unsigned char k;
 
2891	for (k = 0; k < N_COMMIT_IDS; k++) {
2892		if (dm_integrity_commit_id(ic, i, j, k) == id)
2893			return k;
2894	}
2895	dm_integrity_io_error(ic, "journal commit id", -EIO);
2896	return -EIO;
2897}
2898
2899static void replay_journal(struct dm_integrity_c *ic)
2900{
2901	unsigned i, j;
2902	bool used_commit_ids[N_COMMIT_IDS];
2903	unsigned max_commit_id_sections[N_COMMIT_IDS];
2904	unsigned write_start, write_sections;
2905	unsigned continue_section;
2906	bool journal_empty;
2907	unsigned char unused, last_used, want_commit_seq;
2908
2909	if (ic->mode == 'R')
2910		return;
2911
2912	if (ic->journal_uptodate)
2913		return;
2914
2915	last_used = 0;
2916	write_start = 0;
2917
2918	if (!ic->just_formatted) {
2919		DEBUG_print("reading journal\n");
2920		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2921		if (ic->journal_io)
2922			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2923		if (ic->journal_io) {
2924			struct journal_completion crypt_comp;
 
2925			crypt_comp.ic = ic;
2926			init_completion(&crypt_comp.comp);
2927			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2928			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2929			wait_for_completion(&crypt_comp.comp);
2930		}
2931		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2932	}
2933
2934	if (dm_integrity_failed(ic))
2935		goto clear_journal;
2936
2937	journal_empty = true;
2938	memset(used_commit_ids, 0, sizeof used_commit_ids);
2939	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2940	for (i = 0; i < ic->journal_sections; i++) {
2941		for (j = 0; j < ic->journal_section_sectors; j++) {
2942			int k;
2943			struct journal_sector *js = access_journal(ic, i, j);
 
2944			k = find_commit_seq(ic, i, j, js->commit_id);
2945			if (k < 0)
2946				goto clear_journal;
2947			used_commit_ids[k] = true;
2948			max_commit_id_sections[k] = i;
2949		}
2950		if (journal_empty) {
2951			for (j = 0; j < ic->journal_section_entries; j++) {
2952				struct journal_entry *je = access_journal_entry(ic, i, j);
 
2953				if (!journal_entry_is_unused(je)) {
2954					journal_empty = false;
2955					break;
2956				}
2957			}
2958		}
2959	}
2960
2961	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2962		unused = N_COMMIT_IDS - 1;
2963		while (unused && !used_commit_ids[unused - 1])
2964			unused--;
2965	} else {
2966		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2967			if (!used_commit_ids[unused])
2968				break;
2969		if (unused == N_COMMIT_IDS) {
2970			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2971			goto clear_journal;
2972		}
2973	}
2974	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2975		    unused, used_commit_ids[0], used_commit_ids[1],
2976		    used_commit_ids[2], used_commit_ids[3]);
2977
2978	last_used = prev_commit_seq(unused);
2979	want_commit_seq = prev_commit_seq(last_used);
2980
2981	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2982		journal_empty = true;
2983
2984	write_start = max_commit_id_sections[last_used] + 1;
2985	if (unlikely(write_start >= ic->journal_sections))
2986		want_commit_seq = next_commit_seq(want_commit_seq);
2987	wraparound_section(ic, &write_start);
2988
2989	i = write_start;
2990	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2991		for (j = 0; j < ic->journal_section_sectors; j++) {
2992			struct journal_sector *js = access_journal(ic, i, j);
2993
2994			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2995				/*
2996				 * This could be caused by crash during writing.
2997				 * We won't replay the inconsistent part of the
2998				 * journal.
2999				 */
3000				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3001					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3002				goto brk;
3003			}
3004		}
3005		i++;
3006		if (unlikely(i >= ic->journal_sections))
3007			want_commit_seq = next_commit_seq(want_commit_seq);
3008		wraparound_section(ic, &i);
3009	}
3010brk:
3011
3012	if (!journal_empty) {
3013		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3014			    write_sections, write_start, want_commit_seq);
3015		do_journal_write(ic, write_start, write_sections, true);
3016	}
3017
3018	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3019		continue_section = write_start;
3020		ic->commit_seq = want_commit_seq;
3021		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3022	} else {
3023		unsigned s;
3024		unsigned char erase_seq;
 
3025clear_journal:
3026		DEBUG_print("clearing journal\n");
3027
3028		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3029		s = write_start;
3030		init_journal(ic, s, 1, erase_seq);
3031		s++;
3032		wraparound_section(ic, &s);
3033		if (ic->journal_sections >= 2) {
3034			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3035			s += ic->journal_sections - 2;
3036			wraparound_section(ic, &s);
3037			init_journal(ic, s, 1, erase_seq);
3038		}
3039
3040		continue_section = 0;
3041		ic->commit_seq = next_commit_seq(erase_seq);
3042	}
3043
3044	ic->committed_section = continue_section;
3045	ic->n_committed_sections = 0;
3046
3047	ic->uncommitted_section = continue_section;
3048	ic->n_uncommitted_sections = 0;
3049
3050	ic->free_section = continue_section;
3051	ic->free_section_entry = 0;
3052	ic->free_sectors = ic->journal_entries;
3053
3054	ic->journal_tree_root = RB_ROOT;
3055	for (i = 0; i < ic->journal_entries; i++)
3056		init_journal_node(&ic->journal_tree[i]);
3057}
3058
3059static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3060{
3061	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3062
3063	if (ic->mode == 'B') {
3064		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3065		ic->synchronous_mode = 1;
3066
3067		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3068		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3069		flush_workqueue(ic->commit_wq);
3070	}
3071}
3072
3073static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3074{
3075	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3076
3077	DEBUG_print("dm_integrity_reboot\n");
3078
3079	dm_integrity_enter_synchronous_mode(ic);
3080
3081	return NOTIFY_DONE;
3082}
3083
3084static void dm_integrity_postsuspend(struct dm_target *ti)
3085{
3086	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3087	int r;
3088
3089	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3090
3091	del_timer_sync(&ic->autocommit_timer);
3092
3093	if (ic->recalc_wq)
3094		drain_workqueue(ic->recalc_wq);
3095
3096	if (ic->mode == 'B')
3097		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3098
3099	queue_work(ic->commit_wq, &ic->commit_work);
3100	drain_workqueue(ic->commit_wq);
3101
3102	if (ic->mode == 'J') {
3103		queue_work(ic->writer_wq, &ic->writer_work);
3104		drain_workqueue(ic->writer_wq);
3105		dm_integrity_flush_buffers(ic, true);
3106		if (ic->wrote_to_journal) {
3107			init_journal(ic, ic->free_section,
3108				     ic->journal_sections - ic->free_section, ic->commit_seq);
3109			if (ic->free_section) {
3110				init_journal(ic, 0, ic->free_section,
3111					     next_commit_seq(ic->commit_seq));
3112			}
3113		}
3114	}
3115
3116	if (ic->mode == 'B') {
3117		dm_integrity_flush_buffers(ic, true);
3118#if 1
3119		/* set to 0 to test bitmap replay code */
3120		init_journal(ic, 0, ic->journal_sections, 0);
3121		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3122		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3123		if (unlikely(r))
3124			dm_integrity_io_error(ic, "writing superblock", r);
3125#endif
3126	}
3127
3128	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3129
3130	ic->journal_uptodate = true;
3131}
3132
3133static void dm_integrity_resume(struct dm_target *ti)
3134{
3135	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3136	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3137	int r;
3138
3139	DEBUG_print("resume\n");
3140
3141	ic->wrote_to_journal = false;
3142
3143	if (ic->provided_data_sectors != old_provided_data_sectors) {
3144		if (ic->provided_data_sectors > old_provided_data_sectors &&
3145		    ic->mode == 'B' &&
3146		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3147			rw_journal_sectors(ic, REQ_OP_READ, 0,
3148					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3149			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3150					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3151			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3152					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3153		}
3154
3155		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3156		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3157		if (unlikely(r))
3158			dm_integrity_io_error(ic, "writing superblock", r);
3159	}
3160
3161	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3162		DEBUG_print("resume dirty_bitmap\n");
3163		rw_journal_sectors(ic, REQ_OP_READ, 0,
3164				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3165		if (ic->mode == 'B') {
3166			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3167			    !ic->reset_recalculate_flag) {
3168				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3169				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3170				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3171						     BITMAP_OP_TEST_ALL_CLEAR)) {
3172					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3173					ic->sb->recalc_sector = cpu_to_le64(0);
3174				}
3175			} else {
3176				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3177					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3178				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3179				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3180				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3181				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3182				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3183						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3184				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3185				ic->sb->recalc_sector = cpu_to_le64(0);
3186			}
3187		} else {
3188			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3189			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3190			    ic->reset_recalculate_flag) {
3191				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3192				ic->sb->recalc_sector = cpu_to_le64(0);
3193			}
3194			init_journal(ic, 0, ic->journal_sections, 0);
3195			replay_journal(ic);
3196			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3197		}
3198		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3199		if (unlikely(r))
3200			dm_integrity_io_error(ic, "writing superblock", r);
3201	} else {
3202		replay_journal(ic);
3203		if (ic->reset_recalculate_flag) {
3204			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3205			ic->sb->recalc_sector = cpu_to_le64(0);
3206		}
3207		if (ic->mode == 'B') {
3208			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3209			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3210			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3211			if (unlikely(r))
3212				dm_integrity_io_error(ic, "writing superblock", r);
3213
3214			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3215			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3216			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3217			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3218			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3219				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3220						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3221				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3222						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3223				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3224						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3225			}
3226			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3227					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3228		}
3229	}
3230
3231	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3232	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3233		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
 
3234		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3235		if (recalc_pos < ic->provided_data_sectors) {
3236			queue_work(ic->recalc_wq, &ic->recalc_work);
3237		} else if (recalc_pos > ic->provided_data_sectors) {
3238			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3239			recalc_write_super(ic);
3240		}
3241	}
3242
3243	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3244	ic->reboot_notifier.next = NULL;
3245	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3246	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3247
3248#if 0
3249	/* set to 1 to stress test synchronous mode */
3250	dm_integrity_enter_synchronous_mode(ic);
3251#endif
3252}
3253
3254static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3255				unsigned status_flags, char *result, unsigned maxlen)
3256{
3257	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3258	unsigned arg_count;
3259	size_t sz = 0;
3260
3261	switch (type) {
3262	case STATUSTYPE_INFO:
3263		DMEMIT("%llu %llu",
3264			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3265			ic->provided_data_sectors);
3266		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3267			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3268		else
3269			DMEMIT(" -");
3270		break;
3271
3272	case STATUSTYPE_TABLE: {
3273		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
 
3274		watermark_percentage += ic->journal_entries / 2;
3275		do_div(watermark_percentage, ic->journal_entries);
3276		arg_count = 3;
3277		arg_count += !!ic->meta_dev;
3278		arg_count += ic->sectors_per_block != 1;
3279		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3280		arg_count += ic->reset_recalculate_flag;
3281		arg_count += ic->discard;
3282		arg_count += ic->mode == 'J';
3283		arg_count += ic->mode == 'J';
3284		arg_count += ic->mode == 'B';
3285		arg_count += ic->mode == 'B';
3286		arg_count += !!ic->internal_hash_alg.alg_string;
3287		arg_count += !!ic->journal_crypt_alg.alg_string;
3288		arg_count += !!ic->journal_mac_alg.alg_string;
3289		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3290		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3291		arg_count += ic->legacy_recalculate;
3292		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3293		       ic->tag_size, ic->mode, arg_count);
3294		if (ic->meta_dev)
3295			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3296		if (ic->sectors_per_block != 1)
3297			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3298		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3299			DMEMIT(" recalculate");
3300		if (ic->reset_recalculate_flag)
3301			DMEMIT(" reset_recalculate");
3302		if (ic->discard)
3303			DMEMIT(" allow_discards");
3304		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3305		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3306		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3307		if (ic->mode == 'J') {
3308			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3309			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3310		}
3311		if (ic->mode == 'B') {
3312			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3313			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3314		}
3315		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3316			DMEMIT(" fix_padding");
3317		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3318			DMEMIT(" fix_hmac");
3319		if (ic->legacy_recalculate)
3320			DMEMIT(" legacy_recalculate");
3321
3322#define EMIT_ALG(a, n)							\
3323		do {							\
3324			if (ic->a.alg_string) {				\
3325				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3326				if (ic->a.key_string)			\
3327					DMEMIT(":%s", ic->a.key_string);\
3328			}						\
3329		} while (0)
3330		EMIT_ALG(internal_hash_alg, "internal_hash");
3331		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3332		EMIT_ALG(journal_mac_alg, "journal_mac");
3333		break;
3334	}
3335	case STATUSTYPE_IMA:
3336		DMEMIT_TARGET_NAME_VERSION(ti->type);
3337		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3338			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3339
3340		if (ic->meta_dev)
3341			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3342		if (ic->sectors_per_block != 1)
3343			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3344
3345		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3346		       'y' : 'n');
3347		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3348		DMEMIT(",fix_padding=%c",
3349		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3350		DMEMIT(",fix_hmac=%c",
3351		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3352		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3353
3354		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3355		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3356		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3357		DMEMIT(";");
3358		break;
3359	}
3360}
3361
3362static int dm_integrity_iterate_devices(struct dm_target *ti,
3363					iterate_devices_callout_fn fn, void *data)
3364{
3365	struct dm_integrity_c *ic = ti->private;
3366
3367	if (!ic->meta_dev)
3368		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3369	else
3370		return fn(ti, ic->dev, 0, ti->len, data);
3371}
3372
3373static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3374{
3375	struct dm_integrity_c *ic = ti->private;
3376
3377	if (ic->sectors_per_block > 1) {
3378		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3379		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3380		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3381		limits->dma_alignment = limits->logical_block_size - 1;
3382	}
3383}
3384
3385static void calculate_journal_section_size(struct dm_integrity_c *ic)
3386{
3387	unsigned sector_space = JOURNAL_SECTOR_DATA;
3388
3389	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3390	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3391					 JOURNAL_ENTRY_ROUNDUP);
3392
3393	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3394		sector_space -= JOURNAL_MAC_PER_SECTOR;
3395	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3396	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3397	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3398	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3399}
3400
3401static int calculate_device_limits(struct dm_integrity_c *ic)
3402{
3403	__u64 initial_sectors;
3404
3405	calculate_journal_section_size(ic);
3406	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3407	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3408		return -EINVAL;
3409	ic->initial_sectors = initial_sectors;
3410
3411	if (!ic->meta_dev) {
3412		sector_t last_sector, last_area, last_offset;
3413
3414		/* we have to maintain excessive padding for compatibility with existing volumes */
3415		__u64 metadata_run_padding =
3416			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3417			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3418			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3419
3420		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3421					    metadata_run_padding) >> SECTOR_SHIFT;
3422		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3423			ic->log2_metadata_run = __ffs(ic->metadata_run);
3424		else
3425			ic->log2_metadata_run = -1;
3426
3427		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3428		last_sector = get_data_sector(ic, last_area, last_offset);
3429		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3430			return -EINVAL;
3431	} else {
3432		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
 
3433		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3434				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3435		meta_size <<= ic->log2_buffer_sectors;
3436		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3437		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3438			return -EINVAL;
3439		ic->metadata_run = 1;
3440		ic->log2_metadata_run = 0;
3441	}
3442
3443	return 0;
3444}
3445
3446static void get_provided_data_sectors(struct dm_integrity_c *ic)
3447{
3448	if (!ic->meta_dev) {
3449		int test_bit;
 
3450		ic->provided_data_sectors = 0;
3451		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3452			__u64 prev_data_sectors = ic->provided_data_sectors;
3453
3454			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3455			if (calculate_device_limits(ic))
3456				ic->provided_data_sectors = prev_data_sectors;
3457		}
3458	} else {
3459		ic->provided_data_sectors = ic->data_device_sectors;
3460		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3461	}
3462}
3463
3464static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
 
3465{
3466	unsigned journal_sections;
3467	int test_bit;
3468
3469	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3470	memcpy(ic->sb->magic, SB_MAGIC, 8);
3471	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3472	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3473	if (ic->journal_mac_alg.alg_string)
3474		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3475
3476	calculate_journal_section_size(ic);
3477	journal_sections = journal_sectors / ic->journal_section_sectors;
3478	if (!journal_sections)
3479		journal_sections = 1;
3480
3481	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3482		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3483		get_random_bytes(ic->sb->salt, SALT_SIZE);
3484	}
3485
3486	if (!ic->meta_dev) {
3487		if (ic->fix_padding)
3488			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3489		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3490		if (!interleave_sectors)
3491			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3492		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3493		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3494		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3495
3496		get_provided_data_sectors(ic);
3497		if (!ic->provided_data_sectors)
3498			return -EINVAL;
3499	} else {
3500		ic->sb->log2_interleave_sectors = 0;
3501
3502		get_provided_data_sectors(ic);
3503		if (!ic->provided_data_sectors)
3504			return -EINVAL;
3505
3506try_smaller_buffer:
3507		ic->sb->journal_sections = cpu_to_le32(0);
3508		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3509			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3510			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
 
3511			if (test_journal_sections > journal_sections)
3512				continue;
3513			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3514			if (calculate_device_limits(ic))
3515				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3516
3517		}
3518		if (!le32_to_cpu(ic->sb->journal_sections)) {
3519			if (ic->log2_buffer_sectors > 3) {
3520				ic->log2_buffer_sectors--;
3521				goto try_smaller_buffer;
3522			}
3523			return -EINVAL;
3524		}
3525	}
3526
3527	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3528
3529	sb_set_version(ic);
3530
3531	return 0;
3532}
3533
3534static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3535{
3536	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3537	struct blk_integrity bi;
3538
3539	memset(&bi, 0, sizeof(bi));
3540	bi.profile = &dm_integrity_profile;
3541	bi.tuple_size = ic->tag_size;
3542	bi.tag_size = bi.tuple_size;
3543	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3544
3545	blk_integrity_register(disk, &bi);
3546	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3547}
3548
3549static void dm_integrity_free_page_list(struct page_list *pl)
3550{
3551	unsigned i;
3552
3553	if (!pl)
3554		return;
3555	for (i = 0; pl[i].page; i++)
3556		__free_page(pl[i].page);
3557	kvfree(pl);
3558}
3559
3560static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3561{
3562	struct page_list *pl;
3563	unsigned i;
3564
3565	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3566	if (!pl)
3567		return NULL;
3568
3569	for (i = 0; i < n_pages; i++) {
3570		pl[i].page = alloc_page(GFP_KERNEL);
3571		if (!pl[i].page) {
3572			dm_integrity_free_page_list(pl);
3573			return NULL;
3574		}
3575		if (i)
3576			pl[i - 1].next = &pl[i];
3577	}
3578	pl[i].page = NULL;
3579	pl[i].next = NULL;
3580
3581	return pl;
3582}
3583
3584static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3585{
3586	unsigned i;
 
3587	for (i = 0; i < ic->journal_sections; i++)
3588		kvfree(sl[i]);
3589	kvfree(sl);
3590}
3591
3592static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3593								   struct page_list *pl)
3594{
3595	struct scatterlist **sl;
3596	unsigned i;
3597
3598	sl = kvmalloc_array(ic->journal_sections,
3599			    sizeof(struct scatterlist *),
3600			    GFP_KERNEL | __GFP_ZERO);
3601	if (!sl)
3602		return NULL;
3603
3604	for (i = 0; i < ic->journal_sections; i++) {
3605		struct scatterlist *s;
3606		unsigned start_index, start_offset;
3607		unsigned end_index, end_offset;
3608		unsigned n_pages;
3609		unsigned idx;
3610
3611		page_list_location(ic, i, 0, &start_index, &start_offset);
3612		page_list_location(ic, i, ic->journal_section_sectors - 1,
3613				   &end_index, &end_offset);
3614
3615		n_pages = (end_index - start_index + 1);
3616
3617		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3618				   GFP_KERNEL);
3619		if (!s) {
3620			dm_integrity_free_journal_scatterlist(ic, sl);
3621			return NULL;
3622		}
3623
3624		sg_init_table(s, n_pages);
3625		for (idx = start_index; idx <= end_index; idx++) {
3626			char *va = lowmem_page_address(pl[idx].page);
3627			unsigned start = 0, end = PAGE_SIZE;
 
