Loading...
1/*
2 * Copyright © 2006-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/time.h>
25
26#include "hsw_ips.h"
27#include "i915_reg.h"
28#include "intel_atomic.h"
29#include "intel_atomic_plane.h"
30#include "intel_audio.h"
31#include "intel_bw.h"
32#include "intel_cdclk.h"
33#include "intel_crtc.h"
34#include "intel_de.h"
35#include "intel_display_types.h"
36#include "intel_mchbar_regs.h"
37#include "intel_pci_config.h"
38#include "intel_pcode.h"
39#include "intel_psr.h"
40#include "vlv_sideband.h"
41
42/**
43 * DOC: CDCLK / RAWCLK
44 *
45 * The display engine uses several different clocks to do its work. There
46 * are two main clocks involved that aren't directly related to the actual
47 * pixel clock or any symbol/bit clock of the actual output port. These
48 * are the core display clock (CDCLK) and RAWCLK.
49 *
50 * CDCLK clocks most of the display pipe logic, and thus its frequency
51 * must be high enough to support the rate at which pixels are flowing
52 * through the pipes. Downscaling must also be accounted as that increases
53 * the effective pixel rate.
54 *
55 * On several platforms the CDCLK frequency can be changed dynamically
56 * to minimize power consumption for a given display configuration.
57 * Typically changes to the CDCLK frequency require all the display pipes
58 * to be shut down while the frequency is being changed.
59 *
60 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
61 * DMC will not change the active CDCLK frequency however, so that part
62 * will still be performed by the driver directly.
63 *
64 * RAWCLK is a fixed frequency clock, often used by various auxiliary
65 * blocks such as AUX CH or backlight PWM. Hence the only thing we
66 * really need to know about RAWCLK is its frequency so that various
67 * dividers can be programmed correctly.
68 */
69
70struct intel_cdclk_funcs {
71 void (*get_cdclk)(struct drm_i915_private *i915,
72 struct intel_cdclk_config *cdclk_config);
73 void (*set_cdclk)(struct drm_i915_private *i915,
74 const struct intel_cdclk_config *cdclk_config,
75 enum pipe pipe);
76 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state);
77 u8 (*calc_voltage_level)(int cdclk);
78};
79
80void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
81 struct intel_cdclk_config *cdclk_config)
82{
83 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config);
84}
85
86static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
87 const struct intel_cdclk_config *cdclk_config,
88 enum pipe pipe)
89{
90 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe);
91}
92
93static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
94 struct intel_cdclk_state *cdclk_config)
95{
96 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config);
97}
98
99static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
100 int cdclk)
101{
102 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk);
103}
104
105static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
106 struct intel_cdclk_config *cdclk_config)
107{
108 cdclk_config->cdclk = 133333;
109}
110
111static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
112 struct intel_cdclk_config *cdclk_config)
113{
114 cdclk_config->cdclk = 200000;
115}
116
117static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
118 struct intel_cdclk_config *cdclk_config)
119{
120 cdclk_config->cdclk = 266667;
121}
122
123static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
124 struct intel_cdclk_config *cdclk_config)
125{
126 cdclk_config->cdclk = 333333;
127}
128
129static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
130 struct intel_cdclk_config *cdclk_config)
131{
132 cdclk_config->cdclk = 400000;
133}
134
135static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
136 struct intel_cdclk_config *cdclk_config)
137{
138 cdclk_config->cdclk = 450000;
139}
140
141static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
142 struct intel_cdclk_config *cdclk_config)
143{
144 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
145 u16 hpllcc = 0;
146
147 /*
148 * 852GM/852GMV only supports 133 MHz and the HPLLCC
149 * encoding is different :(
150 * FIXME is this the right way to detect 852GM/852GMV?
151 */
152 if (pdev->revision == 0x1) {
153 cdclk_config->cdclk = 133333;
154 return;
155 }
156
157 pci_bus_read_config_word(pdev->bus,
158 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
159
160 /* Assume that the hardware is in the high speed state. This
161 * should be the default.
162 */
163 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
164 case GC_CLOCK_133_200:
165 case GC_CLOCK_133_200_2:
166 case GC_CLOCK_100_200:
167 cdclk_config->cdclk = 200000;
168 break;
169 case GC_CLOCK_166_250:
170 cdclk_config->cdclk = 250000;
171 break;
172 case GC_CLOCK_100_133:
173 cdclk_config->cdclk = 133333;
174 break;
175 case GC_CLOCK_133_266:
176 case GC_CLOCK_133_266_2:
177 case GC_CLOCK_166_266:
178 cdclk_config->cdclk = 266667;
179 break;
180 }
181}
182
183static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
184 struct intel_cdclk_config *cdclk_config)
185{
186 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
187 u16 gcfgc = 0;
188
189 pci_read_config_word(pdev, GCFGC, &gcfgc);
190
191 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
192 cdclk_config->cdclk = 133333;
193 return;
194 }
195
196 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
197 case GC_DISPLAY_CLOCK_333_320_MHZ:
198 cdclk_config->cdclk = 333333;
199 break;
200 default:
201 case GC_DISPLAY_CLOCK_190_200_MHZ:
202 cdclk_config->cdclk = 190000;
203 break;
204 }
205}
206
207static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
208 struct intel_cdclk_config *cdclk_config)
209{
210 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
211 u16 gcfgc = 0;
212
213 pci_read_config_word(pdev, GCFGC, &gcfgc);
214
215 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
216 cdclk_config->cdclk = 133333;
217 return;
218 }
219
220 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
221 case GC_DISPLAY_CLOCK_333_320_MHZ:
222 cdclk_config->cdclk = 320000;
223 break;
224 default:
225 case GC_DISPLAY_CLOCK_190_200_MHZ:
226 cdclk_config->cdclk = 200000;
227 break;
228 }
229}
230
231static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
232{
233 static const unsigned int blb_vco[8] = {
234 [0] = 3200000,
235 [1] = 4000000,
236 [2] = 5333333,
237 [3] = 4800000,
238 [4] = 6400000,
239 };
240 static const unsigned int pnv_vco[8] = {
241 [0] = 3200000,
242 [1] = 4000000,
243 [2] = 5333333,
244 [3] = 4800000,
245 [4] = 2666667,
246 };
247 static const unsigned int cl_vco[8] = {
248 [0] = 3200000,
249 [1] = 4000000,
250 [2] = 5333333,
251 [3] = 6400000,
252 [4] = 3333333,
253 [5] = 3566667,
254 [6] = 4266667,
255 };
256 static const unsigned int elk_vco[8] = {
257 [0] = 3200000,
258 [1] = 4000000,
259 [2] = 5333333,
260 [3] = 4800000,
261 };
262 static const unsigned int ctg_vco[8] = {
263 [0] = 3200000,
264 [1] = 4000000,
265 [2] = 5333333,
266 [3] = 6400000,
267 [4] = 2666667,
268 [5] = 4266667,
269 };
270 const unsigned int *vco_table;
271 unsigned int vco;
272 u8 tmp = 0;
273
274 /* FIXME other chipsets? */
275 if (IS_GM45(dev_priv))
276 vco_table = ctg_vco;
277 else if (IS_G45(dev_priv))
278 vco_table = elk_vco;
279 else if (IS_I965GM(dev_priv))
280 vco_table = cl_vco;
281 else if (IS_PINEVIEW(dev_priv))
282 vco_table = pnv_vco;
283 else if (IS_G33(dev_priv))
284 vco_table = blb_vco;
285 else
286 return 0;
287
288 tmp = intel_de_read(dev_priv,
289 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
290
291 vco = vco_table[tmp & 0x7];
292 if (vco == 0)
293 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
294 tmp);
295 else
296 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
297
298 return vco;
299}
300
301static void g33_get_cdclk(struct drm_i915_private *dev_priv,
302 struct intel_cdclk_config *cdclk_config)
303{
304 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
305 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
306 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
307 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
308 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
309 const u8 *div_table;
310 unsigned int cdclk_sel;
311 u16 tmp = 0;
312
313 cdclk_config->vco = intel_hpll_vco(dev_priv);
314
315 pci_read_config_word(pdev, GCFGC, &tmp);
316
317 cdclk_sel = (tmp >> 4) & 0x7;
318
319 if (cdclk_sel >= ARRAY_SIZE(div_3200))
320 goto fail;
321
322 switch (cdclk_config->vco) {
323 case 3200000:
324 div_table = div_3200;
325 break;
326 case 4000000:
327 div_table = div_4000;
328 break;
329 case 4800000:
330 div_table = div_4800;
331 break;
332 case 5333333:
333 div_table = div_5333;
334 break;
335 default:
336 goto fail;
337 }
338
339 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
340 div_table[cdclk_sel]);
341 return;
342
343fail:
344 drm_err(&dev_priv->drm,
345 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
346 cdclk_config->vco, tmp);
347 cdclk_config->cdclk = 190476;
348}
349
350static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
351 struct intel_cdclk_config *cdclk_config)
352{
353 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
354 u16 gcfgc = 0;
355
356 pci_read_config_word(pdev, GCFGC, &gcfgc);
357
358 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
359 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
360 cdclk_config->cdclk = 266667;
361 break;
362 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
363 cdclk_config->cdclk = 333333;
364 break;
365 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
366 cdclk_config->cdclk = 444444;
367 break;
368 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
369 cdclk_config->cdclk = 200000;
370 break;
371 default:
372 drm_err(&dev_priv->drm,
373 "Unknown pnv display core clock 0x%04x\n", gcfgc);
374 fallthrough;
375 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
376 cdclk_config->cdclk = 133333;
377 break;
378 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
379 cdclk_config->cdclk = 166667;
380 break;
381 }
382}
383
384static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
385 struct intel_cdclk_config *cdclk_config)
386{
387 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
388 static const u8 div_3200[] = { 16, 10, 8 };
389 static const u8 div_4000[] = { 20, 12, 10 };
390 static const u8 div_5333[] = { 24, 16, 14 };
391 const u8 *div_table;
392 unsigned int cdclk_sel;
393 u16 tmp = 0;
394
395 cdclk_config->vco = intel_hpll_vco(dev_priv);
396
397 pci_read_config_word(pdev, GCFGC, &tmp);
398
399 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
400
401 if (cdclk_sel >= ARRAY_SIZE(div_3200))
402 goto fail;
403
404 switch (cdclk_config->vco) {
405 case 3200000:
406 div_table = div_3200;
407 break;
408 case 4000000:
409 div_table = div_4000;
410 break;
411 case 5333333:
412 div_table = div_5333;
413 break;
414 default:
415 goto fail;
416 }
417
418 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
419 div_table[cdclk_sel]);
420 return;
421
422fail:
423 drm_err(&dev_priv->drm,
424 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
425 cdclk_config->vco, tmp);
426 cdclk_config->cdclk = 200000;
427}
428
429static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
430 struct intel_cdclk_config *cdclk_config)
431{
432 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
433 unsigned int cdclk_sel;
434 u16 tmp = 0;
435
436 cdclk_config->vco = intel_hpll_vco(dev_priv);
437
438 pci_read_config_word(pdev, GCFGC, &tmp);
439
440 cdclk_sel = (tmp >> 12) & 0x1;
441
442 switch (cdclk_config->vco) {
443 case 2666667:
444 case 4000000:
445 case 5333333:
446 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
447 break;
448 case 3200000:
449 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
450 break;
451 default:
452 drm_err(&dev_priv->drm,
453 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
454 cdclk_config->vco, tmp);
455 cdclk_config->cdclk = 222222;
456 break;
457 }
458}
459
460static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
461 struct intel_cdclk_config *cdclk_config)
462{
463 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
464 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
465
466 if (lcpll & LCPLL_CD_SOURCE_FCLK)
467 cdclk_config->cdclk = 800000;
468 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
469 cdclk_config->cdclk = 450000;
470 else if (freq == LCPLL_CLK_FREQ_450)
471 cdclk_config->cdclk = 450000;
472 else if (IS_HSW_ULT(dev_priv))
473 cdclk_config->cdclk = 337500;
474 else
475 cdclk_config->cdclk = 540000;
476}
477
478static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
479{
480 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
481 333333 : 320000;
482
483 /*
484 * We seem to get an unstable or solid color picture at 200MHz.
485 * Not sure what's wrong. For now use 200MHz only when all pipes
486 * are off.
487 */
488 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
489 return 400000;
490 else if (min_cdclk > 266667)
491 return freq_320;
492 else if (min_cdclk > 0)
493 return 266667;
494 else
495 return 200000;
496}
497
498static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
499{
500 if (IS_VALLEYVIEW(dev_priv)) {
501 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
502 return 2;
503 else if (cdclk >= 266667)
504 return 1;
505 else
506 return 0;
507 } else {
508 /*
509 * Specs are full of misinformation, but testing on actual
510 * hardware has shown that we just need to write the desired
511 * CCK divider into the Punit register.
512 */
513 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
514 }
515}
516
517static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
518 struct intel_cdclk_config *cdclk_config)
519{
520 u32 val;
521
522 vlv_iosf_sb_get(dev_priv,
523 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
524
525 cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
526 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
527 CCK_DISPLAY_CLOCK_CONTROL,
528 cdclk_config->vco);
529
530 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
531
532 vlv_iosf_sb_put(dev_priv,
533 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
534
535 if (IS_VALLEYVIEW(dev_priv))
536 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
537 DSPFREQGUAR_SHIFT;
538 else
539 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
540 DSPFREQGUAR_SHIFT_CHV;
541}
542
543static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
544{
545 unsigned int credits, default_credits;
546
547 if (IS_CHERRYVIEW(dev_priv))
548 default_credits = PFI_CREDIT(12);
549 else
550 default_credits = PFI_CREDIT(8);
551
552 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) {
553 /* CHV suggested value is 31 or 63 */
554 if (IS_CHERRYVIEW(dev_priv))
555 credits = PFI_CREDIT_63;
556 else
557 credits = PFI_CREDIT(15);
558 } else {
559 credits = default_credits;
560 }
561
562 /*
563 * WA - write default credits before re-programming
564 * FIXME: should we also set the resend bit here?
565 */
566 intel_de_write(dev_priv, GCI_CONTROL,
567 VGA_FAST_MODE_DISABLE | default_credits);
568
569 intel_de_write(dev_priv, GCI_CONTROL,
570 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
571
572 /*
573 * FIXME is this guaranteed to clear
574 * immediately or should we poll for it?
575 */
576 drm_WARN_ON(&dev_priv->drm,
577 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
578}
579
580static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
581 const struct intel_cdclk_config *cdclk_config,
582 enum pipe pipe)
583{
584 int cdclk = cdclk_config->cdclk;
585 u32 val, cmd = cdclk_config->voltage_level;
586 intel_wakeref_t wakeref;
587
588 switch (cdclk) {
589 case 400000:
590 case 333333:
591 case 320000:
592 case 266667:
593 case 200000:
594 break;
595 default:
596 MISSING_CASE(cdclk);
597 return;
598 }
599
600 /* There are cases where we can end up here with power domains
601 * off and a CDCLK frequency other than the minimum, like when
602 * issuing a modeset without actually changing any display after
603 * a system suspend. So grab the display core domain, which covers
604 * the HW blocks needed for the following programming.
605 */
606 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
607
608 vlv_iosf_sb_get(dev_priv,
609 BIT(VLV_IOSF_SB_CCK) |
610 BIT(VLV_IOSF_SB_BUNIT) |
611 BIT(VLV_IOSF_SB_PUNIT));
612
613 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
614 val &= ~DSPFREQGUAR_MASK;
615 val |= (cmd << DSPFREQGUAR_SHIFT);
616 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
617 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
618 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
619 50)) {
620 drm_err(&dev_priv->drm,
621 "timed out waiting for CDclk change\n");
622 }
623
624 if (cdclk == 400000) {
625 u32 divider;
626
627 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
628 cdclk) - 1;
629
630 /* adjust cdclk divider */
631 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
632 val &= ~CCK_FREQUENCY_VALUES;
633 val |= divider;
634 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
635
636 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
637 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
638 50))
639 drm_err(&dev_priv->drm,
640 "timed out waiting for CDclk change\n");
641 }
642
643 /* adjust self-refresh exit latency value */
644 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
645 val &= ~0x7f;
646
647 /*
648 * For high bandwidth configs, we set a higher latency in the bunit
649 * so that the core display fetch happens in time to avoid underruns.
650 */
651 if (cdclk == 400000)
652 val |= 4500 / 250; /* 4.5 usec */
653 else
654 val |= 3000 / 250; /* 3.0 usec */
655 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
656
657 vlv_iosf_sb_put(dev_priv,
658 BIT(VLV_IOSF_SB_CCK) |
659 BIT(VLV_IOSF_SB_BUNIT) |
660 BIT(VLV_IOSF_SB_PUNIT));
661
662 intel_update_cdclk(dev_priv);
663
664 vlv_program_pfi_credits(dev_priv);
665
666 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
667}
668
669static void chv_set_cdclk(struct drm_i915_private *dev_priv,
670 const struct intel_cdclk_config *cdclk_config,
671 enum pipe pipe)
672{
673 int cdclk = cdclk_config->cdclk;
674 u32 val, cmd = cdclk_config->voltage_level;
675 intel_wakeref_t wakeref;
676
677 switch (cdclk) {
678 case 333333:
679 case 320000:
680 case 266667:
681 case 200000:
682 break;
683 default:
684 MISSING_CASE(cdclk);
685 return;
686 }
687
688 /* There are cases where we can end up here with power domains
689 * off and a CDCLK frequency other than the minimum, like when
690 * issuing a modeset without actually changing any display after
691 * a system suspend. So grab the display core domain, which covers
692 * the HW blocks needed for the following programming.
693 */
694 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
695
696 vlv_punit_get(dev_priv);
697 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
698 val &= ~DSPFREQGUAR_MASK_CHV;
699 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
700 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
701 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
702 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
703 50)) {
704 drm_err(&dev_priv->drm,
705 "timed out waiting for CDclk change\n");
706 }
707
708 vlv_punit_put(dev_priv);
709
710 intel_update_cdclk(dev_priv);
711
712 vlv_program_pfi_credits(dev_priv);
713
714 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
715}
716
717static int bdw_calc_cdclk(int min_cdclk)
718{
719 if (min_cdclk > 540000)
720 return 675000;
721 else if (min_cdclk > 450000)
722 return 540000;
723 else if (min_cdclk > 337500)
724 return 450000;
725 else
726 return 337500;
727}
728
729static u8 bdw_calc_voltage_level(int cdclk)
730{
731 switch (cdclk) {
732 default:
733 case 337500:
734 return 2;
735 case 450000:
736 return 0;
737 case 540000:
738 return 1;
739 case 675000:
740 return 3;
741 }
742}
743
744static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
745 struct intel_cdclk_config *cdclk_config)
746{
747 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
748 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
749
750 if (lcpll & LCPLL_CD_SOURCE_FCLK)
751 cdclk_config->cdclk = 800000;
752 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
753 cdclk_config->cdclk = 450000;
754 else if (freq == LCPLL_CLK_FREQ_450)
755 cdclk_config->cdclk = 450000;
756 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
757 cdclk_config->cdclk = 540000;
758 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
759 cdclk_config->cdclk = 337500;
760 else
761 cdclk_config->cdclk = 675000;
762
763 /*
764 * Can't read this out :( Let's assume it's
765 * at least what the CDCLK frequency requires.
766 */
767 cdclk_config->voltage_level =
768 bdw_calc_voltage_level(cdclk_config->cdclk);
769}
770
771static u32 bdw_cdclk_freq_sel(int cdclk)
772{
773 switch (cdclk) {
774 default:
775 MISSING_CASE(cdclk);
776 fallthrough;
777 case 337500:
778 return LCPLL_CLK_FREQ_337_5_BDW;
779 case 450000:
780 return LCPLL_CLK_FREQ_450;
781 case 540000:
782 return LCPLL_CLK_FREQ_54O_BDW;
783 case 675000:
784 return LCPLL_CLK_FREQ_675_BDW;
785 }
786}
787
788static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
789 const struct intel_cdclk_config *cdclk_config,
790 enum pipe pipe)
791{
792 int cdclk = cdclk_config->cdclk;
793 int ret;
794
795 if (drm_WARN(&dev_priv->drm,
796 (intel_de_read(dev_priv, LCPLL_CTL) &
797 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
798 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
799 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
800 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
801 "trying to change cdclk frequency with cdclk not enabled\n"))
802 return;
803
804 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
805 if (ret) {
806 drm_err(&dev_priv->drm,
807 "failed to inform pcode about cdclk change\n");
808 return;
809 }
810
811 intel_de_rmw(dev_priv, LCPLL_CTL,
812 0, LCPLL_CD_SOURCE_FCLK);
813
814 /*
815 * According to the spec, it should be enough to poll for this 1 us.
816 * However, extensive testing shows that this can take longer.
817 */
818 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
819 LCPLL_CD_SOURCE_FCLK_DONE, 100))
820 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
821
822 intel_de_rmw(dev_priv, LCPLL_CTL,
823 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
824
825 intel_de_rmw(dev_priv, LCPLL_CTL,
826 LCPLL_CD_SOURCE_FCLK, 0);
827
828 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
829 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
830 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
831
832 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
833 cdclk_config->voltage_level);
834
835 intel_de_write(dev_priv, CDCLK_FREQ,
836 DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
837
838 intel_update_cdclk(dev_priv);
839}
840
841static int skl_calc_cdclk(int min_cdclk, int vco)
842{
843 if (vco == 8640000) {
844 if (min_cdclk > 540000)
845 return 617143;
846 else if (min_cdclk > 432000)
847 return 540000;
848 else if (min_cdclk > 308571)
849 return 432000;
850 else
851 return 308571;
852 } else {
853 if (min_cdclk > 540000)
854 return 675000;
855 else if (min_cdclk > 450000)
856 return 540000;
857 else if (min_cdclk > 337500)
858 return 450000;
859 else
860 return 337500;
861 }
862}
863
864static u8 skl_calc_voltage_level(int cdclk)
865{
866 if (cdclk > 540000)
867 return 3;
868 else if (cdclk > 450000)
869 return 2;
870 else if (cdclk > 337500)
871 return 1;
872 else
873 return 0;
874}
875
876static void skl_dpll0_update(struct drm_i915_private *dev_priv,
877 struct intel_cdclk_config *cdclk_config)
878{
879 u32 val;
880
881 cdclk_config->ref = 24000;
882 cdclk_config->vco = 0;
883
884 val = intel_de_read(dev_priv, LCPLL1_CTL);
885 if ((val & LCPLL_PLL_ENABLE) == 0)
886 return;
887
888 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
889 return;
890
891 val = intel_de_read(dev_priv, DPLL_CTRL1);
892
893 if (drm_WARN_ON(&dev_priv->drm,
894 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
895 DPLL_CTRL1_SSC(SKL_DPLL0) |
896 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
897 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
898 return;
899
900 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
901 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
902 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
903 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
904 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
905 cdclk_config->vco = 8100000;
906 break;
907 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
908 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
909 cdclk_config->vco = 8640000;
910 break;
911 default:
912 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
913 break;
914 }
915}
916
917static void skl_get_cdclk(struct drm_i915_private *dev_priv,
918 struct intel_cdclk_config *cdclk_config)
919{
920 u32 cdctl;
921
922 skl_dpll0_update(dev_priv, cdclk_config);
923
924 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
925
926 if (cdclk_config->vco == 0)
927 goto out;
928
929 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
930
931 if (cdclk_config->vco == 8640000) {
932 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
933 case CDCLK_FREQ_450_432:
934 cdclk_config->cdclk = 432000;
935 break;
936 case CDCLK_FREQ_337_308:
937 cdclk_config->cdclk = 308571;
938 break;
939 case CDCLK_FREQ_540:
940 cdclk_config->cdclk = 540000;
941 break;
942 case CDCLK_FREQ_675_617:
943 cdclk_config->cdclk = 617143;
944 break;
945 default:
946 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
947 break;
948 }
949 } else {
950 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
951 case CDCLK_FREQ_450_432:
952 cdclk_config->cdclk = 450000;
953 break;
954 case CDCLK_FREQ_337_308:
955 cdclk_config->cdclk = 337500;
956 break;
957 case CDCLK_FREQ_540:
958 cdclk_config->cdclk = 540000;
959 break;
960 case CDCLK_FREQ_675_617:
961 cdclk_config->cdclk = 675000;
962 break;
963 default:
964 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
965 break;
966 }
967 }
968
969 out:
970 /*
971 * Can't read this out :( Let's assume it's
972 * at least what the CDCLK frequency requires.
