Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static const struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	if (!core->rpm_enabled)
 112		return 0;
 113
 114	return pm_runtime_resume_and_get(core->dev);
 115}
 116
 117static void clk_pm_runtime_put(struct clk_core *core)
 118{
 119	if (!core->rpm_enabled)
 120		return;
 121
 122	pm_runtime_put_sync(core->dev);
 123}
 124
 125/***           locking             ***/
 126static void clk_prepare_lock(void)
 127{
 128	if (!mutex_trylock(&prepare_lock)) {
 129		if (prepare_owner == current) {
 130			prepare_refcnt++;
 131			return;
 132		}
 133		mutex_lock(&prepare_lock);
 134	}
 135	WARN_ON_ONCE(prepare_owner != NULL);
 136	WARN_ON_ONCE(prepare_refcnt != 0);
 137	prepare_owner = current;
 138	prepare_refcnt = 1;
 139}
 140
 141static void clk_prepare_unlock(void)
 142{
 143	WARN_ON_ONCE(prepare_owner != current);
 144	WARN_ON_ONCE(prepare_refcnt == 0);
 145
 146	if (--prepare_refcnt)
 147		return;
 148	prepare_owner = NULL;
 149	mutex_unlock(&prepare_lock);
 150}
 151
 152static unsigned long clk_enable_lock(void)
 153	__acquires(enable_lock)
 154{
 155	unsigned long flags;
 156
 157	/*
 158	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 159	 * we already hold the lock. So, in that case, we rely only on
 160	 * reference counting.
 161	 */
 162	if (!IS_ENABLED(CONFIG_SMP) ||
 163	    !spin_trylock_irqsave(&enable_lock, flags)) {
 164		if (enable_owner == current) {
 165			enable_refcnt++;
 166			__acquire(enable_lock);
 167			if (!IS_ENABLED(CONFIG_SMP))
 168				local_save_flags(flags);
 169			return flags;
 170		}
 171		spin_lock_irqsave(&enable_lock, flags);
 172	}
 173	WARN_ON_ONCE(enable_owner != NULL);
 174	WARN_ON_ONCE(enable_refcnt != 0);
 175	enable_owner = current;
 176	enable_refcnt = 1;
 177	return flags;
 178}
 179
 180static void clk_enable_unlock(unsigned long flags)
 181	__releases(enable_lock)
 182{
 183	WARN_ON_ONCE(enable_owner != current);
 184	WARN_ON_ONCE(enable_refcnt == 0);
 185
 186	if (--enable_refcnt) {
 187		__release(enable_lock);
 188		return;
 189	}
 190	enable_owner = NULL;
 191	spin_unlock_irqrestore(&enable_lock, flags);
 192}
 193
 194static bool clk_core_rate_is_protected(struct clk_core *core)
 195{
 196	return core->protect_count;
 197}
 198
 199static bool clk_core_is_prepared(struct clk_core *core)
 200{
 201	bool ret = false;
 202
 203	/*
 204	 * .is_prepared is optional for clocks that can prepare
 205	 * fall back to software usage counter if it is missing
 206	 */
 207	if (!core->ops->is_prepared)
 208		return core->prepare_count;
 209
 210	if (!clk_pm_runtime_get(core)) {
 211		ret = core->ops->is_prepared(core->hw);
 212		clk_pm_runtime_put(core);
 213	}
 214
 215	return ret;
 216}
 217
 218static bool clk_core_is_enabled(struct clk_core *core)
 219{
 220	bool ret = false;
 221
 222	/*
 223	 * .is_enabled is only mandatory for clocks that gate
 224	 * fall back to software usage counter if .is_enabled is missing
 225	 */
 226	if (!core->ops->is_enabled)
 227		return core->enable_count;
 228
 229	/*
 230	 * Check if clock controller's device is runtime active before
 231	 * calling .is_enabled callback. If not, assume that clock is
 232	 * disabled, because we might be called from atomic context, from
 233	 * which pm_runtime_get() is not allowed.
 234	 * This function is called mainly from clk_disable_unused_subtree,
 235	 * which ensures proper runtime pm activation of controller before
 236	 * taking enable spinlock, but the below check is needed if one tries
 237	 * to call it from other places.
 238	 */
 239	if (core->rpm_enabled) {
 240		pm_runtime_get_noresume(core->dev);
 241		if (!pm_runtime_active(core->dev)) {
 242			ret = false;
 243			goto done;
 244		}
 245	}
 246
 
 
 
 
 
 
 
 
 
 
 
 247	ret = core->ops->is_enabled(core->hw);
 248done:
 249	if (core->rpm_enabled)
 250		pm_runtime_put(core->dev);
 251
 252	return ret;
 253}
 254
 255/***    helper functions   ***/
 256
 257const char *__clk_get_name(const struct clk *clk)
 258{
 259	return !clk ? NULL : clk->core->name;
 260}
 261EXPORT_SYMBOL_GPL(__clk_get_name);
 262
 263const char *clk_hw_get_name(const struct clk_hw *hw)
 264{
 265	return hw->core->name;
 266}
 267EXPORT_SYMBOL_GPL(clk_hw_get_name);
 268
 269struct clk_hw *__clk_get_hw(struct clk *clk)
 270{
 271	return !clk ? NULL : clk->core->hw;
 272}
 273EXPORT_SYMBOL_GPL(__clk_get_hw);
 274
 275unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 276{
 277	return hw->core->num_parents;
 278}
 279EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 280
 281struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 282{
 283	return hw->core->parent ? hw->core->parent->hw : NULL;
 284}
 285EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 286
 287static struct clk_core *__clk_lookup_subtree(const char *name,
 288					     struct clk_core *core)
 289{
 290	struct clk_core *child;
 291	struct clk_core *ret;
 292
 293	if (!strcmp(core->name, name))
 294		return core;
 295
 296	hlist_for_each_entry(child, &core->children, child_node) {
 297		ret = __clk_lookup_subtree(name, child);
 298		if (ret)
 299			return ret;
 300	}
 301
 302	return NULL;
 303}
 304
 305static struct clk_core *clk_core_lookup(const char *name)
 306{
 307	struct clk_core *root_clk;
 308	struct clk_core *ret;
 309
 310	if (!name)
 311		return NULL;
 312
 313	/* search the 'proper' clk tree first */
 314	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 315		ret = __clk_lookup_subtree(name, root_clk);
 316		if (ret)
 317			return ret;
 318	}
 319
 320	/* if not found, then search the orphan tree */
 321	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 322		ret = __clk_lookup_subtree(name, root_clk);
 323		if (ret)
 324			return ret;
 325	}
 326
 327	return NULL;
 328}
 329
 330#ifdef CONFIG_OF
 331static int of_parse_clkspec(const struct device_node *np, int index,
 332			    const char *name, struct of_phandle_args *out_args);
 333static struct clk_hw *
 334of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 335#else
 336static inline int of_parse_clkspec(const struct device_node *np, int index,
 337				   const char *name,
 338				   struct of_phandle_args *out_args)
 339{
 340	return -ENOENT;
 341}
 342static inline struct clk_hw *
 343of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 344{
 345	return ERR_PTR(-ENOENT);
 346}
 347#endif
 348
 349/**
 350 * clk_core_get - Find the clk_core parent of a clk
 351 * @core: clk to find parent of
 352 * @p_index: parent index to search for
 353 *
 354 * This is the preferred method for clk providers to find the parent of a
 355 * clk when that parent is external to the clk controller. The parent_names
 356 * array is indexed and treated as a local name matching a string in the device
 357 * node's 'clock-names' property or as the 'con_id' matching the device's
 358 * dev_name() in a clk_lookup. This allows clk providers to use their own
 359 * namespace instead of looking for a globally unique parent string.
 360 *
 361 * For example the following DT snippet would allow a clock registered by the
 362 * clock-controller@c001 that has a clk_init_data::parent_data array
 363 * with 'xtal' in the 'name' member to find the clock provided by the
 364 * clock-controller@f00abcd without needing to get the globally unique name of
 365 * the xtal clk.
 366 *
 367 *      parent: clock-controller@f00abcd {
 368 *              reg = <0xf00abcd 0xabcd>;
 369 *              #clock-cells = <0>;
 370 *      };
 371 *
 372 *      clock-controller@c001 {
 373 *              reg = <0xc001 0xf00d>;
 374 *              clocks = <&parent>;
 375 *              clock-names = "xtal";
 376 *              #clock-cells = <1>;
 377 *      };
 378 *
 379 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 380 * exist in the provider or the name can't be found in the DT node or
 381 * in a clkdev lookup. NULL when the provider knows about the clk but it
 382 * isn't provided on this system.
 383 * A valid clk_core pointer when the clk can be found in the provider.
 384 */
 385static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 386{
 387	const char *name = core->parents[p_index].fw_name;
 388	int index = core->parents[p_index].index;
 389	struct clk_hw *hw = ERR_PTR(-ENOENT);
 390	struct device *dev = core->dev;
 391	const char *dev_id = dev ? dev_name(dev) : NULL;
 392	struct device_node *np = core->of_node;
 393	struct of_phandle_args clkspec;
 394
 395	if (np && (name || index >= 0) &&
 396	    !of_parse_clkspec(np, index, name, &clkspec)) {
 397		hw = of_clk_get_hw_from_clkspec(&clkspec);
 398		of_node_put(clkspec.np);
 399	} else if (name) {
 400		/*
 401		 * If the DT search above couldn't find the provider fallback to
 402		 * looking up via clkdev based clk_lookups.
 403		 */
 404		hw = clk_find_hw(dev_id, name);
 405	}
 406
 407	if (IS_ERR(hw))
 408		return ERR_CAST(hw);
 409
 410	return hw->core;
 411}
 412
 413static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 414{
 415	struct clk_parent_map *entry = &core->parents[index];
 416	struct clk_core *parent;
 417
 418	if (entry->hw) {
 419		parent = entry->hw->core;
 420	} else {
 421		parent = clk_core_get(core, index);
 422		if (PTR_ERR(parent) == -ENOENT && entry->name)
 423			parent = clk_core_lookup(entry->name);
 424	}
 425
 426	/*
 427	 * We have a direct reference but it isn't registered yet?
 428	 * Orphan it and let clk_reparent() update the orphan status
 429	 * when the parent is registered.
 430	 */
 431	if (!parent)
 432		parent = ERR_PTR(-EPROBE_DEFER);
 433
 434	/* Only cache it if it's not an error */
 435	if (!IS_ERR(parent))
 436		entry->core = parent;
 437}
 438
 439static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 440							 u8 index)
 441{
 442	if (!core || index >= core->num_parents || !core->parents)
 443		return NULL;
 444
 445	if (!core->parents[index].core)
 446		clk_core_fill_parent_index(core, index);
 447
 448	return core->parents[index].core;
 449}
 450
 451struct clk_hw *
 452clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 453{
 454	struct clk_core *parent;
 455
 456	parent = clk_core_get_parent_by_index(hw->core, index);
 457
 458	return !parent ? NULL : parent->hw;
 459}
 460EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 461
 462unsigned int __clk_get_enable_count(struct clk *clk)
 463{
 464	return !clk ? 0 : clk->core->enable_count;
 465}
 466
 467static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 468{
 469	if (!core)
 470		return 0;
 471
 472	if (!core->num_parents || core->parent)
 473		return core->rate;
 474
 475	/*
 476	 * Clk must have a parent because num_parents > 0 but the parent isn't
 477	 * known yet. Best to return 0 as the rate of this clk until we can
 478	 * properly recalc the rate based on the parent's rate.
 479	 */
 480	return 0;
 481}
 482
 483unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 484{
 485	return clk_core_get_rate_nolock(hw->core);
 486}
 487EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 488
 489static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 490{
 491	if (!core)
 492		return 0;
 493
 494	return core->accuracy;
 495}
 496
 497unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 498{
 499	return hw->core->flags;
 500}
 501EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 502
 503bool clk_hw_is_prepared(const struct clk_hw *hw)
 504{
 505	return clk_core_is_prepared(hw->core);
 506}
 507EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 508
 509bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 510{
 511	return clk_core_rate_is_protected(hw->core);
 512}
 513EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 514
 515bool clk_hw_is_enabled(const struct clk_hw *hw)
 516{
 517	return clk_core_is_enabled(hw->core);
 518}
 519EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 520
 521bool __clk_is_enabled(struct clk *clk)
 522{
 523	if (!clk)
 524		return false;
 525
 526	return clk_core_is_enabled(clk->core);
 527}
 528EXPORT_SYMBOL_GPL(__clk_is_enabled);
 529
 530static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 531			   unsigned long best, unsigned long flags)
 532{
 533	if (flags & CLK_MUX_ROUND_CLOSEST)
 534		return abs(now - rate) < abs(best - rate);
 535
 536	return now <= rate && now > best;
 537}
 538
 539static void clk_core_init_rate_req(struct clk_core * const core,
 540				   struct clk_rate_request *req,
 541				   unsigned long rate);
 542
 543static int clk_core_round_rate_nolock(struct clk_core *core,
 544				      struct clk_rate_request *req);
 545
 546static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 547{
 548	struct clk_core *tmp;
 549	unsigned int i;
 550
 551	/* Optimize for the case where the parent is already the parent. */
 552	if (core->parent == parent)
 553		return true;
 554
 555	for (i = 0; i < core->num_parents; i++) {
 556		tmp = clk_core_get_parent_by_index(core, i);
 557		if (!tmp)
 558			continue;
 559
 560		if (tmp == parent)
 561			return true;
 562	}
 563
 564	return false;
 565}
 566
 567static void
 568clk_core_forward_rate_req(struct clk_core *core,
 569			  const struct clk_rate_request *old_req,
 570			  struct clk_core *parent,
 571			  struct clk_rate_request *req,
 572			  unsigned long parent_rate)
 573{
 574	if (WARN_ON(!clk_core_has_parent(core, parent)))
 575		return;
 576
 577	clk_core_init_rate_req(parent, req, parent_rate);
 578
 579	if (req->min_rate < old_req->min_rate)
 580		req->min_rate = old_req->min_rate;
 581
 582	if (req->max_rate > old_req->max_rate)
 583		req->max_rate = old_req->max_rate;
 584}
 585
 586int clk_mux_determine_rate_flags(struct clk_hw *hw,
 587				 struct clk_rate_request *req,
 588				 unsigned long flags)
 589{
 590	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 591	int i, num_parents, ret;
 592	unsigned long best = 0;
 593
 594	/* if NO_REPARENT flag set, pass through to current parent */
 595	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 596		parent = core->parent;
 597		if (core->flags & CLK_SET_RATE_PARENT) {
 598			struct clk_rate_request parent_req;
 599
 600			if (!parent) {
 601				req->rate = 0;
 602				return 0;
 603			}
 604
 605			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 
 
 
 606
 607			trace_clk_rate_request_start(&parent_req);
 
 608
 609			ret = clk_core_round_rate_nolock(parent, &parent_req);
 610			if (ret)
 611				return ret;
 612
 613			trace_clk_rate_request_done(&parent_req);
 
 
 614
 615			best = parent_req.rate;
 616		} else if (parent) {
 617			best = clk_core_get_rate_nolock(parent);
 618		} else {
 619			best = clk_core_get_rate_nolock(core);
 620		}
 621
 622		goto out;
 
 
 