3628			if (idx == start_index)
3629				start = start_offset;
3630			if (idx == end_index)
3631				end = end_offset + (1 << SECTOR_SHIFT);
3632			sg_set_buf(&s[idx - start_index], va + start, end - start);
3633		}
3634
3635		sl[i] = s;
3636	}
3637
3638	return sl;
3639}
3640
3641static void free_alg(struct alg_spec *a)
3642{
3643	kfree_sensitive(a->alg_string);
3644	kfree_sensitive(a->key);
3645	memset(a, 0, sizeof *a);
3646}
3647
3648static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3649{
3650	char *k;
3651
3652	free_alg(a);
3653
3654	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3655	if (!a->alg_string)
3656		goto nomem;
3657
3658	k = strchr(a->alg_string, ':');
3659	if (k) {
3660		*k = 0;
3661		a->key_string = k + 1;
3662		if (strlen(a->key_string) & 1)
3663			goto inval;
3664
3665		a->key_size = strlen(a->key_string) / 2;
3666		a->key = kmalloc(a->key_size, GFP_KERNEL);
3667		if (!a->key)
3668			goto nomem;
3669		if (hex2bin(a->key, a->key_string, a->key_size))
3670			goto inval;
3671	}
3672
3673	return 0;
3674inval:
3675	*error = error_inval;
3676	return -EINVAL;
3677nomem:
3678	*error = "Out of memory for an argument";
3679	return -ENOMEM;
3680}
3681
3682static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3683		   char *error_alg, char *error_key)
3684{
3685	int r;
3686
3687	if (a->alg_string) {
3688		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3689		if (IS_ERR(*hash)) {
3690			*error = error_alg;
3691			r = PTR_ERR(*hash);
3692			*hash = NULL;
3693			return r;
3694		}
3695
3696		if (a->key) {
3697			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3698			if (r) {
3699				*error = error_key;
3700				return r;
3701			}
3702		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3703			*error = error_key;
3704			return -ENOKEY;
3705		}
3706	}
3707
3708	return 0;
3709}
3710
3711static int create_journal(struct dm_integrity_c *ic, char **error)
3712{
3713	int r = 0;
3714	unsigned i;
3715	__u64 journal_pages, journal_desc_size, journal_tree_size;
3716	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3717	struct skcipher_request *req = NULL;
3718
3719	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3720	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3721	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3722	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3723
3724	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3725				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3726	journal_desc_size = journal_pages * sizeof(struct page_list);
3727	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3728		*error = "Journal doesn't fit into memory";
3729		r = -ENOMEM;
3730		goto bad;
3731	}
3732	ic->journal_pages = journal_pages;
3733
3734	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3735	if (!ic->journal) {
3736		*error = "Could not allocate memory for journal";
3737		r = -ENOMEM;
3738		goto bad;
3739	}
3740	if (ic->journal_crypt_alg.alg_string) {
3741		unsigned ivsize, blocksize;
3742		struct journal_completion comp;
3743
3744		comp.ic = ic;
3745		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3746		if (IS_ERR(ic->journal_crypt)) {
3747			*error = "Invalid journal cipher";
3748			r = PTR_ERR(ic->journal_crypt);
3749			ic->journal_crypt = NULL;
3750			goto bad;
3751		}
3752		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3753		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3754
3755		if (ic->journal_crypt_alg.key) {
3756			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3757						   ic->journal_crypt_alg.key_size);
3758			if (r) {
3759				*error = "Error setting encryption key";
3760				goto bad;
3761			}
3762		}
3763		DEBUG_print("cipher %s, block size %u iv size %u\n",
3764			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3765
3766		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3767		if (!ic->journal_io) {
3768			*error = "Could not allocate memory for journal io";
3769			r = -ENOMEM;
3770			goto bad;
3771		}
3772
3773		if (blocksize == 1) {
3774			struct scatterlist *sg;
3775
3776			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3777			if (!req) {
3778				*error = "Could not allocate crypt request";
3779				r = -ENOMEM;
3780				goto bad;
3781			}
3782
3783			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3784			if (!crypt_iv) {
3785				*error = "Could not allocate iv";
3786				r = -ENOMEM;
3787				goto bad;
3788			}
3789
3790			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3791			if (!ic->journal_xor) {
3792				*error = "Could not allocate memory for journal xor";
3793				r = -ENOMEM;
3794				goto bad;
3795			}
3796
3797			sg = kvmalloc_array(ic->journal_pages + 1,
3798					    sizeof(struct scatterlist),
3799					    GFP_KERNEL);
3800			if (!sg) {
3801				*error = "Unable to allocate sg list";
3802				r = -ENOMEM;
3803				goto bad;
3804			}
3805			sg_init_table(sg, ic->journal_pages + 1);
3806			for (i = 0; i < ic->journal_pages; i++) {
3807				char *va = lowmem_page_address(ic->journal_xor[i].page);
 
3808				clear_page(va);
3809				sg_set_buf(&sg[i], va, PAGE_SIZE);
3810			}
3811			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3812
3813			skcipher_request_set_crypt(req, sg, sg,
3814						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3815			init_completion(&comp.comp);
3816			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3817			if (do_crypt(true, req, &comp))
3818				wait_for_completion(&comp.comp);
3819			kvfree(sg);
3820			r = dm_integrity_failed(ic);
3821			if (r) {
3822				*error = "Unable to encrypt journal";
3823				goto bad;
3824			}
3825			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3826
3827			crypto_free_skcipher(ic->journal_crypt);
3828			ic->journal_crypt = NULL;
3829		} else {
3830			unsigned crypt_len = roundup(ivsize, blocksize);
3831
3832			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3833			if (!req) {
3834				*error = "Could not allocate crypt request";
3835				r = -ENOMEM;
3836				goto bad;
3837			}
3838
3839			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3840			if (!crypt_iv) {
3841				*error = "Could not allocate iv";
3842				r = -ENOMEM;
3843				goto bad;
3844			}
3845
3846			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3847			if (!crypt_data) {
3848				*error = "Unable to allocate crypt data";
3849				r = -ENOMEM;
3850				goto bad;
3851			}
3852
3853			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3854			if (!ic->journal_scatterlist) {
3855				*error = "Unable to allocate sg list";
3856				r = -ENOMEM;
3857				goto bad;
3858			}
3859			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3860			if (!ic->journal_io_scatterlist) {
3861				*error = "Unable to allocate sg list";
3862				r = -ENOMEM;
3863				goto bad;
3864			}
3865			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3866							 sizeof(struct skcipher_request *),
3867							 GFP_KERNEL | __GFP_ZERO);
3868			if (!ic->sk_requests) {
3869				*error = "Unable to allocate sk requests";
3870				r = -ENOMEM;
3871				goto bad;
3872			}
3873			for (i = 0; i < ic->journal_sections; i++) {
3874				struct scatterlist sg;
3875				struct skcipher_request *section_req;
3876				__le32 section_le = cpu_to_le32(i);
3877
3878				memset(crypt_iv, 0x00, ivsize);
3879				memset(crypt_data, 0x00, crypt_len);
3880				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3881
3882				sg_init_one(&sg, crypt_data, crypt_len);
3883				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3884				init_completion(&comp.comp);
3885				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3886				if (do_crypt(true, req, &comp))
3887					wait_for_completion(&comp.comp);
3888
3889				r = dm_integrity_failed(ic);
3890				if (r) {
3891					*error = "Unable to generate iv";
3892					goto bad;
3893				}
3894
3895				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3896				if (!section_req) {
3897					*error = "Unable to allocate crypt request";
3898					r = -ENOMEM;
3899					goto bad;
3900				}
3901				section_req->iv = kmalloc_array(ivsize, 2,
3902								GFP_KERNEL);
3903				if (!section_req->iv) {
3904					skcipher_request_free(section_req);
3905					*error = "Unable to allocate iv";
3906					r = -ENOMEM;
3907					goto bad;
3908				}
3909				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3910				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3911				ic->sk_requests[i] = section_req;
3912				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3913			}
3914		}
3915	}
3916
3917	for (i = 0; i < N_COMMIT_IDS; i++) {
3918		unsigned j;
 
3919retest_commit_id:
3920		for (j = 0; j < i; j++) {
3921			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3922				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3923				goto retest_commit_id;
3924			}
3925		}
3926		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3927	}
3928
3929	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3930	if (journal_tree_size > ULONG_MAX) {
3931		*error = "Journal doesn't fit into memory";
3932		r = -ENOMEM;
3933		goto bad;
3934	}
3935	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3936	if (!ic->journal_tree) {
3937		*error = "Could not allocate memory for journal tree";
3938		r = -ENOMEM;
3939	}
3940bad:
3941	kfree(crypt_data);
3942	kfree(crypt_iv);
3943	skcipher_request_free(req);
3944
3945	return r;
3946}
3947
3948/*
3949 * Construct a integrity mapping
3950 *
3951 * Arguments:
3952 *	device
3953 *	offset from the start of the device
3954 *	tag size
3955 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3956 *	number of optional arguments
3957 *	optional arguments:
3958 *		journal_sectors
3959 *		interleave_sectors
3960 *		buffer_sectors
3961 *		journal_watermark
3962 *		commit_time
3963 *		meta_device
3964 *		block_size
3965 *		sectors_per_bit
3966 *		bitmap_flush_interval
3967 *		internal_hash
3968 *		journal_crypt
3969 *		journal_mac
3970 *		recalculate
3971 */
3972static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3973{
3974	struct dm_integrity_c *ic;
3975	char dummy;
3976	int r;
3977	unsigned extra_args;
3978	struct dm_arg_set as;
3979	static const struct dm_arg _args[] = {
3980		{0, 18, "Invalid number of feature args"},
3981	};
3982	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3983	bool should_write_sb;
3984	__u64 threshold;
3985	unsigned long long start;
3986	__s8 log2_sectors_per_bitmap_bit = -1;
3987	__s8 log2_blocks_per_bitmap_bit;
3988	__u64 bits_in_journal;
3989	__u64 n_bitmap_bits;
3990
3991#define DIRECT_ARGUMENTS	4
3992
3993	if (argc <= DIRECT_ARGUMENTS) {
3994		ti->error = "Invalid argument count";
3995		return -EINVAL;
3996	}
3997
3998	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3999	if (!ic) {
4000		ti->error = "Cannot allocate integrity context";
4001		return -ENOMEM;
4002	}
4003	ti->private = ic;
4004	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4005	ic->ti = ti;
4006
4007	ic->in_progress = RB_ROOT;
4008	INIT_LIST_HEAD(&ic->wait_list);
4009	init_waitqueue_head(&ic->endio_wait);
4010	bio_list_init(&ic->flush_bio_list);
4011	init_waitqueue_head(&ic->copy_to_journal_wait);
4012	init_completion(&ic->crypto_backoff);
4013	atomic64_set(&ic->number_of_mismatches, 0);
4014	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4015
4016	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4017	if (r) {
4018		ti->error = "Device lookup failed";
4019		goto bad;
4020	}
4021
4022	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4023		ti->error = "Invalid starting offset";
4024		r = -EINVAL;
4025		goto bad;
4026	}
4027	ic->start = start;
4028
4029	if (strcmp(argv[2], "-")) {
4030		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4031			ti->error = "Invalid tag size";
4032			r = -EINVAL;
4033			goto bad;
4034		}
4035	}
4036
4037	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4038	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4039		ic->mode = argv[3][0];
4040	} else {
4041		ti->error = "Invalid mode (expecting J, B, D, R)";
4042		r = -EINVAL;
4043		goto bad;
4044	}
4045
4046	journal_sectors = 0;
4047	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4048	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4049	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4050	sync_msec = DEFAULT_SYNC_MSEC;
4051	ic->sectors_per_block = 1;
4052
4053	as.argc = argc - DIRECT_ARGUMENTS;
4054	as.argv = argv + DIRECT_ARGUMENTS;
4055	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4056	if (r)
4057		goto bad;
4058
4059	while (extra_args--) {
4060		const char *opt_string;
4061		unsigned val;
4062		unsigned long long llval;
 
4063		opt_string = dm_shift_arg(&as);
4064		if (!opt_string) {
4065			r = -EINVAL;
4066			ti->error = "Not enough feature arguments";
4067			goto bad;
4068		}
4069		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4070			journal_sectors = val ? val : 1;
4071		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4072			interleave_sectors = val;
4073		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4074			buffer_sectors = val;
4075		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4076			journal_watermark = val;
4077		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4078			sync_msec = val;
4079		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4080			if (ic->meta_dev) {
4081				dm_put_device(ti, ic->meta_dev);
4082				ic->meta_dev = NULL;
4083			}
4084			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4085					  dm_table_get_mode(ti->table), &ic->meta_dev);
4086			if (r) {
4087				ti->error = "Device lookup failed";
4088				goto bad;
4089			}
4090		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4091			if (val < 1 << SECTOR_SHIFT ||
4092			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4093			    (val & (val -1))) {
4094				r = -EINVAL;
4095				ti->error = "Invalid block_size argument";
4096				goto bad;
4097			}
4098			ic->sectors_per_block = val >> SECTOR_SHIFT;
4099		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4100			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4101		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4102			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4103				r = -EINVAL;
4104				ti->error = "Invalid bitmap_flush_interval argument";
4105				goto bad;
4106			}
4107			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4108		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4109			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4110					    "Invalid internal_hash argument");
4111			if (r)
4112				goto bad;
4113		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4114			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4115					    "Invalid journal_crypt argument");
4116			if (r)
4117				goto bad;
4118		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4119			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4120					    "Invalid journal_mac argument");
4121			if (r)
4122				goto bad;
4123		} else if (!strcmp(opt_string, "recalculate")) {
4124			ic->recalculate_flag = true;
4125		} else if (!strcmp(opt_string, "reset_recalculate")) {
4126			ic->recalculate_flag = true;
4127			ic->reset_recalculate_flag = true;
4128		} else if (!strcmp(opt_string, "allow_discards")) {
4129			ic->discard = true;
4130		} else if (!strcmp(opt_string, "fix_padding")) {
4131			ic->fix_padding = true;
4132		} else if (!strcmp(opt_string, "fix_hmac")) {
4133			ic->fix_hmac = true;
4134		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4135			ic->legacy_recalculate = true;
4136		} else {
4137			r = -EINVAL;
4138			ti->error = "Invalid argument";
4139			goto bad;
4140		}
4141	}
4142
4143	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4144	if (!ic->meta_dev)
4145		ic->meta_device_sectors = ic->data_device_sectors;
4146	else
4147		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4148
4149	if (!journal_sectors) {
4150		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4151				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4152	}
4153
4154	if (!buffer_sectors)
4155		buffer_sectors = 1;
4156	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4157
4158	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4159		    "Invalid internal hash", "Error setting internal hash key");
4160	if (r)
4161		goto bad;
4162
4163	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4164		    "Invalid journal mac", "Error setting journal mac key");
4165	if (r)
4166		goto bad;
4167
4168	if (!ic->tag_size) {
4169		if (!ic->internal_hash) {
4170			ti->error = "Unknown tag size";
4171			r = -EINVAL;
4172			goto bad;
4173		}
4174		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4175	}
4176	if (ic->tag_size > MAX_TAG_SIZE) {
4177		ti->error = "Too big tag size";
4178		r = -EINVAL;
4179		goto bad;
4180	}
4181	if (!(ic->tag_size & (ic->tag_size - 1)))
4182		ic->log2_tag_size = __ffs(ic->tag_size);
4183	else
4184		ic->log2_tag_size = -1;
4185
4186	if (ic->mode == 'B' && !ic->internal_hash) {
4187		r = -EINVAL;
4188		ti->error = "Bitmap mode can be only used with internal hash";
4189		goto bad;
4190	}
4191
4192	if (ic->discard && !ic->internal_hash) {
4193		r = -EINVAL;
4194		ti->error = "Discard can be only used with internal hash";
4195		goto bad;
4196	}
4197
4198	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4199	ic->autocommit_msec = sync_msec;
4200	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4201
4202	ic->io = dm_io_client_create();
4203	if (IS_ERR(ic->io)) {
4204		r = PTR_ERR(ic->io);
4205		ic->io = NULL;
4206		ti->error = "Cannot allocate dm io";
4207		goto bad;
4208	}
4209
4210	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4211	if (r) {
4212		ti->error = "Cannot allocate mempool";
4213		goto bad;
4214	}
4215
 
 
 
 
 
 
4216	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4217					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4218	if (!ic->metadata_wq) {
4219		ti->error = "Cannot allocate workqueue";
4220		r = -ENOMEM;
4221		goto bad;
4222	}
4223
4224	/*
4225	 * If this workqueue were percpu, it would cause bio reordering
4226	 * and reduced performance.
4227	 */
4228	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4229	if (!ic->wait_wq) {
4230		ti->error = "Cannot allocate workqueue";
4231		r = -ENOMEM;
4232		goto bad;
4233	}
4234
4235	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4236					  METADATA_WORKQUEUE_MAX_ACTIVE);
4237	if (!ic->offload_wq) {
4238		ti->error = "Cannot allocate workqueue";
4239		r = -ENOMEM;
4240		goto bad;
4241	}
4242
4243	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4244	if (!ic->commit_wq) {
4245		ti->error = "Cannot allocate workqueue";
4246		r = -ENOMEM;
4247		goto bad;
4248	}
4249	INIT_WORK(&ic->commit_work, integrity_commit);
4250
4251	if (ic->mode == 'J' || ic->mode == 'B') {
4252		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4253		if (!ic->writer_wq) {
4254			ti->error = "Cannot allocate workqueue";
4255			r = -ENOMEM;
4256			goto bad;
4257		}
4258		INIT_WORK(&ic->writer_work, integrity_writer);
4259	}
4260
4261	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4262	if (!ic->sb) {
4263		r = -ENOMEM;
4264		ti->error = "Cannot allocate superblock area";
4265		goto bad;
4266	}
4267
4268	r = sync_rw_sb(ic, REQ_OP_READ);
4269	if (r) {
4270		ti->error = "Error reading superblock";
4271		goto bad;
4272	}
4273	should_write_sb = false;
4274	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4275		if (ic->mode != 'R') {
4276			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4277				r = -EINVAL;
4278				ti->error = "The device is not initialized";
4279				goto bad;
4280			}
4281		}
4282
4283		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4284		if (r) {
4285			ti->error = "Could not initialize superblock";
4286			goto bad;
4287		}
4288		if (ic->mode != 'R')
4289			should_write_sb = true;
4290	}
4291
4292	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4293		r = -EINVAL;
4294		ti->error = "Unknown version";
4295		goto bad;
4296	}
4297	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4298		r = -EINVAL;
4299		ti->error = "Tag size doesn't match the information in superblock";
4300		goto bad;
4301	}
4302	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4303		r = -EINVAL;
4304		ti->error = "Block size doesn't match the information in superblock";
4305		goto bad;
4306	}
4307	if (!le32_to_cpu(ic->sb->journal_sections)) {
4308		r = -EINVAL;
4309		ti->error = "Corrupted superblock, journal_sections is 0";
4310		goto bad;
4311	}
4312	/* make sure that ti->max_io_len doesn't overflow */
4313	if (!ic->meta_dev) {
4314		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4315		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4316			r = -EINVAL;
4317			ti->error = "Invalid interleave_sectors in the superblock";
4318			goto bad;
4319		}
4320	} else {
4321		if (ic->sb->log2_interleave_sectors) {
4322			r = -EINVAL;
4323			ti->error = "Invalid interleave_sectors in the superblock";
4324			goto bad;
4325		}
4326	}
4327	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4328		r = -EINVAL;
4329		ti->error = "Journal mac mismatch";
4330		goto bad;
4331	}
4332
4333	get_provided_data_sectors(ic);
4334	if (!ic->provided_data_sectors) {
4335		r = -EINVAL;
4336		ti->error = "The device is too small";
4337		goto bad;
4338	}
4339
4340try_smaller_buffer:
4341	r = calculate_device_limits(ic);
4342	if (r) {
4343		if (ic->meta_dev) {
4344			if (ic->log2_buffer_sectors > 3) {
4345				ic->log2_buffer_sectors--;
4346				goto try_smaller_buffer;
4347			}
4348		}
4349		ti->error = "The device is too small";
4350		goto bad;
4351	}
4352
4353	if (log2_sectors_per_bitmap_bit < 0)
4354		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4355	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4356		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4357
4358	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4359	if (bits_in_journal > UINT_MAX)
4360		bits_in_journal = UINT_MAX;
4361	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4362		log2_sectors_per_bitmap_bit++;
4363
4364	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4365	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4366	if (should_write_sb) {
4367		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4368	}
4369	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4370				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4371	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4372
4373	if (!ic->meta_dev)
4374		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4375
4376	if (ti->len > ic->provided_data_sectors) {
4377		r = -EINVAL;
4378		ti->error = "Not enough provided sectors for requested mapping size";
4379		goto bad;
4380	}
4381
4382
4383	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4384	threshold += 50;
4385	do_div(threshold, 100);
4386	ic->free_sectors_threshold = threshold;
4387
4388	DEBUG_print("initialized:\n");
4389	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4390	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4391	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4392	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4393	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4394	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4395	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4396	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4397	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4398	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4399	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4400	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4401	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4402	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4403	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4404
4405	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4406		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4407		ic->sb->recalc_sector = cpu_to_le64(0);
4408	}
4409
4410	if (ic->internal_hash) {
4411		size_t recalc_tags_size;
4412		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4413		if (!ic->recalc_wq ) {
4414			ti->error = "Cannot allocate workqueue";
4415			r = -ENOMEM;
4416			goto bad;
4417		}
4418		INIT_WORK(&ic->recalc_work, integrity_recalc);
4419		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4420		if (!ic->recalc_buffer) {
4421			ti->error = "Cannot allocate buffer for recalculating";
4422			r = -ENOMEM;
4423			goto bad;
4424		}
4425		recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4426		if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4427			recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4428		ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4429		if (!ic->recalc_tags) {
4430			ti->error = "Cannot allocate tags for recalculating";
4431			r = -ENOMEM;
4432			goto bad;
4433		}
4434	} else {
4435		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4436			ti->error = "Recalculate can only be specified with internal_hash";
4437			r = -EINVAL;
4438			goto bad;
4439		}
4440	}
4441
4442	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4443	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4444	    dm_integrity_disable_recalculate(ic)) {
4445		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4446		r = -EOPNOTSUPP;
4447		goto bad;
4448	}
4449
4450	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4451			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4452	if (IS_ERR(ic->bufio)) {
4453		r = PTR_ERR(ic->bufio);
4454		ti->error = "Cannot initialize dm-bufio";
4455		ic->bufio = NULL;
4456		goto bad;
4457	}
4458	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4459
4460	if (ic->mode != 'R') {
4461		r = create_journal(ic, &ti->error);
4462		if (r)
4463			goto bad;
4464
4465	}
4466
4467	if (ic->mode == 'B') {
4468		unsigned i;
4469		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4470
4471		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4472		if (!ic->recalc_bitmap) {
4473			r = -ENOMEM;
4474			goto bad;
4475		}
4476		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4477		if (!ic->may_write_bitmap) {
4478			r = -ENOMEM;
4479			goto bad;
4480		}
4481		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4482		if (!ic->bbs) {
4483			r = -ENOMEM;
4484			goto bad;
4485		}
4486		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4487		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4488			struct bitmap_block_status *bbs = &ic->bbs[i];
4489			unsigned sector, pl_index, pl_offset;
4490
4491			INIT_WORK(&bbs->work, bitmap_block_work);
4492			bbs->ic = ic;
4493			bbs->idx = i;
4494			bio_list_init(&bbs->bio_queue);
4495			spin_lock_init(&bbs->bio_queue_lock);
4496
4497			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4498			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4499			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4500
4501			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4502		}
4503	}
4504
4505	if (should_write_sb) {
4506		init_journal(ic, 0, ic->journal_sections, 0);
4507		r = dm_integrity_failed(ic);
4508		if (unlikely(r)) {
4509			ti->error = "Error initializing journal";
4510			goto bad;
4511		}
4512		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4513		if (r) {
4514			ti->error = "Error initializing superblock";
4515			goto bad;
4516		}
4517		ic->just_formatted = true;
4518	}
4519
4520	if (!ic->meta_dev) {
4521		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4522		if (r)
4523			goto bad;
4524	}
4525	if (ic->mode == 'B') {
4526		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
 