973 */
974 cdclk_config->voltage_level =
975 skl_calc_voltage_level(cdclk_config->cdclk);
976}
977
978/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
979static int skl_cdclk_decimal(int cdclk)
980{
981 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
982}
983
984static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
985 int vco)
986{
987 bool changed = dev_priv->skl_preferred_vco_freq != vco;
988
989 dev_priv->skl_preferred_vco_freq = vco;
990
991 if (changed)
992 intel_update_max_cdclk(dev_priv);
993}
994
995static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
996{
997 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
998
999 /*
1000 * We always enable DPLL0 with the lowest link rate possible, but still
1001 * taking into account the VCO required to operate the eDP panel at the
1002 * desired frequency. The usual DP link rates operate with a VCO of
1003 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1004 * The modeset code is responsible for the selection of the exact link
1005 * rate later on, with the constraint of choosing a frequency that
1006 * works with vco.
1007 */
1008 if (vco == 8640000)
1009 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1010 else
1011 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1012}
1013
1014static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
1015{
1016 intel_de_rmw(dev_priv, DPLL_CTRL1,
1017 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1018 DPLL_CTRL1_SSC(SKL_DPLL0) |
1019 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1020 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1021 skl_dpll0_link_rate(dev_priv, vco));
1022 intel_de_posting_read(dev_priv, DPLL_CTRL1);
1023
1024 intel_de_rmw(dev_priv, LCPLL1_CTL,
1025 0, LCPLL_PLL_ENABLE);
1026
1027 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1028 drm_err(&dev_priv->drm, "DPLL0 not locked\n");
1029
1030 dev_priv->display.cdclk.hw.vco = vco;
1031
1032 /* We'll want to keep using the current vco from now on. */
1033 skl_set_preferred_cdclk_vco(dev_priv, vco);
1034}
1035
1036static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
1037{
1038 intel_de_rmw(dev_priv, LCPLL1_CTL,
1039 LCPLL_PLL_ENABLE, 0);
1040
1041 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1042 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
1043
1044 dev_priv->display.cdclk.hw.vco = 0;
1045}
1046
1047static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
1048 int cdclk, int vco)
1049{
1050 switch (cdclk) {
1051 default:
1052 drm_WARN_ON(&dev_priv->drm,
1053 cdclk != dev_priv->display.cdclk.hw.bypass);
1054 drm_WARN_ON(&dev_priv->drm, vco != 0);
1055 fallthrough;
1056 case 308571:
1057 case 337500:
1058 return CDCLK_FREQ_337_308;
1059 case 450000:
1060 case 432000:
1061 return CDCLK_FREQ_450_432;
1062 case 540000:
1063 return CDCLK_FREQ_540;
1064 case 617143:
1065 case 675000:
1066 return CDCLK_FREQ_675_617;
1067 }
1068}
1069
1070static void skl_set_cdclk(struct drm_i915_private *dev_priv,
1071 const struct intel_cdclk_config *cdclk_config,
1072 enum pipe pipe)
1073{
1074 int cdclk = cdclk_config->cdclk;
1075 int vco = cdclk_config->vco;
1076 u32 freq_select, cdclk_ctl;
1077 int ret;
1078
1079 /*
1080 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1081 * unsupported on SKL. In theory this should never happen since only
1082 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1083 * supported on SKL either, see the above WA. WARN whenever trying to
1084 * use the corresponding VCO freq as that always leads to using the
1085 * minimum 308MHz CDCLK.
1086 */
1087 drm_WARN_ON_ONCE(&dev_priv->drm,
1088 IS_SKYLAKE(dev_priv) && vco == 8640000);
1089
1090 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1091 SKL_CDCLK_PREPARE_FOR_CHANGE,
1092 SKL_CDCLK_READY_FOR_CHANGE,
1093 SKL_CDCLK_READY_FOR_CHANGE, 3);
1094 if (ret) {
1095 drm_err(&dev_priv->drm,
1096 "Failed to inform PCU about cdclk change (%d)\n", ret);
1097 return;
1098 }
1099
1100 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
1101
1102 if (dev_priv->display.cdclk.hw.vco != 0 &&
1103 dev_priv->display.cdclk.hw.vco != vco)
1104 skl_dpll0_disable(dev_priv);
1105
1106 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
1107
1108 if (dev_priv->display.cdclk.hw.vco != vco) {
1109 /* Wa Display #1183: skl,kbl,cfl */
1110 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1111 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1112 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1113 }
1114
1115 /* Wa Display #1183: skl,kbl,cfl */
1116 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1117 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1118 intel_de_posting_read(dev_priv, CDCLK_CTL);
1119
1120 if (dev_priv->display.cdclk.hw.vco != vco)
1121 skl_dpll0_enable(dev_priv, vco);
1122
1123 /* Wa Display #1183: skl,kbl,cfl */
1124 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1125 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1126
1127 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1128 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1129
1130 /* Wa Display #1183: skl,kbl,cfl */
1131 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1132 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1133 intel_de_posting_read(dev_priv, CDCLK_CTL);
1134
1135 /* inform PCU of the change */
1136 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1137 cdclk_config->voltage_level);
1138
1139 intel_update_cdclk(dev_priv);
1140}
1141
1142static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
1143{
1144 u32 cdctl, expected;
1145
1146 /*
1147 * check if the pre-os initialized the display
1148 * There is SWF18 scratchpad register defined which is set by the
1149 * pre-os which can be used by the OS drivers to check the status
1150 */
1151 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1152 goto sanitize;
1153
1154 intel_update_cdclk(dev_priv);
1155 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1156
1157 /* Is PLL enabled and locked ? */
1158 if (dev_priv->display.cdclk.hw.vco == 0 ||
1159 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1160 goto sanitize;
1161
1162 /* DPLL okay; verify the cdclock
1163 *
1164 * Noticed in some instances that the freq selection is correct but
1165 * decimal part is programmed wrong from BIOS where pre-os does not
1166 * enable display. Verify the same as well.
1167 */
1168 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1169 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1170 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk);
1171 if (cdctl == expected)
1172 /* All well; nothing to sanitize */
1173 return;
1174
1175sanitize:
1176 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1177
1178 /* force cdclk programming */
1179 dev_priv->display.cdclk.hw.cdclk = 0;
1180 /* force full PLL disable + enable */
1181 dev_priv->display.cdclk.hw.vco = -1;
1182}
1183
1184static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
1185{
1186 struct intel_cdclk_config cdclk_config;
1187
1188 skl_sanitize_cdclk(dev_priv);
1189
1190 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1191 dev_priv->display.cdclk.hw.vco != 0) {
1192 /*
1193 * Use the current vco as our initial
1194 * guess as to what the preferred vco is.
1195 */
1196 if (dev_priv->skl_preferred_vco_freq == 0)
1197 skl_set_preferred_cdclk_vco(dev_priv,
1198 dev_priv->display.cdclk.hw.vco);
1199 return;
1200 }
1201
1202 cdclk_config = dev_priv->display.cdclk.hw;
1203
1204 cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
1205 if (cdclk_config.vco == 0)
1206 cdclk_config.vco = 8100000;
1207 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1208 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1209
1210 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1211}
1212
1213static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1214{
1215 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1216
1217 cdclk_config.cdclk = cdclk_config.bypass;
1218 cdclk_config.vco = 0;
1219 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1220
1221 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1222}
1223
1224struct intel_cdclk_vals {
1225 u32 cdclk;
1226 u16 refclk;
1227 u16 waveform;
1228 u8 divider; /* CD2X divider * 2 */
1229 u8 ratio;
1230};
1231
1232static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1233 { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 },
1234 { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 },
1235 { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 },
1236 { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 },
1237 { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 },
1238 {}
1239};
1240
1241static const struct intel_cdclk_vals glk_cdclk_table[] = {
1242 { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 },
1243 { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 },
1244 { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 },
1245 {}
1246};
1247
1248static const struct intel_cdclk_vals icl_cdclk_table[] = {
1249 { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 },
1250 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1251 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1252 { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 },
1253 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1254 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1255
1256 { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 },
1257 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1258 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1259 { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 },
1260 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1261 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1262
1263 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 },
1264 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1265 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1266 { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
1267 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1268 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1269 {}
1270};
1271
1272static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1273 { .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 },
1274 { .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 },
1275 { .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 },
1276 { .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 },
1277 { .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 },
1278 { .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 },
1279
1280 { .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 },
1281 { .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 },
1282 { .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 },
1283 { .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 },
1284 { .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 },
1285 { .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 },
1286
1287 { .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 },
1288 { .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 },
1289 { .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 },
1290 { .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 },
1291 { .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 },
1292 { .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 },
1293 {}
1294};
1295
1296static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1297 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1298 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1299 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1300
1301 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1302 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1303 { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 },
1304
1305 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1306 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1307 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1308 {}
1309};
1310
1311static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1312 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
1313 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1314 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1315 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1316 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1317
1318 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
1319 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1320 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1321 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1322 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1323
1324 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
1325 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1326 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1327 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1328 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1329 {}
1330};
1331
1332static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1333 { .refclk = 38400, .cdclk = 163200, .divider = 2, .ratio = 34, .waveform = 0x8888 },
1334 { .refclk = 38400, .cdclk = 204000, .divider = 2, .ratio = 34, .waveform = 0x9248 },
1335 { .refclk = 38400, .cdclk = 244800, .divider = 2, .ratio = 34, .waveform = 0xa4a4 },
1336 { .refclk = 38400, .cdclk = 285600, .divider = 2, .ratio = 34, .waveform = 0xa54a },
1337 { .refclk = 38400, .cdclk = 326400, .divider = 2, .ratio = 34, .waveform = 0xaaaa },
1338 { .refclk = 38400, .cdclk = 367200, .divider = 2, .ratio = 34, .waveform = 0xad5a },
1339 { .refclk = 38400, .cdclk = 408000, .divider = 2, .ratio = 34, .waveform = 0xb6b6 },
1340 { .refclk = 38400, .cdclk = 448800, .divider = 2, .ratio = 34, .waveform = 0xdbb6 },
1341 { .refclk = 38400, .cdclk = 489600, .divider = 2, .ratio = 34, .waveform = 0xeeee },
1342 { .refclk = 38400, .cdclk = 530400, .divider = 2, .ratio = 34, .waveform = 0xf7de },
1343 { .refclk = 38400, .cdclk = 571200, .divider = 2, .ratio = 34, .waveform = 0xfefe },
1344 { .refclk = 38400, .cdclk = 612000, .divider = 2, .ratio = 34, .waveform = 0xfffe },
1345 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0xffff },
1346 {}
1347};
1348
1349static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
1350{
1351 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1352 int i;
1353
1354 for (i = 0; table[i].refclk; i++)
1355 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1356 table[i].cdclk >= min_cdclk)
1357 return table[i].cdclk;
1358
1359 drm_WARN(&dev_priv->drm, 1,
1360 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1361 min_cdclk, dev_priv->display.cdclk.hw.ref);
1362 return 0;
1363}
1364
1365static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1366{
1367 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1368 int i;
1369
1370 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1371 return 0;
1372
1373 for (i = 0; table[i].refclk; i++)
1374 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1375 table[i].cdclk == cdclk)
1376 return dev_priv->display.cdclk.hw.ref * table[i].ratio;
1377
1378 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1379 cdclk, dev_priv->display.cdclk.hw.ref);
1380 return 0;
1381}
1382
1383static u8 bxt_calc_voltage_level(int cdclk)
1384{
1385 return DIV_ROUND_UP(cdclk, 25000);
1386}
1387
1388static u8 icl_calc_voltage_level(int cdclk)
1389{
1390 if (cdclk > 556800)
1391 return 2;
1392 else if (cdclk > 312000)
1393 return 1;
1394 else
1395 return 0;
1396}
1397
1398static u8 ehl_calc_voltage_level(int cdclk)
1399{
1400 if (cdclk > 326400)
1401 return 3;
1402 else if (cdclk > 312000)
1403 return 2;
1404 else if (cdclk > 180000)
1405 return 1;
1406 else
1407 return 0;
1408}
1409
1410static u8 tgl_calc_voltage_level(int cdclk)
1411{
1412 if (cdclk > 556800)
1413 return 3;
1414 else if (cdclk > 326400)
1415 return 2;
1416 else if (cdclk > 312000)
1417 return 1;
1418 else
1419 return 0;
1420}
1421
1422static void icl_readout_refclk(struct drm_i915_private *dev_priv,
1423 struct intel_cdclk_config *cdclk_config)
1424{
1425 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1426
1427 switch (dssm) {
1428 default:
1429 MISSING_CASE(dssm);
1430 fallthrough;
1431 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1432 cdclk_config->ref = 24000;
1433 break;
1434 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1435 cdclk_config->ref = 19200;
1436 break;
1437 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1438 cdclk_config->ref = 38400;
1439 break;
1440 }
1441}
1442
1443static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
1444 struct intel_cdclk_config *cdclk_config)
1445{
1446 u32 val, ratio;
1447
1448 if (IS_DG2(dev_priv))
1449 cdclk_config->ref = 38400;
1450 else if (DISPLAY_VER(dev_priv) >= 11)
1451 icl_readout_refclk(dev_priv, cdclk_config);
1452 else
1453 cdclk_config->ref = 19200;
1454
1455 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
1456 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1457 (val & BXT_DE_PLL_LOCK) == 0) {
1458 /*
1459 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1460 * setting it to zero is a way to signal that.
1461 */
1462 cdclk_config->vco = 0;
1463 return;
1464 }
1465
1466 /*
1467 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1468 * gen9lp had it in a separate PLL control register.
1469 */
1470 if (DISPLAY_VER(dev_priv) >= 11)
1471 ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1472 else
1473 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1474
1475 cdclk_config->vco = ratio * cdclk_config->ref;
1476}
1477
1478static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
1479 struct intel_cdclk_config *cdclk_config)
1480{
1481 u32 squash_ctl = 0;
1482 u32 divider;
1483 int div;
1484
1485 bxt_de_pll_readout(dev_priv, cdclk_config);
1486
1487 if (DISPLAY_VER(dev_priv) >= 12)
1488 cdclk_config->bypass = cdclk_config->ref / 2;
1489 else if (DISPLAY_VER(dev_priv) >= 11)
1490 cdclk_config->bypass = 50000;
1491 else
1492 cdclk_config->bypass = cdclk_config->ref;
1493
1494 if (cdclk_config->vco == 0) {
1495 cdclk_config->cdclk = cdclk_config->bypass;
1496 goto out;
1497 }
1498
1499 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1500
1501 switch (divider) {
1502 case BXT_CDCLK_CD2X_DIV_SEL_1:
1503 div = 2;
1504 break;
1505 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1506 div = 3;
1507 break;
1508 case BXT_CDCLK_CD2X_DIV_SEL_2:
1509 div = 4;
1510 break;
1511 case BXT_CDCLK_CD2X_DIV_SEL_4:
1512 div = 8;
1513 break;
1514 default:
1515 MISSING_CASE(divider);
1516 return;
1517 }
1518
1519 if (HAS_CDCLK_SQUASH(dev_priv))
1520 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL);
1521
1522 if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1523 u16 waveform;
1524 int size;
1525
1526 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1527 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1528
1529 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1530 cdclk_config->vco, size * div);
1531 } else {
1532 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1533 }
1534
1535 out:
1536 /*
1537 * Can't read this out :( Let's assume it's
1538 * at least what the CDCLK frequency requires.
1539 */
1540 cdclk_config->voltage_level =
1541 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
1542}
1543
1544static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
1545{
1546 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
1547
1548 /* Timeout 200us */
1549 if (intel_de_wait_for_clear(dev_priv,
1550 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1551 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
1552
1553 dev_priv->display.cdclk.hw.vco = 0;
1554}
1555
1556static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
1557{
1558 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1559
1560 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
1561 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1562
1563 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1564
1565 /* Timeout 200us */
1566 if (intel_de_wait_for_set(dev_priv,
1567 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1568 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
1569
1570 dev_priv->display.cdclk.hw.vco = vco;
1571}
1572
1573static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
1574{
1575 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
1576 BXT_DE_PLL_PLL_ENABLE, 0);
1577
1578 /* Timeout 200us */
1579 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1580 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
1581
1582 dev_priv->display.cdclk.hw.vco = 0;
1583}
1584
1585static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
1586{
1587 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1588 u32 val;
1589
1590 val = ICL_CDCLK_PLL_RATIO(ratio);
1591 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1592
1593 val |= BXT_DE_PLL_PLL_ENABLE;
1594 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1595
1596 /* Timeout 200us */
1597 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1598 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
1599
1600 dev_priv->display.cdclk.hw.vco = vco;
1601}
1602
1603static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
1604{
1605 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1606 u32 val;
1607
1608 /* Write PLL ratio without disabling */
1609 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1610 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1611
1612 /* Submit freq change request */
1613 val |= BXT_DE_PLL_FREQ_REQ;
1614 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1615
1616 /* Timeout 200us */
1617 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
1618 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1619 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n");
1620
1621 val &= ~BXT_DE_PLL_FREQ_REQ;
1622 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1623
1624 dev_priv->display.cdclk.hw.vco = vco;
1625}
1626
1627static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
1628{
1629 if (DISPLAY_VER(dev_priv) >= 12) {
1630 if (pipe == INVALID_PIPE)
1631 return TGL_CDCLK_CD2X_PIPE_NONE;
1632 else
1633 return TGL_CDCLK_CD2X_PIPE(pipe);
1634 } else if (DISPLAY_VER(dev_priv) >= 11) {
1635 if (pipe == INVALID_PIPE)
1636 return ICL_CDCLK_CD2X_PIPE_NONE;
1637 else
1638 return ICL_CDCLK_CD2X_PIPE(pipe);
1639 } else {
1640 if (pipe == INVALID_PIPE)
1641 return BXT_CDCLK_CD2X_PIPE_NONE;
1642 else
1643 return BXT_CDCLK_CD2X_PIPE(pipe);
1644 }
1645}
1646
1647static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
1648 int cdclk, int vco)
1649{
1650 /* cdclk = vco / 2 / div{1,1.5,2,4} */
1651 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
1652 default:
1653 drm_WARN_ON(&dev_priv->drm,
1654 cdclk != dev_priv->display.cdclk.hw.bypass);
1655 drm_WARN_ON(&dev_priv->drm, vco != 0);
1656 fallthrough;
1657 case 2:
1658 return BXT_CDCLK_CD2X_DIV_SEL_1;
1659 case 3:
1660 return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1661 case 4:
1662 return BXT_CDCLK_CD2X_DIV_SEL_2;
1663 case 8:
1664 return BXT_CDCLK_CD2X_DIV_SEL_4;
1665 }
1666}
1667
1668static u32 cdclk_squash_waveform(struct drm_i915_private *dev_priv,
1669 int cdclk)
1670{
1671 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1672 int i;
1673
1674 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1675 return 0;
1676
1677 for (i = 0; table[i].refclk; i++)
1678 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1679 table[i].cdclk == cdclk)
1680 return table[i].waveform;
1681
1682 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1683 cdclk, dev_priv->display.cdclk.hw.ref);
1684
1685 return 0xffff;
1686}
1687
1688static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1689{
1690 if (i915->display.cdclk.hw.vco != 0 &&
1691 i915->display.cdclk.hw.vco != vco)
1692 icl_cdclk_pll_disable(i915);
1693
1694 if (i915->display.cdclk.hw.vco != vco)
1695 icl_cdclk_pll_enable(i915, vco);
1696}
1697
1698static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1699{
1700 if (i915->display.cdclk.hw.vco != 0 &&
1701 i915->display.cdclk.hw.vco != vco)
1702 bxt_de_pll_disable(i915);
1703
1704 if (i915->display.cdclk.hw.vco != vco)
1705 bxt_de_pll_enable(i915, vco);
1706}
1707
1708static void dg2_cdclk_squash_program(struct drm_i915_private *i915,
1709 u16 waveform)
1710{
1711 u32 squash_ctl = 0;
1712
1713 if (waveform)
1714 squash_ctl = CDCLK_SQUASH_ENABLE |
1715 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1716
1717 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl);
1718}
1719
1720static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1721 const struct intel_cdclk_config *cdclk_config,
1722 enum pipe pipe)
1723{
1724 int cdclk = cdclk_config->cdclk;
1725 int vco = cdclk_config->vco;
1726 u32 val;
1727 u16 waveform;
1728 int clock;
1729 int ret;
1730
1731 /* Inform power controller of upcoming frequency change. */
1732 if (DISPLAY_VER(dev_priv) >= 11)
1733 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1734 SKL_CDCLK_PREPARE_FOR_CHANGE,
1735 SKL_CDCLK_READY_FOR_CHANGE,
1736 SKL_CDCLK_READY_FOR_CHANGE, 3);
1737 else
1738 /*
1739 * BSpec requires us to wait up to 150usec, but that leads to
1740 * timeouts; the 2ms used here is based on experiment.
1741 */
1742 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1743 HSW_PCODE_DE_WRITE_FREQ_REQ,
1744 0x80000000, 150, 2);
1745 if (ret) {
1746 drm_err(&dev_priv->drm,
1747 "Failed to inform PCU about cdclk change (err %d, freq %d)\n",
1748 ret, cdclk);
1749 return;
1750 }
1751
1752 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0) {
1753 if (dev_priv->display.cdclk.hw.vco != vco)
1754 adlp_cdclk_pll_crawl(dev_priv, vco);
1755 } else if (DISPLAY_VER(dev_priv) >= 11)
1756 icl_cdclk_pll_update(dev_priv, vco);
1757 else
1758 bxt_cdclk_pll_update(dev_priv, vco);
1759
1760 waveform = cdclk_squash_waveform(dev_priv, cdclk);
1761
1762 if (waveform)
1763 clock = vco / 2;
1764 else
1765 clock = cdclk;
1766
1767 if (HAS_CDCLK_SQUASH(dev_priv))
1768 dg2_cdclk_squash_program(dev_priv, waveform);
1769
1770 val = bxt_cdclk_cd2x_div_sel(dev_priv, clock, vco) |
1771 bxt_cdclk_cd2x_pipe(dev_priv, pipe) |
1772 skl_cdclk_decimal(cdclk);
1773
1774 /*
1775 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1776 * enable otherwise.
1777 */
1778 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1779 cdclk >= 500000)
1780 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1781 intel_de_write(dev_priv, CDCLK_CTL, val);
1782
1783 if (pipe != INVALID_PIPE)
1784 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe));
1785
1786 if (DISPLAY_VER(dev_priv) >= 11) {
1787 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1788 cdclk_config->voltage_level);
1789 } else {
1790 /*
1791 * The timeout isn't specified, the 2ms used here is based on
1792 * experiment.
1793 * FIXME: Waiting for the request completion could be delayed
1794 * until the next PCODE request based on BSpec.
1795 */
1796 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1797 HSW_PCODE_DE_WRITE_FREQ_REQ,
1798 cdclk_config->voltage_level,
1799 150, 2);
1800 }
1801
1802 if (ret) {
1803 drm_err(&dev_priv->drm,
1804 "PCode CDCLK freq set failed, (err %d, freq %d)\n",
1805 ret, cdclk);
1806 return;
1807 }
1808
1809 intel_update_cdclk(dev_priv);
1810
1811 if (DISPLAY_VER(dev_priv) >= 11)
1812 /*
1813 * Can't read out the voltage level :(
1814 * Let's just assume everything is as expected.
1815 */
1816 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level;
1817}
1818
1819static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
1820{
1821 u32 cdctl, expected;
1822 int cdclk, clock, vco;
1823
1824 intel_update_cdclk(dev_priv);
1825 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1826
1827 if (dev_priv->display.cdclk.hw.vco == 0 ||
1828 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1829 goto sanitize;
1830
1831 /* DPLL okay; verify the cdclock
1832 *
1833 * Some BIOS versions leave an incorrect decimal frequency value and
1834 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
1835 * so sanitize this register.
1836 */
1837 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1838 /*
1839 * Let's ignore the pipe field, since BIOS could have configured the
1840 * dividers both synching to an active pipe, or asynchronously
1841 * (PIPE_NONE).
1842 */
1843 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
1844
1845 /* Make sure this is a legal cdclk value for the platform */
1846 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk);
1847 if (cdclk != dev_priv->display.cdclk.hw.cdclk)
1848 goto sanitize;
1849
1850 /* Make sure the VCO is correct for the cdclk */
1851 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
1852 if (vco != dev_priv->display.cdclk.hw.vco)
1853 goto sanitize;
1854
1855 expected = skl_cdclk_decimal(cdclk);
1856
1857 /* Figure out what CD2X divider we should be using for this cdclk */
1858 if (HAS_CDCLK_SQUASH(dev_priv))
1859 clock = dev_priv->display.cdclk.hw.vco / 2;
1860 else
1861 clock = dev_priv->display.cdclk.hw.cdclk;
1862
1863 expected |= bxt_cdclk_cd2x_div_sel(dev_priv, clock,
1864 dev_priv->display.cdclk.hw.vco);
1865
1866 /*
1867 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1868 * enable otherwise.
