Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
 
  47
  48static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  49static int kfd_open(struct inode *, struct file *);
  50static int kfd_release(struct inode *, struct file *);
  51static int kfd_mmap(struct file *, struct vm_area_struct *);
  52
  53static const char kfd_dev_name[] = "kfd";
  54
  55static const struct file_operations kfd_fops = {
  56	.owner = THIS_MODULE,
  57	.unlocked_ioctl = kfd_ioctl,
  58	.compat_ioctl = compat_ptr_ioctl,
  59	.open = kfd_open,
  60	.release = kfd_release,
  61	.mmap = kfd_mmap,
  62};
  63
  64static int kfd_char_dev_major = -1;
  65static struct class *kfd_class;
  66struct device *kfd_device;
  67
  68static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  69{
  70	struct kfd_process_device *pdd;
  71
  72	mutex_lock(&p->mutex);
  73	pdd = kfd_process_device_data_by_id(p, gpu_id);
  74
  75	if (pdd)
  76		return pdd;
  77
  78	mutex_unlock(&p->mutex);
  79	return NULL;
  80}
  81
  82static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  83{
  84	mutex_unlock(&pdd->process->mutex);
  85}
  86
  87int kfd_chardev_init(void)
  88{
  89	int err = 0;
  90
  91	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  92	err = kfd_char_dev_major;
  93	if (err < 0)
  94		goto err_register_chrdev;
  95
  96	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  97	err = PTR_ERR(kfd_class);
  98	if (IS_ERR(kfd_class))
  99		goto err_class_create;
 100
 101	kfd_device = device_create(kfd_class, NULL,
 102					MKDEV(kfd_char_dev_major, 0),
 103					NULL, kfd_dev_name);
 104	err = PTR_ERR(kfd_device);
 105	if (IS_ERR(kfd_device))
 106		goto err_device_create;
 107
 108	return 0;
 109
 110err_device_create:
 111	class_destroy(kfd_class);
 112err_class_create:
 113	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 114err_register_chrdev:
 115	return err;
 116}
 117
 118void kfd_chardev_exit(void)
 119{
 120	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
 121	class_destroy(kfd_class);
 122	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 123	kfd_device = NULL;
 124}
 125
 126
 127static int kfd_open(struct inode *inode, struct file *filep)
 128{
 129	struct kfd_process *process;
 130	bool is_32bit_user_mode;
 131
 132	if (iminor(inode) != 0)
 133		return -ENODEV;
 134
 135	is_32bit_user_mode = in_compat_syscall();
 136
 137	if (is_32bit_user_mode) {
 138		dev_warn(kfd_device,
 139			"Process %d (32-bit) failed to open /dev/kfd\n"
 140			"32-bit processes are not supported by amdkfd\n",
 141			current->pid);
 142		return -EPERM;
 143	}
 144
 145	process = kfd_create_process(filep);
 146	if (IS_ERR(process))
 147		return PTR_ERR(process);
 148
 149	if (kfd_is_locked()) {
 150		dev_dbg(kfd_device, "kfd is locked!\n"
 151				"process %d unreferenced", process->pasid);
 152		kfd_unref_process(process);
 153		return -EAGAIN;
 154	}
 155
 156	/* filep now owns the reference returned by kfd_create_process */
 157	filep->private_data = process;
 158
 159	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 160		process->pasid, process->is_32bit_user_mode);
 161
 162	return 0;
 163}
 164
 165static int kfd_release(struct inode *inode, struct file *filep)
 166{
 167	struct kfd_process *process = filep->private_data;
 168
 169	if (process)
 170		kfd_unref_process(process);
 171
 172	return 0;
 173}
 174
 175static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 176					void *data)
 177{
 178	struct kfd_ioctl_get_version_args *args = data;
 179
 180	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 181	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 182
 183	return 0;
 184}
 185
 186static int set_queue_properties_from_user(struct queue_properties *q_properties,
 187				struct kfd_ioctl_create_queue_args *args)
 188{
 189	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 
 
 
 
 
 190		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 191		return -EINVAL;
 192	}
 193
 194	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 195		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 196		return -EINVAL;
 197	}
 198
 199	if ((args->ring_base_address) &&
 200		(!access_ok((const void __user *) args->ring_base_address,
 201			sizeof(uint64_t)))) {
 202		pr_err("Can't access ring base address\n");
 203		return -EFAULT;
 204	}
 205
 206	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 207		pr_err("Ring size must be a power of 2 or 0\n");
 208		return -EINVAL;
 209	}
 210
 211	if (!access_ok((const void __user *) args->read_pointer_address,
 212			sizeof(uint32_t))) {
 213		pr_err("Can't access read pointer\n");
 214		return -EFAULT;
 215	}
 216
 217	if (!access_ok((const void __user *) args->write_pointer_address,
 218			sizeof(uint32_t))) {
 219		pr_err("Can't access write pointer\n");
 220		return -EFAULT;
 221	}
 222
 223	if (args->eop_buffer_address &&
 224		!access_ok((const void __user *) args->eop_buffer_address,
 225			sizeof(uint32_t))) {
 226		pr_debug("Can't access eop buffer");
 227		return -EFAULT;
 228	}
 229
 230	if (args->ctx_save_restore_address &&
 231		!access_ok((const void __user *) args->ctx_save_restore_address,
 232			sizeof(uint32_t))) {
 233		pr_debug("Can't access ctx save restore buffer");
 234		return -EFAULT;
 235	}
 236
 237	q_properties->is_interop = false;
 238	q_properties->is_gws = false;
 239	q_properties->queue_percent = args->queue_percentage;
 
 
 240	q_properties->priority = args->queue_priority;
 241	q_properties->queue_address = args->ring_base_address;
 242	q_properties->queue_size = args->ring_size;
 243	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 244	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 245	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 246	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 247	q_properties->ctx_save_restore_area_address =
 248			args->ctx_save_restore_address;
 249	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 250	q_properties->ctl_stack_size = args->ctl_stack_size;
 251	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 252		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 253		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 254	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 255		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 256	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 257		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 258	else
 259		return -ENOTSUPP;
 260
 261	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 262		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 263	else
 264		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 265
 266	pr_debug("Queue Percentage: %d, %d\n",
 267			q_properties->queue_percent, args->queue_percentage);
 268
 269	pr_debug("Queue Priority: %d, %d\n",
 270			q_properties->priority, args->queue_priority);
 271
 272	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 273			q_properties->queue_address, args->ring_base_address);
 274
 275	pr_debug("Queue Size: 0x%llX, %u\n",
 276			q_properties->queue_size, args->ring_size);
 277
 278	pr_debug("Queue r/w Pointers: %px, %px\n",
 279			q_properties->read_ptr,
 280			q_properties->write_ptr);
 281
 282	pr_debug("Queue Format: %d\n", q_properties->format);
 283
 284	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 285
 286	pr_debug("Queue CTX save area: 0x%llX\n",
 287			q_properties->ctx_save_restore_area_address);
 288
 289	return 0;
 290}
 291
 292static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 293					void *data)
 294{
 295	struct kfd_ioctl_create_queue_args *args = data;
 296	struct kfd_dev *dev;
 297	int err = 0;
 298	unsigned int queue_id;
 299	struct kfd_process_device *pdd;
 300	struct queue_properties q_properties;
 301	uint32_t doorbell_offset_in_process = 0;
 302	struct amdgpu_bo *wptr_bo = NULL;
 303
 304	memset(&q_properties, 0, sizeof(struct queue_properties));
 305
 306	pr_debug("Creating queue ioctl\n");
 307
 308	err = set_queue_properties_from_user(&q_properties, args);
 309	if (err)
 310		return err;
 311
 312	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 313
 314	mutex_lock(&p->mutex);
 315
 316	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 317	if (!pdd) {
 318		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 319		err = -EINVAL;
 320		goto err_pdd;
 321	}
 322	dev = pdd->dev;
 323
 324	pdd = kfd_bind_process_to_device(dev, p);
 325	if (IS_ERR(pdd)) {
 326		err = -ESRCH;
 327		goto err_bind_process;
 328	}
 329
 330	if (!pdd->doorbell_index &&
 331	    kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
 332		err = -ENOMEM;
 333		goto err_alloc_doorbells;
 
 
 334	}
 335
 336	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 337	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 338	 */
 339	if (dev->shared_resources.enable_mes &&
 340			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 341			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 342		struct amdgpu_bo_va_mapping *wptr_mapping;
 343		struct amdgpu_vm *wptr_vm;
 344
 345		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 346		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 347		if (err)
 348			goto err_wptr_map_gart;
 349
 350		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 351				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 352		amdgpu_bo_unreserve(wptr_vm->root.bo);
 353		if (!wptr_mapping) {
 354			pr_err("Failed to lookup wptr bo\n");
 355			err = -EINVAL;
 356			goto err_wptr_map_gart;
 357		}
 358
 359		wptr_bo = wptr_mapping->bo_va->base.bo;
 360		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 361			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 362			err = -EINVAL;
 363			goto err_wptr_map_gart;
 364		}
 365
 366		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
 367		if (err) {
 368			pr_err("Failed to map wptr bo to GART\n");
 369			goto err_wptr_map_gart;
 370		}
 371	}
 372
 373	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 374			p->pasid,
 375			dev->id);
 376
 377	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 378			NULL, NULL, NULL, &doorbell_offset_in_process);
 379	if (err != 0)
 380		goto err_create_queue;
 381
 382	args->queue_id = queue_id;
 383
 384
 385	/* Return gpu_id as doorbell offset for mmap usage */
 386	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 387	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 388	if (KFD_IS_SOC15(dev))
 389		/* On SOC15 ASICs, include the doorbell offset within the
 390		 * process doorbell frame, which is 2 pages.
 391		 */
 392		args->doorbell_offset |= doorbell_offset_in_process;
 393
 394	mutex_unlock(&p->mutex);
 395
 396	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 397
 398	pr_debug("Ring buffer address == 0x%016llX\n",
 399			args->ring_base_address);
 400
 401	pr_debug("Read ptr address    == 0x%016llX\n",
 402			args->read_pointer_address);
 403
 404	pr_debug("Write ptr address   == 0x%016llX\n",
 405			args->write_pointer_address);
 406
 
 407	return 0;
 408
 409err_create_queue:
 410	if (wptr_bo)
 411		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 412err_wptr_map_gart:
 413err_alloc_doorbells:
 414err_bind_process:
 415err_pdd:
 416	mutex_unlock(&p->mutex);
 417	return err;
 418}
 419
 420static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 421					void *data)
 422{
 423	int retval;
 424	struct kfd_ioctl_destroy_queue_args *args = data;
 425
 426	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 427				args->queue_id,
 428				p->pasid);
 429
 430	mutex_lock(&p->mutex);
 431
 432	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 433
 434	mutex_unlock(&p->mutex);
 435	return retval;
 436}
 437
 438static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 439					void *data)
 440{
 441	int retval;
 442	struct kfd_ioctl_update_queue_args *args = data;
 443	struct queue_properties properties;
 444
 445	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 
 
 
 
 
 446		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 447		return -EINVAL;
 448	}
 449
 450	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 451		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 452		return -EINVAL;
 453	}
 454
 455	if ((args->ring_base_address) &&
 456		(!access_ok((const void __user *) args->ring_base_address,
 457			sizeof(uint64_t)))) {
 458		pr_err("Can't access ring base address\n");
 459		return -EFAULT;
 460	}
 461
 462	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 463		pr_err("Ring size must be a power of 2 or 0\n");
 464		return -EINVAL;
 465	}
 466
 467	properties.queue_address = args->ring_base_address;
 468	properties.queue_size = args->ring_size;
 469	properties.queue_percent = args->queue_percentage;
 
 
 470	properties.priority = args->queue_priority;
 471
 472	pr_debug("Updating queue id %d for pasid 0x%x\n",
 473			args->queue_id, p->pasid);
 474
 475	mutex_lock(&p->mutex);
 476
 477	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 478
 479	mutex_unlock(&p->mutex);
 480
 481	return retval;
 482}
 483
 484static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 485					void *data)
 486{
 487	int retval;
 488	const int max_num_cus = 1024;
 489	struct kfd_ioctl_set_cu_mask_args *args = data;
 490	struct mqd_update_info minfo = {0};
 491	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 492	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 493
 494	if ((args->num_cu_mask % 32) != 0) {
 495		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 496				args->num_cu_mask);
 497		return -EINVAL;
 498	}
 499
 500	minfo.cu_mask.count = args->num_cu_mask;
 501	if (minfo.cu_mask.count == 0) {
 502		pr_debug("CU mask cannot be 0");
 503		return -EINVAL;
 504	}
 505
 506	/* To prevent an unreasonably large CU mask size, set an arbitrary
 507	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 508	 * past max_num_cus bits and just use the first max_num_cus bits.
 509	 */
 510	if (minfo.cu_mask.count > max_num_cus) {
 511		pr_debug("CU mask cannot be greater than 1024 bits");
 512		minfo.cu_mask.count = max_num_cus;
 513		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 514	}
 515
 516	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 517	if (!minfo.cu_mask.ptr)
 518		return -ENOMEM;
 519
 520	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 521	if (retval) {
 522		pr_debug("Could not copy CU mask from userspace");
 523		retval = -EFAULT;
 524		goto out;
 525	}
 526
 527	minfo.update_flag = UPDATE_FLAG_CU_MASK;
 528
 529	mutex_lock(&p->mutex);
 530
 531	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 532
 533	mutex_unlock(&p->mutex);
 534
 535out:
 536	kfree(minfo.cu_mask.ptr);
 537	return retval;
 538}
 539
 540static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 541					  struct kfd_process *p, void *data)
 542{
 543	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 544	int r;
 545
 546	mutex_lock(&p->mutex);
 547
 548	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 549			       (void __user *)args->ctl_stack_address,
 550			       &args->ctl_stack_used_size,
 551			       &args->save_area_used_size);
 552
 553	mutex_unlock(&p->mutex);
 554
 555	return r;
 556}
 557
 558static int kfd_ioctl_set_memory_policy(struct file *filep,
 559					struct kfd_process *p, void *data)
 560{
 561	struct kfd_ioctl_set_memory_policy_args *args = data;
 562	int err = 0;
 563	struct kfd_process_device *pdd;
 564	enum cache_policy default_policy, alternate_policy;
 565
 566	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 567	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 568		return -EINVAL;
 569	}
 570
 571	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 572	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 573		return -EINVAL;
 574	}
 575
 576	mutex_lock(&p->mutex);
 577	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 578	if (!pdd) {
 579		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 580		err = -EINVAL;
 581		goto err_pdd;
 582	}
 583
 584	pdd = kfd_bind_process_to_device(pdd->dev, p);
 585	if (IS_ERR(pdd)) {
 586		err = -ESRCH;
 587		goto out;
 588	}
 589
 590	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 591			 ? cache_policy_coherent : cache_policy_noncoherent;
 592
 593	alternate_policy =
 594		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 595		   ? cache_policy_coherent : cache_policy_noncoherent;
 596
 597	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 598				&pdd->qpd,
 599				default_policy,
 600				alternate_policy,
 601				(void __user *)args->alternate_aperture_base,
 602				args->alternate_aperture_size))
 603		err = -EINVAL;
 604
 605out:
 606err_pdd:
 607	mutex_unlock(&p->mutex);
 608
 609	return err;
 610}
 611
 612static int kfd_ioctl_set_trap_handler(struct file *filep,
 613					struct kfd_process *p, void *data)
 614{
 615	struct kfd_ioctl_set_trap_handler_args *args = data;
 616	int err = 0;
 617	struct kfd_process_device *pdd;
 618
 619	mutex_lock(&p->mutex);
 620
 621	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 622	if (!pdd) {
 623		err = -EINVAL;
 624		goto err_pdd;
 625	}
 626
 627	pdd = kfd_bind_process_to_device(pdd->dev, p);
 628	if (IS_ERR(pdd)) {
 629		err = -ESRCH;
 630		goto out;
 631	}
 632
 633	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 634
 635out:
 636err_pdd:
 637	mutex_unlock(&p->mutex);
 638
 639	return err;
 640}
 641
 642static int kfd_ioctl_dbg_register(struct file *filep,
 643				struct kfd_process *p, void *data)
 644{
 645	return -EPERM;
 646}
 647
 648static int kfd_ioctl_dbg_unregister(struct file *filep,
 649				struct kfd_process *p, void *data)
 650{
 651	return -EPERM;
 652}
 653
 654static int kfd_ioctl_dbg_address_watch(struct file *filep,
 655					struct kfd_process *p, void *data)
 656{
 657	return -EPERM;
 658}
 659
 660/* Parse and generate fixed size data structure for wave control */
 661static int kfd_ioctl_dbg_wave_control(struct file *filep,
 662					struct kfd_process *p, void *data)
 663{
 664	return -EPERM;
 665}
 666
 667static int kfd_ioctl_get_clock_counters(struct file *filep,
 668				struct kfd_process *p, void *data)
 669{
 670	struct kfd_ioctl_get_clock_counters_args *args = data;
 671	struct kfd_process_device *pdd;
 672
 673	mutex_lock(&p->mutex);
 674	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 675	mutex_unlock(&p->mutex);
 676	if (pdd)
 677		/* Reading GPU clock counter from KGD */
 678		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 679	else
 680		/* Node without GPU resource */
 681		args->gpu_clock_counter = 0;
 682
 683	/* No access to rdtsc. Using raw monotonic time */
 684	args->cpu_clock_counter = ktime_get_raw_ns();
 685	args->system_clock_counter = ktime_get_boottime_ns();
 686
 687	/* Since the counter is in nano-seconds we use 1GHz frequency */
 688	args->system_clock_freq = 1000000000;
 689
 690	return 0;
 691}
 692
 693
 694static int kfd_ioctl_get_process_apertures(struct file *filp,
 695				struct kfd_process *p, void *data)
 696{
 697	struct kfd_ioctl_get_process_apertures_args *args = data;
 698	struct kfd_process_device_apertures *pAperture;
 699	int i;
 700
 701	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 702
 703	args->num_of_nodes = 0;
 704
 705	mutex_lock(&p->mutex);
 706	/* Run over all pdd of the process */
 707	for (i = 0; i < p->n_pdds; i++) {
 708		struct kfd_process_device *pdd = p->pdds[i];
 709
 710		pAperture =
 711			&args->process_apertures[args->num_of_nodes];
 712		pAperture->gpu_id = pdd->dev->id;
 713		pAperture->lds_base = pdd->lds_base;
 714		pAperture->lds_limit = pdd->lds_limit;
 715		pAperture->gpuvm_base = pdd->gpuvm_base;
 716		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 717		pAperture->scratch_base = pdd->scratch_base;
 718		pAperture->scratch_limit = pdd->scratch_limit;
 719
 720		dev_dbg(kfd_device,
 721			"node id %u\n", args->num_of_nodes);
 722		dev_dbg(kfd_device,
 723			"gpu id %u\n", pdd->dev->id);
 724		dev_dbg(kfd_device,
 725			"lds_base %llX\n", pdd->lds_base);
 726		dev_dbg(kfd_device,
 727			"lds_limit %llX\n", pdd->lds_limit);
 728		dev_dbg(kfd_device,
 729			"gpuvm_base %llX\n", pdd->gpuvm_base);
 730		dev_dbg(kfd_device,
 731			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 732		dev_dbg(kfd_device,
 733			"scratch_base %llX\n", pdd->scratch_base);
 734		dev_dbg(kfd_device,
 735			"scratch_limit %llX\n", pdd->scratch_limit);
 736
 737		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 738			break;
 739	}
 740	mutex_unlock(&p->mutex);
 741
 742	return 0;
 743}
 744
 745static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 746				struct kfd_process *p, void *data)
 747{
 748	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 749	struct kfd_process_device_apertures *pa;
 750	int ret;
 751	int i;
 752
 753	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 754
 755	if (args->num_of_nodes == 0) {
 756		/* Return number of nodes, so that user space can alloacate
 757		 * sufficient memory
 758		 */
 759		mutex_lock(&p->mutex);
 760		args->num_of_nodes = p->n_pdds;
 761		goto out_unlock;
 762	}
 763
 764	/* Fill in process-aperture information for all available
 765	 * nodes, but not more than args->num_of_nodes as that is
 766	 * the amount of memory allocated by user
 767	 */
 768	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 769				args->num_of_nodes), GFP_KERNEL);
 770	if (!pa)
 771		return -ENOMEM;
 772
 773	mutex_lock(&p->mutex);
 774
 775	if (!p->n_pdds) {
 776		args->num_of_nodes = 0;
 777		kfree(pa);
 778		goto out_unlock;
 779	}
 780
 781	/* Run over all pdd of the process */
 782	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 783		struct kfd_process_device *pdd = p->pdds[i];
 784
 785		pa[i].gpu_id = pdd->dev->id;
 786		pa[i].lds_base = pdd->lds_base;
 787		pa[i].lds_limit = pdd->lds_limit;
 788		pa[i].gpuvm_base = pdd->gpuvm_base;
 789		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 790		pa[i].scratch_base = pdd->scratch_base;
 791		pa[i].scratch_limit = pdd->scratch_limit;
 792
 793		dev_dbg(kfd_device,
 794			"gpu id %u\n", pdd->dev->id);
 795		dev_dbg(kfd_device,
 796			"lds_base %llX\n", pdd->lds_base);
 797		dev_dbg(kfd_device,
 798			"lds_limit %llX\n", pdd->lds_limit);
 799		dev_dbg(kfd_device,
 800			"gpuvm_base %llX\n", pdd->gpuvm_base);
 801		dev_dbg(kfd_device,
 802			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 803		dev_dbg(kfd_device,
 804			"scratch_base %llX\n", pdd->scratch_base);
 805		dev_dbg(kfd_device,
 806			"scratch_limit %llX\n", pdd->scratch_limit);
 807	}
 808	mutex_unlock(&p->mutex);
 809
 810	args->num_of_nodes = i;
 811	ret = copy_to_user(
 812			(void __user *)args->kfd_process_device_apertures_ptr,
 813			pa,
 814			(i * sizeof(struct kfd_process_device_apertures)));
 815	kfree(pa);
 816	return ret ? -EFAULT : 0;
 817
 818out_unlock:
 819	mutex_unlock(&p->mutex);
 820	return 0;
 821}
 822
 823static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 824					void *data)
 825{
 826	struct kfd_ioctl_create_event_args *args = data;
 827	int err;
 828
 829	/* For dGPUs the event page is allocated in user mode. The
 830	 * handle is passed to KFD with the first call to this IOCTL
 831	 * through the event_page_offset field.
 832	 */
 833	if (args->event_page_offset) {
 834		mutex_lock(&p->mutex);
 835		err = kfd_kmap_event_page(p, args->event_page_offset);
 836		mutex_unlock(&p->mutex);
 837		if (err)
 838			return err;
 839	}
 840
 841	err = kfd_event_create(filp, p, args->event_type,
 842				args->auto_reset != 0, args->node_id,
 843				&args->event_id, &args->event_trigger_data,
 844				&args->event_page_offset,
 845				&args->event_slot_index);
 846
 847	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 848	return err;
 849}
 850
 851static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 852					void *data)
 853{
 854	struct kfd_ioctl_destroy_event_args *args = data;
 855
 856	return kfd_event_destroy(p, args->event_id);
 857}
 858
 859static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 860				void *data)
 861{
 862	struct kfd_ioctl_set_event_args *args = data;
 863
 864	return kfd_set_event(p, args->event_id);
 865}
 866
 867static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 868				void *data)
 869{
 870	struct kfd_ioctl_reset_event_args *args = data;
 871
 872	return kfd_reset_event(p, args->event_id);
 873}
 874
 875static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 876				void *data)
 877{
 878	struct kfd_ioctl_wait_events_args *args = data;
 879
 880	return kfd_wait_on_events(p, args->num_events,
 881			(void __user *)args->events_ptr,
 882			(args->wait_for_all != 0),
 883			&args->timeout, &args->wait_result);
 884}
 885static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 886					struct kfd_process *p, void *data)
 887{
 888	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 889	struct kfd_process_device *pdd;
 890	struct kfd_dev *dev;
 891	long err;
 892
 893	mutex_lock(&p->mutex);
 894	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 895	if (!pdd) {
 896		err = -EINVAL;
 897		goto err_pdd;
 898	}
 899	dev = pdd->dev;
 900
 901	pdd = kfd_bind_process_to_device(dev, p);
 902	if (IS_ERR(pdd)) {
 903		err = PTR_ERR(pdd);
 904		goto bind_process_to_device_fail;
 905	}
 906
 907	pdd->qpd.sh_hidden_private_base = args->va_addr;
 908
 909	mutex_unlock(&p->mutex);
 910
 911	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 912	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 913		dev->kfd2kgd->set_scratch_backing_va(
 914			dev->adev, args->va_addr, pdd->qpd.vmid);
 915
 916	return 0;
 917
 918bind_process_to_device_fail:
 919err_pdd:
 920	mutex_unlock(&p->mutex);
 921	return err;
 922}
 923
 924static int kfd_ioctl_get_tile_config(struct file *filep,
 925		struct kfd_process *p, void *data)
 926{
 927	struct kfd_ioctl_get_tile_config_args *args = data;
 928	struct kfd_process_device *pdd;
 929	struct tile_config config;
 930	int err = 0;
 931
 932	mutex_lock(&p->mutex);
 933	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 934	mutex_unlock(&p->mutex);
 935	if (!pdd)
 936		return -EINVAL;
 937
 938	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 939
 940	args->gb_addr_config = config.gb_addr_config;
 941	args->num_banks = config.num_banks;
 942	args->num_ranks = config.num_ranks;
 943
 944	if (args->num_tile_configs > config.num_tile_configs)
 945		args->num_tile_configs = config.num_tile_configs;
 946	err = copy_to_user((void __user *)args->tile_config_ptr,
 947			config.tile_config_ptr,
 948			args->num_tile_configs * sizeof(uint32_t));
 949	if (err) {
 950		args->num_tile_configs = 0;
 951		return -EFAULT;
 952	}
 953
 954	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 955		args->num_macro_tile_configs =
 956				config.num_macro_tile_configs;
 957	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 958			config.macro_tile_config_ptr,
 959			args->num_macro_tile_configs * sizeof(uint32_t));
 960	if (err) {
 961		args->num_macro_tile_configs = 0;
 962		return -EFAULT;
 963	}
 964
 965	return 0;
 966}
 967
 968static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 969				void *data)
 970{
 971	struct kfd_ioctl_acquire_vm_args *args = data;
 972	struct kfd_process_device *pdd;
 973	struct file *drm_file;
 974	int ret;
 975
 976	drm_file = fget(args->drm_fd);
 977	if (!drm_file)
 978		return -EINVAL;
 979
 980	mutex_lock(&p->mutex);
 981	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 982	if (!pdd) {
 983		ret = -EINVAL;
 984		goto err_pdd;
 985	}
 986
 987	if (pdd->drm_file) {
 988		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
 989		goto err_drm_file;
 990	}
 991
 992	ret = kfd_process_device_init_vm(pdd, drm_file);
 993	if (ret)
 994		goto err_unlock;
 995
 996	/* On success, the PDD keeps the drm_file reference */
 997	mutex_unlock(&p->mutex);
 998
 999	return 0;
1000
1001err_unlock:
1002err_pdd:
1003err_drm_file:
1004	mutex_unlock(&p->mutex);
1005	fput(drm_file);
1006	return ret;
1007}
1008
1009bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1010{
1011	if (debug_largebar) {
1012		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1013		return true;
1014	}
1015
1016	if (dev->use_iommu_v2)
1017		return false;
1018
1019	if (dev->local_mem_info.local_mem_size_private == 0 &&
1020			dev->local_mem_info.local_mem_size_public > 0)
 