 
4527		if (!max_io_len)
4528			max_io_len = 1U << 31;
4529		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4530		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4531			r = dm_set_target_max_io_len(ti, max_io_len);
4532			if (r)
4533				goto bad;
4534		}
4535	}
4536
4537	if (!ic->internal_hash)
4538		dm_integrity_set(ti, ic);
4539
4540	ti->num_flush_bios = 1;
4541	ti->flush_supported = true;
4542	if (ic->discard)
4543		ti->num_discard_bios = 1;
4544
4545	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4546	return 0;
4547
4548bad:
4549	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4550	dm_integrity_dtr(ti);
4551	return r;
4552}
4553
4554static void dm_integrity_dtr(struct dm_target *ti)
4555{
4556	struct dm_integrity_c *ic = ti->private;
4557
4558	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4559	BUG_ON(!list_empty(&ic->wait_list));
4560
4561	if (ic->mode == 'B')
4562		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4563	if (ic->metadata_wq)
4564		destroy_workqueue(ic->metadata_wq);
4565	if (ic->wait_wq)
4566		destroy_workqueue(ic->wait_wq);
4567	if (ic->offload_wq)
4568		destroy_workqueue(ic->offload_wq);
4569	if (ic->commit_wq)
4570		destroy_workqueue(ic->commit_wq);
4571	if (ic->writer_wq)
4572		destroy_workqueue(ic->writer_wq);
4573	if (ic->recalc_wq)
4574		destroy_workqueue(ic->recalc_wq);
4575	vfree(ic->recalc_buffer);
4576	kvfree(ic->recalc_tags);
4577	kvfree(ic->bbs);
4578	if (ic->bufio)
4579		dm_bufio_client_destroy(ic->bufio);
 
4580	mempool_exit(&ic->journal_io_mempool);
4581	if (ic->io)
4582		dm_io_client_destroy(ic->io);
4583	if (ic->dev)
4584		dm_put_device(ti, ic->dev);
4585	if (ic->meta_dev)
4586		dm_put_device(ti, ic->meta_dev);
4587	dm_integrity_free_page_list(ic->journal);
4588	dm_integrity_free_page_list(ic->journal_io);
4589	dm_integrity_free_page_list(ic->journal_xor);
4590	dm_integrity_free_page_list(ic->recalc_bitmap);
4591	dm_integrity_free_page_list(ic->may_write_bitmap);
4592	if (ic->journal_scatterlist)
4593		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4594	if (ic->journal_io_scatterlist)
4595		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4596	if (ic->sk_requests) {
4597		unsigned i;
4598
4599		for (i = 0; i < ic->journal_sections; i++) {
4600			struct skcipher_request *req = ic->sk_requests[i];
 
 
4601			if (req) {
4602				kfree_sensitive(req->iv);
4603				skcipher_request_free(req);
4604			}
4605		}
4606		kvfree(ic->sk_requests);
4607	}
4608	kvfree(ic->journal_tree);
4609	if (ic->sb)
4610		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4611
4612	if (ic->internal_hash)
4613		crypto_free_shash(ic->internal_hash);
4614	free_alg(&ic->internal_hash_alg);
4615
4616	if (ic->journal_crypt)
4617		crypto_free_skcipher(ic->journal_crypt);
4618	free_alg(&ic->journal_crypt_alg);
4619
4620	if (ic->journal_mac)
4621		crypto_free_shash(ic->journal_mac);
4622	free_alg(&ic->journal_mac_alg);
4623
4624	kfree(ic);
4625	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4626}
4627
4628static struct target_type integrity_target = {
4629	.name			= "integrity",
4630	.version		= {1, 10, 0},
4631	.module			= THIS_MODULE,
4632	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4633	.ctr			= dm_integrity_ctr,
4634	.dtr			= dm_integrity_dtr,
4635	.map			= dm_integrity_map,
4636	.postsuspend		= dm_integrity_postsuspend,
4637	.resume			= dm_integrity_resume,
4638	.status			= dm_integrity_status,
4639	.iterate_devices	= dm_integrity_iterate_devices,
4640	.io_hints		= dm_integrity_io_hints,
4641};
4642
4643static int __init dm_integrity_init(void)
4644{
4645	int r;
4646
4647	journal_io_cache = kmem_cache_create("integrity_journal_io",
4648					     sizeof(struct journal_io), 0, 0, NULL);
4649	if (!journal_io_cache) {
4650		DMERR("can't allocate journal io cache");
4651		return -ENOMEM;
4652	}
4653
4654	r = dm_register_target(&integrity_target);
 
 
 
 
4655
4656	if (r < 0)
4657		DMERR("register failed %d", r);
4658
4659	return r;
4660}
4661
4662static void __exit dm_integrity_exit(void)
4663{
4664	dm_unregister_target(&integrity_target);
4665	kmem_cache_destroy(journal_io_cache);
4666}
4667
4668module_init(dm_integrity_init);
4669module_exit(dm_integrity_exit);
4670
4671MODULE_AUTHOR("Milan Broz");
4672MODULE_AUTHOR("Mikulas Patocka");
4673MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4674MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   4 * Copyright (C) 2016-2017 Milan Broz
   5 * Copyright (C) 2016-2017 Mikulas Patocka
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include "dm-bio-record.h"
  11
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/device-mapper.h>
  15#include <linux/dm-io.h>
  16#include <linux/vmalloc.h>
  17#include <linux/sort.h>
  18#include <linux/rbtree.h>
  19#include <linux/delay.h>
  20#include <linux/random.h>
  21#include <linux/reboot.h>
  22#include <crypto/hash.h>
  23#include <crypto/skcipher.h>
  24#include <linux/async_tx.h>
  25#include <linux/dm-bufio.h>
  26
  27#include "dm-audit.h"
  28
  29#define DM_MSG_PREFIX "integrity"
  30
  31#define DEFAULT_INTERLEAVE_SECTORS	32768
  32#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  33#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  34#define DEFAULT_BUFFER_SECTORS		128
  35#define DEFAULT_JOURNAL_WATERMARK	50
  36#define DEFAULT_SYNC_MSEC		10000
  37#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
  38#define MIN_LOG2_INTERLEAVE_SECTORS	3
  39#define MAX_LOG2_INTERLEAVE_SECTORS	31
  40#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  41#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
  42#define RECALC_WRITE_SUPER		16
  43#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  44#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  45#define DISCARD_FILLER			0xf6
  46#define SALT_SIZE			16
  47
  48/*
  49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  50 * so it should not be enabled in the official kernel
  51 */
  52//#define DEBUG_PRINT
  53//#define INTERNAL_VERIFY
  54
  55/*
  56 * On disk structures
  57 */
  58
  59#define SB_MAGIC			"integrt"
  60#define SB_VERSION_1			1
  61#define SB_VERSION_2			2
  62#define SB_VERSION_3			3
  63#define SB_VERSION_4			4
  64#define SB_VERSION_5			5
  65#define SB_SECTORS			8
  66#define MAX_SECTORS_PER_BLOCK		8
  67
  68struct superblock {
  69	__u8 magic[8];
  70	__u8 version;
  71	__u8 log2_interleave_sectors;
  72	__le16 integrity_tag_size;
  73	__le32 journal_sections;
  74	__le64 provided_data_sectors;	/* userspace uses this value */
  75	__le32 flags;
  76	__u8 log2_sectors_per_block;
  77	__u8 log2_blocks_per_bitmap_bit;
  78	__u8 pad[2];
  79	__le64 recalc_sector;
  80	__u8 pad2[8];
  81	__u8 salt[SALT_SIZE];
  82};
  83
  84#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  85#define SB_FLAG_RECALCULATING		0x2
  86#define SB_FLAG_DIRTY_BITMAP		0x4
  87#define SB_FLAG_FIXED_PADDING		0x8
  88#define SB_FLAG_FIXED_HMAC		0x10
  89
  90#define	JOURNAL_ENTRY_ROUNDUP		8
  91
  92typedef __le64 commit_id_t;
  93#define JOURNAL_MAC_PER_SECTOR		8
  94
  95struct journal_entry {
  96	union {
  97		struct {
  98			__le32 sector_lo;
  99			__le32 sector_hi;
 100		} s;
 101		__le64 sector;
 102	} u;
 103	commit_id_t last_bytes[];
 104	/* __u8 tag[0]; */
 105};
 106
 107#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 108
 109#if BITS_PER_LONG == 64
 110#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 111#else
 112#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 113#endif
 114#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 115#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 116#define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
 117#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 118#define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
 119
 120#define JOURNAL_BLOCK_SECTORS		8
 121#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 122#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 123
 124struct journal_sector {
 125	struct_group(sectors,
 126		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 127		__u8 mac[JOURNAL_MAC_PER_SECTOR];
 128	);
 129	commit_id_t commit_id;
 130};
 131
 132#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 133
 134#define METADATA_PADDING_SECTORS	8
 135
 136#define N_COMMIT_IDS			4
 137
 138static unsigned char prev_commit_seq(unsigned char seq)
 139{
 140	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 141}
 142
 143static unsigned char next_commit_seq(unsigned char seq)
 144{
 145	return (seq + 1) % N_COMMIT_IDS;
 146}
 147
 148/*
 149 * In-memory structures
 150 */
 151
 152struct journal_node {
 153	struct rb_node node;
 154	sector_t sector;
 155};
 156
 157struct alg_spec {
 158	char *alg_string;
 159	char *key_string;
 160	__u8 *key;
 161	unsigned int key_size;
 162};
 163
 164struct dm_integrity_c {
 165	struct dm_dev *dev;
 166	struct dm_dev *meta_dev;
 167	unsigned int tag_size;
 168	__s8 log2_tag_size;
 169	sector_t start;
 170	mempool_t journal_io_mempool;
 171	struct dm_io_client *io;
 172	struct dm_bufio_client *bufio;
 173	struct workqueue_struct *metadata_wq;
 174	struct superblock *sb;
 175	unsigned int journal_pages;
 176	unsigned int n_bitmap_blocks;
 177
 178	struct page_list *journal;
 179	struct page_list *journal_io;
 180	struct page_list *journal_xor;
 181	struct page_list *recalc_bitmap;
 182	struct page_list *may_write_bitmap;
 183	struct bitmap_block_status *bbs;
 184	unsigned int bitmap_flush_interval;
 185	int synchronous_mode;
 186	struct bio_list synchronous_bios;
 187	struct delayed_work bitmap_flush_work;
 188
 189	struct crypto_skcipher *journal_crypt;
 190	struct scatterlist **journal_scatterlist;
 191	struct scatterlist **journal_io_scatterlist;
 192	struct skcipher_request **sk_requests;
 193
 194	struct crypto_shash *journal_mac;
 195
 196	struct journal_node *journal_tree;
 197	struct rb_root journal_tree_root;
 198
 199	sector_t provided_data_sectors;
 200
 201	unsigned short journal_entry_size;
 202	unsigned char journal_entries_per_sector;
 203	unsigned char journal_section_entries;
 204	unsigned short journal_section_sectors;
 205	unsigned int journal_sections;
 206	unsigned int journal_entries;
 207	sector_t data_device_sectors;
 208	sector_t meta_device_sectors;
 209	unsigned int initial_sectors;
 210	unsigned int metadata_run;
 211	__s8 log2_metadata_run;
 212	__u8 log2_buffer_sectors;
 213	__u8 sectors_per_block;
 214	__u8 log2_blocks_per_bitmap_bit;
 215
 216	unsigned char mode;
 217
 218	int failed;
 219
 220	struct crypto_shash *internal_hash;
 221
 222	struct dm_target *ti;
 223
 224	/* these variables are locked with endio_wait.lock */
 225	struct rb_root in_progress;
 226	struct list_head wait_list;
 227	wait_queue_head_t endio_wait;
 228	struct workqueue_struct *wait_wq;
 229	struct workqueue_struct *offload_wq;
 230
 231	unsigned char commit_seq;
 232	commit_id_t commit_ids[N_COMMIT_IDS];
 233
 234	unsigned int committed_section;
 235	unsigned int n_committed_sections;
 236
 237	unsigned int uncommitted_section;
 238	unsigned int n_uncommitted_sections;
 239
 240	unsigned int free_section;
 241	unsigned char free_section_entry;
 242	unsigned int free_sectors;
 243
 244	unsigned int free_sectors_threshold;
 245
 246	struct workqueue_struct *commit_wq;
 247	struct work_struct commit_work;
 248
 249	struct workqueue_struct *writer_wq;
 250	struct work_struct writer_work;
 251
 252	struct workqueue_struct *recalc_wq;
 253	struct work_struct recalc_work;
 
 
 254
 255	struct bio_list flush_bio_list;
 256
 257	unsigned long autocommit_jiffies;
 258	struct timer_list autocommit_timer;
 259	unsigned int autocommit_msec;
 260
 261	wait_queue_head_t copy_to_journal_wait;
 262
 263	struct completion crypto_backoff;
 264
 265	bool wrote_to_journal;
 266	bool journal_uptodate;
 267	bool just_formatted;
 268	bool recalculate_flag;
 269	bool reset_recalculate_flag;
 270	bool discard;
 271	bool fix_padding;
 272	bool fix_hmac;
 273	bool legacy_recalculate;
 274
 275	struct alg_spec internal_hash_alg;
 276	struct alg_spec journal_crypt_alg;
 277	struct alg_spec journal_mac_alg;
 278
 279	atomic64_t number_of_mismatches;
 280
 281	mempool_t recheck_pool;
 282
 283	struct notifier_block reboot_notifier;
 284};
 285
 286struct dm_integrity_range {
 287	sector_t logical_sector;
 288	sector_t n_sectors;
 289	bool waiting;
 290	union {
 291		struct rb_node node;
 292		struct {
 293			struct task_struct *task;
 294			struct list_head wait_entry;
 295		};
 296	};
 297};
 298
 299struct dm_integrity_io {
 300	struct work_struct work;
 301
 302	struct dm_integrity_c *ic;
 303	enum req_op op;
 304	bool fua;
 305
 306	struct dm_integrity_range range;
 307
 308	sector_t metadata_block;
 309	unsigned int metadata_offset;
 310
 311	atomic_t in_flight;
 312	blk_status_t bi_status;
 313
 314	struct completion *completion;
 315
 316	struct dm_bio_details bio_details;
 317};
 318
 319struct journal_completion {
 320	struct dm_integrity_c *ic;
 321	atomic_t in_flight;
 322	struct completion comp;
 323};
 324
 325struct journal_io {
 326	struct dm_integrity_range range;
 327	struct journal_completion *comp;
 328};
 329
 330struct bitmap_block_status {
 331	struct work_struct work;
 332	struct dm_integrity_c *ic;
 333	unsigned int idx;
 334	unsigned long *bitmap;
 335	struct bio_list bio_queue;
 336	spinlock_t bio_queue_lock;
 337
 338};
 339
 340static struct kmem_cache *journal_io_cache;
 341
 342#define JOURNAL_IO_MEMPOOL	32
 343
 344#ifdef DEBUG_PRINT
 345#define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
 346#define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
 347						       len ? ": " : "", len, bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348#else
 349#define DEBUG_print(x, ...)			do { } while (0)
 350#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 351#endif
 352
 353static void dm_integrity_prepare(struct request *rq)
 354{
 355}
 356
 357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
 358{
 359}
 360
 361/*
 362 * DM Integrity profile, protection is performed layer above (dm-crypt)
 363 */
 364static const struct blk_integrity_profile dm_integrity_profile = {
 365	.name			= "DM-DIF-EXT-TAG",
 366	.generate_fn		= NULL,
 367	.verify_fn		= NULL,
 368	.prepare_fn		= dm_integrity_prepare,
 369	.complete_fn		= dm_integrity_complete,
 370};
 371
 372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 373static void integrity_bio_wait(struct work_struct *w);
 374static void dm_integrity_dtr(struct dm_target *ti);
 375
 376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 377{
 378	if (err == -EILSEQ)
 379		atomic64_inc(&ic->number_of_mismatches);
 380	if (!cmpxchg(&ic->failed, 0, err))
 381		DMERR("Error on %s: %d", msg, err);
 382}
 383
 384static int dm_integrity_failed(struct dm_integrity_c *ic)
 385{
 386	return READ_ONCE(ic->failed);
 387}
 388
 389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
 390{
 391	if (ic->legacy_recalculate)
 392		return false;
 393	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
 394	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
 395	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
 396		return true;
 397	return false;
 398}
 399
 400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
 401					  unsigned int j, unsigned char seq)
 402{
 403	/*
 404	 * Xor the number with section and sector, so that if a piece of
 405	 * journal is written at wrong place, it is detected.
 406	 */
 407	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 408}
 409
 410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 411				sector_t *area, sector_t *offset)
 412{
 413	if (!ic->meta_dev) {
 414		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 415		*area = data_sector >> log2_interleave_sectors;
 416		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
 417	} else {
 418		*area = 0;
 419		*offset = data_sector;
 420	}
 421}
 422
 423#define sector_to_block(ic, n)						\
 424do {									\
 425	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
 426	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 427} while (0)
 428
 429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 430					    sector_t offset, unsigned int *metadata_offset)
 431{
 432	__u64 ms;
 433	unsigned int mo;
 434
 435	ms = area << ic->sb->log2_interleave_sectors;
 436	if (likely(ic->log2_metadata_run >= 0))
 437		ms += area << ic->log2_metadata_run;
 438	else
 439		ms += area * ic->metadata_run;
 440	ms >>= ic->log2_buffer_sectors;
 441
 442	sector_to_block(ic, offset);
 443
 444	if (likely(ic->log2_tag_size >= 0)) {
 445		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 446		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 447	} else {
 448		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 449		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 450	}
 451	*metadata_offset = mo;
 452	return ms;
 453}
 454
 455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 456{
 457	sector_t result;
 458
 459	if (ic->meta_dev)
 460		return offset;
 461
 462	result = area << ic->sb->log2_interleave_sectors;
 463	if (likely(ic->log2_metadata_run >= 0))
 464		result += (area + 1) << ic->log2_metadata_run;
 465	else
 466		result += (area + 1) * ic->metadata_run;
 467
 468	result += (sector_t)ic->initial_sectors + offset;
 469	result += ic->start;
 470
 471	return result;
 472}
 473
 474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
 475{
 476	if (unlikely(*sec_ptr >= ic->journal_sections))
 477		*sec_ptr -= ic->journal_sections;
 478}
 479
 480static void sb_set_version(struct dm_integrity_c *ic)
 481{
 482	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
 483		ic->sb->version = SB_VERSION_5;
 484	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 485		ic->sb->version = SB_VERSION_4;
 486	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 487		ic->sb->version = SB_VERSION_3;
 488	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 489		ic->sb->version = SB_VERSION_2;
 490	else
 491		ic->sb->version = SB_VERSION_1;
 492}
 493
 494static int sb_mac(struct dm_integrity_c *ic, bool wr)
 495{
 496	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 497	int r;
 498	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
 499	__u8 *sb = (__u8 *)ic->sb;
 500	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
 501
 502	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
 503		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
 504		return -EINVAL;
 505	}
 506
 507	desc->tfm = ic->journal_mac;
 508
 
 
 
 
 
 
 
 
 
 
 
 
 509	if (likely(wr)) {
 510		r = crypto_shash_digest(desc, sb, mac - sb, mac);
 511		if (unlikely(r < 0)) {
 512			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 513			return r;
 514		}
 515	} else {
 516		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
 517
 518		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
 519		if (unlikely(r < 0)) {
 520			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 521			return r;
 522		}
 523		if (memcmp(mac, actual_mac, mac_size)) {
 524			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
 525			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
 526			return -EILSEQ;
 527		}
 528	}
 529
 530	return 0;
 531}
 532
 533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
 534{
 535	struct dm_io_request io_req;
 536	struct dm_io_region io_loc;
 537	const enum req_op op = opf & REQ_OP_MASK;
 538	int r;
 539
 540	io_req.bi_opf = opf;
 541	io_req.mem.type = DM_IO_KMEM;
 542	io_req.mem.ptr.addr = ic->sb;
 543	io_req.notify.fn = NULL;
 544	io_req.client = ic->io;
 545	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 546	io_loc.sector = ic->start;
 547	io_loc.count = SB_SECTORS;
 548
 549	if (op == REQ_OP_WRITE) {
 550		sb_set_version(ic);
 551		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 552			r = sb_mac(ic, true);
 553			if (unlikely(r))
 554				return r;
 555		}
 556	}
 557
 558	r = dm_io(&io_req, 1, &io_loc, NULL);
 559	if (unlikely(r))
 560		return r;
 561
 562	if (op == REQ_OP_READ) {
 563		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 564			r = sb_mac(ic, false);
 565			if (unlikely(r))
 566				return r;
 567		}
 568	}
 569
 570	return 0;
 571}
 572
 573#define BITMAP_OP_TEST_ALL_SET		0
 574#define BITMAP_OP_TEST_ALL_CLEAR	1
 575#define BITMAP_OP_SET			2
 576#define BITMAP_OP_CLEAR			3
 577
 578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 579			    sector_t sector, sector_t n_sectors, int mode)
 580{
 581	unsigned long bit, end_bit, this_end_bit, page, end_page;
 582	unsigned long *data;
 583
 584	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 585		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 586			sector,
 587			n_sectors,
 588			ic->sb->log2_sectors_per_block,
 589			ic->log2_blocks_per_bitmap_bit,
 590			mode);
 591		BUG();
 592	}
 593
 594	if (unlikely(!n_sectors))
 595		return true;
 596
 597	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 598	end_bit = (sector + n_sectors - 1) >>
 599		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 600
 601	page = bit / (PAGE_SIZE * 8);
 602	bit %= PAGE_SIZE * 8;
 603
 604	end_page = end_bit / (PAGE_SIZE * 8);
 605	end_bit %= PAGE_SIZE * 8;
 606
 607repeat:
 608	if (page < end_page)
 609		this_end_bit = PAGE_SIZE * 8 - 1;
 610	else
 611		this_end_bit = end_bit;
 