1869 */
1870 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1871 dev_priv->display.cdclk.hw.cdclk >= 500000)
1872 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1873
1874 if (cdctl == expected)
1875 /* All well; nothing to sanitize */
1876 return;
1877
1878sanitize:
1879 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1880
1881 /* force cdclk programming */
1882 dev_priv->display.cdclk.hw.cdclk = 0;
1883
1884 /* force full PLL disable + enable */
1885 dev_priv->display.cdclk.hw.vco = -1;
1886}
1887
1888static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
1889{
1890 struct intel_cdclk_config cdclk_config;
1891
1892 bxt_sanitize_cdclk(dev_priv);
1893
1894 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1895 dev_priv->display.cdclk.hw.vco != 0)
1896 return;
1897
1898 cdclk_config = dev_priv->display.cdclk.hw;
1899
1900 /*
1901 * FIXME:
1902 * - The initial CDCLK needs to be read from VBT.
1903 * Need to make this change after VBT has changes for BXT.
1904 */
1905 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
1906 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
1907 cdclk_config.voltage_level =
1908 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
1909
1910 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1911}
1912
1913static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1914{
1915 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1916
1917 cdclk_config.cdclk = cdclk_config.bypass;
1918 cdclk_config.vco = 0;
1919 cdclk_config.voltage_level =
1920 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
1921
1922 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1923}
1924
1925/**
1926 * intel_cdclk_init_hw - Initialize CDCLK hardware
1927 * @i915: i915 device
1928 *
1929 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and
1930 * sanitizing the state of the hardware if needed. This is generally done only
1931 * during the display core initialization sequence, after which the DMC will
1932 * take care of turning CDCLK off/on as needed.
1933 */
1934void intel_cdclk_init_hw(struct drm_i915_private *i915)
1935{
1936 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
1937 bxt_cdclk_init_hw(i915);
1938 else if (DISPLAY_VER(i915) == 9)
1939 skl_cdclk_init_hw(i915);
1940}
1941
1942/**
1943 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
1944 * @i915: i915 device
1945 *
1946 * Uninitialize CDCLK. This is done only during the display core
1947 * uninitialization sequence.
1948 */
1949void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
1950{
1951 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
1952 bxt_cdclk_uninit_hw(i915);
1953 else if (DISPLAY_VER(i915) == 9)
1954 skl_cdclk_uninit_hw(i915);
1955}
1956
1957static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
1958 const struct intel_cdclk_config *a,
1959 const struct intel_cdclk_config *b)
1960{
1961 int a_div, b_div;
1962
1963 if (!HAS_CDCLK_CRAWL(dev_priv))
1964 return false;
1965
1966 /*
1967 * The vco and cd2x divider will change independently
1968 * from each, so we disallow cd2x change when crawling.
1969 */
1970 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
1971 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
1972
1973 return a->vco != 0 && b->vco != 0 &&
1974 a->vco != b->vco &&
1975 a_div == b_div &&
1976 a->ref == b->ref;
1977}
1978
1979static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv,
1980 const struct intel_cdclk_config *a,
1981 const struct intel_cdclk_config *b)
1982{
1983 /*
1984 * FIXME should store a bit more state in intel_cdclk_config
1985 * to differentiate squasher vs. cd2x divider properly. For
1986 * the moment all platforms with squasher use a fixed cd2x
1987 * divider.
1988 */
1989 if (!HAS_CDCLK_SQUASH(dev_priv))
1990 return false;
1991
1992 return a->cdclk != b->cdclk &&
1993 a->vco != 0 &&
1994 a->vco == b->vco &&
1995 a->ref == b->ref;
1996}
1997
1998/**
1999 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK
2000 * configurations requires a modeset on all pipes
2001 * @a: first CDCLK configuration
2002 * @b: second CDCLK configuration
2003 *
2004 * Returns:
2005 * True if changing between the two CDCLK configurations
2006 * requires all pipes to be off, false if not.
2007 */
2008bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
2009 const struct intel_cdclk_config *b)
2010{
2011 return a->cdclk != b->cdclk ||
2012 a->vco != b->vco ||
2013 a->ref != b->ref;
2014}
2015
2016/**
2017 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2018 * configurations requires only a cd2x divider update
2019 * @dev_priv: i915 device
2020 * @a: first CDCLK configuration
2021 * @b: second CDCLK configuration
2022 *
2023 * Returns:
2024 * True if changing between the two CDCLK configurations
2025 * can be done with just a cd2x divider update, false if not.
2026 */
2027static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
2028 const struct intel_cdclk_config *a,
2029 const struct intel_cdclk_config *b)
2030{
2031 /* Older hw doesn't have the capability */
2032 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
2033 return false;
2034
2035 /*
2036 * FIXME should store a bit more state in intel_cdclk_config
2037 * to differentiate squasher vs. cd2x divider properly. For
2038 * the moment all platforms with squasher use a fixed cd2x
2039 * divider.
2040 */
2041 if (HAS_CDCLK_SQUASH(dev_priv))
2042 return false;
2043
2044 return a->cdclk != b->cdclk &&
2045 a->vco != 0 &&
2046 a->vco == b->vco &&
2047 a->ref == b->ref;
2048}
2049
2050/**
2051 * intel_cdclk_changed - Determine if two CDCLK configurations are different
2052 * @a: first CDCLK configuration
2053 * @b: second CDCLK configuration
2054 *
2055 * Returns:
2056 * True if the CDCLK configurations don't match, false if they do.
2057 */
2058static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2059 const struct intel_cdclk_config *b)
2060{
2061 return intel_cdclk_needs_modeset(a, b) ||
2062 a->voltage_level != b->voltage_level;
2063}
2064
2065void intel_cdclk_dump_config(struct drm_i915_private *i915,
2066 const struct intel_cdclk_config *cdclk_config,
2067 const char *context)
2068{
2069 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2070 context, cdclk_config->cdclk, cdclk_config->vco,
2071 cdclk_config->ref, cdclk_config->bypass,
2072 cdclk_config->voltage_level);
2073}
2074
2075/**
2076 * intel_set_cdclk - Push the CDCLK configuration to the hardware
2077 * @dev_priv: i915 device
2078 * @cdclk_config: new CDCLK configuration
2079 * @pipe: pipe with which to synchronize the update
2080 *
2081 * Program the hardware based on the passed in CDCLK state,
2082 * if necessary.
2083 */
2084static void intel_set_cdclk(struct drm_i915_private *dev_priv,
2085 const struct intel_cdclk_config *cdclk_config,
2086 enum pipe pipe)
2087{
2088 struct intel_encoder *encoder;
2089
2090 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config))
2091 return;
2092
2093 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk))
2094 return;
2095
2096 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to");
2097
2098 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2099 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2100
2101 intel_psr_pause(intel_dp);
2102 }
2103
2104 intel_audio_cdclk_change_pre(dev_priv);
2105
2106 /*
2107 * Lock aux/gmbus while we change cdclk in case those
2108 * functions use cdclk. Not all platforms/ports do,
2109 * but we'll lock them all for simplicity.
2110 */
2111 mutex_lock(&dev_priv->display.gmbus.mutex);
2112 for_each_intel_dp(&dev_priv->drm, encoder) {
2113 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2114
2115 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2116 &dev_priv->display.gmbus.mutex);
2117 }
2118
2119 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
2120
2121 for_each_intel_dp(&dev_priv->drm, encoder) {
2122 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2123
2124 mutex_unlock(&intel_dp->aux.hw_mutex);
2125 }
2126 mutex_unlock(&dev_priv->display.gmbus.mutex);
2127
2128 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2129 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2130
2131 intel_psr_resume(intel_dp);
2132 }
2133
2134 intel_audio_cdclk_change_post(dev_priv);
2135
2136 if (drm_WARN(&dev_priv->drm,
2137 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config),
2138 "cdclk state doesn't match!\n")) {
2139 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]");
2140 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]");
2141 }
2142}
2143
2144/**
2145 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2146 * @state: intel atomic state
2147 *
2148 * Program the hardware before updating the HW plane state based on the
2149 * new CDCLK state, if necessary.
2150 */
2151void
2152intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2153{
2154 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2155 const struct intel_cdclk_state *old_cdclk_state =
2156 intel_atomic_get_old_cdclk_state(state);
2157 const struct intel_cdclk_state *new_cdclk_state =
2158 intel_atomic_get_new_cdclk_state(state);
2159 enum pipe pipe = new_cdclk_state->pipe;
2160
2161 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2162 &new_cdclk_state->actual))
2163 return;
2164
2165 if (pipe == INVALID_PIPE ||
2166 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
2167 drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed);
2168
2169 intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe);
2170 }
2171}
2172
2173/**
2174 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2175 * @state: intel atomic state
2176 *
2177 * Program the hardware after updating the HW plane state based on the
2178 * new CDCLK state, if necessary.
2179 */
2180void
2181intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2182{
2183 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2184 const struct intel_cdclk_state *old_cdclk_state =
2185 intel_atomic_get_old_cdclk_state(state);
2186 const struct intel_cdclk_state *new_cdclk_state =
2187 intel_atomic_get_new_cdclk_state(state);
2188 enum pipe pipe = new_cdclk_state->pipe;
2189
2190 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2191 &new_cdclk_state->actual))
2192 return;
2193
2194 if (pipe != INVALID_PIPE &&
2195 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
2196 drm_WARN_ON(&dev_priv->drm, !new_cdclk_state->base.changed);
2197
2198 intel_set_cdclk(dev_priv, &new_cdclk_state->actual, pipe);
2199 }
2200}
2201
2202static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2203{
2204 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2205 int pixel_rate = crtc_state->pixel_rate;
2206
2207 if (DISPLAY_VER(dev_priv) >= 10)
2208 return DIV_ROUND_UP(pixel_rate, 2);
2209 else if (DISPLAY_VER(dev_priv) == 9 ||
2210 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2211 return pixel_rate;
2212 else if (IS_CHERRYVIEW(dev_priv))
2213 return DIV_ROUND_UP(pixel_rate * 100, 95);
2214 else if (crtc_state->double_wide)
2215 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2216 else
2217 return DIV_ROUND_UP(pixel_rate * 100, 90);
2218}
2219
2220static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2221{
2222 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2223 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2224 struct intel_plane *plane;
2225 int min_cdclk = 0;
2226
2227 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
2228 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2229
2230 return min_cdclk;
2231}
2232
2233int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2234{
2235 struct drm_i915_private *dev_priv =
2236 to_i915(crtc_state->uapi.crtc->dev);
2237 int min_cdclk;
2238
2239 if (!crtc_state->hw.enable)
2240 return 0;
2241
2242 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2243
2244 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2245 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2246 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2247
2248 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2249 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2250 * there may be audio corruption or screen corruption." This cdclk
2251 * restriction for GLK is 316.8 MHz.
2252 */
2253 if (intel_crtc_has_dp_encoder(crtc_state) &&
2254 crtc_state->has_audio &&
2255 crtc_state->port_clock >= 540000 &&
2256 crtc_state->lane_count == 4) {
2257 if (DISPLAY_VER(dev_priv) == 10) {
2258 /* Display WA #1145: glk */
2259 min_cdclk = max(316800, min_cdclk);
2260 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
2261 /* Display WA #1144: skl,bxt */
2262 min_cdclk = max(432000, min_cdclk);
2263 }
2264 }
2265
2266 /*
2267 * According to BSpec, "The CD clock frequency must be at least twice
2268 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2269 */
2270 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
2271 min_cdclk = max(2 * 96000, min_cdclk);
2272
2273 /*
2274 * "For DP audio configuration, cdclk frequency shall be set to
2275 * meet the following requirements:
2276 * DP Link Frequency(MHz) | Cdclk frequency(MHz)
2277 * 270 | 320 or higher
2278 * 162 | 200 or higher"
2279 */
2280 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2281 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2282 min_cdclk = max(crtc_state->port_clock, min_cdclk);
2283
2284 /*
2285 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2286 * than 320000KHz.
2287 */
2288 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2289 IS_VALLEYVIEW(dev_priv))
2290 min_cdclk = max(320000, min_cdclk);
2291
2292 /*
2293 * On Geminilake once the CDCLK gets as low as 79200
2294 * picture gets unstable, despite that values are
2295 * correct for DSI PLL and DE PLL.
2296 */
2297 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2298 IS_GEMINILAKE(dev_priv))
2299 min_cdclk = max(158400, min_cdclk);
2300
2301 /* Account for additional needs from the planes */
2302 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2303
2304 /*
2305 * When we decide to use only one VDSC engine, since
2306 * each VDSC operates with 1 ppc throughput, pixel clock
2307 * cannot be higher than the VDSC clock (cdclk)
2308 */
2309 if (crtc_state->dsc.compression_enable && !crtc_state->dsc.dsc_split)
2310 min_cdclk = max(min_cdclk, (int)crtc_state->pixel_rate);
2311
2312 /*
2313 * HACK. Currently for TGL/DG2 platforms we calculate
2314 * min_cdclk initially based on pixel_rate divided
2315 * by 2, accounting for also plane requirements,
2316 * however in some cases the lowest possible CDCLK
2317 * doesn't work and causing the underruns.
2318 * Explicitly stating here that this seems to be currently
2319 * rather a Hack, than final solution.
2320 */
2321 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) {
2322 /*
2323 * Clamp to max_cdclk_freq in case pixel rate is higher,
2324 * in order not to break an 8K, but still leave W/A at place.
2325 */
2326 min_cdclk = max_t(int, min_cdclk,
2327 min_t(int, crtc_state->pixel_rate,
2328 dev_priv->display.cdclk.max_cdclk_freq));
2329 }
2330
2331 return min_cdclk;
2332}
2333
2334static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
2335{
2336 struct intel_atomic_state *state = cdclk_state->base.state;
2337 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2338 const struct intel_bw_state *bw_state;
2339 struct intel_crtc *crtc;
2340 struct intel_crtc_state *crtc_state;
2341 int min_cdclk, i;
2342 enum pipe pipe;
2343
2344 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2345 int ret;
2346
2347 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2348 if (min_cdclk < 0)
2349 return min_cdclk;
2350
2351 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2352 continue;
2353
2354 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2355
2356 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2357 if (ret)
2358 return ret;
2359 }
2360
2361 bw_state = intel_atomic_get_new_bw_state(state);
2362 if (bw_state) {
2363 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2364
2365 if (cdclk_state->bw_min_cdclk != min_cdclk) {
2366 int ret;
2367
2368 cdclk_state->bw_min_cdclk = min_cdclk;
2369
2370 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2371 if (ret)
2372 return ret;
2373 }
2374 }
2375
2376 min_cdclk = max(cdclk_state->force_min_cdclk,
2377 cdclk_state->bw_min_cdclk);
2378 for_each_pipe(dev_priv, pipe)
2379 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2380
2381 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) {
2382 drm_dbg_kms(&dev_priv->drm,
2383 "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2384 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq);
2385 return -EINVAL;
2386 }
2387
2388 return min_cdclk;
2389}
2390
2391/*
2392 * Account for port clock min voltage level requirements.
2393 * This only really does something on DISPLA_VER >= 11 but can be
2394 * called on earlier platforms as well.
2395 *
2396 * Note that this functions assumes that 0 is
2397 * the lowest voltage value, and higher values
2398 * correspond to increasingly higher voltages.
2399 *
2400 * Should that relationship no longer hold on
2401 * future platforms this code will need to be
2402 * adjusted.
2403 */
2404static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
2405{
2406 struct intel_atomic_state *state = cdclk_state->base.state;
2407 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2408 struct intel_crtc *crtc;
2409 struct intel_crtc_state *crtc_state;
2410 u8 min_voltage_level;
2411 int i;
2412 enum pipe pipe;
2413
2414 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2415 int ret;
2416
2417 if (crtc_state->hw.enable)
2418 min_voltage_level = crtc_state->min_voltage_level;
2419 else
2420 min_voltage_level = 0;
2421
2422 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2423 continue;
2424
2425 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2426
2427 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2428 if (ret)
2429 return ret;
2430 }
2431
2432 min_voltage_level = 0;
2433 for_each_pipe(dev_priv, pipe)
2434 min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
2435 min_voltage_level);
2436
2437 return min_voltage_level;
2438}
2439
2440static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2441{
2442 struct intel_atomic_state *state = cdclk_state->base.state;
2443 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2444 int min_cdclk, cdclk;
2445
2446 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2447 if (min_cdclk < 0)
2448 return min_cdclk;
2449
2450 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2451
2452 cdclk_state->logical.cdclk = cdclk;
2453 cdclk_state->logical.voltage_level =
2454 vlv_calc_voltage_level(dev_priv, cdclk);
2455
2456 if (!cdclk_state->active_pipes) {
2457 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2458
2459 cdclk_state->actual.cdclk = cdclk;
2460 cdclk_state->actual.voltage_level =
2461 vlv_calc_voltage_level(dev_priv, cdclk);
2462 } else {
2463 cdclk_state->actual = cdclk_state->logical;
2464 }
2465
2466 return 0;
2467}
2468
2469static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2470{
2471 int min_cdclk, cdclk;
2472
2473 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2474 if (min_cdclk < 0)
2475 return min_cdclk;
2476
2477 cdclk = bdw_calc_cdclk(min_cdclk);
2478
2479 cdclk_state->logical.cdclk = cdclk;
2480 cdclk_state->logical.voltage_level =
2481 bdw_calc_voltage_level(cdclk);
2482
2483 if (!cdclk_state->active_pipes) {
2484 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
2485
2486 cdclk_state->actual.cdclk = cdclk;
2487 cdclk_state->actual.voltage_level =
2488 bdw_calc_voltage_level(cdclk);
2489 } else {
2490 cdclk_state->actual = cdclk_state->logical;
2491 }
2492
2493 return 0;
2494}
2495
2496static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
2497{
2498 struct intel_atomic_state *state = cdclk_state->base.state;
2499 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2500 struct intel_crtc *crtc;
2501 struct intel_crtc_state *crtc_state;
2502 int vco, i;
2503
2504 vco = cdclk_state->logical.vco;
2505 if (!vco)
2506 vco = dev_priv->skl_preferred_vco_freq;
2507
2508 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2509 if (!crtc_state->hw.enable)
2510 continue;
2511
2512 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2513 continue;
2514
2515 /*
2516 * DPLL0 VCO may need to be adjusted to get the correct
2517 * clock for eDP. This will affect cdclk as well.
2518 */
2519 switch (crtc_state->port_clock / 2) {
2520 case 108000:
2521 case 216000:
2522 vco = 8640000;
2523 break;
2524 default:
2525 vco = 8100000;
2526 break;
2527 }
2528 }
2529
2530 return vco;
2531}
2532
2533static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2534{
2535 int min_cdclk, cdclk, vco;
2536
2537 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2538 if (min_cdclk < 0)
2539 return min_cdclk;
2540
2541 vco = skl_dpll0_vco(cdclk_state);
2542
2543 cdclk = skl_calc_cdclk(min_cdclk, vco);
2544
2545 cdclk_state->logical.vco = vco;
2546 cdclk_state->logical.cdclk = cdclk;
2547 cdclk_state->logical.voltage_level =
2548 skl_calc_voltage_level(cdclk);
2549
2550 if (!cdclk_state->active_pipes) {
2551 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
2552
2553 cdclk_state->actual.vco = vco;
2554 cdclk_state->actual.cdclk = cdclk;
2555 cdclk_state->actual.voltage_level =
2556 skl_calc_voltage_level(cdclk);
2557 } else {
2558 cdclk_state->actual = cdclk_state->logical;
2559 }
2560
2561 return 0;
2562}
2563
2564static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2565{
2566 struct intel_atomic_state *state = cdclk_state->base.state;
2567 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2568 int min_cdclk, min_voltage_level, cdclk, vco;
2569
2570 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2571 if (min_cdclk < 0)
2572 return min_cdclk;
2573
2574 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
2575 if (min_voltage_level < 0)
2576 return min_voltage_level;
2577
2578 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
2579 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2580
2581 cdclk_state->logical.vco = vco;
2582 cdclk_state->logical.cdclk = cdclk;
2583 cdclk_state->logical.voltage_level =
2584 max_t(int, min_voltage_level,
2585 intel_cdclk_calc_voltage_level(dev_priv, cdclk));
2586
2587 if (!cdclk_state->active_pipes) {
2588 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2589 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2590
2591 cdclk_state->actual.vco = vco;
2592 cdclk_state->actual.cdclk = cdclk;
2593 cdclk_state->actual.voltage_level =
2594 intel_cdclk_calc_voltage_level(dev_priv, cdclk);
2595 } else {
2596 cdclk_state->actual = cdclk_state->logical;
2597 }
2598
2599 return 0;
2600}
2601
2602static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2603{
2604 int min_cdclk;
2605
2606 /*
2607 * We can't change the cdclk frequency, but we still want to
2608 * check that the required minimum frequency doesn't exceed
2609 * the actual cdclk frequency.
2610 */
2611 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2612 if (min_cdclk < 0)
2613 return min_cdclk;
2614
2615 return 0;
2616}
2617
2618static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
2619{
2620 struct intel_cdclk_state *cdclk_state;
2621
2622 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
2623 if (!cdclk_state)
2624 return NULL;
2625
2626 cdclk_state->pipe = INVALID_PIPE;
2627
2628 return &cdclk_state->base;
2629}
2630
2631static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
2632 struct intel_global_state *state)
2633{
2634 kfree(state);
2635}
2636
2637static const struct intel_global_state_funcs intel_cdclk_funcs = {
2638 .atomic_duplicate_state = intel_cdclk_duplicate_state,
2639 .atomic_destroy_state = intel_cdclk_destroy_state,
2640};
2641
2642struct intel_cdclk_state *
2643intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
2644{
2645 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2646 struct intel_global_state *cdclk_state;
2647
2648 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj);
2649 if (IS_ERR(cdclk_state))
2650 return ERR_CAST(cdclk_state);
2651
2652 return to_intel_cdclk_state(cdclk_state);
2653}
2654
2655int intel_cdclk_atomic_check(struct intel_atomic_state *state,
2656 bool *need_cdclk_calc)
2657{
2658 const struct intel_cdclk_state *old_cdclk_state;
2659 const struct intel_cdclk_state *new_cdclk_state;
2660 struct intel_plane_state *plane_state;
2661 struct intel_plane *plane;
2662 int ret;
2663 int i;
2664
2665 /*
2666 * active_planes bitmask has been updated, and potentially affected
2667 * planes are part of the state. We can now compute the minimum cdclk
2668 * for each plane.
2669 */
2670 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2671 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
2672 if (ret)
2673 return ret;
2674 }
2675
2676 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
2677 if (ret)
2678 return ret;
2679
2680 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
2681 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
2682
2683 if (new_cdclk_state &&
2684 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
2685 *need_cdclk_calc = true;
2686
2687 return 0;
2688}
2689
2690int intel_cdclk_init(struct drm_i915_private *dev_priv)
2691{
2692 struct intel_cdclk_state *cdclk_state;
2693
2694 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
2695 if (!cdclk_state)
2696 return -ENOMEM;
2697
2698 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj,
2699 &cdclk_state->base, &intel_cdclk_funcs);
2700
2701 return 0;
2702}
2703
2704int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
2705{
2706 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2707 const struct intel_cdclk_state *old_cdclk_state;
2708 struct intel_cdclk_state *new_cdclk_state;
2709 enum pipe pipe = INVALID_PIPE;
2710 int ret;
2711
2712 new_cdclk_state = intel_atomic_get_cdclk_state(state);
2713 if (IS_ERR(new_cdclk_state))
2714 return PTR_ERR(new_cdclk_state);
2715
2716 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
2717
2718 new_cdclk_state->active_pipes =
2719 intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
2720
2721 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
2722 if (ret)
2723 return ret;
2724
2725 if (intel_cdclk_changed(&old_cdclk_state->actual,
2726 &new_cdclk_state->actual)) {
2727 /*
2728 * Also serialize commits across all crtcs
2729 * if the actual hw needs to be poked.