 
 
 
 
1021		return true;
 
 
1022	return false;
1023}
1024
1025static int kfd_ioctl_get_available_memory(struct file *filep,
1026					  struct kfd_process *p, void *data)
1027{
1028	struct kfd_ioctl_get_available_memory_args *args = data;
1029	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1030
1031	if (!pdd)
1032		return -EINVAL;
1033	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev);
 
1034	kfd_unlock_pdd(pdd);
1035	return 0;
1036}
1037
1038static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1039					struct kfd_process *p, void *data)
1040{
1041	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1042	struct kfd_process_device *pdd;
1043	void *mem;
1044	struct kfd_dev *dev;
1045	int idr_handle;
1046	long err;
1047	uint64_t offset = args->mmap_offset;
1048	uint32_t flags = args->flags;
1049
1050	if (args->size == 0)
1051		return -EINVAL;
1052
1053#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1054	/* Flush pending deferred work to avoid racing with deferred actions
1055	 * from previous memory map changes (e.g. munmap).
1056	 */
1057	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1058	mutex_lock(&p->svms.lock);
1059	mmap_write_unlock(current->mm);
1060	if (interval_tree_iter_first(&p->svms.objects,
1061				     args->va_addr >> PAGE_SHIFT,
1062				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1063		pr_err("Address: 0x%llx already allocated by SVM\n",
1064			args->va_addr);
1065		mutex_unlock(&p->svms.lock);
1066		return -EADDRINUSE;
1067	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068	mutex_unlock(&p->svms.lock);
1069#endif
1070	mutex_lock(&p->mutex);
1071	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1072	if (!pdd) {
1073		err = -EINVAL;
1074		goto err_pdd;
1075	}
1076
1077	dev = pdd->dev;
1078
1079	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1080		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1081		!kfd_dev_is_large_bar(dev)) {
1082		pr_err("Alloc host visible vram on small bar is not allowed\n");
1083		err = -EINVAL;
1084		goto err_large_bar;
1085	}
1086
1087	pdd = kfd_bind_process_to_device(dev, p);
1088	if (IS_ERR(pdd)) {
1089		err = PTR_ERR(pdd);
1090		goto err_unlock;
1091	}
1092
1093	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1094		if (args->size != kfd_doorbell_process_slice(dev)) {
1095			err = -EINVAL;
1096			goto err_unlock;
1097		}
1098		offset = kfd_get_process_doorbells(pdd);
1099		if (!offset) {
1100			err = -ENOMEM;
1101			goto err_unlock;
1102		}
1103	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1104		if (args->size != PAGE_SIZE) {
1105			err = -EINVAL;
1106			goto err_unlock;
1107		}
1108		offset = dev->adev->rmmio_remap.bus_addr;
1109		if (!offset) {
1110			err = -ENOMEM;
1111			goto err_unlock;
1112		}
1113	}
1114
1115	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1116		dev->adev, args->va_addr, args->size,
1117		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1118		flags, false);
1119
1120	if (err)
1121		goto err_unlock;
1122
1123	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1124	if (idr_handle < 0) {
1125		err = -EFAULT;
1126		goto err_free;
1127	}
1128
1129	/* Update the VRAM usage count */
1130	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1131		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
 
 
 
 
 
1132
1133	mutex_unlock(&p->mutex);
1134
1135	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1136	args->mmap_offset = offset;
1137
1138	/* MMIO is mapped through kfd device
1139	 * Generate a kfd mmap offset
1140	 */
1141	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1142		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1143					| KFD_MMAP_GPU_ID(args->gpu_id);
1144
1145	return 0;
1146
1147err_free:
1148	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1149					       pdd->drm_priv, NULL);
1150err_unlock:
1151err_pdd:
1152err_large_bar:
1153	mutex_unlock(&p->mutex);
1154	return err;
1155}
1156
1157static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1158					struct kfd_process *p, void *data)
1159{
1160	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1161	struct kfd_process_device *pdd;
1162	void *mem;
1163	int ret;
1164	uint64_t size = 0;
1165
1166	mutex_lock(&p->mutex);
1167	/*
1168	 * Safeguard to prevent user space from freeing signal BO.
1169	 * It will be freed at process termination.
1170	 */
1171	if (p->signal_handle && (p->signal_handle == args->handle)) {
1172		pr_err("Free signal BO is not allowed\n");
1173		ret = -EPERM;
1174		goto err_unlock;
1175	}
1176
1177	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1178	if (!pdd) {
1179		pr_err("Process device data doesn't exist\n");
1180		ret = -EINVAL;
1181		goto err_pdd;
1182	}
1183
1184	mem = kfd_process_device_translate_handle(
1185		pdd, GET_IDR_HANDLE(args->handle));
1186	if (!mem) {
1187		ret = -EINVAL;
1188		goto err_unlock;
1189	}
1190
1191	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1192				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1193
1194	/* If freeing the buffer failed, leave the handle in place for
1195	 * clean-up during process tear-down.
1196	 */
1197	if (!ret)
1198		kfd_process_device_remove_obj_handle(
1199			pdd, GET_IDR_HANDLE(args->handle));
1200
1201	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1202
1203err_unlock:
1204err_pdd:
1205	mutex_unlock(&p->mutex);
1206	return ret;
1207}
1208
1209static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1210					struct kfd_process *p, void *data)
1211{
1212	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1213	struct kfd_process_device *pdd, *peer_pdd;
1214	void *mem;
1215	struct kfd_dev *dev;
1216	long err = 0;
1217	int i;
1218	uint32_t *devices_arr = NULL;
1219
1220	if (!args->n_devices) {
1221		pr_debug("Device IDs array empty\n");
1222		return -EINVAL;
1223	}
1224	if (args->n_success > args->n_devices) {
1225		pr_debug("n_success exceeds n_devices\n");
1226		return -EINVAL;
1227	}
1228
1229	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1230				    GFP_KERNEL);
1231	if (!devices_arr)
1232		return -ENOMEM;
1233
1234	err = copy_from_user(devices_arr,
1235			     (void __user *)args->device_ids_array_ptr,
1236			     args->n_devices * sizeof(*devices_arr));
1237	if (err != 0) {
1238		err = -EFAULT;
1239		goto copy_from_user_failed;
1240	}
1241
1242	mutex_lock(&p->mutex);
1243	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1244	if (!pdd) {
1245		err = -EINVAL;
1246		goto get_process_device_data_failed;
1247	}
1248	dev = pdd->dev;
1249
1250	pdd = kfd_bind_process_to_device(dev, p);
1251	if (IS_ERR(pdd)) {
1252		err = PTR_ERR(pdd);
1253		goto bind_process_to_device_failed;
1254	}
1255
1256	mem = kfd_process_device_translate_handle(pdd,
1257						GET_IDR_HANDLE(args->handle));
1258	if (!mem) {
1259		err = -ENOMEM;
1260		goto get_mem_obj_from_handle_failed;
1261	}
1262
1263	for (i = args->n_success; i < args->n_devices; i++) {
1264		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1265		if (!peer_pdd) {
1266			pr_debug("Getting device by id failed for 0x%x\n",
1267				 devices_arr[i]);
1268			err = -EINVAL;
1269			goto get_mem_obj_from_handle_failed;
1270		}
1271
1272		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1273		if (IS_ERR(peer_pdd)) {
1274			err = PTR_ERR(peer_pdd);
1275			goto get_mem_obj_from_handle_failed;
1276		}
1277
1278		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1279			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1280			peer_pdd->drm_priv);
1281		if (err) {
1282			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1283
1284			dev_err(dev->adev->dev,
1285			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1286			       pci_domain_nr(pdev->bus),
1287			       pdev->bus->number,
1288			       PCI_SLOT(pdev->devfn),
1289			       PCI_FUNC(pdev->devfn),
1290			       ((struct kgd_mem *)mem)->domain);
1291			goto map_memory_to_gpu_failed;
1292		}
1293		args->n_success = i+1;
1294	}
1295
1296	mutex_unlock(&p->mutex);
1297
1298	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1299	if (err) {
1300		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1301		goto sync_memory_failed;
1302	}
1303
 
 
1304	/* Flush TLBs after waiting for the page table updates to complete */
1305	for (i = 0; i < args->n_devices; i++) {
1306		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1307		if (WARN_ON_ONCE(!peer_pdd))
1308			continue;
1309		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1310	}
1311	kfree(devices_arr);
1312
1313	return err;
1314
1315get_process_device_data_failed:
1316bind_process_to_device_failed:
1317get_mem_obj_from_handle_failed:
1318map_memory_to_gpu_failed:
 
1319	mutex_unlock(&p->mutex);
1320copy_from_user_failed:
1321sync_memory_failed:
1322	kfree(devices_arr);
1323
1324	return err;
1325}
1326
1327static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1328					struct kfd_process *p, void *data)
1329{
1330	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1331	struct kfd_process_device *pdd, *peer_pdd;
1332	void *mem;
1333	long err = 0;
1334	uint32_t *devices_arr = NULL, i;
 
1335
1336	if (!args->n_devices) {
1337		pr_debug("Device IDs array empty\n");
1338		return -EINVAL;
1339	}
1340	if (args->n_success > args->n_devices) {
1341		pr_debug("n_success exceeds n_devices\n");
1342		return -EINVAL;
1343	}
1344
1345	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1346				    GFP_KERNEL);
1347	if (!devices_arr)
1348		return -ENOMEM;
1349
1350	err = copy_from_user(devices_arr,
1351			     (void __user *)args->device_ids_array_ptr,
1352			     args->n_devices * sizeof(*devices_arr));
1353	if (err != 0) {
1354		err = -EFAULT;
1355		goto copy_from_user_failed;
1356	}
1357
1358	mutex_lock(&p->mutex);
1359	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1360	if (!pdd) {
1361		err = -EINVAL;
1362		goto bind_process_to_device_failed;
1363	}
1364
1365	mem = kfd_process_device_translate_handle(pdd,
1366						GET_IDR_HANDLE(args->handle));
1367	if (!mem) {
1368		err = -ENOMEM;
1369		goto get_mem_obj_from_handle_failed;
1370	}
1371
1372	for (i = args->n_success; i < args->n_devices; i++) {
1373		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1374		if (!peer_pdd) {
1375			err = -EINVAL;
1376			goto get_mem_obj_from_handle_failed;
1377		}
1378		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1379			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1380		if (err) {
1381			pr_err("Failed to unmap from gpu %d/%d\n",
1382			       i, args->n_devices);
1383			goto unmap_memory_from_gpu_failed;
1384		}
1385		args->n_success = i+1;
1386	}
1387	mutex_unlock(&p->mutex);
1388
1389	if (kfd_flush_tlb_after_unmap(pdd->dev)) {
 
1390		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1391				(struct kgd_mem *) mem, true);
1392		if (err) {
1393			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1394			goto sync_memory_failed;
1395		}
 
1396
1397		/* Flush TLBs after waiting for the page table updates to complete */
1398		for (i = 0; i < args->n_devices; i++) {
1399			peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1400			if (WARN_ON_ONCE(!peer_pdd))
1401				continue;
 
1402			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1403		}
 
 
 
 
1404	}
 
 
 
1405	kfree(devices_arr);
1406
1407	return 0;
1408
1409bind_process_to_device_failed:
1410get_mem_obj_from_handle_failed:
1411unmap_memory_from_gpu_failed:
 
1412	mutex_unlock(&p->mutex);
1413copy_from_user_failed:
1414sync_memory_failed:
1415	kfree(devices_arr);
1416	return err;
1417}
1418
1419static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1420		struct kfd_process *p, void *data)
1421{
1422	int retval;
1423	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1424	struct queue *q;
1425	struct kfd_dev *dev;
1426
1427	mutex_lock(&p->mutex);
1428	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1429
1430	if (q) {
1431		dev = q->device;
1432	} else {
1433		retval = -EINVAL;
1434		goto out_unlock;
1435	}
1436
1437	if (!dev->gws) {
1438		retval = -ENODEV;
1439		goto out_unlock;
1440	}
1441
1442	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1443		retval = -ENODEV;
1444		goto out_unlock;
1445	}
1446
 
 
 
 
 
 
1447	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1448	mutex_unlock(&p->mutex);
1449
1450	args->first_gws = 0;
1451	return retval;
1452
1453out_unlock:
1454	mutex_unlock(&p->mutex);
1455	return retval;
1456}
1457
1458static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1459		struct kfd_process *p, void *data)
1460{
1461	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1462	struct kfd_dev *dev = NULL;
1463	struct amdgpu_device *dmabuf_adev;
1464	void *metadata_buffer = NULL;
1465	uint32_t flags;
 