 
 623	}
 624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625	/* find the parent that can provide the fastest rate <= rate */
 626	num_parents = core->num_parents;
 627	for (i = 0; i < num_parents; i++) {
 628		unsigned long parent_rate;
 629
 630		parent = clk_core_get_parent_by_index(core, i);
 631		if (!parent)
 632			continue;
 633
 634		if (core->flags & CLK_SET_RATE_PARENT) {
 635			struct clk_rate_request parent_req;
 636
 637			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 638
 639			trace_clk_rate_request_start(&parent_req);
 640
 641			ret = clk_core_round_rate_nolock(parent, &parent_req);
 642			if (ret)
 643				continue;
 644
 645			trace_clk_rate_request_done(&parent_req);
 646
 647			parent_rate = parent_req.rate;
 648		} else {
 649			parent_rate = clk_core_get_rate_nolock(parent);
 650		}
 651
 652		if (mux_is_better_rate(req->rate, parent_rate,
 653				       best, flags)) {
 654			best_parent = parent;
 655			best = parent_rate;
 656		}
 657	}
 658
 659	if (!best_parent)
 660		return -EINVAL;
 661
 662out:
 663	if (best_parent)
 664		req->best_parent_hw = best_parent->hw;
 665	req->best_parent_rate = best;
 666	req->rate = best;
 667
 668	return 0;
 669}
 670EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 671
 672struct clk *__clk_lookup(const char *name)
 673{
 674	struct clk_core *core = clk_core_lookup(name);
 675
 676	return !core ? NULL : core->hw->clk;
 677}
 678
 679static void clk_core_get_boundaries(struct clk_core *core,
 680				    unsigned long *min_rate,
 681				    unsigned long *max_rate)
 682{
 683	struct clk *clk_user;
 684
 685	lockdep_assert_held(&prepare_lock);
 686
 687	*min_rate = core->min_rate;
 688	*max_rate = core->max_rate;
 689
 690	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 691		*min_rate = max(*min_rate, clk_user->min_rate);
 692
 693	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 694		*max_rate = min(*max_rate, clk_user->max_rate);
 695}
 696
 697/*
 698 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 699 * @hw: the hw clk we want to get the range from
 700 * @min_rate: pointer to the variable that will hold the minimum
 701 * @max_rate: pointer to the variable that will hold the maximum
 702 *
 703 * Fills the @min_rate and @max_rate variables with the minimum and
 704 * maximum that clock can reach.
 705 */
 706void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 707			   unsigned long *max_rate)
 708{
 709	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 710}
 711EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 712
 713static bool clk_core_check_boundaries(struct clk_core *core,
 714				      unsigned long min_rate,
 715				      unsigned long max_rate)
 716{
 717	struct clk *user;
 718
 719	lockdep_assert_held(&prepare_lock);
 720
 721	if (min_rate > core->max_rate || max_rate < core->min_rate)
 722		return false;
 723
 724	hlist_for_each_entry(user, &core->clks, clks_node)
 725		if (min_rate > user->max_rate || max_rate < user->min_rate)
 726			return false;
 727
 728	return true;
 729}
 730
 731void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 732			   unsigned long max_rate)
 733{
 734	hw->core->min_rate = min_rate;
 735	hw->core->max_rate = max_rate;
 736}
 737EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 738
 739/*
 740 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 741 * @hw: mux type clk to determine rate on
 742 * @req: rate request, also used to return preferred parent and frequencies
 743 *
 744 * Helper for finding best parent to provide a given frequency. This can be used
 745 * directly as a determine_rate callback (e.g. for a mux), or from a more
 746 * complex clock that may combine a mux with other operations.
 747 *
 748 * Returns: 0 on success, -EERROR value on error
 749 */
 750int __clk_mux_determine_rate(struct clk_hw *hw,
 751			     struct clk_rate_request *req)
 752{
 753	return clk_mux_determine_rate_flags(hw, req, 0);
 754}
 755EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 756
 757int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 758				     struct clk_rate_request *req)
 759{
 760	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 761}
 762EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764/***        clk api        ***/
 765
 766static void clk_core_rate_unprotect(struct clk_core *core)
 767{
 768	lockdep_assert_held(&prepare_lock);
 769
 770	if (!core)
 771		return;
 772
 773	if (WARN(core->protect_count == 0,
 774	    "%s already unprotected\n", core->name))
 775		return;
 776
 777	if (--core->protect_count > 0)
 778		return;
 779
 780	clk_core_rate_unprotect(core->parent);
 781}
 782
 783static int clk_core_rate_nuke_protect(struct clk_core *core)
 784{
 785	int ret;
 786
 787	lockdep_assert_held(&prepare_lock);
 788
 789	if (!core)
 790		return -EINVAL;
 791
 792	if (core->protect_count == 0)
 793		return 0;
 794
 795	ret = core->protect_count;
 796	core->protect_count = 1;
 797	clk_core_rate_unprotect(core);
 798
 799	return ret;
 800}
 801
 802/**
 803 * clk_rate_exclusive_put - release exclusivity over clock rate control
 804 * @clk: the clk over which the exclusivity is released
 805 *
 806 * clk_rate_exclusive_put() completes a critical section during which a clock
 807 * consumer cannot tolerate any other consumer making any operation on the
 808 * clock which could result in a rate change or rate glitch. Exclusive clocks
 809 * cannot have their rate changed, either directly or indirectly due to changes
 810 * further up the parent chain of clocks. As a result, clocks up parent chain
 811 * also get under exclusive control of the calling consumer.
 812 *
 813 * If exlusivity is claimed more than once on clock, even by the same consumer,
 814 * the rate effectively gets locked as exclusivity can't be preempted.
 815 *
 816 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 817 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 818 * error status.
 819 */
 820void clk_rate_exclusive_put(struct clk *clk)
 821{
 822	if (!clk)
 823		return;
 824
 825	clk_prepare_lock();
 826
 827	/*
 828	 * if there is something wrong with this consumer protect count, stop
 829	 * here before messing with the provider
 830	 */
 831	if (WARN_ON(clk->exclusive_count <= 0))
 832		goto out;
 833
 834	clk_core_rate_unprotect(clk->core);
 835	clk->exclusive_count--;
 836out:
 837	clk_prepare_unlock();
 838}
 839EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 840
 841static void clk_core_rate_protect(struct clk_core *core)
 842{
 843	lockdep_assert_held(&prepare_lock);
 844
 845	if (!core)
 846		return;
 847
 848	if (core->protect_count == 0)
 849		clk_core_rate_protect(core->parent);
 850
 851	core->protect_count++;
 852}
 853
 854static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 855{
 856	lockdep_assert_held(&prepare_lock);
 857
 858	if (!core)
 859		return;
 860
 861	if (count == 0)
 862		return;
 863
 864	clk_core_rate_protect(core);
 865	core->protect_count = count;
 866}
 867
 868/**
 869 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 870 * @clk: the clk over which the exclusity of rate control is requested
 871 *
 872 * clk_rate_exclusive_get() begins a critical section during which a clock
 873 * consumer cannot tolerate any other consumer making any operation on the
 874 * clock which could result in a rate change or rate glitch. Exclusive clocks
 875 * cannot have their rate changed, either directly or indirectly due to changes
 876 * further up the parent chain of clocks. As a result, clocks up parent chain
 877 * also get under exclusive control of the calling consumer.
 878 *
 879 * If exlusivity is claimed more than once on clock, even by the same consumer,
 880 * the rate effectively gets locked as exclusivity can't be preempted.
 881 *
 882 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 883 * clk_rate_exclusive_put(). Calls to this function may sleep.
 884 * Returns 0 on success, -EERROR otherwise
 885 */
 886int clk_rate_exclusive_get(struct clk *clk)
 887{
 888	if (!clk)
 889		return 0;
 890
 891	clk_prepare_lock();
 892	clk_core_rate_protect(clk->core);
 893	clk->exclusive_count++;
 894	clk_prepare_unlock();
 895
 896	return 0;
 897}
 898EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 899
 900static void clk_core_unprepare(struct clk_core *core)
 901{
 902	lockdep_assert_held(&prepare_lock);
 903
 904	if (!core)
 905		return;
 906
 907	if (WARN(core->prepare_count == 0,
 908	    "%s already unprepared\n", core->name))
 909		return;
 910
 911	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 912	    "Unpreparing critical %s\n", core->name))
 913		return;
 914
 915	if (core->flags & CLK_SET_RATE_GATE)
 916		clk_core_rate_unprotect(core);
 917
 918	if (--core->prepare_count > 0)
 919		return;
 920
 921	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 922
 923	trace_clk_unprepare(core);
 924
 925	if (core->ops->unprepare)
 926		core->ops->unprepare(core->hw);
 927
 928	trace_clk_unprepare_complete(core);
 929	clk_core_unprepare(core->parent);
 930	clk_pm_runtime_put(core);
 931}
 932
 933static void clk_core_unprepare_lock(struct clk_core *core)
 934{
 935	clk_prepare_lock();
 936	clk_core_unprepare(core);
 937	clk_prepare_unlock();
 938}
 939
 940/**
 941 * clk_unprepare - undo preparation of a clock source
 942 * @clk: the clk being unprepared
 943 *
 944 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 945 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 946 * if the operation may sleep.  One example is a clk which is accessed over
 947 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 948 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 949 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 950 */
 951void clk_unprepare(struct clk *clk)
 952{
 953	if (IS_ERR_OR_NULL(clk))
 954		return;
 955
 956	clk_core_unprepare_lock(clk->core);
 957}
 958EXPORT_SYMBOL_GPL(clk_unprepare);
 959
 960static int clk_core_prepare(struct clk_core *core)
 961{
 962	int ret = 0;
 963
 964	lockdep_assert_held(&prepare_lock);
 965
 966	if (!core)
 967		return 0;
 968
 969	if (core->prepare_count == 0) {
 970		ret = clk_pm_runtime_get(core);
 971		if (ret)
 972			return ret;
 973
 974		ret = clk_core_prepare(core->parent);
 975		if (ret)
 976			goto runtime_put;
 977
 978		trace_clk_prepare(core);
 979
 980		if (core->ops->prepare)
 981			ret = core->ops->prepare(core->hw);
 982
 983		trace_clk_prepare_complete(core);
 984
 985		if (ret)
 986			goto unprepare;
 987	}
 988
 989	core->prepare_count++;
 990
 991	/*
 992	 * CLK_SET_RATE_GATE is a special case of clock protection
 993	 * Instead of a consumer claiming exclusive rate control, it is
 994	 * actually the provider which prevents any consumer from making any
 995	 * operation which could result in a rate change or rate glitch while
 996	 * the clock is prepared.
 997	 */
 998	if (core->flags & CLK_SET_RATE_GATE)
 999		clk_core_rate_protect(core);
1000
1001	return 0;
1002unprepare:
1003	clk_core_unprepare(core->parent);
1004runtime_put:
1005	clk_pm_runtime_put(core);
1006	return ret;
1007}
1008
1009static int clk_core_prepare_lock(struct clk_core *core)
1010{
1011	int ret;
1012
1013	clk_prepare_lock();
1014	ret = clk_core_prepare(core);
1015	clk_prepare_unlock();
1016
1017	return ret;
1018}
1019
1020/**
1021 * clk_prepare - prepare a clock source
1022 * @clk: the clk being prepared
1023 *
1024 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1025 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1026 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1027 * the complex case a clk ungate operation may require a fast and a slow part.
1028 * It is this reason that clk_prepare and clk_enable are not mutually
1029 * exclusive.  In fact clk_prepare must be called before clk_enable.
1030 * Returns 0 on success, -EERROR otherwise.
1031 */
1032int clk_prepare(struct clk *clk)
1033{
1034	if (!clk)
1035		return 0;
1036
1037	return clk_core_prepare_lock(clk->core);
1038}
1039EXPORT_SYMBOL_GPL(clk_prepare);
1040
1041static void clk_core_disable(struct clk_core *core)
1042{
1043	lockdep_assert_held(&enable_lock);
1044
1045	if (!core)
1046		return;
1047
1048	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1049		return;
1050
1051	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1052	    "Disabling critical %s\n", core->name))
1053		return;
1054
1055	if (--core->enable_count > 0)
1056		return;
1057
1058	trace_clk_disable_rcuidle(core);
1059
1060	if (core->ops->disable)
1061		core->ops->disable(core->hw);
1062
1063	trace_clk_disable_complete_rcuidle(core);
1064
1065	clk_core_disable(core->parent);
1066}
1067
1068static void clk_core_disable_lock(struct clk_core *core)
1069{
1070	unsigned long flags;
1071
1072	flags = clk_enable_lock();
1073	clk_core_disable(core);
1074	clk_enable_unlock(flags);
1075}
1076
1077/**
1078 * clk_disable - gate a clock
1079 * @clk: the clk being gated
1080 *
1081 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1082 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1083 * clk if the operation is fast and will never sleep.  One example is a
1084 * SoC-internal clk which is controlled via simple register writes.  In the
1085 * complex case a clk gate operation may require a fast and a slow part.  It is
1086 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1087 * In fact clk_disable must be called before clk_unprepare.
1088 */
1089void clk_disable(struct clk *clk)
1090{
1091	if (IS_ERR_OR_NULL(clk))
1092		return;
1093
1094	clk_core_disable_lock(clk->core);
1095}
1096EXPORT_SYMBOL_GPL(clk_disable);
1097
1098static int clk_core_enable(struct clk_core *core)
1099{
1100	int ret = 0;
1101
1102	lockdep_assert_held(&enable_lock);
1103
1104	if (!core)
1105		return 0;
1106
1107	if (WARN(core->prepare_count == 0,
1108	    "Enabling unprepared %s\n", core->name))
1109		return -ESHUTDOWN;
1110
1111	if (core->enable_count == 0) {
1112		ret = clk_core_enable(core->parent);
1113
1114		if (ret)
1115			return ret;
1116
1117		trace_clk_enable_rcuidle(core);
1118
1119		if (core->ops->enable)
1120			ret = core->ops->enable(core->hw);
1121
1122		trace_clk_enable_complete_rcuidle(core);
1123
1124		if (ret) {
1125			clk_core_disable(core->parent);
1126			return ret;
1127		}
1128	}
1129
1130	core->enable_count++;
1131	return 0;
1132}
1133
1134static int clk_core_enable_lock(struct clk_core *core)
1135{
1136	unsigned long flags;
1137	int ret;
1138
1139	flags = clk_enable_lock();
1140	ret = clk_core_enable(core);
1141	clk_enable_unlock(flags);
1142
1143	return ret;
1144}
1145
1146/**
1147 * clk_gate_restore_context - restore context for poweroff
1148 * @hw: the clk_hw pointer of clock whose state is to be restored
1149 *
1150 * The clock gate restore context function enables or disables
1151 * the gate clocks based on the enable_count. This is done in cases
1152 * where the clock context is lost and based on the enable_count
1153 * the clock either needs to be enabled/disabled. This
1154 * helps restore the state of gate clocks.
1155 */
1156void clk_gate_restore_context(struct clk_hw *hw)
1157{
1158	struct clk_core *core = hw->core;
1159
1160	if (core->enable_count)
1161		core->ops->enable(hw);
1162	else
1163		core->ops->disable(hw);
1164}
1165EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1166
1167static int clk_core_save_context(struct clk_core *core)
1168{
1169	struct clk_core *child;
1170	int ret = 0;
1171
1172	hlist_for_each_entry(child, &core->children, child_node) {
1173		ret = clk_core_save_context(child);
1174		if (ret < 0)
1175			return ret;
1176	}
1177
1178	if (core->ops && core->ops->save_context)
1179		ret = core->ops->save_context(core->hw);
1180
1181	return ret;
1182}
1183
1184static void clk_core_restore_context(struct clk_core *core)
1185{
1186	struct clk_core *child;
1187
1188	if (core->ops && core->ops->restore_context)
1189		core->ops->restore_context(core->hw);
1190
1191	hlist_for_each_entry(child, &core->children, child_node)
1192		clk_core_restore_context(child);
1193}
1194
1195/**
1196 * clk_save_context - save clock context for poweroff
1197 *
1198 * Saves the context of the clock register for powerstates in which the
1199 * contents of the registers will be lost. Occurs deep within the suspend
1200 * code.  Returns 0 on success.
1201 */
1202int clk_save_context(void)
1203{
1204	struct clk_core *clk;
1205	int ret;
1206
1207	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1208		ret = clk_core_save_context(clk);
1209		if (ret < 0)
1210			return ret;
1211	}
1212
1213	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1214		ret = clk_core_save_context(clk);
1215		if (ret < 0)
1216			return ret;
1217	}
1218
1219	return 0;
1220}
1221EXPORT_SYMBOL_GPL(clk_save_context);
1222
1223/**
1224 * clk_restore_context - restore clock context after poweroff
1225 *
1226 * Restore the saved clock context upon resume.
1227 *
1228 */
1229void clk_restore_context(void)
1230{
1231	struct clk_core *core;
1232
1233	hlist_for_each_entry(core, &clk_root_list, child_node)
1234		clk_core_restore_context(core);
1235
1236	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1237		clk_core_restore_context(core);
1238}
1239EXPORT_SYMBOL_GPL(clk_restore_context);
1240
1241/**
1242 * clk_enable - ungate a clock
1243 * @clk: the clk being ungated
1244 *
1245 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1246 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1247 * if the operation will never sleep.  One example is a SoC-internal clk which
1248 * is controlled via simple register writes.  In the complex case a clk ungate
1249 * operation may require a fast and a slow part.  It is this reason that
1250 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1251 * must be called before clk_enable.  Returns 0 on success, -EERROR
1252 * otherwise.
1253 */
1254int clk_enable(struct clk *clk)
1255{
1256	if (!clk)
1257		return 0;
1258
1259	return clk_core_enable_lock(clk->core);
1260}
1261EXPORT_SYMBOL_GPL(clk_enable);
1262
1263/**
1264 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1265 * @clk: clock source
1266 *
1267 * Returns true if clk_prepare() implicitly enables the clock, effectively
1268 * making clk_enable()/clk_disable() no-ops, false otherwise.
1269 *
1270 * This is of interest mainly to power management code where actually
1271 * disabling the clock also requires unpreparing it to have any material
1272 * effect.
1273 *
1274 * Regardless of the value returned here, the caller must always invoke
1275 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1276 * to be right.
1277 */
1278bool clk_is_enabled_when_prepared(struct clk *clk)
1279{
1280	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1281}
1282EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1283
1284static int clk_core_prepare_enable(struct clk_core *core)
1285{
1286	int ret;
1287
1288	ret = clk_core_prepare_lock(core);
1289	if (ret)
1290		return ret;
1291
1292	ret = clk_core_enable_lock(core);
1293	if (ret)
1294		clk_core_unprepare_lock(core);
1295
1296	return ret;
1297}
1298
1299static void clk_core_disable_unprepare(struct clk_core *core)
1300{
1301	clk_core_disable_lock(core);
1302	clk_core_unprepare_lock(core);
1303}
1304
1305static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1306{
1307	struct clk_core *child;
1308
1309	lockdep_assert_held(&prepare_lock);
1310
1311	hlist_for_each_entry(child, &core->children, child_node)
1312		clk_unprepare_unused_subtree(child);
1313
1314	if (core->prepare_count)
1315		return;
1316
1317	if (core->flags & CLK_IGNORE_UNUSED)
1318		return;
1319
1320	if (clk_pm_runtime_get(core))
1321		return;
1322
1323	if (clk_core_is_prepared(core)) {
1324		trace_clk_unprepare(core);
1325		if (core->ops->unprepare_unused)
1326			core->ops->unprepare_unused(core->hw);
1327		else if (core->ops->unprepare)
1328			core->ops->unprepare(core->hw);
1329		trace_clk_unprepare_complete(core);
1330	}
1331
1332	clk_pm_runtime_put(core);
1333}
1334
1335static void __init clk_disable_unused_subtree(struct clk_core *core)
1336{
1337	struct clk_core *child;
1338	unsigned long flags;
1339
1340	lockdep_assert_held(&prepare_lock);
1341
1342	hlist_for_each_entry(child, &core->children, child_node)
1343		clk_disable_unused_subtree(child);
1344
1345	if (core->flags & CLK_OPS_PARENT_ENABLE)
1346		clk_core_prepare_enable(core->parent);
1347
1348	if (clk_pm_runtime_get(core))
1349		goto unprepare_out;
1350
1351	flags = clk_enable_lock();
1352
1353	if (core->enable_count)
1354		goto unlock_out;
1355
1356	if (core->flags & CLK_IGNORE_UNUSED)
1357		goto unlock_out;
1358
1359	/*
1360	 * some gate clocks have special needs during the disable-unused
1361	 * sequence.  call .disable_unused if available, otherwise fall
1362	 * back to .disable
1363	 */
1364	if (clk_core_is_enabled(core)) {
1365		trace_clk_disable(core);
1366		if (core->ops->disable_unused)
1367			core->ops->disable_unused(core->hw);
1368		else if (core->ops->disable)
1369			core->ops->disable(core->hw);
1370		trace_clk_disable_complete(core);
1371	}
1372
1373unlock_out:
1374	clk_enable_unlock(flags);
1375	clk_pm_runtime_put(core);
1376unprepare_out:
1377	if (core->flags & CLK_OPS_PARENT_ENABLE)
1378		clk_core_disable_unprepare(core->parent);
1379}
1380
1381static bool clk_ignore_unused __initdata;
1382static int __init clk_ignore_unused_setup(char *__unused)
1383{
1384	clk_ignore_unused = true;
1385	return 1;
1386}
1387__setup("clk_ignore_unused", clk_ignore_unused_setup);
1388
1389static int __init clk_disable_unused(void)
1390{
1391	struct clk_core *core;
1392
1393	if (clk_ignore_unused) {
1394		pr_warn("clk: Not disabling unused clocks\n");
1395		return 0;
1396	}
1397
 
 
1398	clk_prepare_lock();
1399
1400	hlist_for_each_entry(core, &clk_root_list, child_node)
1401		clk_disable_unused_subtree(core);
1402
1403	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1404		clk_disable_unused_subtree(core);
1405
1406	hlist_for_each_entry(core, &clk_root_list, child_node)
1407		clk_unprepare_unused_subtree(core);
1408
1409	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1410		clk_unprepare_unused_subtree(core);
1411
1412	clk_prepare_unlock();
1413
1414	return 0;
1415}
1416late_initcall_sync(clk_disable_unused);
1417
1418static int clk_core_determine_round_nolock(struct clk_core *core,
1419					   struct clk_rate_request *req)
1420{
1421	long rate;
1422
1423	lockdep_assert_held(&prepare_lock);
1424
1425	if (!core)
1426		return 0;
1427
1428	/*
1429	 * Some clock providers hand-craft their clk_rate_requests and
1430	 * might not fill min_rate and max_rate.
1431	 *
1432	 * If it's the case, clamping the rate is equivalent to setting
1433	 * the rate to 0 which is bad. Skip the clamping but complain so
1434	 * that it gets fixed, hopefully.
1435	 */
1436	if (!req->min_rate && !req->max_rate)
1437		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1438			__func__, core->name);
1439	else
1440		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1441
1442	/*
1443	 * At this point, core protection will be disabled
1444	 * - if the provider is not protected at all
1445	 * - if the calling consumer is the only one which has exclusivity
1446	 *   over the provider
1447	 */
1448	if (clk_core_rate_is_protected(core)) {
1449		req->rate = core->rate;
1450	} else if (core->ops->determine_rate) {
1451		return core->ops->determine_rate(core->hw, req);
1452	} else if (core->ops->round_rate) {
1453		rate = core->ops->round_rate(core->hw, req->rate,
1454					     &req->best_parent_rate);
1455		if (rate < 0)
1456			return rate;
1457
1458		req->rate = rate;
1459	} else {
1460		return -EINVAL;
1461	}
1462
1463	return 0;
1464}
1465
1466static void clk_core_init_rate_req(struct clk_core * const core,
1467				   struct clk_rate_request *req,
1468				   unsigned long rate)
1469{
1470	struct clk_core *parent;
1471
1472	if (WARN_ON(!req))
1473		return;
1474
1475	memset(req, 0, sizeof(*req));
1476	req->max_rate = ULONG_MAX;
1477
1478	if (!core)
1479		return;
1480
1481	req->core = core;
1482	req->rate = rate;
1483	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1484
1485	parent = core->parent;
1486	if (parent) {
1487		req->best_parent_hw = parent->hw;
1488		req->best_parent_rate = parent->rate;
1489	} else {
1490		req->best_parent_hw = NULL;
1491		req->best_parent_rate = 0;
1492	}
1493}
1494
1495/**
1496 * clk_hw_init_rate_request - Initializes a clk_rate_request
1497 * @hw: the clk for which we want to submit a rate request
1498 * @req: the clk_rate_request structure we want to initialise
1499 * @rate: the rate which is to be requested
1500 *
1501 * Initializes a clk_rate_request structure to submit to
1502 * __clk_determine_rate() or similar functions.
1503 */
1504void clk_hw_init_rate_request(const struct clk_hw *hw,
1505			      struct clk_rate_request *req,
1506			      unsigned long rate)
1507{
1508	if (WARN_ON(!hw || !req))
1509		return;
1510
1511	clk_core_init_rate_req(hw->core, req, rate);
1512}
1513EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1514
1515/**
1516 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1517 * @hw: the original clock that got the rate request
1518 * @old_req: the original clk_rate_request structure we want to forward
1519 * @parent: the clk we want to forward @old_req to
1520 * @req: the clk_rate_request structure we want to initialise
1521 * @parent_rate: The rate which is to be requested to @parent
1522 *
1523 * Initializes a clk_rate_request structure to submit to a clock parent
1524 * in __clk_determine_rate() or similar functions.
1525 */
1526void clk_hw_forward_rate_request(const struct clk_hw *hw,
1527				 const struct clk_rate_request *old_req,
1528				 const struct clk_hw *parent,
1529				 struct clk_rate_request *req,
1530				 unsigned long parent_rate)
1531{
1532	if (WARN_ON(!hw || !old_req || !parent || !req))
1533		return;
1534
1535	clk_core_forward_rate_req(hw->core, old_req,
1536				  parent->core, req,
1537				  parent_rate);
1538}
 