2730 */
2731 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
2732 if (ret)
2733 return ret;
2734 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
2735 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
2736 intel_cdclk_changed(&old_cdclk_state->logical,
2737 &new_cdclk_state->logical)) {
2738 ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
2739 if (ret)
2740 return ret;
2741 } else {
2742 return 0;
2743 }
2744
2745 if (is_power_of_2(new_cdclk_state->active_pipes) &&
2746 intel_cdclk_can_cd2x_update(dev_priv,
2747 &old_cdclk_state->actual,
2748 &new_cdclk_state->actual)) {
2749 struct intel_crtc *crtc;
2750 struct intel_crtc_state *crtc_state;
2751
2752 pipe = ilog2(new_cdclk_state->active_pipes);
2753 crtc = intel_crtc_for_pipe(dev_priv, pipe);
2754
2755 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
2756 if (IS_ERR(crtc_state))
2757 return PTR_ERR(crtc_state);
2758
2759 if (intel_crtc_needs_modeset(crtc_state))
2760 pipe = INVALID_PIPE;
2761 }
2762
2763 if (intel_cdclk_can_squash(dev_priv,
2764 &old_cdclk_state->actual,
2765 &new_cdclk_state->actual)) {
2766 drm_dbg_kms(&dev_priv->drm,
2767 "Can change cdclk via squashing\n");
2768 } else if (intel_cdclk_can_crawl(dev_priv,
2769 &old_cdclk_state->actual,
2770 &new_cdclk_state->actual)) {
2771 drm_dbg_kms(&dev_priv->drm,
2772 "Can change cdclk via crawling\n");
2773 } else if (pipe != INVALID_PIPE) {
2774 new_cdclk_state->pipe = pipe;
2775
2776 drm_dbg_kms(&dev_priv->drm,
2777 "Can change cdclk cd2x divider with pipe %c active\n",
2778 pipe_name(pipe));
2779 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
2780 &new_cdclk_state->actual)) {
2781 /* All pipes must be switched off while we change the cdclk. */
2782 ret = intel_modeset_all_pipes(state, "CDCLK change");
2783 if (ret)
2784 return ret;
2785
2786 drm_dbg_kms(&dev_priv->drm,
2787 "Modeset required for cdclk change\n");
2788 }
2789
2790 drm_dbg_kms(&dev_priv->drm,
2791 "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
2792 new_cdclk_state->logical.cdclk,
2793 new_cdclk_state->actual.cdclk);
2794 drm_dbg_kms(&dev_priv->drm,
2795 "New voltage level calculated to be logical %u, actual %u\n",
2796 new_cdclk_state->logical.voltage_level,
2797 new_cdclk_state->actual.voltage_level);
2798
2799 return 0;
2800}
2801
2802static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
2803{
2804 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq;
2805
2806 if (DISPLAY_VER(dev_priv) >= 10)
2807 return 2 * max_cdclk_freq;
2808 else if (DISPLAY_VER(dev_priv) == 9 ||
2809 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2810 return max_cdclk_freq;
2811 else if (IS_CHERRYVIEW(dev_priv))
2812 return max_cdclk_freq*95/100;
2813 else if (DISPLAY_VER(dev_priv) < 4)
2814 return 2*max_cdclk_freq*90/100;
2815 else
2816 return max_cdclk_freq*90/100;
2817}
2818
2819/**
2820 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
2821 * @dev_priv: i915 device
2822 *
2823 * Determine the maximum CDCLK frequency the platform supports, and also
2824 * derive the maximum dot clock frequency the maximum CDCLK frequency
2825 * allows.
2826 */
2827void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
2828{
2829 if (IS_JSL_EHL(dev_priv)) {
2830 if (dev_priv->display.cdclk.hw.ref == 24000)
2831 dev_priv->display.cdclk.max_cdclk_freq = 552000;
2832 else
2833 dev_priv->display.cdclk.max_cdclk_freq = 556800;
2834 } else if (DISPLAY_VER(dev_priv) >= 11) {
2835 if (dev_priv->display.cdclk.hw.ref == 24000)
2836 dev_priv->display.cdclk.max_cdclk_freq = 648000;
2837 else
2838 dev_priv->display.cdclk.max_cdclk_freq = 652800;
2839 } else if (IS_GEMINILAKE(dev_priv)) {
2840 dev_priv->display.cdclk.max_cdclk_freq = 316800;
2841 } else if (IS_BROXTON(dev_priv)) {
2842 dev_priv->display.cdclk.max_cdclk_freq = 624000;
2843 } else if (DISPLAY_VER(dev_priv) == 9) {
2844 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
2845 int max_cdclk, vco;
2846
2847 vco = dev_priv->skl_preferred_vco_freq;
2848 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
2849
2850 /*
2851 * Use the lower (vco 8640) cdclk values as a
2852 * first guess. skl_calc_cdclk() will correct it
2853 * if the preferred vco is 8100 instead.
2854 */
2855 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
2856 max_cdclk = 617143;
2857 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
2858 max_cdclk = 540000;
2859 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
2860 max_cdclk = 432000;
2861 else
2862 max_cdclk = 308571;
2863
2864 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
2865 } else if (IS_BROADWELL(dev_priv)) {
2866 /*
2867 * FIXME with extra cooling we can allow
2868 * 540 MHz for ULX and 675 Mhz for ULT.
2869 * How can we know if extra cooling is
2870 * available? PCI ID, VTB, something else?
2871 */
2872 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
2873 dev_priv->display.cdclk.max_cdclk_freq = 450000;
2874 else if (IS_BDW_ULX(dev_priv))
2875 dev_priv->display.cdclk.max_cdclk_freq = 450000;
2876 else if (IS_BDW_ULT(dev_priv))
2877 dev_priv->display.cdclk.max_cdclk_freq = 540000;
2878 else
2879 dev_priv->display.cdclk.max_cdclk_freq = 675000;
2880 } else if (IS_CHERRYVIEW(dev_priv)) {
2881 dev_priv->display.cdclk.max_cdclk_freq = 320000;
2882 } else if (IS_VALLEYVIEW(dev_priv)) {
2883 dev_priv->display.cdclk.max_cdclk_freq = 400000;
2884 } else {
2885 /* otherwise assume cdclk is fixed */
2886 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk;
2887 }
2888
2889 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
2890
2891 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
2892 dev_priv->display.cdclk.max_cdclk_freq);
2893
2894 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
2895 dev_priv->max_dotclk_freq);
2896}
2897
2898/**
2899 * intel_update_cdclk - Determine the current CDCLK frequency
2900 * @dev_priv: i915 device
2901 *
2902 * Determine the current CDCLK frequency.
2903 */
2904void intel_update_cdclk(struct drm_i915_private *dev_priv)
2905{
2906 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw);
2907
2908 /*
2909 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
2910 * Programmng [sic] note: bit[9:2] should be programmed to the number
2911 * of cdclk that generates 4MHz reference clock freq which is used to
2912 * generate GMBus clock. This will vary with the cdclk freq.
2913 */
2914 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2915 intel_de_write(dev_priv, GMBUSFREQ_VLV,
2916 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000));
2917}
2918
2919static int dg1_rawclk(struct drm_i915_private *dev_priv)
2920{
2921 /*
2922 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us
2923 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
2924 */
2925 intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
2926 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
2927
2928 return 38400;
2929}
2930
2931static int cnp_rawclk(struct drm_i915_private *dev_priv)
2932{
2933 u32 rawclk;
2934 int divider, fraction;
2935
2936 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
2937 /* 24 MHz */
2938 divider = 24000;
2939 fraction = 0;
2940 } else {
2941 /* 19.2 MHz */
2942 divider = 19000;
2943 fraction = 200;
2944 }
2945
2946 rawclk = CNP_RAWCLK_DIV(divider / 1000);
2947 if (fraction) {
2948 int numerator = 1;
2949
2950 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
2951 fraction) - 1);
2952 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2953 rawclk |= ICP_RAWCLK_NUM(numerator);
2954 }
2955
2956 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
2957 return divider + fraction;
2958}
2959
2960static int pch_rawclk(struct drm_i915_private *dev_priv)
2961{
2962 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
2963}
2964
2965static int vlv_hrawclk(struct drm_i915_private *dev_priv)
2966{
2967 /* RAWCLK_FREQ_VLV register updated from power well code */
2968 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
2969 CCK_DISPLAY_REF_CLOCK_CONTROL);
2970}
2971
2972static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
2973{
2974 u32 clkcfg;
2975
2976 /*
2977 * hrawclock is 1/4 the FSB frequency
2978 *
2979 * Note that this only reads the state of the FSB
2980 * straps, not the actual FSB frequency. Some BIOSen
2981 * let you configure each independently. Ideally we'd
2982 * read out the actual FSB frequency but sadly we
2983 * don't know which registers have that information,
2984 * and all the relevant docs have gone to bit heaven :(
2985 */
2986 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
2987
2988 if (IS_MOBILE(dev_priv)) {
2989 switch (clkcfg) {
2990 case CLKCFG_FSB_400:
2991 return 100000;
2992 case CLKCFG_FSB_533:
2993 return 133333;
2994 case CLKCFG_FSB_667:
2995 return 166667;
2996 case CLKCFG_FSB_800:
2997 return 200000;
2998 case CLKCFG_FSB_1067:
2999 return 266667;
3000 case CLKCFG_FSB_1333:
3001 return 333333;
3002 default:
3003 MISSING_CASE(clkcfg);
3004 return 133333;
3005 }
3006 } else {
3007 switch (clkcfg) {
3008 case CLKCFG_FSB_400_ALT:
3009 return 100000;
3010 case CLKCFG_FSB_533:
3011 return 133333;
3012 case CLKCFG_FSB_667:
3013 return 166667;
3014 case CLKCFG_FSB_800:
3015 return 200000;
3016 case CLKCFG_FSB_1067_ALT:
3017 return 266667;
3018 case CLKCFG_FSB_1333_ALT:
3019 return 333333;
3020 case CLKCFG_FSB_1600_ALT:
3021 return 400000;
3022 default:
3023 return 133333;
3024 }
3025 }
3026}
3027
3028/**
3029 * intel_read_rawclk - Determine the current RAWCLK frequency
3030 * @dev_priv: i915 device
3031 *
3032 * Determine the current RAWCLK frequency. RAWCLK is a fixed
3033 * frequency clock so this needs to done only once.
3034 */
3035u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
3036{
3037 u32 freq;
3038
3039 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3040 freq = dg1_rawclk(dev_priv);
3041 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTP)
3042 /*
3043 * MTL always uses a 38.4 MHz rawclk. The bspec tells us
3044 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3045 * not need to be programmed."
3046 */
3047 freq = 38400;
3048 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3049 freq = cnp_rawclk(dev_priv);
3050 else if (HAS_PCH_SPLIT(dev_priv))
3051 freq = pch_rawclk(dev_priv);
3052 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3053 freq = vlv_hrawclk(dev_priv);
3054 else if (DISPLAY_VER(dev_priv) >= 3)
3055 freq = i9xx_hrawclk(dev_priv);
3056 else
3057 /* no rawclk on other platforms, or no need to know it */
3058 return 0;
3059
3060 return freq;
3061}
3062
3063static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3064 .get_cdclk = bxt_get_cdclk,
3065 .set_cdclk = bxt_set_cdclk,
3066 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3067 .calc_voltage_level = tgl_calc_voltage_level,
3068};
3069
3070static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3071 .get_cdclk = bxt_get_cdclk,
3072 .set_cdclk = bxt_set_cdclk,
3073 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3074 .calc_voltage_level = ehl_calc_voltage_level,
3075};
3076
3077static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3078 .get_cdclk = bxt_get_cdclk,
3079 .set_cdclk = bxt_set_cdclk,
3080 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3081 .calc_voltage_level = icl_calc_voltage_level,
3082};
3083
3084static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3085 .get_cdclk = bxt_get_cdclk,
3086 .set_cdclk = bxt_set_cdclk,
3087 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3088 .calc_voltage_level = bxt_calc_voltage_level,
3089};
3090
3091static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3092 .get_cdclk = skl_get_cdclk,
3093 .set_cdclk = skl_set_cdclk,
3094 .modeset_calc_cdclk = skl_modeset_calc_cdclk,
3095};
3096
3097static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3098 .get_cdclk = bdw_get_cdclk,
3099 .set_cdclk = bdw_set_cdclk,
3100 .modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3101};
3102
3103static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3104 .get_cdclk = vlv_get_cdclk,
3105 .set_cdclk = chv_set_cdclk,
3106 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3107};
3108
3109static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3110 .get_cdclk = vlv_get_cdclk,
3111 .set_cdclk = vlv_set_cdclk,
3112 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3113};
3114
3115static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3116 .get_cdclk = hsw_get_cdclk,
3117 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3118};
3119
3120/* SNB, IVB, 965G, 945G */
3121static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3122 .get_cdclk = fixed_400mhz_get_cdclk,
3123 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3124};
3125
3126static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3127 .get_cdclk = fixed_450mhz_get_cdclk,
3128 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3129};
3130
3131static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3132 .get_cdclk = gm45_get_cdclk,
3133 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3134};
3135
3136/* G45 uses G33 */
3137
3138static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3139 .get_cdclk = i965gm_get_cdclk,
3140 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3141};
3142
3143/* i965G uses fixed 400 */
3144
3145static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3146 .get_cdclk = pnv_get_cdclk,
3147 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3148};
3149
3150static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3151 .get_cdclk = g33_get_cdclk,
3152 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3153};
3154
3155static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3156 .get_cdclk = i945gm_get_cdclk,
3157 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3158};
3159
3160/* i945G uses fixed 400 */
3161
3162static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3163 .get_cdclk = i915gm_get_cdclk,
3164 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3165};
3166
3167static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3168 .get_cdclk = fixed_333mhz_get_cdclk,
3169 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3170};
3171
3172static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3173 .get_cdclk = fixed_266mhz_get_cdclk,
3174 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3175};
3176
3177static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3178 .get_cdclk = i85x_get_cdclk,
3179 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3180};
3181
3182static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3183 .get_cdclk = fixed_200mhz_get_cdclk,
3184 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3185};
3186
3187static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3188 .get_cdclk = fixed_133mhz_get_cdclk,
3189 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3190};
3191
3192/**
3193 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3194 * @dev_priv: i915 device
3195 */
3196void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
3197{
3198 if (IS_DG2(dev_priv)) {
3199 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3200 dev_priv->display.cdclk.table = dg2_cdclk_table;
3201 } else if (IS_ALDERLAKE_P(dev_priv)) {
3202 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3203 /* Wa_22011320316:adl-p[a0] */
3204 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
3205 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table;
3206 else
3207 dev_priv->display.cdclk.table = adlp_cdclk_table;
3208 } else if (IS_ROCKETLAKE(dev_priv)) {
3209 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3210 dev_priv->display.cdclk.table = rkl_cdclk_table;
3211 } else if (DISPLAY_VER(dev_priv) >= 12) {
3212 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3213 dev_priv->display.cdclk.table = icl_cdclk_table;
3214 } else if (IS_JSL_EHL(dev_priv)) {
3215 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs;
3216 dev_priv->display.cdclk.table = icl_cdclk_table;
3217 } else if (DISPLAY_VER(dev_priv) >= 11) {
3218 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs;
3219 dev_priv->display.cdclk.table = icl_cdclk_table;
3220 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3221 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs;
3222 if (IS_GEMINILAKE(dev_priv))
3223 dev_priv->display.cdclk.table = glk_cdclk_table;
3224 else
3225 dev_priv->display.cdclk.table = bxt_cdclk_table;
3226 } else if (DISPLAY_VER(dev_priv) == 9) {
3227 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs;
3228 } else if (IS_BROADWELL(dev_priv)) {
3229 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs;
3230 } else if (IS_HASWELL(dev_priv)) {
3231 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs;
3232 } else if (IS_CHERRYVIEW(dev_priv)) {
3233 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs;
3234 } else if (IS_VALLEYVIEW(dev_priv)) {
3235 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs;
3236 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3237 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3238 } else if (IS_IRONLAKE(dev_priv)) {
3239 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs;
3240 } else if (IS_GM45(dev_priv)) {
3241 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs;
3242 } else if (IS_G45(dev_priv)) {
3243 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3244 } else if (IS_I965GM(dev_priv)) {
3245 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs;
3246 } else if (IS_I965G(dev_priv)) {
3247 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3248 } else if (IS_PINEVIEW(dev_priv)) {
3249 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs;
3250 } else if (IS_G33(dev_priv)) {
3251 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3252 } else if (IS_I945GM(dev_priv)) {
3253 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs;
3254 } else if (IS_I945G(dev_priv)) {
3255 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3256 } else if (IS_I915GM(dev_priv)) {
3257 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs;
3258 } else if (IS_I915G(dev_priv)) {
3259 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs;
3260 } else if (IS_I865G(dev_priv)) {
3261 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs;
3262 } else if (IS_I85X(dev_priv)) {
3263 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs;
3264 } else if (IS_I845G(dev_priv)) {
3265 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs;
3266 } else if (IS_I830(dev_priv)) {
3267 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3268 }
3269
3270 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk,
3271 "Unknown platform. Assuming i830\n"))
3272 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3273}
1/*
2 * Copyright © 2006-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/time.h>
25
26#include "hsw_ips.h"
27#include "i915_reg.h"
28#include "intel_atomic.h"
29#include "intel_atomic_plane.h"
30#include "intel_audio.h"
31#include "intel_bw.h"
32#include "intel_cdclk.h"
33#include "intel_crtc.h"
34#include "intel_de.h"
35#include "intel_dp.h"
36#include "intel_display_types.h"
37#include "intel_mchbar_regs.h"
38#include "intel_pci_config.h"
39#include "intel_pcode.h"
40#include "intel_psr.h"
41#include "intel_vdsc.h"
42#include "vlv_sideband.h"
43
44/**
45 * DOC: CDCLK / RAWCLK
46 *
47 * The display engine uses several different clocks to do its work. There
48 * are two main clocks involved that aren't directly related to the actual
49 * pixel clock or any symbol/bit clock of the actual output port. These
50 * are the core display clock (CDCLK) and RAWCLK.
51 *
52 * CDCLK clocks most of the display pipe logic, and thus its frequency
53 * must be high enough to support the rate at which pixels are flowing
54 * through the pipes. Downscaling must also be accounted as that increases
55 * the effective pixel rate.
56 *
57 * On several platforms the CDCLK frequency can be changed dynamically
58 * to minimize power consumption for a given display configuration.
59 * Typically changes to the CDCLK frequency require all the display pipes
60 * to be shut down while the frequency is being changed.
61 *
62 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
63 * DMC will not change the active CDCLK frequency however, so that part
64 * will still be performed by the driver directly.
65 *
66 * RAWCLK is a fixed frequency clock, often used by various auxiliary
67 * blocks such as AUX CH or backlight PWM. Hence the only thing we
68 * really need to know about RAWCLK is its frequency so that various
69 * dividers can be programmed correctly.
70 */
71
72struct intel_cdclk_funcs {
73 void (*get_cdclk)(struct drm_i915_private *i915,
74 struct intel_cdclk_config *cdclk_config);
75 void (*set_cdclk)(struct drm_i915_private *i915,
76 const struct intel_cdclk_config *cdclk_config,
77 enum pipe pipe);
78 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state);
79 u8 (*calc_voltage_level)(int cdclk);
80};
81
82void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
83 struct intel_cdclk_config *cdclk_config)
84{
85 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config);
86}
87
88static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
89 const struct intel_cdclk_config *cdclk_config,
90 enum pipe pipe)
91{
92 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe);
93}
94
95static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
96 struct intel_cdclk_state *cdclk_config)
97{
98 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config);
99}
100
101static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
102 int cdclk)
103{
104 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk);
105}
106
107static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
108 struct intel_cdclk_config *cdclk_config)
109{
110 cdclk_config->cdclk = 133333;
111}
112
113static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
114 struct intel_cdclk_config *cdclk_config)
115{
116 cdclk_config->cdclk = 200000;
117}
118
119static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
120 struct intel_cdclk_config *cdclk_config)
121{
122 cdclk_config->cdclk = 266667;
123}
124
125static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
126 struct intel_cdclk_config *cdclk_config)
127{
128 cdclk_config->cdclk = 333333;
129}
130
131static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
132 struct intel_cdclk_config *cdclk_config)
133{
134 cdclk_config->cdclk = 400000;
135}
136
137static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
138 struct intel_cdclk_config *cdclk_config)
139{
140 cdclk_config->cdclk = 450000;
141}
142
143static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
144 struct intel_cdclk_config *cdclk_config)
145{
146 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
147 u16 hpllcc = 0;
148
149 /*
150 * 852GM/852GMV only supports 133 MHz and the HPLLCC
151 * encoding is different :(
152 * FIXME is this the right way to detect 852GM/852GMV?
153 */
154 if (pdev->revision == 0x1) {
155 cdclk_config->cdclk = 133333;
156 return;
157 }
158
159 pci_bus_read_config_word(pdev->bus,
160 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
161
162 /* Assume that the hardware is in the high speed state. This
163 * should be the default.
164 */
165 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
166 case GC_CLOCK_133_200:
167 case GC_CLOCK_133_200_2:
168 case GC_CLOCK_100_200:
169 cdclk_config->cdclk = 200000;
170 break;
171 case GC_CLOCK_166_250:
172 cdclk_config->cdclk = 250000;
173 break;
174 case GC_CLOCK_100_133:
175 cdclk_config->cdclk = 133333;
176 break;
177 case GC_CLOCK_133_266:
178 case GC_CLOCK_133_266_2:
179 case GC_CLOCK_166_266:
180 cdclk_config->cdclk = 266667;
181 break;
182 }
183}
184
185static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
186 struct intel_cdclk_config *cdclk_config)
187{
188 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
189 u16 gcfgc = 0;
190
191 pci_read_config_word(pdev, GCFGC, &gcfgc);
192
193 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
194 cdclk_config->cdclk = 133333;
195 return;
196 }
197
198 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
199 case GC_DISPLAY_CLOCK_333_320_MHZ:
200 cdclk_config->cdclk = 333333;
201 break;
202 default:
203 case GC_DISPLAY_CLOCK_190_200_MHZ:
204 cdclk_config->cdclk = 190000;
205 break;
206 }
207}
208
209static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
210 struct intel_cdclk_config *cdclk_config)
211{
212 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
213 u16 gcfgc = 0;
214
215 pci_read_config_word(pdev, GCFGC, &gcfgc);
216
217 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
218 cdclk_config->cdclk = 133333;
219 return;
220 }
221
222 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
223 case GC_DISPLAY_CLOCK_333_320_MHZ:
224 cdclk_config->cdclk = 320000;
225 break;
226 default:
227 case GC_DISPLAY_CLOCK_190_200_MHZ:
228 cdclk_config->cdclk = 200000;
229 break;
230 }
231}
232
233static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
234{
235 static const unsigned int blb_vco[8] = {
236 [0] = 3200000,
237 [1] = 4000000,
238 [2] = 5333333,
239 [3] = 4800000,
240 [4] = 6400000,
241 };
242 static const unsigned int pnv_vco[8] = {
243 [0] = 3200000,
244 [1] = 4000000,
245 [2] = 5333333,
246 [3] = 4800000,
247 [4] = 2666667,
248 };
249 static const unsigned int cl_vco[8] = {
250 [0] = 3200000,
251 [1] = 4000000,
252 [2] = 5333333,
253 [3] = 6400000,
254 [4] = 3333333,
255 [5] = 3566667,
256 [6] = 4266667,
257 };
258 static const unsigned int elk_vco[8] = {
259 [0] = 3200000,
260 [1] = 4000000,
261 [2] = 5333333,
262 [3] = 4800000,
263 };
264 static const unsigned int ctg_vco[8] = {
265 [0] = 3200000,
266 [1] = 4000000,
267 [2] = 5333333,
268 [3] = 6400000,
269 [4] = 2666667,
270 [5] = 4266667,
271 };
272 const unsigned int *vco_table;
273 unsigned int vco;
274 u8 tmp = 0;
275
276 /* FIXME other chipsets? */
277 if (IS_GM45(dev_priv))
278 vco_table = ctg_vco;
279 else if (IS_G45(dev_priv))
280 vco_table = elk_vco;
281 else if (IS_I965GM(dev_priv))
282 vco_table = cl_vco;
283 else if (IS_PINEVIEW(dev_priv))
284 vco_table = pnv_vco;
285 else if (IS_G33(dev_priv))
286 vco_table = blb_vco;
287 else
288 return 0;
289
290 tmp = intel_de_read(dev_priv,
291 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
292
293 vco = vco_table[tmp & 0x7];
294 if (vco == 0)
295 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
296 tmp);
297 else
298 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
299
300 return vco;
301}
302
303static void g33_get_cdclk(struct drm_i915_private *dev_priv,
304 struct intel_cdclk_config *cdclk_config)
305{
306 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
307 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
308 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
309 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
310 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
311 const u8 *div_table;
312 unsigned int cdclk_sel;
313 u16 tmp = 0;
314
315 cdclk_config->vco = intel_hpll_vco(dev_priv);
316
317 pci_read_config_word(pdev, GCFGC, &tmp);
318
319 cdclk_sel = (tmp >> 4) & 0x7;
320
321 if (cdclk_sel >= ARRAY_SIZE(div_3200))
322 goto fail;
323
324 switch (cdclk_config->vco) {
325 case 3200000:
326 div_table = div_3200;
327 break;
328 case 4000000:
329 div_table = div_4000;
330 break;
331 case 4800000:
332 div_table = div_4800;
333 break;
334 case 5333333:
335 div_table = div_5333;
336 break;
337 default:
338 goto fail;
339 }
340
341 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
342 div_table[cdclk_sel]);
343 return;
344
345fail:
346 drm_err(&dev_priv->drm,
347 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
348 cdclk_config->vco, tmp);
349 cdclk_config->cdclk = 190476;
350}
351
352static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
353 struct intel_cdclk_config *cdclk_config)
354{
355 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
356 u16 gcfgc = 0;
357
358 pci_read_config_word(pdev, GCFGC, &gcfgc);
359
360 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
361 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
362 cdclk_config->cdclk = 266667;
363 break;
364 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
365 cdclk_config->cdclk = 333333;
366 break;
367 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
368 cdclk_config->cdclk = 444444;
369 break;
370 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
371 cdclk_config->cdclk = 200000;
372 break;
373 default:
374 drm_err(&dev_priv->drm,
375 "Unknown pnv display core clock 0x%04x\n", gcfgc);
376 fallthrough;
377 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
378 cdclk_config->cdclk = 133333;
379 break;
380 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
381 cdclk_config->cdclk = 166667;
382 break;
383 }
384}
385
386static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
387 struct intel_cdclk_config *cdclk_config)
388{
389 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
390 static const u8 div_3200[] = { 16, 10, 8 };
391 static const u8 div_4000[] = { 20, 12, 10 };
392 static const u8 div_5333[] = { 24, 16, 14 };
393 const u8 *div_table;
394 unsigned int cdclk_sel;
395 u16 tmp = 0;
396
397 cdclk_config->vco = intel_hpll_vco(dev_priv);
398
399 pci_read_config_word(pdev, GCFGC, &tmp);
400
401 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
402
403 if (cdclk_sel >= ARRAY_SIZE(div_3200))
404 goto fail;
405
406 switch (cdclk_config->vco) {
407 case 3200000:
408 div_table = div_3200;
409 break;
410 case 4000000:
411 div_table = div_4000;
412 break;
413 case 5333333:
414 div_table = div_5333;
415 break;
416 default:
417 goto fail;
418 }
419
420 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
421 div_table[cdclk_sel]);
422 return;
423
424fail:
425 drm_err(&dev_priv->drm,
426 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
427 cdclk_config->vco, tmp);
428 cdclk_config->cdclk = 200000;
429}
430
431static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
432 struct intel_cdclk_config *cdclk_config)
433{
434 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
435 unsigned int cdclk_sel;
436 u16 tmp = 0;
437
438 cdclk_config->vco = intel_hpll_vco(dev_priv);
439
440 pci_read_config_word(pdev, GCFGC, &tmp);
441
442 cdclk_sel = (tmp >> 12) & 0x1;
443
444 switch (cdclk_config->vco) {
445 case 2666667:
446 case 4000000:
447 case 5333333:
448 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
449 break;
450 case 3200000:
451 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
452 break;
453 default:
454 drm_err(&dev_priv->drm,
455 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
456 cdclk_config->vco, tmp);
457 cdclk_config->cdclk = 222222;
458 break;
459 }
460}
461
462static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
463 struct intel_cdclk_config *cdclk_config)
464{
465 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
466 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
467
468 if (lcpll & LCPLL_CD_SOURCE_FCLK)
469 cdclk_config->cdclk = 800000;
470 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
471 cdclk_config->cdclk = 450000;
472 else if (freq == LCPLL_CLK_FREQ_450)
473 cdclk_config->cdclk = 450000;
474 else if (IS_HASWELL_ULT(dev_priv))
475 cdclk_config->cdclk = 337500;
476 else
477 cdclk_config->cdclk = 540000;
478}
479
480static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
481{
482 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
483 333333 : 320000;
484
485 /*
486 * We seem to get an unstable or solid color picture at 200MHz.