1466	unsigned int i;
1467	int r;
1468
1469	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1470	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1471		if (dev)
1472			break;
1473	if (!dev)
1474		return -EINVAL;
1475
1476	if (args->metadata_ptr) {
1477		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1478		if (!metadata_buffer)
1479			return -ENOMEM;
1480	}
1481
1482	/* Get dmabuf info from KGD */
1483	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1484					  &dmabuf_adev, &args->size,
1485					  metadata_buffer, args->metadata_size,
1486					  &args->metadata_size, &flags);
1487	if (r)
1488		goto exit;
1489
1490	/* Reverse-lookup gpu_id from kgd pointer */
1491	dev = kfd_device_by_adev(dmabuf_adev);
1492	if (!dev) {
1493		r = -EINVAL;
1494		goto exit;
1495	}
1496	args->gpu_id = dev->id;
1497	args->flags = flags;
1498
1499	/* Copy metadata buffer to user mode */
1500	if (metadata_buffer) {
1501		r = copy_to_user((void __user *)args->metadata_ptr,
1502				 metadata_buffer, args->metadata_size);
1503		if (r != 0)
1504			r = -EFAULT;
1505	}
1506
1507exit:
1508	kfree(metadata_buffer);
1509
1510	return r;
1511}
1512
1513static int kfd_ioctl_import_dmabuf(struct file *filep,
1514				   struct kfd_process *p, void *data)
1515{
1516	struct kfd_ioctl_import_dmabuf_args *args = data;
1517	struct kfd_process_device *pdd;
1518	struct dma_buf *dmabuf;
1519	int idr_handle;
1520	uint64_t size;
1521	void *mem;
1522	int r;
1523
1524	dmabuf = dma_buf_get(args->dmabuf_fd);
1525	if (IS_ERR(dmabuf))
1526		return PTR_ERR(dmabuf);
1527
1528	mutex_lock(&p->mutex);
1529	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1530	if (!pdd) {
1531		r = -EINVAL;
1532		goto err_unlock;
1533	}
1534
1535	pdd = kfd_bind_process_to_device(pdd->dev, p);
1536	if (IS_ERR(pdd)) {
1537		r = PTR_ERR(pdd);
1538		goto err_unlock;
1539	}
1540
1541	r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1542					      args->va_addr, pdd->drm_priv,
1543					      (struct kgd_mem **)&mem, &size,
1544					      NULL);
1545	if (r)
1546		goto err_unlock;
1547
1548	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1549	if (idr_handle < 0) {
1550		r = -EFAULT;
1551		goto err_free;
1552	}
1553
1554	mutex_unlock(&p->mutex);
1555	dma_buf_put(dmabuf);
1556
1557	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1558
1559	return 0;
1560
1561err_free:
1562	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1563					       pdd->drm_priv, NULL);
1564err_unlock:
1565	mutex_unlock(&p->mutex);
1566	dma_buf_put(dmabuf);
1567	return r;
1568}
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570/* Handle requests for watching SMI events */
1571static int kfd_ioctl_smi_events(struct file *filep,
1572				struct kfd_process *p, void *data)
1573{
1574	struct kfd_ioctl_smi_events_args *args = data;
1575	struct kfd_process_device *pdd;
1576
1577	mutex_lock(&p->mutex);
1578
1579	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1580	mutex_unlock(&p->mutex);
1581	if (!pdd)
1582		return -EINVAL;
1583
1584	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1585}
1586
1587#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1588
1589static int kfd_ioctl_set_xnack_mode(struct file *filep,
1590				    struct kfd_process *p, void *data)
1591{
1592	struct kfd_ioctl_set_xnack_mode_args *args = data;
1593	int r = 0;
1594
1595	mutex_lock(&p->mutex);
1596	if (args->xnack_enabled >= 0) {
1597		if (!list_empty(&p->pqm.queues)) {
1598			pr_debug("Process has user queues running\n");
1599			r = -EBUSY;
1600			goto out_unlock;
1601		}
1602
1603		if (p->xnack_enabled == args->xnack_enabled)
1604			goto out_unlock;
1605
1606		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1607			r = -EPERM;
1608			goto out_unlock;
1609		}
1610
1611		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1612	} else {
1613		args->xnack_enabled = p->xnack_enabled;
1614	}
1615
1616out_unlock:
1617	mutex_unlock(&p->mutex);
1618
1619	return r;
1620}
1621
1622static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1623{
1624	struct kfd_ioctl_svm_args *args = data;
1625	int r = 0;
1626
1627	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1628		 args->start_addr, args->size, args->op, args->nattr);
1629
1630	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1631		return -EINVAL;
1632	if (!args->start_addr || !args->size)
1633		return -EINVAL;
1634
1635	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1636		      args->attrs);
1637
1638	return r;
1639}
1640#else
1641static int kfd_ioctl_set_xnack_mode(struct file *filep,
1642				    struct kfd_process *p, void *data)
1643{
1644	return -EPERM;
1645}
1646static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1647{
1648	return -EPERM;
1649}
1650#endif
1651
1652static int criu_checkpoint_process(struct kfd_process *p,
1653			     uint8_t __user *user_priv_data,
1654			     uint64_t *priv_offset)
1655{
1656	struct kfd_criu_process_priv_data process_priv;
1657	int ret;
1658
1659	memset(&process_priv, 0, sizeof(process_priv));
1660
1661	process_priv.version = KFD_CRIU_PRIV_VERSION;
1662	/* For CR, we don't consider negative xnack mode which is used for
1663	 * querying without changing it, here 0 simply means disabled and 1
1664	 * means enabled so retry for finding a valid PTE.
1665	 */
1666	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1667
1668	ret = copy_to_user(user_priv_data + *priv_offset,
1669				&process_priv, sizeof(process_priv));
1670
1671	if (ret) {
1672		pr_err("Failed to copy process information to user\n");
1673		ret = -EFAULT;
1674	}
1675
1676	*priv_offset += sizeof(process_priv);
1677	return ret;
1678}
1679
1680static int criu_checkpoint_devices(struct kfd_process *p,
1681			     uint32_t num_devices,
1682			     uint8_t __user *user_addr,
1683			     uint8_t __user *user_priv_data,
1684			     uint64_t *priv_offset)
1685{
1686	struct kfd_criu_device_priv_data *device_priv = NULL;
1687	struct kfd_criu_device_bucket *device_buckets = NULL;
1688	int ret = 0, i;
1689
1690	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1691	if (!device_buckets) {
1692		ret = -ENOMEM;
1693		goto exit;
1694	}
1695
1696	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1697	if (!device_priv) {
1698		ret = -ENOMEM;
1699		goto exit;
1700	}
1701
1702	for (i = 0; i < num_devices; i++) {
1703		struct kfd_process_device *pdd = p->pdds[i];
1704
1705		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1706		device_buckets[i].actual_gpu_id = pdd->dev->id;
1707
1708		/*
1709		 * priv_data does not contain useful information for now and is reserved for
1710		 * future use, so we do not set its contents.
1711		 */
1712	}
1713
1714	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1715	if (ret) {
1716		pr_err("Failed to copy device information to user\n");
1717		ret = -EFAULT;
1718		goto exit;
1719	}
1720
1721	ret = copy_to_user(user_priv_data + *priv_offset,
1722			   device_priv,
1723			   num_devices * sizeof(*device_priv));
1724	if (ret) {
1725		pr_err("Failed to copy device information to user\n");
1726		ret = -EFAULT;
1727	}
1728	*priv_offset += num_devices * sizeof(*device_priv);
1729
1730exit:
1731	kvfree(device_buckets);
1732	kvfree(device_priv);
1733	return ret;
1734}
1735
1736static uint32_t get_process_num_bos(struct kfd_process *p)
1737{
1738	uint32_t num_of_bos = 0;
1739	int i;
1740
1741	/* Run over all PDDs of the process */
1742	for (i = 0; i < p->n_pdds; i++) {
1743		struct kfd_process_device *pdd = p->pdds[i];
1744		void *mem;
1745		int id;
1746
1747		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1748			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1749
1750			if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1751				num_of_bos++;
1752		}
1753	}
1754	return num_of_bos;
1755}
1756
1757static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1758				      u32 *shared_fd)
1759{
1760	struct dma_buf *dmabuf;
1761	int ret;
1762
1763	dmabuf = amdgpu_gem_prime_export(gobj, flags);
1764	if (IS_ERR(dmabuf)) {
1765		ret = PTR_ERR(dmabuf);
1766		pr_err("dmabuf export failed for the BO\n");
1767		return ret;
1768	}
1769
1770	ret = dma_buf_fd(dmabuf, flags);
1771	if (ret < 0) {
1772		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1773		goto out_free_dmabuf;
1774	}
1775
1776	*shared_fd = ret;
1777	return 0;
1778
1779out_free_dmabuf:
1780	dma_buf_put(dmabuf);
1781	return ret;
1782}
1783
1784static int criu_checkpoint_bos(struct kfd_process *p,
1785			       uint32_t num_bos,
1786			       uint8_t __user *user_bos,
1787			       uint8_t __user *user_priv_data,
1788			       uint64_t *priv_offset)
1789{
1790	struct kfd_criu_bo_bucket *bo_buckets;
1791	struct kfd_criu_bo_priv_data *bo_privs;
1792	int ret = 0, pdd_index, bo_index = 0, id;
1793	void *mem;
1794
1795	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1796	if (!bo_buckets)
1797		return -ENOMEM;
1798
1799	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1800	if (!bo_privs) {
1801		ret = -ENOMEM;
1802		goto exit;
1803	}
1804
1805	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1806		struct kfd_process_device *pdd = p->pdds[pdd_index];
1807		struct amdgpu_bo *dumper_bo;
1808		struct kgd_mem *kgd_mem;
1809
1810		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1811			struct kfd_criu_bo_bucket *bo_bucket;
1812			struct kfd_criu_bo_priv_data *bo_priv;
1813			int i, dev_idx = 0;
1814
1815			if (!mem) {
1816				ret = -ENOMEM;
1817				goto exit;
1818			}
1819
1820			kgd_mem = (struct kgd_mem *)mem;
1821			dumper_bo = kgd_mem->bo;
1822
1823			if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
 
 
 
 
1824				continue;
1825
1826			bo_bucket = &bo_buckets[bo_index];
1827			bo_priv = &bo_privs[bo_index];
1828
1829			bo_bucket->gpu_id = pdd->user_gpu_id;
1830			bo_bucket->addr = (uint64_t)kgd_mem->va;
1831			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1832			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1833			bo_priv->idr_handle = id;
1834
1835			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1836				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1837								&bo_priv->user_addr);
1838				if (ret) {
1839					pr_err("Failed to obtain user address for user-pointer bo\n");
1840					goto exit;
1841				}
1842			}
1843			if (bo_bucket->alloc_flags
1844			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1845				ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1846						bo_bucket->alloc_flags &
1847						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1848						&bo_bucket->dmabuf_fd);
1849				if (ret)
1850					goto exit;
1851			} else {
1852				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1853			}
1854
1855			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1856				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1857					KFD_MMAP_GPU_ID(pdd->dev->id);
1858			else if (bo_bucket->alloc_flags &
1859				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1860				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1861					KFD_MMAP_GPU_ID(pdd->dev->id);
1862			else
1863				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1864
1865			for (i = 0; i < p->n_pdds; i++) {
1866				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1867					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1868			}
1869
1870			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1871					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1872					bo_bucket->size,
1873					bo_bucket->addr,
1874					bo_bucket->offset,
1875					bo_bucket->gpu_id,
1876					bo_bucket->alloc_flags,
1877					bo_priv->idr_handle);
1878			bo_index++;
1879		}
1880	}
1881
1882	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1883	if (ret) {
1884		pr_err("Failed to copy BO information to user\n");
1885		ret = -EFAULT;
1886		goto exit;
1887	}
1888
1889	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1890	if (ret) {
1891		pr_err("Failed to copy BO priv information to user\n");
1892		ret = -EFAULT;
1893		goto exit;
1894	}
1895
1896	*priv_offset += num_bos * sizeof(*bo_privs);
1897
1898exit:
1899	while (ret && bo_index--) {
1900		if (bo_buckets[bo_index].alloc_flags
1901		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1902			close_fd(bo_buckets[bo_index].dmabuf_fd);
1903	}
1904
1905	kvfree(bo_buckets);
1906	kvfree(bo_privs);
1907	return ret;
1908}
1909
1910static int criu_get_process_object_info(struct kfd_process *p,
1911					uint32_t *num_devices,
1912					uint32_t *num_bos,
1913					uint32_t *num_objects,
1914					uint64_t *objs_priv_size)
1915{
1916	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
1917	uint32_t num_queues, num_events, num_svm_ranges;
1918	int ret;
1919
1920	*num_devices = p->n_pdds;
1921	*num_bos = get_process_num_bos(p);
1922
1923	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
1924	if (ret)
1925		return ret;
1926
1927	num_events = kfd_get_num_events(p);
1928
1929	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
1930	if (ret)
1931		return ret;
1932
1933	*num_objects = num_queues + num_events + num_svm_ranges;
1934
1935	if (objs_priv_size) {
1936		priv_size = sizeof(struct kfd_criu_process_priv_data);
1937		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
1938		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
1939		priv_size += queues_priv_data_size;
1940		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
1941		priv_size += svm_priv_data_size;
1942		*objs_priv_size = priv_size;
1943	}
1944	return 0;
1945}
1946
1947static int criu_checkpoint(struct file *filep,
1948			   struct kfd_process *p,
1949			   struct kfd_ioctl_criu_args *args)
1950{
1951	int ret;
1952	uint32_t num_devices, num_bos, num_objects;
1953	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
1954
1955	if (!args->devices || !args->bos || !args->priv_data)
1956		return -EINVAL;
1957
1958	mutex_lock(&p->mutex);
1959
1960	if (!p->n_pdds) {
1961		pr_err("No pdd for given process\n");
1962		ret = -ENODEV;
1963		goto exit_unlock;
1964	}
1965
1966	/* Confirm all process queues are evicted */
1967	if (!p->queues_paused) {
1968		pr_err("Cannot dump process when queues are not in evicted state\n");
1969		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
1970		ret = -EINVAL;
1971		goto exit_unlock;
1972	}
1973
1974	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
1975	if (ret)
1976		goto exit_unlock;
1977
1978	if (num_devices != args->num_devices ||
1979	    num_bos != args->num_bos ||
1980	    num_objects != args->num_objects ||
1981	    priv_size != args->priv_data_size) {
1982
1983		ret = -EINVAL;
1984		goto exit_unlock;
1985	}
1986
1987	/* each function will store private data inside priv_data and adjust priv_offset */
1988	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
1989	if (ret)
1990		goto exit_unlock;
1991
1992	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
1993				(uint8_t __user *)args->priv_data, &priv_offset);
1994	if (ret)
1995		goto exit_unlock;
1996
1997	/* Leave room for BOs in the private data. They need to be restored
1998	 * before events, but we checkpoint them last to simplify the error
1999	 * handling.
2000	 */
2001	bo_priv_offset = priv_offset;
2002	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2003
2004	if (num_objects) {
2005		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2006						 &priv_offset);
2007		if (ret)
2008			goto exit_unlock;
2009
2010		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2011						 &priv_offset);
2012		if (ret)
2013			goto exit_unlock;
2014
2015		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2016		if (ret)
2017			goto exit_unlock;
2018	}
2019
2020	/* This must be the last thing in this function that can fail.
2021	 * Otherwise we leak dmabuf file descriptors.
2022	 */
2023	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2024			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2025
2026exit_unlock:
2027	mutex_unlock(&p->mutex);
2028	if (ret)
2029		pr_err("Failed to dump CRIU ret:%d\n", ret);
2030	else
2031		pr_debug("CRIU dump ret:%d\n", ret);
2032
2033	return ret;
2034}
2035
2036static int criu_restore_process(struct kfd_process *p,
2037				struct kfd_ioctl_criu_args *args,
2038				uint64_t *priv_offset,
2039				uint64_t max_priv_data_size)
2040{
2041	int ret = 0;
2042	struct kfd_criu_process_priv_data process_priv;
2043
2044	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2045		return -EINVAL;
2046
2047	ret = copy_from_user(&process_priv,
2048				(void __user *)(args->priv_data + *priv_offset),
2049				sizeof(process_priv));
2050	if (ret) {
2051		pr_err("Failed to copy process private information from user\n");
2052		ret = -EFAULT;
2053		goto exit;
2054	}
2055	*priv_offset += sizeof(process_priv);
2056
2057	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2058		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2059			process_priv.version, KFD_CRIU_PRIV_VERSION);
2060		return -EINVAL;
2061	}
2062
2063	pr_debug("Setting XNACK mode\n");
2064	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2065		pr_err("xnack mode cannot be set\n");
2066		ret = -EPERM;
2067		goto exit;
2068	} else {
2069		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2070		p->xnack_enabled = process_priv.xnack_mode;
2071	}
2072
2073exit:
2074	return ret;
2075}
2076
2077static int criu_restore_devices(struct kfd_process *p,
2078				struct kfd_ioctl_criu_args *args,
2079				uint64_t *priv_offset,
2080				uint64_t max_priv_data_size)
2081{
2082	struct kfd_criu_device_bucket *device_buckets;
2083	struct kfd_criu_device_priv_data *device_privs;
2084	int ret = 0;
2085	uint32_t i;
2086
2087	if (args->num_devices != p->n_pdds)
2088		return -EINVAL;
2089
2090	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2091		return -EINVAL;
2092
2093	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2094	if (!device_buckets)
2095		return -ENOMEM;
2096
2097	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2098				args->num_devices * sizeof(*device_buckets));
2099	if (ret) {
2100		pr_err("Failed to copy devices buckets from user\n");
2101		ret = -EFAULT;
2102		goto exit;
2103	}
2104
2105	for (i = 0; i < args->num_devices; i++) {
2106		struct kfd_dev *dev;
2107		struct kfd_process_device *pdd;
2108		struct file *drm_file;
2109
2110		/* device private data is not currently used */
2111
2112		if (!device_buckets[i].user_gpu_id) {
2113			pr_err("Invalid user gpu_id\n");
2114			ret = -EINVAL;
2115			goto exit;
2116		}
2117
2118		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2119		if (!dev) {
2120			pr_err("Failed to find device with gpu_id = %x\n",
2121				device_buckets[i].actual_gpu_id);
2122			ret = -EINVAL;
2123			goto exit;
2124		}
2125
2126		pdd = kfd_get_process_device_data(dev, p);
2127		if (!pdd) {
2128			pr_err("Failed to get pdd for gpu_id = %x\n",
2129					device_buckets[i].actual_gpu_id);
2130			ret = -EINVAL;
2131			goto exit;
2132		}
2133		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2134
2135		drm_file = fget(device_buckets[i].drm_fd);
2136		if (!drm_file) {
2137			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2138				device_buckets[i].drm_fd);
2139			ret = -EINVAL;
2140			goto exit;
2141		}
2142
2143		if (pdd->drm_file) {
2144			ret = -EINVAL;
2145			goto exit;
2146		}
2147
2148		/* create the vm using render nodes for kfd pdd */
2149		if (kfd_process_device_init_vm(pdd, drm_file)) {
2150			pr_err("could not init vm for given pdd\n");
2151			/* On success, the PDD keeps the drm_file reference */
2152			fput(drm_file);
2153			ret = -EINVAL;
2154			goto exit;
2155		}
2156		/*
2157		 * pdd now already has the vm bound to render node so below api won't create a new
2158		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2159		 * for iommu v2 binding  and runtime pm.
2160		 */
2161		pdd = kfd_bind_process_to_device(dev, p);
2162		if (IS_ERR(pdd)) {
2163			ret = PTR_ERR(pdd);
2164			goto exit;
2165		}
2166
2167		if (!pdd->doorbell_index &&
2168		    kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index) < 0) {
2169			ret = -ENOMEM;
2170			goto exit;
2171		}
2172	}
2173
2174	/*
2175	 * We are not copying device private data from user as we are not using the data for now,
2176	 * but we still adjust for its private data.
2177	 */
2178	*priv_offset += args->num_devices * sizeof(*device_privs);
2179
2180exit:
2181	kfree(device_buckets);
2182	return ret;
2183}
2184
2185static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2186				      struct kfd_criu_bo_bucket *bo_bucket,
2187				      struct kfd_criu_bo_priv_data *bo_priv,
2188				      struct kgd_mem **kgd_mem)
2189{
2190	int idr_handle;
2191	int ret;
2192	const bool criu_resume = true;
2193	u64 offset;
2194
2195	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2196		if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev))
 