1539
1540static bool clk_core_can_round(struct clk_core * const core)
1541{
1542	return core->ops->determine_rate || core->ops->round_rate;
1543}
1544
1545static int clk_core_round_rate_nolock(struct clk_core *core,
1546				      struct clk_rate_request *req)
1547{
1548	int ret;
1549
1550	lockdep_assert_held(&prepare_lock);
1551
1552	if (!core) {
1553		req->rate = 0;
1554		return 0;
1555	}
1556
1557	if (clk_core_can_round(core))
1558		return clk_core_determine_round_nolock(core, req);
1559
1560	if (core->flags & CLK_SET_RATE_PARENT) {
1561		struct clk_rate_request parent_req;
1562
1563		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1564
1565		trace_clk_rate_request_start(&parent_req);
1566
1567		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1568		if (ret)
1569			return ret;
1570
1571		trace_clk_rate_request_done(&parent_req);
1572
1573		req->best_parent_rate = parent_req.rate;
1574		req->rate = parent_req.rate;
1575
1576		return 0;
1577	}
1578
1579	req->rate = core->rate;
1580	return 0;
1581}
1582
1583/**
1584 * __clk_determine_rate - get the closest rate actually supported by a clock
1585 * @hw: determine the rate of this clock
1586 * @req: target rate request
1587 *
1588 * Useful for clk_ops such as .set_rate and .determine_rate.
1589 */
1590int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1591{
1592	if (!hw) {
1593		req->rate = 0;
1594		return 0;
1595	}
1596
1597	return clk_core_round_rate_nolock(hw->core, req);
1598}
1599EXPORT_SYMBOL_GPL(__clk_determine_rate);
1600
1601/**
1602 * clk_hw_round_rate() - round the given rate for a hw clk
1603 * @hw: the hw clk for which we are rounding a rate
1604 * @rate: the rate which is to be rounded
1605 *
1606 * Takes in a rate as input and rounds it to a rate that the clk can actually
1607 * use.
1608 *
1609 * Context: prepare_lock must be held.
1610 *          For clk providers to call from within clk_ops such as .round_rate,
1611 *          .determine_rate.
1612 *
1613 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1614 *         else returns the parent rate.
1615 */
1616unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1617{
1618	int ret;
1619	struct clk_rate_request req;
1620
1621	clk_core_init_rate_req(hw->core, &req, rate);
1622
1623	trace_clk_rate_request_start(&req);
1624
1625	ret = clk_core_round_rate_nolock(hw->core, &req);
1626	if (ret)
1627		return 0;
1628
1629	trace_clk_rate_request_done(&req);
1630
1631	return req.rate;
1632}
1633EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1634
1635/**
1636 * clk_round_rate - round the given rate for a clk
1637 * @clk: the clk for which we are rounding a rate
1638 * @rate: the rate which is to be rounded
1639 *
1640 * Takes in a rate as input and rounds it to a rate that the clk can actually
1641 * use which is then returned.  If clk doesn't support round_rate operation
1642 * then the parent rate is returned.
1643 */
1644long clk_round_rate(struct clk *clk, unsigned long rate)
1645{
1646	struct clk_rate_request req;
1647	int ret;
1648
1649	if (!clk)
1650		return 0;
1651
1652	clk_prepare_lock();
1653
1654	if (clk->exclusive_count)
1655		clk_core_rate_unprotect(clk->core);
1656
1657	clk_core_init_rate_req(clk->core, &req, rate);
1658
1659	trace_clk_rate_request_start(&req);
1660
1661	ret = clk_core_round_rate_nolock(clk->core, &req);
1662
1663	trace_clk_rate_request_done(&req);
1664
1665	if (clk->exclusive_count)
1666		clk_core_rate_protect(clk->core);
1667
1668	clk_prepare_unlock();
1669
1670	if (ret)
1671		return ret;
1672
1673	return req.rate;
1674}
1675EXPORT_SYMBOL_GPL(clk_round_rate);
1676
1677/**
1678 * __clk_notify - call clk notifier chain
1679 * @core: clk that is changing rate
1680 * @msg: clk notifier type (see include/linux/clk.h)
1681 * @old_rate: old clk rate
1682 * @new_rate: new clk rate
1683 *
1684 * Triggers a notifier call chain on the clk rate-change notification
1685 * for 'clk'.  Passes a pointer to the struct clk and the previous
1686 * and current rates to the notifier callback.  Intended to be called by
1687 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1688 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1689 * a driver returns that.
1690 */
1691static int __clk_notify(struct clk_core *core, unsigned long msg,
1692		unsigned long old_rate, unsigned long new_rate)
1693{
1694	struct clk_notifier *cn;
1695	struct clk_notifier_data cnd;
1696	int ret = NOTIFY_DONE;
1697
1698	cnd.old_rate = old_rate;
1699	cnd.new_rate = new_rate;
1700
1701	list_for_each_entry(cn, &clk_notifier_list, node) {
1702		if (cn->clk->core == core) {
1703			cnd.clk = cn->clk;
1704			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1705					&cnd);
1706			if (ret & NOTIFY_STOP_MASK)
1707				return ret;
1708		}
1709	}
1710
1711	return ret;
1712}
1713
1714/**
1715 * __clk_recalc_accuracies
1716 * @core: first clk in the subtree
1717 *
1718 * Walks the subtree of clks starting with clk and recalculates accuracies as
1719 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1720 * callback then it is assumed that the clock will take on the accuracy of its
1721 * parent.
1722 */
1723static void __clk_recalc_accuracies(struct clk_core *core)
1724{
1725	unsigned long parent_accuracy = 0;
1726	struct clk_core *child;
1727
1728	lockdep_assert_held(&prepare_lock);
1729
1730	if (core->parent)
1731		parent_accuracy = core->parent->accuracy;
1732
1733	if (core->ops->recalc_accuracy)
1734		core->accuracy = core->ops->recalc_accuracy(core->hw,
1735							  parent_accuracy);
1736	else
1737		core->accuracy = parent_accuracy;
1738
1739	hlist_for_each_entry(child, &core->children, child_node)
1740		__clk_recalc_accuracies(child);
1741}
1742
1743static long clk_core_get_accuracy_recalc(struct clk_core *core)
1744{
1745	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1746		__clk_recalc_accuracies(core);
1747
1748	return clk_core_get_accuracy_no_lock(core);
1749}
1750
1751/**
1752 * clk_get_accuracy - return the accuracy of clk
1753 * @clk: the clk whose accuracy is being returned
1754 *
1755 * Simply returns the cached accuracy of the clk, unless
1756 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1757 * issued.
1758 * If clk is NULL then returns 0.
1759 */
1760long clk_get_accuracy(struct clk *clk)
1761{
1762	long accuracy;
1763
1764	if (!clk)
1765		return 0;
1766
1767	clk_prepare_lock();
1768	accuracy = clk_core_get_accuracy_recalc(clk->core);
1769	clk_prepare_unlock();
1770
1771	return accuracy;
1772}
1773EXPORT_SYMBOL_GPL(clk_get_accuracy);
1774
1775static unsigned long clk_recalc(struct clk_core *core,
1776				unsigned long parent_rate)
1777{
1778	unsigned long rate = parent_rate;
1779
1780	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1781		rate = core->ops->recalc_rate(core->hw, parent_rate);
1782		clk_pm_runtime_put(core);
1783	}
1784	return rate;
1785}
1786
1787/**
1788 * __clk_recalc_rates
1789 * @core: first clk in the subtree
1790 * @update_req: Whether req_rate should be updated with the new rate
1791 * @msg: notification type (see include/linux/clk.h)
1792 *
1793 * Walks the subtree of clks starting with clk and recalculates rates as it
1794 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1795 * it is assumed that the clock will take on the rate of its parent.
1796 *
1797 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1798 * if necessary.
1799 */
1800static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1801			       unsigned long msg)
1802{
1803	unsigned long old_rate;
1804	unsigned long parent_rate = 0;
1805	struct clk_core *child;
1806
1807	lockdep_assert_held(&prepare_lock);
1808
1809	old_rate = core->rate;
1810
1811	if (core->parent)
1812		parent_rate = core->parent->rate;
1813
1814	core->rate = clk_recalc(core, parent_rate);
1815	if (update_req)
1816		core->req_rate = core->rate;
1817
1818	/*
1819	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1820	 * & ABORT_RATE_CHANGE notifiers
1821	 */
1822	if (core->notifier_count && msg)
1823		__clk_notify(core, msg, old_rate, core->rate);
1824
1825	hlist_for_each_entry(child, &core->children, child_node)
1826		__clk_recalc_rates(child, update_req, msg);
1827}
1828
1829static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1830{
1831	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1832		__clk_recalc_rates(core, false, 0);
1833
1834	return clk_core_get_rate_nolock(core);
1835}
1836
1837/**
1838 * clk_get_rate - return the rate of clk
1839 * @clk: the clk whose rate is being returned
1840 *
1841 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1842 * is set, which means a recalc_rate will be issued. Can be called regardless of
1843 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1844 * 0.
1845 */
1846unsigned long clk_get_rate(struct clk *clk)
1847{
1848	unsigned long rate;
1849
1850	if (!clk)
1851		return 0;
1852
1853	clk_prepare_lock();
1854	rate = clk_core_get_rate_recalc(clk->core);
1855	clk_prepare_unlock();
1856
1857	return rate;
1858}
1859EXPORT_SYMBOL_GPL(clk_get_rate);
1860
1861static int clk_fetch_parent_index(struct clk_core *core,
1862				  struct clk_core *parent)
1863{
1864	int i;
1865
1866	if (!parent)
1867		return -EINVAL;
1868
1869	for (i = 0; i < core->num_parents; i++) {
1870		/* Found it first try! */
1871		if (core->parents[i].core == parent)
1872			return i;
1873
1874		/* Something else is here, so keep looking */
1875		if (core->parents[i].core)
1876			continue;
1877
1878		/* Maybe core hasn't been cached but the hw is all we know? */
1879		if (core->parents[i].hw) {
1880			if (core->parents[i].hw == parent->hw)
1881				break;
1882
1883			/* Didn't match, but we're expecting a clk_hw */
1884			continue;
1885		}
1886
1887		/* Maybe it hasn't been cached (clk_set_parent() path) */
1888		if (parent == clk_core_get(core, i))
1889			break;
1890
1891		/* Fallback to comparing globally unique names */
1892		if (core->parents[i].name &&
1893		    !strcmp(parent->name, core->parents[i].name))
1894			break;
1895	}
1896
1897	if (i == core->num_parents)
1898		return -EINVAL;
1899
1900	core->parents[i].core = parent;
1901	return i;
1902}
1903
1904/**
1905 * clk_hw_get_parent_index - return the index of the parent clock
1906 * @hw: clk_hw associated with the clk being consumed
1907 *
1908 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1909 * clock does not have a current parent.
1910 */
1911int clk_hw_get_parent_index(struct clk_hw *hw)
1912{
1913	struct clk_hw *parent = clk_hw_get_parent(hw);
1914
1915	if (WARN_ON(parent == NULL))
1916		return -EINVAL;
1917
1918	return clk_fetch_parent_index(hw->core, parent->core);
1919}
1920EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1921
1922/*
1923 * Update the orphan status of @core and all its children.
1924 */
1925static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1926{
1927	struct clk_core *child;
1928
1929	core->orphan = is_orphan;
1930
1931	hlist_for_each_entry(child, &core->children, child_node)
1932		clk_core_update_orphan_status(child, is_orphan);
1933}
1934
1935static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1936{
1937	bool was_orphan = core->orphan;
1938
1939	hlist_del(&core->child_node);
1940
1941	if (new_parent) {
1942		bool becomes_orphan = new_parent->orphan;
1943
1944		/* avoid duplicate POST_RATE_CHANGE notifications */
1945		if (new_parent->new_child == core)
1946			new_parent->new_child = NULL;
1947
1948		hlist_add_head(&core->child_node, &new_parent->children);
1949
1950		if (was_orphan != becomes_orphan)
1951			clk_core_update_orphan_status(core, becomes_orphan);
1952	} else {
1953		hlist_add_head(&core->child_node, &clk_orphan_list);
1954		if (!was_orphan)
1955			clk_core_update_orphan_status(core, true);
1956	}
1957
1958	core->parent = new_parent;
1959}
1960
1961static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1962					   struct clk_core *parent)
1963{
1964	unsigned long flags;
1965	struct clk_core *old_parent = core->parent;
1966
1967	/*
1968	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1969	 *
1970	 * 2. Migrate prepare state between parents and prevent race with
1971	 * clk_enable().
1972	 *
1973	 * If the clock is not prepared, then a race with
1974	 * clk_enable/disable() is impossible since we already have the
1975	 * prepare lock (future calls to clk_enable() need to be preceded by
1976	 * a clk_prepare()).
1977	 *
1978	 * If the clock is prepared, migrate the prepared state to the new
1979	 * parent and also protect against a race with clk_enable() by
1980	 * forcing the clock and the new parent on.  This ensures that all
1981	 * future calls to clk_enable() are practically NOPs with respect to
1982	 * hardware and software states.
1983	 *
1984	 * See also: Comment for clk_set_parent() below.
1985	 */
1986
1987	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1988	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1989		clk_core_prepare_enable(old_parent);
1990		clk_core_prepare_enable(parent);
1991	}
1992
1993	/* migrate prepare count if > 0 */
1994	if (core->prepare_count) {
1995		clk_core_prepare_enable(parent);
1996		clk_core_enable_lock(core);
1997	}
1998
1999	/* update the clk tree topology */
2000	flags = clk_enable_lock();
2001	clk_reparent(core, parent);
2002	clk_enable_unlock(flags);
2003
2004	return old_parent;
2005}
2006
2007static void __clk_set_parent_after(struct clk_core *core,
2008				   struct clk_core *parent,
2009				   struct clk_core *old_parent)
2010{
2011	/*
2012	 * Finish the migration of prepare state and undo the changes done
2013	 * for preventing a race with clk_enable().
2014	 */
2015	if (core->prepare_count) {
2016		clk_core_disable_lock(core);
2017		clk_core_disable_unprepare(old_parent);
2018	}
2019
2020	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2021	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2022		clk_core_disable_unprepare(parent);
2023		clk_core_disable_unprepare(old_parent);
2024	}
2025}
2026
2027static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2028			    u8 p_index)
2029{
2030	unsigned long flags;
2031	int ret = 0;
2032	struct clk_core *old_parent;
2033
2034	old_parent = __clk_set_parent_before(core, parent);
2035
2036	trace_clk_set_parent(core, parent);
2037
2038	/* change clock input source */
2039	if (parent && core->ops->set_parent)
2040		ret = core->ops->set_parent(core->hw, p_index);
2041
2042	trace_clk_set_parent_complete(core, parent);
2043
2044	if (ret) {
2045		flags = clk_enable_lock();
2046		clk_reparent(core, old_parent);
2047		clk_enable_unlock(flags);
2048
2049		__clk_set_parent_after(core, old_parent, parent);
2050
2051		return ret;
2052	}
2053
2054	__clk_set_parent_after(core, parent, old_parent);
2055
2056	return 0;
2057}
2058
2059/**
2060 * __clk_speculate_rates
2061 * @core: first clk in the subtree
2062 * @parent_rate: the "future" rate of clk's parent
2063 *
2064 * Walks the subtree of clks starting with clk, speculating rates as it
2065 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2066 *
2067 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2068 * pre-rate change notifications and returns early if no clks in the
2069 * subtree have subscribed to the notifications.  Note that if a clk does not
2070 * implement the .recalc_rate callback then it is assumed that the clock will
2071 * take on the rate of its parent.
2072 */
2073static int __clk_speculate_rates(struct clk_core *core,
2074				 unsigned long parent_rate)
2075{
2076	struct clk_core *child;
2077	unsigned long new_rate;
2078	int ret = NOTIFY_DONE;
2079
2080	lockdep_assert_held(&prepare_lock);
2081
2082	new_rate = clk_recalc(core, parent_rate);
2083
2084	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2085	if (core->notifier_count)
2086		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2087
2088	if (ret & NOTIFY_STOP_MASK) {
2089		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2090				__func__, core->name, ret);
2091		goto out;
2092	}
2093
2094	hlist_for_each_entry(child, &core->children, child_node) {
2095		ret = __clk_speculate_rates(child, new_rate);
2096		if (ret & NOTIFY_STOP_MASK)
2097			break;
2098	}
2099
2100out:
2101	return ret;
2102}
2103
2104static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2105			     struct clk_core *new_parent, u8 p_index)
2106{
2107	struct clk_core *child;
2108
2109	core->new_rate = new_rate;
2110	core->new_parent = new_parent;
2111	core->new_parent_index = p_index;
2112	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2113	core->new_child = NULL;
2114	if (new_parent && new_parent != core->parent)
2115		new_parent->new_child = core;
2116
2117	hlist_for_each_entry(child, &core->children, child_node) {
2118		child->new_rate = clk_recalc(child, new_rate);
2119		clk_calc_subtree(child, child->new_rate, NULL, 0);
2120	}
2121}
2122
2123/*
2124 * calculate the new rates returning the topmost clock that has to be
2125 * changed.
2126 */
2127static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2128					   unsigned long rate)
2129{
2130	struct clk_core *top = core;
2131	struct clk_core *old_parent, *parent;
2132	unsigned long best_parent_rate = 0;
2133	unsigned long new_rate;
2134	unsigned long min_rate;
2135	unsigned long max_rate;
2136	int p_index = 0;
2137	long ret;
2138
2139	/* sanity */
2140	if (IS_ERR_OR_NULL(core))
2141		return NULL;
2142
2143	/* save parent rate, if it exists */
2144	parent = old_parent = core->parent;
2145	if (parent)
2146		best_parent_rate = parent->rate;
2147
2148	clk_core_get_boundaries(core, &min_rate, &max_rate);
2149
2150	/* find the closest rate and parent clk/rate */
2151	if (clk_core_can_round(core)) {
2152		struct clk_rate_request req;
2153
2154		clk_core_init_rate_req(core, &req, rate);
2155
2156		trace_clk_rate_request_start(&req);
2157
2158		ret = clk_core_determine_round_nolock(core, &req);
2159		if (ret < 0)
2160			return NULL;
2161
2162		trace_clk_rate_request_done(&req);
2163
2164		best_parent_rate = req.best_parent_rate;
2165		new_rate = req.rate;
2166		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2167
2168		if (new_rate < min_rate || new_rate > max_rate)
2169			return NULL;
2170	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2171		/* pass-through clock without adjustable parent */
2172		core->new_rate = core->rate;
2173		return NULL;
2174	} else {
2175		/* pass-through clock with adjustable parent */
2176		top = clk_calc_new_rates(parent, rate);
2177		new_rate = parent->new_rate;
2178		goto out;
2179	}
2180
2181	/* some clocks must be gated to change parent */
2182	if (parent != old_parent &&
2183	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2184		pr_debug("%s: %s not gated but wants to reparent\n",
2185			 __func__, core->name);
2186		return NULL;
2187	}
2188
2189	/* try finding the new parent index */
2190	if (parent && core->num_parents > 1) {
2191		p_index = clk_fetch_parent_index(core, parent);
2192		if (p_index < 0) {
2193			pr_debug("%s: clk %s can not be parent of clk %s\n",
2194				 __func__, parent->name, core->name);
2195			return NULL;
2196		}
2197	}
2198
2199	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2200	    best_parent_rate != parent->rate)
2201		top = clk_calc_new_rates(parent, best_parent_rate);
2202
2203out:
2204	clk_calc_subtree(core, new_rate, parent, p_index);
2205
2206	return top;
2207}
2208
2209/*
2210 * Notify about rate changes in a subtree. Always walk down the whole tree
2211 * so that in case of an error we can walk down the whole tree again and
2212 * abort the change.
2213 */
2214static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2215						  unsigned long event)
2216{
2217	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2218	int ret = NOTIFY_DONE;
2219
2220	if (core->rate == core->new_rate)
2221		return NULL;
2222
2223	if (core->notifier_count) {
2224		ret = __clk_notify(core, event, core->rate, core->new_rate);
2225		if (ret & NOTIFY_STOP_MASK)
2226			fail_clk = core;
2227	}
2228
2229	hlist_for_each_entry(child, &core->children, child_node) {
2230		/* Skip children who will be reparented to another clock */
2231		if (child->new_parent && child->new_parent != core)
2232			continue;
2233		tmp_clk = clk_propagate_rate_change(child, event);
2234		if (tmp_clk)
2235			fail_clk = tmp_clk;
2236	}
2237
2238	/* handle the new child who might not be in core->children yet */
2239	if (core->new_child) {
2240		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2241		if (tmp_clk)
2242			fail_clk = tmp_clk;
2243	}
2244
2245	return fail_clk;
2246}
2247
2248/*
2249 * walk down a subtree and set the new rates notifying the rate
2250 * change on the way
2251 */
2252static void clk_change_rate(struct clk_core *core)
2253{
2254	struct clk_core *child;
2255	struct hlist_node *tmp;
2256	unsigned long old_rate;
2257	unsigned long best_parent_rate = 0;
2258	bool skip_set_rate = false;
2259	struct clk_core *old_parent;
2260	struct clk_core *parent = NULL;
2261
2262	old_rate = core->rate;
2263
2264	if (core->new_parent) {
2265		parent = core->new_parent;
2266		best_parent_rate = core->new_parent->rate;
2267	} else if (core->parent) {
2268		parent = core->parent;
2269		best_parent_rate = core->parent->rate;
2270	}
2271
2272	if (clk_pm_runtime_get(core))
2273		return;
2274
2275	if (core->flags & CLK_SET_RATE_UNGATE) {
2276		clk_core_prepare(core);
2277		clk_core_enable_lock(core);
2278	}
2279
2280	if (core->new_parent && core->new_parent != core->parent) {
2281		old_parent = __clk_set_parent_before(core, core->new_parent);
2282		trace_clk_set_parent(core, core->new_parent);
2283
2284		if (core->ops->set_rate_and_parent) {
2285			skip_set_rate = true;
2286			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2287					best_parent_rate,
2288					core->new_parent_index);
2289		} else if (core->ops->set_parent) {
2290			core->ops->set_parent(core->hw, core->new_parent_index);
2291		}
2292
2293		trace_clk_set_parent_complete(core, core->new_parent);
2294		__clk_set_parent_after(core, core->new_parent, old_parent);
2295	}
2296
2297	if (core->flags & CLK_OPS_PARENT_ENABLE)
2298		clk_core_prepare_enable(parent);
2299
2300	trace_clk_set_rate(core, core->new_rate);
2301
2302	if (!skip_set_rate && core->ops->set_rate)
2303		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2304
2305	trace_clk_set_rate_complete(core, core->new_rate);
2306
2307	core->rate = clk_recalc(core, best_parent_rate);
2308
2309	if (core->flags & CLK_SET_RATE_UNGATE) {
2310		clk_core_disable_lock(core);
2311		clk_core_unprepare(core);
2312	}
2313
2314	if (core->flags & CLK_OPS_PARENT_ENABLE)
2315		clk_core_disable_unprepare(parent);
2316
2317	if (core->notifier_count && old_rate != core->rate)
2318		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2319
2320	if (core->flags & CLK_RECALC_NEW_RATES)
2321		(void)clk_calc_new_rates(core, core->new_rate);