487 * Not sure what's wrong. For now use 200MHz only when all pipes
488 * are off.
489 */
490 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
491 return 400000;
492 else if (min_cdclk > 266667)
493 return freq_320;
494 else if (min_cdclk > 0)
495 return 266667;
496 else
497 return 200000;
498}
499
500static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
501{
502 if (IS_VALLEYVIEW(dev_priv)) {
503 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
504 return 2;
505 else if (cdclk >= 266667)
506 return 1;
507 else
508 return 0;
509 } else {
510 /*
511 * Specs are full of misinformation, but testing on actual
512 * hardware has shown that we just need to write the desired
513 * CCK divider into the Punit register.
514 */
515 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
516 }
517}
518
519static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
520 struct intel_cdclk_config *cdclk_config)
521{
522 u32 val;
523
524 vlv_iosf_sb_get(dev_priv,
525 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
526
527 cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
528 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
529 CCK_DISPLAY_CLOCK_CONTROL,
530 cdclk_config->vco);
531
532 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
533
534 vlv_iosf_sb_put(dev_priv,
535 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
536
537 if (IS_VALLEYVIEW(dev_priv))
538 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
539 DSPFREQGUAR_SHIFT;
540 else
541 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
542 DSPFREQGUAR_SHIFT_CHV;
543}
544
545static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
546{
547 unsigned int credits, default_credits;
548
549 if (IS_CHERRYVIEW(dev_priv))
550 default_credits = PFI_CREDIT(12);
551 else
552 default_credits = PFI_CREDIT(8);
553
554 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) {
555 /* CHV suggested value is 31 or 63 */
556 if (IS_CHERRYVIEW(dev_priv))
557 credits = PFI_CREDIT_63;
558 else
559 credits = PFI_CREDIT(15);
560 } else {
561 credits = default_credits;
562 }
563
564 /*
565 * WA - write default credits before re-programming
566 * FIXME: should we also set the resend bit here?
567 */
568 intel_de_write(dev_priv, GCI_CONTROL,
569 VGA_FAST_MODE_DISABLE | default_credits);
570
571 intel_de_write(dev_priv, GCI_CONTROL,
572 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
573
574 /*
575 * FIXME is this guaranteed to clear
576 * immediately or should we poll for it?
577 */
578 drm_WARN_ON(&dev_priv->drm,
579 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
580}
581
582static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
583 const struct intel_cdclk_config *cdclk_config,
584 enum pipe pipe)
585{
586 int cdclk = cdclk_config->cdclk;
587 u32 val, cmd = cdclk_config->voltage_level;
588 intel_wakeref_t wakeref;
589
590 switch (cdclk) {
591 case 400000:
592 case 333333:
593 case 320000:
594 case 266667:
595 case 200000:
596 break;
597 default:
598 MISSING_CASE(cdclk);
599 return;
600 }
601
602 /* There are cases where we can end up here with power domains
603 * off and a CDCLK frequency other than the minimum, like when
604 * issuing a modeset without actually changing any display after
605 * a system suspend. So grab the display core domain, which covers
606 * the HW blocks needed for the following programming.
607 */
608 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
609
610 vlv_iosf_sb_get(dev_priv,
611 BIT(VLV_IOSF_SB_CCK) |
612 BIT(VLV_IOSF_SB_BUNIT) |
613 BIT(VLV_IOSF_SB_PUNIT));
614
615 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
616 val &= ~DSPFREQGUAR_MASK;
617 val |= (cmd << DSPFREQGUAR_SHIFT);
618 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
619 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
620 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
621 50)) {
622 drm_err(&dev_priv->drm,
623 "timed out waiting for CDclk change\n");
624 }
625
626 if (cdclk == 400000) {
627 u32 divider;
628
629 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
630 cdclk) - 1;
631
632 /* adjust cdclk divider */
633 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
634 val &= ~CCK_FREQUENCY_VALUES;
635 val |= divider;
636 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
637
638 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
639 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
640 50))
641 drm_err(&dev_priv->drm,
642 "timed out waiting for CDclk change\n");
643 }
644
645 /* adjust self-refresh exit latency value */
646 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
647 val &= ~0x7f;
648
649 /*
650 * For high bandwidth configs, we set a higher latency in the bunit
651 * so that the core display fetch happens in time to avoid underruns.
652 */
653 if (cdclk == 400000)
654 val |= 4500 / 250; /* 4.5 usec */
655 else
656 val |= 3000 / 250; /* 3.0 usec */
657 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
658
659 vlv_iosf_sb_put(dev_priv,
660 BIT(VLV_IOSF_SB_CCK) |
661 BIT(VLV_IOSF_SB_BUNIT) |
662 BIT(VLV_IOSF_SB_PUNIT));
663
664 intel_update_cdclk(dev_priv);
665
666 vlv_program_pfi_credits(dev_priv);
667
668 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
669}
670
671static void chv_set_cdclk(struct drm_i915_private *dev_priv,
672 const struct intel_cdclk_config *cdclk_config,
673 enum pipe pipe)
674{
675 int cdclk = cdclk_config->cdclk;
676 u32 val, cmd = cdclk_config->voltage_level;
677 intel_wakeref_t wakeref;
678
679 switch (cdclk) {
680 case 333333:
681 case 320000:
682 case 266667:
683 case 200000:
684 break;
685 default:
686 MISSING_CASE(cdclk);
687 return;
688 }
689
690 /* There are cases where we can end up here with power domains
691 * off and a CDCLK frequency other than the minimum, like when
692 * issuing a modeset without actually changing any display after
693 * a system suspend. So grab the display core domain, which covers
694 * the HW blocks needed for the following programming.
695 */
696 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
697
698 vlv_punit_get(dev_priv);
699 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
700 val &= ~DSPFREQGUAR_MASK_CHV;
701 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
702 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
703 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
704 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
705 50)) {
706 drm_err(&dev_priv->drm,
707 "timed out waiting for CDclk change\n");
708 }
709
710 vlv_punit_put(dev_priv);
711
712 intel_update_cdclk(dev_priv);
713
714 vlv_program_pfi_credits(dev_priv);
715
716 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
717}
718
719static int bdw_calc_cdclk(int min_cdclk)
720{
721 if (min_cdclk > 540000)
722 return 675000;
723 else if (min_cdclk > 450000)
724 return 540000;
725 else if (min_cdclk > 337500)
726 return 450000;
727 else
728 return 337500;
729}
730
731static u8 bdw_calc_voltage_level(int cdclk)
732{
733 switch (cdclk) {
734 default:
735 case 337500:
736 return 2;
737 case 450000:
738 return 0;
739 case 540000:
740 return 1;
741 case 675000:
742 return 3;
743 }
744}
745
746static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
747 struct intel_cdclk_config *cdclk_config)
748{
749 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
750 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
751
752 if (lcpll & LCPLL_CD_SOURCE_FCLK)
753 cdclk_config->cdclk = 800000;
754 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
755 cdclk_config->cdclk = 450000;
756 else if (freq == LCPLL_CLK_FREQ_450)
757 cdclk_config->cdclk = 450000;
758 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
759 cdclk_config->cdclk = 540000;
760 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
761 cdclk_config->cdclk = 337500;
762 else
763 cdclk_config->cdclk = 675000;
764
765 /*
766 * Can't read this out :( Let's assume it's
767 * at least what the CDCLK frequency requires.
768 */
769 cdclk_config->voltage_level =
770 bdw_calc_voltage_level(cdclk_config->cdclk);
771}
772
773static u32 bdw_cdclk_freq_sel(int cdclk)
774{
775 switch (cdclk) {
776 default:
777 MISSING_CASE(cdclk);
778 fallthrough;
779 case 337500:
780 return LCPLL_CLK_FREQ_337_5_BDW;
781 case 450000:
782 return LCPLL_CLK_FREQ_450;
783 case 540000:
784 return LCPLL_CLK_FREQ_54O_BDW;
785 case 675000:
786 return LCPLL_CLK_FREQ_675_BDW;
787 }
788}
789
790static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
791 const struct intel_cdclk_config *cdclk_config,
792 enum pipe pipe)
793{
794 int cdclk = cdclk_config->cdclk;
795 int ret;
796
797 if (drm_WARN(&dev_priv->drm,
798 (intel_de_read(dev_priv, LCPLL_CTL) &
799 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
800 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
801 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
802 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
803 "trying to change cdclk frequency with cdclk not enabled\n"))
804 return;
805
806 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
807 if (ret) {
808 drm_err(&dev_priv->drm,
809 "failed to inform pcode about cdclk change\n");
810 return;
811 }
812
813 intel_de_rmw(dev_priv, LCPLL_CTL,
814 0, LCPLL_CD_SOURCE_FCLK);
815
816 /*
817 * According to the spec, it should be enough to poll for this 1 us.
818 * However, extensive testing shows that this can take longer.
819 */
820 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
821 LCPLL_CD_SOURCE_FCLK_DONE, 100))
822 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
823
824 intel_de_rmw(dev_priv, LCPLL_CTL,
825 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
826
827 intel_de_rmw(dev_priv, LCPLL_CTL,
828 LCPLL_CD_SOURCE_FCLK, 0);
829
830 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
831 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
832 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
833
834 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
835 cdclk_config->voltage_level);
836
837 intel_de_write(dev_priv, CDCLK_FREQ,
838 DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
839
840 intel_update_cdclk(dev_priv);
841}
842
843static int skl_calc_cdclk(int min_cdclk, int vco)
844{
845 if (vco == 8640000) {
846 if (min_cdclk > 540000)
847 return 617143;
848 else if (min_cdclk > 432000)
849 return 540000;
850 else if (min_cdclk > 308571)
851 return 432000;
852 else
853 return 308571;
854 } else {
855 if (min_cdclk > 540000)
856 return 675000;
857 else if (min_cdclk > 450000)
858 return 540000;
859 else if (min_cdclk > 337500)
860 return 450000;
861 else
862 return 337500;
863 }
864}
865
866static u8 skl_calc_voltage_level(int cdclk)
867{
868 if (cdclk > 540000)
869 return 3;
870 else if (cdclk > 450000)
871 return 2;
872 else if (cdclk > 337500)
873 return 1;
874 else
875 return 0;
876}
877
878static void skl_dpll0_update(struct drm_i915_private *dev_priv,
879 struct intel_cdclk_config *cdclk_config)
880{
881 u32 val;
882
883 cdclk_config->ref = 24000;
884 cdclk_config->vco = 0;
885
886 val = intel_de_read(dev_priv, LCPLL1_CTL);
887 if ((val & LCPLL_PLL_ENABLE) == 0)
888 return;
889
890 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
891 return;
892
893 val = intel_de_read(dev_priv, DPLL_CTRL1);
894
895 if (drm_WARN_ON(&dev_priv->drm,
896 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
897 DPLL_CTRL1_SSC(SKL_DPLL0) |
898 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
899 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
900 return;
901
902 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
903 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
904 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
905 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
906 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
907 cdclk_config->vco = 8100000;
908 break;
909 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
910 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
911 cdclk_config->vco = 8640000;
912 break;
913 default:
914 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
915 break;
916 }
917}
918
919static void skl_get_cdclk(struct drm_i915_private *dev_priv,
920 struct intel_cdclk_config *cdclk_config)
921{
922 u32 cdctl;
923
924 skl_dpll0_update(dev_priv, cdclk_config);
925
926 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
927
928 if (cdclk_config->vco == 0)
929 goto out;
930
931 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
932
933 if (cdclk_config->vco == 8640000) {
934 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
935 case CDCLK_FREQ_450_432:
936 cdclk_config->cdclk = 432000;
937 break;
938 case CDCLK_FREQ_337_308:
939 cdclk_config->cdclk = 308571;
940 break;
941 case CDCLK_FREQ_540:
942 cdclk_config->cdclk = 540000;
943 break;
944 case CDCLK_FREQ_675_617:
945 cdclk_config->cdclk = 617143;
946 break;
947 default:
948 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
949 break;
950 }
951 } else {
952 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
953 case CDCLK_FREQ_450_432:
954 cdclk_config->cdclk = 450000;
955 break;
956 case CDCLK_FREQ_337_308:
957 cdclk_config->cdclk = 337500;
958 break;
959 case CDCLK_FREQ_540:
960 cdclk_config->cdclk = 540000;
961 break;
962 case CDCLK_FREQ_675_617:
963 cdclk_config->cdclk = 675000;
964 break;
965 default:
966 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
967 break;
968 }
969 }
970
971 out:
972 /*
973 * Can't read this out :( Let's assume it's
974 * at least what the CDCLK frequency requires.
975 */
976 cdclk_config->voltage_level =
977 skl_calc_voltage_level(cdclk_config->cdclk);
978}
979
980/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
981static int skl_cdclk_decimal(int cdclk)
982{
983 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
984}
985
986static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
987 int vco)
988{
989 bool changed = dev_priv->skl_preferred_vco_freq != vco;
990
991 dev_priv->skl_preferred_vco_freq = vco;
992
993 if (changed)
994 intel_update_max_cdclk(dev_priv);
995}
996
997static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
998{
999 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
1000
1001 /*
1002 * We always enable DPLL0 with the lowest link rate possible, but still
1003 * taking into account the VCO required to operate the eDP panel at the
1004 * desired frequency. The usual DP link rates operate with a VCO of
1005 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1006 * The modeset code is responsible for the selection of the exact link
1007 * rate later on, with the constraint of choosing a frequency that
1008 * works with vco.
1009 */
1010 if (vco == 8640000)
1011 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1012 else
1013 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1014}
1015
1016static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
1017{
1018 intel_de_rmw(dev_priv, DPLL_CTRL1,
1019 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1020 DPLL_CTRL1_SSC(SKL_DPLL0) |
1021 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1022 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1023 skl_dpll0_link_rate(dev_priv, vco));
1024 intel_de_posting_read(dev_priv, DPLL_CTRL1);
1025
1026 intel_de_rmw(dev_priv, LCPLL1_CTL,
1027 0, LCPLL_PLL_ENABLE);
1028
1029 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1030 drm_err(&dev_priv->drm, "DPLL0 not locked\n");
1031
1032 dev_priv->display.cdclk.hw.vco = vco;
1033
1034 /* We'll want to keep using the current vco from now on. */
1035 skl_set_preferred_cdclk_vco(dev_priv, vco);
1036}
1037
1038static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
1039{
1040 intel_de_rmw(dev_priv, LCPLL1_CTL,
1041 LCPLL_PLL_ENABLE, 0);
1042
1043 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1044 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
1045
1046 dev_priv->display.cdclk.hw.vco = 0;
1047}
1048
1049static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
1050 int cdclk, int vco)
1051{
1052 switch (cdclk) {
1053 default:
1054 drm_WARN_ON(&dev_priv->drm,
1055 cdclk != dev_priv->display.cdclk.hw.bypass);
1056 drm_WARN_ON(&dev_priv->drm, vco != 0);
1057 fallthrough;
1058 case 308571:
1059 case 337500:
1060 return CDCLK_FREQ_337_308;
1061 case 450000:
1062 case 432000:
1063 return CDCLK_FREQ_450_432;
1064 case 540000:
1065 return CDCLK_FREQ_540;
1066 case 617143:
1067 case 675000:
1068 return CDCLK_FREQ_675_617;
1069 }
1070}
1071
1072static void skl_set_cdclk(struct drm_i915_private *dev_priv,
1073 const struct intel_cdclk_config *cdclk_config,
1074 enum pipe pipe)
1075{
1076 int cdclk = cdclk_config->cdclk;
1077 int vco = cdclk_config->vco;
1078 u32 freq_select, cdclk_ctl;
1079 int ret;
1080
1081 /*
1082 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1083 * unsupported on SKL. In theory this should never happen since only
1084 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1085 * supported on SKL either, see the above WA. WARN whenever trying to
1086 * use the corresponding VCO freq as that always leads to using the
1087 * minimum 308MHz CDCLK.
1088 */
1089 drm_WARN_ON_ONCE(&dev_priv->drm,
1090 IS_SKYLAKE(dev_priv) && vco == 8640000);
1091
1092 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1093 SKL_CDCLK_PREPARE_FOR_CHANGE,
1094 SKL_CDCLK_READY_FOR_CHANGE,
1095 SKL_CDCLK_READY_FOR_CHANGE, 3);
1096 if (ret) {
1097 drm_err(&dev_priv->drm,
1098 "Failed to inform PCU about cdclk change (%d)\n", ret);
1099 return;
1100 }
1101
1102 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
1103
1104 if (dev_priv->display.cdclk.hw.vco != 0 &&
1105 dev_priv->display.cdclk.hw.vco != vco)
1106 skl_dpll0_disable(dev_priv);
1107
1108 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
1109
1110 if (dev_priv->display.cdclk.hw.vco != vco) {
1111 /* Wa Display #1183: skl,kbl,cfl */
1112 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1113 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1114 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1115 }
1116
1117 /* Wa Display #1183: skl,kbl,cfl */
1118 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1119 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1120 intel_de_posting_read(dev_priv, CDCLK_CTL);
1121
1122 if (dev_priv->display.cdclk.hw.vco != vco)
1123 skl_dpll0_enable(dev_priv, vco);
1124
1125 /* Wa Display #1183: skl,kbl,cfl */
1126 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1127 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1128
1129 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1130 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1131
1132 /* Wa Display #1183: skl,kbl,cfl */
1133 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1134 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1135 intel_de_posting_read(dev_priv, CDCLK_CTL);
1136
1137 /* inform PCU of the change */
1138 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1139 cdclk_config->voltage_level);
1140
1141 intel_update_cdclk(dev_priv);
1142}
1143
1144static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
1145{
1146 u32 cdctl, expected;
1147
1148 /*
1149 * check if the pre-os initialized the display
1150 * There is SWF18 scratchpad register defined which is set by the
1151 * pre-os which can be used by the OS drivers to check the status
1152 */
1153 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1154 goto sanitize;
1155
1156 intel_update_cdclk(dev_priv);
1157 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1158
1159 /* Is PLL enabled and locked ? */
1160 if (dev_priv->display.cdclk.hw.vco == 0 ||
1161 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1162 goto sanitize;
1163
1164 /* DPLL okay; verify the cdclock
1165 *
1166 * Noticed in some instances that the freq selection is correct but
1167 * decimal part is programmed wrong from BIOS where pre-os does not
1168 * enable display. Verify the same as well.
1169 */
1170 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1171 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1172 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk);
1173 if (cdctl == expected)
1174 /* All well; nothing to sanitize */
1175 return;
1176
1177sanitize:
1178 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1179
1180 /* force cdclk programming */
1181 dev_priv->display.cdclk.hw.cdclk = 0;
1182 /* force full PLL disable + enable */
1183 dev_priv->display.cdclk.hw.vco = ~0;
1184}
1185
1186static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
1187{
1188 struct intel_cdclk_config cdclk_config;
1189
1190 skl_sanitize_cdclk(dev_priv);
1191
1192 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1193 dev_priv->display.cdclk.hw.vco != 0) {
1194 /*
1195 * Use the current vco as our initial
1196 * guess as to what the preferred vco is.