2197			return -EINVAL;
2198
2199		offset = kfd_get_process_doorbells(pdd);
2200		if (!offset)
2201			return -ENOMEM;
2202	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2203		/* MMIO BOs need remapped bus address */
2204		if (bo_bucket->size != PAGE_SIZE) {
2205			pr_err("Invalid page size\n");
2206			return -EINVAL;
2207		}
2208		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2209		if (!offset) {
2210			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2211			return -ENOMEM;
2212		}
2213	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2214		offset = bo_priv->user_addr;
2215	}
2216	/* Create the BO */
2217	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2218						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2219						      &offset, bo_bucket->alloc_flags, criu_resume);
2220	if (ret) {
2221		pr_err("Could not create the BO\n");
2222		return ret;
2223	}
2224	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2225		 bo_bucket->size, bo_bucket->addr, offset);
2226
2227	/* Restore previous IDR handle */
2228	pr_debug("Restoring old IDR handle for the BO");
2229	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2230			       bo_priv->idr_handle + 1, GFP_KERNEL);
2231
2232	if (idr_handle < 0) {
2233		pr_err("Could not allocate idr\n");
2234		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2235						       NULL);
2236		return -ENOMEM;
2237	}
2238
2239	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2240		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2241	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2242		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2243	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2244		bo_bucket->restored_offset = offset;
2245	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2246		bo_bucket->restored_offset = offset;
2247		/* Update the VRAM usage count */
2248		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2249	}
2250	return 0;
2251}
2252
2253static int criu_restore_bo(struct kfd_process *p,
2254			   struct kfd_criu_bo_bucket *bo_bucket,
2255			   struct kfd_criu_bo_priv_data *bo_priv)
2256{
2257	struct kfd_process_device *pdd;
2258	struct kgd_mem *kgd_mem;
2259	int ret;
2260	int j;
2261
2262	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2263		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2264		 bo_priv->idr_handle);
2265
2266	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2267	if (!pdd) {
2268		pr_err("Failed to get pdd\n");
2269		return -ENODEV;
2270	}
2271
2272	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2273	if (ret)
2274		return ret;
2275
2276	/* now map these BOs to GPU/s */
2277	for (j = 0; j < p->n_pdds; j++) {
2278		struct kfd_dev *peer;
2279		struct kfd_process_device *peer_pdd;
2280
2281		if (!bo_priv->mapped_gpuids[j])
2282			break;
2283
2284		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2285		if (!peer_pdd)
2286			return -EINVAL;
2287
2288		peer = peer_pdd->dev;
2289
2290		peer_pdd = kfd_bind_process_to_device(peer, p);
2291		if (IS_ERR(peer_pdd))
2292			return PTR_ERR(peer_pdd);
2293
2294		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2295							    peer_pdd->drm_priv);
2296		if (ret) {
2297			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2298			return ret;
2299		}
2300	}
2301
2302	pr_debug("map memory was successful for the BO\n");
2303	/* create the dmabuf object and export the bo */
2304	if (bo_bucket->alloc_flags
2305	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2306		ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2307					    &bo_bucket->dmabuf_fd);
2308		if (ret)
2309			return ret;
2310	} else {
2311		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2312	}
2313
2314	return 0;
2315}
2316
2317static int criu_restore_bos(struct kfd_process *p,
2318			    struct kfd_ioctl_criu_args *args,
2319			    uint64_t *priv_offset,
2320			    uint64_t max_priv_data_size)
2321{
2322	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2323	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2324	int ret = 0;
2325	uint32_t i = 0;
2326
2327	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2328		return -EINVAL;
2329
2330	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2331	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2332
2333	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2334	if (!bo_buckets)
2335		return -ENOMEM;
2336
2337	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2338			     args->num_bos * sizeof(*bo_buckets));
2339	if (ret) {
2340		pr_err("Failed to copy BOs information from user\n");
2341		ret = -EFAULT;
2342		goto exit;
2343	}
2344
2345	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2346	if (!bo_privs) {
2347		ret = -ENOMEM;
2348		goto exit;
2349	}
2350
2351	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2352			     args->num_bos * sizeof(*bo_privs));
2353	if (ret) {
2354		pr_err("Failed to copy BOs information from user\n");
2355		ret = -EFAULT;
2356		goto exit;
2357	}
2358	*priv_offset += args->num_bos * sizeof(*bo_privs);
2359
2360	/* Create and map new BOs */
2361	for (; i < args->num_bos; i++) {
2362		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2363		if (ret) {
2364			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2365			goto exit;
2366		}
2367	} /* done */
2368
2369	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2370	ret = copy_to_user((void __user *)args->bos,
2371				bo_buckets,
2372				(args->num_bos * sizeof(*bo_buckets)));
2373	if (ret)
2374		ret = -EFAULT;
2375
2376exit:
2377	while (ret && i--) {
2378		if (bo_buckets[i].alloc_flags
2379		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2380			close_fd(bo_buckets[i].dmabuf_fd);
2381	}
2382	kvfree(bo_buckets);
2383	kvfree(bo_privs);
2384	return ret;
2385}
2386
2387static int criu_restore_objects(struct file *filep,
2388				struct kfd_process *p,
2389				struct kfd_ioctl_criu_args *args,
2390				uint64_t *priv_offset,
2391				uint64_t max_priv_data_size)
2392{
2393	int ret = 0;
2394	uint32_t i;
2395
2396	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2397	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2398	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2399
2400	for (i = 0; i < args->num_objects; i++) {
2401		uint32_t object_type;
2402
2403		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2404			pr_err("Invalid private data size\n");
2405			return -EINVAL;
2406		}
2407
2408		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2409		if (ret) {
2410			pr_err("Failed to copy private information from user\n");
2411			goto exit;
2412		}
2413
2414		switch (object_type) {
2415		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2416			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2417						     priv_offset, max_priv_data_size);
2418			if (ret)
2419				goto exit;
2420			break;
2421		case KFD_CRIU_OBJECT_TYPE_EVENT:
2422			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2423						     priv_offset, max_priv_data_size);
2424			if (ret)
2425				goto exit;
2426			break;
2427		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2428			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2429						     priv_offset, max_priv_data_size);
2430			if (ret)
2431				goto exit;
2432			break;
2433		default:
2434			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2435			ret = -EINVAL;
2436			goto exit;
2437		}
2438	}
2439exit:
2440	return ret;
2441}
2442
2443static int criu_restore(struct file *filep,
2444			struct kfd_process *p,
2445			struct kfd_ioctl_criu_args *args)
2446{
2447	uint64_t priv_offset = 0;
2448	int ret = 0;
2449
2450	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2451		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2452
2453	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2454	    !args->num_devices || !args->num_bos)
2455		return -EINVAL;
2456
2457	mutex_lock(&p->mutex);
2458
2459	/*
2460	 * Set the process to evicted state to avoid running any new queues before all the memory
2461	 * mappings are ready.
2462	 */
2463	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2464	if (ret)
2465		goto exit_unlock;
2466
2467	/* Each function will adjust priv_offset based on how many bytes they consumed */
2468	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2469	if (ret)
2470		goto exit_unlock;
2471
2472	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2473	if (ret)
2474		goto exit_unlock;
2475
2476	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2477	if (ret)
2478		goto exit_unlock;
2479
2480	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2481	if (ret)
2482		goto exit_unlock;
2483
2484	if (priv_offset != args->priv_data_size) {
2485		pr_err("Invalid private data size\n");
2486		ret = -EINVAL;
2487	}
2488
2489exit_unlock:
2490	mutex_unlock(&p->mutex);
2491	if (ret)
2492		pr_err("Failed to restore CRIU ret:%d\n", ret);
2493	else
2494		pr_debug("CRIU restore successful\n");
2495
2496	return ret;
2497}
2498
2499static int criu_unpause(struct file *filep,
2500			struct kfd_process *p,
2501			struct kfd_ioctl_criu_args *args)
2502{
2503	int ret;
2504
2505	mutex_lock(&p->mutex);
2506
2507	if (!p->queues_paused) {
2508		mutex_unlock(&p->mutex);
2509		return -EINVAL;
2510	}
2511
2512	ret = kfd_process_restore_queues(p);
2513	if (ret)
2514		pr_err("Failed to unpause queues ret:%d\n", ret);
2515	else
2516		p->queues_paused = false;
2517
2518	mutex_unlock(&p->mutex);
2519
2520	return ret;
2521}
2522
2523static int criu_resume(struct file *filep,
2524			struct kfd_process *p,
2525			struct kfd_ioctl_criu_args *args)
2526{
2527	struct kfd_process *target = NULL;
2528	struct pid *pid = NULL;
2529	int ret = 0;
2530
2531	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2532		 args->pid);
2533
2534	pid = find_get_pid(args->pid);
2535	if (!pid) {
2536		pr_err("Cannot find pid info for %i\n", args->pid);
2537		return -ESRCH;
2538	}
2539
2540	pr_debug("calling kfd_lookup_process_by_pid\n");
2541	target = kfd_lookup_process_by_pid(pid);
2542
2543	put_pid(pid);
2544
2545	if (!target) {
2546		pr_debug("Cannot find process info for %i\n", args->pid);
2547		return -ESRCH;
2548	}
2549
2550	mutex_lock(&target->mutex);
2551	ret = kfd_criu_resume_svm(target);
2552	if (ret) {
2553		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2554		goto exit;
2555	}
2556
2557	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2558	if (ret)
2559		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2560
2561exit:
2562	mutex_unlock(&target->mutex);
2563
2564	kfd_unref_process(target);
2565	return ret;
2566}
2567
2568static int criu_process_info(struct file *filep,
2569				struct kfd_process *p,
2570				struct kfd_ioctl_criu_args *args)
2571{
2572	int ret = 0;
2573
2574	mutex_lock(&p->mutex);
2575
2576	if (!p->n_pdds) {
2577		pr_err("No pdd for given process\n");
2578		ret = -ENODEV;
2579		goto err_unlock;
2580	}
2581
2582	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2583	if (ret)
2584		goto err_unlock;
2585
2586	p->queues_paused = true;
2587
2588	args->pid = task_pid_nr_ns(p->lead_thread,
2589					task_active_pid_ns(p->lead_thread));
2590
2591	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2592					   &args->num_objects, &args->priv_data_size);
2593	if (ret)
2594		goto err_unlock;
2595
2596	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2597				args->num_devices, args->num_bos, args->num_objects,
2598				args->priv_data_size);
2599
2600err_unlock:
2601	if (ret) {
2602		kfd_process_restore_queues(p);
2603		p->queues_paused = false;
2604	}
2605	mutex_unlock(&p->mutex);
2606	return ret;
2607}
2608
2609static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2610{
2611	struct kfd_ioctl_criu_args *args = data;
2612	int ret;
2613
2614	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2615	switch (args->op) {
2616	case KFD_CRIU_OP_PROCESS_INFO:
2617		ret = criu_process_info(filep, p, args);
2618		break;
2619	case KFD_CRIU_OP_CHECKPOINT:
2620		ret = criu_checkpoint(filep, p, args);
2621		break;
2622	case KFD_CRIU_OP_UNPAUSE:
2623		ret = criu_unpause(filep, p, args);
2624		break;
2625	case KFD_CRIU_OP_RESTORE:
2626		ret = criu_restore(filep, p, args);
2627		break;
2628	case KFD_CRIU_OP_RESUME:
2629		ret = criu_resume(filep, p, args);
2630		break;
2631	default:
2632		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2633		ret = -EINVAL;
2634		break;
2635	}
2636
2637	if (ret)
2638		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2639
2640	return ret;
2641}
2642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2644	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2645			    .cmd_drv = 0, .name = #ioctl}
2646
2647/** Ioctl table */
2648static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2649	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2650			kfd_ioctl_get_version, 0),
2651
2652	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2653			kfd_ioctl_create_queue, 0),
2654
2655	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2656			kfd_ioctl_destroy_queue, 0),
2657
2658	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2659			kfd_ioctl_set_memory_policy, 0),
2660
2661	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2662			kfd_ioctl_get_clock_counters, 0),
2663
2664	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2665			kfd_ioctl_get_process_apertures, 0),
2666
2667	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2668			kfd_ioctl_update_queue, 0),
2669
2670	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2671			kfd_ioctl_create_event, 0),
2672
2673	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2674			kfd_ioctl_destroy_event, 0),
2675
2676	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2677			kfd_ioctl_set_event, 0),
2678
2679	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2680			kfd_ioctl_reset_event, 0),
2681
2682	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2683			kfd_ioctl_wait_events, 0),
2684
2685	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2686			kfd_ioctl_dbg_register, 0),
2687
2688	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2689			kfd_ioctl_dbg_unregister, 0),
2690
2691	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2692			kfd_ioctl_dbg_address_watch, 0),
2693
2694	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2695			kfd_ioctl_dbg_wave_control, 0),
2696
2697	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2698			kfd_ioctl_set_scratch_backing_va, 0),
2699
2700	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2701			kfd_ioctl_get_tile_config, 0),
2702
2703	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2704			kfd_ioctl_set_trap_handler, 0),
2705
2706	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2707			kfd_ioctl_get_process_apertures_new, 0),
2708
2709	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2710			kfd_ioctl_acquire_vm, 0),
2711
2712	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2713			kfd_ioctl_alloc_memory_of_gpu, 0),
2714
2715	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2716			kfd_ioctl_free_memory_of_gpu, 0),
2717
2718	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2719			kfd_ioctl_map_memory_to_gpu, 0),
2720
2721	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2722			kfd_ioctl_unmap_memory_from_gpu, 0),
2723
2724	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2725			kfd_ioctl_set_cu_mask, 0),
2726
2727	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2728			kfd_ioctl_get_queue_wave_state, 0),
2729
2730	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2731				kfd_ioctl_get_dmabuf_info, 0),
2732
2733	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2734				kfd_ioctl_import_dmabuf, 0),
2735
2736	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2737			kfd_ioctl_alloc_queue_gws, 0),
2738
2739	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2740			kfd_ioctl_smi_events, 0),
2741
2742	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2743
2744	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2745			kfd_ioctl_set_xnack_mode, 0),
2746
2747	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2748			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2749
2750	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
2751			kfd_ioctl_get_available_memory, 0),
 
 
 
 
 
 
 
 
 
2752};
2753
2754#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
2755
2756static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2757{
2758	struct kfd_process *process;
2759	amdkfd_ioctl_t *func;
2760	const struct amdkfd_ioctl_desc *ioctl = NULL;
2761	unsigned int nr = _IOC_NR(cmd);
2762	char stack_kdata[128];
2763	char *kdata = NULL;
2764	unsigned int usize, asize;
2765	int retcode = -EINVAL;
2766	bool ptrace_attached = false;
2767
2768	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2769		goto err_i1;
2770
2771	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2772		u32 amdkfd_size;
2773
2774		ioctl = &amdkfd_ioctls[nr];
2775
2776		amdkfd_size = _IOC_SIZE(ioctl->cmd);
2777		usize = asize = _IOC_SIZE(cmd);
2778		if (amdkfd_size > asize)
2779			asize = amdkfd_size;
2780
2781		cmd = ioctl->cmd;
2782	} else
2783		goto err_i1;
2784
2785	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2786
2787	/* Get the process struct from the filep. Only the process
2788	 * that opened /dev/kfd can use the file descriptor. Child
2789	 * processes need to create their own KFD device context.
2790	 */
2791	process = filep->private_data;
2792
2793	rcu_read_lock();
2794	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2795	    ptrace_parent(process->lead_thread) == current)
2796		ptrace_attached = true;
2797	rcu_read_unlock();
2798
2799	if (process->lead_thread != current->group_leader
2800	    && !ptrace_attached) {
2801		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2802		retcode = -EBADF;
2803		goto err_i1;
2804	}
2805
2806	/* Do not trust userspace, use our own definition */
2807	func = ioctl->func;
2808
2809	if (unlikely(!func)) {
2810		dev_dbg(kfd_device, "no function\n");
2811		retcode = -EINVAL;
2812		goto err_i1;
2813	}
2814
2815	/*
2816	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2817	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2818	 * more priviledged access.
2819	 */
2820	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2821		if (!capable(CAP_CHECKPOINT_RESTORE) &&
2822						!capable(CAP_SYS_ADMIN)) {
2823			retcode = -EACCES;
2824			goto err_i1;
2825		}
2826	}
2827
2828	if (cmd & (IOC_IN | IOC_OUT)) {
2829		if (asize <= sizeof(stack_kdata)) {
2830			kdata = stack_kdata;
2831		} else {
2832			kdata = kmalloc(asize, GFP_KERNEL);
2833			if (!kdata) {
2834				retcode = -ENOMEM;
2835				goto err_i1;
2836			}
2837		}
2838		if (asize > usize)
2839			memset(kdata + usize, 0, asize - usize);
2840	}
2841
2842	if (cmd & IOC_IN) {
2843		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2844			retcode = -EFAULT;
2845			goto err_i1;
2846		}
2847	} else if (cmd & IOC_OUT) {
2848		memset(kdata, 0, usize);
2849	}
2850
2851	retcode = func(filep, process, kdata);
2852
2853	if (cmd & IOC_OUT)
2854		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2855			retcode = -EFAULT;
2856
2857err_i1:
2858	if (!ioctl)
2859		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2860			  task_pid_nr(current), cmd, nr);
2861
2862	if (kdata != stack_kdata)
2863		kfree(kdata);
2864
2865	if (retcode)
2866		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2867				nr, arg, retcode);
2868
2869	return retcode;
2870}
2871
2872static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2873		      struct vm_area_struct *vma)
2874{
2875	phys_addr_t address;
2876
2877	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2878		return -EINVAL;
2879
2880	address = dev->adev->rmmio_remap.bus_addr;
2881
2882	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2883				VM_DONTDUMP | VM_PFNMAP;
2884
2885	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2886
2887	pr_debug("pasid 0x%x mapping mmio page\n"
2888		 "     target user address == 0x%08llX\n"
2889		 "     physical address    == 0x%08llX\n"
2890		 "     vm_flags            == 0x%04lX\n"
2891		 "     size                == 0x%04lX\n",
2892		 process->pasid, (unsigned long long) vma->vm_start,
2893		 address, vma->vm_flags, PAGE_SIZE);
2894
2895	return io_remap_pfn_range(vma,
2896				vma->vm_start,
2897				address >> PAGE_SHIFT,
2898				PAGE_SIZE,
2899				vma->vm_page_prot);
2900}
2901
2902
2903static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2904{
2905	struct kfd_process *process;
2906	struct kfd_dev *dev = NULL;
2907	unsigned long mmap_offset;
2908	unsigned int gpu_id;
2909
2910	process = kfd_get_process(current);
2911	if (IS_ERR(process))
2912		return PTR_ERR(process);
2913
2914	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2915	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2916	if (gpu_id)
2917		dev = kfd_device_by_id(gpu_id);
2918
2919	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2920	case KFD_MMAP_TYPE_DOORBELL:
2921		if (!dev)
2922			return -ENODEV;
2923		return kfd_doorbell_mmap(dev, process, vma);
2924
2925	case KFD_MMAP_TYPE_EVENTS:
2926		return kfd_event_mmap(process, vma);
2927
2928	case KFD_MMAP_TYPE_RESERVED_MEM:
2929		if (!dev)
2930			return -ENODEV;
2931		return kfd_reserved_mem_mmap(dev, process, vma);
2932	case KFD_MMAP_TYPE_MMIO:
2933		if (!dev)
2934			return -ENODEV;
2935		return kfd_mmio_mmap(dev, process, vma);
2936	}
2937
2938	return -EFAULT;
2939}
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
  47#include "kfd_debug.h"
  48
  49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  50static int kfd_open(struct inode *, struct file *);
  51static int kfd_release(struct inode *, struct file *);
  52static int kfd_mmap(struct file *, struct vm_area_struct *);
  53
  54static const char kfd_dev_name[] = "kfd";
  55
  56static const struct file_operations kfd_fops = {
  57	.owner = THIS_MODULE,
  58	.unlocked_ioctl = kfd_ioctl,
  59	.compat_ioctl = compat_ptr_ioctl,
  60	.open = kfd_open,
  61	.release = kfd_release,
  62	.mmap = kfd_mmap,
  63};
  64
  65static int kfd_char_dev_major = -1;
  66static struct class *kfd_class;
  67struct device *kfd_device;
  68
  69static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  70{
  71	struct kfd_process_device *pdd;
  72
  73	mutex_lock(&p->mutex);
  74	pdd = kfd_process_device_data_by_id(p, gpu_id);
  75
  76	if (pdd)
  77		return pdd;
  78
  79	mutex_unlock(&p->mutex);
  80	return NULL;
  81}
  82
  83static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  84{
  85	mutex_unlock(&pdd->process->mutex);
  86}
  87
  88int kfd_chardev_init(void)
  89{
  90	int err = 0;
  91
  92	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  93	err = kfd_char_dev_major;
  94	if (err < 0)
  95		goto err_register_chrdev;
  96
  97	kfd_class = class_create(kfd_dev_name);
  98	err = PTR_ERR(kfd_class);
  99	if (IS_ERR(kfd_class))
 100		goto err_class_create;
 101
 102	kfd_device = device_create(kfd_class, NULL,
 103					MKDEV(kfd_char_dev_major, 0),
 104					NULL, kfd_dev_name);
 105	err = PTR_ERR(kfd_device);
 106	if (IS_ERR(kfd_device))
 107		goto err_device_create;
 108
 109	return 0;
 110
 111err_device_create:
 112	class_destroy(kfd_class);
 113err_class_create:
 114	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 115err_register_chrdev:
 116	return err;
 117}
 118
 119void kfd_chardev_exit(void)
 120{
 121	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
 122	class_destroy(kfd_class);
 123	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 124	kfd_device = NULL;
 125}
 126
 127
 128static int kfd_open(struct inode *inode, struct file *filep)
 129{
 130	struct kfd_process *process;
 131	bool is_32bit_user_mode;
 132
 133	if (iminor(inode) != 0)
 134		return -ENODEV;
 135
 136	is_32bit_user_mode = in_compat_syscall();
 137
 138	if (is_32bit_user_mode) {
 139		dev_warn(kfd_device,
 140			"Process %d (32-bit) failed to open /dev/kfd\n"
 141			"32-bit processes are not supported by amdkfd\n",
 142			current->pid);
 143		return -EPERM;
 144	}
 145
 146	process = kfd_create_process(current);
 147	if (IS_ERR(process))
 148		return PTR_ERR(process);
 149
 150	if (kfd_process_init_cwsr_apu(process, filep)) {
 