2322
2323	/*
2324	 * Use safe iteration, as change_rate can actually swap parents
2325	 * for certain clock types.
2326	 */
2327	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2328		/* Skip children who will be reparented to another clock */
2329		if (child->new_parent && child->new_parent != core)
2330			continue;
2331		clk_change_rate(child);
2332	}
2333
2334	/* handle the new child who might not be in core->children yet */
2335	if (core->new_child)
2336		clk_change_rate(core->new_child);
2337
2338	clk_pm_runtime_put(core);
2339}
2340
2341static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2342						     unsigned long req_rate)
2343{
2344	int ret, cnt;
2345	struct clk_rate_request req;
2346
2347	lockdep_assert_held(&prepare_lock);
2348
2349	if (!core)
2350		return 0;
2351
2352	/* simulate what the rate would be if it could be freely set */
2353	cnt = clk_core_rate_nuke_protect(core);
2354	if (cnt < 0)
2355		return cnt;
2356
2357	clk_core_init_rate_req(core, &req, req_rate);
2358
2359	trace_clk_rate_request_start(&req);
2360
2361	ret = clk_core_round_rate_nolock(core, &req);
2362
2363	trace_clk_rate_request_done(&req);
2364
2365	/* restore the protection */
2366	clk_core_rate_restore_protect(core, cnt);
2367
2368	return ret ? 0 : req.rate;
2369}
2370
2371static int clk_core_set_rate_nolock(struct clk_core *core,
2372				    unsigned long req_rate)
2373{
2374	struct clk_core *top, *fail_clk;
2375	unsigned long rate;
2376	int ret;
2377
2378	if (!core)
2379		return 0;
2380
2381	rate = clk_core_req_round_rate_nolock(core, req_rate);
2382
2383	/* bail early if nothing to do */
2384	if (rate == clk_core_get_rate_nolock(core))
2385		return 0;
2386
2387	/* fail on a direct rate set of a protected provider */
2388	if (clk_core_rate_is_protected(core))
2389		return -EBUSY;
2390
2391	/* calculate new rates and get the topmost changed clock */
2392	top = clk_calc_new_rates(core, req_rate);
2393	if (!top)
2394		return -EINVAL;
2395
2396	ret = clk_pm_runtime_get(core);
2397	if (ret)
2398		return ret;
2399
2400	/* notify that we are about to change rates */
2401	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2402	if (fail_clk) {
2403		pr_debug("%s: failed to set %s rate\n", __func__,
2404				fail_clk->name);
2405		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2406		ret = -EBUSY;
2407		goto err;
2408	}
2409
2410	/* change the rates */
2411	clk_change_rate(top);
2412
2413	core->req_rate = req_rate;
2414err:
2415	clk_pm_runtime_put(core);
2416
2417	return ret;
2418}
2419
2420/**
2421 * clk_set_rate - specify a new rate for clk
2422 * @clk: the clk whose rate is being changed
2423 * @rate: the new rate for clk
2424 *
2425 * In the simplest case clk_set_rate will only adjust the rate of clk.
2426 *
2427 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2428 * propagate up to clk's parent; whether or not this happens depends on the
2429 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2430 * after calling .round_rate then upstream parent propagation is ignored.  If
2431 * *parent_rate comes back with a new rate for clk's parent then we propagate
2432 * up to clk's parent and set its rate.  Upward propagation will continue
2433 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2434 * .round_rate stops requesting changes to clk's parent_rate.
2435 *
2436 * Rate changes are accomplished via tree traversal that also recalculates the
2437 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2438 *
2439 * Returns 0 on success, -EERROR otherwise.
2440 */
2441int clk_set_rate(struct clk *clk, unsigned long rate)
2442{
2443	int ret;
2444
2445	if (!clk)
2446		return 0;
2447
2448	/* prevent racing with updates to the clock topology */
2449	clk_prepare_lock();
2450
2451	if (clk->exclusive_count)
2452		clk_core_rate_unprotect(clk->core);
2453
2454	ret = clk_core_set_rate_nolock(clk->core, rate);
2455
2456	if (clk->exclusive_count)
2457		clk_core_rate_protect(clk->core);
2458
2459	clk_prepare_unlock();
2460
2461	return ret;
2462}
2463EXPORT_SYMBOL_GPL(clk_set_rate);
2464
2465/**
2466 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2467 * @clk: the clk whose rate is being changed
2468 * @rate: the new rate for clk
2469 *
2470 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2471 * within a critical section
2472 *
2473 * This can be used initially to ensure that at least 1 consumer is
2474 * satisfied when several consumers are competing for exclusivity over the
2475 * same clock provider.
2476 *
2477 * The exclusivity is not applied if setting the rate failed.
2478 *
2479 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2480 * clk_rate_exclusive_put().
2481 *
2482 * Returns 0 on success, -EERROR otherwise.
2483 */
2484int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2485{
2486	int ret;
2487
2488	if (!clk)
2489		return 0;
2490
2491	/* prevent racing with updates to the clock topology */
2492	clk_prepare_lock();
2493
2494	/*
2495	 * The temporary protection removal is not here, on purpose
2496	 * This function is meant to be used instead of clk_rate_protect,
2497	 * so before the consumer code path protect the clock provider
2498	 */
2499
2500	ret = clk_core_set_rate_nolock(clk->core, rate);
2501	if (!ret) {
2502		clk_core_rate_protect(clk->core);
2503		clk->exclusive_count++;
2504	}
2505
2506	clk_prepare_unlock();
2507
2508	return ret;
2509}
2510EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2511
2512static int clk_set_rate_range_nolock(struct clk *clk,
2513				     unsigned long min,
2514				     unsigned long max)
2515{
2516	int ret = 0;
2517	unsigned long old_min, old_max, rate;
2518
2519	lockdep_assert_held(&prepare_lock);
2520
2521	if (!clk)
2522		return 0;
2523
2524	trace_clk_set_rate_range(clk->core, min, max);
2525
2526	if (min > max) {
2527		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2528		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2529		       min, max);
2530		return -EINVAL;
2531	}
2532
2533	if (clk->exclusive_count)
2534		clk_core_rate_unprotect(clk->core);
2535
2536	/* Save the current values in case we need to rollback the change */
2537	old_min = clk->min_rate;
2538	old_max = clk->max_rate;
2539	clk->min_rate = min;
2540	clk->max_rate = max;
2541
2542	if (!clk_core_check_boundaries(clk->core, min, max)) {
2543		ret = -EINVAL;
2544		goto out;
2545	}
2546
2547	rate = clk->core->req_rate;
2548	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2549		rate = clk_core_get_rate_recalc(clk->core);
2550
2551	/*
2552	 * Since the boundaries have been changed, let's give the
2553	 * opportunity to the provider to adjust the clock rate based on
2554	 * the new boundaries.
2555	 *
2556	 * We also need to handle the case where the clock is currently
2557	 * outside of the boundaries. Clamping the last requested rate
2558	 * to the current minimum and maximum will also handle this.
2559	 *
2560	 * FIXME:
2561	 * There is a catch. It may fail for the usual reason (clock
2562	 * broken, clock protected, etc) but also because:
2563	 * - round_rate() was not favorable and fell on the wrong
2564	 *   side of the boundary
2565	 * - the determine_rate() callback does not really check for
2566	 *   this corner case when determining the rate
2567	 */
2568	rate = clamp(rate, min, max);
2569	ret = clk_core_set_rate_nolock(clk->core, rate);
2570	if (ret) {
2571		/* rollback the changes */
2572		clk->min_rate = old_min;
2573		clk->max_rate = old_max;
2574	}
2575
2576out:
2577	if (clk->exclusive_count)
2578		clk_core_rate_protect(clk->core);
2579
2580	return ret;
2581}
2582
2583/**
2584 * clk_set_rate_range - set a rate range for a clock source
2585 * @clk: clock source
2586 * @min: desired minimum clock rate in Hz, inclusive
2587 * @max: desired maximum clock rate in Hz, inclusive
2588 *
2589 * Return: 0 for success or negative errno on failure.
2590 */
2591int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2592{
2593	int ret;
2594
2595	if (!clk)
2596		return 0;
2597
2598	clk_prepare_lock();
2599
2600	ret = clk_set_rate_range_nolock(clk, min, max);
2601
2602	clk_prepare_unlock();
2603
2604	return ret;
2605}
2606EXPORT_SYMBOL_GPL(clk_set_rate_range);
2607
2608/**
2609 * clk_set_min_rate - set a minimum clock rate for a clock source
2610 * @clk: clock source
2611 * @rate: desired minimum clock rate in Hz, inclusive
2612 *
2613 * Returns success (0) or negative errno.
2614 */
2615int clk_set_min_rate(struct clk *clk, unsigned long rate)
2616{
2617	if (!clk)
2618		return 0;
2619
2620	trace_clk_set_min_rate(clk->core, rate);
2621
2622	return clk_set_rate_range(clk, rate, clk->max_rate);
2623}
2624EXPORT_SYMBOL_GPL(clk_set_min_rate);
2625
2626/**
2627 * clk_set_max_rate - set a maximum clock rate for a clock source
2628 * @clk: clock source
2629 * @rate: desired maximum clock rate in Hz, inclusive
2630 *
2631 * Returns success (0) or negative errno.
2632 */
2633int clk_set_max_rate(struct clk *clk, unsigned long rate)
2634{
2635	if (!clk)
2636		return 0;
2637
2638	trace_clk_set_max_rate(clk->core, rate);
2639
2640	return clk_set_rate_range(clk, clk->min_rate, rate);
2641}
2642EXPORT_SYMBOL_GPL(clk_set_max_rate);
2643
2644/**
2645 * clk_get_parent - return the parent of a clk
2646 * @clk: the clk whose parent gets returned
2647 *
2648 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2649 */
2650struct clk *clk_get_parent(struct clk *clk)
2651{
2652	struct clk *parent;
2653
2654	if (!clk)
2655		return NULL;
2656
2657	clk_prepare_lock();
2658	/* TODO: Create a per-user clk and change callers to call clk_put */
2659	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2660	clk_prepare_unlock();
2661
2662	return parent;
2663}
2664EXPORT_SYMBOL_GPL(clk_get_parent);
2665
2666static struct clk_core *__clk_init_parent(struct clk_core *core)
2667{
2668	u8 index = 0;
2669
2670	if (core->num_parents > 1 && core->ops->get_parent)
2671		index = core->ops->get_parent(core->hw);
2672
2673	return clk_core_get_parent_by_index(core, index);
2674}
2675
2676static void clk_core_reparent(struct clk_core *core,
2677				  struct clk_core *new_parent)
2678{
2679	clk_reparent(core, new_parent);
2680	__clk_recalc_accuracies(core);
2681	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2682}
2683
2684void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2685{
2686	if (!hw)
2687		return;
2688
2689	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2690}
2691
2692/**
2693 * clk_has_parent - check if a clock is a possible parent for another
2694 * @clk: clock source
2695 * @parent: parent clock source
2696 *
2697 * This function can be used in drivers that need to check that a clock can be
2698 * the parent of another without actually changing the parent.
2699 *
2700 * Returns true if @parent is a possible parent for @clk, false otherwise.
2701 */
2702bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2703{
2704	/* NULL clocks should be nops, so return success if either is NULL. */
2705	if (!clk || !parent)
2706		return true;
2707
2708	return clk_core_has_parent(clk->core, parent->core);
2709}
2710EXPORT_SYMBOL_GPL(clk_has_parent);
2711
2712static int clk_core_set_parent_nolock(struct clk_core *core,
2713				      struct clk_core *parent)
2714{
2715	int ret = 0;
2716	int p_index = 0;
2717	unsigned long p_rate = 0;
2718
2719	lockdep_assert_held(&prepare_lock);
2720
2721	if (!core)
2722		return 0;
2723
2724	if (core->parent == parent)
2725		return 0;
2726
2727	/* verify ops for multi-parent clks */
2728	if (core->num_parents > 1 && !core->ops->set_parent)
2729		return -EPERM;
2730
2731	/* check that we are allowed to re-parent if the clock is in use */
2732	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2733		return -EBUSY;
2734
2735	if (clk_core_rate_is_protected(core))
2736		return -EBUSY;
2737
2738	/* try finding the new parent index */
2739	if (parent) {
2740		p_index = clk_fetch_parent_index(core, parent);
2741		if (p_index < 0) {
2742			pr_debug("%s: clk %s can not be parent of clk %s\n",
2743					__func__, parent->name, core->name);
2744			return p_index;
2745		}
2746		p_rate = parent->rate;
2747	}
2748
2749	ret = clk_pm_runtime_get(core);
2750	if (ret)
2751		return ret;
2752
2753	/* propagate PRE_RATE_CHANGE notifications */
2754	ret = __clk_speculate_rates(core, p_rate);
2755
2756	/* abort if a driver objects */
2757	if (ret & NOTIFY_STOP_MASK)
2758		goto runtime_put;
2759
2760	/* do the re-parent */
2761	ret = __clk_set_parent(core, parent, p_index);
2762
2763	/* propagate rate an accuracy recalculation accordingly */
2764	if (ret) {
2765		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2766	} else {
2767		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2768		__clk_recalc_accuracies(core);
2769	}
2770
2771runtime_put:
2772	clk_pm_runtime_put(core);
2773
2774	return ret;
2775}
2776
2777int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2778{
2779	return clk_core_set_parent_nolock(hw->core, parent->core);
2780}
2781EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2782
2783/**
2784 * clk_set_parent - switch the parent of a mux clk
2785 * @clk: the mux clk whose input we are switching
2786 * @parent: the new input to clk
2787 *
2788 * Re-parent clk to use parent as its new input source.  If clk is in
2789 * prepared state, the clk will get enabled for the duration of this call. If
2790 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2791 * that, the reparenting is glitchy in hardware, etc), use the
2792 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2793 *
2794 * After successfully changing clk's parent clk_set_parent will update the
2795 * clk topology, sysfs topology and propagate rate recalculation via
2796 * __clk_recalc_rates.
2797 *
2798 * Returns 0 on success, -EERROR otherwise.
2799 */
2800int clk_set_parent(struct clk *clk, struct clk *parent)
2801{
2802	int ret;
2803
2804	if (!clk)
2805		return 0;
2806
2807	clk_prepare_lock();
2808
2809	if (clk->exclusive_count)
2810		clk_core_rate_unprotect(clk->core);
2811
2812	ret = clk_core_set_parent_nolock(clk->core,
2813					 parent ? parent->core : NULL);
2814
2815	if (clk->exclusive_count)
2816		clk_core_rate_protect(clk->core);
2817
2818	clk_prepare_unlock();
2819
2820	return ret;
2821}
2822EXPORT_SYMBOL_GPL(clk_set_parent);
2823
2824static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2825{
2826	int ret = -EINVAL;
2827
2828	lockdep_assert_held(&prepare_lock);
2829
2830	if (!core)
2831		return 0;
2832
2833	if (clk_core_rate_is_protected(core))
2834		return -EBUSY;
2835
2836	trace_clk_set_phase(core, degrees);
2837
2838	if (core->ops->set_phase) {
2839		ret = core->ops->set_phase(core->hw, degrees);
2840		if (!ret)
2841			core->phase = degrees;
2842	}
2843
2844	trace_clk_set_phase_complete(core, degrees);
2845
2846	return ret;
2847}
2848
2849/**
2850 * clk_set_phase - adjust the phase shift of a clock signal
2851 * @clk: clock signal source
2852 * @degrees: number of degrees the signal is shifted
2853 *
2854 * Shifts the phase of a clock signal by the specified
2855 * degrees. Returns 0 on success, -EERROR otherwise.
2856 *
2857 * This function makes no distinction about the input or reference
2858 * signal that we adjust the clock signal phase against. For example
2859 * phase locked-loop clock signal generators we may shift phase with
2860 * respect to feedback clock signal input, but for other cases the
2861 * clock phase may be shifted with respect to some other, unspecified
2862 * signal.
2863 *
2864 * Additionally the concept of phase shift does not propagate through
2865 * the clock tree hierarchy, which sets it apart from clock rates and
2866 * clock accuracy. A parent clock phase attribute does not have an
2867 * impact on the phase attribute of a child clock.
2868 */
2869int clk_set_phase(struct clk *clk, int degrees)
2870{
2871	int ret;
2872
2873	if (!clk)
2874		return 0;
2875
2876	/* sanity check degrees */
2877	degrees %= 360;
2878	if (degrees < 0)
2879		degrees += 360;
2880
2881	clk_prepare_lock();
2882
2883	if (clk->exclusive_count)
2884		clk_core_rate_unprotect(clk->core);
2885
2886	ret = clk_core_set_phase_nolock(clk->core, degrees);
2887
2888	if (clk->exclusive_count)
2889		clk_core_rate_protect(clk->core);
2890
2891	clk_prepare_unlock();
2892
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(clk_set_phase);
2896
2897static int clk_core_get_phase(struct clk_core *core)
2898{
2899	int ret;
2900
2901	lockdep_assert_held(&prepare_lock);
2902	if (!core->ops->get_phase)
2903		return 0;
2904
2905	/* Always try to update cached phase if possible */
2906	ret = core->ops->get_phase(core->hw);
2907	if (ret >= 0)
2908		core->phase = ret;
2909
2910	return ret;
2911}
2912
2913/**
2914 * clk_get_phase - return the phase shift of a clock signal
2915 * @clk: clock signal source
2916 *
2917 * Returns the phase shift of a clock node in degrees, otherwise returns
2918 * -EERROR.
2919 */
2920int clk_get_phase(struct clk *clk)
2921{
2922	int ret;
2923
2924	if (!clk)
2925		return 0;
2926
2927	clk_prepare_lock();
2928	ret = clk_core_get_phase(clk->core);
2929	clk_prepare_unlock();
2930
2931	return ret;
2932}
2933EXPORT_SYMBOL_GPL(clk_get_phase);
2934
2935static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2936{
2937	/* Assume a default value of 50% */
2938	core->duty.num = 1;
2939	core->duty.den = 2;
2940}
2941
2942static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2943
2944static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2945{
2946	struct clk_duty *duty = &core->duty;
2947	int ret = 0;
2948
2949	if (!core->ops->get_duty_cycle)
2950		return clk_core_update_duty_cycle_parent_nolock(core);
2951
2952	ret = core->ops->get_duty_cycle(core->hw, duty);
2953	if (ret)
2954		goto reset;
2955
2956	/* Don't trust the clock provider too much */
2957	if (duty->den == 0 || duty->num > duty->den) {
2958		ret = -EINVAL;
2959		goto reset;
2960	}
2961
2962	return 0;
2963
2964reset:
2965	clk_core_reset_duty_cycle_nolock(core);
2966	return ret;
2967}
2968
2969static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2970{
2971	int ret = 0;
2972
2973	if (core->parent &&
2974	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2975		ret = clk_core_update_duty_cycle_nolock(core->parent);
2976		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2977	} else {
2978		clk_core_reset_duty_cycle_nolock(core);
2979	}
2980
2981	return ret;
2982}
2983
2984static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2985						 struct clk_duty *duty);
2986
2987static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2988					  struct clk_duty *duty)
2989{
2990	int ret;
2991
2992	lockdep_assert_held(&prepare_lock);
2993
2994	if (clk_core_rate_is_protected(core))
2995		return -EBUSY;
2996
2997	trace_clk_set_duty_cycle(core, duty);
2998
2999	if (!core->ops->set_duty_cycle)
3000		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3001
3002	ret = core->ops->set_duty_cycle(core->hw, duty);
3003	if (!ret)
3004		memcpy(&core->duty, duty, sizeof(*duty));
3005
3006	trace_clk_set_duty_cycle_complete(core, duty);
3007
3008	return ret;
3009}
3010
3011static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3012						 struct clk_duty *duty)
3013{
3014	int ret = 0;
3015
3016	if (core->parent &&
3017	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3018		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3019		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3020	}
3021
3022	return ret;
3023}
3024
3025/**
3026 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3027 * @clk: clock signal source
3028 * @num: numerator of the duty cycle ratio to be applied
3029 * @den: denominator of the duty cycle ratio to be applied
3030 *
3031 * Apply the duty cycle ratio if the ratio is valid and the clock can
3032 * perform this operation
3033 *
3034 * Returns (0) on success, a negative errno otherwise.
3035 */
3036int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3037{
3038	int ret;
3039	struct clk_duty duty;
3040
3041	if (!clk)
3042		return 0;
3043
3044	/* sanity check the ratio */
3045	if (den == 0 || num > den)
3046		return -EINVAL;
3047
3048	duty.num = num;
3049	duty.den = den;
3050
3051	clk_prepare_lock();
3052
3053	if (clk->exclusive_count)
3054		clk_core_rate_unprotect(clk->core);
3055
3056	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3057
3058	if (clk->exclusive_count)
3059		clk_core_rate_protect(clk->core);
3060
3061	clk_prepare_unlock();
3062
3063	return ret;
3064}
3065EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3066
3067static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3068					  unsigned int scale)
3069{
3070	struct clk_duty *duty = &core->duty;
3071	int ret;
3072
3073	clk_prepare_lock();
3074
3075	ret = clk_core_update_duty_cycle_nolock(core);
3076	if (!ret)
3077		ret = mult_frac(scale, duty->num, duty->den);
3078
3079	clk_prepare_unlock();
3080
3081	return ret;
3082}
3083
3084/**
3085 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3086 * @clk: clock signal source
3087 * @scale: scaling factor to be applied to represent the ratio as an integer
3088 *
3089 * Returns the duty cycle ratio of a clock node multiplied by the provided
3090 * scaling factor, or negative errno on error.
3091 */
3092int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3093{
3094	if (!clk)
3095		return 0;
3096
3097	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3098}
3099EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3100
3101/**
3102 * clk_is_match - check if two clk's point to the same hardware clock
3103 * @p: clk compared against q
3104 * @q: clk compared against p
3105 *
3106 * Returns true if the two struct clk pointers both point to the same hardware
3107 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3108 * share the same struct clk_core object.
3109 *
3110 * Returns false otherwise. Note that two NULL clks are treated as matching.
3111 */
3112bool clk_is_match(const struct clk *p, const struct clk *q)
3113{
3114	/* trivial case: identical struct clk's or both NULL */
3115	if (p == q)
3116		return true;
3117
3118	/* true if clk->core pointers match. Avoid dereferencing garbage */
3119	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3120		if (p->core == q->core)
3121			return true;
3122
3123	return false;
3124}
3125EXPORT_SYMBOL_GPL(clk_is_match);
3126
3127/***        debugfs support        ***/
3128
3129#ifdef CONFIG_DEBUG_FS
3130#include <linux/debugfs.h>
3131
3132static struct dentry *rootdir;
3133static int inited = 0;
3134static DEFINE_MUTEX(clk_debug_lock);
3135static HLIST_HEAD(clk_debug_list);
3136
3137static struct hlist_head *orphan_list[] = {
3138	&clk_orphan_list,
3139	NULL,
3140};
3141
3142static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3143				 int level)
3144{
3145	int phase;
 