1197 */
1198 if (dev_priv->skl_preferred_vco_freq == 0)
1199 skl_set_preferred_cdclk_vco(dev_priv,
1200 dev_priv->display.cdclk.hw.vco);
1201 return;
1202 }
1203
1204 cdclk_config = dev_priv->display.cdclk.hw;
1205
1206 cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
1207 if (cdclk_config.vco == 0)
1208 cdclk_config.vco = 8100000;
1209 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1210 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1211
1212 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1213}
1214
1215static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1216{
1217 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1218
1219 cdclk_config.cdclk = cdclk_config.bypass;
1220 cdclk_config.vco = 0;
1221 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1222
1223 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1224}
1225
1226struct intel_cdclk_vals {
1227 u32 cdclk;
1228 u16 refclk;
1229 u16 waveform;
1230 u8 divider; /* CD2X divider * 2 */
1231 u8 ratio;
1232};
1233
1234static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1235 { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 },
1236 { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 },
1237 { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 },
1238 { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 },
1239 { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 },
1240 {}
1241};
1242
1243static const struct intel_cdclk_vals glk_cdclk_table[] = {
1244 { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 },
1245 { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 },
1246 { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 },
1247 {}
1248};
1249
1250static const struct intel_cdclk_vals icl_cdclk_table[] = {
1251 { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 },
1252 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1253 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1254 { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 },
1255 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1256 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1257
1258 { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 },
1259 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1260 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1261 { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 },
1262 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1263 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1264
1265 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 },
1266 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1267 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1268 { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
1269 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1270 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1271 {}
1272};
1273
1274static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1275 { .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 },
1276 { .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 },
1277 { .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 },
1278 { .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 },
1279 { .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 },
1280 { .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 },
1281
1282 { .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 },
1283 { .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 },
1284 { .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 },
1285 { .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 },
1286 { .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 },
1287 { .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 },
1288
1289 { .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 },
1290 { .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 },
1291 { .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 },
1292 { .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 },
1293 { .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 },
1294 { .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 },
1295 {}
1296};
1297
1298static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1299 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1300 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1301 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1302
1303 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1304 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1305 { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 },
1306
1307 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1308 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1309 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1310 {}
1311};
1312
1313static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1314 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
1315 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1316 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1317 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1318 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1319
1320 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
1321 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1322 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1323 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1324 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1325
1326 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
1327 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1328 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1329 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1330 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1331 {}
1332};
1333
1334static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1335 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
1336 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1337 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1338 { .refclk = 19200, .cdclk = 480000, .divider = 2, .ratio = 50 },
1339 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1340 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1341
1342 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
1343 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1344 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1345 { .refclk = 24000, .cdclk = 480000, .divider = 2, .ratio = 40 },
1346 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1347 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1348
1349 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
1350 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1351 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1352 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25 },
1353 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1354 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1355 {}
1356};
1357
1358static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1359 { .refclk = 38400, .cdclk = 163200, .divider = 2, .ratio = 34, .waveform = 0x8888 },
1360 { .refclk = 38400, .cdclk = 204000, .divider = 2, .ratio = 34, .waveform = 0x9248 },
1361 { .refclk = 38400, .cdclk = 244800, .divider = 2, .ratio = 34, .waveform = 0xa4a4 },
1362 { .refclk = 38400, .cdclk = 285600, .divider = 2, .ratio = 34, .waveform = 0xa54a },
1363 { .refclk = 38400, .cdclk = 326400, .divider = 2, .ratio = 34, .waveform = 0xaaaa },
1364 { .refclk = 38400, .cdclk = 367200, .divider = 2, .ratio = 34, .waveform = 0xad5a },
1365 { .refclk = 38400, .cdclk = 408000, .divider = 2, .ratio = 34, .waveform = 0xb6b6 },
1366 { .refclk = 38400, .cdclk = 448800, .divider = 2, .ratio = 34, .waveform = 0xdbb6 },
1367 { .refclk = 38400, .cdclk = 489600, .divider = 2, .ratio = 34, .waveform = 0xeeee },
1368 { .refclk = 38400, .cdclk = 530400, .divider = 2, .ratio = 34, .waveform = 0xf7de },
1369 { .refclk = 38400, .cdclk = 571200, .divider = 2, .ratio = 34, .waveform = 0xfefe },
1370 { .refclk = 38400, .cdclk = 612000, .divider = 2, .ratio = 34, .waveform = 0xfffe },
1371 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0xffff },
1372 {}
1373};
1374
1375static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1376 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 16, .waveform = 0xad5a },
1377 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 16, .waveform = 0xb6b6 },
1378 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16, .waveform = 0x0000 },
1379 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25, .waveform = 0x0000 },
1380 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29, .waveform = 0x0000 },
1381 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0x0000 },
1382 {}
1383};
1384
1385static const struct intel_cdclk_vals lnl_cdclk_table[] = {
1386 { .refclk = 38400, .cdclk = 153600, .divider = 2, .ratio = 16, .waveform = 0xaaaa },
1387 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 16, .waveform = 0xad5a },
1388 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 16, .waveform = 0xb6b6 },
1389 { .refclk = 38400, .cdclk = 211200, .divider = 2, .ratio = 16, .waveform = 0xdbb6 },
1390 { .refclk = 38400, .cdclk = 230400, .divider = 2, .ratio = 16, .waveform = 0xeeee },
1391 { .refclk = 38400, .cdclk = 249600, .divider = 2, .ratio = 16, .waveform = 0xf7de },
1392 { .refclk = 38400, .cdclk = 268800, .divider = 2, .ratio = 16, .waveform = 0xfefe },
1393 { .refclk = 38400, .cdclk = 288000, .divider = 2, .ratio = 16, .waveform = 0xfffe },
1394 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16, .waveform = 0xffff },
1395 { .refclk = 38400, .cdclk = 330000, .divider = 2, .ratio = 25, .waveform = 0xdbb6 },
1396 { .refclk = 38400, .cdclk = 360000, .divider = 2, .ratio = 25, .waveform = 0xeeee },
1397 { .refclk = 38400, .cdclk = 390000, .divider = 2, .ratio = 25, .waveform = 0xf7de },
1398 { .refclk = 38400, .cdclk = 420000, .divider = 2, .ratio = 25, .waveform = 0xfefe },
1399 { .refclk = 38400, .cdclk = 450000, .divider = 2, .ratio = 25, .waveform = 0xfffe },
1400 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25, .waveform = 0xffff },
1401 { .refclk = 38400, .cdclk = 487200, .divider = 2, .ratio = 29, .waveform = 0xfefe },
1402 { .refclk = 38400, .cdclk = 522000, .divider = 2, .ratio = 29, .waveform = 0xfffe },
1403 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29, .waveform = 0xffff },
1404 { .refclk = 38400, .cdclk = 571200, .divider = 2, .ratio = 34, .waveform = 0xfefe },
1405 { .refclk = 38400, .cdclk = 612000, .divider = 2, .ratio = 34, .waveform = 0xfffe },
1406 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0xffff },
1407 {}
1408};
1409
1410static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
1411{
1412 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1413 int i;
1414
1415 for (i = 0; table[i].refclk; i++)
1416 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1417 table[i].cdclk >= min_cdclk)
1418 return table[i].cdclk;
1419
1420 drm_WARN(&dev_priv->drm, 1,
1421 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1422 min_cdclk, dev_priv->display.cdclk.hw.ref);
1423 return 0;
1424}
1425
1426static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1427{
1428 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1429 int i;
1430
1431 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1432 return 0;
1433
1434 for (i = 0; table[i].refclk; i++)
1435 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1436 table[i].cdclk == cdclk)
1437 return dev_priv->display.cdclk.hw.ref * table[i].ratio;
1438
1439 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1440 cdclk, dev_priv->display.cdclk.hw.ref);
1441 return 0;
1442}
1443
1444static u8 bxt_calc_voltage_level(int cdclk)
1445{
1446 return DIV_ROUND_UP(cdclk, 25000);
1447}
1448
1449static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1450 const int voltage_level_max_cdclk[])
1451{
1452 int voltage_level;
1453
1454 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1455 if (cdclk <= voltage_level_max_cdclk[voltage_level])
1456 return voltage_level;
1457 }
1458
1459 MISSING_CASE(cdclk);
1460 return num_voltage_levels - 1;
1461}
1462
1463static u8 icl_calc_voltage_level(int cdclk)
1464{
1465 static const int icl_voltage_level_max_cdclk[] = {
1466 [0] = 312000,
1467 [1] = 556800,
1468 [2] = 652800,
1469 };
1470
1471 return calc_voltage_level(cdclk,
1472 ARRAY_SIZE(icl_voltage_level_max_cdclk),
1473 icl_voltage_level_max_cdclk);
1474}
1475
1476static u8 ehl_calc_voltage_level(int cdclk)
1477{
1478 static const int ehl_voltage_level_max_cdclk[] = {
1479 [0] = 180000,
1480 [1] = 312000,
1481 [2] = 326400,
1482 /*
1483 * Bspec lists the limit as 556.8 MHz, but some JSL
1484 * development boards (at least) boot with 652.8 MHz
1485 */
1486 [3] = 652800,
1487 };
1488
1489 return calc_voltage_level(cdclk,
1490 ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1491 ehl_voltage_level_max_cdclk);
1492}
1493
1494static u8 tgl_calc_voltage_level(int cdclk)
1495{
1496 static const int tgl_voltage_level_max_cdclk[] = {
1497 [0] = 312000,
1498 [1] = 326400,
1499 [2] = 556800,
1500 [3] = 652800,
1501 };
1502
1503 return calc_voltage_level(cdclk,
1504 ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1505 tgl_voltage_level_max_cdclk);
1506}
1507
1508static u8 rplu_calc_voltage_level(int cdclk)
1509{
1510 static const int rplu_voltage_level_max_cdclk[] = {
1511 [0] = 312000,
1512 [1] = 480000,
1513 [2] = 556800,
1514 [3] = 652800,
1515 };
1516
1517 return calc_voltage_level(cdclk,
1518 ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1519 rplu_voltage_level_max_cdclk);
1520}
1521
1522static void icl_readout_refclk(struct drm_i915_private *dev_priv,
1523 struct intel_cdclk_config *cdclk_config)
1524{
1525 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1526
1527 switch (dssm) {
1528 default:
1529 MISSING_CASE(dssm);
1530 fallthrough;
1531 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1532 cdclk_config->ref = 24000;
1533 break;
1534 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1535 cdclk_config->ref = 19200;
1536 break;
1537 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1538 cdclk_config->ref = 38400;
1539 break;
1540 }
1541}
1542
1543static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
1544 struct intel_cdclk_config *cdclk_config)
1545{
1546 u32 val, ratio;
1547
1548 if (IS_DG2(dev_priv))
1549 cdclk_config->ref = 38400;
1550 else if (DISPLAY_VER(dev_priv) >= 11)
1551 icl_readout_refclk(dev_priv, cdclk_config);
1552 else
1553 cdclk_config->ref = 19200;
1554
1555 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
1556 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1557 (val & BXT_DE_PLL_LOCK) == 0) {
1558 /*
1559 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1560 * setting it to zero is a way to signal that.
1561 */
1562 cdclk_config->vco = 0;
1563 return;
1564 }
1565
1566 /*
1567 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1568 * gen9lp had it in a separate PLL control register.
1569 */
1570 if (DISPLAY_VER(dev_priv) >= 11)
1571 ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1572 else
1573 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1574
1575 cdclk_config->vco = ratio * cdclk_config->ref;
1576}
1577
1578static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
1579 struct intel_cdclk_config *cdclk_config)
1580{
1581 u32 squash_ctl = 0;
1582 u32 divider;
1583 int div;
1584
1585 bxt_de_pll_readout(dev_priv, cdclk_config);
1586
1587 if (DISPLAY_VER(dev_priv) >= 12)
1588 cdclk_config->bypass = cdclk_config->ref / 2;
1589 else if (DISPLAY_VER(dev_priv) >= 11)
1590 cdclk_config->bypass = 50000;
1591 else
1592 cdclk_config->bypass = cdclk_config->ref;
1593
1594 if (cdclk_config->vco == 0) {
1595 cdclk_config->cdclk = cdclk_config->bypass;
1596 goto out;
1597 }
1598
1599 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1600
1601 switch (divider) {
1602 case BXT_CDCLK_CD2X_DIV_SEL_1:
1603 div = 2;
1604 break;
1605 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1606 div = 3;
1607 break;
1608 case BXT_CDCLK_CD2X_DIV_SEL_2:
1609 div = 4;
1610 break;
1611 case BXT_CDCLK_CD2X_DIV_SEL_4:
1612 div = 8;
1613 break;
1614 default:
1615 MISSING_CASE(divider);
1616 return;
1617 }
1618
1619 if (HAS_CDCLK_SQUASH(dev_priv))
1620 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL);
1621
1622 if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1623 u16 waveform;
1624 int size;
1625
1626 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1627 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1628
1629 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1630 cdclk_config->vco, size * div);
1631 } else {
1632 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1633 }
1634
1635 out:
1636 /*
1637 * Can't read this out :( Let's assume it's
1638 * at least what the CDCLK frequency requires.
1639 */
1640 cdclk_config->voltage_level =
1641 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
1642}
1643
1644static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
1645{
1646 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
1647
1648 /* Timeout 200us */
1649 if (intel_de_wait_for_clear(dev_priv,
1650 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1651 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
1652
1653 dev_priv->display.cdclk.hw.vco = 0;
1654}
1655
1656static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
1657{
1658 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1659
1660 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
1661 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1662
1663 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1664
1665 /* Timeout 200us */
1666 if (intel_de_wait_for_set(dev_priv,
1667 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1668 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
1669
1670 dev_priv->display.cdclk.hw.vco = vco;
1671}
1672
1673static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
1674{
1675 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
1676 BXT_DE_PLL_PLL_ENABLE, 0);
1677
1678 /* Timeout 200us */
1679 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1680 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
1681
1682 dev_priv->display.cdclk.hw.vco = 0;
1683}
1684
1685static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
1686{
1687 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1688 u32 val;
1689
1690 val = ICL_CDCLK_PLL_RATIO(ratio);
1691 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1692
1693 val |= BXT_DE_PLL_PLL_ENABLE;
1694 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1695
1696 /* Timeout 200us */
1697 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1698 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
1699
1700 dev_priv->display.cdclk.hw.vco = vco;
1701}
1702
1703static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
1704{
1705 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1706 u32 val;
1707
1708 /* Write PLL ratio without disabling */
1709 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1710 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1711
1712 /* Submit freq change request */
1713 val |= BXT_DE_PLL_FREQ_REQ;
1714 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1715
1716 /* Timeout 200us */
1717 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
1718 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1719 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n");
1720
1721 val &= ~BXT_DE_PLL_FREQ_REQ;
1722 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1723
1724 dev_priv->display.cdclk.hw.vco = vco;
1725}
1726
1727static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
1728{
1729 if (DISPLAY_VER(dev_priv) >= 12) {
1730 if (pipe == INVALID_PIPE)
1731 return TGL_CDCLK_CD2X_PIPE_NONE;
1732 else
1733 return TGL_CDCLK_CD2X_PIPE(pipe);
1734 } else if (DISPLAY_VER(dev_priv) >= 11) {
1735 if (pipe == INVALID_PIPE)
1736 return ICL_CDCLK_CD2X_PIPE_NONE;
1737 else
1738 return ICL_CDCLK_CD2X_PIPE(pipe);
1739 } else {
1740 if (pipe == INVALID_PIPE)
1741 return BXT_CDCLK_CD2X_PIPE_NONE;
1742 else
1743 return BXT_CDCLK_CD2X_PIPE(pipe);
1744 }
1745}
1746
1747static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
1748 int cdclk, int vco)
1749{
1750 /* cdclk = vco / 2 / div{1,1.5,2,4} */
1751 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
1752 default:
1753 drm_WARN_ON(&dev_priv->drm,
1754 cdclk != dev_priv->display.cdclk.hw.bypass);
1755 drm_WARN_ON(&dev_priv->drm, vco != 0);
1756 fallthrough;
1757 case 2:
1758 return BXT_CDCLK_CD2X_DIV_SEL_1;
1759 case 3:
1760 return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1761 case 4:
1762 return BXT_CDCLK_CD2X_DIV_SEL_2;
1763 case 8:
1764 return BXT_CDCLK_CD2X_DIV_SEL_4;
1765 }
1766}
1767
1768static u32 cdclk_squash_waveform(struct drm_i915_private *dev_priv,
1769 int cdclk)
1770{
1771 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1772 int i;
1773
1774 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1775 return 0;
1776
1777 for (i = 0; table[i].refclk; i++)
1778 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1779 table[i].cdclk == cdclk)
1780 return table[i].waveform;
1781
1782 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1783 cdclk, dev_priv->display.cdclk.hw.ref);
1784
1785 return 0xffff;
1786}
1787
1788static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1789{
1790 if (i915->display.cdclk.hw.vco != 0 &&
1791 i915->display.cdclk.hw.vco != vco)
1792 icl_cdclk_pll_disable(i915);
1793
1794 if (i915->display.cdclk.hw.vco != vco)
1795 icl_cdclk_pll_enable(i915, vco);
1796}
1797
1798static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1799{
1800 if (i915->display.cdclk.hw.vco != 0 &&
1801 i915->display.cdclk.hw.vco != vco)
1802 bxt_de_pll_disable(i915);
1803
1804 if (i915->display.cdclk.hw.vco != vco)
1805 bxt_de_pll_enable(i915, vco);
1806}
1807
1808static void dg2_cdclk_squash_program(struct drm_i915_private *i915,
1809 u16 waveform)
1810{
1811 u32 squash_ctl = 0;
1812
1813 if (waveform)
1814 squash_ctl = CDCLK_SQUASH_ENABLE |
1815 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1816
1817 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl);
1818}
1819
1820static bool cdclk_pll_is_unknown(unsigned int vco)
1821{
1822 /*
1823 * Ensure driver does not take the crawl path for the
1824 * case when the vco is set to ~0 in the
1825 * sanitize path.
1826 */
1827 return vco == ~0;
1828}
1829
1830static const int cdclk_squash_len = 16;
1831
1832static int cdclk_squash_divider(u16 waveform)
1833{
1834 return hweight16(waveform ?: 0xffff);
1835}
1836
1837static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915,
1838 const struct intel_cdclk_config *old_cdclk_config,
1839 const struct intel_cdclk_config *new_cdclk_config,
1840 struct intel_cdclk_config *mid_cdclk_config)
1841{
1842 u16 old_waveform, new_waveform, mid_waveform;
1843 int div = 2;
1844
1845 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1846 if (cdclk_pll_is_unknown(old_cdclk_config->vco))
1847 return false;
1848
1849 /* Return if both Squash and Crawl are not present */
1850 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
1851 return false;
1852
1853 old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk);
1854 new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk);
1855
1856 /* Return if Squash only or Crawl only is the desired action */
1857 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
1858 old_cdclk_config->vco == new_cdclk_config->vco ||
1859 old_waveform == new_waveform)
1860 return false;
1861
1862 *mid_cdclk_config = *new_cdclk_config;
1863
1864 /*
1865 * Populate the mid_cdclk_config accordingly.
1866 * - If moving to a higher cdclk, the desired action is squashing.
1867 * The mid cdclk config should have the new (squash) waveform.
1868 * - If moving to a lower cdclk, the desired action is crawling.
1869 * The mid cdclk config should have the new vco.
1870 */
1871
1872 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
1873 mid_cdclk_config->vco = old_cdclk_config->vco;
1874 mid_waveform = new_waveform;
1875 } else {
1876 mid_cdclk_config->vco = new_cdclk_config->vco;
1877 mid_waveform = old_waveform;
1878 }
1879
1880 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
1881 mid_cdclk_config->vco,
1882 cdclk_squash_len * div);
1883
1884 /* make sure the mid clock came out sane */
1885
1886 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk <
1887 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
1888 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk >
1889 i915->display.cdclk.max_cdclk_freq);
1890 drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) !=
1891 mid_waveform);
1892
1893 return true;
1894}
1895
1896static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv)
1897{
1898 return (DISPLAY_VER_FULL(dev_priv) == IP_VER(20, 0) ||
1899 DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 0) ||
1900 IS_DG2(dev_priv)) &&
1901 dev_priv->display.cdclk.hw.vco > 0;
1902}
1903
1904static void _bxt_set_cdclk(struct drm_i915_private *dev_priv,
1905 const struct intel_cdclk_config *cdclk_config,
1906 enum pipe pipe)
1907{
1908 int cdclk = cdclk_config->cdclk;
1909 int vco = cdclk_config->vco;
1910 int unsquashed_cdclk;
1911 u16 waveform;
1912 u32 val;
1913
1914 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 &&
1915 !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) {
1916 if (dev_priv->display.cdclk.hw.vco != vco)
1917 adlp_cdclk_pll_crawl(dev_priv, vco);
1918 } else if (DISPLAY_VER(dev_priv) >= 11) {
1919 /* wa_15010685871: dg2, mtl */
1920 if (pll_enable_wa_needed(dev_priv))
1921 dg2_cdclk_squash_program(dev_priv, 0);
1922
1923 icl_cdclk_pll_update(dev_priv, vco);
1924 } else
1925 bxt_cdclk_pll_update(dev_priv, vco);
1926
1927 waveform = cdclk_squash_waveform(dev_priv, cdclk);
1928
1929 unsquashed_cdclk = DIV_ROUND_CLOSEST(cdclk * cdclk_squash_len,
1930 cdclk_squash_divider(waveform));
1931
1932 if (HAS_CDCLK_SQUASH(dev_priv))
1933 dg2_cdclk_squash_program(dev_priv, waveform);
1934
1935 val = bxt_cdclk_cd2x_div_sel(dev_priv, unsquashed_cdclk, vco) |
1936 bxt_cdclk_cd2x_pipe(dev_priv, pipe);
1937
1938 /*
1939 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1940 * enable otherwise.
1941 */
1942 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1943 cdclk >= 500000)
1944 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1945
1946 if (DISPLAY_VER(dev_priv) >= 20)
1947 val |= MDCLK_SOURCE_SEL_CDCLK_PLL;
1948 else
1949 val |= skl_cdclk_decimal(cdclk);
1950
1951 intel_de_write(dev_priv, CDCLK_CTL, val);
1952
1953 if (pipe != INVALID_PIPE)
1954 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe));
1955}
1956
1957static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1958 const struct intel_cdclk_config *cdclk_config,
1959 enum pipe pipe)
1960{
1961 struct intel_cdclk_config mid_cdclk_config;
1962 int cdclk = cdclk_config->cdclk;
1963 int ret = 0;
1964
1965 /*
1966 * Inform power controller of upcoming frequency change.
1967 * Display versions 14 and beyond do not follow the PUnit
1968 * mailbox communication, skip
1969 * this step.
1970 */
1971 if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv))
1972 /* NOOP */;
1973 else if (DISPLAY_VER(dev_priv) >= 11)
1974 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1975 SKL_CDCLK_PREPARE_FOR_CHANGE,
1976 SKL_CDCLK_READY_FOR_CHANGE,
1977 SKL_CDCLK_READY_FOR_CHANGE, 3);
1978 else
1979 /*
1980 * BSpec requires us to wait up to 150usec, but that leads to
1981 * timeouts; the 2ms used here is based on experiment.
1982 */
1983 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1984 HSW_PCODE_DE_WRITE_FREQ_REQ,
1985 0x80000000, 150, 2);
1986
1987 if (ret) {
1988 drm_err(&dev_priv->drm,
1989 "Failed to inform PCU about cdclk change (err %d, freq %d)\n",
1990 ret, cdclk);
1991 return;
1992 }
1993
1994 if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw,
1995 cdclk_config, &mid_cdclk_config)) {
1996 _bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe);
1997 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
1998 } else {
1999 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
2000 }
2001
2002 if (DISPLAY_VER(dev_priv) >= 14)
2003 /*
2004 * NOOP - No Pcode communication needed for
2005 * Display versions 14 and beyond
2006 */;
2007 else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv))
2008 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2009 cdclk_config->voltage_level);
2010 if (DISPLAY_VER(dev_priv) < 11) {
2011 /*
2012 * The timeout isn't specified, the 2ms used here is based on
2013 * experiment.
2014 * FIXME: Waiting for the request completion could be delayed
2015 * until the next PCODE request based on BSpec.
2016 */
2017 ret = snb_pcode_write_timeout(&dev_priv->uncore,
2018 HSW_PCODE_DE_WRITE_FREQ_REQ,
2019 cdclk_config->voltage_level,
2020 150, 2);
2021 }
2022 if (ret) {
2023 drm_err(&dev_priv->drm,
2024 "PCode CDCLK freq set failed, (err %d, freq %d)\n",
2025 ret, cdclk);
2026 return;
2027 }
2028
2029 intel_update_cdclk(dev_priv);
2030
2031 if (DISPLAY_VER(dev_priv) >= 11)
2032 /*
2033 * Can't read out the voltage level :(
2034 * Let's just assume everything is as expected.
2035 */
2036 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level;
2037}
2038
2039static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
2040{
2041 u32 cdctl, expected;
2042 int cdclk, clock, vco;
2043
2044 intel_update_cdclk(dev_priv);
2045 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
2046
2047 if (dev_priv->display.cdclk.hw.vco == 0 ||
2048 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
2049 goto sanitize;
2050
2051 /* DPLL okay; verify the cdclock
2052 *
2053 * Some BIOS versions leave an incorrect decimal frequency value and
2054 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2055 * so sanitize this register.
2056 */
2057 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
2058 /*
2059 * Let's ignore the pipe field, since BIOS could have configured the
2060 * dividers both synching to an active pipe, or asynchronously
2061 * (PIPE_NONE).
2062 */
2063 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2064
2065 /* Make sure this is a legal cdclk value for the platform */
2066 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk);
2067 if (cdclk != dev_priv->display.cdclk.hw.cdclk)
2068 goto sanitize;
2069
2070 /* Make sure the VCO is correct for the cdclk */
2071 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2072 if (vco != dev_priv->display.cdclk.hw.vco)
2073 goto sanitize;
2074
2075 expected = skl_cdclk_decimal(cdclk);
2076
2077 /* Figure out what CD2X divider we should be using for this cdclk */
2078 if (HAS_CDCLK_SQUASH(dev_priv))
2079 clock = dev_priv->display.cdclk.hw.vco / 2;
2080 else
2081 clock = dev_priv->display.cdclk.hw.cdclk;
2082
2083 expected |= bxt_cdclk_cd2x_div_sel(dev_priv, clock,
2084 dev_priv->display.cdclk.hw.vco);
2085
2086 /*
2087 * Disable SSA Precharge when CD clock frequency < 500 MHz,
2088 * enable otherwise.