 
 151		kfd_unref_process(process);
 152		return -EFAULT;
 153	}
 154
 155	/* filep now owns the reference returned by kfd_create_process */
 156	filep->private_data = process;
 157
 158	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 159		process->pasid, process->is_32bit_user_mode);
 160
 161	return 0;
 162}
 163
 164static int kfd_release(struct inode *inode, struct file *filep)
 165{
 166	struct kfd_process *process = filep->private_data;
 167
 168	if (process)
 169		kfd_unref_process(process);
 170
 171	return 0;
 172}
 173
 174static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 175					void *data)
 176{
 177	struct kfd_ioctl_get_version_args *args = data;
 178
 179	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 180	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 181
 182	return 0;
 183}
 184
 185static int set_queue_properties_from_user(struct queue_properties *q_properties,
 186				struct kfd_ioctl_create_queue_args *args)
 187{
 188	/*
 189	 * Repurpose queue percentage to accommodate new features:
 190	 * bit 0-7: queue percentage
 191	 * bit 8-15: pm4_target_xcc
 192	 */
 193	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 194		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 195		return -EINVAL;
 196	}
 197
 198	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 199		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 200		return -EINVAL;
 201	}
 202
 203	if ((args->ring_base_address) &&
 204		(!access_ok((const void __user *) args->ring_base_address,
 205			sizeof(uint64_t)))) {
 206		pr_err("Can't access ring base address\n");
 207		return -EFAULT;
 208	}
 209
 210	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 211		pr_err("Ring size must be a power of 2 or 0\n");
 212		return -EINVAL;
 213	}
 214
 215	if (!access_ok((const void __user *) args->read_pointer_address,
 216			sizeof(uint32_t))) {
 217		pr_err("Can't access read pointer\n");
 218		return -EFAULT;
 219	}
 220
 221	if (!access_ok((const void __user *) args->write_pointer_address,
 222			sizeof(uint32_t))) {
 223		pr_err("Can't access write pointer\n");
 224		return -EFAULT;
 225	}
 226
 227	if (args->eop_buffer_address &&
 228		!access_ok((const void __user *) args->eop_buffer_address,
 229			sizeof(uint32_t))) {
 230		pr_debug("Can't access eop buffer");
 231		return -EFAULT;
 232	}
 233
 234	if (args->ctx_save_restore_address &&
 235		!access_ok((const void __user *) args->ctx_save_restore_address,
 236			sizeof(uint32_t))) {
 237		pr_debug("Can't access ctx save restore buffer");
 238		return -EFAULT;
 239	}
 240
 241	q_properties->is_interop = false;
 242	q_properties->is_gws = false;
 243	q_properties->queue_percent = args->queue_percentage & 0xFF;
 244	/* bit 8-15 are repurposed to be PM4 target XCC */
 245	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 246	q_properties->priority = args->queue_priority;
 247	q_properties->queue_address = args->ring_base_address;
 248	q_properties->queue_size = args->ring_size;
 249	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 250	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 251	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 252	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 253	q_properties->ctx_save_restore_area_address =
 254			args->ctx_save_restore_address;
 255	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 256	q_properties->ctl_stack_size = args->ctl_stack_size;
 257	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 258		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 259		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 260	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 261		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 262	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 263		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 264	else
 265		return -ENOTSUPP;
 266
 267	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 268		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 269	else
 270		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 271
 272	pr_debug("Queue Percentage: %d, %d\n",
 273			q_properties->queue_percent, args->queue_percentage);
 274
 275	pr_debug("Queue Priority: %d, %d\n",
 276			q_properties->priority, args->queue_priority);
 277
 278	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 279			q_properties->queue_address, args->ring_base_address);
 280
 281	pr_debug("Queue Size: 0x%llX, %u\n",
 282			q_properties->queue_size, args->ring_size);
 283
 284	pr_debug("Queue r/w Pointers: %px, %px\n",
 285			q_properties->read_ptr,
 286			q_properties->write_ptr);
 287
 288	pr_debug("Queue Format: %d\n", q_properties->format);
 289
 290	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 291
 292	pr_debug("Queue CTX save area: 0x%llX\n",
 293			q_properties->ctx_save_restore_area_address);
 294
 295	return 0;
 296}
 297
 298static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 299					void *data)
 300{
 301	struct kfd_ioctl_create_queue_args *args = data;
 302	struct kfd_node *dev;
 303	int err = 0;
 304	unsigned int queue_id;
 305	struct kfd_process_device *pdd;
 306	struct queue_properties q_properties;
 307	uint32_t doorbell_offset_in_process = 0;
 308	struct amdgpu_bo *wptr_bo = NULL;
 309
 310	memset(&q_properties, 0, sizeof(struct queue_properties));
 311
 312	pr_debug("Creating queue ioctl\n");
 313
 314	err = set_queue_properties_from_user(&q_properties, args);
 315	if (err)
 316		return err;
 317
 318	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 319
 320	mutex_lock(&p->mutex);
 321
 322	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 323	if (!pdd) {
 324		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 325		err = -EINVAL;
 326		goto err_pdd;
 327	}
 328	dev = pdd->dev;
 329
 330	pdd = kfd_bind_process_to_device(dev, p);
 331	if (IS_ERR(pdd)) {
 332		err = -ESRCH;
 333		goto err_bind_process;
 334	}
 335
 336	if (!pdd->qpd.proc_doorbells) {
 337		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
 338		if (err) {
 339			pr_debug("failed to allocate process doorbells\n");
 340			goto err_bind_process;
 341		}
 342	}
 343
 344	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 345	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 346	 */
 347	if (dev->kfd->shared_resources.enable_mes &&
 348			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 349			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 350		struct amdgpu_bo_va_mapping *wptr_mapping;
 351		struct amdgpu_vm *wptr_vm;
 352
 353		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 354		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 355		if (err)
 356			goto err_wptr_map_gart;
 357
 358		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 359				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 360		amdgpu_bo_unreserve(wptr_vm->root.bo);
 361		if (!wptr_mapping) {
 362			pr_err("Failed to lookup wptr bo\n");
 363			err = -EINVAL;
 364			goto err_wptr_map_gart;
 365		}
 366
 367		wptr_bo = wptr_mapping->bo_va->base.bo;
 368		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 369			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 370			err = -EINVAL;
 371			goto err_wptr_map_gart;
 372		}
 373
 374		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
 375		if (err) {
 376			pr_err("Failed to map wptr bo to GART\n");
 377			goto err_wptr_map_gart;
 378		}
 379	}
 380
 381	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 382			p->pasid,
 383			dev->id);
 384
 385	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 386			NULL, NULL, NULL, &doorbell_offset_in_process);
 387	if (err != 0)
 388		goto err_create_queue;
 389
 390	args->queue_id = queue_id;
 391
 392
 393	/* Return gpu_id as doorbell offset for mmap usage */
 394	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 395	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 396	if (KFD_IS_SOC15(dev))
 397		/* On SOC15 ASICs, include the doorbell offset within the
 398		 * process doorbell frame, which is 2 pages.
 399		 */
 400		args->doorbell_offset |= doorbell_offset_in_process;
 401
 402	mutex_unlock(&p->mutex);
 403
 404	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 405
 406	pr_debug("Ring buffer address == 0x%016llX\n",
 407			args->ring_base_address);
 408
 409	pr_debug("Read ptr address    == 0x%016llX\n",
 410			args->read_pointer_address);
 411
 412	pr_debug("Write ptr address   == 0x%016llX\n",
 413			args->write_pointer_address);
 414
 415	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
 416	return 0;
 417
 418err_create_queue:
 419	if (wptr_bo)
 420		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 421err_wptr_map_gart:
 
 422err_bind_process:
 423err_pdd:
 424	mutex_unlock(&p->mutex);
 425	return err;
 426}
 427
 428static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 429					void *data)
 430{
 431	int retval;
 432	struct kfd_ioctl_destroy_queue_args *args = data;
 433
 434	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 435				args->queue_id,
 436				p->pasid);
 437
 438	mutex_lock(&p->mutex);
 439
 440	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 441
 442	mutex_unlock(&p->mutex);
 443	return retval;
 444}
 445
 446static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 447					void *data)
 448{
 449	int retval;
 450	struct kfd_ioctl_update_queue_args *args = data;
 451	struct queue_properties properties;
 452
 453	/*
 454	 * Repurpose queue percentage to accommodate new features:
 455	 * bit 0-7: queue percentage
 456	 * bit 8-15: pm4_target_xcc
 457	 */
 458	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 459		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 460		return -EINVAL;
 461	}
 462
 463	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 464		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 465		return -EINVAL;
 466	}
 467
 468	if ((args->ring_base_address) &&
 469		(!access_ok((const void __user *) args->ring_base_address,
 470			sizeof(uint64_t)))) {
 471		pr_err("Can't access ring base address\n");
 472		return -EFAULT;
 473	}
 474
 475	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 476		pr_err("Ring size must be a power of 2 or 0\n");
 477		return -EINVAL;
 478	}
 479
 480	properties.queue_address = args->ring_base_address;
 481	properties.queue_size = args->ring_size;
 482	properties.queue_percent = args->queue_percentage & 0xFF;
 483	/* bit 8-15 are repurposed to be PM4 target XCC */
 484	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 485	properties.priority = args->queue_priority;
 486
 487	pr_debug("Updating queue id %d for pasid 0x%x\n",
 488			args->queue_id, p->pasid);
 489
 490	mutex_lock(&p->mutex);
 491
 492	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 493
 494	mutex_unlock(&p->mutex);
 495
 496	return retval;
 497}
 498
 499static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 500					void *data)
 501{
 502	int retval;
 503	const int max_num_cus = 1024;
 504	struct kfd_ioctl_set_cu_mask_args *args = data;
 505	struct mqd_update_info minfo = {0};
 506	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 507	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 508
 509	if ((args->num_cu_mask % 32) != 0) {
 510		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 511				args->num_cu_mask);
 512		return -EINVAL;
 513	}
 514
 515	minfo.cu_mask.count = args->num_cu_mask;
 516	if (minfo.cu_mask.count == 0) {
 517		pr_debug("CU mask cannot be 0");
 518		return -EINVAL;
 519	}
 520
 521	/* To prevent an unreasonably large CU mask size, set an arbitrary
 522	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 523	 * past max_num_cus bits and just use the first max_num_cus bits.
 524	 */
 525	if (minfo.cu_mask.count > max_num_cus) {
 526		pr_debug("CU mask cannot be greater than 1024 bits");
 527		minfo.cu_mask.count = max_num_cus;
 528		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 529	}
 530
 531	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 532	if (!minfo.cu_mask.ptr)
 533		return -ENOMEM;
 534
 535	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 536	if (retval) {
 537		pr_debug("Could not copy CU mask from userspace");
 538		retval = -EFAULT;
 539		goto out;
 540	}
 541
 
 
 542	mutex_lock(&p->mutex);
 543
 544	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 545
 546	mutex_unlock(&p->mutex);
 547
 548out:
 549	kfree(minfo.cu_mask.ptr);
 550	return retval;
 551}
 552
 553static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 554					  struct kfd_process *p, void *data)
 555{
 556	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 557	int r;
 558
 559	mutex_lock(&p->mutex);
 560
 561	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 562			       (void __user *)args->ctl_stack_address,
 563			       &args->ctl_stack_used_size,
 564			       &args->save_area_used_size);
 565
 566	mutex_unlock(&p->mutex);
 567
 568	return r;
 569}
 570
 571static int kfd_ioctl_set_memory_policy(struct file *filep,
 572					struct kfd_process *p, void *data)
 573{
 574	struct kfd_ioctl_set_memory_policy_args *args = data;
 575	int err = 0;
 576	struct kfd_process_device *pdd;
 577	enum cache_policy default_policy, alternate_policy;
 578
 579	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 580	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 581		return -EINVAL;
 582	}
 583
 584	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 585	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 586		return -EINVAL;
 587	}
 588
 589	mutex_lock(&p->mutex);
 590	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 591	if (!pdd) {
 592		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 593		err = -EINVAL;
 594		goto err_pdd;
 595	}
 596
 597	pdd = kfd_bind_process_to_device(pdd->dev, p);
 598	if (IS_ERR(pdd)) {
 599		err = -ESRCH;
 600		goto out;
 601	}
 602
 603	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 604			 ? cache_policy_coherent : cache_policy_noncoherent;
 605
 606	alternate_policy =
 607		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 608		   ? cache_policy_coherent : cache_policy_noncoherent;
 609
 610	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 611				&pdd->qpd,
 612				default_policy,
 613				alternate_policy,
 614				(void __user *)args->alternate_aperture_base,
 615				args->alternate_aperture_size))
 616		err = -EINVAL;
 617
 618out:
 619err_pdd:
 620	mutex_unlock(&p->mutex);
 621
 622	return err;
 623}
 624
 625static int kfd_ioctl_set_trap_handler(struct file *filep,
 626					struct kfd_process *p, void *data)
 627{
 628	struct kfd_ioctl_set_trap_handler_args *args = data;
 629	int err = 0;
 630	struct kfd_process_device *pdd;
 631
 632	mutex_lock(&p->mutex);
 633
 634	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 635	if (!pdd) {
 636		err = -EINVAL;
 637		goto err_pdd;
 638	}
 639
 640	pdd = kfd_bind_process_to_device(pdd->dev, p);
 641	if (IS_ERR(pdd)) {
 642		err = -ESRCH;
 643		goto out;
 644	}
 645
 646	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 647
 648out:
 649err_pdd:
 650	mutex_unlock(&p->mutex);
 651
 652	return err;
 653}
 654
 655static int kfd_ioctl_dbg_register(struct file *filep,
 656				struct kfd_process *p, void *data)
 657{
 658	return -EPERM;
 659}
 660
 661static int kfd_ioctl_dbg_unregister(struct file *filep,
 662				struct kfd_process *p, void *data)
 663{
 664	return -EPERM;
 665}
 666
 667static int kfd_ioctl_dbg_address_watch(struct file *filep,
 668					struct kfd_process *p, void *data)
 669{
 670	return -EPERM;
 671}
 672
 673/* Parse and generate fixed size data structure for wave control */
 674static int kfd_ioctl_dbg_wave_control(struct file *filep,
 675					struct kfd_process *p, void *data)
 676{
 677	return -EPERM;
 678}
 679
 680static int kfd_ioctl_get_clock_counters(struct file *filep,
 681				struct kfd_process *p, void *data)
 682{
 683	struct kfd_ioctl_get_clock_counters_args *args = data;
 684	struct kfd_process_device *pdd;
 685
 686	mutex_lock(&p->mutex);
 687	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 688	mutex_unlock(&p->mutex);
 689	if (pdd)
 690		/* Reading GPU clock counter from KGD */
 691		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 692	else
 693		/* Node without GPU resource */
 694		args->gpu_clock_counter = 0;
 695
 696	/* No access to rdtsc. Using raw monotonic time */
 697	args->cpu_clock_counter = ktime_get_raw_ns();
 698	args->system_clock_counter = ktime_get_boottime_ns();
 699
 700	/* Since the counter is in nano-seconds we use 1GHz frequency */
 701	args->system_clock_freq = 1000000000;
 702
 703	return 0;
 704}
 705
 706
 707static int kfd_ioctl_get_process_apertures(struct file *filp,
 708				struct kfd_process *p, void *data)
 709{
 710	struct kfd_ioctl_get_process_apertures_args *args = data;
 711	struct kfd_process_device_apertures *pAperture;
 712	int i;
 713
 714	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 715
 716	args->num_of_nodes = 0;
 717
 718	mutex_lock(&p->mutex);
 719	/* Run over all pdd of the process */
 720	for (i = 0; i < p->n_pdds; i++) {
 721		struct kfd_process_device *pdd = p->pdds[i];
 722
 723		pAperture =
 724			&args->process_apertures[args->num_of_nodes];
 725		pAperture->gpu_id = pdd->dev->id;
 726		pAperture->lds_base = pdd->lds_base;
 727		pAperture->lds_limit = pdd->lds_limit;
 728		pAperture->gpuvm_base = pdd->gpuvm_base;
 729		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 730		pAperture->scratch_base = pdd->scratch_base;
 731		pAperture->scratch_limit = pdd->scratch_limit;
 732
 733		dev_dbg(kfd_device,
 734			"node id %u\n", args->num_of_nodes);
 735		dev_dbg(kfd_device,
 736			"gpu id %u\n", pdd->dev->id);
 737		dev_dbg(kfd_device,
 738			"lds_base %llX\n", pdd->lds_base);
 739		dev_dbg(kfd_device,
 740			"lds_limit %llX\n", pdd->lds_limit);
 741		dev_dbg(kfd_device,
 742			"gpuvm_base %llX\n", pdd->gpuvm_base);
 743		dev_dbg(kfd_device,
 744			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 745		dev_dbg(kfd_device,
 746			"scratch_base %llX\n", pdd->scratch_base);
 747		dev_dbg(kfd_device,
 748			"scratch_limit %llX\n", pdd->scratch_limit);
 749
 750		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 751			break;
 752	}
 753	mutex_unlock(&p->mutex);
 754
 755	return 0;
 756}
 757
 758static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 759				struct kfd_process *p, void *data)
 760{
 761	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 762	struct kfd_process_device_apertures *pa;
 763	int ret;
 764	int i;
 765
 766	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 767
 768	if (args->num_of_nodes == 0) {
 769		/* Return number of nodes, so that user space can alloacate
 770		 * sufficient memory
 771		 */
 772		mutex_lock(&p->mutex);
 773		args->num_of_nodes = p->n_pdds;
 774		goto out_unlock;
 775	}
 776
 777	/* Fill in process-aperture information for all available
 778	 * nodes, but not more than args->num_of_nodes as that is
 779	 * the amount of memory allocated by user
 780	 */
 781	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 782				args->num_of_nodes), GFP_KERNEL);
 783	if (!pa)
 784		return -ENOMEM;
 785
 786	mutex_lock(&p->mutex);
 787
 788	if (!p->n_pdds) {
 789		args->num_of_nodes = 0;
 790		kfree(pa);
 791		goto out_unlock;
 792	}
 793
 794	/* Run over all pdd of the process */
 795	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 796		struct kfd_process_device *pdd = p->pdds[i];
 797
 798		pa[i].gpu_id = pdd->dev->id;
 799		pa[i].lds_base = pdd->lds_base;
 800		pa[i].lds_limit = pdd->lds_limit;
 801		pa[i].gpuvm_base = pdd->gpuvm_base;
 802		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 803		pa[i].scratch_base = pdd->scratch_base;
 804		pa[i].scratch_limit = pdd->scratch_limit;
 805
 806		dev_dbg(kfd_device,
 807			"gpu id %u\n", pdd->dev->id);
 808		dev_dbg(kfd_device,
 809			"lds_base %llX\n", pdd->lds_base);
 810		dev_dbg(kfd_device,
 811			"lds_limit %llX\n", pdd->lds_limit);
 812		dev_dbg(kfd_device,
 813			"gpuvm_base %llX\n", pdd->gpuvm_base);
 814		dev_dbg(kfd_device,
 815			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 816		dev_dbg(kfd_device,
 817			"scratch_base %llX\n", pdd->scratch_base);
 818		dev_dbg(kfd_device,
 819			"scratch_limit %llX\n", pdd->scratch_limit);
 820	}
 821	mutex_unlock(&p->mutex);
 822
 823	args->num_of_nodes = i;
 824	ret = copy_to_user(
 825			(void __user *)args->kfd_process_device_apertures_ptr,
 826			pa,
 827			(i * sizeof(struct kfd_process_device_apertures)));
 828	kfree(pa);
 829	return ret ? -EFAULT : 0;
 830
 831out_unlock:
 832	mutex_unlock(&p->mutex);
 833	return 0;
 834}
 835
 836static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 837					void *data)
 838{
 839	struct kfd_ioctl_create_event_args *args = data;
 840	int err;
 841
 842	/* For dGPUs the event page is allocated in user mode. The
 843	 * handle is passed to KFD with the first call to this IOCTL
 844	 * through the event_page_offset field.
 845	 */
 846	if (args->event_page_offset) {
 847		mutex_lock(&p->mutex);
 848		err = kfd_kmap_event_page(p, args->event_page_offset);
 849		mutex_unlock(&p->mutex);
 850		if (err)
 851			return err;
 852	}
 853
 854	err = kfd_event_create(filp, p, args->event_type,
 855				args->auto_reset != 0, args->node_id,
 856				&args->event_id, &args->event_trigger_data,
 857				&args->event_page_offset,
 858				&args->event_slot_index);
 859
 860	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 861	return err;
 862}
 863
 864static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 865					void *data)
 866{
 867	struct kfd_ioctl_destroy_event_args *args = data;
 868
 869	return kfd_event_destroy(p, args->event_id);
 870}
 871
 872static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 873				void *data)
 874{
 875	struct kfd_ioctl_set_event_args *args = data;
 876
 877	return kfd_set_event(p, args->event_id);
 878}
 879
 880static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 881				void *data)
 882{
 883	struct kfd_ioctl_reset_event_args *args = data;
 884
 885	return kfd_reset_event(p, args->event_id);
 886}
 887
 888static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 889				void *data)
 890{
 891	struct kfd_ioctl_wait_events_args *args = data;
 892
 893	return kfd_wait_on_events(p, args->num_events,
 894			(void __user *)args->events_ptr,
 895			(args->wait_for_all != 0),
 896			&args->timeout, &args->wait_result);
 897}
 898static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 899					struct kfd_process *p, void *data)
 900{
 901	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 902	struct kfd_process_device *pdd;
 903	struct kfd_node *dev;
 904	long err;
 905
 906	mutex_lock(&p->mutex);
 907	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 908	if (!pdd) {
 909		err = -EINVAL;
 910		goto err_pdd;
 911	}
 912	dev = pdd->dev;
 913
 914	pdd = kfd_bind_process_to_device(dev, p);
 915	if (IS_ERR(pdd)) {
 916		err = PTR_ERR(pdd);
 917		goto bind_process_to_device_fail;
 918	}
 919
 920	pdd->qpd.sh_hidden_private_base = args->va_addr;
 921
 922	mutex_unlock(&p->mutex);
 923
 924	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 925	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 926		dev->kfd2kgd->set_scratch_backing_va(
 927			dev->adev, args->va_addr, pdd->qpd.vmid);
 928
 929	return 0;
 930
 931bind_process_to_device_fail:
 932err_pdd:
 933	mutex_unlock(&p->mutex);
 934	return err;
 935}
 936
 937static int kfd_ioctl_get_tile_config(struct file *filep,
 938		struct kfd_process *p, void *data)
 939{
 940	struct kfd_ioctl_get_tile_config_args *args = data;
 941	struct kfd_process_device *pdd;
 942	struct tile_config config;
 943	int err = 0;
 944
 945	mutex_lock(&p->mutex);
 946	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 947	mutex_unlock(&p->mutex);
 948	if (!pdd)
 949		return -EINVAL;
 950
 951	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 952
 953	args->gb_addr_config = config.gb_addr_config;
 954	args->num_banks = config.num_banks;
 955	args->num_ranks = config.num_ranks;
 956
 957	if (args->num_tile_configs > config.num_tile_configs)
 958		args->num_tile_configs = config.num_tile_configs;
 959	err = copy_to_user((void __user *)args->tile_config_ptr,
 960			config.tile_config_ptr,
 961			args->num_tile_configs * sizeof(uint32_t));
 962	if (err) {
 963		args->num_tile_configs = 0;
 964		return -EFAULT;
 965	}
 966
 967	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 968		args->num_macro_tile_configs =
 969				config.num_macro_tile_configs;
 970	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 971			config.macro_tile_config_ptr,
 972			args->num_macro_tile_configs * sizeof(uint32_t));
 973	if (err) {
 974		args->num_macro_tile_configs = 0;
 975		return -EFAULT;
 976	}
 977
 978	return 0;
 979}
 980
 981static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 982				void *data)
 983{
 984	struct kfd_ioctl_acquire_vm_args *args = data;
 985	struct kfd_process_device *pdd;
 986	struct file *drm_file;
 987	int ret;
 988
 989	drm_file = fget(args->drm_fd);
 990	if (!drm_file)
 991		return -EINVAL;
 992
 993	mutex_lock(&p->mutex);
 994	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 995	if (!pdd) {
 996		ret = -EINVAL;
 997		goto err_pdd;
 998	}
 999
1000	if (pdd->drm_file) {
1001		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002		goto err_drm_file;
1003	}
1004
1005	ret = kfd_process_device_init_vm(pdd, drm_file);
1006	if (ret)
1007		goto err_unlock;
1008
1009	/* On success, the PDD keeps the drm_file reference */
1010	mutex_unlock(&p->mutex);
1011
1012	return 0;
1013
1014err_unlock:
1015err_pdd:
1016err_drm_file:
1017	mutex_unlock(&p->mutex);
1018	fput(drm_file);
1019	return ret;
1020}
1021
1022bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023{
1024	if (dev->kfd->adev->debug_largebar) {
1025		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026		return true;
1027	}
1028
 