 612
 613	data = lowmem_page_address(bitmap[page].page);
 614
 615	if (mode == BITMAP_OP_TEST_ALL_SET) {
 616		while (bit <= this_end_bit) {
 617			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 618				do {
 619					if (data[bit / BITS_PER_LONG] != -1)
 620						return false;
 621					bit += BITS_PER_LONG;
 622				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 623				continue;
 624			}
 625			if (!test_bit(bit, data))
 626				return false;
 627			bit++;
 628		}
 629	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 630		while (bit <= this_end_bit) {
 631			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 632				do {
 633					if (data[bit / BITS_PER_LONG] != 0)
 634						return false;
 635					bit += BITS_PER_LONG;
 636				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 637				continue;
 638			}
 639			if (test_bit(bit, data))
 640				return false;
 641			bit++;
 642		}
 643	} else if (mode == BITMAP_OP_SET) {
 644		while (bit <= this_end_bit) {
 645			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 646				do {
 647					data[bit / BITS_PER_LONG] = -1;
 648					bit += BITS_PER_LONG;
 649				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 650				continue;
 651			}
 652			__set_bit(bit, data);
 653			bit++;
 654		}
 655	} else if (mode == BITMAP_OP_CLEAR) {
 656		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 657			clear_page(data);
 658		else {
 659			while (bit <= this_end_bit) {
 660				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 661					do {
 662						data[bit / BITS_PER_LONG] = 0;
 663						bit += BITS_PER_LONG;
 664					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 665					continue;
 666				}
 667				__clear_bit(bit, data);
 668				bit++;
 669			}
 
 
 670		}
 671	} else {
 672		BUG();
 673	}
 674
 675	if (unlikely(page < end_page)) {
 676		bit = 0;
 677		page++;
 678		goto repeat;
 679	}
 680
 681	return true;
 682}
 683
 684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 685{
 686	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 687	unsigned int i;
 688
 689	for (i = 0; i < n_bitmap_pages; i++) {
 690		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 691		unsigned long *src_data = lowmem_page_address(src[i].page);
 692
 693		copy_page(dst_data, src_data);
 694	}
 695}
 696
 697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 698{
 699	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 700	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 701
 702	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 703	return &ic->bbs[bitmap_block];
 704}
 705
 706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 707				 bool e, const char *function)
 708{
 709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 710	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 711
 712	if (unlikely(section >= ic->journal_sections) ||
 713	    unlikely(offset >= limit)) {
 714		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 715		       function, section, offset, ic->journal_sections, limit);
 716		BUG();
 717	}
 718#endif
 719}
 720
 721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 722			       unsigned int *pl_index, unsigned int *pl_offset)
 723{
 724	unsigned int sector;
 725
 726	access_journal_check(ic, section, offset, false, "page_list_location");
 727
 728	sector = section * ic->journal_section_sectors + offset;
 729
 730	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 731	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 732}
 733
 734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 735					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
 736{
 737	unsigned int pl_index, pl_offset;
 738	char *va;
 739
 740	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 741
 742	if (n_sectors)
 743		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 744
 745	va = lowmem_page_address(pl[pl_index].page);
 746
 747	return (struct journal_sector *)(va + pl_offset);
 748}
 749
 750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
 751{
 752	return access_page_list(ic, ic->journal, section, offset, NULL);
 753}
 754
 755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 756{
 757	unsigned int rel_sector, offset;
 758	struct journal_sector *js;
 759
 760	access_journal_check(ic, section, n, true, "access_journal_entry");
 761
 762	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 763	offset = n / JOURNAL_BLOCK_SECTORS;
 764
 765	js = access_journal(ic, section, rel_sector);
 766	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 767}
 768
 769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 770{
 771	n <<= ic->sb->log2_sectors_per_block;
 772
 773	n += JOURNAL_BLOCK_SECTORS;
 774
 775	access_journal_check(ic, section, n, false, "access_journal_data");
 776
 777	return access_journal(ic, section, n);
 778}
 779
 780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
 781{
 782	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 783	int r;
 784	unsigned int j, size;
 785
 786	desc->tfm = ic->journal_mac;
 787
 788	r = crypto_shash_init(desc);
 789	if (unlikely(r < 0)) {
 790		dm_integrity_io_error(ic, "crypto_shash_init", r);
 791		goto err;
 792	}
 793
 794	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 795		__le64 section_le;
 796
 797		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
 798		if (unlikely(r < 0)) {
 799			dm_integrity_io_error(ic, "crypto_shash_update", r);
 800			goto err;
 801		}
 802
 803		section_le = cpu_to_le64(section);
 804		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
 805		if (unlikely(r < 0)) {
 806			dm_integrity_io_error(ic, "crypto_shash_update", r);
 807			goto err;
 808		}
 809	}
 810
 811	for (j = 0; j < ic->journal_section_entries; j++) {
 812		struct journal_entry *je = access_journal_entry(ic, section, j);
 813
 814		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
 815		if (unlikely(r < 0)) {
 816			dm_integrity_io_error(ic, "crypto_shash_update", r);
 817			goto err;
 818		}
 819	}
 820
 821	size = crypto_shash_digestsize(ic->journal_mac);
 822
 823	if (likely(size <= JOURNAL_MAC_SIZE)) {
 824		r = crypto_shash_final(desc, result);
 825		if (unlikely(r < 0)) {
 826			dm_integrity_io_error(ic, "crypto_shash_final", r);
 827			goto err;
 828		}
 829		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 830	} else {
 831		__u8 digest[HASH_MAX_DIGESTSIZE];
 832
 833		if (WARN_ON(size > sizeof(digest))) {
 834			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 835			goto err;
 836		}
 837		r = crypto_shash_final(desc, digest);
 838		if (unlikely(r < 0)) {
 839			dm_integrity_io_error(ic, "crypto_shash_final", r);
 840			goto err;
 841		}
 842		memcpy(result, digest, JOURNAL_MAC_SIZE);
 843	}
 844
 845	return;
 846err:
 847	memset(result, 0, JOURNAL_MAC_SIZE);
 848}
 849
 850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
 851{
 852	__u8 result[JOURNAL_MAC_SIZE];
 853	unsigned int j;
 854
 855	if (!ic->journal_mac)
 856		return;
 857
 858	section_mac(ic, section, result);
 859
 860	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 861		struct journal_sector *js = access_journal(ic, section, j);
 862
 863		if (likely(wr))
 864			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 865		else {
 866			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
 867				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 868				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
 869			}
 870		}
 871	}
 872}
 873
 874static void complete_journal_op(void *context)
 875{
 876	struct journal_completion *comp = context;
 877
 878	BUG_ON(!atomic_read(&comp->in_flight));
 879	if (likely(atomic_dec_and_test(&comp->in_flight)))
 880		complete(&comp->comp);
 881}
 882
 883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 884			unsigned int n_sections, struct journal_completion *comp)
 885{
 886	struct async_submit_ctl submit;
 887	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 888	unsigned int pl_index, pl_offset, section_index;
 889	struct page_list *source_pl, *target_pl;
 890
 891	if (likely(encrypt)) {
 892		source_pl = ic->journal;
 893		target_pl = ic->journal_io;
 894	} else {
 895		source_pl = ic->journal_io;
 896		target_pl = ic->journal;
 897	}
 898
 899	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 900
 901	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 902
 903	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 904
 905	section_index = pl_index;
 906
 907	do {
 908		size_t this_step;
 909		struct page *src_pages[2];
 910		struct page *dst_page;
 911
 912		while (unlikely(pl_index == section_index)) {
 913			unsigned int dummy;
 914
 915			if (likely(encrypt))
 916				rw_section_mac(ic, section, true);
 917			section++;
 918			n_sections--;
 919			if (!n_sections)
 920				break;
 921			page_list_location(ic, section, 0, &section_index, &dummy);
 922		}
 923
 924		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 925		dst_page = target_pl[pl_index].page;
 926		src_pages[0] = source_pl[pl_index].page;
 927		src_pages[1] = ic->journal_xor[pl_index].page;
 928
 929		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 930
 931		pl_index++;
 932		pl_offset = 0;
 933		n_bytes -= this_step;
 934	} while (n_bytes);
 935
 936	BUG_ON(n_sections);
 937
 938	async_tx_issue_pending_all();
 939}
 940
 941static void complete_journal_encrypt(void *data, int err)
 942{
 943	struct journal_completion *comp = data;
 944
 945	if (unlikely(err)) {
 946		if (likely(err == -EINPROGRESS)) {
 947			complete(&comp->ic->crypto_backoff);
 948			return;
 949		}
 950		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 951	}
 952	complete_journal_op(comp);
 953}
 954
 955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 956{
 957	int r;
 958
 959	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 960				      complete_journal_encrypt, comp);
 961	if (likely(encrypt))
 962		r = crypto_skcipher_encrypt(req);
 963	else
 964		r = crypto_skcipher_decrypt(req);
 965	if (likely(!r))
 966		return false;
 967	if (likely(r == -EINPROGRESS))
 968		return true;
 969	if (likely(r == -EBUSY)) {
 970		wait_for_completion(&comp->ic->crypto_backoff);
 971		reinit_completion(&comp->ic->crypto_backoff);
 972		return true;
 973	}
 974	dm_integrity_io_error(comp->ic, "encrypt", r);
 975	return false;
 976}
 977
 978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 979			  unsigned int n_sections, struct journal_completion *comp)
 980{
 981	struct scatterlist **source_sg;
 982	struct scatterlist **target_sg;
 983
 984	atomic_add(2, &comp->in_flight);
 985
 986	if (likely(encrypt)) {
 987		source_sg = ic->journal_scatterlist;
 988		target_sg = ic->journal_io_scatterlist;
 989	} else {
 990		source_sg = ic->journal_io_scatterlist;
 991		target_sg = ic->journal_scatterlist;
 992	}
 993
 994	do {
 995		struct skcipher_request *req;
 996		unsigned int ivsize;
 997		char *iv;
 998
 999		if (likely(encrypt))
1000			rw_section_mac(ic, section, true);
1001
1002		req = ic->sk_requests[section];
1003		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004		iv = req->iv;
1005
1006		memcpy(iv, iv + ivsize, ivsize);
1007
1008		req->src = source_sg[section];
1009		req->dst = target_sg[section];
1010
1011		if (unlikely(do_crypt(encrypt, req, comp)))
1012			atomic_inc(&comp->in_flight);
1013
1014		section++;
1015		n_sections--;
1016	} while (n_sections);
1017
1018	atomic_dec(&comp->in_flight);
1019	complete_journal_op(comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023			    unsigned int n_sections, struct journal_completion *comp)
1024{
1025	if (ic->journal_xor)
1026		return xor_journal(ic, encrypt, section, n_sections, comp);
1027	else
1028		return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033	struct journal_completion *comp = context;
1034
1035	if (unlikely(error != 0))
1036		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037	complete_journal_op(comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041			       unsigned int sector, unsigned int n_sectors,
1042			       struct journal_completion *comp)
1043{
1044	struct dm_io_request io_req;
1045	struct dm_io_region io_loc;
1046	unsigned int pl_index, pl_offset;
1047	int r;
1048
1049	if (unlikely(dm_integrity_failed(ic))) {
1050		if (comp)
1051			complete_journal_io(-1UL, comp);
1052		return;
1053	}
1054
1055	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058	io_req.bi_opf = opf;
1059	io_req.mem.type = DM_IO_PAGE_LIST;
1060	if (ic->journal_io)
1061		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062	else
1063		io_req.mem.ptr.pl = &ic->journal[pl_index];
1064	io_req.mem.offset = pl_offset;
1065	if (likely(comp != NULL)) {
1066		io_req.notify.fn = complete_journal_io;
1067		io_req.notify.context = comp;
1068	} else {
1069		io_req.notify.fn = NULL;
1070	}
1071	io_req.client = ic->io;
1072	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073	io_loc.sector = ic->start + SB_SECTORS + sector;
1074	io_loc.count = n_sectors;
1075
1076	r = dm_io(&io_req, 1, &io_loc, NULL);
1077	if (unlikely(r)) {
1078		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079				      "reading journal" : "writing journal", r);
1080		if (comp) {
1081			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082			complete_journal_io(-1UL, comp);
1083		}
1084	}
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088		       unsigned int section, unsigned int n_sections,
1089		       struct journal_completion *comp)
1090{
1091	unsigned int sector, n_sectors;
1092
1093	sector = section * ic->journal_section_sectors;
1094	n_sectors = n_sections * ic->journal_section_sectors;
1095
1096	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101	struct journal_completion io_comp;
1102	struct journal_completion crypt_comp_1;
1103	struct journal_completion crypt_comp_2;
1104	unsigned int i;
1105
1106	io_comp.ic = ic;
1107	init_completion(&io_comp.comp);
1108
1109	if (commit_start + commit_sections <= ic->journal_sections) {
1110		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111		if (ic->journal_io) {
1112			crypt_comp_1.ic = ic;
1113			init_completion(&crypt_comp_1.comp);
1114			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116			wait_for_completion_io(&crypt_comp_1.comp);
1117		} else {
1118			for (i = 0; i < commit_sections; i++)
1119				rw_section_mac(ic, commit_start + i, true);
1120		}
1121		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122			   commit_sections, &io_comp);
1123	} else {
1124		unsigned int to_end;
1125
1126		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127		to_end = ic->journal_sections - commit_start;
1128		if (ic->journal_io) {
1129			crypt_comp_1.ic = ic;
1130			init_completion(&crypt_comp_1.comp);
1131			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135					   commit_start, to_end, &io_comp);
1136				reinit_completion(&crypt_comp_1.comp);
1137				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139				wait_for_completion_io(&crypt_comp_1.comp);
1140			} else {
1141				crypt_comp_2.ic = ic;
1142				init_completion(&crypt_comp_2.comp);
1143				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145				wait_for_completion_io(&crypt_comp_1.comp);
1146				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147				wait_for_completion_io(&crypt_comp_2.comp);
1148			}
1149		} else {
1150			for (i = 0; i < to_end; i++)
1151				rw_section_mac(ic, commit_start + i, true);
1152			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153			for (i = 0; i < commit_sections - to_end; i++)
1154				rw_section_mac(ic, i, true);
1155		}
1156		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157	}
1158
1159	wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165	struct dm_io_request io_req;
1166	struct dm_io_region io_loc;
1167	int r;
1168	unsigned int sector, pl_index, pl_offset;
1169
1170	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172	if (unlikely(dm_integrity_failed(ic))) {
1173		fn(-1UL, data);
1174		return;
1175	}
1176
1177	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182	io_req.bi_opf = REQ_OP_WRITE;
1183	io_req.mem.type = DM_IO_PAGE_LIST;
1184	io_req.mem.ptr.pl = &ic->journal[pl_index];
1185	io_req.mem.offset = pl_offset;
1186	io_req.notify.fn = fn;
1187	io_req.notify.context = data;
1188	io_req.client = ic->io;
1189	io_loc.bdev = ic->dev->bdev;
1190	io_loc.sector = target;
1191	io_loc.count = n_sectors;
1192
1193	r = dm_io(&io_req, 1, &io_loc, NULL);
1194	if (unlikely(r)) {
1195		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196		fn(-1UL, data);
1197	}
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208	struct rb_node **n = &ic->in_progress.rb_node;
1209	struct rb_node *parent;
1210
1211	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213	if (likely(check_waiting)) {
1214		struct dm_integrity_range *range;
1215
1216		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217			if (unlikely(ranges_overlap(range, new_range)))
1218				return false;
1219		}
1220	}
1221
1222	parent = NULL;
1223
1224	while (*n) {
1225		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227		parent = *n;
1228		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229			n = &range->node.rb_left;
1230		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231			n = &range->node.rb_right;
1232		else
1233			return false;
 
1234	}
1235
1236	rb_link_node(&new_range->node, parent, n);
1237	rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239	return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244	rb_erase(&range->node, &ic->in_progress);
1245	while (unlikely(!list_empty(&ic->wait_list))) {
1246		struct dm_integrity_range *last_range =
1247			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248		struct task_struct *last_range_task;
1249
1250		last_range_task = last_range->task;
1251		list_del(&last_range->wait_entry);
1252		if (!add_new_range(ic, last_range, false)) {
1253			last_range->task = last_range_task;
1254			list_add(&last_range->wait_entry, &ic->wait_list);
1255			break;
1256		}
1257		last_range->waiting = false;
1258		wake_up_process(last_range_task);
1259	}
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267	remove_range_unlocked(ic, range);
1268	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273	new_range->waiting = true;
1274	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275	new_range->task = current;
1276	do {
1277		__set_current_state(TASK_UNINTERRUPTIBLE);
1278		spin_unlock_irq(&ic->endio_wait.lock);
1279		io_schedule();
1280		spin_lock_irq(&ic->endio_wait.lock);
1281	} while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286	if (unlikely(!add_new_range(ic, new_range, true)))
1287		wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292	RB_CLEAR_NODE(&node->node);
1293	node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298	struct rb_node **link;
1299	struct rb_node *parent;
1300
1301	node->sector = sector;
1302	BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304	link = &ic->journal_tree_root.rb_node;
1305	parent = NULL;
1306
1307	while (*link) {
1308		struct journal_node *j;
1309
1310		parent = *link;
1311		j = container_of(parent, struct journal_node, node);
1312		if (sector < j->sector)
1313			link = &j->node.rb_left;
1314		else
1315			link = &j->node.rb_right;
1316	}
1317
1318	rb_link_node(&node->node, parent, link);
1319	rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324	BUG_ON(RB_EMPTY_NODE(&node->node));
1325	rb_erase(&node->node, &ic->journal_tree_root);
1326	init_journal_node(node);
1327}
1328
1329#define NOT_FOUND	(-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333	struct rb_node *n = ic->journal_tree_root.rb_node;
1334	unsigned int found = NOT_FOUND;
1335
1336	*next_sector = (sector_t)-1;
1337	while (n) {
1338		struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340		if (sector == j->sector)
1341			found = j - ic->journal_tree;
1342
1343		if (sector < j->sector) {
1344			*next_sector = j->sector;
1345			n = j->node.rb_left;
1346		} else
1347			n = j->node.rb_right;
 
1348	}
1349
1350	return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355	struct journal_node *node, *next_node;
1356	struct rb_node *next;
1357
1358	if (unlikely(pos >= ic->journal_entries))
1359		return false;
1360	node = &ic->journal_tree[pos];
1361	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362		return false;
1363	if (unlikely(node->sector != sector))
1364		return false;
1365
1366	next = rb_next(&node->node);
1367	if (unlikely(!next))
1368		return true;
1369
1370	next_node = container_of(next, struct journal_node, node);
1371	return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376	struct rb_node *next;
1377	struct journal_node *next_node;
1378	unsigned int next_section;
1379
1380	BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382	next = rb_next(&node->node);
1383	if (unlikely(!next))
1384		return false;
1385
1386	next_node = container_of(next, struct journal_node, node);
1387
1388	if (next_node->sector != node->sector)
1389		return false;
1390
1391	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392	if (next_section >= ic->committed_section &&
1393	    next_section < ic->committed_section + ic->n_committed_sections)
1394		return true;
1395	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396		return true;
1397
1398	return false;
1399}
1400
1401#define TAG_READ	0
1402#define TAG_WRITE	1
1403#define TAG_CMP		2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406			       unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER		1
1409#define MAY_BE_HASH		2
1410	unsigned int hash_offset = 0;
1411	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413	do {
1414		unsigned char *data, *dp;
1415		struct dm_buffer *b;
1416		unsigned int to_copy;
1417		int r;
1418
1419		r = dm_integrity_failed(ic);
1420		if (unlikely(r))
1421			return r;
1422
1423		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424		if (IS_ERR(data))
1425			return PTR_ERR(data);
1426
1427		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428		dp = data + *metadata_offset;
1429		if (op == TAG_READ) {
1430			memcpy(tag, dp, to_copy);
1431		} else if (op == TAG_WRITE) {
1432			if (memcmp(dp, tag, to_copy)) {
1433				memcpy(dp, tag, to_copy);
1434				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435			}
1436		} else {
1437			/* e.g.: op == TAG_CMP */
1438
1439			if (likely(is_power_of_2(ic->tag_size))) {
1440				if (unlikely(memcmp(dp, tag, to_copy)))
1441					if (unlikely(!ic->discard) ||
1442					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443						goto thorough_test;
1444				}
1445			} else {
1446				unsigned int i, ts;
1447thorough_test:
1448				ts = total_size;
1449
1450				for (i = 0; i < to_copy; i++, ts--) {
1451					if (unlikely(dp[i] != tag[i]))
1452						may_be &= ~MAY_BE_HASH;
1453					if (likely(dp[i] != DISCARD_FILLER))
1454						may_be &= ~MAY_BE_FILLER;
1455					hash_offset++;
1456					if (unlikely(hash_offset == ic->tag_size)) {
1457						if (unlikely(!may_be)) {
1458							dm_bufio_release(b);
1459							return ts;
1460						}
1461						hash_offset = 0;
1462						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463					}
1464				}
1465			}
1466		}
1467		dm_bufio_release(b);
1468
1469		tag += to_copy;
1470		*metadata_offset += to_copy;
1471		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472			(*metadata_block)++;
1473			*metadata_offset = 0;
1474		}
1475
1476		if (unlikely(!is_power_of_2(ic->tag_size)))
1477			hash_offset = (hash_offset + to_copy) % ic->tag_size;
 
1478
1479		total_size -= to_copy;
1480	} while (unlikely(total_size));
1481
1482	return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488	struct dm_io_request io_req;
1489	struct dm_io_region io_reg;
1490	struct dm_integrity_c *ic;
1491	struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496	struct flush_request *fr = fr_;
1497
1498	if (unlikely(error != 0))
1499		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500	complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505	int r;
 