2089 */
2090 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2091 dev_priv->display.cdclk.hw.cdclk >= 500000)
2092 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
2093
2094 if (cdctl == expected)
2095 /* All well; nothing to sanitize */
2096 return;
2097
2098sanitize:
2099 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
2100
2101 /* force cdclk programming */
2102 dev_priv->display.cdclk.hw.cdclk = 0;
2103
2104 /* force full PLL disable + enable */
2105 dev_priv->display.cdclk.hw.vco = ~0;
2106}
2107
2108static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
2109{
2110 struct intel_cdclk_config cdclk_config;
2111
2112 bxt_sanitize_cdclk(dev_priv);
2113
2114 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
2115 dev_priv->display.cdclk.hw.vco != 0)
2116 return;
2117
2118 cdclk_config = dev_priv->display.cdclk.hw;
2119
2120 /*
2121 * FIXME:
2122 * - The initial CDCLK needs to be read from VBT.
2123 * Need to make this change after VBT has changes for BXT.
2124 */
2125 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
2126 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
2127 cdclk_config.voltage_level =
2128 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2129
2130 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2131}
2132
2133static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
2134{
2135 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
2136
2137 cdclk_config.cdclk = cdclk_config.bypass;
2138 cdclk_config.vco = 0;
2139 cdclk_config.voltage_level =
2140 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2141
2142 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2143}
2144
2145/**
2146 * intel_cdclk_init_hw - Initialize CDCLK hardware
2147 * @i915: i915 device
2148 *
2149 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and
2150 * sanitizing the state of the hardware if needed. This is generally done only
2151 * during the display core initialization sequence, after which the DMC will
2152 * take care of turning CDCLK off/on as needed.
2153 */
2154void intel_cdclk_init_hw(struct drm_i915_private *i915)
2155{
2156 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2157 bxt_cdclk_init_hw(i915);
2158 else if (DISPLAY_VER(i915) == 9)
2159 skl_cdclk_init_hw(i915);
2160}
2161
2162/**
2163 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2164 * @i915: i915 device
2165 *
2166 * Uninitialize CDCLK. This is done only during the display core
2167 * uninitialization sequence.
2168 */
2169void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
2170{
2171 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2172 bxt_cdclk_uninit_hw(i915);
2173 else if (DISPLAY_VER(i915) == 9)
2174 skl_cdclk_uninit_hw(i915);
2175}
2176
2177static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915,
2178 const struct intel_cdclk_config *a,
2179 const struct intel_cdclk_config *b)
2180{
2181 u16 old_waveform;
2182 u16 new_waveform;
2183
2184 drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco));
2185
2186 if (a->vco == 0 || b->vco == 0)
2187 return false;
2188
2189 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
2190 return false;
2191
2192 old_waveform = cdclk_squash_waveform(i915, a->cdclk);
2193 new_waveform = cdclk_squash_waveform(i915, b->cdclk);
2194
2195 return a->vco != b->vco &&
2196 old_waveform != new_waveform;
2197}
2198
2199static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
2200 const struct intel_cdclk_config *a,
2201 const struct intel_cdclk_config *b)
2202{
2203 int a_div, b_div;
2204
2205 if (!HAS_CDCLK_CRAWL(dev_priv))
2206 return false;
2207
2208 /*
2209 * The vco and cd2x divider will change independently
2210 * from each, so we disallow cd2x change when crawling.
2211 */
2212 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2213 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2214
2215 return a->vco != 0 && b->vco != 0 &&
2216 a->vco != b->vco &&
2217 a_div == b_div &&
2218 a->ref == b->ref;
2219}
2220
2221static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv,
2222 const struct intel_cdclk_config *a,
2223 const struct intel_cdclk_config *b)
2224{
2225 /*
2226 * FIXME should store a bit more state in intel_cdclk_config
2227 * to differentiate squasher vs. cd2x divider properly. For
2228 * the moment all platforms with squasher use a fixed cd2x
2229 * divider.
2230 */
2231 if (!HAS_CDCLK_SQUASH(dev_priv))
2232 return false;
2233
2234 return a->cdclk != b->cdclk &&
2235 a->vco != 0 &&
2236 a->vco == b->vco &&
2237 a->ref == b->ref;
2238}
2239
2240/**
2241 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK
2242 * configurations requires a modeset on all pipes
2243 * @a: first CDCLK configuration
2244 * @b: second CDCLK configuration
2245 *
2246 * Returns:
2247 * True if changing between the two CDCLK configurations
2248 * requires all pipes to be off, false if not.
2249 */
2250bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
2251 const struct intel_cdclk_config *b)
2252{
2253 return a->cdclk != b->cdclk ||
2254 a->vco != b->vco ||
2255 a->ref != b->ref;
2256}
2257
2258/**
2259 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2260 * configurations requires only a cd2x divider update
2261 * @dev_priv: i915 device
2262 * @a: first CDCLK configuration
2263 * @b: second CDCLK configuration
2264 *
2265 * Returns:
2266 * True if changing between the two CDCLK configurations
2267 * can be done with just a cd2x divider update, false if not.
2268 */
2269static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
2270 const struct intel_cdclk_config *a,
2271 const struct intel_cdclk_config *b)
2272{
2273 /* Older hw doesn't have the capability */
2274 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
2275 return false;
2276
2277 /*
2278 * FIXME should store a bit more state in intel_cdclk_config
2279 * to differentiate squasher vs. cd2x divider properly. For
2280 * the moment all platforms with squasher use a fixed cd2x
2281 * divider.
2282 */
2283 if (HAS_CDCLK_SQUASH(dev_priv))
2284 return false;
2285
2286 return a->cdclk != b->cdclk &&
2287 a->vco != 0 &&
2288 a->vco == b->vco &&
2289 a->ref == b->ref;
2290}
2291
2292/**
2293 * intel_cdclk_changed - Determine if two CDCLK configurations are different
2294 * @a: first CDCLK configuration
2295 * @b: second CDCLK configuration
2296 *
2297 * Returns:
2298 * True if the CDCLK configurations don't match, false if they do.
2299 */
2300static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2301 const struct intel_cdclk_config *b)
2302{
2303 return intel_cdclk_needs_modeset(a, b) ||
2304 a->voltage_level != b->voltage_level;
2305}
2306
2307void intel_cdclk_dump_config(struct drm_i915_private *i915,
2308 const struct intel_cdclk_config *cdclk_config,
2309 const char *context)
2310{
2311 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2312 context, cdclk_config->cdclk, cdclk_config->vco,
2313 cdclk_config->ref, cdclk_config->bypass,
2314 cdclk_config->voltage_level);
2315}
2316
2317static void intel_pcode_notify(struct drm_i915_private *i915,
2318 u8 voltage_level,
2319 u8 active_pipe_count,
2320 u16 cdclk,
2321 bool cdclk_update_valid,
2322 bool pipe_count_update_valid)
2323{
2324 int ret;
2325 u32 update_mask = 0;
2326
2327 if (!IS_DG2(i915))
2328 return;
2329
2330 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2331
2332 if (cdclk_update_valid)
2333 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2334
2335 if (pipe_count_update_valid)
2336 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2337
2338 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2339 SKL_CDCLK_PREPARE_FOR_CHANGE |
2340 update_mask,
2341 SKL_CDCLK_READY_FOR_CHANGE,
2342 SKL_CDCLK_READY_FOR_CHANGE, 3);
2343 if (ret)
2344 drm_err(&i915->drm,
2345 "Failed to inform PCU about display config (err %d)\n",
2346 ret);
2347}
2348
2349/**
2350 * intel_set_cdclk - Push the CDCLK configuration to the hardware
2351 * @dev_priv: i915 device
2352 * @cdclk_config: new CDCLK configuration
2353 * @pipe: pipe with which to synchronize the update
2354 *
2355 * Program the hardware based on the passed in CDCLK state,
2356 * if necessary.
2357 */
2358static void intel_set_cdclk(struct drm_i915_private *dev_priv,
2359 const struct intel_cdclk_config *cdclk_config,
2360 enum pipe pipe)
2361{
2362 struct intel_encoder *encoder;
2363
2364 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config))
2365 return;
2366
2367 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk))
2368 return;
2369
2370 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to");
2371
2372 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2373 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2374
2375 intel_psr_pause(intel_dp);
2376 }
2377
2378 intel_audio_cdclk_change_pre(dev_priv);
2379
2380 /*
2381 * Lock aux/gmbus while we change cdclk in case those
2382 * functions use cdclk. Not all platforms/ports do,
2383 * but we'll lock them all for simplicity.
2384 */
2385 mutex_lock(&dev_priv->display.gmbus.mutex);
2386 for_each_intel_dp(&dev_priv->drm, encoder) {
2387 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2388
2389 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2390 &dev_priv->display.gmbus.mutex);
2391 }
2392
2393 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
2394
2395 for_each_intel_dp(&dev_priv->drm, encoder) {
2396 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2397
2398 mutex_unlock(&intel_dp->aux.hw_mutex);
2399 }
2400 mutex_unlock(&dev_priv->display.gmbus.mutex);
2401
2402 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2403 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2404
2405 intel_psr_resume(intel_dp);
2406 }
2407
2408 intel_audio_cdclk_change_post(dev_priv);
2409
2410 if (drm_WARN(&dev_priv->drm,
2411 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config),
2412 "cdclk state doesn't match!\n")) {
2413 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]");
2414 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]");
2415 }
2416}
2417
2418static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2419{
2420 struct drm_i915_private *i915 = to_i915(state->base.dev);
2421 const struct intel_cdclk_state *old_cdclk_state =
2422 intel_atomic_get_old_cdclk_state(state);
2423 const struct intel_cdclk_state *new_cdclk_state =
2424 intel_atomic_get_new_cdclk_state(state);
2425 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2426 bool change_cdclk, update_pipe_count;
2427
2428 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2429 &new_cdclk_state->actual) &&
2430 new_cdclk_state->active_pipes ==
2431 old_cdclk_state->active_pipes)
2432 return;
2433
2434 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2435 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2436
2437 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2438 update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2439 hweight8(old_cdclk_state->active_pipes);
2440
2441 /*
2442 * According to "Sequence Before Frequency Change",
2443 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2444 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2445 * which basically means we choose the maximum of old and new CDCLK, if we know both
2446 */
2447 if (change_cdclk)
2448 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2449
2450 /*
2451 * According to "Sequence For Pipe Count Change",
2452 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2453 * (power well is enabled)
2454 * no action if it is decreasing, before the change
2455 */
2456 if (update_pipe_count)
2457 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2458
2459 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2460 change_cdclk, update_pipe_count);
2461}
2462
2463static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2464{
2465 struct drm_i915_private *i915 = to_i915(state->base.dev);
2466 const struct intel_cdclk_state *new_cdclk_state =
2467 intel_atomic_get_new_cdclk_state(state);
2468 const struct intel_cdclk_state *old_cdclk_state =
2469 intel_atomic_get_old_cdclk_state(state);
2470 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2471 bool update_cdclk, update_pipe_count;
2472
2473 /* According to "Sequence After Frequency Change", set voltage to used level */
2474 voltage_level = new_cdclk_state->actual.voltage_level;
2475
2476 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2477 update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2478 hweight8(old_cdclk_state->active_pipes);
2479
2480 /*
2481 * According to "Sequence After Frequency Change",
2482 * set bits 25:16 to current CDCLK
2483 */
2484 if (update_cdclk)
2485 cdclk = new_cdclk_state->actual.cdclk;
2486
2487 /*
2488 * According to "Sequence For Pipe Count Change",
2489 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2490 * after the change(power well is disabled)
2491 * no action if it is increasing, after the change
2492 */
2493 if (update_pipe_count)
2494 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2495
2496 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2497 update_cdclk, update_pipe_count);
2498}
2499
2500/**
2501 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2502 * @state: intel atomic state
2503 *
2504 * Program the hardware before updating the HW plane state based on the
2505 * new CDCLK state, if necessary.
2506 */
2507void
2508intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2509{
2510 struct drm_i915_private *i915 = to_i915(state->base.dev);
2511 const struct intel_cdclk_state *old_cdclk_state =
2512 intel_atomic_get_old_cdclk_state(state);
2513 const struct intel_cdclk_state *new_cdclk_state =
2514 intel_atomic_get_new_cdclk_state(state);
2515 enum pipe pipe = new_cdclk_state->pipe;
2516
2517 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2518 &new_cdclk_state->actual))
2519 return;
2520
2521 if (IS_DG2(i915))
2522 intel_cdclk_pcode_pre_notify(state);
2523
2524 if (pipe == INVALID_PIPE ||
2525 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
2526 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2527
2528 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2529 }
2530}
2531
2532/**
2533 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2534 * @state: intel atomic state
2535 *
2536 * Program the hardware after updating the HW plane state based on the
2537 * new CDCLK state, if necessary.
2538 */
2539void
2540intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2541{
2542 struct drm_i915_private *i915 = to_i915(state->base.dev);
2543 const struct intel_cdclk_state *old_cdclk_state =
2544 intel_atomic_get_old_cdclk_state(state);
2545 const struct intel_cdclk_state *new_cdclk_state =
2546 intel_atomic_get_new_cdclk_state(state);
2547 enum pipe pipe = new_cdclk_state->pipe;
2548
2549 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2550 &new_cdclk_state->actual))
2551 return;
2552
2553 if (IS_DG2(i915))
2554 intel_cdclk_pcode_post_notify(state);
2555
2556 if (pipe != INVALID_PIPE &&
2557 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
2558 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2559
2560 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2561 }
2562}
2563
2564static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2565{
2566 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2567 int pixel_rate = crtc_state->pixel_rate;
2568
2569 if (DISPLAY_VER(dev_priv) >= 10)
2570 return DIV_ROUND_UP(pixel_rate, 2);
2571 else if (DISPLAY_VER(dev_priv) == 9 ||
2572 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2573 return pixel_rate;
2574 else if (IS_CHERRYVIEW(dev_priv))
2575 return DIV_ROUND_UP(pixel_rate * 100, 95);
2576 else if (crtc_state->double_wide)
2577 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2578 else
2579 return DIV_ROUND_UP(pixel_rate * 100, 90);
2580}
2581
2582static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2583{
2584 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2585 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2586 struct intel_plane *plane;
2587 int min_cdclk = 0;
2588
2589 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
2590 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2591
2592 return min_cdclk;
2593}
2594
2595static int intel_vdsc_min_cdclk(const struct intel_crtc_state *crtc_state)
2596{
2597 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2598 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2599 int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state);
2600 int min_cdclk = 0;
2601
2602 /*
2603 * When we decide to use only one VDSC engine, since
2604 * each VDSC operates with 1 ppc throughput, pixel clock
2605 * cannot be higher than the VDSC clock (cdclk)
2606 * If there 2 VDSC engines, then pixel clock can't be higher than
2607 * VDSC clock(cdclk) * 2 and so on.
2608 */
2609 min_cdclk = max_t(int, min_cdclk,
2610 DIV_ROUND_UP(crtc_state->pixel_rate, num_vdsc_instances));
2611
2612 if (crtc_state->bigjoiner_pipes) {
2613 int pixel_clock = intel_dp_mode_to_fec_clock(crtc_state->hw.adjusted_mode.clock);
2614
2615 /*
2616 * According to Bigjoiner bw check:
2617 * compressed_bpp <= PPC * CDCLK * Big joiner Interface bits / Pixel clock
2618 *
2619 * We have already computed compressed_bpp, so now compute the min CDCLK that
2620 * is required to support this compressed_bpp.
2621 *
2622 * => CDCLK >= compressed_bpp * Pixel clock / (PPC * Bigjoiner Interface bits)
2623 *
2624 * Since PPC = 2 with bigjoiner
2625 * => CDCLK >= compressed_bpp * Pixel clock / 2 * Bigjoiner Interface bits
2626 */
2627 int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24;
2628 int min_cdclk_bj =
2629 (to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) *
2630 pixel_clock) / (2 * bigjoiner_interface_bits);
2631
2632 min_cdclk = max(min_cdclk, min_cdclk_bj);
2633 }
2634
2635 return min_cdclk;
2636}
2637
2638int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2639{
2640 struct drm_i915_private *dev_priv =
2641 to_i915(crtc_state->uapi.crtc->dev);
2642 int min_cdclk;
2643
2644 if (!crtc_state->hw.enable)
2645 return 0;
2646
2647 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2648
2649 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2650 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2651 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2652
2653 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2654 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2655 * there may be audio corruption or screen corruption." This cdclk
2656 * restriction for GLK is 316.8 MHz.
2657 */
2658 if (intel_crtc_has_dp_encoder(crtc_state) &&
2659 crtc_state->has_audio &&
2660 crtc_state->port_clock >= 540000 &&
2661 crtc_state->lane_count == 4) {
2662 if (DISPLAY_VER(dev_priv) == 10) {
2663 /* Display WA #1145: glk */
2664 min_cdclk = max(316800, min_cdclk);
2665 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
2666 /* Display WA #1144: skl,bxt */
2667 min_cdclk = max(432000, min_cdclk);
2668 }
2669 }
2670
2671 /*
2672 * According to BSpec, "The CD clock frequency must be at least twice
2673 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2674 */
2675 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
2676 min_cdclk = max(2 * 96000, min_cdclk);
2677
2678 /*
2679 * "For DP audio configuration, cdclk frequency shall be set to
2680 * meet the following requirements:
2681 * DP Link Frequency(MHz) | Cdclk frequency(MHz)
2682 * 270 | 320 or higher
2683 * 162 | 200 or higher"
2684 */
2685 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2686 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2687 min_cdclk = max(crtc_state->port_clock, min_cdclk);
2688
2689 /*
2690 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2691 * than 320000KHz.
2692 */
2693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2694 IS_VALLEYVIEW(dev_priv))
2695 min_cdclk = max(320000, min_cdclk);
2696
2697 /*
2698 * On Geminilake once the CDCLK gets as low as 79200
2699 * picture gets unstable, despite that values are
2700 * correct for DSI PLL and DE PLL.
2701 */
2702 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2703 IS_GEMINILAKE(dev_priv))
2704 min_cdclk = max(158400, min_cdclk);
2705
2706 /* Account for additional needs from the planes */
2707 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2708
2709 if (crtc_state->dsc.compression_enable)
2710 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2711
2712 /*
2713 * HACK. Currently for TGL/DG2 platforms we calculate
2714 * min_cdclk initially based on pixel_rate divided
2715 * by 2, accounting for also plane requirements,
2716 * however in some cases the lowest possible CDCLK
2717 * doesn't work and causing the underruns.
2718 * Explicitly stating here that this seems to be currently
2719 * rather a Hack, than final solution.
2720 */
2721 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) {
2722 /*
2723 * Clamp to max_cdclk_freq in case pixel rate is higher,
2724 * in order not to break an 8K, but still leave W/A at place.
2725 */
2726 min_cdclk = max_t(int, min_cdclk,
2727 min_t(int, crtc_state->pixel_rate,
2728 dev_priv->display.cdclk.max_cdclk_freq));
2729 }
2730
2731 return min_cdclk;
2732}
2733
2734static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
2735{
2736 struct intel_atomic_state *state = cdclk_state->base.state;
2737 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2738 const struct intel_bw_state *bw_state;
2739 struct intel_crtc *crtc;
2740 struct intel_crtc_state *crtc_state;
2741 int min_cdclk, i;
2742 enum pipe pipe;
2743
2744 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2745 int ret;
2746
2747 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2748 if (min_cdclk < 0)
2749 return min_cdclk;
2750
2751 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2752 continue;
2753
2754 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2755
2756 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 bw_state = intel_atomic_get_new_bw_state(state);
2762 if (bw_state) {
2763 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2764
2765 if (cdclk_state->bw_min_cdclk != min_cdclk) {
2766 int ret;
2767
2768 cdclk_state->bw_min_cdclk = min_cdclk;
2769
2770 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2771 if (ret)
2772 return ret;
2773 }
2774 }
2775
2776 min_cdclk = max(cdclk_state->force_min_cdclk,
2777 cdclk_state->bw_min_cdclk);
2778 for_each_pipe(dev_priv, pipe)
2779 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2780
2781 /*
2782 * Avoid glk_force_audio_cdclk() causing excessive screen
2783 * blinking when multiple pipes are active by making sure
2784 * CDCLK frequency is always high enough for audio. With a
2785 * single active pipe we can always change CDCLK frequency
2786 * by changing the cd2x divider (see glk_cdclk_table[]) and
2787 * thus a full modeset won't be needed then.
2788 */
2789 if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes &&
2790 !is_power_of_2(cdclk_state->active_pipes))
2791 min_cdclk = max(2 * 96000, min_cdclk);
2792
2793 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) {
2794 drm_dbg_kms(&dev_priv->drm,
2795 "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2796 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq);
2797 return -EINVAL;
2798 }
2799
2800 return min_cdclk;
2801}
2802
2803/*
2804 * Account for port clock min voltage level requirements.
2805 * This only really does something on DISPLA_VER >= 11 but can be
2806 * called on earlier platforms as well.
2807 *
2808 * Note that this functions assumes that 0 is
2809 * the lowest voltage value, and higher values
2810 * correspond to increasingly higher voltages.
2811 *
2812 * Should that relationship no longer hold on
2813 * future platforms this code will need to be
2814 * adjusted.
2815 */
2816static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
2817{
2818 struct intel_atomic_state *state = cdclk_state->base.state;
2819 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2820 struct intel_crtc *crtc;
2821 struct intel_crtc_state *crtc_state;
2822 u8 min_voltage_level;
2823 int i;
2824 enum pipe pipe;
2825
2826 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2827 int ret;
2828
2829 if (crtc_state->hw.enable)
2830 min_voltage_level = crtc_state->min_voltage_level;
2831 else
2832 min_voltage_level = 0;
2833
2834 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2835 continue;
2836
2837 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2838
2839 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2840 if (ret)
2841 return ret;
2842 }
2843
2844 min_voltage_level = 0;
2845 for_each_pipe(dev_priv, pipe)
2846 min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
2847 min_voltage_level);
2848
2849 return min_voltage_level;
2850}
2851
2852static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2853{
2854 struct intel_atomic_state *state = cdclk_state->base.state;
2855 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2856 int min_cdclk, cdclk;
2857
2858 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2859 if (min_cdclk < 0)
2860 return min_cdclk;
2861
2862 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2863
2864 cdclk_state->logical.cdclk = cdclk;
2865 cdclk_state->logical.voltage_level =
2866 vlv_calc_voltage_level(dev_priv, cdclk);
2867
2868 if (!cdclk_state->active_pipes) {
2869 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2870
2871 cdclk_state->actual.cdclk = cdclk;
2872 cdclk_state->actual.voltage_level =
2873 vlv_calc_voltage_level(dev_priv, cdclk);
2874 } else {
2875 cdclk_state->actual = cdclk_state->logical;
2876 }
2877
2878 return 0;
2879}
2880
2881static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2882{
2883 int min_cdclk, cdclk;
2884
2885 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2886 if (min_cdclk < 0)
2887 return min_cdclk;
2888
2889 cdclk = bdw_calc_cdclk(min_cdclk);
2890
2891 cdclk_state->logical.cdclk = cdclk;
2892 cdclk_state->logical.voltage_level =
2893 bdw_calc_voltage_level(cdclk);
2894
2895 if (!cdclk_state->active_pipes) {
2896 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
2897
2898 cdclk_state->actual.cdclk = cdclk;
2899 cdclk_state->actual.voltage_level =
2900 bdw_calc_voltage_level(cdclk);
2901 } else {
2902 cdclk_state->actual = cdclk_state->logical;
2903 }
2904
2905 return 0;
2906}
2907
2908static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
2909{
2910 struct intel_atomic_state *state = cdclk_state->base.state;
2911 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2912 struct intel_crtc *crtc;
2913 struct intel_crtc_state *crtc_state;
2914 int vco, i;
2915
2916 vco = cdclk_state->logical.vco;
2917 if (!vco)
2918 vco = dev_priv->skl_preferred_vco_freq;
2919
2920 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2921 if (!crtc_state->hw.enable)
2922 continue;
2923
2924 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2925 continue;
2926
2927 /*
2928 * DPLL0 VCO may need to be adjusted to get the correct
2929 * clock for eDP. This will affect cdclk as well.