 
 
1029	if (dev->local_mem_info.local_mem_size_private == 0 &&
1030	    dev->local_mem_info.local_mem_size_public > 0)
1031		return true;
1032
1033	if (dev->local_mem_info.local_mem_size_public == 0 &&
1034	    dev->kfd->adev->gmc.is_app_apu) {
1035		pr_debug("APP APU, Consider like a large bar system\n");
1036		return true;
1037	}
1038
1039	return false;
1040}
1041
1042static int kfd_ioctl_get_available_memory(struct file *filep,
1043					  struct kfd_process *p, void *data)
1044{
1045	struct kfd_ioctl_get_available_memory_args *args = data;
1046	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048	if (!pdd)
1049		return -EINVAL;
1050	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051							pdd->dev->node_id);
1052	kfd_unlock_pdd(pdd);
1053	return 0;
1054}
1055
1056static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057					struct kfd_process *p, void *data)
1058{
1059	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060	struct kfd_process_device *pdd;
1061	void *mem;
1062	struct kfd_node *dev;
1063	int idr_handle;
1064	long err;
1065	uint64_t offset = args->mmap_offset;
1066	uint32_t flags = args->flags;
1067
1068	if (args->size == 0)
1069		return -EINVAL;
1070
1071#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072	/* Flush pending deferred work to avoid racing with deferred actions
1073	 * from previous memory map changes (e.g. munmap).
1074	 */
1075	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076	mutex_lock(&p->svms.lock);
1077	mmap_write_unlock(current->mm);
1078	if (interval_tree_iter_first(&p->svms.objects,
1079				     args->va_addr >> PAGE_SHIFT,
1080				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081		pr_err("Address: 0x%llx already allocated by SVM\n",
1082			args->va_addr);
1083		mutex_unlock(&p->svms.lock);
1084		return -EADDRINUSE;
1085	}
1086
1087	/* When register user buffer check if it has been registered by svm by
1088	 * buffer cpu virtual address.
1089	 */
1090	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091	    interval_tree_iter_first(&p->svms.objects,
1092				     args->mmap_offset >> PAGE_SHIFT,
1093				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1094		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095			args->mmap_offset);
1096		mutex_unlock(&p->svms.lock);
1097		return -EADDRINUSE;
1098	}
1099
1100	mutex_unlock(&p->svms.lock);
1101#endif
1102	mutex_lock(&p->mutex);
1103	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104	if (!pdd) {
1105		err = -EINVAL;
1106		goto err_pdd;
1107	}
1108
1109	dev = pdd->dev;
1110
1111	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113		!kfd_dev_is_large_bar(dev)) {
1114		pr_err("Alloc host visible vram on small bar is not allowed\n");
1115		err = -EINVAL;
1116		goto err_large_bar;
1117	}
1118
1119	pdd = kfd_bind_process_to_device(dev, p);
1120	if (IS_ERR(pdd)) {
1121		err = PTR_ERR(pdd);
1122		goto err_unlock;
1123	}
1124
1125	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127			err = -EINVAL;
1128			goto err_unlock;
1129		}
1130		offset = kfd_get_process_doorbells(pdd);
1131		if (!offset) {
1132			err = -ENOMEM;
1133			goto err_unlock;
1134		}
1135	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136		if (args->size != PAGE_SIZE) {
1137			err = -EINVAL;
1138			goto err_unlock;
1139		}
1140		offset = dev->adev->rmmio_remap.bus_addr;
1141		if (!offset) {
1142			err = -ENOMEM;
1143			goto err_unlock;
1144		}
1145	}
1146
1147	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148		dev->adev, args->va_addr, args->size,
1149		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150		flags, false);
1151
1152	if (err)
1153		goto err_unlock;
1154
1155	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156	if (idr_handle < 0) {
1157		err = -EFAULT;
1158		goto err_free;
1159	}
1160
1161	/* Update the VRAM usage count */
1162	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163		uint64_t size = args->size;
1164
1165		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166			size >>= 1;
1167		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168	}
1169
1170	mutex_unlock(&p->mutex);
1171
1172	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173	args->mmap_offset = offset;
1174
1175	/* MMIO is mapped through kfd device
1176	 * Generate a kfd mmap offset
1177	 */
1178	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180					| KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182	return 0;
1183
1184err_free:
1185	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186					       pdd->drm_priv, NULL);
1187err_unlock:
1188err_pdd:
1189err_large_bar:
1190	mutex_unlock(&p->mutex);
1191	return err;
1192}
1193
1194static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195					struct kfd_process *p, void *data)
1196{
1197	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198	struct kfd_process_device *pdd;
1199	void *mem;
1200	int ret;
1201	uint64_t size = 0;
1202
1203	mutex_lock(&p->mutex);
1204	/*
1205	 * Safeguard to prevent user space from freeing signal BO.
1206	 * It will be freed at process termination.
1207	 */
1208	if (p->signal_handle && (p->signal_handle == args->handle)) {
1209		pr_err("Free signal BO is not allowed\n");
1210		ret = -EPERM;
1211		goto err_unlock;
1212	}
1213
1214	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215	if (!pdd) {
1216		pr_err("Process device data doesn't exist\n");
1217		ret = -EINVAL;
1218		goto err_pdd;
1219	}
1220
1221	mem = kfd_process_device_translate_handle(
1222		pdd, GET_IDR_HANDLE(args->handle));
1223	if (!mem) {
1224		ret = -EINVAL;
1225		goto err_unlock;
1226	}
1227
1228	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231	/* If freeing the buffer failed, leave the handle in place for
1232	 * clean-up during process tear-down.
1233	 */
1234	if (!ret)
1235		kfd_process_device_remove_obj_handle(
1236			pdd, GET_IDR_HANDLE(args->handle));
1237
1238	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240err_unlock:
1241err_pdd:
1242	mutex_unlock(&p->mutex);
1243	return ret;
1244}
1245
1246static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247					struct kfd_process *p, void *data)
1248{
1249	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250	struct kfd_process_device *pdd, *peer_pdd;
1251	void *mem;
1252	struct kfd_node *dev;
1253	long err = 0;
1254	int i;
1255	uint32_t *devices_arr = NULL;
1256
1257	if (!args->n_devices) {
1258		pr_debug("Device IDs array empty\n");
1259		return -EINVAL;
1260	}
1261	if (args->n_success > args->n_devices) {
1262		pr_debug("n_success exceeds n_devices\n");
1263		return -EINVAL;
1264	}
1265
1266	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267				    GFP_KERNEL);
1268	if (!devices_arr)
1269		return -ENOMEM;
1270
1271	err = copy_from_user(devices_arr,
1272			     (void __user *)args->device_ids_array_ptr,
1273			     args->n_devices * sizeof(*devices_arr));
1274	if (err != 0) {
1275		err = -EFAULT;
1276		goto copy_from_user_failed;
1277	}
1278
1279	mutex_lock(&p->mutex);
1280	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281	if (!pdd) {
1282		err = -EINVAL;
1283		goto get_process_device_data_failed;
1284	}
1285	dev = pdd->dev;
1286
1287	pdd = kfd_bind_process_to_device(dev, p);
1288	if (IS_ERR(pdd)) {
1289		err = PTR_ERR(pdd);
1290		goto bind_process_to_device_failed;
1291	}
1292
1293	mem = kfd_process_device_translate_handle(pdd,
1294						GET_IDR_HANDLE(args->handle));
1295	if (!mem) {
1296		err = -ENOMEM;
1297		goto get_mem_obj_from_handle_failed;
1298	}
1299
1300	for (i = args->n_success; i < args->n_devices; i++) {
1301		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302		if (!peer_pdd) {
1303			pr_debug("Getting device by id failed for 0x%x\n",
1304				 devices_arr[i]);
1305			err = -EINVAL;
1306			goto get_mem_obj_from_handle_failed;
1307		}
1308
1309		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310		if (IS_ERR(peer_pdd)) {
1311			err = PTR_ERR(peer_pdd);
1312			goto get_mem_obj_from_handle_failed;
1313		}
1314
1315		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317			peer_pdd->drm_priv);
1318		if (err) {
1319			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321			dev_err(dev->adev->dev,
1322			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323			       pci_domain_nr(pdev->bus),
1324			       pdev->bus->number,
1325			       PCI_SLOT(pdev->devfn),
1326			       PCI_FUNC(pdev->devfn),
1327			       ((struct kgd_mem *)mem)->domain);
1328			goto map_memory_to_gpu_failed;
1329		}
1330		args->n_success = i+1;
1331	}
1332
 
 
1333	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1334	if (err) {
1335		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336		goto sync_memory_failed;
1337	}
1338
1339	mutex_unlock(&p->mutex);
1340
1341	/* Flush TLBs after waiting for the page table updates to complete */
1342	for (i = 0; i < args->n_devices; i++) {
1343		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344		if (WARN_ON_ONCE(!peer_pdd))
1345			continue;
1346		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347	}
1348	kfree(devices_arr);
1349
1350	return err;
1351
1352get_process_device_data_failed:
1353bind_process_to_device_failed:
1354get_mem_obj_from_handle_failed:
1355map_memory_to_gpu_failed:
1356sync_memory_failed:
1357	mutex_unlock(&p->mutex);
1358copy_from_user_failed:
 
1359	kfree(devices_arr);
1360
1361	return err;
1362}
1363
1364static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365					struct kfd_process *p, void *data)
1366{
1367	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368	struct kfd_process_device *pdd, *peer_pdd;
1369	void *mem;
1370	long err = 0;
1371	uint32_t *devices_arr = NULL, i;
1372	bool flush_tlb;
1373
1374	if (!args->n_devices) {
1375		pr_debug("Device IDs array empty\n");
1376		return -EINVAL;
1377	}
1378	if (args->n_success > args->n_devices) {
1379		pr_debug("n_success exceeds n_devices\n");
1380		return -EINVAL;
1381	}
1382
1383	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384				    GFP_KERNEL);
1385	if (!devices_arr)
1386		return -ENOMEM;
1387
1388	err = copy_from_user(devices_arr,
1389			     (void __user *)args->device_ids_array_ptr,
1390			     args->n_devices * sizeof(*devices_arr));
1391	if (err != 0) {
1392		err = -EFAULT;
1393		goto copy_from_user_failed;
1394	}
1395
1396	mutex_lock(&p->mutex);
1397	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1398	if (!pdd) {
1399		err = -EINVAL;
1400		goto bind_process_to_device_failed;
1401	}
1402
1403	mem = kfd_process_device_translate_handle(pdd,
1404						GET_IDR_HANDLE(args->handle));
1405	if (!mem) {
1406		err = -ENOMEM;
1407		goto get_mem_obj_from_handle_failed;
1408	}
1409
1410	for (i = args->n_success; i < args->n_devices; i++) {
1411		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412		if (!peer_pdd) {
1413			err = -EINVAL;
1414			goto get_mem_obj_from_handle_failed;
1415		}
1416		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418		if (err) {
1419			pr_err("Failed to unmap from gpu %d/%d\n",
1420			       i, args->n_devices);
1421			goto unmap_memory_from_gpu_failed;
1422		}
1423		args->n_success = i+1;
1424	}
 
1425
1426	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427	if (flush_tlb) {
1428		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429				(struct kgd_mem *) mem, true);
1430		if (err) {
1431			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432			goto sync_memory_failed;
1433		}
1434	}
1435
1436	/* Flush TLBs after waiting for the page table updates to complete */
1437	for (i = 0; i < args->n_devices; i++) {
1438		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439		if (WARN_ON_ONCE(!peer_pdd))
1440			continue;
1441		if (flush_tlb)
1442			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1443
1444		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1446		if (err)
1447			goto sync_memory_failed;
1448	}
1449
1450	mutex_unlock(&p->mutex);
1451
1452	kfree(devices_arr);
1453
1454	return 0;
1455
1456bind_process_to_device_failed:
1457get_mem_obj_from_handle_failed:
1458unmap_memory_from_gpu_failed:
1459sync_memory_failed:
1460	mutex_unlock(&p->mutex);
1461copy_from_user_failed:
 
1462	kfree(devices_arr);
1463	return err;
1464}
1465
1466static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1467		struct kfd_process *p, void *data)
1468{
1469	int retval;
1470	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1471	struct queue *q;
1472	struct kfd_node *dev;
1473
1474	mutex_lock(&p->mutex);
1475	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1476
1477	if (q) {
1478		dev = q->device;
1479	} else {
1480		retval = -EINVAL;
1481		goto out_unlock;
1482	}
1483
1484	if (!dev->gws) {
1485		retval = -ENODEV;
1486		goto out_unlock;
1487	}
1488
1489	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1490		retval = -ENODEV;
1491		goto out_unlock;
1492	}
1493
1494	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1495				      kfd_dbg_has_cwsr_workaround(dev))) {
1496		retval = -EBUSY;
1497		goto out_unlock;
1498	}
1499
1500	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1501	mutex_unlock(&p->mutex);
1502
1503	args->first_gws = 0;
1504	return retval;
1505
1506out_unlock:
1507	mutex_unlock(&p->mutex);
1508	return retval;
1509}
1510
1511static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1512		struct kfd_process *p, void *data)
1513{
1514	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1515	struct kfd_node *dev = NULL;
1516	struct amdgpu_device *dmabuf_adev;
1517	void *metadata_buffer = NULL;
1518	uint32_t flags;
1519	int8_t xcp_id;
1520	unsigned int i;
1521	int r;
1522
1523	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1524	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1525		if (dev)
1526			break;
1527	if (!dev)
1528		return -EINVAL;
1529
1530	if (args->metadata_ptr) {
1531		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1532		if (!metadata_buffer)
1533			return -ENOMEM;
1534	}
1535
1536	/* Get dmabuf info from KGD */
1537	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1538					  &dmabuf_adev, &args->size,
1539					  metadata_buffer, args->metadata_size,
1540					  &args->metadata_size, &flags, &xcp_id);
1541	if (r)
1542		goto exit;
1543
1544	if (xcp_id >= 0)
1545		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1546	else
1547		args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
 
 
 
1548	args->flags = flags;
1549
1550	/* Copy metadata buffer to user mode */
1551	if (metadata_buffer) {
1552		r = copy_to_user((void __user *)args->metadata_ptr,
1553				 metadata_buffer, args->metadata_size);
1554		if (r != 0)
1555			r = -EFAULT;
1556	}
1557
1558exit:
1559	kfree(metadata_buffer);
1560
1561	return r;
1562}
1563
1564static int kfd_ioctl_import_dmabuf(struct file *filep,
1565				   struct kfd_process *p, void *data)
1566{
1567	struct kfd_ioctl_import_dmabuf_args *args = data;
1568	struct kfd_process_device *pdd;
 
1569	int idr_handle;
1570	uint64_t size;
1571	void *mem;
1572	int r;
1573
 
 
 
 
1574	mutex_lock(&p->mutex);
1575	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1576	if (!pdd) {
1577		r = -EINVAL;
1578		goto err_unlock;
1579	}
1580
1581	pdd = kfd_bind_process_to_device(pdd->dev, p);
1582	if (IS_ERR(pdd)) {
1583		r = PTR_ERR(pdd);
1584		goto err_unlock;
1585	}
1586
1587	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1588						 args->va_addr, pdd->drm_priv,
1589						 (struct kgd_mem **)&mem, &size,
1590						 NULL);
1591	if (r)
1592		goto err_unlock;
1593
1594	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1595	if (idr_handle < 0) {
1596		r = -EFAULT;
1597		goto err_free;
1598	}
1599
1600	mutex_unlock(&p->mutex);
 
1601
1602	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1603
1604	return 0;
1605
1606err_free:
1607	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1608					       pdd->drm_priv, NULL);
1609err_unlock:
1610	mutex_unlock(&p->mutex);
 
1611	return r;
1612}
1613
1614static int kfd_ioctl_export_dmabuf(struct file *filep,
1615				   struct kfd_process *p, void *data)
1616{
1617	struct kfd_ioctl_export_dmabuf_args *args = data;
1618	struct kfd_process_device *pdd;
1619	struct dma_buf *dmabuf;
1620	struct kfd_node *dev;
1621	void *mem;
1622	int ret = 0;
1623
1624	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1625	if (!dev)
1626		return -EINVAL;
1627
1628	mutex_lock(&p->mutex);
1629
1630	pdd = kfd_get_process_device_data(dev, p);
1631	if (!pdd) {
1632		ret = -EINVAL;
1633		goto err_unlock;
1634	}
1635
1636	mem = kfd_process_device_translate_handle(pdd,
1637						GET_IDR_HANDLE(args->handle));
1638	if (!mem) {
1639		ret = -EINVAL;
1640		goto err_unlock;
1641	}
1642
1643	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1644	mutex_unlock(&p->mutex);
1645	if (ret)
1646		goto err_out;
1647
1648	ret = dma_buf_fd(dmabuf, args->flags);
1649	if (ret < 0) {
1650		dma_buf_put(dmabuf);
1651		goto err_out;
1652	}
1653	/* dma_buf_fd assigns the reference count to the fd, no need to
1654	 * put the reference here.
1655	 */
1656	args->dmabuf_fd = ret;
1657
1658	return 0;
1659
1660err_unlock:
1661	mutex_unlock(&p->mutex);
1662err_out:
1663	return ret;
1664}
1665
1666/* Handle requests for watching SMI events */
1667static int kfd_ioctl_smi_events(struct file *filep,
1668				struct kfd_process *p, void *data)
1669{
1670	struct kfd_ioctl_smi_events_args *args = data;
1671	struct kfd_process_device *pdd;
1672
1673	mutex_lock(&p->mutex);
1674
1675	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1676	mutex_unlock(&p->mutex);
1677	if (!pdd)
1678		return -EINVAL;
1679
1680	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1681}
1682
1683#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1684
1685static int kfd_ioctl_set_xnack_mode(struct file *filep,
1686				    struct kfd_process *p, void *data)
1687{
1688	struct kfd_ioctl_set_xnack_mode_args *args = data;
1689	int r = 0;
1690
1691	mutex_lock(&p->mutex);
1692	if (args->xnack_enabled >= 0) {
1693		if (!list_empty(&p->pqm.queues)) {
1694			pr_debug("Process has user queues running\n");
1695			r = -EBUSY;
1696			goto out_unlock;
1697		}
1698
1699		if (p->xnack_enabled == args->xnack_enabled)
1700			goto out_unlock;
1701
1702		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1703			r = -EPERM;
1704			goto out_unlock;
1705		}
1706
1707		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1708	} else {
1709		args->xnack_enabled = p->xnack_enabled;
1710	}
1711
1712out_unlock:
1713	mutex_unlock(&p->mutex);
1714
1715	return r;
1716}
1717
1718static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1719{
1720	struct kfd_ioctl_svm_args *args = data;
1721	int r = 0;
1722
1723	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1724		 args->start_addr, args->size, args->op, args->nattr);
1725
1726	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1727		return -EINVAL;
1728	if (!args->start_addr || !args->size)
1729		return -EINVAL;
1730
1731	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1732		      args->attrs);
1733
1734	return r;
1735}
1736#else
1737static int kfd_ioctl_set_xnack_mode(struct file *filep,
1738				    struct kfd_process *p, void *data)
1739{
1740	return -EPERM;
1741}
1742static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1743{
1744	return -EPERM;
1745}
1746#endif
1747
1748static int criu_checkpoint_process(struct kfd_process *p,
1749			     uint8_t __user *user_priv_data,
1750			     uint64_t *priv_offset)
1751{
1752	struct kfd_criu_process_priv_data process_priv;
1753	int ret;
1754
1755	memset(&process_priv, 0, sizeof(process_priv));
1756
1757	process_priv.version = KFD_CRIU_PRIV_VERSION;
1758	/* For CR, we don't consider negative xnack mode which is used for
1759	 * querying without changing it, here 0 simply means disabled and 1
1760	 * means enabled so retry for finding a valid PTE.
1761	 */
1762	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1763
1764	ret = copy_to_user(user_priv_data + *priv_offset,
1765				&process_priv, sizeof(process_priv));
1766
1767	if (ret) {
1768		pr_err("Failed to copy process information to user\n");
1769		ret = -EFAULT;
1770	}
1771
1772	*priv_offset += sizeof(process_priv);
1773	return ret;
1774}
1775
1776static int criu_checkpoint_devices(struct kfd_process *p,
1777			     uint32_t num_devices,
1778			     uint8_t __user *user_addr,
1779			     uint8_t __user *user_priv_data,
1780			     uint64_t *priv_offset)
1781{
1782	struct kfd_criu_device_priv_data *device_priv = NULL;
1783	struct kfd_criu_device_bucket *device_buckets = NULL;
1784	int ret = 0, i;
1785
1786	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1787	if (!device_buckets) {
1788		ret = -ENOMEM;
1789		goto exit;
1790	}
1791
1792	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1793	if (!device_priv) {
1794		ret = -ENOMEM;
1795		goto exit;
1796	}
1797
1798	for (i = 0; i < num_devices; i++) {
1799		struct kfd_process_device *pdd = p->pdds[i];
1800
1801		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1802		device_buckets[i].actual_gpu_id = pdd->dev->id;
1803
1804		/*
1805		 * priv_data does not contain useful information for now and is reserved for
1806		 * future use, so we do not set its contents.
1807		 */
1808	}
1809
1810	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1811	if (ret) {
1812		pr_err("Failed to copy device information to user\n");
1813		ret = -EFAULT;
1814		goto exit;
1815	}
1816
1817	ret = copy_to_user(user_priv_data + *priv_offset,
1818			   device_priv,
1819			   num_devices * sizeof(*device_priv));
1820	if (ret) {
1821		pr_err("Failed to copy device information to user\n");
1822		ret = -EFAULT;
1823	}
1824	*priv_offset += num_devices * sizeof(*device_priv);
1825
1826exit:
1827	kvfree(device_buckets);
1828	kvfree(device_priv);
1829	return ret;
1830}
1831
1832static uint32_t get_process_num_bos(struct kfd_process *p)
1833{
1834	uint32_t num_of_bos = 0;
1835	int i;
1836
1837	/* Run over all PDDs of the process */
1838	for (i = 0; i < p->n_pdds; i++) {
1839		struct kfd_process_device *pdd = p->pdds[i];
1840		void *mem;
1841		int id;
1842
1843		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1844			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1845
1846			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1847				num_of_bos++;
1848		}
1849	}
1850	return num_of_bos;
1851}
1852
1853static int criu_get_prime_handle(struct kgd_mem *mem,
1854				 int flags, u32 *shared_fd)
1855{
1856	struct dma_buf *dmabuf;
1857	int ret;
1858
1859	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1860	if (ret) {
 