1506	struct flush_request fr;
1507
1508	if (!ic->meta_dev)
1509		flush_data = false;
1510	if (flush_data) {
1511		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512		fr.io_req.mem.type = DM_IO_KMEM,
1513		fr.io_req.mem.ptr.addr = NULL,
1514		fr.io_req.notify.fn = flush_notify,
1515		fr.io_req.notify.context = &fr;
1516		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517		fr.io_reg.bdev = ic->dev->bdev,
1518		fr.io_reg.sector = 0,
1519		fr.io_reg.count = 0,
1520		fr.ic = ic;
1521		init_completion(&fr.comp);
1522		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523		BUG_ON(r);
1524	}
1525
1526	r = dm_bufio_write_dirty_buffers(ic->bufio);
1527	if (unlikely(r))
1528		dm_integrity_io_error(ic, "writing tags", r);
1529
1530	if (flush_data)
1531		wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536	DECLARE_WAITQUEUE(wait, current);
1537
1538	__add_wait_queue(&ic->endio_wait, &wait);
1539	__set_current_state(TASK_UNINTERRUPTIBLE);
1540	spin_unlock_irq(&ic->endio_wait.lock);
1541	io_schedule();
1542	spin_lock_irq(&ic->endio_wait.lock);
1543	__remove_wait_queue(&ic->endio_wait, &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550	if (likely(!dm_integrity_failed(ic)))
1551		queue_work(ic->commit_wq, &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556	if (!timer_pending(&ic->autocommit_timer))
1557		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562	struct bio *bio;
1563	unsigned long flags;
1564
1565	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567	bio_list_add(&ic->flush_bio_list, bio);
1568	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570	queue_work(ic->commit_wq, &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575	int r;
1576
1577	r = dm_integrity_failed(ic);
1578	if (unlikely(r) && !bio->bi_status)
1579		bio->bi_status = errno_to_blk_status(r);
1580	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581		unsigned long flags;
1582
1583		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584		bio_list_add(&ic->synchronous_bios, bio);
1585		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587		return;
1588	}
1589	bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597		submit_flush_bio(ic, dio);
1598	else
1599		do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604	if (atomic_dec_and_test(&dio->in_flight)) {
1605		struct dm_integrity_c *ic = dio->ic;
1606		struct bio *bio;
1607
1608		remove_range(ic, &dio->range);
1609
1610		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611			schedule_autocommit(ic);
1612
1613		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
 
1614		if (unlikely(dio->bi_status) && !bio->bi_status)
1615			bio->bi_status = dio->bi_status;
1616		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617			dio->range.logical_sector += dio->range.n_sectors;
1618			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619			INIT_WORK(&dio->work, integrity_bio_wait);
1620			queue_work(ic->offload_wq, &dio->work);
1621			return;
1622		}
1623		do_endio_flush(ic, dio);
1624	}
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631	dm_bio_restore(&dio->bio_details, bio);
1632	if (bio->bi_integrity)
1633		bio->bi_opf |= REQ_INTEGRITY;
1634
1635	if (dio->completion)
1636		complete(dio->completion);
1637
1638	dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642				      const char *data, char *result)
1643{
1644	__le64 sector_le = cpu_to_le64(sector);
1645	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646	int r;
1647	unsigned int digest_size;
1648
1649	req->tfm = ic->internal_hash;
1650
1651	r = crypto_shash_init(req);
1652	if (unlikely(r < 0)) {
1653		dm_integrity_io_error(ic, "crypto_shash_init", r);
1654		goto failed;
1655	}
1656
1657	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659		if (unlikely(r < 0)) {
1660			dm_integrity_io_error(ic, "crypto_shash_update", r);
1661			goto failed;
1662		}
1663	}
1664
1665	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666	if (unlikely(r < 0)) {
1667		dm_integrity_io_error(ic, "crypto_shash_update", r);
1668		goto failed;
1669	}
1670
1671	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672	if (unlikely(r < 0)) {
1673		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674		goto failed;
1675	}
1676
1677	r = crypto_shash_final(req, result);
1678	if (unlikely(r < 0)) {
1679		dm_integrity_io_error(ic, "crypto_shash_final", r);
1680		goto failed;
1681	}
1682
1683	digest_size = crypto_shash_digestsize(ic->internal_hash);
1684	if (unlikely(digest_size < ic->tag_size))
1685		memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687	return;
1688
1689failed:
1690	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1691	get_random_bytes(result, ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697	struct dm_integrity_c *ic = dio->ic;
1698	struct bvec_iter iter;
1699	struct bio_vec bv;
1700	sector_t sector, logical_sector, area, offset;
1701	struct page *page;
1702	void *buffer;
1703
1704	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706							     &dio->metadata_offset);
1707	sector = get_data_sector(ic, area, offset);
1708	logical_sector = dio->range.logical_sector;
1709
1710	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711	buffer = page_to_virt(page);
1712
1713	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714		unsigned pos = 0;
1715
1716		do {
1717			char *mem;
1718			int r;
1719			struct dm_io_request io_req;
1720			struct dm_io_region io_loc;
1721			io_req.bi_opf = REQ_OP_READ;
1722			io_req.mem.type = DM_IO_KMEM;
1723			io_req.mem.ptr.addr = buffer;
1724			io_req.notify.fn = NULL;
1725			io_req.client = ic->io;
1726			io_loc.bdev = ic->dev->bdev;
1727			io_loc.sector = sector;
1728			io_loc.count = ic->sectors_per_block;
1729
1730			r = dm_io(&io_req, 1, &io_loc, NULL);
1731			if (unlikely(r)) {
1732				dio->bi_status = errno_to_blk_status(r);
1733				goto free_ret;
1734			}
1735
1736			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1739			if (r) {
1740				if (r > 0) {
1741					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742						    bio->bi_bdev, logical_sector);
1743					atomic64_inc(&ic->number_of_mismatches);
1744					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745							 bio, logical_sector, 0);
1746					r = -EILSEQ;
1747				}
1748				dio->bi_status = errno_to_blk_status(r);
1749				goto free_ret;
1750			}
1751
1752			mem = bvec_kmap_local(&bv);
1753			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754			kunmap_local(mem);
1755
1756			pos += ic->sectors_per_block << SECTOR_SHIFT;
1757			sector += ic->sectors_per_block;
1758			logical_sector += ic->sectors_per_block;
1759		} while (pos < bv.bv_len);
1760	}
1761free_ret:
1762	mempool_free(page, &ic->recheck_pool);
1763}
1764
1765static void integrity_metadata(struct work_struct *w)
1766{
1767	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768	struct dm_integrity_c *ic = dio->ic;
1769
1770	int r;
1771
1772	if (ic->internal_hash) {
1773		struct bvec_iter iter;
1774		struct bio_vec bv;
1775		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777		char *checksums;
1778		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780		sector_t sector;
1781		unsigned int sectors_to_process;
1782
1783		if (unlikely(ic->mode == 'R'))
1784			goto skip_io;
1785
1786		if (likely(dio->op != REQ_OP_DISCARD))
1787			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789		else
1790			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791		if (!checksums) {
1792			checksums = checksums_onstack;
1793			if (WARN_ON(extra_space &&
1794				    digest_size > sizeof(checksums_onstack))) {
1795				r = -EINVAL;
1796				goto error;
1797			}
1798		}
1799
1800		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803			unsigned int max_blocks = max_size / ic->tag_size;
1804
1805			memset(checksums, DISCARD_FILLER, max_size);
1806
1807			while (bi_size) {
1808				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809
1810				this_step_blocks = min(this_step_blocks, max_blocks);
1811				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812							this_step_blocks * ic->tag_size, TAG_WRITE);
1813				if (unlikely(r)) {
1814					if (likely(checksums != checksums_onstack))
1815						kfree(checksums);
1816					goto error;
1817				}
1818
 
 
 
 
 
1819				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
 
1820			}
1821
1822			if (likely(checksums != checksums_onstack))
1823				kfree(checksums);
1824			goto skip_io;
1825		}
1826
1827		sector = dio->range.logical_sector;
1828		sectors_to_process = dio->range.n_sectors;
1829
1830		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831			struct bio_vec bv_copy = bv;
1832			unsigned int pos;
1833			char *mem, *checksums_ptr;
1834
1835again:
1836			mem = bvec_kmap_local(&bv_copy);
1837			pos = 0;
1838			checksums_ptr = checksums;
1839			do {
1840				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841				checksums_ptr += ic->tag_size;
1842				sectors_to_process -= ic->sectors_per_block;
1843				pos += ic->sectors_per_block << SECTOR_SHIFT;
1844				sector += ic->sectors_per_block;
1845			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846			kunmap_local(mem);
1847
1848			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850			if (unlikely(r)) {
1851				if (r > 0) {
1852					integrity_recheck(dio, checksums);
1853					goto skip_io;
 
 
 
 
 
 
 
1854				}
1855				if (likely(checksums != checksums_onstack))
1856					kfree(checksums);
1857				goto error;
1858			}
1859
1860			if (!sectors_to_process)
1861				break;
1862
1863			if (unlikely(pos < bv_copy.bv_len)) {
1864				bv_copy.bv_offset += pos;
1865				bv_copy.bv_len -= pos;
1866				goto again;
1867			}
1868		}
1869
1870		if (likely(checksums != checksums_onstack))
1871			kfree(checksums);
1872	} else {
1873		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874
1875		if (bip) {
1876			struct bio_vec biv;
1877			struct bvec_iter iter;
1878			unsigned int data_to_process = dio->range.n_sectors;
1879
1880			sector_to_block(ic, data_to_process);
1881			data_to_process *= ic->tag_size;
1882
1883			bip_for_each_vec(biv, bip, iter) {
1884				unsigned char *tag;
1885				unsigned int this_len;
1886
1887				BUG_ON(PageHighMem(biv.bv_page));
1888				tag = bvec_virt(&biv);
1889				this_len = min(biv.bv_len, data_to_process);
1890				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892				if (unlikely(r))
1893					goto error;
1894				data_to_process -= this_len;
1895				if (!data_to_process)
1896					break;
1897			}
1898		}
1899	}
1900skip_io:
1901	dec_in_flight(dio);
1902	return;
1903error:
1904	dio->bi_status = errno_to_blk_status(r);
1905	dec_in_flight(dio);
1906}
1907
1908static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_integrity_c *ic = ti->private;
1911	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912	struct bio_integrity_payload *bip;
1913
1914	sector_t area, offset;
1915
1916	dio->ic = ic;
1917	dio->bi_status = 0;
1918	dio->op = bio_op(bio);
1919
1920	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921		if (ti->max_io_len) {
1922			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924			sector_t start_boundary = sec >> log2_max_io_len;
1925			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926
1927			if (start_boundary < end_boundary) {
1928				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929
1930				dm_accept_partial_bio(bio, len);
1931			}
1932		}
1933	}
1934
1935	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936		submit_flush_bio(ic, dio);
1937		return DM_MAPIO_SUBMITTED;
1938	}
1939
1940	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942	if (unlikely(dio->fua)) {
1943		/*
1944		 * Don't pass down the FUA flag because we have to flush
1945		 * disk cache anyway.
1946		 */
1947		bio->bi_opf &= ~REQ_FUA;
1948	}
1949	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951		      dio->range.logical_sector, bio_sectors(bio),
1952		      ic->provided_data_sectors);
1953		return DM_MAPIO_KILL;
1954	}
1955	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957		      ic->sectors_per_block,
1958		      dio->range.logical_sector, bio_sectors(bio));
1959		return DM_MAPIO_KILL;
1960	}
1961
1962	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963		struct bvec_iter iter;
1964		struct bio_vec bv;
1965
1966		bio_for_each_segment(bv, bio, iter) {
1967			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970				return DM_MAPIO_KILL;
1971			}
1972		}
1973	}
1974
1975	bip = bio_integrity(bio);
1976	if (!ic->internal_hash) {
1977		if (bip) {
1978			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979
1980			if (ic->log2_tag_size >= 0)
1981				wanted_tag_size <<= ic->log2_tag_size;
1982			else
1983				wanted_tag_size *= ic->tag_size;
1984			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985				DMERR("Invalid integrity data size %u, expected %u",
1986				      bip->bip_iter.bi_size, wanted_tag_size);
1987				return DM_MAPIO_KILL;
1988			}
1989		}
1990	} else {
1991		if (unlikely(bip != NULL)) {
1992			DMERR("Unexpected integrity data when using internal hash");
1993			return DM_MAPIO_KILL;
1994		}
1995	}
1996
1997	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998		return DM_MAPIO_KILL;
1999
2000	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003
2004	dm_integrity_map_continue(dio, true);
2005	return DM_MAPIO_SUBMITTED;
2006}
2007
2008static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009				 unsigned int journal_section, unsigned int journal_entry)
2010{
2011	struct dm_integrity_c *ic = dio->ic;
2012	sector_t logical_sector;
2013	unsigned int n_sectors;
2014
2015	logical_sector = dio->range.logical_sector;
2016	n_sectors = dio->range.n_sectors;
2017	do {
2018		struct bio_vec bv = bio_iovec(bio);
2019		char *mem;
2020
2021		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022			bv.bv_len = n_sectors << SECTOR_SHIFT;
2023		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025retry_kmap:
2026		mem = kmap_local_page(bv.bv_page);
2027		if (likely(dio->op == REQ_OP_WRITE))
2028			flush_dcache_page(bv.bv_page);
2029
2030		do {
2031			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032
2033			if (unlikely(dio->op == REQ_OP_READ)) {
2034				struct journal_sector *js;
2035				char *mem_ptr;
2036				unsigned int s;
2037
2038				if (unlikely(journal_entry_is_inprogress(je))) {
2039					flush_dcache_page(bv.bv_page);
2040					kunmap_local(mem);
2041
2042					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043					goto retry_kmap;
2044				}
2045				smp_rmb();
2046				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047				js = access_journal_data(ic, journal_section, journal_entry);
2048				mem_ptr = mem + bv.bv_offset;
2049				s = 0;
2050				do {
2051					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053					js++;
2054					mem_ptr += 1 << SECTOR_SHIFT;
2055				} while (++s < ic->sectors_per_block);
2056#ifdef INTERNAL_VERIFY
2057				if (ic->internal_hash) {
2058					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059
2060					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063							    logical_sector);
2064						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065								 bio, logical_sector, 0);
2066					}
2067				}
2068#endif
2069			}
2070
2071			if (!ic->internal_hash) {
2072				struct bio_integrity_payload *bip = bio_integrity(bio);
2073				unsigned int tag_todo = ic->tag_size;
2074				char *tag_ptr = journal_entry_tag(ic, je);
2075
2076				if (bip) {
2077					do {
2078						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079						unsigned int tag_now = min(biv.bv_len, tag_todo);
2080						char *tag_addr;
2081
2082						BUG_ON(PageHighMem(biv.bv_page));
2083						tag_addr = bvec_virt(&biv);
2084						if (likely(dio->op == REQ_OP_WRITE))
2085							memcpy(tag_ptr, tag_addr, tag_now);
2086						else
2087							memcpy(tag_addr, tag_ptr, tag_now);
2088						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089						tag_ptr += tag_now;
2090						tag_todo -= tag_now;
2091					} while (unlikely(tag_todo));
2092				} else if (likely(dio->op == REQ_OP_WRITE))
2093					memset(tag_ptr, 0, tag_todo);
2094			}
2095
2096			if (likely(dio->op == REQ_OP_WRITE)) {
2097				struct journal_sector *js;
2098				unsigned int s;
2099
2100				js = access_journal_data(ic, journal_section, journal_entry);
2101				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102
2103				s = 0;
2104				do {
2105					je->last_bytes[s] = js[s].commit_id;
2106				} while (++s < ic->sectors_per_block);
2107
2108				if (ic->internal_hash) {
2109					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110
2111					if (unlikely(digest_size > ic->tag_size)) {
2112						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113
2114						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116					} else
2117						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118				}
2119
2120				journal_entry_set_sector(je, logical_sector);
2121			}
2122			logical_sector += ic->sectors_per_block;
2123
2124			journal_entry++;
2125			if (unlikely(journal_entry == ic->journal_section_entries)) {
2126				journal_entry = 0;
2127				journal_section++;
2128				wraparound_section(ic, &journal_section);
2129			}
2130
2131			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133
2134		if (unlikely(dio->op == REQ_OP_READ))
2135			flush_dcache_page(bv.bv_page);
2136		kunmap_local(mem);
2137	} while (n_sectors);
2138
2139	if (likely(dio->op == REQ_OP_WRITE)) {
2140		smp_mb();
2141		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142			wake_up(&ic->copy_to_journal_wait);
2143		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144			queue_work(ic->commit_wq, &ic->commit_work);
2145		else
2146			schedule_autocommit(ic);
2147	} else
 
2148		remove_range(ic, &dio->range);
 
2149
2150	if (unlikely(bio->bi_iter.bi_size)) {
2151		sector_t area, offset;
2152
2153		dio->range.logical_sector = logical_sector;
2154		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156		return true;
2157	}
2158
2159	return false;
2160}
2161
2162static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163{
2164	struct dm_integrity_c *ic = dio->ic;
2165	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166	unsigned int journal_section, journal_entry;
2167	unsigned int journal_read_pos;
2168	struct completion read_comp;
2169	bool discard_retried = false;
2170	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171
2172	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173		need_sync_io = true;
2174
2175	if (need_sync_io && from_map) {
2176		INIT_WORK(&dio->work, integrity_bio_wait);
2177		queue_work(ic->offload_wq, &dio->work);
2178		return;
2179	}
2180
2181lock_retry:
2182	spin_lock_irq(&ic->endio_wait.lock);
2183retry:
2184	if (unlikely(dm_integrity_failed(ic))) {
2185		spin_unlock_irq(&ic->endio_wait.lock);
2186		do_endio(ic, bio);
2187		return;
2188	}
2189	dio->range.n_sectors = bio_sectors(bio);
2190	journal_read_pos = NOT_FOUND;
2191	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192		if (dio->op == REQ_OP_WRITE) {
2193			unsigned int next_entry, i, pos;
2194			unsigned int ws, we, range_sectors;
2195
2196			dio->range.n_sectors = min(dio->range.n_sectors,
2197						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198			if (unlikely(!dio->range.n_sectors)) {
2199				if (from_map)
2200					goto offload_to_thread;
2201				sleep_on_endio_wait(ic);
2202				goto retry;
2203			}
2204			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205			ic->free_sectors -= range_sectors;
2206			journal_section = ic->free_section;
2207			journal_entry = ic->free_section_entry;
2208
2209			next_entry = ic->free_section_entry + range_sectors;
2210			ic->free_section_entry = next_entry % ic->journal_section_entries;
2211			ic->free_section += next_entry / ic->journal_section_entries;
2212			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213			wraparound_section(ic, &ic->free_section);
2214
2215			pos = journal_section * ic->journal_section_entries + journal_entry;
2216			ws = journal_section;
2217			we = journal_entry;
2218			i = 0;
2219			do {
2220				struct journal_entry *je;
2221
2222				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223				pos++;
2224				if (unlikely(pos >= ic->journal_entries))
2225					pos = 0;
2226
2227				je = access_journal_entry(ic, ws, we);
2228				BUG_ON(!journal_entry_is_unused(je));
2229				journal_entry_set_inprogress(je);
2230				we++;
2231				if (unlikely(we == ic->journal_section_entries)) {
2232					we = 0;
2233					ws++;
2234					wraparound_section(ic, &ws);
2235				}
2236			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237
2238			spin_unlock_irq(&ic->endio_wait.lock);
2239			goto journal_read_write;
2240		} else {
2241			sector_t next_sector;
2242
2243			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244			if (likely(journal_read_pos == NOT_FOUND)) {
2245				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247			} else {
2248				unsigned int i;
2249				unsigned int jp = journal_read_pos + 1;
2250
2251				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253						break;
2254				}
2255				dio->range.n_sectors = i;
2256			}
2257		}
2258	}
2259	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260		/*
2261		 * We must not sleep in the request routine because it could
2262		 * stall bios on current->bio_list.
2263		 * So, we offload the bio to a workqueue if we have to sleep.
2264		 */
2265		if (from_map) {
2266offload_to_thread:
2267			spin_unlock_irq(&ic->endio_wait.lock);
2268			INIT_WORK(&dio->work, integrity_bio_wait);
2269			queue_work(ic->wait_wq, &dio->work);
2270			return;
2271		}
2272		if (journal_read_pos != NOT_FOUND)
2273			dio->range.n_sectors = ic->sectors_per_block;
2274		wait_and_add_new_range(ic, &dio->range);
2275		/*
2276		 * wait_and_add_new_range drops the spinlock, so the journal
2277		 * may have been changed arbitrarily. We need to recheck.
2278		 * To simplify the code, we restrict I/O size to just one block.
2279		 */
2280		if (journal_read_pos != NOT_FOUND) {
2281			sector_t next_sector;
2282			unsigned int new_pos;
2283
2284			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285			if (unlikely(new_pos != journal_read_pos)) {
2286				remove_range_unlocked(ic, &dio->range);
2287				goto retry;
2288			}
2289		}
2290	}
2291	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292		sector_t next_sector;
2293		unsigned int new_pos;
2294
2295		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296		if (unlikely(new_pos != NOT_FOUND) ||
2297		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298			remove_range_unlocked(ic, &dio->range);
2299			spin_unlock_irq(&ic->endio_wait.lock);
2300			queue_work(ic->commit_wq, &ic->commit_work);
2301			flush_workqueue(ic->commit_wq);
2302			queue_work(ic->writer_wq, &ic->writer_work);
2303			flush_workqueue(ic->writer_wq);
2304			discard_retried = true;
2305			goto lock_retry;
2306		}
2307	}
2308	spin_unlock_irq(&ic->endio_wait.lock);
2309
2310	if (unlikely(journal_read_pos != NOT_FOUND)) {
2311		journal_section = journal_read_pos / ic->journal_section_entries;
2312		journal_entry = journal_read_pos % ic->journal_section_entries;
2313		goto journal_read_write;
2314	}
2315
2316	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319			struct bitmap_block_status *bbs;
2320
2321			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322			spin_lock(&bbs->bio_queue_lock);
2323			bio_list_add(&bbs->bio_queue, bio);
2324			spin_unlock(&bbs->bio_queue_lock);
2325			queue_work(ic->writer_wq, &bbs->work);
2326			return;
2327		}
2328	}
2329
2330	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331
2332	if (need_sync_io) {
2333		init_completion(&read_comp);
2334		dio->completion = &read_comp;
2335	} else
2336		dio->completion = NULL;
2337
2338	dm_bio_record(&dio->bio_details, bio);
2339	bio_set_dev(bio, ic->dev->bdev);
2340	bio->bi_integrity = NULL;
2341	bio->bi_opf &= ~REQ_INTEGRITY;
2342	bio->bi_end_io = integrity_end_io;
2343	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344
2345	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346		integrity_metadata(&dio->work);
2347		dm_integrity_flush_buffers(ic, false);
2348
2349		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350		dio->completion = NULL;
2351
2352		submit_bio_noacct(bio);
2353
2354		return;
2355	}
2356
2357	submit_bio_noacct(bio);
2358
2359	if (need_sync_io) {
2360		wait_for_completion_io(&read_comp);
2361		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363			goto skip_check;
2364		if (ic->mode == 'B') {
2365			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367				goto skip_check;
2368		}
2369
2370		if (likely(!bio->bi_status))
2371			integrity_metadata(&dio->work);
2372		else
2373skip_check:
2374			dec_in_flight(dio);
 