 
3146
3147	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3148		   level * 3 + 1, "",
3149		   30 - level * 3, c->name,
3150		   c->enable_count, c->prepare_count, c->protect_count,
3151		   clk_core_get_rate_recalc(c),
3152		   clk_core_get_accuracy_recalc(c));
3153
3154	phase = clk_core_get_phase(c);
3155	if (phase >= 0)
3156		seq_printf(s, "%5d", phase);
3157	else
3158		seq_puts(s, "-----");
3159
3160	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3161
3162	if (c->ops->is_enabled)
3163		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3164	else if (!c->ops->enable)
3165		seq_printf(s, " %9c\n", 'Y');
3166	else
3167		seq_printf(s, " %9c\n", '?');
 
 
 
 
 
 
 
 
 
 
 
3168}
3169
3170static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3171				     int level)
3172{
3173	struct clk_core *child;
3174
3175	clk_pm_runtime_get(c);
3176	clk_summary_show_one(s, c, level);
3177	clk_pm_runtime_put(c);
3178
3179	hlist_for_each_entry(child, &c->children, child_node)
3180		clk_summary_show_subtree(s, child, level + 1);
3181}
3182
3183static int clk_summary_show(struct seq_file *s, void *data)
3184{
3185	struct clk_core *c;
3186	struct hlist_head **lists = (struct hlist_head **)s->private;
 
 
 
 
3187
3188	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3189	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3190	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3191
3192	clk_prepare_lock();
3193
3194	for (; *lists; lists++)
3195		hlist_for_each_entry(c, *lists, child_node)
3196			clk_summary_show_subtree(s, c, 0);
3197
3198	clk_prepare_unlock();
3199
3200	return 0;
3201}
3202DEFINE_SHOW_ATTRIBUTE(clk_summary);
3203
3204static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3205{
3206	int phase;
3207	unsigned long min_rate, max_rate;
3208
3209	clk_core_get_boundaries(c, &min_rate, &max_rate);
3210
3211	/* This should be JSON format, i.e. elements separated with a comma */
3212	seq_printf(s, "\"%s\": { ", c->name);
3213	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3214	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3215	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3216	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3217	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3218	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3219	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3220	phase = clk_core_get_phase(c);
3221	if (phase >= 0)
3222		seq_printf(s, "\"phase\": %d,", phase);
3223	seq_printf(s, "\"duty_cycle\": %u",
3224		   clk_core_get_scaled_duty_cycle(c, 100000));
3225}
3226
3227static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3228{
3229	struct clk_core *child;
3230
3231	clk_dump_one(s, c, level);
3232
3233	hlist_for_each_entry(child, &c->children, child_node) {
3234		seq_putc(s, ',');
3235		clk_dump_subtree(s, child, level + 1);
3236	}
3237
3238	seq_putc(s, '}');
3239}
3240
3241static int clk_dump_show(struct seq_file *s, void *data)
3242{
3243	struct clk_core *c;
3244	bool first_node = true;
3245	struct hlist_head **lists = (struct hlist_head **)s->private;
3246
3247	seq_putc(s, '{');
3248	clk_prepare_lock();
3249
3250	for (; *lists; lists++) {
3251		hlist_for_each_entry(c, *lists, child_node) {
3252			if (!first_node)
3253				seq_putc(s, ',');
3254			first_node = false;
3255			clk_dump_subtree(s, c, 0);
3256		}
3257	}
3258
3259	clk_prepare_unlock();
3260
3261	seq_puts(s, "}\n");
3262	return 0;
3263}
3264DEFINE_SHOW_ATTRIBUTE(clk_dump);
3265
3266#undef CLOCK_ALLOW_WRITE_DEBUGFS
3267#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3268/*
3269 * This can be dangerous, therefore don't provide any real compile time
3270 * configuration option for this feature.
3271 * People who want to use this will need to modify the source code directly.
3272 */
3273static int clk_rate_set(void *data, u64 val)
3274{
3275	struct clk_core *core = data;
3276	int ret;
3277
3278	clk_prepare_lock();
3279	ret = clk_core_set_rate_nolock(core, val);
3280	clk_prepare_unlock();
3281
3282	return ret;
3283}
3284
3285#define clk_rate_mode	0644
3286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287static int clk_prepare_enable_set(void *data, u64 val)
3288{
3289	struct clk_core *core = data;
3290	int ret = 0;
3291
3292	if (val)
3293		ret = clk_prepare_enable(core->hw->clk);
3294	else
3295		clk_disable_unprepare(core->hw->clk);
3296
3297	return ret;
3298}
3299
3300static int clk_prepare_enable_get(void *data, u64 *val)
3301{
3302	struct clk_core *core = data;
3303
3304	*val = core->enable_count && core->prepare_count;
3305	return 0;
3306}
3307
3308DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3309			 clk_prepare_enable_set, "%llu\n");
3310
3311#else
3312#define clk_rate_set	NULL
3313#define clk_rate_mode	0444
 
 
 
3314#endif
3315
3316static int clk_rate_get(void *data, u64 *val)
3317{
3318	struct clk_core *core = data;
3319
3320	clk_prepare_lock();
3321	*val = clk_core_get_rate_recalc(core);
3322	clk_prepare_unlock();
3323
3324	return 0;
3325}
3326
3327DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3328
 
 
 
 
 
 
 
 
 
 
3329static const struct {
3330	unsigned long flag;
3331	const char *name;
3332} clk_flags[] = {
3333#define ENTRY(f) { f, #f }
3334	ENTRY(CLK_SET_RATE_GATE),
3335	ENTRY(CLK_SET_PARENT_GATE),
3336	ENTRY(CLK_SET_RATE_PARENT),
3337	ENTRY(CLK_IGNORE_UNUSED),
3338	ENTRY(CLK_GET_RATE_NOCACHE),
3339	ENTRY(CLK_SET_RATE_NO_REPARENT),
3340	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3341	ENTRY(CLK_RECALC_NEW_RATES),
3342	ENTRY(CLK_SET_RATE_UNGATE),
3343	ENTRY(CLK_IS_CRITICAL),
3344	ENTRY(CLK_OPS_PARENT_ENABLE),
3345	ENTRY(CLK_DUTY_CYCLE_PARENT),
3346#undef ENTRY
3347};
3348
3349static int clk_flags_show(struct seq_file *s, void *data)
3350{
3351	struct clk_core *core = s->private;
3352	unsigned long flags = core->flags;
3353	unsigned int i;
3354
3355	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3356		if (flags & clk_flags[i].flag) {
3357			seq_printf(s, "%s\n", clk_flags[i].name);
3358			flags &= ~clk_flags[i].flag;
3359		}
3360	}
3361	if (flags) {
3362		/* Unknown flags */
3363		seq_printf(s, "0x%lx\n", flags);
3364	}
3365
3366	return 0;
3367}
3368DEFINE_SHOW_ATTRIBUTE(clk_flags);
3369
3370static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3371				 unsigned int i, char terminator)
3372{
3373	struct clk_core *parent;
 
3374
3375	/*
3376	 * Go through the following options to fetch a parent's name.
3377	 *
3378	 * 1. Fetch the registered parent clock and use its name
3379	 * 2. Use the global (fallback) name if specified
3380	 * 3. Use the local fw_name if provided
3381	 * 4. Fetch parent clock's clock-output-name if DT index was set
3382	 *
3383	 * This may still fail in some cases, such as when the parent is
3384	 * specified directly via a struct clk_hw pointer, but it isn't
3385	 * registered (yet).
3386	 */
3387	parent = clk_core_get_parent_by_index(core, i);
3388	if (parent)
3389		seq_puts(s, parent->name);
3390	else if (core->parents[i].name)
3391		seq_puts(s, core->parents[i].name);
3392	else if (core->parents[i].fw_name)
3393		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3394	else if (core->parents[i].index >= 0)
3395		seq_puts(s,
3396			 of_clk_get_parent_name(core->of_node,
3397						core->parents[i].index));
3398	else
3399		seq_puts(s, "(missing)");
 
 
3400
3401	seq_putc(s, terminator);
3402}
3403
3404static int possible_parents_show(struct seq_file *s, void *data)
3405{
3406	struct clk_core *core = s->private;
3407	int i;
3408
3409	for (i = 0; i < core->num_parents - 1; i++)
3410		possible_parent_show(s, core, i, ' ');
3411
3412	possible_parent_show(s, core, i, '\n');
3413
3414	return 0;
3415}
3416DEFINE_SHOW_ATTRIBUTE(possible_parents);
3417
3418static int current_parent_show(struct seq_file *s, void *data)
3419{
3420	struct clk_core *core = s->private;
3421
3422	if (core->parent)
3423		seq_printf(s, "%s\n", core->parent->name);
3424
3425	return 0;
3426}
3427DEFINE_SHOW_ATTRIBUTE(current_parent);
3428
3429#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3430static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3431				    size_t count, loff_t *ppos)
3432{
3433	struct seq_file *s = file->private_data;
3434	struct clk_core *core = s->private;
3435	struct clk_core *parent;
3436	u8 idx;
3437	int err;
3438
3439	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3440	if (err < 0)
3441		return err;
3442
3443	parent = clk_core_get_parent_by_index(core, idx);
3444	if (!parent)
3445		return -ENOENT;
3446
3447	clk_prepare_lock();
3448	err = clk_core_set_parent_nolock(core, parent);
3449	clk_prepare_unlock();
3450	if (err)
3451		return err;
3452
3453	return count;
3454}
3455
3456static const struct file_operations current_parent_rw_fops = {
3457	.open		= current_parent_open,
3458	.write		= current_parent_write,
3459	.read		= seq_read,
3460	.llseek		= seq_lseek,
3461	.release	= single_release,
3462};
3463#endif
3464
3465static int clk_duty_cycle_show(struct seq_file *s, void *data)
3466{
3467	struct clk_core *core = s->private;
3468	struct clk_duty *duty = &core->duty;
3469
3470	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3471
3472	return 0;
3473}
3474DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3475
3476static int clk_min_rate_show(struct seq_file *s, void *data)
3477{
3478	struct clk_core *core = s->private;
3479	unsigned long min_rate, max_rate;
3480
3481	clk_prepare_lock();
3482	clk_core_get_boundaries(core, &min_rate, &max_rate);
3483	clk_prepare_unlock();
3484	seq_printf(s, "%lu\n", min_rate);
3485
3486	return 0;
3487}
3488DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3489
3490static int clk_max_rate_show(struct seq_file *s, void *data)
3491{
3492	struct clk_core *core = s->private;
3493	unsigned long min_rate, max_rate;
3494
3495	clk_prepare_lock();
3496	clk_core_get_boundaries(core, &min_rate, &max_rate);
3497	clk_prepare_unlock();
3498	seq_printf(s, "%lu\n", max_rate);
3499
3500	return 0;
3501}
3502DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3503
3504static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3505{
3506	struct dentry *root;
3507
3508	if (!core || !pdentry)
3509		return;
3510
3511	root = debugfs_create_dir(core->name, pdentry);
3512	core->dentry = root;
3513
3514	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3515			    &clk_rate_fops);
3516	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3517	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3518	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3519	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
 
3520	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3521	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3522	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3523	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3524	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3525	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3526			    &clk_duty_cycle_fops);
3527#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3528	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3529			    &clk_prepare_enable_fops);
3530
3531	if (core->num_parents > 1)
3532		debugfs_create_file("clk_parent", 0644, root, core,
3533				    &current_parent_rw_fops);
3534	else
3535#endif
3536	if (core->num_parents > 0)
3537		debugfs_create_file("clk_parent", 0444, root, core,
3538				    &current_parent_fops);
3539
3540	if (core->num_parents > 1)
3541		debugfs_create_file("clk_possible_parents", 0444, root, core,
3542				    &possible_parents_fops);
3543
3544	if (core->ops->debug_init)
3545		core->ops->debug_init(core->hw, core->dentry);
3546}
3547
3548/**
3549 * clk_debug_register - add a clk node to the debugfs clk directory
3550 * @core: the clk being added to the debugfs clk directory
3551 *
3552 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3553 * initialized.  Otherwise it bails out early since the debugfs clk directory
3554 * will be created lazily by clk_debug_init as part of a late_initcall.
3555 */
3556static void clk_debug_register(struct clk_core *core)
3557{
3558	mutex_lock(&clk_debug_lock);
3559	hlist_add_head(&core->debug_node, &clk_debug_list);
3560	if (inited)
3561		clk_debug_create_one(core, rootdir);
3562	mutex_unlock(&clk_debug_lock);
3563}
3564
3565 /**
3566 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3567 * @core: the clk being removed from the debugfs clk directory
3568 *
3569 * Dynamically removes a clk and all its child nodes from the
3570 * debugfs clk directory if clk->dentry points to debugfs created by
3571 * clk_debug_register in __clk_core_init.
3572 */
3573static void clk_debug_unregister(struct clk_core *core)
3574{
3575	mutex_lock(&clk_debug_lock);
3576	hlist_del_init(&core->debug_node);
3577	debugfs_remove_recursive(core->dentry);
3578	core->dentry = NULL;
3579	mutex_unlock(&clk_debug_lock);
3580}
3581
3582/**
3583 * clk_debug_init - lazily populate the debugfs clk directory
3584 *
3585 * clks are often initialized very early during boot before memory can be
3586 * dynamically allocated and well before debugfs is setup. This function
3587 * populates the debugfs clk directory once at boot-time when we know that
3588 * debugfs is setup. It should only be called once at boot-time, all other clks
3589 * added dynamically will be done so with clk_debug_register.
3590 */
3591static int __init clk_debug_init(void)
3592{
3593	struct clk_core *core;
3594
3595#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3596	pr_warn("\n");
3597	pr_warn("********************************************************************\n");
3598	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3599	pr_warn("**                                                                **\n");
3600	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3601	pr_warn("**                                                                **\n");
3602	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3603	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3604	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3605	pr_warn("**                                                                **\n");
3606	pr_warn("** If you see this message and you are not debugging the          **\n");
3607	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3608	pr_warn("**                                                                **\n");
3609	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3610	pr_warn("********************************************************************\n");
3611#endif
3612
3613	rootdir = debugfs_create_dir("clk", NULL);
3614
3615	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3616			    &clk_summary_fops);
3617	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3618			    &clk_dump_fops);
3619	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3620			    &clk_summary_fops);
3621	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3622			    &clk_dump_fops);
3623
3624	mutex_lock(&clk_debug_lock);
3625	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3626		clk_debug_create_one(core, rootdir);
3627
3628	inited = 1;
3629	mutex_unlock(&clk_debug_lock);
3630
3631	return 0;
3632}
3633late_initcall(clk_debug_init);
3634#else
3635static inline void clk_debug_register(struct clk_core *core) { }
3636static inline void clk_debug_unregister(struct clk_core *core)
3637{
3638}
3639#endif
3640
3641static void clk_core_reparent_orphans_nolock(void)
3642{
3643	struct clk_core *orphan;
3644	struct hlist_node *tmp2;
3645
3646	/*
3647	 * walk the list of orphan clocks and reparent any that newly finds a
3648	 * parent.
3649	 */
3650	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3651		struct clk_core *parent = __clk_init_parent(orphan);
3652
3653		/*
3654		 * We need to use __clk_set_parent_before() and _after() to
3655		 * properly migrate any prepare/enable count of the orphan
3656		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3657		 * are enabled during init but might not have a parent yet.
3658		 */
3659		if (parent) {
3660			/* update the clk tree topology */
3661			__clk_set_parent_before(orphan, parent);
3662			__clk_set_parent_after(orphan, parent, NULL);
3663			__clk_recalc_accuracies(orphan);
3664			__clk_recalc_rates(orphan, true, 0);
3665
3666			/*
3667			 * __clk_init_parent() will set the initial req_rate to
3668			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3669			 * is an orphan when it's registered.
3670			 *
3671			 * 'req_rate' is used by clk_set_rate_range() and
3672			 * clk_put() to trigger a clk_set_rate() call whenever
3673			 * the boundaries are modified. Let's make sure
3674			 * 'req_rate' is set to something non-zero so that
3675			 * clk_set_rate_range() doesn't drop the frequency.
3676			 */
3677			orphan->req_rate = orphan->rate;
3678		}
3679	}
3680}
3681
3682/**
3683 * __clk_core_init - initialize the data structures in a struct clk_core
3684 * @core:	clk_core being initialized
3685 *
3686 * Initializes the lists in struct clk_core, queries the hardware for the
3687 * parent and rate and sets them both.
3688 */
3689static int __clk_core_init(struct clk_core *core)
3690{
3691	int ret;
3692	struct clk_core *parent;
3693	unsigned long rate;
3694	int phase;
3695
3696	clk_prepare_lock();
3697
3698	/*
3699	 * Set hw->core after grabbing the prepare_lock to synchronize with
3700	 * callers of clk_core_fill_parent_index() where we treat hw->core
3701	 * being NULL as the clk not being registered yet. This is crucial so
3702	 * that clks aren't parented until their parent is fully registered.
3703	 */
3704	core->hw->core = core;
3705
3706	ret = clk_pm_runtime_get(core);
3707	if (ret)
3708		goto unlock;
3709
3710	/* check to see if a clock with this name is already registered */
3711	if (clk_core_lookup(core->name)) {
3712		pr_debug("%s: clk %s already initialized\n",
3713				__func__, core->name);
3714		ret = -EEXIST;
3715		goto out;
3716	}
3717
3718	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3719	if (core->ops->set_rate &&
3720	    !((core->ops->round_rate || core->ops->determine_rate) &&
3721	      core->ops->recalc_rate)) {
3722		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3723		       __func__, core->name);
3724		ret = -EINVAL;
3725		goto out;
3726	}
3727
3728	if (core->ops->set_parent && !core->ops->get_parent) {
3729		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3730		       __func__, core->name);
3731		ret = -EINVAL;
3732		goto out;
3733	}
3734
 
 
 
 
 
 
 