1861		pr_err("dmabuf export failed for the BO\n");
1862		return ret;
1863	}
1864
1865	ret = dma_buf_fd(dmabuf, flags);
1866	if (ret < 0) {
1867		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1868		goto out_free_dmabuf;
1869	}
1870
1871	*shared_fd = ret;
1872	return 0;
1873
1874out_free_dmabuf:
1875	dma_buf_put(dmabuf);
1876	return ret;
1877}
1878
1879static int criu_checkpoint_bos(struct kfd_process *p,
1880			       uint32_t num_bos,
1881			       uint8_t __user *user_bos,
1882			       uint8_t __user *user_priv_data,
1883			       uint64_t *priv_offset)
1884{
1885	struct kfd_criu_bo_bucket *bo_buckets;
1886	struct kfd_criu_bo_priv_data *bo_privs;
1887	int ret = 0, pdd_index, bo_index = 0, id;
1888	void *mem;
1889
1890	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1891	if (!bo_buckets)
1892		return -ENOMEM;
1893
1894	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1895	if (!bo_privs) {
1896		ret = -ENOMEM;
1897		goto exit;
1898	}
1899
1900	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1901		struct kfd_process_device *pdd = p->pdds[pdd_index];
1902		struct amdgpu_bo *dumper_bo;
1903		struct kgd_mem *kgd_mem;
1904
1905		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1906			struct kfd_criu_bo_bucket *bo_bucket;
1907			struct kfd_criu_bo_priv_data *bo_priv;
1908			int i, dev_idx = 0;
1909
1910			if (!mem) {
1911				ret = -ENOMEM;
1912				goto exit;
1913			}
1914
1915			kgd_mem = (struct kgd_mem *)mem;
1916			dumper_bo = kgd_mem->bo;
1917
1918			/* Skip checkpointing BOs that are used for Trap handler
1919			 * code and state. Currently, these BOs have a VA that
1920			 * is less GPUVM Base
1921			 */
1922			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1923				continue;
1924
1925			bo_bucket = &bo_buckets[bo_index];
1926			bo_priv = &bo_privs[bo_index];
1927
1928			bo_bucket->gpu_id = pdd->user_gpu_id;
1929			bo_bucket->addr = (uint64_t)kgd_mem->va;
1930			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1931			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1932			bo_priv->idr_handle = id;
1933
1934			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1935				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1936								&bo_priv->user_addr);
1937				if (ret) {
1938					pr_err("Failed to obtain user address for user-pointer bo\n");
1939					goto exit;
1940				}
1941			}
1942			if (bo_bucket->alloc_flags
1943			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1944				ret = criu_get_prime_handle(kgd_mem,
1945						bo_bucket->alloc_flags &
1946						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1947						&bo_bucket->dmabuf_fd);
1948				if (ret)
1949					goto exit;
1950			} else {
1951				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1952			}
1953
1954			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1955				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1956					KFD_MMAP_GPU_ID(pdd->dev->id);
1957			else if (bo_bucket->alloc_flags &
1958				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1959				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1960					KFD_MMAP_GPU_ID(pdd->dev->id);
1961			else
1962				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1963
1964			for (i = 0; i < p->n_pdds; i++) {
1965				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1966					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1967			}
1968
1969			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1970					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1971					bo_bucket->size,
1972					bo_bucket->addr,
1973					bo_bucket->offset,
1974					bo_bucket->gpu_id,
1975					bo_bucket->alloc_flags,
1976					bo_priv->idr_handle);
1977			bo_index++;
1978		}
1979	}
1980
1981	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1982	if (ret) {
1983		pr_err("Failed to copy BO information to user\n");
1984		ret = -EFAULT;
1985		goto exit;
1986	}
1987
1988	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1989	if (ret) {
1990		pr_err("Failed to copy BO priv information to user\n");
1991		ret = -EFAULT;
1992		goto exit;
1993	}
1994
1995	*priv_offset += num_bos * sizeof(*bo_privs);
1996
1997exit:
1998	while (ret && bo_index--) {
1999		if (bo_buckets[bo_index].alloc_flags
2000		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2001			close_fd(bo_buckets[bo_index].dmabuf_fd);
2002	}
2003
2004	kvfree(bo_buckets);
2005	kvfree(bo_privs);
2006	return ret;
2007}
2008
2009static int criu_get_process_object_info(struct kfd_process *p,
2010					uint32_t *num_devices,
2011					uint32_t *num_bos,
2012					uint32_t *num_objects,
2013					uint64_t *objs_priv_size)
2014{
2015	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2016	uint32_t num_queues, num_events, num_svm_ranges;
2017	int ret;
2018
2019	*num_devices = p->n_pdds;
2020	*num_bos = get_process_num_bos(p);
2021
2022	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2023	if (ret)
2024		return ret;
2025
2026	num_events = kfd_get_num_events(p);
2027
2028	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2029	if (ret)
2030		return ret;
2031
2032	*num_objects = num_queues + num_events + num_svm_ranges;
2033
2034	if (objs_priv_size) {
2035		priv_size = sizeof(struct kfd_criu_process_priv_data);
2036		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2037		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2038		priv_size += queues_priv_data_size;
2039		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2040		priv_size += svm_priv_data_size;
2041		*objs_priv_size = priv_size;
2042	}
2043	return 0;
2044}
2045
2046static int criu_checkpoint(struct file *filep,
2047			   struct kfd_process *p,
2048			   struct kfd_ioctl_criu_args *args)
2049{
2050	int ret;
2051	uint32_t num_devices, num_bos, num_objects;
2052	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2053
2054	if (!args->devices || !args->bos || !args->priv_data)
2055		return -EINVAL;
2056
2057	mutex_lock(&p->mutex);
2058
2059	if (!p->n_pdds) {
2060		pr_err("No pdd for given process\n");
2061		ret = -ENODEV;
2062		goto exit_unlock;
2063	}
2064
2065	/* Confirm all process queues are evicted */
2066	if (!p->queues_paused) {
2067		pr_err("Cannot dump process when queues are not in evicted state\n");
2068		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2069		ret = -EINVAL;
2070		goto exit_unlock;
2071	}
2072
2073	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2074	if (ret)
2075		goto exit_unlock;
2076
2077	if (num_devices != args->num_devices ||
2078	    num_bos != args->num_bos ||
2079	    num_objects != args->num_objects ||
2080	    priv_size != args->priv_data_size) {
2081
2082		ret = -EINVAL;
2083		goto exit_unlock;
2084	}
2085
2086	/* each function will store private data inside priv_data and adjust priv_offset */
2087	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2088	if (ret)
2089		goto exit_unlock;
2090
2091	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2092				(uint8_t __user *)args->priv_data, &priv_offset);
2093	if (ret)
2094		goto exit_unlock;
2095
2096	/* Leave room for BOs in the private data. They need to be restored
2097	 * before events, but we checkpoint them last to simplify the error
2098	 * handling.
2099	 */
2100	bo_priv_offset = priv_offset;
2101	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2102
2103	if (num_objects) {
2104		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2105						 &priv_offset);
2106		if (ret)
2107			goto exit_unlock;
2108
2109		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2110						 &priv_offset);
2111		if (ret)
2112			goto exit_unlock;
2113
2114		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2115		if (ret)
2116			goto exit_unlock;
2117	}
2118
2119	/* This must be the last thing in this function that can fail.
2120	 * Otherwise we leak dmabuf file descriptors.
2121	 */
2122	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2123			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2124
2125exit_unlock:
2126	mutex_unlock(&p->mutex);
2127	if (ret)
2128		pr_err("Failed to dump CRIU ret:%d\n", ret);
2129	else
2130		pr_debug("CRIU dump ret:%d\n", ret);
2131
2132	return ret;
2133}
2134
2135static int criu_restore_process(struct kfd_process *p,
2136				struct kfd_ioctl_criu_args *args,
2137				uint64_t *priv_offset,
2138				uint64_t max_priv_data_size)
2139{
2140	int ret = 0;
2141	struct kfd_criu_process_priv_data process_priv;
2142
2143	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2144		return -EINVAL;
2145
2146	ret = copy_from_user(&process_priv,
2147				(void __user *)(args->priv_data + *priv_offset),
2148				sizeof(process_priv));
2149	if (ret) {
2150		pr_err("Failed to copy process private information from user\n");
2151		ret = -EFAULT;
2152		goto exit;
2153	}
2154	*priv_offset += sizeof(process_priv);
2155
2156	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2157		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2158			process_priv.version, KFD_CRIU_PRIV_VERSION);
2159		return -EINVAL;
2160	}
2161
2162	pr_debug("Setting XNACK mode\n");
2163	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2164		pr_err("xnack mode cannot be set\n");
2165		ret = -EPERM;
2166		goto exit;
2167	} else {
2168		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2169		p->xnack_enabled = process_priv.xnack_mode;
2170	}
2171
2172exit:
2173	return ret;
2174}
2175
2176static int criu_restore_devices(struct kfd_process *p,
2177				struct kfd_ioctl_criu_args *args,
2178				uint64_t *priv_offset,
2179				uint64_t max_priv_data_size)
2180{
2181	struct kfd_criu_device_bucket *device_buckets;
2182	struct kfd_criu_device_priv_data *device_privs;
2183	int ret = 0;
2184	uint32_t i;
2185
2186	if (args->num_devices != p->n_pdds)
2187		return -EINVAL;
2188
2189	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2190		return -EINVAL;
2191
2192	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2193	if (!device_buckets)
2194		return -ENOMEM;
2195
2196	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2197				args->num_devices * sizeof(*device_buckets));
2198	if (ret) {
2199		pr_err("Failed to copy devices buckets from user\n");
2200		ret = -EFAULT;
2201		goto exit;
2202	}
2203
2204	for (i = 0; i < args->num_devices; i++) {
2205		struct kfd_node *dev;
2206		struct kfd_process_device *pdd;
2207		struct file *drm_file;
2208
2209		/* device private data is not currently used */
2210
2211		if (!device_buckets[i].user_gpu_id) {
2212			pr_err("Invalid user gpu_id\n");
2213			ret = -EINVAL;
2214			goto exit;
2215		}
2216
2217		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2218		if (!dev) {
2219			pr_err("Failed to find device with gpu_id = %x\n",
2220				device_buckets[i].actual_gpu_id);
2221			ret = -EINVAL;
2222			goto exit;
2223		}
2224
2225		pdd = kfd_get_process_device_data(dev, p);
2226		if (!pdd) {
2227			pr_err("Failed to get pdd for gpu_id = %x\n",
2228					device_buckets[i].actual_gpu_id);
2229			ret = -EINVAL;
2230			goto exit;
2231		}
2232		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2233
2234		drm_file = fget(device_buckets[i].drm_fd);
2235		if (!drm_file) {
2236			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2237				device_buckets[i].drm_fd);
2238			ret = -EINVAL;
2239			goto exit;
2240		}
2241
2242		if (pdd->drm_file) {
2243			ret = -EINVAL;
2244			goto exit;
2245		}
2246
2247		/* create the vm using render nodes for kfd pdd */
2248		if (kfd_process_device_init_vm(pdd, drm_file)) {
2249			pr_err("could not init vm for given pdd\n");
2250			/* On success, the PDD keeps the drm_file reference */
2251			fput(drm_file);
2252			ret = -EINVAL;
2253			goto exit;
2254		}
2255		/*
2256		 * pdd now already has the vm bound to render node so below api won't create a new
2257		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2258		 * for iommu v2 binding  and runtime pm.
2259		 */
2260		pdd = kfd_bind_process_to_device(dev, p);
2261		if (IS_ERR(pdd)) {
2262			ret = PTR_ERR(pdd);
2263			goto exit;
2264		}
2265
2266		if (!pdd->qpd.proc_doorbells) {
2267			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2268			if (ret)
2269				goto exit;
2270		}
2271	}
2272
2273	/*
2274	 * We are not copying device private data from user as we are not using the data for now,
2275	 * but we still adjust for its private data.
2276	 */
2277	*priv_offset += args->num_devices * sizeof(*device_privs);
2278
2279exit:
2280	kfree(device_buckets);
2281	return ret;
2282}
2283
2284static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2285				      struct kfd_criu_bo_bucket *bo_bucket,
2286				      struct kfd_criu_bo_priv_data *bo_priv,
2287				      struct kgd_mem **kgd_mem)
2288{
2289	int idr_handle;
2290	int ret;
2291	const bool criu_resume = true;
2292	u64 offset;
2293
2294	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2295		if (bo_bucket->size !=
2296				kfd_doorbell_process_slice(pdd->dev->kfd))
2297			return -EINVAL;
2298
2299		offset = kfd_get_process_doorbells(pdd);
2300		if (!offset)
2301			return -ENOMEM;
2302	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2303		/* MMIO BOs need remapped bus address */
2304		if (bo_bucket->size != PAGE_SIZE) {
2305			pr_err("Invalid page size\n");
2306			return -EINVAL;
2307		}
2308		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2309		if (!offset) {
2310			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2311			return -ENOMEM;
2312		}
2313	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2314		offset = bo_priv->user_addr;
2315	}
2316	/* Create the BO */
2317	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2318						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2319						      &offset, bo_bucket->alloc_flags, criu_resume);
2320	if (ret) {
2321		pr_err("Could not create the BO\n");
2322		return ret;
2323	}
2324	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2325		 bo_bucket->size, bo_bucket->addr, offset);
2326
2327	/* Restore previous IDR handle */
2328	pr_debug("Restoring old IDR handle for the BO");
2329	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2330			       bo_priv->idr_handle + 1, GFP_KERNEL);
2331
2332	if (idr_handle < 0) {
2333		pr_err("Could not allocate idr\n");
2334		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2335						       NULL);
2336		return -ENOMEM;
2337	}
2338
2339	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2340		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2341	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2342		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2343	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2344		bo_bucket->restored_offset = offset;
2345	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2346		bo_bucket->restored_offset = offset;
2347		/* Update the VRAM usage count */
2348		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2349	}
2350	return 0;
2351}
2352
2353static int criu_restore_bo(struct kfd_process *p,
2354			   struct kfd_criu_bo_bucket *bo_bucket,
2355			   struct kfd_criu_bo_priv_data *bo_priv)
2356{
2357	struct kfd_process_device *pdd;
2358	struct kgd_mem *kgd_mem;
2359	int ret;
2360	int j;
2361
2362	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2363		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2364		 bo_priv->idr_handle);
2365
2366	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2367	if (!pdd) {
2368		pr_err("Failed to get pdd\n");
2369		return -ENODEV;
2370	}
2371
2372	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2373	if (ret)
2374		return ret;
2375
2376	/* now map these BOs to GPU/s */
2377	for (j = 0; j < p->n_pdds; j++) {
2378		struct kfd_node *peer;
2379		struct kfd_process_device *peer_pdd;
2380
2381		if (!bo_priv->mapped_gpuids[j])
2382			break;
2383
2384		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2385		if (!peer_pdd)
2386			return -EINVAL;
2387
2388		peer = peer_pdd->dev;
2389
2390		peer_pdd = kfd_bind_process_to_device(peer, p);
2391		if (IS_ERR(peer_pdd))
2392			return PTR_ERR(peer_pdd);
2393
2394		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2395							    peer_pdd->drm_priv);
2396		if (ret) {
2397			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2398			return ret;
2399		}
2400	}
2401
2402	pr_debug("map memory was successful for the BO\n");
2403	/* create the dmabuf object and export the bo */
2404	if (bo_bucket->alloc_flags
2405	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2406		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2407					    &bo_bucket->dmabuf_fd);
2408		if (ret)
2409			return ret;
2410	} else {
2411		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2412	}
2413
2414	return 0;
2415}
2416
2417static int criu_restore_bos(struct kfd_process *p,
2418			    struct kfd_ioctl_criu_args *args,
2419			    uint64_t *priv_offset,
2420			    uint64_t max_priv_data_size)
2421{
2422	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2423	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2424	int ret = 0;
2425	uint32_t i = 0;
2426
2427	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2428		return -EINVAL;
2429
2430	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2431	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2432
2433	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2434	if (!bo_buckets)
2435		return -ENOMEM;
2436
2437	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2438			     args->num_bos * sizeof(*bo_buckets));
2439	if (ret) {
2440		pr_err("Failed to copy BOs information from user\n");
2441		ret = -EFAULT;
2442		goto exit;
2443	}
2444
2445	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2446	if (!bo_privs) {
2447		ret = -ENOMEM;
2448		goto exit;
2449	}
2450
2451	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2452			     args->num_bos * sizeof(*bo_privs));
2453	if (ret) {
2454		pr_err("Failed to copy BOs information from user\n");
2455		ret = -EFAULT;
2456		goto exit;
2457	}
2458	*priv_offset += args->num_bos * sizeof(*bo_privs);
2459
2460	/* Create and map new BOs */
2461	for (; i < args->num_bos; i++) {
2462		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2463		if (ret) {
2464			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2465			goto exit;
2466		}
2467	} /* done */
2468
2469	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2470	ret = copy_to_user((void __user *)args->bos,
2471				bo_buckets,
2472				(args->num_bos * sizeof(*bo_buckets)));
2473	if (ret)
2474		ret = -EFAULT;
2475
2476exit:
2477	while (ret && i--) {
2478		if (bo_buckets[i].alloc_flags
2479		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2480			close_fd(bo_buckets[i].dmabuf_fd);
2481	}
2482	kvfree(bo_buckets);
2483	kvfree(bo_privs);
2484	return ret;
2485}
2486
2487static int criu_restore_objects(struct file *filep,
2488				struct kfd_process *p,
2489				struct kfd_ioctl_criu_args *args,
2490				uint64_t *priv_offset,
2491				uint64_t max_priv_data_size)
2492{
2493	int ret = 0;
2494	uint32_t i;
2495
2496	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2497	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2498	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2499
2500	for (i = 0; i < args->num_objects; i++) {
2501		uint32_t object_type;
2502
2503		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2504			pr_err("Invalid private data size\n");
2505			return -EINVAL;
2506		}
2507
2508		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2509		if (ret) {
2510			pr_err("Failed to copy private information from user\n");
2511			goto exit;
2512		}
2513
2514		switch (object_type) {
2515		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2516			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2517						     priv_offset, max_priv_data_size);
2518			if (ret)
2519				goto exit;
2520			break;
2521		case KFD_CRIU_OBJECT_TYPE_EVENT:
2522			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2523						     priv_offset, max_priv_data_size);
2524			if (ret)
2525				goto exit;
2526			break;
2527		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2528			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2529						     priv_offset, max_priv_data_size);
2530			if (ret)
2531				goto exit;
2532			break;
2533		default:
2534			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2535			ret = -EINVAL;
2536			goto exit;
2537		}
2538	}
2539exit:
2540	return ret;
2541}
2542
2543static int criu_restore(struct file *filep,
2544			struct kfd_process *p,
2545			struct kfd_ioctl_criu_args *args)
2546{
2547	uint64_t priv_offset = 0;
2548	int ret = 0;
2549
2550	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2551		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2552
2553	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2554	    !args->num_devices || !args->num_bos)
2555		return -EINVAL;
2556
2557	mutex_lock(&p->mutex);
2558
2559	/*
2560	 * Set the process to evicted state to avoid running any new queues before all the memory
2561	 * mappings are ready.
2562	 */
2563	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2564	if (ret)
2565		goto exit_unlock;
2566
2567	/* Each function will adjust priv_offset based on how many bytes they consumed */
2568	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2569	if (ret)
2570		goto exit_unlock;
2571
2572	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2573	if (ret)
2574		goto exit_unlock;
2575
2576	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2577	if (ret)
2578		goto exit_unlock;
2579
2580	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2581	if (ret)
2582		goto exit_unlock;
2583
2584	if (priv_offset != args->priv_data_size) {
2585		pr_err("Invalid private data size\n");
2586		ret = -EINVAL;
2587	}
2588
2589exit_unlock:
2590	mutex_unlock(&p->mutex);
2591	if (ret)
2592		pr_err("Failed to restore CRIU ret:%d\n", ret);
2593	else
2594		pr_debug("CRIU restore successful\n");
2595
2596	return ret;
2597}
2598
2599static int criu_unpause(struct file *filep,
2600			struct kfd_process *p,
2601			struct kfd_ioctl_criu_args *args)
2602{
2603	int ret;
2604
2605	mutex_lock(&p->mutex);
2606
2607	if (!p->queues_paused) {
2608		mutex_unlock(&p->mutex);
2609		return -EINVAL;
2610	}
2611
2612	ret = kfd_process_restore_queues(p);
2613	if (ret)
2614		pr_err("Failed to unpause queues ret:%d\n", ret);
2615	else
2616		p->queues_paused = false;
2617
2618	mutex_unlock(&p->mutex);
2619
2620	return ret;
2621}
2622
2623static int criu_resume(struct file *filep,
2624			struct kfd_process *p,
2625			struct kfd_ioctl_criu_args *args)
2626{
2627	struct kfd_process *target = NULL;
2628	struct pid *pid = NULL;
2629	int ret = 0;
2630
2631	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2632		 args->pid);
2633
2634	pid = find_get_pid(args->pid);
2635	if (!pid) {
2636		pr_err("Cannot find pid info for %i\n", args->pid);
2637		return -ESRCH;
2638	}
2639
2640	pr_debug("calling kfd_lookup_process_by_pid\n");
2641	target = kfd_lookup_process_by_pid(pid);
2642
2643	put_pid(pid);
2644
2645	if (!target) {
2646		pr_debug("Cannot find process info for %i\n", args->pid);