2375	} else {
2376		INIT_WORK(&dio->work, integrity_metadata);
2377		queue_work(ic->metadata_wq, &dio->work);
2378	}
2379
2380	return;
2381
2382journal_read_write:
2383	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384		goto lock_retry;
2385
2386	do_endio_flush(ic, dio);
2387}
2388
2389
2390static void integrity_bio_wait(struct work_struct *w)
2391{
2392	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2393
2394	dm_integrity_map_continue(dio, false);
2395}
2396
2397static void pad_uncommitted(struct dm_integrity_c *ic)
2398{
2399	if (ic->free_section_entry) {
2400		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401		ic->free_section_entry = 0;
2402		ic->free_section++;
2403		wraparound_section(ic, &ic->free_section);
2404		ic->n_uncommitted_sections++;
2405	}
2406	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408		    ic->journal_section_entries + ic->free_sectors)) {
2409		DMCRIT("journal_sections %u, journal_section_entries %u, "
2410		       "n_uncommitted_sections %u, n_committed_sections %u, "
2411		       "journal_section_entries %u, free_sectors %u",
2412		       ic->journal_sections, ic->journal_section_entries,
2413		       ic->n_uncommitted_sections, ic->n_committed_sections,
2414		       ic->journal_section_entries, ic->free_sectors);
2415	}
2416}
2417
2418static void integrity_commit(struct work_struct *w)
2419{
2420	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421	unsigned int commit_start, commit_sections;
2422	unsigned int i, j, n;
2423	struct bio *flushes;
2424
2425	del_timer(&ic->autocommit_timer);
2426
2427	spin_lock_irq(&ic->endio_wait.lock);
2428	flushes = bio_list_get(&ic->flush_bio_list);
2429	if (unlikely(ic->mode != 'J')) {
2430		spin_unlock_irq(&ic->endio_wait.lock);
2431		dm_integrity_flush_buffers(ic, true);
2432		goto release_flush_bios;
2433	}
2434
2435	pad_uncommitted(ic);
2436	commit_start = ic->uncommitted_section;
2437	commit_sections = ic->n_uncommitted_sections;
2438	spin_unlock_irq(&ic->endio_wait.lock);
2439
2440	if (!commit_sections)
2441		goto release_flush_bios;
2442
2443	ic->wrote_to_journal = true;
2444
2445	i = commit_start;
2446	for (n = 0; n < commit_sections; n++) {
2447		for (j = 0; j < ic->journal_section_entries; j++) {
2448			struct journal_entry *je;
2449
2450			je = access_journal_entry(ic, i, j);
2451			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452		}
2453		for (j = 0; j < ic->journal_section_sectors; j++) {
2454			struct journal_sector *js;
2455
2456			js = access_journal(ic, i, j);
2457			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458		}
2459		i++;
2460		if (unlikely(i >= ic->journal_sections))
2461			ic->commit_seq = next_commit_seq(ic->commit_seq);
2462		wraparound_section(ic, &i);
2463	}
2464	smp_rmb();
2465
2466	write_journal(ic, commit_start, commit_sections);
2467
2468	spin_lock_irq(&ic->endio_wait.lock);
2469	ic->uncommitted_section += commit_sections;
2470	wraparound_section(ic, &ic->uncommitted_section);
2471	ic->n_uncommitted_sections -= commit_sections;
2472	ic->n_committed_sections += commit_sections;
2473	spin_unlock_irq(&ic->endio_wait.lock);
2474
2475	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476		queue_work(ic->writer_wq, &ic->writer_work);
2477
2478release_flush_bios:
2479	while (flushes) {
2480		struct bio *next = flushes->bi_next;
2481
2482		flushes->bi_next = NULL;
2483		do_endio(ic, flushes);
2484		flushes = next;
2485	}
2486}
2487
2488static void complete_copy_from_journal(unsigned long error, void *context)
2489{
2490	struct journal_io *io = context;
2491	struct journal_completion *comp = io->comp;
2492	struct dm_integrity_c *ic = comp->ic;
2493
2494	remove_range(ic, &io->range);
2495	mempool_free(io, &ic->journal_io_mempool);
2496	if (unlikely(error != 0))
2497		dm_integrity_io_error(ic, "copying from journal", -EIO);
2498	complete_journal_op(comp);
2499}
2500
2501static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502			       struct journal_entry *je)
2503{
2504	unsigned int s = 0;
2505
2506	do {
2507		js->commit_id = je->last_bytes[s];
2508		js++;
2509	} while (++s < ic->sectors_per_block);
2510}
2511
2512static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513			     unsigned int write_sections, bool from_replay)
2514{
2515	unsigned int i, j, n;
2516	struct journal_completion comp;
2517	struct blk_plug plug;
2518
2519	blk_start_plug(&plug);
2520
2521	comp.ic = ic;
2522	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523	init_completion(&comp.comp);
2524
2525	i = write_start;
2526	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527#ifndef INTERNAL_VERIFY
2528		if (unlikely(from_replay))
2529#endif
2530			rw_section_mac(ic, i, false);
2531		for (j = 0; j < ic->journal_section_entries; j++) {
2532			struct journal_entry *je = access_journal_entry(ic, i, j);
2533			sector_t sec, area, offset;
2534			unsigned int k, l, next_loop;
2535			sector_t metadata_block;
2536			unsigned int metadata_offset;
2537			struct journal_io *io;
2538
2539			if (journal_entry_is_unused(je))
2540				continue;
2541			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542			sec = journal_entry_get_sector(je);
2543			if (unlikely(from_replay)) {
2544				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547				}
2548				if (unlikely(sec >= ic->provided_data_sectors)) {
2549					journal_entry_set_unused(je);
2550					continue;
2551				}
2552			}
2553			get_area_and_offset(ic, sec, &area, &offset);
2554			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555			for (k = j + 1; k < ic->journal_section_entries; k++) {
2556				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557				sector_t sec2, area2, offset2;
2558
2559				if (journal_entry_is_unused(je2))
2560					break;
2561				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562				sec2 = journal_entry_get_sector(je2);
2563				if (unlikely(sec2 >= ic->provided_data_sectors))
2564					break;
2565				get_area_and_offset(ic, sec2, &area2, &offset2);
2566				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567					break;
2568				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569			}
2570			next_loop = k - 1;
2571
2572			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573			io->comp = &comp;
2574			io->range.logical_sector = sec;
2575			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576
2577			spin_lock_irq(&ic->endio_wait.lock);
2578			add_new_range_and_wait(ic, &io->range);
2579
2580			if (likely(!from_replay)) {
2581				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582
2583				/* don't write if there is newer committed sector */
2584				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2585					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586
2587					journal_entry_set_unused(je2);
2588					remove_journal_node(ic, &section_node[j]);
2589					j++;
2590					sec += ic->sectors_per_block;
2591					offset += ic->sectors_per_block;
2592				}
2593				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2594					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595
2596					journal_entry_set_unused(je2);
2597					remove_journal_node(ic, &section_node[k - 1]);
2598					k--;
2599				}
2600				if (j == k) {
2601					remove_range_unlocked(ic, &io->range);
2602					spin_unlock_irq(&ic->endio_wait.lock);
2603					mempool_free(io, &ic->journal_io_mempool);
2604					goto skip_io;
2605				}
2606				for (l = j; l < k; l++)
2607					remove_journal_node(ic, &section_node[l]);
 
2608			}
2609			spin_unlock_irq(&ic->endio_wait.lock);
2610
2611			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612			for (l = j; l < k; l++) {
2613				int r;
2614				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615
2616				if (
2617#ifndef INTERNAL_VERIFY
2618				    unlikely(from_replay) &&
2619#endif
2620				    ic->internal_hash) {
2621					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622
2623					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624								  (char *)access_journal_data(ic, i, l), test_tag);
2625					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628					}
2629				}
2630
2631				journal_entry_set_unused(je2);
2632				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633							ic->tag_size, TAG_WRITE);
2634				if (unlikely(r))
2635					dm_integrity_io_error(ic, "reading tags", r);
 
2636			}
2637
2638			atomic_inc(&comp.in_flight);
2639			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640					  (k - j) << ic->sb->log2_sectors_per_block,
2641					  get_data_sector(ic, area, offset),
2642					  complete_copy_from_journal, io);
2643skip_io:
2644			j = next_loop;
2645		}
2646	}
2647
2648	dm_bufio_write_dirty_buffers_async(ic->bufio);
2649
2650	blk_finish_plug(&plug);
2651
2652	complete_journal_op(&comp);
2653	wait_for_completion_io(&comp.comp);
2654
2655	dm_integrity_flush_buffers(ic, true);
2656}
2657
2658static void integrity_writer(struct work_struct *w)
2659{
2660	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661	unsigned int write_start, write_sections;
2662	unsigned int prev_free_sectors;
 