3735	if (core->num_parents > 1 && !core->ops->get_parent) {
3736		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3737		       __func__, core->name);
3738		ret = -EINVAL;
3739		goto out;
3740	}
3741
3742	if (core->ops->set_rate_and_parent &&
3743			!(core->ops->set_parent && core->ops->set_rate)) {
3744		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3745				__func__, core->name);
3746		ret = -EINVAL;
3747		goto out;
3748	}
3749
3750	/*
3751	 * optional platform-specific magic
3752	 *
3753	 * The .init callback is not used by any of the basic clock types, but
3754	 * exists for weird hardware that must perform initialization magic for
3755	 * CCF to get an accurate view of clock for any other callbacks. It may
3756	 * also be used needs to perform dynamic allocations. Such allocation
3757	 * must be freed in the terminate() callback.
3758	 * This callback shall not be used to initialize the parameters state,
3759	 * such as rate, parent, etc ...
3760	 *
3761	 * If it exist, this callback should called before any other callback of
3762	 * the clock
3763	 */
3764	if (core->ops->init) {
3765		ret = core->ops->init(core->hw);
3766		if (ret)
3767			goto out;
3768	}
3769
3770	parent = core->parent = __clk_init_parent(core);
3771
3772	/*
3773	 * Populate core->parent if parent has already been clk_core_init'd. If
3774	 * parent has not yet been clk_core_init'd then place clk in the orphan
3775	 * list.  If clk doesn't have any parents then place it in the root
3776	 * clk list.
3777	 *
3778	 * Every time a new clk is clk_init'd then we walk the list of orphan
3779	 * clocks and re-parent any that are children of the clock currently
3780	 * being clk_init'd.
3781	 */
3782	if (parent) {
3783		hlist_add_head(&core->child_node, &parent->children);
3784		core->orphan = parent->orphan;
3785	} else if (!core->num_parents) {
3786		hlist_add_head(&core->child_node, &clk_root_list);
3787		core->orphan = false;
3788	} else {
3789		hlist_add_head(&core->child_node, &clk_orphan_list);
3790		core->orphan = true;
3791	}
3792
3793	/*
3794	 * Set clk's accuracy.  The preferred method is to use
3795	 * .recalc_accuracy. For simple clocks and lazy developers the default
3796	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3797	 * parent (or is orphaned) then accuracy is set to zero (perfect
3798	 * clock).
3799	 */
3800	if (core->ops->recalc_accuracy)
3801		core->accuracy = core->ops->recalc_accuracy(core->hw,
3802					clk_core_get_accuracy_no_lock(parent));
3803	else if (parent)
3804		core->accuracy = parent->accuracy;
3805	else
3806		core->accuracy = 0;
3807
3808	/*
3809	 * Set clk's phase by clk_core_get_phase() caching the phase.
3810	 * Since a phase is by definition relative to its parent, just
3811	 * query the current clock phase, or just assume it's in phase.
3812	 */
3813	phase = clk_core_get_phase(core);
3814	if (phase < 0) {
3815		ret = phase;
3816		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3817			core->name);
3818		goto out;
3819	}
3820
3821	/*
3822	 * Set clk's duty cycle.
3823	 */
3824	clk_core_update_duty_cycle_nolock(core);
3825
3826	/*
3827	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3828	 * simple clocks and lazy developers the default fallback is to use the
3829	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3830	 * then rate is set to zero.
3831	 */
3832	if (core->ops->recalc_rate)
3833		rate = core->ops->recalc_rate(core->hw,
3834				clk_core_get_rate_nolock(parent));
3835	else if (parent)
3836		rate = parent->rate;
3837	else
3838		rate = 0;
3839	core->rate = core->req_rate = rate;
3840
3841	/*
3842	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3843	 * don't get accidentally disabled when walking the orphan tree and
3844	 * reparenting clocks
3845	 */
3846	if (core->flags & CLK_IS_CRITICAL) {
3847		ret = clk_core_prepare(core);
3848		if (ret) {
3849			pr_warn("%s: critical clk '%s' failed to prepare\n",
3850			       __func__, core->name);
3851			goto out;
3852		}
3853
3854		ret = clk_core_enable_lock(core);
3855		if (ret) {
3856			pr_warn("%s: critical clk '%s' failed to enable\n",
3857			       __func__, core->name);
3858			clk_core_unprepare(core);
3859			goto out;
3860		}
3861	}
3862
3863	clk_core_reparent_orphans_nolock();
3864
3865	kref_init(&core->ref);
3866out:
3867	clk_pm_runtime_put(core);
3868unlock:
3869	if (ret) {
3870		hlist_del_init(&core->child_node);
3871		core->hw->core = NULL;
3872	}
3873
3874	clk_prepare_unlock();
3875
3876	if (!ret)
3877		clk_debug_register(core);
3878
3879	return ret;
3880}
3881
3882/**
3883 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3884 * @core: clk to add consumer to
3885 * @clk: consumer to link to a clk
3886 */
3887static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3888{
3889	clk_prepare_lock();
3890	hlist_add_head(&clk->clks_node, &core->clks);
3891	clk_prepare_unlock();
3892}
3893
3894/**
3895 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3896 * @clk: consumer to unlink
3897 */
3898static void clk_core_unlink_consumer(struct clk *clk)
3899{
3900	lockdep_assert_held(&prepare_lock);
3901	hlist_del(&clk->clks_node);
3902}
3903
3904/**
3905 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3906 * @core: clk to allocate a consumer for
3907 * @dev_id: string describing device name
3908 * @con_id: connection ID string on device
3909 *
3910 * Returns: clk consumer left unlinked from the consumer list
3911 */
3912static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3913			     const char *con_id)
3914{
3915	struct clk *clk;
3916
3917	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3918	if (!clk)
3919		return ERR_PTR(-ENOMEM);
3920
3921	clk->core = core;
3922	clk->dev_id = dev_id;
3923	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3924	clk->max_rate = ULONG_MAX;
3925
3926	return clk;
3927}
3928
3929/**
3930 * free_clk - Free a clk consumer
3931 * @clk: clk consumer to free
3932 *
3933 * Note, this assumes the clk has been unlinked from the clk_core consumer
3934 * list.
3935 */
3936static void free_clk(struct clk *clk)
3937{
3938	kfree_const(clk->con_id);
3939	kfree(clk);
3940}
3941
3942/**
3943 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3944 * a clk_hw
3945 * @dev: clk consumer device
3946 * @hw: clk_hw associated with the clk being consumed
3947 * @dev_id: string describing device name
3948 * @con_id: connection ID string on device
3949 *
3950 * This is the main function used to create a clk pointer for use by clk
3951 * consumers. It connects a consumer to the clk_core and clk_hw structures
3952 * used by the framework and clk provider respectively.
3953 */
3954struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3955			      const char *dev_id, const char *con_id)
3956{
3957	struct clk *clk;
3958	struct clk_core *core;
3959
3960	/* This is to allow this function to be chained to others */
3961	if (IS_ERR_OR_NULL(hw))
3962		return ERR_CAST(hw);
3963
3964	core = hw->core;
3965	clk = alloc_clk(core, dev_id, con_id);
3966	if (IS_ERR(clk))
3967		return clk;
3968	clk->dev = dev;
3969
3970	if (!try_module_get(core->owner)) {
3971		free_clk(clk);
3972		return ERR_PTR(-ENOENT);
3973	}
3974
3975	kref_get(&core->ref);
3976	clk_core_link_consumer(core, clk);
3977
3978	return clk;
3979}
3980
3981/**
3982 * clk_hw_get_clk - get clk consumer given an clk_hw
3983 * @hw: clk_hw associated with the clk being consumed
3984 * @con_id: connection ID string on device
3985 *
3986 * Returns: new clk consumer
3987 * This is the function to be used by providers which need
3988 * to get a consumer clk and act on the clock element
3989 * Calls to this function must be balanced with calls clk_put()
3990 */
3991struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3992{
3993	struct device *dev = hw->core->dev;
3994	const char *name = dev ? dev_name(dev) : NULL;
3995
3996	return clk_hw_create_clk(dev, hw, name, con_id);
3997}
3998EXPORT_SYMBOL(clk_hw_get_clk);
3999
4000static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4001{
4002	const char *dst;
4003
4004	if (!src) {
4005		if (must_exist)
4006			return -EINVAL;
4007		return 0;
4008	}
4009
4010	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4011	if (!dst)
4012		return -ENOMEM;
4013
4014	return 0;
4015}
4016
4017static int clk_core_populate_parent_map(struct clk_core *core,
4018					const struct clk_init_data *init)
4019{
4020	u8 num_parents = init->num_parents;
4021	const char * const *parent_names = init->parent_names;
4022	const struct clk_hw **parent_hws = init->parent_hws;
4023	const struct clk_parent_data *parent_data = init->parent_data;
4024	int i, ret = 0;
4025	struct clk_parent_map *parents, *parent;
4026
4027	if (!num_parents)
4028		return 0;
4029
4030	/*
4031	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4032	 * having a cache of names/clk_hw pointers to clk_core pointers.
4033	 */
4034	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4035	core->parents = parents;
4036	if (!parents)
4037		return -ENOMEM;
4038
4039	/* Copy everything over because it might be __initdata */
4040	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4041		parent->index = -1;
4042		if (parent_names) {
4043			/* throw a WARN if any entries are NULL */
4044			WARN(!parent_names[i],
4045				"%s: invalid NULL in %s's .parent_names\n",
4046				__func__, core->name);
4047			ret = clk_cpy_name(&parent->name, parent_names[i],
4048					   true);
4049		} else if (parent_data) {
4050			parent->hw = parent_data[i].hw;
4051			parent->index = parent_data[i].index;
4052			ret = clk_cpy_name(&parent->fw_name,
4053					   parent_data[i].fw_name, false);
4054			if (!ret)
4055				ret = clk_cpy_name(&parent->name,
4056						   parent_data[i].name,
4057						   false);
4058		} else if (parent_hws) {
4059			parent->hw = parent_hws[i];
4060		} else {
4061			ret = -EINVAL;
4062			WARN(1, "Must specify parents if num_parents > 0\n");
4063		}
4064
4065		if (ret) {
4066			do {
4067				kfree_const(parents[i].name);
4068				kfree_const(parents[i].fw_name);
4069			} while (--i >= 0);
4070			kfree(parents);
4071
4072			return ret;
4073		}
4074	}
4075
4076	return 0;
4077}
4078
4079static void clk_core_free_parent_map(struct clk_core *core)
4080{
4081	int i = core->num_parents;
4082
4083	if (!core->num_parents)
4084		return;
4085
4086	while (--i >= 0) {
4087		kfree_const(core->parents[i].name);
4088		kfree_const(core->parents[i].fw_name);
4089	}
4090
4091	kfree(core->parents);
4092}
4093
4094static struct clk *
4095__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4096{
4097	int ret;
4098	struct clk_core *core;
4099	const struct clk_init_data *init = hw->init;
4100
4101	/*
4102	 * The init data is not supposed to be used outside of registration path.
4103	 * Set it to NULL so that provider drivers can't use it either and so that
4104	 * we catch use of hw->init early on in the core.
4105	 */
4106	hw->init = NULL;
4107
4108	core = kzalloc(sizeof(*core), GFP_KERNEL);
4109	if (!core) {
4110		ret = -ENOMEM;
4111		goto fail_out;
4112	}
4113
4114	core->name = kstrdup_const(init->name, GFP_KERNEL);
4115	if (!core->name) {
4116		ret = -ENOMEM;
4117		goto fail_name;
4118	}
4119
4120	if (WARN_ON(!init->ops)) {
4121		ret = -EINVAL;
4122		goto fail_ops;
4123	}
4124	core->ops = init->ops;
4125
4126	if (dev && pm_runtime_enabled(dev))
4127		core->rpm_enabled = true;
4128	core->dev = dev;
4129	core->of_node = np;
4130	if (dev && dev->driver)
4131		core->owner = dev->driver->owner;
4132	core->hw = hw;
4133	core->flags = init->flags;
4134	core->num_parents = init->num_parents;
4135	core->min_rate = 0;
4136	core->max_rate = ULONG_MAX;
4137
4138	ret = clk_core_populate_parent_map(core, init);
4139	if (ret)
4140		goto fail_parents;
4141
4142	INIT_HLIST_HEAD(&core->clks);
4143
4144	/*
4145	 * Don't call clk_hw_create_clk() here because that would pin the
4146	 * provider module to itself and prevent it from ever being removed.
4147	 */
4148	hw->clk = alloc_clk(core, NULL, NULL);
4149	if (IS_ERR(hw->clk)) {
4150		ret = PTR_ERR(hw->clk);
4151		goto fail_create_clk;
4152	}
4153
4154	clk_core_link_consumer(core, hw->clk);
4155
4156	ret = __clk_core_init(core);
4157	if (!ret)
4158		return hw->clk;
4159
4160	clk_prepare_lock();
4161	clk_core_unlink_consumer(hw->clk);
4162	clk_prepare_unlock();
4163
4164	free_clk(hw->clk);
4165	hw->clk = NULL;
4166
4167fail_create_clk:
4168	clk_core_free_parent_map(core);
4169fail_parents:
4170fail_ops:
4171	kfree_const(core->name);
4172fail_name:
4173	kfree(core);
4174fail_out:
4175	return ERR_PTR(ret);
4176}
4177
4178/**
4179 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4180 * @dev: Device to get device node of
4181 *
4182 * Return: device node pointer of @dev, or the device node pointer of
4183 * @dev->parent if dev doesn't have a device node, or NULL if neither
4184 * @dev or @dev->parent have a device node.
4185 */
4186static struct device_node *dev_or_parent_of_node(struct device *dev)
4187{
4188	struct device_node *np;
4189
4190	if (!dev)
4191		return NULL;
4192
4193	np = dev_of_node(dev);
4194	if (!np)
4195		np = dev_of_node(dev->parent);
4196
4197	return np;
4198}
4199
4200/**
4201 * clk_register - allocate a new clock, register it and return an opaque cookie
4202 * @dev: device that is registering this clock
4203 * @hw: link to hardware-specific clock data
4204 *
4205 * clk_register is the *deprecated* interface for populating the clock tree with
4206 * new clock nodes. Use clk_hw_register() instead.
4207 *
4208 * Returns: a pointer to the newly allocated struct clk which
4209 * cannot be dereferenced by driver code but may be used in conjunction with the
4210 * rest of the clock API.  In the event of an error clk_register will return an
4211 * error code; drivers must test for an error code after calling clk_register.
4212 */
4213struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4214{
4215	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4216}
4217EXPORT_SYMBOL_GPL(clk_register);
4218
4219/**
4220 * clk_hw_register - register a clk_hw and return an error code
4221 * @dev: device that is registering this clock
4222 * @hw: link to hardware-specific clock data
4223 *
4224 * clk_hw_register is the primary interface for populating the clock tree with
4225 * new clock nodes. It returns an integer equal to zero indicating success or
4226 * less than zero indicating failure. Drivers must test for an error code after
4227 * calling clk_hw_register().
4228 */
4229int clk_hw_register(struct device *dev, struct clk_hw *hw)
4230{
4231	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4232			       hw));
4233}
4234EXPORT_SYMBOL_GPL(clk_hw_register);
4235
4236/*
4237 * of_clk_hw_register - register a clk_hw and return an error code
4238 * @node: device_node of device that is registering this clock
4239 * @hw: link to hardware-specific clock data
4240 *
4241 * of_clk_hw_register() is the primary interface for populating the clock tree
4242 * with new clock nodes when a struct device is not available, but a struct
4243 * device_node is. It returns an integer equal to zero indicating success or
4244 * less than zero indicating failure. Drivers must test for an error code after
4245 * calling of_clk_hw_register().
4246 */
4247int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4248{
4249	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4250}
4251EXPORT_SYMBOL_GPL(of_clk_hw_register);
4252
4253/* Free memory allocated for a clock. */
4254static void __clk_release(struct kref *ref)
4255{
4256	struct clk_core *core = container_of(ref, struct clk_core, ref);
4257
4258	lockdep_assert_held(&prepare_lock);
4259
4260	clk_core_free_parent_map(core);
4261	kfree_const(core->name);
4262	kfree(core);
4263}
4264
4265/*
4266 * Empty clk_ops for unregistered clocks. These are used temporarily
4267 * after clk_unregister() was called on a clock and until last clock
4268 * consumer calls clk_put() and the struct clk object is freed.
4269 */
4270static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4271{
4272	return -ENXIO;
4273}
4274
4275static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4276{
4277	WARN_ON_ONCE(1);
4278}
4279
4280static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4281					unsigned long parent_rate)
4282{
4283	return -ENXIO;
4284}
4285
4286static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4287{
4288	return -ENXIO;
4289}
4290
 
 
 
 
 
 
4291static const struct clk_ops clk_nodrv_ops = {
4292	.enable		= clk_nodrv_prepare_enable,
4293	.disable	= clk_nodrv_disable_unprepare,
4294	.prepare	= clk_nodrv_prepare_enable,
4295	.unprepare	= clk_nodrv_disable_unprepare,
 
4296	.set_rate	= clk_nodrv_set_rate,
4297	.set_parent	= clk_nodrv_set_parent,
4298};
4299
4300static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4301						const struct clk_core *target)
4302{
4303	int i;
4304	struct clk_core *child;
4305
4306	for (i = 0; i < root->num_parents; i++)
4307		if (root->parents[i].core == target)
4308			root->parents[i].core = NULL;
4309
4310	hlist_for_each_entry(child, &root->children, child_node)
4311		clk_core_evict_parent_cache_subtree(child, target);
4312}
4313
4314/* Remove this clk from all parent caches */
4315static void clk_core_evict_parent_cache(struct clk_core *core)
4316{
4317	const struct hlist_head **lists;
4318	struct clk_core *root;
4319
4320	lockdep_assert_held(&prepare_lock);
4321
4322	for (lists = all_lists; *lists; lists++)
4323		hlist_for_each_entry(root, *lists, child_node)
4324			clk_core_evict_parent_cache_subtree(root, core);
4325
4326}
4327
4328/**
4329 * clk_unregister - unregister a currently registered clock
4330 * @clk: clock to unregister
4331 */
4332void clk_unregister(struct clk *clk)
4333{
4334	unsigned long flags;
4335	const struct clk_ops *ops;
4336
4337	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4338		return;
4339
4340	clk_debug_unregister(clk->core);
4341
4342	clk_prepare_lock();
4343
4344	ops = clk->core->ops;
4345	if (ops == &clk_nodrv_ops) {
4346		pr_err("%s: unregistered clock: %s\n", __func__,
4347		       clk->core->name);
4348		goto unlock;
4349	}
4350	/*
4351	 * Assign empty clock ops for consumers that might still hold
4352	 * a reference to this clock.
4353	 */
4354	flags = clk_enable_lock();
4355	clk->core->ops = &clk_nodrv_ops;
4356	clk_enable_unlock(flags);
4357
4358	if (ops->terminate)
4359		ops->terminate(clk->core->hw);
4360
4361	if (!hlist_empty(&clk->core->children)) {
4362		struct clk_core *child;
4363		struct hlist_node *t;
4364
4365		/* Reparent all children to the orphan list. */
4366		hlist_for_each_entry_safe(child, t, &clk->core->children,
4367					  child_node)
4368			clk_core_set_parent_nolock(child, NULL);
4369	}
4370
4371	clk_core_evict_parent_cache(clk->core);
4372
4373	hlist_del_init(&clk->core->child_node);
4374
4375	if (clk->core->prepare_count)
4376		pr_warn("%s: unregistering prepared clock: %s\n",
4377					__func__, clk->core->name);
4378
4379	if (clk->core->protect_count)
4380		pr_warn("%s: unregistering protected clock: %s\n",
4381					__func__, clk->core->name);
4382
4383	kref_put(&clk->core->ref, __clk_release);
4384	free_clk(clk);
4385unlock:
4386	clk_prepare_unlock();
4387}
4388EXPORT_SYMBOL_GPL(clk_unregister);
4389
4390/**
4391 * clk_hw_unregister - unregister a currently registered clk_hw
4392 * @hw: hardware-specific clock data to unregister
4393 */
4394void clk_hw_unregister(struct clk_hw *hw)
4395{
4396	clk_unregister(hw->clk);
4397}
4398EXPORT_SYMBOL_GPL(clk_hw_unregister);
4399
4400static void devm_clk_unregister_cb(struct device *dev, void *res)
4401{
4402	clk_unregister(*(struct clk **)res);
4403}
4404
4405static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4406{
4407	clk_hw_unregister(*(struct clk_hw **)res);
4408}
4409
4410/**
4411 * devm_clk_register - resource managed clk_register()
4412 * @dev: device that is registering this clock
4413 * @hw: link to hardware-specific clock data
4414 *
4415 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4416 *
4417 * Clocks returned from this function are automatically clk_unregister()ed on
4418 * driver detach. See clk_register() for more information.
4419 */
4420struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4421{
4422	struct clk *clk;
4423	struct clk **clkp;
4424
4425	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4426	if (!clkp)
4427		return ERR_PTR(-ENOMEM);
4428
4429	clk = clk_register(dev, hw);
4430	if (!IS_ERR(clk)) {
4431		*clkp = clk;
4432		devres_add(dev, clkp);
4433	} else {
4434		devres_free(clkp);
4435	}
4436
4437	return clk;
4438}
4439EXPORT_SYMBOL_GPL(devm_clk_register);
4440
4441/**
4442 * devm_clk_hw_register - resource managed clk_hw_register()
4443 * @dev: device that is registering this clock
4444 * @hw: link to hardware-specific clock data
4445 *
4446 * Managed clk_hw_register(). Clocks registered by this function are
4447 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4448 * for more information.
4449 */
4450int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4451{
4452	struct clk_hw **hwp;
4453	int ret;
4454
4455	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4456	if (!hwp)
4457		return -ENOMEM;
4458
4459	ret = clk_hw_register(dev, hw);
4460	if (!ret) {
4461		*hwp = hw;
4462		devres_add(dev, hwp);
4463	} else {
4464		devres_free(hwp);
4465	}
4466
4467	return ret;
4468}
4469EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4470
4471static void devm_clk_release(struct device *dev, void *res)
4472{
4473	clk_put(*(struct clk **)res);
4474}
4475
4476/**
4477 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4478 * @dev: device that is registering this clock
4479 * @hw: clk_hw associated with the clk being consumed
4480 * @con_id: connection ID string on device
4481 *
4482 * Managed clk_hw_get_clk(). Clocks got with this function are
4483 * automatically clk_put() on driver detach. See clk_put()
4484 * for more information.
4485 */
4486struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4487				const char *con_id)
4488{
4489	struct clk *clk;
4490	struct clk **clkp;
4491
4492	/* This should not happen because it would mean we have drivers
4493	 * passing around clk_hw pointers instead of having the caller use
4494	 * proper clk_get() style APIs
4495	 */
4496	WARN_ON_ONCE(dev != hw->core->dev);
4497
4498	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4499	if (!clkp)
4500		return ERR_PTR(-ENOMEM);
4501
4502	clk = clk_hw_get_clk(hw, con_id);
4503	if (!IS_ERR(clk)) {
4504		*clkp = clk;
4505		devres_add(dev, clkp);
4506	} else {
4507		devres_free(clkp);
4508	}
4509
4510	return clk;
4511}
4512EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4513
4514/*
4515 * clkdev helpers
4516 */
4517
4518void __clk_put(struct clk *clk)
4519{
4520	struct module *owner;
4521
4522	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4523		return;
4524
4525	clk_prepare_lock();
4526
4527	/*
4528	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4529	 * given user should be balanced with calls to clk_rate_exclusive_put()
4530	 * and by that same consumer
4531	 */
4532	if (WARN_ON(clk->exclusive_count)) {
4533		/* We voiced our concern, let's sanitize the situation */
4534		clk->core->protect_count -= (clk->exclusive_count - 1);
4535		clk_core_rate_unprotect(clk->core);
4536		clk->exclusive_count = 0;
4537	}
4538
4539	hlist_del(&clk->clks_node);
4540
4541	/* If we had any boundaries on that clock, let's drop them. */
4542	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4543		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4544
4545	owner = clk->core->owner;
4546	kref_put(&clk->core->ref, __clk_release);
4547
4548	clk_prepare_unlock();
4549
4550	module_put(owner);
4551
4552	free_clk(clk);
4553}
4554
4555/***        clk rate change notifiers        ***/
4556
4557/**
4558 * clk_notifier_register - add a clk rate change notifier
4559 * @clk: struct clk * to watch
4560 * @nb: struct notifier_block * with callback info
4561 *
4562 * Request notification when clk's rate changes.  This uses an SRCU
4563 * notifier because we want it to block and notifier unregistrations are
4564 * uncommon.  The callbacks associated with the notifier must not
4565 * re-enter into the clk framework by calling any top-level clk APIs;
4566 * this will cause a nested prepare_lock mutex.
4567 *
4568 * In all notification cases (pre, post and abort rate change) the original
4569 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4570 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4571 *
4572 * clk_notifier_register() must be called from non-atomic context.
4573 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4574 * allocation failure; otherwise, passes along the return value of
4575 * srcu_notifier_chain_register().
4576 */
4577int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4578{
4579	struct clk_notifier *cn;
4580	int ret = -ENOMEM;
4581
4582	if (!clk || !nb)
4583		return -EINVAL;
4584
4585	clk_prepare_lock();
4586
4587	/* search the list of notifiers for this clk */
4588	list_for_each_entry(cn, &clk_notifier_list, node)
4589		if (cn->clk == clk)
4590			goto found;
4591
4592	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4593	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4594	if (!cn)
4595		goto out;
4596
4597	cn->clk = clk;
4598	srcu_init_notifier_head(&cn->notifier_head);
4599
4600	list_add(&cn->node, &clk_notifier_list);
4601
4602found:
4603	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4604
4605	clk->core->notifier_count++;
4606
4607out:
4608	clk_prepare_unlock();
4609
4610	return ret;
4611}
4612EXPORT_SYMBOL_GPL(clk_notifier_register);
4613
4614/**
4615 * clk_notifier_unregister - remove a clk rate change notifier
4616 * @clk: struct clk *
4617 * @nb: struct notifier_block * with callback info
4618 *
4619 * Request no further notification for changes to 'clk' and frees memory
4620 * allocated in clk_notifier_register.
4621 *
4622 * Returns -EINVAL if called with null arguments; otherwise, passes
4623 * along the return value of srcu_notifier_chain_unregister().
4624 */
4625int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4626{
4627	struct clk_notifier *cn;
4628	int ret = -ENOENT;
4629
4630	if (!clk || !nb)
4631		return -EINVAL;
4632
4633	clk_prepare_lock();
4634
4635	list_for_each_entry(cn, &clk_notifier_list, node) {
4636		if (cn->clk == clk) {
4637			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4638
4639			clk->core->notifier_count--;
4640
4641			/* XXX the notifier code should handle this better */
4642			if (!cn->notifier_head.head) {
4643				srcu_cleanup_notifier_head(&cn->notifier_head);
4644				list_del(&cn->node);
4645				kfree(cn);
4646			}
4647			break;
4648		}
4649	}
4650
4651	clk_prepare_unlock();
4652
4653	return ret;
4654}
4655EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4656
4657struct clk_notifier_devres {
4658	struct clk *clk;
4659	struct notifier_block *nb;
4660};
4661
4662static void devm_clk_notifier_release(struct device *dev, void *res)
4663{
4664	struct clk_notifier_devres *devres = res;
4665
4666	clk_notifier_unregister(devres->clk, devres->nb);
4667}
4668
4669int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4670			       struct notifier_block *nb)
4671{
4672	struct clk_notifier_devres *devres;
4673	int ret;
4674
4675	devres = devres_alloc(devm_clk_notifier_release,
4676			      sizeof(*devres), GFP_KERNEL);
4677
4678	if (!devres)
4679		return -ENOMEM;
4680
4681	ret = clk_notifier_register(clk, nb);
4682	if (!ret) {
4683		devres->clk = clk;
4684		devres->nb = nb;
 