2930 */
2931 switch (crtc_state->port_clock / 2) {
2932 case 108000:
2933 case 216000:
2934 vco = 8640000;
2935 break;
2936 default:
2937 vco = 8100000;
2938 break;
2939 }
2940 }
2941
2942 return vco;
2943}
2944
2945static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2946{
2947 int min_cdclk, cdclk, vco;
2948
2949 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2950 if (min_cdclk < 0)
2951 return min_cdclk;
2952
2953 vco = skl_dpll0_vco(cdclk_state);
2954
2955 cdclk = skl_calc_cdclk(min_cdclk, vco);
2956
2957 cdclk_state->logical.vco = vco;
2958 cdclk_state->logical.cdclk = cdclk;
2959 cdclk_state->logical.voltage_level =
2960 skl_calc_voltage_level(cdclk);
2961
2962 if (!cdclk_state->active_pipes) {
2963 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
2964
2965 cdclk_state->actual.vco = vco;
2966 cdclk_state->actual.cdclk = cdclk;
2967 cdclk_state->actual.voltage_level =
2968 skl_calc_voltage_level(cdclk);
2969 } else {
2970 cdclk_state->actual = cdclk_state->logical;
2971 }
2972
2973 return 0;
2974}
2975
2976static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2977{
2978 struct intel_atomic_state *state = cdclk_state->base.state;
2979 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2980 int min_cdclk, min_voltage_level, cdclk, vco;
2981
2982 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2983 if (min_cdclk < 0)
2984 return min_cdclk;
2985
2986 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
2987 if (min_voltage_level < 0)
2988 return min_voltage_level;
2989
2990 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
2991 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2992
2993 cdclk_state->logical.vco = vco;
2994 cdclk_state->logical.cdclk = cdclk;
2995 cdclk_state->logical.voltage_level =
2996 max_t(int, min_voltage_level,
2997 intel_cdclk_calc_voltage_level(dev_priv, cdclk));
2998
2999 if (!cdclk_state->active_pipes) {
3000 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
3001 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
3002
3003 cdclk_state->actual.vco = vco;
3004 cdclk_state->actual.cdclk = cdclk;
3005 cdclk_state->actual.voltage_level =
3006 intel_cdclk_calc_voltage_level(dev_priv, cdclk);
3007 } else {
3008 cdclk_state->actual = cdclk_state->logical;
3009 }
3010
3011 return 0;
3012}
3013
3014static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
3015{
3016 int min_cdclk;
3017
3018 /*
3019 * We can't change the cdclk frequency, but we still want to
3020 * check that the required minimum frequency doesn't exceed
3021 * the actual cdclk frequency.
3022 */
3023 min_cdclk = intel_compute_min_cdclk(cdclk_state);
3024 if (min_cdclk < 0)
3025 return min_cdclk;
3026
3027 return 0;
3028}
3029
3030static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3031{
3032 struct intel_cdclk_state *cdclk_state;
3033
3034 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3035 if (!cdclk_state)
3036 return NULL;
3037
3038 cdclk_state->pipe = INVALID_PIPE;
3039
3040 return &cdclk_state->base;
3041}
3042
3043static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3044 struct intel_global_state *state)
3045{
3046 kfree(state);
3047}
3048
3049static const struct intel_global_state_funcs intel_cdclk_funcs = {
3050 .atomic_duplicate_state = intel_cdclk_duplicate_state,
3051 .atomic_destroy_state = intel_cdclk_destroy_state,
3052};
3053
3054struct intel_cdclk_state *
3055intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3056{
3057 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3058 struct intel_global_state *cdclk_state;
3059
3060 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj);
3061 if (IS_ERR(cdclk_state))
3062 return ERR_CAST(cdclk_state);
3063
3064 return to_intel_cdclk_state(cdclk_state);
3065}
3066
3067int intel_cdclk_atomic_check(struct intel_atomic_state *state,
3068 bool *need_cdclk_calc)
3069{
3070 const struct intel_cdclk_state *old_cdclk_state;
3071 const struct intel_cdclk_state *new_cdclk_state;
3072 struct intel_plane_state __maybe_unused *plane_state;
3073 struct intel_plane *plane;
3074 int ret;
3075 int i;
3076
3077 /*
3078 * active_planes bitmask has been updated, and potentially affected
3079 * planes are part of the state. We can now compute the minimum cdclk
3080 * for each plane.
3081 */
3082 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
3083 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
3084 if (ret)
3085 return ret;
3086 }
3087
3088 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
3089 if (ret)
3090 return ret;
3091
3092 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3093 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3094
3095 if (new_cdclk_state &&
3096 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3097 *need_cdclk_calc = true;
3098
3099 return 0;
3100}
3101
3102int intel_cdclk_init(struct drm_i915_private *dev_priv)
3103{
3104 struct intel_cdclk_state *cdclk_state;
3105
3106 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3107 if (!cdclk_state)
3108 return -ENOMEM;
3109
3110 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj,
3111 &cdclk_state->base, &intel_cdclk_funcs);
3112
3113 return 0;
3114}
3115
3116static bool intel_cdclk_need_serialize(struct drm_i915_private *i915,
3117 const struct intel_cdclk_state *old_cdclk_state,
3118 const struct intel_cdclk_state *new_cdclk_state)
3119{
3120 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3121 hweight8(new_cdclk_state->active_pipes);
3122 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual,
3123 &new_cdclk_state->actual);
3124 /*
3125 * We need to poke hw for gen >= 12, because we notify PCode if
3126 * pipe power well count changes.
3127 */
3128 return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed);
3129}
3130
3131int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3132{
3133 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3134 const struct intel_cdclk_state *old_cdclk_state;
3135 struct intel_cdclk_state *new_cdclk_state;
3136 enum pipe pipe = INVALID_PIPE;
3137 int ret;
3138
3139 new_cdclk_state = intel_atomic_get_cdclk_state(state);
3140 if (IS_ERR(new_cdclk_state))
3141 return PTR_ERR(new_cdclk_state);
3142
3143 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3144
3145 new_cdclk_state->active_pipes =
3146 intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3147
3148 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
3149 if (ret)
3150 return ret;
3151
3152 if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) {
3153 /*
3154 * Also serialize commits across all crtcs
3155 * if the actual hw needs to be poked.
3156 */
3157 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3158 if (ret)
3159 return ret;
3160 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3161 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3162 intel_cdclk_changed(&old_cdclk_state->logical,
3163 &new_cdclk_state->logical)) {
3164 ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3165 if (ret)
3166 return ret;
3167 } else {
3168 return 0;
3169 }
3170
3171 if (is_power_of_2(new_cdclk_state->active_pipes) &&
3172 intel_cdclk_can_cd2x_update(dev_priv,
3173 &old_cdclk_state->actual,
3174 &new_cdclk_state->actual)) {
3175 struct intel_crtc *crtc;
3176 struct intel_crtc_state *crtc_state;
3177
3178 pipe = ilog2(new_cdclk_state->active_pipes);
3179 crtc = intel_crtc_for_pipe(dev_priv, pipe);
3180
3181 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3182 if (IS_ERR(crtc_state))
3183 return PTR_ERR(crtc_state);
3184
3185 if (intel_crtc_needs_modeset(crtc_state))
3186 pipe = INVALID_PIPE;
3187 }
3188
3189 if (intel_cdclk_can_crawl_and_squash(dev_priv,
3190 &old_cdclk_state->actual,
3191 &new_cdclk_state->actual)) {
3192 drm_dbg_kms(&dev_priv->drm,
3193 "Can change cdclk via crawling and squashing\n");
3194 } else if (intel_cdclk_can_squash(dev_priv,
3195 &old_cdclk_state->actual,
3196 &new_cdclk_state->actual)) {
3197 drm_dbg_kms(&dev_priv->drm,
3198 "Can change cdclk via squashing\n");
3199 } else if (intel_cdclk_can_crawl(dev_priv,
3200 &old_cdclk_state->actual,
3201 &new_cdclk_state->actual)) {
3202 drm_dbg_kms(&dev_priv->drm,
3203 "Can change cdclk via crawling\n");
3204 } else if (pipe != INVALID_PIPE) {
3205 new_cdclk_state->pipe = pipe;
3206
3207 drm_dbg_kms(&dev_priv->drm,
3208 "Can change cdclk cd2x divider with pipe %c active\n",
3209 pipe_name(pipe));
3210 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
3211 &new_cdclk_state->actual)) {
3212 /* All pipes must be switched off while we change the cdclk. */
3213 ret = intel_modeset_all_pipes_late(state, "CDCLK change");
3214 if (ret)
3215 return ret;
3216
3217 drm_dbg_kms(&dev_priv->drm,
3218 "Modeset required for cdclk change\n");
3219 }
3220
3221 drm_dbg_kms(&dev_priv->drm,
3222 "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3223 new_cdclk_state->logical.cdclk,
3224 new_cdclk_state->actual.cdclk);
3225 drm_dbg_kms(&dev_priv->drm,
3226 "New voltage level calculated to be logical %u, actual %u\n",
3227 new_cdclk_state->logical.voltage_level,
3228 new_cdclk_state->actual.voltage_level);
3229
3230 return 0;
3231}
3232
3233static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
3234{
3235 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq;
3236
3237 if (DISPLAY_VER(dev_priv) >= 10)
3238 return 2 * max_cdclk_freq;
3239 else if (DISPLAY_VER(dev_priv) == 9 ||
3240 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3241 return max_cdclk_freq;
3242 else if (IS_CHERRYVIEW(dev_priv))
3243 return max_cdclk_freq*95/100;
3244 else if (DISPLAY_VER(dev_priv) < 4)
3245 return 2*max_cdclk_freq*90/100;
3246 else
3247 return max_cdclk_freq*90/100;
3248}
3249
3250/**
3251 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3252 * @dev_priv: i915 device
3253 *
3254 * Determine the maximum CDCLK frequency the platform supports, and also
3255 * derive the maximum dot clock frequency the maximum CDCLK frequency
3256 * allows.
3257 */
3258void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
3259{
3260 if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3261 if (dev_priv->display.cdclk.hw.ref == 24000)
3262 dev_priv->display.cdclk.max_cdclk_freq = 552000;
3263 else
3264 dev_priv->display.cdclk.max_cdclk_freq = 556800;
3265 } else if (DISPLAY_VER(dev_priv) >= 11) {
3266 if (dev_priv->display.cdclk.hw.ref == 24000)
3267 dev_priv->display.cdclk.max_cdclk_freq = 648000;
3268 else
3269 dev_priv->display.cdclk.max_cdclk_freq = 652800;
3270 } else if (IS_GEMINILAKE(dev_priv)) {
3271 dev_priv->display.cdclk.max_cdclk_freq = 316800;
3272 } else if (IS_BROXTON(dev_priv)) {
3273 dev_priv->display.cdclk.max_cdclk_freq = 624000;
3274 } else if (DISPLAY_VER(dev_priv) == 9) {
3275 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3276 int max_cdclk, vco;
3277
3278 vco = dev_priv->skl_preferred_vco_freq;
3279 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
3280
3281 /*
3282 * Use the lower (vco 8640) cdclk values as a
3283 * first guess. skl_calc_cdclk() will correct it
3284 * if the preferred vco is 8100 instead.
3285 */
3286 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3287 max_cdclk = 617143;
3288 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3289 max_cdclk = 540000;
3290 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3291 max_cdclk = 432000;
3292 else
3293 max_cdclk = 308571;
3294
3295 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3296 } else if (IS_BROADWELL(dev_priv)) {
3297 /*
3298 * FIXME with extra cooling we can allow
3299 * 540 MHz for ULX and 675 Mhz for ULT.
3300 * How can we know if extra cooling is
3301 * available? PCI ID, VTB, something else?
3302 */
3303 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3304 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3305 else if (IS_BROADWELL_ULX(dev_priv))
3306 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3307 else if (IS_BROADWELL_ULT(dev_priv))
3308 dev_priv->display.cdclk.max_cdclk_freq = 540000;
3309 else
3310 dev_priv->display.cdclk.max_cdclk_freq = 675000;
3311 } else if (IS_CHERRYVIEW(dev_priv)) {
3312 dev_priv->display.cdclk.max_cdclk_freq = 320000;
3313 } else if (IS_VALLEYVIEW(dev_priv)) {
3314 dev_priv->display.cdclk.max_cdclk_freq = 400000;
3315 } else {
3316 /* otherwise assume cdclk is fixed */
3317 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk;
3318 }
3319
3320 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
3321
3322 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
3323 dev_priv->display.cdclk.max_cdclk_freq);
3324
3325 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
3326 dev_priv->max_dotclk_freq);
3327}
3328
3329/**
3330 * intel_update_cdclk - Determine the current CDCLK frequency
3331 * @dev_priv: i915 device
3332 *
3333 * Determine the current CDCLK frequency.
3334 */
3335void intel_update_cdclk(struct drm_i915_private *dev_priv)
3336{
3337 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw);
3338
3339 /*
3340 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3341 * Programmng [sic] note: bit[9:2] should be programmed to the number
3342 * of cdclk that generates 4MHz reference clock freq which is used to
3343 * generate GMBus clock. This will vary with the cdclk freq.
3344 */
3345 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3346 intel_de_write(dev_priv, GMBUSFREQ_VLV,
3347 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000));
3348}
3349
3350static int dg1_rawclk(struct drm_i915_private *dev_priv)
3351{
3352 /*
3353 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us
3354 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3355 */
3356 intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
3357 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3358
3359 return 38400;
3360}
3361
3362static int cnp_rawclk(struct drm_i915_private *dev_priv)
3363{
3364 u32 rawclk;
3365 int divider, fraction;
3366
3367 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3368 /* 24 MHz */
3369 divider = 24000;
3370 fraction = 0;
3371 } else {
3372 /* 19.2 MHz */
3373 divider = 19000;
3374 fraction = 200;
3375 }
3376
3377 rawclk = CNP_RAWCLK_DIV(divider / 1000);
3378 if (fraction) {
3379 int numerator = 1;
3380
3381 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3382 fraction) - 1);
3383 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3384 rawclk |= ICP_RAWCLK_NUM(numerator);
3385 }
3386
3387 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
3388 return divider + fraction;
3389}
3390
3391static int pch_rawclk(struct drm_i915_private *dev_priv)
3392{
3393 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3394}
3395
3396static int vlv_hrawclk(struct drm_i915_private *dev_priv)
3397{
3398 /* RAWCLK_FREQ_VLV register updated from power well code */
3399 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
3400 CCK_DISPLAY_REF_CLOCK_CONTROL);
3401}
3402
3403static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
3404{
3405 u32 clkcfg;
3406
3407 /*
3408 * hrawclock is 1/4 the FSB frequency
3409 *
3410 * Note that this only reads the state of the FSB
3411 * straps, not the actual FSB frequency. Some BIOSen
3412 * let you configure each independently. Ideally we'd
3413 * read out the actual FSB frequency but sadly we
3414 * don't know which registers have that information,
3415 * and all the relevant docs have gone to bit heaven :(
3416 */
3417 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
3418
3419 if (IS_MOBILE(dev_priv)) {
3420 switch (clkcfg) {
3421 case CLKCFG_FSB_400:
3422 return 100000;
3423 case CLKCFG_FSB_533:
3424 return 133333;
3425 case CLKCFG_FSB_667:
3426 return 166667;
3427 case CLKCFG_FSB_800:
3428 return 200000;
3429 case CLKCFG_FSB_1067:
3430 return 266667;
3431 case CLKCFG_FSB_1333:
3432 return 333333;
3433 default:
3434 MISSING_CASE(clkcfg);
3435 return 133333;
3436 }
3437 } else {
3438 switch (clkcfg) {
3439 case CLKCFG_FSB_400_ALT:
3440 return 100000;
3441 case CLKCFG_FSB_533:
3442 return 133333;
3443 case CLKCFG_FSB_667:
3444 return 166667;
3445 case CLKCFG_FSB_800:
3446 return 200000;
3447 case CLKCFG_FSB_1067_ALT:
3448 return 266667;
3449 case CLKCFG_FSB_1333_ALT:
3450 return 333333;
3451 case CLKCFG_FSB_1600_ALT:
3452 return 400000;
3453 default:
3454 return 133333;
3455 }
3456 }
3457}
3458
3459/**
3460 * intel_read_rawclk - Determine the current RAWCLK frequency
3461 * @dev_priv: i915 device
3462 *
3463 * Determine the current RAWCLK frequency. RAWCLK is a fixed
3464 * frequency clock so this needs to done only once.
3465 */
3466u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
3467{
3468 u32 freq;
3469
3470 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3471 freq = dg1_rawclk(dev_priv);
3472 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTP)
3473 /*
3474 * MTL always uses a 38.4 MHz rawclk. The bspec tells us
3475 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3476 * not need to be programmed."
3477 */
3478 freq = 38400;
3479 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3480 freq = cnp_rawclk(dev_priv);
3481 else if (HAS_PCH_SPLIT(dev_priv))
3482 freq = pch_rawclk(dev_priv);
3483 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3484 freq = vlv_hrawclk(dev_priv);
3485 else if (DISPLAY_VER(dev_priv) >= 3)
3486 freq = i9xx_hrawclk(dev_priv);
3487 else
3488 /* no rawclk on other platforms, or no need to know it */
3489 return 0;
3490
3491 return freq;
3492}
3493
3494static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3495{
3496 struct drm_i915_private *i915 = m->private;
3497
3498 seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk);
3499 seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq);
3500 seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq);
3501
3502 return 0;
3503}
3504
3505DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3506
3507void intel_cdclk_debugfs_register(struct drm_i915_private *i915)
3508{
3509 struct drm_minor *minor = i915->drm.primary;
3510
3511 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3512 i915, &i915_cdclk_info_fops);
3513}
3514
3515static const struct intel_cdclk_funcs mtl_cdclk_funcs = {
3516 .get_cdclk = bxt_get_cdclk,
3517 .set_cdclk = bxt_set_cdclk,
3518 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3519 .calc_voltage_level = rplu_calc_voltage_level,
3520};
3521
3522static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3523 .get_cdclk = bxt_get_cdclk,
3524 .set_cdclk = bxt_set_cdclk,
3525 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3526 .calc_voltage_level = rplu_calc_voltage_level,
3527};
3528
3529static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3530 .get_cdclk = bxt_get_cdclk,
3531 .set_cdclk = bxt_set_cdclk,
3532 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3533 .calc_voltage_level = tgl_calc_voltage_level,
3534};
3535
3536static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3537 .get_cdclk = bxt_get_cdclk,
3538 .set_cdclk = bxt_set_cdclk,
3539 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3540 .calc_voltage_level = ehl_calc_voltage_level,
3541};
3542
3543static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3544 .get_cdclk = bxt_get_cdclk,
3545 .set_cdclk = bxt_set_cdclk,
3546 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3547 .calc_voltage_level = icl_calc_voltage_level,
3548};
3549
3550static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3551 .get_cdclk = bxt_get_cdclk,
3552 .set_cdclk = bxt_set_cdclk,
3553 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3554 .calc_voltage_level = bxt_calc_voltage_level,
3555};
3556
3557static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3558 .get_cdclk = skl_get_cdclk,
3559 .set_cdclk = skl_set_cdclk,
3560 .modeset_calc_cdclk = skl_modeset_calc_cdclk,
3561};
3562
3563static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3564 .get_cdclk = bdw_get_cdclk,
3565 .set_cdclk = bdw_set_cdclk,
3566 .modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3567};
3568
3569static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3570 .get_cdclk = vlv_get_cdclk,
3571 .set_cdclk = chv_set_cdclk,
3572 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3573};
3574
3575static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3576 .get_cdclk = vlv_get_cdclk,
3577 .set_cdclk = vlv_set_cdclk,
3578 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3579};
3580
3581static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3582 .get_cdclk = hsw_get_cdclk,
3583 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3584};
3585
3586/* SNB, IVB, 965G, 945G */
3587static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3588 .get_cdclk = fixed_400mhz_get_cdclk,
3589 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3590};
3591
3592static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3593 .get_cdclk = fixed_450mhz_get_cdclk,
3594 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3595};
3596
3597static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3598 .get_cdclk = gm45_get_cdclk,
3599 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3600};
3601
3602/* G45 uses G33 */
3603
3604static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3605 .get_cdclk = i965gm_get_cdclk,
3606 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3607};
3608
3609/* i965G uses fixed 400 */
3610
3611static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3612 .get_cdclk = pnv_get_cdclk,
3613 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3614};
3615
3616static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3617 .get_cdclk = g33_get_cdclk,
3618 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3619};
3620
3621static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3622 .get_cdclk = i945gm_get_cdclk,
3623 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3624};
3625
3626/* i945G uses fixed 400 */
3627
3628static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3629 .get_cdclk = i915gm_get_cdclk,
3630 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3631};
3632
3633static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3634 .get_cdclk = fixed_333mhz_get_cdclk,
3635 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3636};
3637
3638static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3639 .get_cdclk = fixed_266mhz_get_cdclk,
3640 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3641};
3642
3643static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3644 .get_cdclk = i85x_get_cdclk,
3645 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3646};
3647
3648static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3649 .get_cdclk = fixed_200mhz_get_cdclk,
3650 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3651};
3652
3653static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3654 .get_cdclk = fixed_133mhz_get_cdclk,
3655 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3656};
3657
3658/**
3659 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3660 * @dev_priv: i915 device
3661 */
3662void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
3663{
3664 if (DISPLAY_VER(dev_priv) >= 20) {
3665 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3666 dev_priv->display.cdclk.table = lnl_cdclk_table;
3667 } else if (DISPLAY_VER(dev_priv) >= 14) {
3668 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3669 dev_priv->display.cdclk.table = mtl_cdclk_table;
3670 } else if (IS_DG2(dev_priv)) {
3671 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3672 dev_priv->display.cdclk.table = dg2_cdclk_table;
3673 } else if (IS_ALDERLAKE_P(dev_priv)) {
3674 /* Wa_22011320316:adl-p[a0] */
3675 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
3676 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table;
3677 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3678 } else if (IS_RAPTORLAKE_U(dev_priv)) {
3679 dev_priv->display.cdclk.table = rplu_cdclk_table;
3680 dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs;
3681 } else {
3682 dev_priv->display.cdclk.table = adlp_cdclk_table;
3683 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3684 }
3685 } else if (IS_ROCKETLAKE(dev_priv)) {
3686 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3687 dev_priv->display.cdclk.table = rkl_cdclk_table;
3688 } else if (DISPLAY_VER(dev_priv) >= 12) {
3689 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3690 dev_priv->display.cdclk.table = icl_cdclk_table;
3691 } else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3692 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs;
3693 dev_priv->display.cdclk.table = icl_cdclk_table;
3694 } else if (DISPLAY_VER(dev_priv) >= 11) {
3695 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs;
3696 dev_priv->display.cdclk.table = icl_cdclk_table;
3697 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3698 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs;
3699 if (IS_GEMINILAKE(dev_priv))
3700 dev_priv->display.cdclk.table = glk_cdclk_table;
3701 else
3702 dev_priv->display.cdclk.table = bxt_cdclk_table;
3703 } else if (DISPLAY_VER(dev_priv) == 9) {
3704 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs;
3705 } else if (IS_BROADWELL(dev_priv)) {
3706 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs;
3707 } else if (IS_HASWELL(dev_priv)) {
3708 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs;
3709 } else if (IS_CHERRYVIEW(dev_priv)) {
3710 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs;
3711 } else if (IS_VALLEYVIEW(dev_priv)) {
3712 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs;
3713 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3714 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3715 } else if (IS_IRONLAKE(dev_priv)) {
3716 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs;
3717 } else if (IS_GM45(dev_priv)) {
3718 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs;
3719 } else if (IS_G45(dev_priv)) {
3720 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3721 } else if (IS_I965GM(dev_priv)) {
3722 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs;
3723 } else if (IS_I965G(dev_priv)) {
3724 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3725 } else if (IS_PINEVIEW(dev_priv)) {
3726 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs;
3727 } else if (IS_G33(dev_priv)) {
3728 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3729 } else if (IS_I945GM(dev_priv)) {
3730 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs;
3731 } else if (IS_I945G(dev_priv)) {
3732 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3733 } else if (IS_I915GM(dev_priv)) {
3734 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs;
3735 } else if (IS_I915G(dev_priv)) {
3736 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs;
3737 } else if (IS_I865G(dev_priv)) {
3738 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs;
3739 } else if (IS_I85X(dev_priv)) {
3740 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs;
3741 } else if (IS_I845G(dev_priv)) {
3742 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs;
3743 } else if (IS_I830(dev_priv)) {
3744 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3745 }
3746
3747 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk,
3748 "Unknown platform. Assuming i830\n"))
3749 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3750}