2663
2664	spin_lock_irq(&ic->endio_wait.lock);
2665	write_start = ic->committed_section;
2666	write_sections = ic->n_committed_sections;
2667	spin_unlock_irq(&ic->endio_wait.lock);
2668
2669	if (!write_sections)
2670		return;
2671
2672	do_journal_write(ic, write_start, write_sections, false);
2673
2674	spin_lock_irq(&ic->endio_wait.lock);
2675
2676	ic->committed_section += write_sections;
2677	wraparound_section(ic, &ic->committed_section);
2678	ic->n_committed_sections -= write_sections;
2679
2680	prev_free_sectors = ic->free_sectors;
2681	ic->free_sectors += write_sections * ic->journal_section_entries;
2682	if (unlikely(!prev_free_sectors))
2683		wake_up_locked(&ic->endio_wait);
2684
2685	spin_unlock_irq(&ic->endio_wait.lock);
2686}
2687
2688static void recalc_write_super(struct dm_integrity_c *ic)
2689{
2690	int r;
2691
2692	dm_integrity_flush_buffers(ic, false);
2693	if (dm_integrity_failed(ic))
2694		return;
2695
2696	r = sync_rw_sb(ic, REQ_OP_WRITE);
2697	if (unlikely(r))
2698		dm_integrity_io_error(ic, "writing superblock", r);
2699}
2700
2701static void integrity_recalc(struct work_struct *w)
2702{
2703	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704	size_t recalc_tags_size;
2705	u8 *recalc_buffer = NULL;
2706	u8 *recalc_tags = NULL;
2707	struct dm_integrity_range range;
2708	struct dm_io_request io_req;
2709	struct dm_io_region io_loc;
2710	sector_t area, offset;
2711	sector_t metadata_block;
2712	unsigned int metadata_offset;
2713	sector_t logical_sector, n_sectors;
2714	__u8 *t;
2715	unsigned int i;
2716	int r;
2717	unsigned int super_counter = 0;
2718	unsigned recalc_sectors = RECALC_SECTORS;
2719
2720retry:
2721	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722	if (!recalc_buffer) {
2723oom:
2724		recalc_sectors >>= 1;
2725		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726			goto retry;
2727		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728		goto free_ret;
2729	}
2730	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734	if (!recalc_tags) {
2735		vfree(recalc_buffer);
2736		recalc_buffer = NULL;
2737		goto oom;
2738	}
2739
2740	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741
2742	spin_lock_irq(&ic->endio_wait.lock);
2743
2744next_chunk:
2745
2746	if (unlikely(dm_post_suspending(ic->ti)))
2747		goto unlock_ret;
2748
2749	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751		if (ic->mode == 'B') {
2752			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755		}
2756		goto unlock_ret;
2757	}
2758
2759	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761	if (!ic->meta_dev)
2762		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763
2764	add_new_range_and_wait(ic, &range);
2765	spin_unlock_irq(&ic->endio_wait.lock);
2766	logical_sector = range.logical_sector;
2767	n_sectors = range.n_sectors;
2768
2769	if (ic->mode == 'B') {
2770		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771			goto advance_and_next;
2772
2773		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775			logical_sector += ic->sectors_per_block;
2776			n_sectors -= ic->sectors_per_block;
2777			cond_resched();
2778		}
2779		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781			n_sectors -= ic->sectors_per_block;
2782			cond_resched();
2783		}
2784		get_area_and_offset(ic, logical_sector, &area, &offset);
2785	}
2786
2787	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788
2789	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790		recalc_write_super(ic);
2791		if (ic->mode == 'B')
2792			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793
2794		super_counter = 0;
2795	}
2796
2797	if (unlikely(dm_integrity_failed(ic)))
2798		goto err;
2799
2800	io_req.bi_opf = REQ_OP_READ;
2801	io_req.mem.type = DM_IO_VMA;
2802	io_req.mem.ptr.addr = recalc_buffer;
2803	io_req.notify.fn = NULL;
2804	io_req.client = ic->io;
2805	io_loc.bdev = ic->dev->bdev;
2806	io_loc.sector = get_data_sector(ic, area, offset);
2807	io_loc.count = n_sectors;
2808
2809	r = dm_io(&io_req, 1, &io_loc, NULL);
2810	if (unlikely(r)) {
2811		dm_integrity_io_error(ic, "reading data", r);
2812		goto err;
2813	}
2814
2815	t = recalc_tags;
2816	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818		t += ic->tag_size;
2819	}
2820
2821	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822
2823	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824	if (unlikely(r)) {
2825		dm_integrity_io_error(ic, "writing tags", r);
2826		goto err;
2827	}
2828
2829	if (ic->mode == 'B') {
2830		sector_t start, end;
2831
2832		start = (range.logical_sector >>
2833			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835		end = ((range.logical_sector + range.n_sectors) >>
2836		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839	}
2840
2841advance_and_next:
2842	cond_resched();
2843
2844	spin_lock_irq(&ic->endio_wait.lock);
2845	remove_range_unlocked(ic, &range);
2846	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847	goto next_chunk;
2848
2849err:
2850	remove_range(ic, &range);
2851	goto free_ret;
2852
2853unlock_ret:
2854	spin_unlock_irq(&ic->endio_wait.lock);
2855
2856	recalc_write_super(ic);
2857
2858free_ret:
2859	vfree(recalc_buffer);
2860	kvfree(recalc_tags);
2861}
2862
2863static void bitmap_block_work(struct work_struct *w)
2864{
2865	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866	struct dm_integrity_c *ic = bbs->ic;
2867	struct bio *bio;
2868	struct bio_list bio_queue;
2869	struct bio_list waiting;
2870
2871	bio_list_init(&waiting);
2872
2873	spin_lock(&bbs->bio_queue_lock);
2874	bio_queue = bbs->bio_queue;
2875	bio_list_init(&bbs->bio_queue);
2876	spin_unlock(&bbs->bio_queue_lock);
2877
2878	while ((bio = bio_list_pop(&bio_queue))) {
2879		struct dm_integrity_io *dio;
2880
2881		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882
2883		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885			remove_range(ic, &dio->range);
2886			INIT_WORK(&dio->work, integrity_bio_wait);
2887			queue_work(ic->offload_wq, &dio->work);
2888		} else {
2889			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890					dio->range.n_sectors, BITMAP_OP_SET);
2891			bio_list_add(&waiting, bio);
2892		}
2893	}
2894
2895	if (bio_list_empty(&waiting))
2896		return;
2897
2898	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901
2902	while ((bio = bio_list_pop(&waiting))) {
2903		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904
2905		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906				dio->range.n_sectors, BITMAP_OP_SET);
2907
2908		remove_range(ic, &dio->range);
2909		INIT_WORK(&dio->work, integrity_bio_wait);
2910		queue_work(ic->offload_wq, &dio->work);
2911	}
2912
2913	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914}
2915
2916static void bitmap_flush_work(struct work_struct *work)
2917{
2918	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919	struct dm_integrity_range range;
2920	unsigned long limit;
2921	struct bio *bio;
2922
2923	dm_integrity_flush_buffers(ic, false);
2924
2925	range.logical_sector = 0;
2926	range.n_sectors = ic->provided_data_sectors;
2927
2928	spin_lock_irq(&ic->endio_wait.lock);
2929	add_new_range_and_wait(ic, &range);
2930	spin_unlock_irq(&ic->endio_wait.lock);
2931
2932	dm_integrity_flush_buffers(ic, true);
2933
2934	limit = ic->provided_data_sectors;
2935	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936		limit = le64_to_cpu(ic->sb->recalc_sector)
2937			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939	}
2940	/*DEBUG_print("zeroing journal\n");*/
2941	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943
2944	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946
2947	spin_lock_irq(&ic->endio_wait.lock);
2948	remove_range_unlocked(ic, &range);
2949	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950		bio_endio(bio);
2951		spin_unlock_irq(&ic->endio_wait.lock);
2952		spin_lock_irq(&ic->endio_wait.lock);
2953	}
2954	spin_unlock_irq(&ic->endio_wait.lock);
2955}
2956
2957
2958static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959			 unsigned int n_sections, unsigned char commit_seq)
2960{
2961	unsigned int i, j, n;
2962
2963	if (!n_sections)
2964		return;
2965
2966	for (n = 0; n < n_sections; n++) {
2967		i = start_section + n;
2968		wraparound_section(ic, &i);
2969		for (j = 0; j < ic->journal_section_sectors; j++) {
2970			struct journal_sector *js = access_journal(ic, i, j);
2971
2972			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973			memset(&js->sectors, 0, sizeof(js->sectors));
2974			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975		}
2976		for (j = 0; j < ic->journal_section_entries; j++) {
2977			struct journal_entry *je = access_journal_entry(ic, i, j);
2978
2979			journal_entry_set_unused(je);
2980		}
2981	}
2982
2983	write_journal(ic, start_section, n_sections);
2984}
2985
2986static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987{
2988	unsigned char k;
2989
2990	for (k = 0; k < N_COMMIT_IDS; k++) {
2991		if (dm_integrity_commit_id(ic, i, j, k) == id)
2992			return k;
2993	}
2994	dm_integrity_io_error(ic, "journal commit id", -EIO);
2995	return -EIO;
2996}
2997
2998static void replay_journal(struct dm_integrity_c *ic)
2999{
3000	unsigned int i, j;
3001	bool used_commit_ids[N_COMMIT_IDS];
3002	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003	unsigned int write_start, write_sections;
3004	unsigned int continue_section;
3005	bool journal_empty;
3006	unsigned char unused, last_used, want_commit_seq;
3007
3008	if (ic->mode == 'R')
3009		return;
3010
3011	if (ic->journal_uptodate)
3012		return;
3013
3014	last_used = 0;
3015	write_start = 0;
3016
3017	if (!ic->just_formatted) {
3018		DEBUG_print("reading journal\n");
3019		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020		if (ic->journal_io)
3021			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022		if (ic->journal_io) {
3023			struct journal_completion crypt_comp;
3024
3025			crypt_comp.ic = ic;
3026			init_completion(&crypt_comp.comp);
3027			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029			wait_for_completion(&crypt_comp.comp);
3030		}
3031		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032	}
3033
3034	if (dm_integrity_failed(ic))
3035		goto clear_journal;
3036
3037	journal_empty = true;
3038	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040	for (i = 0; i < ic->journal_sections; i++) {
3041		for (j = 0; j < ic->journal_section_sectors; j++) {
3042			int k;
3043			struct journal_sector *js = access_journal(ic, i, j);
3044
3045			k = find_commit_seq(ic, i, j, js->commit_id);
3046			if (k < 0)
3047				goto clear_journal;
3048			used_commit_ids[k] = true;
3049			max_commit_id_sections[k] = i;
3050		}
3051		if (journal_empty) {
3052			for (j = 0; j < ic->journal_section_entries; j++) {
3053				struct journal_entry *je = access_journal_entry(ic, i, j);
3054
3055				if (!journal_entry_is_unused(je)) {
3056					journal_empty = false;
3057					break;
3058				}
3059			}
3060		}
3061	}
3062
3063	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064		unused = N_COMMIT_IDS - 1;
3065		while (unused && !used_commit_ids[unused - 1])
3066			unused--;
3067	} else {
3068		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069			if (!used_commit_ids[unused])
3070				break;
3071		if (unused == N_COMMIT_IDS) {
3072			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073			goto clear_journal;
3074		}
3075	}
3076	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077		    unused, used_commit_ids[0], used_commit_ids[1],
3078		    used_commit_ids[2], used_commit_ids[3]);
3079
3080	last_used = prev_commit_seq(unused);
3081	want_commit_seq = prev_commit_seq(last_used);
3082
3083	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084		journal_empty = true;
3085
3086	write_start = max_commit_id_sections[last_used] + 1;
3087	if (unlikely(write_start >= ic->journal_sections))
3088		want_commit_seq = next_commit_seq(want_commit_seq);
3089	wraparound_section(ic, &write_start);
3090
3091	i = write_start;
3092	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093		for (j = 0; j < ic->journal_section_sectors; j++) {
3094			struct journal_sector *js = access_journal(ic, i, j);
3095
3096			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097				/*
3098				 * This could be caused by crash during writing.
3099				 * We won't replay the inconsistent part of the
3100				 * journal.
3101				 */
3102				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104				goto brk;
3105			}
3106		}
3107		i++;
3108		if (unlikely(i >= ic->journal_sections))
3109			want_commit_seq = next_commit_seq(want_commit_seq);
3110		wraparound_section(ic, &i);
3111	}
3112brk:
3113
3114	if (!journal_empty) {
3115		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116			    write_sections, write_start, want_commit_seq);
3117		do_journal_write(ic, write_start, write_sections, true);
3118	}
3119
3120	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121		continue_section = write_start;
3122		ic->commit_seq = want_commit_seq;
3123		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124	} else {
3125		unsigned int s;
3126		unsigned char erase_seq;
3127
3128clear_journal:
3129		DEBUG_print("clearing journal\n");
3130
3131		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132		s = write_start;
3133		init_journal(ic, s, 1, erase_seq);
3134		s++;
3135		wraparound_section(ic, &s);
3136		if (ic->journal_sections >= 2) {
3137			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138			s += ic->journal_sections - 2;
3139			wraparound_section(ic, &s);
3140			init_journal(ic, s, 1, erase_seq);
3141		}
3142
3143		continue_section = 0;
3144		ic->commit_seq = next_commit_seq(erase_seq);
3145	}
3146
3147	ic->committed_section = continue_section;
3148	ic->n_committed_sections = 0;
3149
3150	ic->uncommitted_section = continue_section;
3151	ic->n_uncommitted_sections = 0;
3152
3153	ic->free_section = continue_section;
3154	ic->free_section_entry = 0;
3155	ic->free_sectors = ic->journal_entries;
3156
3157	ic->journal_tree_root = RB_ROOT;
3158	for (i = 0; i < ic->journal_entries; i++)
3159		init_journal_node(&ic->journal_tree[i]);
3160}
3161
3162static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163{
3164	DEBUG_print("%s\n", __func__);
3165
3166	if (ic->mode == 'B') {
3167		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168		ic->synchronous_mode = 1;
3169
3170		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172		flush_workqueue(ic->commit_wq);
3173	}
3174}
3175
3176static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177{
3178	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179
3180	DEBUG_print("%s\n", __func__);
3181
3182	dm_integrity_enter_synchronous_mode(ic);
3183
3184	return NOTIFY_DONE;
3185}
3186
3187static void dm_integrity_postsuspend(struct dm_target *ti)
3188{
3189	struct dm_integrity_c *ic = ti->private;
3190	int r;
3191
3192	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193
3194	del_timer_sync(&ic->autocommit_timer);
3195
3196	if (ic->recalc_wq)
3197		drain_workqueue(ic->recalc_wq);
3198
3199	if (ic->mode == 'B')
3200		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201
3202	queue_work(ic->commit_wq, &ic->commit_work);
3203	drain_workqueue(ic->commit_wq);
3204
3205	if (ic->mode == 'J') {
3206		queue_work(ic->writer_wq, &ic->writer_work);
3207		drain_workqueue(ic->writer_wq);
3208		dm_integrity_flush_buffers(ic, true);
3209		if (ic->wrote_to_journal) {
3210			init_journal(ic, ic->free_section,
3211				     ic->journal_sections - ic->free_section, ic->commit_seq);
3212			if (ic->free_section) {
3213				init_journal(ic, 0, ic->free_section,
3214					     next_commit_seq(ic->commit_seq));
3215			}
3216		}
3217	}
3218
3219	if (ic->mode == 'B') {
3220		dm_integrity_flush_buffers(ic, true);
3221#if 1
3222		/* set to 0 to test bitmap replay code */
3223		init_journal(ic, 0, ic->journal_sections, 0);
3224		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226		if (unlikely(r))
3227			dm_integrity_io_error(ic, "writing superblock", r);
3228#endif
3229	}
3230
3231	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232
3233	ic->journal_uptodate = true;
3234}
3235
3236static void dm_integrity_resume(struct dm_target *ti)
3237{
3238	struct dm_integrity_c *ic = ti->private;
3239	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240	int r;
3241
3242	DEBUG_print("resume\n");
3243
3244	ic->wrote_to_journal = false;
3245
3246	if (ic->provided_data_sectors != old_provided_data_sectors) {
3247		if (ic->provided_data_sectors > old_provided_data_sectors &&
3248		    ic->mode == 'B' &&
3249		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250			rw_journal_sectors(ic, REQ_OP_READ, 0,
3251					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256		}
3257
3258		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260		if (unlikely(r))
3261			dm_integrity_io_error(ic, "writing superblock", r);
3262	}
3263
3264	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265		DEBUG_print("resume dirty_bitmap\n");
3266		rw_journal_sectors(ic, REQ_OP_READ, 0,
3267				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268		if (ic->mode == 'B') {
3269			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270			    !ic->reset_recalculate_flag) {
3271				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274						     BITMAP_OP_TEST_ALL_CLEAR)) {
3275					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276					ic->sb->recalc_sector = cpu_to_le64(0);
3277				}
3278			} else {
3279				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288				ic->sb->recalc_sector = cpu_to_le64(0);
3289			}
3290		} else {
3291			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293			    ic->reset_recalculate_flag) {
3294				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295				ic->sb->recalc_sector = cpu_to_le64(0);
3296			}
3297			init_journal(ic, 0, ic->journal_sections, 0);
3298			replay_journal(ic);
3299			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300		}
3301		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302		if (unlikely(r))
3303			dm_integrity_io_error(ic, "writing superblock", r);
3304	} else {
3305		replay_journal(ic);
3306		if (ic->reset_recalculate_flag) {
3307			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308			ic->sb->recalc_sector = cpu_to_le64(0);
3309		}
3310		if (ic->mode == 'B') {
3311			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314			if (unlikely(r))
3315				dm_integrity_io_error(ic, "writing superblock", r);
3316
3317			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328			}
3329			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331		}
3332	}
3333
3334	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337
3338		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339		if (recalc_pos < ic->provided_data_sectors) {
3340			queue_work(ic->recalc_wq, &ic->recalc_work);
3341		} else if (recalc_pos > ic->provided_data_sectors) {
3342			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343			recalc_write_super(ic);
3344		}
3345	}
3346
3347	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348	ic->reboot_notifier.next = NULL;
3349	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3350	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351
3352#if 0
3353	/* set to 1 to stress test synchronous mode */
3354	dm_integrity_enter_synchronous_mode(ic);
3355#endif
3356}
3357
3358static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359				unsigned int status_flags, char *result, unsigned int maxlen)
3360{
3361	struct dm_integrity_c *ic = ti->private;
3362	unsigned int arg_count;
3363	size_t sz = 0;
3364
3365	switch (type) {
3366	case STATUSTYPE_INFO:
3367		DMEMIT("%llu %llu",
3368			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369			ic->provided_data_sectors);
3370		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372		else
3373			DMEMIT(" -");
3374		break;
3375
3376	case STATUSTYPE_TABLE: {
3377		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378
3379		watermark_percentage += ic->journal_entries / 2;
3380		do_div(watermark_percentage, ic->journal_entries);
3381		arg_count = 3;
3382		arg_count += !!ic->meta_dev;
3383		arg_count += ic->sectors_per_block != 1;
3384		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385		arg_count += ic->reset_recalculate_flag;
3386		arg_count += ic->discard;
3387		arg_count += ic->mode == 'J';
3388		arg_count += ic->mode == 'J';
3389		arg_count += ic->mode == 'B';
3390		arg_count += ic->mode == 'B';
3391		arg_count += !!ic->internal_hash_alg.alg_string;
3392		arg_count += !!ic->journal_crypt_alg.alg_string;
3393		arg_count += !!ic->journal_mac_alg.alg_string;
3394		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396		arg_count += ic->legacy_recalculate;
3397		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398		       ic->tag_size, ic->mode, arg_count);
3399		if (ic->meta_dev)
3400			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401		if (ic->sectors_per_block != 1)
3402			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404			DMEMIT(" recalculate");
3405		if (ic->reset_recalculate_flag)
3406			DMEMIT(" reset_recalculate");
3407		if (ic->discard)
3408			DMEMIT(" allow_discards");
3409		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412		if (ic->mode == 'J') {
3413			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415		}
3416		if (ic->mode == 'B') {
3417			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419		}
3420		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421			DMEMIT(" fix_padding");
3422		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423			DMEMIT(" fix_hmac");
3424		if (ic->legacy_recalculate)
3425			DMEMIT(" legacy_recalculate");
3426
3427#define EMIT_ALG(a, n)							\
3428		do {							\
3429			if (ic->a.alg_string) {				\
3430				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3431				if (ic->a.key_string)			\
3432					DMEMIT(":%s", ic->a.key_string);\
3433			}						\
3434		} while (0)
3435		EMIT_ALG(internal_hash_alg, "internal_hash");
3436		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437		EMIT_ALG(journal_mac_alg, "journal_mac");
3438		break;
3439	}
3440	case STATUSTYPE_IMA:
3441		DMEMIT_TARGET_NAME_VERSION(ti->type);
3442		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444
3445		if (ic->meta_dev)
3446			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447		if (ic->sectors_per_block != 1)
3448			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449
3450		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451		       'y' : 'n');
3452		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453		DMEMIT(",fix_padding=%c",
3454		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455		DMEMIT(",fix_hmac=%c",
3456		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458
3459		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462		DMEMIT(";");
3463		break;
3464	}
3465}
3466
3467static int dm_integrity_iterate_devices(struct dm_target *ti,
3468					iterate_devices_callout_fn fn, void *data)
3469{
3470	struct dm_integrity_c *ic = ti->private;
3471
3472	if (!ic->meta_dev)
3473		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474	else
3475		return fn(ti, ic->dev, 0, ti->len, data);
3476}
3477
3478static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479{
3480	struct dm_integrity_c *ic = ti->private;
3481
3482	if (ic->sectors_per_block > 1) {
3483		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486		limits->dma_alignment = limits->logical_block_size - 1;
3487	}
3488}
3489
3490static void calculate_journal_section_size(struct dm_integrity_c *ic)
3491{
3492	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3493
3494	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3495	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3496					 JOURNAL_ENTRY_ROUNDUP);
3497
3498	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3499		sector_space -= JOURNAL_MAC_PER_SECTOR;
3500	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3501	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3502	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3503	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3504}
3505
3506static int calculate_device_limits(struct dm_integrity_c *ic)
3507{
3508	__u64 initial_sectors;
3509
3510	calculate_journal_section_size(ic);
3511	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3512	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3513		return -EINVAL;
3514	ic->initial_sectors = initial_sectors;
3515
3516	if (!ic->meta_dev) {
3517		sector_t last_sector, last_area, last_offset;
3518
3519		/* we have to maintain excessive padding for compatibility with existing volumes */
3520		__u64 metadata_run_padding =
3521			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3522			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3523			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3524
3525		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3526					    metadata_run_padding) >> SECTOR_SHIFT;
3527		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3528			ic->log2_metadata_run = __ffs(ic->metadata_run);
3529		else
3530			ic->log2_metadata_run = -1;
3531
3532		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3533		last_sector = get_data_sector(ic, last_area, last_offset);
3534		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3535			return -EINVAL;
3536	} else {
3537		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3538
3539		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3540				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3541		meta_size <<= ic->log2_buffer_sectors;
3542		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3543		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3544			return -EINVAL;
3545		ic->metadata_run = 1;
3546		ic->log2_metadata_run = 0;
3547	}
3548
3549	return 0;
3550}
3551
3552static void get_provided_data_sectors(struct dm_integrity_c *ic)
3553{
3554	if (!ic->meta_dev) {
3555		int test_bit;
3556
3557		ic->provided_data_sectors = 0;
3558		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3559			__u64 prev_data_sectors = ic->provided_data_sectors;
3560
3561			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3562			if (calculate_device_limits(ic))
3563				ic->provided_data_sectors = prev_data_sectors;
3564		}
3565	} else {
3566		ic->provided_data_sectors = ic->data_device_sectors;
3567		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3568	}
3569}
3570
3571static int initialize_superblock(struct dm_integrity_c *ic,
3572				 unsigned int journal_sectors, unsigned int interleave_sectors)
3573{
3574	unsigned int journal_sections;
3575	int test_bit;
3576
3577	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3578	memcpy(ic->sb->magic, SB_MAGIC, 8);
3579	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3580	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3581	if (ic->journal_mac_alg.alg_string)
3582		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3583
3584	calculate_journal_section_size(ic);
3585	journal_sections = journal_sectors / ic->journal_section_sectors;
3586	if (!journal_sections)
3587		journal_sections = 1;
3588
3589	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3590		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3591		get_random_bytes(ic->sb->salt, SALT_SIZE);
3592	}
3593
3594	if (!ic->meta_dev) {
3595		if (ic->fix_padding)
3596			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3597		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3598		if (!interleave_sectors)
3599			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3600		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3601		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3602		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603
3604		get_provided_data_sectors(ic);
3605		if (!ic->provided_data_sectors)
3606			return -EINVAL;
3607	} else {
3608		ic->sb->log2_interleave_sectors = 0;
3609
3610		get_provided_data_sectors(ic);
3611		if (!ic->provided_data_sectors)
3612			return -EINVAL;
3613
3614try_smaller_buffer:
3615		ic->sb->journal_sections = cpu_to_le32(0);
3616		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3617			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3618			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3619
3620			if (test_journal_sections > journal_sections)
3621				continue;
3622			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3623			if (calculate_device_limits(ic))
3624				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3625
3626		}
3627		if (!le32_to_cpu(ic->sb->journal_sections)) {
3628			if (ic->log2_buffer_sectors > 3) {
3629				ic->log2_buffer_sectors--;
3630				goto try_smaller_buffer;
3631			}
3632			return -EINVAL;
3633		}
3634	}
3635
3636	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3637
3638	sb_set_version(ic);
3639
3640	return 0;
3641}
3642
3643static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3644{
3645	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3646	struct blk_integrity bi;
3647
3648	memset(&bi, 0, sizeof(bi));
3649	bi.profile = &dm_integrity_profile;
3650	bi.tuple_size = ic->tag_size;
3651	bi.tag_size = bi.tuple_size;
3652	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3653
3654	blk_integrity_register(disk, &bi);
3655	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3656}
3657
3658static void dm_integrity_free_page_list(struct page_list *pl)
3659{
3660	unsigned int i;
3661
3662	if (!pl)
3663		return;
3664	for (i = 0; pl[i].page; i++)
3665		__free_page(pl[i].page);
3666	kvfree(pl);
3667}
3668
3669static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670{
3671	struct page_list *pl;
3672	unsigned int i;
3673
3674	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675	if (!pl)
3676		return NULL;
3677
3678	for (i = 0; i < n_pages; i++) {
3679		pl[i].page = alloc_page(GFP_KERNEL);
3680		if (!pl[i].page) {
3681			dm_integrity_free_page_list(pl);
3682			return NULL;
3683		}
3684		if (i)
3685			pl[i - 1].next = &pl[i];
3686	}
3687	pl[i].page = NULL;
3688	pl[i].next = NULL;
3689
3690	return pl;
3691}
3692
3693static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694{
3695	unsigned int i;
3696
3697	for (i = 0; i < ic->journal_sections; i++)
3698		kvfree(sl[i]);
3699	kvfree(sl);
3700}
3701
3702static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703								   struct page_list *pl)
3704{
3705	struct scatterlist **sl;
3706	unsigned int i;
3707
3708	sl = kvmalloc_array(ic->journal_sections,
3709			    sizeof(struct scatterlist *),
3710			    GFP_KERNEL | __GFP_ZERO);
3711	if (!sl)
3712		return NULL;
3713
3714	for (i = 0; i < ic->journal_sections; i++) {
3715		struct scatterlist *s;
3716		unsigned int start_index, start_offset;
3717		unsigned int end_index, end_offset;
3718		unsigned int n_pages;
3719		unsigned int idx;
3720
3721		page_list_location(ic, i, 0, &start_index, &start_offset);
3722		page_list_location(ic, i, ic->journal_section_sectors - 1,
3723				   &end_index, &end_offset);
3724
3725		n_pages = (end_index - start_index + 1);
3726
3727		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728				   GFP_KERNEL);
3729		if (!s) {
3730			dm_integrity_free_journal_scatterlist(ic, sl);
3731			return NULL;
3732		}
3733
3734		sg_init_table(s, n_pages);
3735		for (idx = start_index; idx <= end_index; idx++) {
3736			char *va = lowmem_page_address(pl[idx].page);
3737			unsigned int start = 0, end = PAGE_SIZE;
3738
3739			if (idx == start_index)
3740				start = start_offset;
3741			if (idx == end_index)
3742				end = end_offset + (1 << SECTOR_SHIFT);
3743			sg_set_buf(&s[idx - start_index], va + start, end - start);
3744		}
3745
3746		sl[i] = s;
3747	}
3748
3749	return sl;
3750}
3751
3752static void free_alg(struct alg_spec *a)
3753{
3754	kfree_sensitive(a->alg_string);
3755	kfree_sensitive(a->key);
3756	memset(a, 0, sizeof(*a));
3757}
3758
3759static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760{
3761	char *k;
3762
3763	free_alg(a);
3764
3765	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766	if (!a->alg_string)
3767		goto nomem;
3768
3769	k = strchr(a->alg_string, ':');
3770	if (k) {
3771		*k = 0;
3772		a->key_string = k + 1;
3773		if (strlen(a->key_string) & 1)
3774			goto inval;
3775
3776		a->key_size = strlen(a->key_string) / 2;
3777		a->key = kmalloc(a->key_size, GFP_KERNEL);
3778		if (!a->key)
3779			goto nomem;
3780		if (hex2bin(a->key, a->key_string, a->key_size))
3781			goto inval;
3782	}
3783
3784	return 0;
3785inval:
3786	*error = error_inval;
3787	return -EINVAL;
3788nomem:
3789	*error = "Out of memory for an argument";
3790	return -ENOMEM;
3791}
3792
3793static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794		   char *error_alg, char *error_key)
3795{
3796	int r;
3797
3798	if (a->alg_string) {
3799		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800		if (IS_ERR(*hash)) {
3801			*error = error_alg;
3802			r = PTR_ERR(*hash);
3803			*hash = NULL;
3804			return r;
3805		}
3806
3807		if (a->key) {
3808			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809			if (r) {
3810				*error = error_key;
3811				return r;
3812			}
3813		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814			*error = error_key;
3815			return -ENOKEY;
3816		}
3817	}
3818
3819	return 0;
3820}
3821
3822static int create_journal(struct dm_integrity_c *ic, char **error)
3823{
3824	int r = 0;
3825	unsigned int i;
3826	__u64 journal_pages, journal_desc_size, journal_tree_size;
3827	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828	struct skcipher_request *req = NULL;
3829
3830	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834
3835	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837	journal_desc_size = journal_pages * sizeof(struct page_list);
3838	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839		*error = "Journal doesn't fit into memory";
3840		r = -ENOMEM;
3841		goto bad;
3842	}
3843	ic->journal_pages = journal_pages;
3844
3845	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846	if (!ic->journal) {
3847		*error = "Could not allocate memory for journal";
3848		r = -ENOMEM;
3849		goto bad;
3850	}
3851	if (ic->journal_crypt_alg.alg_string) {
3852		unsigned int ivsize, blocksize;
3853		struct journal_completion comp;
3854
3855		comp.ic = ic;
3856		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857		if (IS_ERR(ic->journal_crypt)) {
3858			*error = "Invalid journal cipher";
3859			r = PTR_ERR(ic->journal_crypt);
3860			ic->journal_crypt = NULL;
3861			goto bad;
3862		}
3863		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865
3866		if (ic->journal_crypt_alg.key) {
3867			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868						   ic->journal_crypt_alg.key_size);
3869			if (r) {
3870				*error = "Error setting encryption key";
3871				goto bad;
3872			}
3873		}
3874		DEBUG_print("cipher %s, block size %u iv size %u\n",
3875			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876
3877		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878		if (!ic->journal_io) {
3879			*error = "Could not allocate memory for journal io";
3880			r = -ENOMEM;
3881			goto bad;
3882		}
3883
3884		if (blocksize == 1) {
3885			struct scatterlist *sg;
3886
3887			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888			if (!req) {
3889				*error = "Could not allocate crypt request";
3890				r = -ENOMEM;
3891				goto bad;
3892			}
3893
3894			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895			if (!crypt_iv) {
3896				*error = "Could not allocate iv";
3897				r = -ENOMEM;
3898				goto bad;
3899			}
3900
3901			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902			if (!ic->journal_xor) {
3903				*error = "Could not allocate memory for journal xor";
3904				r = -ENOMEM;
3905				goto bad;
3906			}
3907
3908			sg = kvmalloc_array(ic->journal_pages + 1,
3909					    sizeof(struct scatterlist),
3910					    GFP_KERNEL);
3911			if (!sg) {
3912				*error = "Unable to allocate sg list";
3913				r = -ENOMEM;
3914				goto bad;
3915			}
3916			sg_init_table(sg, ic->journal_pages + 1);
3917			for (i = 0; i < ic->journal_pages; i++) {
3918				char *va = lowmem_page_address(ic->journal_xor[i].page);
3919
3920				clear_page(va);
3921				sg_set_buf(&sg[i], va, PAGE_SIZE);
3922			}
3923			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924
3925			skcipher_request_set_crypt(req, sg, sg,
3926						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927			init_completion(&comp.comp);
3928			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929			if (do_crypt(true, req, &comp))
3930				wait_for_completion(&comp.comp);
3931			kvfree(sg);
3932			r = dm_integrity_failed(ic);
3933			if (r) {
3934				*error = "Unable to encrypt journal";
3935				goto bad;
3936			}
3937			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938
3939			crypto_free_skcipher(ic->journal_crypt);
3940			ic->journal_crypt = NULL;
3941		} else {
3942			unsigned int crypt_len = roundup(ivsize, blocksize);
3943
3944			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945			if (!req) {
3946				*error = "Could not allocate crypt request";
3947				r = -ENOMEM;
3948				goto bad;
3949			}
3950
3951			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952			if (!crypt_iv) {
3953				*error = "Could not allocate iv";
3954				r = -ENOMEM;
3955				goto bad;
3956			}
3957
3958			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959			if (!crypt_data) {
3960				*error = "Unable to allocate crypt data";
3961				r = -ENOMEM;
3962				goto bad;
3963			}
3964
3965			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966			if (!ic->journal_scatterlist) {
3967				*error = "Unable to allocate sg list";
3968				r = -ENOMEM;
3969				goto bad;
3970			}
3971			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972			if (!ic->journal_io_scatterlist) {
3973				*error = "Unable to allocate sg list";
3974				r = -ENOMEM;
3975				goto bad;
3976			}
3977			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978							 sizeof(struct skcipher_request *),
3979							 GFP_KERNEL | __GFP_ZERO);
3980			if (!ic->sk_requests) {
3981				*error = "Unable to allocate sk requests";
3982				r = -ENOMEM;
3983				goto bad;
3984			}
3985			for (i = 0; i < ic->journal_sections; i++) {
3986				struct scatterlist sg;
3987				struct skcipher_request *section_req;
3988				__le32 section_le = cpu_to_le32(i);
3989
3990				memset(crypt_iv, 0x00, ivsize);
3991				memset(crypt_data, 0x00, crypt_len);
3992				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993
3994				sg_init_one(&sg, crypt_data, crypt_len);
3995				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996				init_completion(&comp.comp);
3997				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998				if (do_crypt(true, req, &comp))
3999					wait_for_completion(&comp.comp);
4000
4001				r = dm_integrity_failed(ic);
4002				if (r) {
4003					*error = "Unable to generate iv";
4004					goto bad;
4005				}
4006
4007				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008				if (!section_req) {
4009					*error = "Unable to allocate crypt request";
4010					r = -ENOMEM;
4011					goto bad;
4012				}
4013				section_req->iv = kmalloc_array(ivsize, 2,
4014								GFP_KERNEL);
4015				if (!section_req->iv) {
4016					skcipher_request_free(section_req);
4017					*error = "Unable to allocate iv";
4018					r = -ENOMEM;
4019					goto bad;
4020				}
4021				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023				ic->sk_requests[i] = section_req;
4024				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025			}
4026		}
4027	}
4028
4029	for (i = 0; i < N_COMMIT_IDS; i++) {
4030		unsigned int j;
4031
4032retest_commit_id:
4033		for (j = 0; j < i; j++) {
4034			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036				goto retest_commit_id;
4037			}
4038		}
4039		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040	}
4041
4042	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043	if (journal_tree_size > ULONG_MAX) {
4044		*error = "Journal doesn't fit into memory";
4045		r = -ENOMEM;
4046		goto bad;
4047	}
4048	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049	if (!ic->journal_tree) {
4050		*error = "Could not allocate memory for journal tree";
4051		r = -ENOMEM;
4052	}
4053bad:
4054	kfree(crypt_data);
4055	kfree(crypt_iv);
4056	skcipher_request_free(req);
4057
4058	return r;
4059}
4060
4061/*
4062 * Construct a integrity mapping
4063 *
4064 * Arguments:
4065 *	device
4066 *	offset from the start of the device
4067 *	tag size
4068 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069 *	number of optional arguments
4070 *	optional arguments:
4071 *		journal_sectors
4072 *		interleave_sectors
4073 *		buffer_sectors
4074 *		journal_watermark
4075 *		commit_time
4076 *		meta_device
4077 *		block_size
4078 *		sectors_per_bit
4079 *		bitmap_flush_interval
4080 *		internal_hash
4081 *		journal_crypt
4082 *		journal_mac
4083 *		recalculate
4084 */
4085static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086{
4087	struct dm_integrity_c *ic;
4088	char dummy;
4089	int r;
4090	unsigned int extra_args;
4091	struct dm_arg_set as;
4092	static const struct dm_arg _args[] = {
4093		{0, 18, "Invalid number of feature args"},
4094	};
4095	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096	bool should_write_sb;
4097	__u64 threshold;
4098	unsigned long long start;
4099	__s8 log2_sectors_per_bitmap_bit = -1;
4100	__s8 log2_blocks_per_bitmap_bit;
4101	__u64 bits_in_journal;
4102	__u64 n_bitmap_bits;
4103
4104#define DIRECT_ARGUMENTS	4
4105
4106	if (argc <= DIRECT_ARGUMENTS) {
4107		ti->error = "Invalid argument count";
4108		return -EINVAL;
4109	}
4110
4111	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112	if (!ic) {
4113		ti->error = "Cannot allocate integrity context";
4114		return -ENOMEM;
4115	}
4116	ti->private = ic;
4117	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118	ic->ti = ti;
4119
4120	ic->in_progress = RB_ROOT;
4121	INIT_LIST_HEAD(&ic->wait_list);
4122	init_waitqueue_head(&ic->endio_wait);
4123	bio_list_init(&ic->flush_bio_list);
4124	init_waitqueue_head(&ic->copy_to_journal_wait);
4125	init_completion(&ic->crypto_backoff);
4126	atomic64_set(&ic->number_of_mismatches, 0);
4127	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128
4129	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130	if (r) {
4131		ti->error = "Device lookup failed";
4132		goto bad;
4133	}
4134
4135	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136		ti->error = "Invalid starting offset";
4137		r = -EINVAL;
4138		goto bad;
4139	}
4140	ic->start = start;
4141
4142	if (strcmp(argv[2], "-")) {
4143		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144			ti->error = "Invalid tag size";
4145			r = -EINVAL;
4146			goto bad;
4147		}
4148	}
4149
4150	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4152		ic->mode = argv[3][0];
4153	} else {
4154		ti->error = "Invalid mode (expecting J, B, D, R)";
4155		r = -EINVAL;
4156		goto bad;
4157	}
4158
4159	journal_sectors = 0;
4160	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163	sync_msec = DEFAULT_SYNC_MSEC;
4164	ic->sectors_per_block = 1;
4165
4166	as.argc = argc - DIRECT_ARGUMENTS;
4167	as.argv = argv + DIRECT_ARGUMENTS;
4168	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169	if (r)
4170		goto bad;
4171
4172	while (extra_args--) {
4173		const char *opt_string;
4174		unsigned int val;
4175		unsigned long long llval;
4176
4177		opt_string = dm_shift_arg(&as);
4178		if (!opt_string) {
4179			r = -EINVAL;
4180			ti->error = "Not enough feature arguments";
4181			goto bad;
4182		}
4183		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184			journal_sectors = val ? val : 1;
4185		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186			interleave_sectors = val;
4187		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188			buffer_sectors = val;
4189		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190			journal_watermark = val;
4191		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192			sync_msec = val;
4193		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194			if (ic->meta_dev) {
4195				dm_put_device(ti, ic->meta_dev);
4196				ic->meta_dev = NULL;
4197			}
4198			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199					  dm_table_get_mode(ti->table), &ic->meta_dev);
4200			if (r) {
4201				ti->error = "Device lookup failed";
4202				goto bad;
4203			}
4204		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205			if (val < 1 << SECTOR_SHIFT ||
4206			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207			    (val & (val - 1))) {
4208				r = -EINVAL;
4209				ti->error = "Invalid block_size argument";
4210				goto bad;
4211			}
4212			ic->sectors_per_block = val >> SECTOR_SHIFT;
4213		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217				r = -EINVAL;
4218				ti->error = "Invalid bitmap_flush_interval argument";
4219				goto bad;
4220			}
4221			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224					    "Invalid internal_hash argument");
4225			if (r)
4226				goto bad;
4227		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229					    "Invalid journal_crypt argument");
4230			if (r)
4231				goto bad;
4232		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234					    "Invalid journal_mac argument");
4235			if (r)
4236				goto bad;
4237		} else if (!strcmp(opt_string, "recalculate")) {
4238			ic->recalculate_flag = true;
4239		} else if (!strcmp(opt_string, "reset_recalculate")) {
4240			ic->recalculate_flag = true;
4241			ic->reset_recalculate_flag = true;
4242		} else if (!strcmp(opt_string, "allow_discards")) {
4243			ic->discard = true;
4244		} else if (!strcmp(opt_string, "fix_padding")) {
4245			ic->fix_padding = true;
4246		} else if (!strcmp(opt_string, "fix_hmac")) {
4247			ic->fix_hmac = true;
4248		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4249			ic->legacy_recalculate = true;
4250		} else {
4251			r = -EINVAL;
4252			ti->error = "Invalid argument";
4253			goto bad;
4254		}
4255	}
4256
4257	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258	if (!ic->meta_dev)
4259		ic->meta_device_sectors = ic->data_device_sectors;
4260	else
4261		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262
4263	if (!journal_sectors) {
4264		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266	}
4267
4268	if (!buffer_sectors)
4269		buffer_sectors = 1;
4270	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271
4272	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273		    "Invalid internal hash", "Error setting internal hash key");
4274	if (r)
4275		goto bad;
4276
4277	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278		    "Invalid journal mac", "Error setting journal mac key");
4279	if (r)
4280		goto bad;
4281
4282	if (!ic->tag_size) {
4283		if (!ic->internal_hash) {
4284			ti->error = "Unknown tag size";
4285			r = -EINVAL;
4286			goto bad;
4287		}
4288		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289	}
4290	if (ic->tag_size > MAX_TAG_SIZE) {
4291		ti->error = "Too big tag size";
4292		r = -EINVAL;
4293		goto bad;
4294	}
4295	if (!(ic->tag_size & (ic->tag_size - 1)))
4296		ic->log2_tag_size = __ffs(ic->tag_size);
4297	else
4298		ic->log2_tag_size = -1;
4299
4300	if (ic->mode == 'B' && !ic->internal_hash) {
4301		r = -EINVAL;
4302		ti->error = "Bitmap mode can be only used with internal hash";
4303		goto bad;
4304	}
4305
4306	if (ic->discard && !ic->internal_hash) {
4307		r = -EINVAL;
4308		ti->error = "Discard can be only used with internal hash";
4309		goto bad;
4310	}
4311
4312	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313	ic->autocommit_msec = sync_msec;
4314	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315
4316	ic->io = dm_io_client_create();
4317	if (IS_ERR(ic->io)) {
4318		r = PTR_ERR(ic->io);
4319		ic->io = NULL;
4320		ti->error = "Cannot allocate dm io";
4321		goto bad;
4322	}
4323
4324	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325	if (r) {
4326		ti->error = "Cannot allocate mempool";
4327		goto bad;
4328	}
4329
4330	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331	if (r) {
4332		ti->error = "Cannot allocate mempool";
4333		goto bad;
4334	}
4335
4336	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338	if (!ic->metadata_wq) {
4339		ti->error = "Cannot allocate workqueue";
4340		r = -ENOMEM;
4341		goto bad;
4342	}
4343
4344	/*
4345	 * If this workqueue weren't ordered, it would cause bio reordering
4346	 * and reduced performance.
4347	 */
4348	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349	if (!ic->wait_wq) {
4350		ti->error = "Cannot allocate workqueue";
4351		r = -ENOMEM;
4352		goto bad;
4353	}
4354
4355	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356					  METADATA_WORKQUEUE_MAX_ACTIVE);
4357	if (!ic->offload_wq) {
4358		ti->error = "Cannot allocate workqueue";
4359		r = -ENOMEM;
4360		goto bad;
4361	}
4362
4363	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364	if (!ic->commit_wq) {
4365		ti->error = "Cannot allocate workqueue";
4366		r = -ENOMEM;
4367		goto bad;
4368	}
4369	INIT_WORK(&ic->commit_work, integrity_commit);
4370
4371	if (ic->mode == 'J' || ic->mode == 'B') {
4372		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373		if (!ic->writer_wq) {
4374			ti->error = "Cannot allocate workqueue";
4375			r = -ENOMEM;
4376			goto bad;
4377		}
4378		INIT_WORK(&ic->writer_work, integrity_writer);
4379	}
4380
4381	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382	if (!ic->sb) {
4383		r = -ENOMEM;
4384		ti->error = "Cannot allocate superblock area";
4385		goto bad;
4386	}
4387
4388	r = sync_rw_sb(ic, REQ_OP_READ);
4389	if (r) {
4390		ti->error = "Error reading superblock";
4391		goto bad;
4392	}
4393	should_write_sb = false;
4394	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395		if (ic->mode != 'R') {
4396			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397				r = -EINVAL;
4398				ti->error = "The device is not initialized";
4399				goto bad;
4400			}
4401		}
4402
4403		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404		if (r) {
4405			ti->error = "Could not initialize superblock";
4406			goto bad;
4407		}
4408		if (ic->mode != 'R')
4409			should_write_sb = true;
4410	}
4411
4412	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413		r = -EINVAL;
4414		ti->error = "Unknown version";
4415		goto bad;
4416	}
4417	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418		r = -EINVAL;
4419		ti->error = "Tag size doesn't match the information in superblock";
4420		goto bad;
4421	}
4422	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423		r = -EINVAL;
4424		ti->error = "Block size doesn't match the information in superblock";
4425		goto bad;
4426	}
4427	if (!le32_to_cpu(ic->sb->journal_sections)) {
4428		r = -EINVAL;
4429		ti->error = "Corrupted superblock, journal_sections is 0";
4430		goto bad;
4431	}
4432	/* make sure that ti->max_io_len doesn't overflow */
4433	if (!ic->meta_dev) {
4434		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436			r = -EINVAL;
4437			ti->error = "Invalid interleave_sectors in the superblock";
4438			goto bad;
4439		}
4440	} else {
4441		if (ic->sb->log2_interleave_sectors) {
4442			r = -EINVAL;
4443			ti->error = "Invalid interleave_sectors in the superblock";
4444			goto bad;
4445		}
4446	}
4447	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448		r = -EINVAL;
4449		ti->error = "Journal mac mismatch";
4450		goto bad;
4451	}
4452
4453	get_provided_data_sectors(ic);
4454	if (!ic->provided_data_sectors) {
4455		r = -EINVAL;
4456		ti->error = "The device is too small";
4457		goto bad;
4458	}
4459
4460try_smaller_buffer:
4461	r = calculate_device_limits(ic);
4462	if (r) {
4463		if (ic->meta_dev) {
4464			if (ic->log2_buffer_sectors > 3) {
4465				ic->log2_buffer_sectors--;
4466				goto try_smaller_buffer;
4467			}
4468		}
4469		ti->error = "The device is too small";
4470		goto bad;
4471	}
4472
4473	if (log2_sectors_per_bitmap_bit < 0)
4474		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477
4478	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479	if (bits_in_journal > UINT_MAX)
4480		bits_in_journal = UINT_MAX;
4481	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482		log2_sectors_per_bitmap_bit++;
4483
4484	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486	if (should_write_sb)
4487		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488
4489	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492
4493	if (!ic->meta_dev)
4494		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495
4496	if (ti->len > ic->provided_data_sectors) {
4497		r = -EINVAL;
4498		ti->error = "Not enough provided sectors for requested mapping size";
4499		goto bad;
4500	}
4501
4502
4503	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504	threshold += 50;
4505	do_div(threshold, 100);
4506	ic->free_sectors_threshold = threshold;
4507
4508	DEBUG_print("initialized:\n");
4509	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4511	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4513	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4514	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4516	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4519	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4520	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4521	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4524
4525	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527		ic->sb->recalc_sector = cpu_to_le64(0);
4528	}
4529
4530	if (ic->internal_hash) {
 