4685	} else {
4686		devres_free(devres);
4687	}
4688
4689	return ret;
4690}
4691EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4692
4693#ifdef CONFIG_OF
4694static void clk_core_reparent_orphans(void)
4695{
4696	clk_prepare_lock();
4697	clk_core_reparent_orphans_nolock();
4698	clk_prepare_unlock();
4699}
4700
4701/**
4702 * struct of_clk_provider - Clock provider registration structure
4703 * @link: Entry in global list of clock providers
4704 * @node: Pointer to device tree node of clock provider
4705 * @get: Get clock callback.  Returns NULL or a struct clk for the
4706 *       given clock specifier
4707 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4708 *       struct clk_hw for the given clock specifier
4709 * @data: context pointer to be passed into @get callback
4710 */
4711struct of_clk_provider {
4712	struct list_head link;
4713
4714	struct device_node *node;
4715	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4716	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4717	void *data;
4718};
4719
4720extern struct of_device_id __clk_of_table;
4721static const struct of_device_id __clk_of_table_sentinel
4722	__used __section("__clk_of_table_end");
4723
4724static LIST_HEAD(of_clk_providers);
4725static DEFINE_MUTEX(of_clk_mutex);
4726
4727struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4728				     void *data)
4729{
4730	return data;
4731}
4732EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4733
4734struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4735{
4736	return data;
4737}
4738EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4739
4740struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4741{
4742	struct clk_onecell_data *clk_data = data;
4743	unsigned int idx = clkspec->args[0];
4744
4745	if (idx >= clk_data->clk_num) {
4746		pr_err("%s: invalid clock index %u\n", __func__, idx);
4747		return ERR_PTR(-EINVAL);
4748	}
4749
4750	return clk_data->clks[idx];
4751}
4752EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4753
4754struct clk_hw *
4755of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4756{
4757	struct clk_hw_onecell_data *hw_data = data;
4758	unsigned int idx = clkspec->args[0];
4759
4760	if (idx >= hw_data->num) {
4761		pr_err("%s: invalid index %u\n", __func__, idx);
4762		return ERR_PTR(-EINVAL);
4763	}
4764
4765	return hw_data->hws[idx];
4766}
4767EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4768
4769/**
4770 * of_clk_add_provider() - Register a clock provider for a node
4771 * @np: Device node pointer associated with clock provider
4772 * @clk_src_get: callback for decoding clock
4773 * @data: context pointer for @clk_src_get callback.
4774 *
4775 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4776 */
4777int of_clk_add_provider(struct device_node *np,
4778			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4779						   void *data),
4780			void *data)
4781{
4782	struct of_clk_provider *cp;
4783	int ret;
4784
4785	if (!np)
4786		return 0;
4787
4788	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4789	if (!cp)
4790		return -ENOMEM;
4791
4792	cp->node = of_node_get(np);
4793	cp->data = data;
4794	cp->get = clk_src_get;
4795
4796	mutex_lock(&of_clk_mutex);
4797	list_add(&cp->link, &of_clk_providers);
4798	mutex_unlock(&of_clk_mutex);
4799	pr_debug("Added clock from %pOF\n", np);
4800
4801	clk_core_reparent_orphans();
4802
4803	ret = of_clk_set_defaults(np, true);
4804	if (ret < 0)
4805		of_clk_del_provider(np);
4806
4807	fwnode_dev_initialized(&np->fwnode, true);
4808
4809	return ret;
4810}
4811EXPORT_SYMBOL_GPL(of_clk_add_provider);
4812
4813/**
4814 * of_clk_add_hw_provider() - Register a clock provider for a node
4815 * @np: Device node pointer associated with clock provider
4816 * @get: callback for decoding clk_hw
4817 * @data: context pointer for @get callback.
4818 */
4819int of_clk_add_hw_provider(struct device_node *np,
4820			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4821						 void *data),
4822			   void *data)
4823{
4824	struct of_clk_provider *cp;
4825	int ret;
4826
4827	if (!np)
4828		return 0;
4829
4830	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4831	if (!cp)
4832		return -ENOMEM;
4833
4834	cp->node = of_node_get(np);
4835	cp->data = data;
4836	cp->get_hw = get;
4837
4838	mutex_lock(&of_clk_mutex);
4839	list_add(&cp->link, &of_clk_providers);
4840	mutex_unlock(&of_clk_mutex);
4841	pr_debug("Added clk_hw provider from %pOF\n", np);
4842
4843	clk_core_reparent_orphans();
4844
4845	ret = of_clk_set_defaults(np, true);
4846	if (ret < 0)
4847		of_clk_del_provider(np);
4848
4849	fwnode_dev_initialized(&np->fwnode, true);
4850
4851	return ret;
4852}
4853EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4854
4855static void devm_of_clk_release_provider(struct device *dev, void *res)
4856{
4857	of_clk_del_provider(*(struct device_node **)res);
4858}
4859
4860/*
4861 * We allow a child device to use its parent device as the clock provider node
4862 * for cases like MFD sub-devices where the child device driver wants to use
4863 * devm_*() APIs but not list the device in DT as a sub-node.
4864 */
4865static struct device_node *get_clk_provider_node(struct device *dev)
4866{
4867	struct device_node *np, *parent_np;
4868
4869	np = dev->of_node;
4870	parent_np = dev->parent ? dev->parent->of_node : NULL;
4871
4872	if (!of_find_property(np, "#clock-cells", NULL))
4873		if (of_find_property(parent_np, "#clock-cells", NULL))
4874			np = parent_np;
4875
4876	return np;
4877}
4878
4879/**
4880 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4881 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4882 * @get: callback for decoding clk_hw
4883 * @data: context pointer for @get callback
4884 *
4885 * Registers clock provider for given device's node. If the device has no DT
4886 * node or if the device node lacks of clock provider information (#clock-cells)
4887 * then the parent device's node is scanned for this information. If parent node
4888 * has the #clock-cells then it is used in registration. Provider is
4889 * automatically released at device exit.
4890 *
4891 * Return: 0 on success or an errno on failure.
4892 */
4893int devm_of_clk_add_hw_provider(struct device *dev,
4894			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4895					      void *data),
4896			void *data)
4897{
4898	struct device_node **ptr, *np;
4899	int ret;
4900
4901	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4902			   GFP_KERNEL);
4903	if (!ptr)
4904		return -ENOMEM;
4905
4906	np = get_clk_provider_node(dev);
4907	ret = of_clk_add_hw_provider(np, get, data);
4908	if (!ret) {
4909		*ptr = np;
4910		devres_add(dev, ptr);
4911	} else {
4912		devres_free(ptr);
4913	}
4914
4915	return ret;
4916}
4917EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4918
4919/**
4920 * of_clk_del_provider() - Remove a previously registered clock provider
4921 * @np: Device node pointer associated with clock provider
4922 */
4923void of_clk_del_provider(struct device_node *np)
4924{
4925	struct of_clk_provider *cp;
4926
4927	if (!np)
4928		return;
4929
4930	mutex_lock(&of_clk_mutex);
4931	list_for_each_entry(cp, &of_clk_providers, link) {
4932		if (cp->node == np) {
4933			list_del(&cp->link);
4934			fwnode_dev_initialized(&np->fwnode, false);
4935			of_node_put(cp->node);
4936			kfree(cp);
4937			break;
4938		}
4939	}
4940	mutex_unlock(&of_clk_mutex);
4941}
4942EXPORT_SYMBOL_GPL(of_clk_del_provider);
4943
4944/**
4945 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4946 * @np: device node to parse clock specifier from
4947 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4948 * @name: clock name to find and parse. If name is NULL, the index is used
4949 * @out_args: Result of parsing the clock specifier
4950 *
4951 * Parses a device node's "clocks" and "clock-names" properties to find the
4952 * phandle and cells for the index or name that is desired. The resulting clock
4953 * specifier is placed into @out_args, or an errno is returned when there's a
4954 * parsing error. The @index argument is ignored if @name is non-NULL.
4955 *
4956 * Example:
4957 *
4958 * phandle1: clock-controller@1 {
4959 *	#clock-cells = <2>;
4960 * }
4961 *
4962 * phandle2: clock-controller@2 {
4963 *	#clock-cells = <1>;
4964 * }
4965 *
4966 * clock-consumer@3 {
4967 *	clocks = <&phandle1 1 2 &phandle2 3>;
4968 *	clock-names = "name1", "name2";
4969 * }
4970 *
4971 * To get a device_node for `clock-controller@2' node you may call this
4972 * function a few different ways:
4973 *
4974 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4975 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4976 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4977 *
4978 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4979 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4980 * the "clock-names" property of @np.
4981 */
4982static int of_parse_clkspec(const struct device_node *np, int index,
4983			    const char *name, struct of_phandle_args *out_args)
4984{
4985	int ret = -ENOENT;
4986
4987	/* Walk up the tree of devices looking for a clock property that matches */
4988	while (np) {
4989		/*
4990		 * For named clocks, first look up the name in the
4991		 * "clock-names" property.  If it cannot be found, then index
4992		 * will be an error code and of_parse_phandle_with_args() will
4993		 * return -EINVAL.
4994		 */
4995		if (name)
4996			index = of_property_match_string(np, "clock-names", name);
4997		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4998						 index, out_args);
4999		if (!ret)
5000			break;
5001		if (name && index >= 0)
5002			break;
5003
5004		/*
5005		 * No matching clock found on this node.  If the parent node
5006		 * has a "clock-ranges" property, then we can try one of its
5007		 * clocks.
5008		 */
5009		np = np->parent;
5010		if (np && !of_get_property(np, "clock-ranges", NULL))
5011			break;
5012		index = 0;
5013	}
5014
5015	return ret;
5016}
5017
5018static struct clk_hw *
5019__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5020			      struct of_phandle_args *clkspec)
5021{
5022	struct clk *clk;
5023
5024	if (provider->get_hw)
5025		return provider->get_hw(clkspec, provider->data);
5026
5027	clk = provider->get(clkspec, provider->data);
5028	if (IS_ERR(clk))
5029		return ERR_CAST(clk);
5030	return __clk_get_hw(clk);
5031}
5032
5033static struct clk_hw *
5034of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5035{
5036	struct of_clk_provider *provider;
5037	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5038
5039	if (!clkspec)
5040		return ERR_PTR(-EINVAL);
5041
5042	mutex_lock(&of_clk_mutex);
5043	list_for_each_entry(provider, &of_clk_providers, link) {
5044		if (provider->node == clkspec->np) {
5045			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5046			if (!IS_ERR(hw))
5047				break;
5048		}
5049	}
5050	mutex_unlock(&of_clk_mutex);
5051
5052	return hw;
5053}
5054
5055/**
5056 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5057 * @clkspec: pointer to a clock specifier data structure
5058 *
5059 * This function looks up a struct clk from the registered list of clock
5060 * providers, an input is a clock specifier data structure as returned
5061 * from the of_parse_phandle_with_args() function call.
5062 */
5063struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5064{
5065	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5066
5067	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5068}
5069EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5070
5071struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5072			     const char *con_id)
5073{
5074	int ret;
5075	struct clk_hw *hw;
5076	struct of_phandle_args clkspec;
5077
5078	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5079	if (ret)
5080		return ERR_PTR(ret);
5081
5082	hw = of_clk_get_hw_from_clkspec(&clkspec);
5083	of_node_put(clkspec.np);
5084
5085	return hw;
5086}
5087
5088static struct clk *__of_clk_get(struct device_node *np,
5089				int index, const char *dev_id,
5090				const char *con_id)
5091{
5092	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5093
5094	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5095}
5096
5097struct clk *of_clk_get(struct device_node *np, int index)
5098{
5099	return __of_clk_get(np, index, np->full_name, NULL);
5100}
5101EXPORT_SYMBOL(of_clk_get);
5102
5103/**
5104 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5105 * @np: pointer to clock consumer node
5106 * @name: name of consumer's clock input, or NULL for the first clock reference
5107 *
5108 * This function parses the clocks and clock-names properties,
5109 * and uses them to look up the struct clk from the registered list of clock
5110 * providers.
5111 */
5112struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5113{
5114	if (!np)
5115		return ERR_PTR(-ENOENT);
5116
5117	return __of_clk_get(np, 0, np->full_name, name);
5118}
5119EXPORT_SYMBOL(of_clk_get_by_name);
5120
5121/**
5122 * of_clk_get_parent_count() - Count the number of clocks a device node has
5123 * @np: device node to count
5124 *
5125 * Returns: The number of clocks that are possible parents of this node
5126 */
5127unsigned int of_clk_get_parent_count(const struct device_node *np)
5128{
5129	int count;
5130
5131	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5132	if (count < 0)
5133		return 0;
5134
5135	return count;
5136}
5137EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5138
5139const char *of_clk_get_parent_name(const struct device_node *np, int index)
5140{
5141	struct of_phandle_args clkspec;
5142	struct property *prop;
5143	const char *clk_name;
5144	const __be32 *vp;
5145	u32 pv;
5146	int rc;
5147	int count;
5148	struct clk *clk;
5149
5150	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5151					&clkspec);
5152	if (rc)
5153		return NULL;
5154
5155	index = clkspec.args_count ? clkspec.args[0] : 0;
5156	count = 0;
5157
5158	/* if there is an indices property, use it to transfer the index
5159	 * specified into an array offset for the clock-output-names property.
5160	 */
5161	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5162		if (index == pv) {
5163			index = count;
5164			break;
5165		}
5166		count++;
5167	}
5168	/* We went off the end of 'clock-indices' without finding it */
5169	if (prop && !vp)
5170		return NULL;
5171
5172	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5173					  index,
5174					  &clk_name) < 0) {
5175		/*
5176		 * Best effort to get the name if the clock has been
5177		 * registered with the framework. If the clock isn't
5178		 * registered, we return the node name as the name of
5179		 * the clock as long as #clock-cells = 0.
5180		 */
5181		clk = of_clk_get_from_provider(&clkspec);
5182		if (IS_ERR(clk)) {
5183			if (clkspec.args_count == 0)
5184				clk_name = clkspec.np->name;
5185			else
5186				clk_name = NULL;
5187		} else {
5188			clk_name = __clk_get_name(clk);
5189			clk_put(clk);
5190		}
5191	}
5192
5193
5194	of_node_put(clkspec.np);
5195	return clk_name;
5196}
5197EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5198
5199/**
5200 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5201 * number of parents
5202 * @np: Device node pointer associated with clock provider
5203 * @parents: pointer to char array that hold the parents' names
5204 * @size: size of the @parents array
5205 *
5206 * Return: number of parents for the clock node.
5207 */
5208int of_clk_parent_fill(struct device_node *np, const char **parents,
5209		       unsigned int size)
5210{
5211	unsigned int i = 0;
5212
5213	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5214		i++;
5215
5216	return i;
5217}
5218EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5219
5220struct clock_provider {
5221	void (*clk_init_cb)(struct device_node *);
5222	struct device_node *np;
5223	struct list_head node;
5224};
5225
5226/*
5227 * This function looks for a parent clock. If there is one, then it
5228 * checks that the provider for this parent clock was initialized, in
5229 * this case the parent clock will be ready.
5230 */
5231static int parent_ready(struct device_node *np)
5232{
5233	int i = 0;
5234
5235	while (true) {
5236		struct clk *clk = of_clk_get(np, i);
5237
5238		/* this parent is ready we can check the next one */
5239		if (!IS_ERR(clk)) {
5240			clk_put(clk);
5241			i++;
5242			continue;
5243		}
5244
5245		/* at least one parent is not ready, we exit now */
5246		if (PTR_ERR(clk) == -EPROBE_DEFER)
5247			return 0;
5248
5249		/*
5250		 * Here we make assumption that the device tree is
5251		 * written correctly. So an error means that there is
5252		 * no more parent. As we didn't exit yet, then the
5253		 * previous parent are ready. If there is no clock
5254		 * parent, no need to wait for them, then we can
5255		 * consider their absence as being ready
5256		 */
5257		return 1;
5258	}
5259}
5260
5261/**
5262 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5263 * @np: Device node pointer associated with clock provider
5264 * @index: clock index
5265 * @flags: pointer to top-level framework flags
5266 *
5267 * Detects if the clock-critical property exists and, if so, sets the
5268 * corresponding CLK_IS_CRITICAL flag.
5269 *
5270 * Do not use this function. It exists only for legacy Device Tree
5271 * bindings, such as the one-clock-per-node style that are outdated.
5272 * Those bindings typically put all clock data into .dts and the Linux
5273 * driver has no clock data, thus making it impossible to set this flag
5274 * correctly from the driver. Only those drivers may call
5275 * of_clk_detect_critical from their setup functions.
5276 *
5277 * Return: error code or zero on success
5278 */
5279int of_clk_detect_critical(struct device_node *np, int index,
5280			   unsigned long *flags)
5281{
5282	struct property *prop;
5283	const __be32 *cur;
5284	uint32_t idx;
5285
5286	if (!np || !flags)
5287		return -EINVAL;
5288
5289	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5290		if (index == idx)
5291			*flags |= CLK_IS_CRITICAL;
5292
5293	return 0;
5294}
5295
5296/**
5297 * of_clk_init() - Scan and init clock providers from the DT
5298 * @matches: array of compatible values and init functions for providers.
5299 *
5300 * This function scans the device tree for matching clock providers
5301 * and calls their initialization functions. It also does it by trying
5302 * to follow the dependencies.
5303 */
5304void __init of_clk_init(const struct of_device_id *matches)
5305{
5306	const struct of_device_id *match;
5307	struct device_node *np;
5308	struct clock_provider *clk_provider, *next;
5309	bool is_init_done;
5310	bool force = false;
5311	LIST_HEAD(clk_provider_list);
5312
5313	if (!matches)
5314		matches = &__clk_of_table;
5315
5316	/* First prepare the list of the clocks providers */
5317	for_each_matching_node_and_match(np, matches, &match) {
5318		struct clock_provider *parent;
5319
5320		if (!of_device_is_available(np))
5321			continue;
5322
5323		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5324		if (!parent) {
5325			list_for_each_entry_safe(clk_provider, next,
5326						 &clk_provider_list, node) {
5327				list_del(&clk_provider->node);
5328				of_node_put(clk_provider->np);
5329				kfree(clk_provider);
5330			}
5331			of_node_put(np);
5332			return;
5333		}
5334
5335		parent->clk_init_cb = match->data;
5336		parent->np = of_node_get(np);
5337		list_add_tail(&parent->node, &clk_provider_list);
5338	}
5339
5340	while (!list_empty(&clk_provider_list)) {
5341		is_init_done = false;
5342		list_for_each_entry_safe(clk_provider, next,
5343					&clk_provider_list, node) {
5344			if (force || parent_ready(clk_provider->np)) {
5345
5346				/* Don't populate platform devices */
5347				of_node_set_flag(clk_provider->np,
5348						 OF_POPULATED);
5349
5350				clk_provider->clk_init_cb(clk_provider->np);
5351				of_clk_set_defaults(clk_provider->np, true);
5352
5353				list_del(&clk_provider->node);
5354				of_node_put(clk_provider->np);
5355				kfree(clk_provider);
5356				is_init_done = true;
5357			}
5358		}
5359
5360		/*
5361		 * We didn't manage to initialize any of the
5362		 * remaining providers during the last loop, so now we
5363		 * initialize all the remaining ones unconditionally
5364		 * in case the clock parent was not mandatory
5365		 */
5366		if (!is_init_done)
5367			force = true;
5368	}
5369}
5370#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static const struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	if (!core->rpm_enabled)
 112		return 0;
 113
 114	return pm_runtime_resume_and_get(core->dev);
 115}
 116
 117static void clk_pm_runtime_put(struct clk_core *core)
 118{
 119	if (!core->rpm_enabled)
 120		return;
 121
 122	pm_runtime_put_sync(core->dev);
 123}
 124
 125/***           locking             ***/
 126static void clk_prepare_lock(void)
 127{
 128	if (!mutex_trylock(&prepare_lock)) {
 129		if (prepare_owner == current) {
 130			prepare_refcnt++;
 131			return;
 132		}
 133		mutex_lock(&prepare_lock);
 134	}
 135	WARN_ON_ONCE(prepare_owner != NULL);
 136	WARN_ON_ONCE(prepare_refcnt != 0);
 137	prepare_owner = current;
 138	prepare_refcnt = 1;
 139}
 140
 141static void clk_prepare_unlock(void)
 142{
 143	WARN_ON_ONCE(prepare_owner != current);
 144	WARN_ON_ONCE(prepare_refcnt == 0);
 145
 146	if (--prepare_refcnt)
 147		return;
 148	prepare_owner = NULL;
 149	mutex_unlock(&prepare_lock);
 150}
 151
 152static unsigned long clk_enable_lock(void)
 153	__acquires(enable_lock)
 154{
 155	unsigned long flags;
 156
 157	/*
 158	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 159	 * we already hold the lock. So, in that case, we rely only on
 160	 * reference counting.
 161	 */
 162	if (!IS_ENABLED(CONFIG_SMP) ||
 163	    !spin_trylock_irqsave(&enable_lock, flags)) {
 164		if (enable_owner == current) {
 165			enable_refcnt++;
 166			__acquire(enable_lock);
 167			if (!IS_ENABLED(CONFIG_SMP))
 168				local_save_flags(flags);
 169			return flags;
 170		}
 171		spin_lock_irqsave(&enable_lock, flags);
 172	}
 173	WARN_ON_ONCE(enable_owner != NULL);
 174	WARN_ON_ONCE(enable_refcnt != 0);
 175	enable_owner = current;
 176	enable_refcnt = 1;
 177	return flags;
 178}
 179
 180static void clk_enable_unlock(unsigned long flags)
 181	__releases(enable_lock)
 182{
 183	WARN_ON_ONCE(enable_owner != current);
 184	WARN_ON_ONCE(enable_refcnt == 0);
 185
 186	if (--enable_refcnt) {
 187		__release(enable_lock);
 188		return;
 189	}
 190	enable_owner = NULL;
 191	spin_unlock_irqrestore(&enable_lock, flags);
 192}
 193
 194static bool clk_core_rate_is_protected(struct clk_core *core)
 195{
 196	return core->protect_count;
 197}
 198
 199static bool clk_core_is_prepared(struct clk_core *core)
 200{
 201	bool ret = false;
 202
 203	/*
 204	 * .is_prepared is optional for clocks that can prepare
 205	 * fall back to software usage counter if it is missing
 206	 */
 207	if (!core->ops->is_prepared)
 208		return core->prepare_count;
 209
 210	if (!clk_pm_runtime_get(core)) {
 211		ret = core->ops->is_prepared(core->hw);
 212		clk_pm_runtime_put(core);
 213	}
 214
 215	return ret;
 216}
 217
 218static bool clk_core_is_enabled(struct clk_core *core)
 219{
 220	bool ret = false;
 221
 222	/*
 223	 * .is_enabled is only mandatory for clocks that gate
 224	 * fall back to software usage counter if .is_enabled is missing
 225	 */
 226	if (!core->ops->is_enabled)
 227		return core->enable_count;
 228
 229	/*
 230	 * Check if clock controller's device is runtime active before
 231	 * calling .is_enabled callback. If not, assume that clock is
 232	 * disabled, because we might be called from atomic context, from
 233	 * which pm_runtime_get() is not allowed.
 234	 * This function is called mainly from clk_disable_unused_subtree,
 235	 * which ensures proper runtime pm activation of controller before
 236	 * taking enable spinlock, but the below check is needed if one tries
 237	 * to call it from other places.
 238	 */
 239	if (core->rpm_enabled) {
 240		pm_runtime_get_noresume(core->dev);
 241		if (!pm_runtime_active(core->dev)) {
 242			ret = false;
 243			goto done;
 244		}
 245	}
 246
 247	/*
 248	 * This could be called with the enable lock held, or from atomic
 249	 * context. If the parent isn't enabled already, we can't do
 250	 * anything here. We can also assume this clock isn't enabled.
 251	 */
 252	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
 253		if (!clk_core_is_enabled(core->parent)) {
 254			ret = false;
 255			goto done;
 256		}
 257
 258	ret = core->ops->is_enabled(core->hw);
 259done:
 260	if (core->rpm_enabled)
 261		pm_runtime_put(core->dev);
 262
 263	return ret;
 264}
 265
 266/***    helper functions   ***/
 267
 268const char *__clk_get_name(const struct clk *clk)
 269{
 270	return !clk ? NULL : clk->core->name;
 271}
 272EXPORT_SYMBOL_GPL(__clk_get_name);
 273
 274const char *clk_hw_get_name(const struct clk_hw *hw)
 275{
 276	return hw->core->name;
 277}
 278EXPORT_SYMBOL_GPL(clk_hw_get_name);
 279
 280struct clk_hw *__clk_get_hw(struct clk *clk)
 281{
 282	return !clk ? NULL : clk->core->hw;
 283}
 284EXPORT_SYMBOL_GPL(__clk_get_hw);
 285
 286unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 287{
 288	return hw->core->num_parents;
 289}
 290EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 291
 292struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 293{
 294	return hw->core->parent ? hw->core->parent->hw : NULL;
 295}
 296EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 297
 298static struct clk_core *__clk_lookup_subtree(const char *name,
 299					     struct clk_core *core)
 300{
 301	struct clk_core *child;
 302	struct clk_core *ret;
 303
 304	if (!strcmp(core->name, name))
 305		return core;
 306
 307	hlist_for_each_entry(child, &core->children, child_node) {
 308		ret = __clk_lookup_subtree(name, child);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	return NULL;
 314}
 315
 316static struct clk_core *clk_core_lookup(const char *name)
 317{
 318	struct clk_core *root_clk;
 319	struct clk_core *ret;
 320
 321	if (!name)
 322		return NULL;
 323
 324	/* search the 'proper' clk tree first */
 325	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 326		ret = __clk_lookup_subtree(name, root_clk);
 327		if (ret)
 328			return ret;
 329	}
 330
 331	/* if not found, then search the orphan tree */
 332	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	return NULL;
 339}
 340
 341#ifdef CONFIG_OF
 342static int of_parse_clkspec(const struct device_node *np, int index,
 343			    const char *name, struct of_phandle_args *out_args);
 344static struct clk_hw *
 345of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 346#else
 347static inline int of_parse_clkspec(const struct device_node *np, int index,
 348				   const char *name,
 349				   struct of_phandle_args *out_args)
 350{
 351	return -ENOENT;
 352}
 353static inline struct clk_hw *
 354of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 355{
 356	return ERR_PTR(-ENOENT);
 357}
 358#endif
 359
 360/**
 361 * clk_core_get - Find the clk_core parent of a clk
 362 * @core: clk to find parent of
 363 * @p_index: parent index to search for
 364 *
 365 * This is the preferred method for clk providers to find the parent of a
 366 * clk when that parent is external to the clk controller. The parent_names
 367 * array is indexed and treated as a local name matching a string in the device
 368 * node's 'clock-names' property or as the 'con_id' matching the device's
 369 * dev_name() in a clk_lookup. This allows clk providers to use their own
 370 * namespace instead of looking for a globally unique parent string.
 371 *
 372 * For example the following DT snippet would allow a clock registered by the
 373 * clock-controller@c001 that has a clk_init_data::parent_data array
 374 * with 'xtal' in the 'name' member to find the clock provided by the
 375 * clock-controller@f00abcd without needing to get the globally unique name of
 376 * the xtal clk.
 377 *
 378 *      parent: clock-controller@f00abcd {
 379 *              reg = <0xf00abcd 0xabcd>;
 380 *              #clock-cells = <0>;
 381 *      };
 382 *
 383 *      clock-controller@c001 {
 384 *              reg = <0xc001 0xf00d>;
 385 *              clocks = <&parent>;
 386 *              clock-names = "xtal";
 387 *              #clock-cells = <1>;
 388 *      };
 389 *
 390 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 391 * exist in the provider or the name can't be found in the DT node or
 392 * in a clkdev lookup. NULL when the provider knows about the clk but it
 393 * isn't provided on this system.
 394 * A valid clk_core pointer when the clk can be found in the provider.
 395 */
 396static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 397{
 398	const char *name = core->parents[p_index].fw_name;
 399	int index = core->parents[p_index].index;
 400	struct clk_hw *hw = ERR_PTR(-ENOENT);
 401	struct device *dev = core->dev;
 402	const char *dev_id = dev ? dev_name(dev) : NULL;
 403	struct device_node *np = core->of_node;
 404	struct of_phandle_args clkspec;
 405
 406	if (np && (name || index >= 0) &&
 407	    !of_parse_clkspec(np, index, name, &clkspec)) {
 408		hw = of_clk_get_hw_from_clkspec(&clkspec);
 409		of_node_put(clkspec.np);
 410	} else if (name) {
 411		/*
 412		 * If the DT search above couldn't find the provider fallback to
 413		 * looking up via clkdev based clk_lookups.
 414		 */
 415		hw = clk_find_hw(dev_id, name);
 416	}
 417
 418	if (IS_ERR(hw))
 419		return ERR_CAST(hw);
 420
 421	return hw->core;
 422}
 423
 424static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 425{
 426	struct clk_parent_map *entry = &core->parents[index];
 427	struct clk_core *parent;
 428
 429	if (entry->hw) {
 430		parent = entry->hw->core;
 431	} else {
 432		parent = clk_core_get(core, index);
 433		if (PTR_ERR(parent) == -ENOENT && entry->name)
 434			parent = clk_core_lookup(entry->name);
 435	}
 436
 437	/*
 438	 * We have a direct reference but it isn't registered yet?
 439	 * Orphan it and let clk_reparent() update the orphan status
 440	 * when the parent is registered.
 441	 */
 442	if (!parent)
 443		parent = ERR_PTR(-EPROBE_DEFER);
 444
 445	/* Only cache it if it's not an error */
 446	if (!IS_ERR(parent))
 447		entry->core = parent;
 448}
 449
 450static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 451							 u8 index)
 452{
 453	if (!core || index >= core->num_parents || !core->parents)
 454		return NULL;
 455
 456	if (!core->parents[index].core)
 457		clk_core_fill_parent_index(core, index);
 458
 459	return core->parents[index].core;
 460}
 461
 462struct clk_hw *
 463clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 464{
 465	struct clk_core *parent;
 466
 467	parent = clk_core_get_parent_by_index(hw->core, index);
 468
 469	return !parent ? NULL : parent->hw;
 470}
 471EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 472
 473unsigned int __clk_get_enable_count(struct clk *clk)
 474{
 475	return !clk ? 0 : clk->core->enable_count;
 476}
 477
 478static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 479{
 480	if (!core)
 481		return 0;
 482
 483	if (!core->num_parents || core->parent)
 484		return core->rate;
 485
 486	/*
 487	 * Clk must have a parent because num_parents > 0 but the parent isn't
 488	 * known yet. Best to return 0 as the rate of this clk until we can
 489	 * properly recalc the rate based on the parent's rate.
 490	 */
 491	return 0;
 492}
 493
 494unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 495{
 496	return clk_core_get_rate_nolock(hw->core);
 497}
 498EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 499
 500static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 501{
 502	if (!core)
 503		return 0;
 504
 505	return core->accuracy;
 506}
 507
 508unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 509{
 510	return hw->core->flags;
 511}
 512EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 513
 514bool clk_hw_is_prepared(const struct clk_hw *hw)
 515{
 516	return clk_core_is_prepared(hw->core);
 517}
 518EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 519
 520bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 521{
 522	return clk_core_rate_is_protected(hw->core);
 523}
 524EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 525
 526bool clk_hw_is_enabled(const struct clk_hw *hw)
 527{
 528	return clk_core_is_enabled(hw->core);
 529}
 530EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 531
 532bool __clk_is_enabled(struct clk *clk)
 533{
 534	if (!clk)
 535		return false;
 536
 537	return clk_core_is_enabled(clk->core);
 538}
 539EXPORT_SYMBOL_GPL(__clk_is_enabled);
 540
 541static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 542			   unsigned long best, unsigned long flags)
 543{
 544	if (flags & CLK_MUX_ROUND_CLOSEST)
 545		return abs(now - rate) < abs(best - rate);
 546
 547	return now <= rate && now > best;
 548}
 549
 550static void clk_core_init_rate_req(struct clk_core * const core,
 551				   struct clk_rate_request *req,
 552				   unsigned long rate);
 553
 554static int clk_core_round_rate_nolock(struct clk_core *core,
 555				      struct clk_rate_request *req);
 556
 557static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
 558{
 559	struct clk_core *tmp;
 560	unsigned int i;
 561
 562	/* Optimize for the case where the parent is already the parent. */
 563	if (core->parent == parent)
 564		return true;
 565
 566	for (i = 0; i < core->num_parents; i++) {
 567		tmp = clk_core_get_parent_by_index(core, i);
 568		if (!tmp)
 569			continue;
 570
 571		if (tmp == parent)
 572			return true;
 573	}
 574
 575	return false;
 576}
 577
 578static void
 579clk_core_forward_rate_req(struct clk_core *core,
 580			  const struct clk_rate_request *old_req,
 581			  struct clk_core *parent,
 582			  struct clk_rate_request *req,
 583			  unsigned long parent_rate)
 584{
 585	if (WARN_ON(!clk_core_has_parent(core, parent)))
 586		return;
 587
 588	clk_core_init_rate_req(parent, req, parent_rate);
 589
 590	if (req->min_rate < old_req->min_rate)
 591		req->min_rate = old_req->min_rate;
 592
 593	if (req->max_rate > old_req->max_rate)
 594		req->max_rate = old_req->max_rate;
 595}
 596
 597static int
 598clk_core_determine_rate_no_reparent(struct clk_hw *hw,
 599				    struct clk_rate_request *req)
 600{
 601	struct clk_core *core = hw->core;
 602	struct clk_core *parent = core->parent;
 603	unsigned long best;
 604	int ret;
 