2647		return -ESRCH;
2648	}
2649
2650	mutex_lock(&target->mutex);
2651	ret = kfd_criu_resume_svm(target);
2652	if (ret) {
2653		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2654		goto exit;
2655	}
2656
2657	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2658	if (ret)
2659		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2660
2661exit:
2662	mutex_unlock(&target->mutex);
2663
2664	kfd_unref_process(target);
2665	return ret;
2666}
2667
2668static int criu_process_info(struct file *filep,
2669				struct kfd_process *p,
2670				struct kfd_ioctl_criu_args *args)
2671{
2672	int ret = 0;
2673
2674	mutex_lock(&p->mutex);
2675
2676	if (!p->n_pdds) {
2677		pr_err("No pdd for given process\n");
2678		ret = -ENODEV;
2679		goto err_unlock;
2680	}
2681
2682	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2683	if (ret)
2684		goto err_unlock;
2685
2686	p->queues_paused = true;
2687
2688	args->pid = task_pid_nr_ns(p->lead_thread,
2689					task_active_pid_ns(p->lead_thread));
2690
2691	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2692					   &args->num_objects, &args->priv_data_size);
2693	if (ret)
2694		goto err_unlock;
2695
2696	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2697				args->num_devices, args->num_bos, args->num_objects,
2698				args->priv_data_size);
2699
2700err_unlock:
2701	if (ret) {
2702		kfd_process_restore_queues(p);
2703		p->queues_paused = false;
2704	}
2705	mutex_unlock(&p->mutex);
2706	return ret;
2707}
2708
2709static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2710{
2711	struct kfd_ioctl_criu_args *args = data;
2712	int ret;
2713
2714	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2715	switch (args->op) {
2716	case KFD_CRIU_OP_PROCESS_INFO:
2717		ret = criu_process_info(filep, p, args);
2718		break;
2719	case KFD_CRIU_OP_CHECKPOINT:
2720		ret = criu_checkpoint(filep, p, args);
2721		break;
2722	case KFD_CRIU_OP_UNPAUSE:
2723		ret = criu_unpause(filep, p, args);
2724		break;
2725	case KFD_CRIU_OP_RESTORE:
2726		ret = criu_restore(filep, p, args);
2727		break;
2728	case KFD_CRIU_OP_RESUME:
2729		ret = criu_resume(filep, p, args);
2730		break;
2731	default:
2732		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2733		ret = -EINVAL;
2734		break;
2735	}
2736
2737	if (ret)
2738		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2739
2740	return ret;
2741}
2742
2743static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2744			bool enable_ttmp_setup)
2745{
2746	int i = 0, ret = 0;
2747
2748	if (p->is_runtime_retry)
2749		goto retry;
2750
2751	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2752		return -EBUSY;
2753
2754	for (i = 0; i < p->n_pdds; i++) {
2755		struct kfd_process_device *pdd = p->pdds[i];
2756
2757		if (pdd->qpd.queue_count)
2758			return -EEXIST;
2759
2760		/*
2761		 * Setup TTMPs by default.
2762		 * Note that this call must remain here for MES ADD QUEUE to
2763		 * skip_process_ctx_clear unconditionally as the first call to
2764		 * SET_SHADER_DEBUGGER clears any stale process context data
2765		 * saved in MES.
2766		 */
2767		if (pdd->dev->kfd->shared_resources.enable_mes)
2768			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2769	}
2770
2771	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2772	p->runtime_info.r_debug = r_debug;
2773	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2774
2775	if (p->runtime_info.ttmp_setup) {
2776		for (i = 0; i < p->n_pdds; i++) {
2777			struct kfd_process_device *pdd = p->pdds[i];
2778
2779			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2780				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2781				pdd->dev->kfd2kgd->enable_debug_trap(
2782						pdd->dev->adev,
2783						true,
2784						pdd->dev->vm_info.last_vmid_kfd);
2785			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2786				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2787						pdd->dev->adev,
2788						false,
2789						0);
2790			}
2791		}
2792	}
2793
2794retry:
2795	if (p->debug_trap_enabled) {
2796		if (!p->is_runtime_retry) {
2797			kfd_dbg_trap_activate(p);
2798			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2799					p, NULL, 0, false, NULL, 0);
2800		}
2801
2802		mutex_unlock(&p->mutex);
2803		ret = down_interruptible(&p->runtime_enable_sema);
2804		mutex_lock(&p->mutex);
2805
2806		p->is_runtime_retry = !!ret;
2807	}
2808
2809	return ret;
2810}
2811
2812static int runtime_disable(struct kfd_process *p)
2813{
2814	int i = 0, ret;
2815	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2816
2817	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2818	p->runtime_info.r_debug = 0;
2819
2820	if (p->debug_trap_enabled) {
2821		if (was_enabled)
2822			kfd_dbg_trap_deactivate(p, false, 0);
2823
2824		if (!p->is_runtime_retry)
2825			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2826					p, NULL, 0, false, NULL, 0);
2827
2828		mutex_unlock(&p->mutex);
2829		ret = down_interruptible(&p->runtime_enable_sema);
2830		mutex_lock(&p->mutex);
2831
2832		p->is_runtime_retry = !!ret;
2833		if (ret)
2834			return ret;
2835	}
2836
2837	if (was_enabled && p->runtime_info.ttmp_setup) {
2838		for (i = 0; i < p->n_pdds; i++) {
2839			struct kfd_process_device *pdd = p->pdds[i];
2840
2841			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2842				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2843		}
2844	}
2845
2846	p->runtime_info.ttmp_setup = false;
2847
2848	/* disable ttmp setup */
2849	for (i = 0; i < p->n_pdds; i++) {
2850		struct kfd_process_device *pdd = p->pdds[i];
2851
2852		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2853			pdd->spi_dbg_override =
2854					pdd->dev->kfd2kgd->disable_debug_trap(
2855					pdd->dev->adev,
2856					false,
2857					pdd->dev->vm_info.last_vmid_kfd);
2858
2859			if (!pdd->dev->kfd->shared_resources.enable_mes)
2860				debug_refresh_runlist(pdd->dev->dqm);
2861			else
2862				kfd_dbg_set_mes_debug_mode(pdd,
2863							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2864		}
2865	}
2866
2867	return 0;
2868}
2869
2870static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2871{
2872	struct kfd_ioctl_runtime_enable_args *args = data;
2873	int r;
2874
2875	mutex_lock(&p->mutex);
2876
2877	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2878		r = runtime_enable(p, args->r_debug,
2879				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2880	else
2881		r = runtime_disable(p);
2882
2883	mutex_unlock(&p->mutex);
2884
2885	return r;
2886}
2887
2888static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2889{
2890	struct kfd_ioctl_dbg_trap_args *args = data;
2891	struct task_struct *thread = NULL;
2892	struct mm_struct *mm = NULL;
2893	struct pid *pid = NULL;
2894	struct kfd_process *target = NULL;
2895	struct kfd_process_device *pdd = NULL;
2896	int r = 0;
2897
2898	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2899		pr_err("Debugging does not support sched_policy %i", sched_policy);
2900		return -EINVAL;
2901	}
2902
2903	pid = find_get_pid(args->pid);
2904	if (!pid) {
2905		pr_debug("Cannot find pid info for %i\n", args->pid);
2906		r = -ESRCH;
2907		goto out;
2908	}
2909
2910	thread = get_pid_task(pid, PIDTYPE_PID);
2911	if (!thread) {
2912		r = -ESRCH;
2913		goto out;
2914	}
2915
2916	mm = get_task_mm(thread);
2917	if (!mm) {
2918		r = -ESRCH;
2919		goto out;
2920	}
2921
2922	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2923		bool create_process;
2924
2925		rcu_read_lock();
2926		create_process = thread && thread != current && ptrace_parent(thread) == current;
2927		rcu_read_unlock();
2928
2929		target = create_process ? kfd_create_process(thread) :
2930					kfd_lookup_process_by_pid(pid);
2931	} else {
2932		target = kfd_lookup_process_by_pid(pid);
2933	}
2934
2935	if (IS_ERR_OR_NULL(target)) {
2936		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2937		r = target ? PTR_ERR(target) : -ESRCH;
2938		goto out;
2939	}
2940
2941	/* Check if target is still PTRACED. */
2942	rcu_read_lock();
2943	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2944				&& ptrace_parent(target->lead_thread) != current) {
2945		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2946		r = -EPERM;
2947	}
2948	rcu_read_unlock();
2949
2950	if (r)
2951		goto out;
2952
2953	mutex_lock(&target->mutex);
2954
2955	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2956		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2957		r = -EINVAL;
2958		goto unlock_out;
2959	}
2960
2961	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2962			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2963			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2964			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2965			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2966			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2967			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2968			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2969		r = -EPERM;
2970		goto unlock_out;
2971	}
2972
2973	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2974	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2975		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2976				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2977					args->set_node_address_watch.gpu_id :
2978					args->clear_node_address_watch.gpu_id);
2979
2980		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2981		if (user_gpu_id == -EINVAL || !pdd) {
2982			r = -ENODEV;
2983			goto unlock_out;
2984		}
2985	}
2986
2987	switch (args->op) {
2988	case KFD_IOC_DBG_TRAP_ENABLE:
2989		if (target != p)
2990			target->debugger_process = p;
2991
2992		r = kfd_dbg_trap_enable(target,
2993					args->enable.dbg_fd,
2994					(void __user *)args->enable.rinfo_ptr,
2995					&args->enable.rinfo_size);
2996		if (!r)
2997			target->exception_enable_mask = args->enable.exception_mask;
2998
2999		break;
3000	case KFD_IOC_DBG_TRAP_DISABLE:
3001		r = kfd_dbg_trap_disable(target);
3002		break;
3003	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3004		r = kfd_dbg_send_exception_to_runtime(target,
3005				args->send_runtime_event.gpu_id,
3006				args->send_runtime_event.queue_id,
3007				args->send_runtime_event.exception_mask);
3008		break;
3009	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3010		kfd_dbg_set_enabled_debug_exception_mask(target,
3011				args->set_exceptions_enabled.exception_mask);
3012		break;
3013	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3014		r = kfd_dbg_trap_set_wave_launch_override(target,
3015				args->launch_override.override_mode,
3016				args->launch_override.enable_mask,
3017				args->launch_override.support_request_mask,
3018				&args->launch_override.enable_mask,
3019				&args->launch_override.support_request_mask);
3020		break;
3021	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3022		r = kfd_dbg_trap_set_wave_launch_mode(target,
3023				args->launch_mode.launch_mode);
3024		break;
3025	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3026		r = suspend_queues(target,
3027				args->suspend_queues.num_queues,
3028				args->suspend_queues.grace_period,
3029				args->suspend_queues.exception_mask,
3030				(uint32_t *)args->suspend_queues.queue_array_ptr);
3031
3032		break;
3033	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3034		r = resume_queues(target, args->resume_queues.num_queues,
3035				(uint32_t *)args->resume_queues.queue_array_ptr);
3036		break;
3037	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3038		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3039				args->set_node_address_watch.address,
3040				args->set_node_address_watch.mask,
3041				&args->set_node_address_watch.id,
3042				args->set_node_address_watch.mode);
3043		break;
3044	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3045		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3046				args->clear_node_address_watch.id);
3047		break;
3048	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3049		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3050		break;
3051	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3052		r = kfd_dbg_ev_query_debug_event(target,
3053				&args->query_debug_event.queue_id,
3054				&args->query_debug_event.gpu_id,
3055				args->query_debug_event.exception_mask,
3056				&args->query_debug_event.exception_mask);
3057		break;
3058	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3059		r = kfd_dbg_trap_query_exception_info(target,
3060				args->query_exception_info.source_id,
3061				args->query_exception_info.exception_code,
3062				args->query_exception_info.clear_exception,
3063				(void __user *)args->query_exception_info.info_ptr,
3064				&args->query_exception_info.info_size);
3065		break;
3066	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3067		r = pqm_get_queue_snapshot(&target->pqm,
3068				args->queue_snapshot.exception_mask,
3069				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3070				&args->queue_snapshot.num_queues,
3071				&args->queue_snapshot.entry_size);
3072		break;
3073	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3074		r = kfd_dbg_trap_device_snapshot(target,
3075				args->device_snapshot.exception_mask,
3076				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3077				&args->device_snapshot.num_devices,
3078				&args->device_snapshot.entry_size);
3079		break;
3080	default:
3081		pr_err("Invalid option: %i\n", args->op);
3082		r = -EINVAL;
3083	}
3084
3085unlock_out:
3086	mutex_unlock(&target->mutex);
3087
3088out:
3089	if (thread)
3090		put_task_struct(thread);
3091
3092	if (mm)
3093		mmput(mm);
3094
3095	if (pid)
3096		put_pid(pid);
3097
3098	if (target)
3099		kfd_unref_process(target);
3100
3101	return r;
3102}
3103
3104#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3105	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3106			    .cmd_drv = 0, .name = #ioctl}
3107
3108/** Ioctl table */
3109static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3110	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3111			kfd_ioctl_get_version, 0),
3112
3113	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3114			kfd_ioctl_create_queue, 0),
3115
3116	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3117			kfd_ioctl_destroy_queue, 0),
3118
3119	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3120			kfd_ioctl_set_memory_policy, 0),
3121
3122	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3123			kfd_ioctl_get_clock_counters, 0),
3124
3125	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3126			kfd_ioctl_get_process_apertures, 0),
3127
3128	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3129			kfd_ioctl_update_queue, 0),
3130
3131	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3132			kfd_ioctl_create_event, 0),
3133
3134	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3135			kfd_ioctl_destroy_event, 0),
3136
3137	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3138			kfd_ioctl_set_event, 0),
3139
3140	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3141			kfd_ioctl_reset_event, 0),
3142
3143	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3144			kfd_ioctl_wait_events, 0),
3145
3146	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3147			kfd_ioctl_dbg_register, 0),
3148
3149	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3150			kfd_ioctl_dbg_unregister, 0),
3151
3152	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3153			kfd_ioctl_dbg_address_watch, 0),
3154
3155	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3156			kfd_ioctl_dbg_wave_control, 0),
3157
3158	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3159			kfd_ioctl_set_scratch_backing_va, 0),
3160
3161	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3162			kfd_ioctl_get_tile_config, 0),
3163
3164	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3165			kfd_ioctl_set_trap_handler, 0),
3166
3167	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3168			kfd_ioctl_get_process_apertures_new, 0),
3169
3170	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3171			kfd_ioctl_acquire_vm, 0),
3172
3173	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3174			kfd_ioctl_alloc_memory_of_gpu, 0),
3175
3176	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3177			kfd_ioctl_free_memory_of_gpu, 0),
3178
3179	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3180			kfd_ioctl_map_memory_to_gpu, 0),
3181
3182	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3183			kfd_ioctl_unmap_memory_from_gpu, 0),
3184
3185	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3186			kfd_ioctl_set_cu_mask, 0),
3187
3188	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3189			kfd_ioctl_get_queue_wave_state, 0),
3190
3191	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3192				kfd_ioctl_get_dmabuf_info, 0),
3193
3194	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3195				kfd_ioctl_import_dmabuf, 0),
3196
3197	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3198			kfd_ioctl_alloc_queue_gws, 0),
3199
3200	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3201			kfd_ioctl_smi_events, 0),
3202
3203	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3204
3205	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3206			kfd_ioctl_set_xnack_mode, 0),
3207
3208	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3209			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3210
3211	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3212			kfd_ioctl_get_available_memory, 0),
3213
3214	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3215				kfd_ioctl_export_dmabuf, 0),
3216
3217	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3218			kfd_ioctl_runtime_enable, 0),
3219
3220	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3221			kfd_ioctl_set_debug_trap, 0),
3222};
3223
3224#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3225
3226static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3227{
3228	struct kfd_process *process;
3229	amdkfd_ioctl_t *func;
3230	const struct amdkfd_ioctl_desc *ioctl = NULL;
3231	unsigned int nr = _IOC_NR(cmd);
3232	char stack_kdata[128];
3233	char *kdata = NULL;
3234	unsigned int usize, asize;
3235	int retcode = -EINVAL;
3236	bool ptrace_attached = false;
3237
3238	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3239		goto err_i1;
3240
3241	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3242		u32 amdkfd_size;
3243
3244		ioctl = &amdkfd_ioctls[nr];
3245
3246		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3247		usize = asize = _IOC_SIZE(cmd);
3248		if (amdkfd_size > asize)
3249			asize = amdkfd_size;
3250
3251		cmd = ioctl->cmd;
3252	} else
3253		goto err_i1;
3254
3255	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3256
3257	/* Get the process struct from the filep. Only the process
3258	 * that opened /dev/kfd can use the file descriptor. Child
3259	 * processes need to create their own KFD device context.
3260	 */
3261	process = filep->private_data;
3262
3263	rcu_read_lock();
3264	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3265	    ptrace_parent(process->lead_thread) == current)
3266		ptrace_attached = true;
3267	rcu_read_unlock();
3268
3269	if (process->lead_thread != current->group_leader
3270	    && !ptrace_attached) {
3271		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3272		retcode = -EBADF;
3273		goto err_i1;
3274	}
3275
3276	/* Do not trust userspace, use our own definition */
3277	func = ioctl->func;
3278
3279	if (unlikely(!func)) {
3280		dev_dbg(kfd_device, "no function\n");
3281		retcode = -EINVAL;
3282		goto err_i1;
3283	}
3284
3285	/*
3286	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3287	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3288	 * more priviledged access.
3289	 */
3290	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3291		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3292						!capable(CAP_SYS_ADMIN)) {
3293			retcode = -EACCES;
3294			goto err_i1;
3295		}
3296	}
3297
3298	if (cmd & (IOC_IN | IOC_OUT)) {
3299		if (asize <= sizeof(stack_kdata)) {
3300			kdata = stack_kdata;
3301		} else {
3302			kdata = kmalloc(asize, GFP_KERNEL);
3303			if (!kdata) {
3304				retcode = -ENOMEM;
3305				goto err_i1;
3306			}
3307		}
3308		if (asize > usize)
3309			memset(kdata + usize, 0, asize - usize);
3310	}
3311
3312	if (cmd & IOC_IN) {
3313		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3314			retcode = -EFAULT;
3315			goto err_i1;
3316		}
3317	} else if (cmd & IOC_OUT) {
3318		memset(kdata, 0, usize);
3319	}
3320
3321	retcode = func(filep, process, kdata);
3322
3323	if (cmd & IOC_OUT)
3324		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3325			retcode = -EFAULT;
3326
3327err_i1:
3328	if (!ioctl)
3329		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3330			  task_pid_nr(current), cmd, nr);
3331
3332	if (kdata != stack_kdata)
3333		kfree(kdata);
3334
3335	if (retcode)
3336		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3337				nr, arg, retcode);
3338
3339	return retcode;
3340}
3341
3342static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3343		      struct vm_area_struct *vma)
3344{
3345	phys_addr_t address;
3346
3347	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3348		return -EINVAL;
3349
3350	address = dev->adev->rmmio_remap.bus_addr;
3351
3352	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3353				VM_DONTDUMP | VM_PFNMAP);
3354
3355	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3356
3357	pr_debug("pasid 0x%x mapping mmio page\n"
3358		 "     target user address == 0x%08llX\n"
3359		 "     physical address    == 0x%08llX\n"
3360		 "     vm_flags            == 0x%04lX\n"
3361		 "     size                == 0x%04lX\n",
3362		 process->pasid, (unsigned long long) vma->vm_start,
3363		 address, vma->vm_flags, PAGE_SIZE);
3364
3365	return io_remap_pfn_range(vma,
3366				vma->vm_start,
3367				address >> PAGE_SHIFT,
3368				PAGE_SIZE,
3369				vma->vm_page_prot);
3370}
3371
3372
3373static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3374{
3375	struct kfd_process *process;
3376	struct kfd_node *dev = NULL;
3377	unsigned long mmap_offset;
3378	unsigned int gpu_id;
3379
3380	process = kfd_get_process(current);
3381	if (IS_ERR(process))
3382		return PTR_ERR(process);
3383
3384	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3385	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3386	if (gpu_id)
3387		dev = kfd_device_by_id(gpu_id);
3388
3389	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3390	case KFD_MMAP_TYPE_DOORBELL:
3391		if (!dev)
3392			return -ENODEV;
3393		return kfd_doorbell_mmap(dev, process, vma);
3394
3395	case KFD_MMAP_TYPE_EVENTS:
3396		return kfd_event_mmap(process, vma);
3397
3398	case KFD_MMAP_TYPE_RESERVED_MEM:
3399		if (!dev)
3400			return -ENODEV;
3401		return kfd_reserved_mem_mmap(dev, process, vma);
3402	case KFD_MMAP_TYPE_MMIO:
3403		if (!dev)
3404			return -ENODEV;
3405		return kfd_mmio_mmap(dev, process, vma);
3406	}
3407
3408	return -EFAULT;
3409}