4531		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532		if (!ic->recalc_wq) {
4533			ti->error = "Cannot allocate workqueue";
4534			r = -ENOMEM;
4535			goto bad;
4536		}
4537		INIT_WORK(&ic->recalc_work, integrity_recalc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4538	} else {
4539		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540			ti->error = "Recalculate can only be specified with internal_hash";
4541			r = -EINVAL;
4542			goto bad;
4543		}
4544	}
4545
4546	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548	    dm_integrity_disable_recalculate(ic)) {
4549		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550		r = -EOPNOTSUPP;
4551		goto bad;
4552	}
4553
4554	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556	if (IS_ERR(ic->bufio)) {
4557		r = PTR_ERR(ic->bufio);
4558		ti->error = "Cannot initialize dm-bufio";
4559		ic->bufio = NULL;
4560		goto bad;
4561	}
4562	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563
4564	if (ic->mode != 'R') {
4565		r = create_journal(ic, &ti->error);
4566		if (r)
4567			goto bad;
4568
4569	}
4570
4571	if (ic->mode == 'B') {
4572		unsigned int i;
4573		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574
4575		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576		if (!ic->recalc_bitmap) {
4577			r = -ENOMEM;
4578			goto bad;
4579		}
4580		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581		if (!ic->may_write_bitmap) {
4582			r = -ENOMEM;
4583			goto bad;
4584		}
4585		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586		if (!ic->bbs) {
4587			r = -ENOMEM;
4588			goto bad;
4589		}
4590		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592			struct bitmap_block_status *bbs = &ic->bbs[i];
4593			unsigned int sector, pl_index, pl_offset;
4594
4595			INIT_WORK(&bbs->work, bitmap_block_work);
4596			bbs->ic = ic;
4597			bbs->idx = i;
4598			bio_list_init(&bbs->bio_queue);
4599			spin_lock_init(&bbs->bio_queue_lock);
4600
4601			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604
4605			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606		}
4607	}
4608
4609	if (should_write_sb) {
4610		init_journal(ic, 0, ic->journal_sections, 0);
4611		r = dm_integrity_failed(ic);
4612		if (unlikely(r)) {
4613			ti->error = "Error initializing journal";
4614			goto bad;
4615		}
4616		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617		if (r) {
4618			ti->error = "Error initializing superblock";
4619			goto bad;
4620		}
4621		ic->just_formatted = true;
4622	}
4623
4624	if (!ic->meta_dev) {
4625		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626		if (r)
4627			goto bad;
4628	}
4629	if (ic->mode == 'B') {
4630		unsigned int max_io_len;
4631
4632		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633		if (!max_io_len)
4634			max_io_len = 1U << 31;
4635		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637			r = dm_set_target_max_io_len(ti, max_io_len);
4638			if (r)
4639				goto bad;
4640		}
4641	}
4642
4643	if (!ic->internal_hash)
4644		dm_integrity_set(ti, ic);
4645
4646	ti->num_flush_bios = 1;
4647	ti->flush_supported = true;
4648	if (ic->discard)
4649		ti->num_discard_bios = 1;
4650
4651	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652	return 0;
4653
4654bad:
4655	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656	dm_integrity_dtr(ti);
4657	return r;
4658}
4659
4660static void dm_integrity_dtr(struct dm_target *ti)
4661{
4662	struct dm_integrity_c *ic = ti->private;
4663
4664	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665	BUG_ON(!list_empty(&ic->wait_list));
4666
4667	if (ic->mode == 'B')
4668		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669	if (ic->metadata_wq)
4670		destroy_workqueue(ic->metadata_wq);
4671	if (ic->wait_wq)
4672		destroy_workqueue(ic->wait_wq);
4673	if (ic->offload_wq)
4674		destroy_workqueue(ic->offload_wq);
4675	if (ic->commit_wq)
4676		destroy_workqueue(ic->commit_wq);
4677	if (ic->writer_wq)
4678		destroy_workqueue(ic->writer_wq);
4679	if (ic->recalc_wq)
4680		destroy_workqueue(ic->recalc_wq);
 
 
4681	kvfree(ic->bbs);
4682	if (ic->bufio)
4683		dm_bufio_client_destroy(ic->bufio);
4684	mempool_exit(&ic->recheck_pool);
4685	mempool_exit(&ic->journal_io_mempool);
4686	if (ic->io)
4687		dm_io_client_destroy(ic->io);
4688	if (ic->dev)
4689		dm_put_device(ti, ic->dev);
4690	if (ic->meta_dev)
4691		dm_put_device(ti, ic->meta_dev);
4692	dm_integrity_free_page_list(ic->journal);
4693	dm_integrity_free_page_list(ic->journal_io);
4694	dm_integrity_free_page_list(ic->journal_xor);
4695	dm_integrity_free_page_list(ic->recalc_bitmap);
4696	dm_integrity_free_page_list(ic->may_write_bitmap);
4697	if (ic->journal_scatterlist)
4698		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699	if (ic->journal_io_scatterlist)
4700		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701	if (ic->sk_requests) {
4702		unsigned int i;
4703
4704		for (i = 0; i < ic->journal_sections; i++) {
4705			struct skcipher_request *req;
4706
4707			req = ic->sk_requests[i];
4708			if (req) {
4709				kfree_sensitive(req->iv);
4710				skcipher_request_free(req);
4711			}
4712		}
4713		kvfree(ic->sk_requests);
4714	}
4715	kvfree(ic->journal_tree);
4716	if (ic->sb)
4717		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718
4719	if (ic->internal_hash)
4720		crypto_free_shash(ic->internal_hash);
4721	free_alg(&ic->internal_hash_alg);
4722
4723	if (ic->journal_crypt)
4724		crypto_free_skcipher(ic->journal_crypt);
4725	free_alg(&ic->journal_crypt_alg);
4726
4727	if (ic->journal_mac)
4728		crypto_free_shash(ic->journal_mac);
4729	free_alg(&ic->journal_mac_alg);
4730
4731	kfree(ic);
4732	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733}
4734
4735static struct target_type integrity_target = {
4736	.name			= "integrity",
4737	.version		= {1, 11, 0},
4738	.module			= THIS_MODULE,
4739	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740	.ctr			= dm_integrity_ctr,
4741	.dtr			= dm_integrity_dtr,
4742	.map			= dm_integrity_map,
4743	.postsuspend		= dm_integrity_postsuspend,
4744	.resume			= dm_integrity_resume,
4745	.status			= dm_integrity_status,
4746	.iterate_devices	= dm_integrity_iterate_devices,
4747	.io_hints		= dm_integrity_io_hints,
4748};
4749
4750static int __init dm_integrity_init(void)
4751{
4752	int r;
4753
4754	journal_io_cache = kmem_cache_create("integrity_journal_io",
4755					     sizeof(struct journal_io), 0, 0, NULL);
4756	if (!journal_io_cache) {
4757		DMERR("can't allocate journal io cache");
4758		return -ENOMEM;
4759	}
4760
4761	r = dm_register_target(&integrity_target);
4762	if (r < 0) {
4763		kmem_cache_destroy(journal_io_cache);
4764		return r;
4765	}
4766
4767	return 0;
 
 
 
4768}
4769
4770static void __exit dm_integrity_exit(void)
4771{
4772	dm_unregister_target(&integrity_target);
4773	kmem_cache_destroy(journal_io_cache);
4774}
4775
4776module_init(dm_integrity_init);
4777module_exit(dm_integrity_exit);
4778
4779MODULE_AUTHOR("Milan Broz");
4780MODULE_AUTHOR("Mikulas Patocka");
4781MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782MODULE_LICENSE("GPL");