 
 
 
 
 605
 606	if (core->flags & CLK_SET_RATE_PARENT) {
 607		struct clk_rate_request parent_req;
 
 
 608
 609		if (!parent) {
 610			req->rate = 0;
 611			return 0;
 612		}
 613
 614		clk_core_forward_rate_req(core, req, parent, &parent_req,
 615					  req->rate);
 616
 617		trace_clk_rate_request_start(&parent_req);
 
 
 618
 619		ret = clk_core_round_rate_nolock(parent, &parent_req);
 620		if (ret)
 621			return ret;
 622
 623		trace_clk_rate_request_done(&parent_req);
 
 
 
 
 
 624
 625		best = parent_req.rate;
 626	} else if (parent) {
 627		best = clk_core_get_rate_nolock(parent);
 628	} else {
 629		best = clk_core_get_rate_nolock(core);
 630	}
 631
 632	req->best_parent_rate = best;
 633	req->rate = best;
 634
 635	return 0;
 636}
 637
 638int clk_mux_determine_rate_flags(struct clk_hw *hw,
 639				 struct clk_rate_request *req,
 640				 unsigned long flags)
 641{
 642	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 643	int i, num_parents, ret;
 644	unsigned long best = 0;
 645
 646	/* if NO_REPARENT flag set, pass through to current parent */
 647	if (core->flags & CLK_SET_RATE_NO_REPARENT)
 648		return clk_core_determine_rate_no_reparent(hw, req);
 649
 650	/* find the parent that can provide the fastest rate <= rate */
 651	num_parents = core->num_parents;
 652	for (i = 0; i < num_parents; i++) {
 653		unsigned long parent_rate;
 654
 655		parent = clk_core_get_parent_by_index(core, i);
 656		if (!parent)
 657			continue;
 658
 659		if (core->flags & CLK_SET_RATE_PARENT) {
 660			struct clk_rate_request parent_req;
 661
 662			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
 663
 664			trace_clk_rate_request_start(&parent_req);
 665
 666			ret = clk_core_round_rate_nolock(parent, &parent_req);
 667			if (ret)
 668				continue;
 669
 670			trace_clk_rate_request_done(&parent_req);
 671
 672			parent_rate = parent_req.rate;
 673		} else {
 674			parent_rate = clk_core_get_rate_nolock(parent);
 675		}
 676
 677		if (mux_is_better_rate(req->rate, parent_rate,
 678				       best, flags)) {
 679			best_parent = parent;
 680			best = parent_rate;
 681		}
 682	}
 683
 684	if (!best_parent)
 685		return -EINVAL;
 686
 687	req->best_parent_hw = best_parent->hw;
 
 
 688	req->best_parent_rate = best;
 689	req->rate = best;
 690
 691	return 0;
 692}
 693EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 694
 695struct clk *__clk_lookup(const char *name)
 696{
 697	struct clk_core *core = clk_core_lookup(name);
 698
 699	return !core ? NULL : core->hw->clk;
 700}
 701
 702static void clk_core_get_boundaries(struct clk_core *core,
 703				    unsigned long *min_rate,
 704				    unsigned long *max_rate)
 705{
 706	struct clk *clk_user;
 707
 708	lockdep_assert_held(&prepare_lock);
 709
 710	*min_rate = core->min_rate;
 711	*max_rate = core->max_rate;
 712
 713	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 714		*min_rate = max(*min_rate, clk_user->min_rate);
 715
 716	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 717		*max_rate = min(*max_rate, clk_user->max_rate);
 718}
 719
 720/*
 721 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
 722 * @hw: the hw clk we want to get the range from
 723 * @min_rate: pointer to the variable that will hold the minimum
 724 * @max_rate: pointer to the variable that will hold the maximum
 725 *
 726 * Fills the @min_rate and @max_rate variables with the minimum and
 727 * maximum that clock can reach.
 728 */
 729void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
 730			   unsigned long *max_rate)
 731{
 732	clk_core_get_boundaries(hw->core, min_rate, max_rate);
 733}
 734EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
 735
 736static bool clk_core_check_boundaries(struct clk_core *core,
 737				      unsigned long min_rate,
 738				      unsigned long max_rate)
 739{
 740	struct clk *user;
 741
 742	lockdep_assert_held(&prepare_lock);
 743
 744	if (min_rate > core->max_rate || max_rate < core->min_rate)
 745		return false;
 746
 747	hlist_for_each_entry(user, &core->clks, clks_node)
 748		if (min_rate > user->max_rate || max_rate < user->min_rate)
 749			return false;
 750
 751	return true;
 752}
 753
 754void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 755			   unsigned long max_rate)
 756{
 757	hw->core->min_rate = min_rate;
 758	hw->core->max_rate = max_rate;
 759}
 760EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 761
 762/*
 763 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 764 * @hw: mux type clk to determine rate on
 765 * @req: rate request, also used to return preferred parent and frequencies
 766 *
 767 * Helper for finding best parent to provide a given frequency. This can be used
 768 * directly as a determine_rate callback (e.g. for a mux), or from a more
 769 * complex clock that may combine a mux with other operations.
 770 *
 771 * Returns: 0 on success, -EERROR value on error
 772 */
 773int __clk_mux_determine_rate(struct clk_hw *hw,
 774			     struct clk_rate_request *req)
 775{
 776	return clk_mux_determine_rate_flags(hw, req, 0);
 777}
 778EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 779
 780int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 781				     struct clk_rate_request *req)
 782{
 783	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 784}
 785EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 786
 787/*
 788 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
 789 * @hw: mux type clk to determine rate on
 790 * @req: rate request, also used to return preferred frequency
 791 *
 792 * Helper for finding best parent rate to provide a given frequency.
 793 * This can be used directly as a determine_rate callback (e.g. for a
 794 * mux), or from a more complex clock that may combine a mux with other
 795 * operations.
 796 *
 797 * Returns: 0 on success, -EERROR value on error
 798 */
 799int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
 800				      struct clk_rate_request *req)
 801{
 802	return clk_core_determine_rate_no_reparent(hw, req);
 803}
 804EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
 805
 806/***        clk api        ***/
 807
 808static void clk_core_rate_unprotect(struct clk_core *core)
 809{
 810	lockdep_assert_held(&prepare_lock);
 811
 812	if (!core)
 813		return;
 814
 815	if (WARN(core->protect_count == 0,
 816	    "%s already unprotected\n", core->name))
 817		return;
 818
 819	if (--core->protect_count > 0)
 820		return;
 821
 822	clk_core_rate_unprotect(core->parent);
 823}
 824
 825static int clk_core_rate_nuke_protect(struct clk_core *core)
 826{
 827	int ret;
 828
 829	lockdep_assert_held(&prepare_lock);
 830
 831	if (!core)
 832		return -EINVAL;
 833
 834	if (core->protect_count == 0)
 835		return 0;
 836
 837	ret = core->protect_count;
 838	core->protect_count = 1;
 839	clk_core_rate_unprotect(core);
 840
 841	return ret;
 842}
 843
 844/**
 845 * clk_rate_exclusive_put - release exclusivity over clock rate control
 846 * @clk: the clk over which the exclusivity is released
 847 *
 848 * clk_rate_exclusive_put() completes a critical section during which a clock
 849 * consumer cannot tolerate any other consumer making any operation on the
 850 * clock which could result in a rate change or rate glitch. Exclusive clocks
 851 * cannot have their rate changed, either directly or indirectly due to changes
 852 * further up the parent chain of clocks. As a result, clocks up parent chain
 853 * also get under exclusive control of the calling consumer.
 854 *
 855 * If exlusivity is claimed more than once on clock, even by the same consumer,
 856 * the rate effectively gets locked as exclusivity can't be preempted.
 857 *
 858 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 859 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 860 * error status.
 861 */
 862void clk_rate_exclusive_put(struct clk *clk)
 863{
 864	if (!clk)
 865		return;
 866
 867	clk_prepare_lock();
 868
 869	/*
 870	 * if there is something wrong with this consumer protect count, stop
 871	 * here before messing with the provider
 872	 */
 873	if (WARN_ON(clk->exclusive_count <= 0))
 874		goto out;
 875
 876	clk_core_rate_unprotect(clk->core);
 877	clk->exclusive_count--;
 878out:
 879	clk_prepare_unlock();
 880}
 881EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 882
 883static void clk_core_rate_protect(struct clk_core *core)
 884{
 885	lockdep_assert_held(&prepare_lock);
 886
 887	if (!core)
 888		return;
 889
 890	if (core->protect_count == 0)
 891		clk_core_rate_protect(core->parent);
 892
 893	core->protect_count++;
 894}
 895
 896static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 897{
 898	lockdep_assert_held(&prepare_lock);
 899
 900	if (!core)
 901		return;
 902
 903	if (count == 0)
 904		return;
 905
 906	clk_core_rate_protect(core);
 907	core->protect_count = count;
 908}
 909
 910/**
 911 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 912 * @clk: the clk over which the exclusity of rate control is requested
 913 *
 914 * clk_rate_exclusive_get() begins a critical section during which a clock
 915 * consumer cannot tolerate any other consumer making any operation on the
 916 * clock which could result in a rate change or rate glitch. Exclusive clocks
 917 * cannot have their rate changed, either directly or indirectly due to changes
 918 * further up the parent chain of clocks. As a result, clocks up parent chain
 919 * also get under exclusive control of the calling consumer.
 920 *
 921 * If exlusivity is claimed more than once on clock, even by the same consumer,
 922 * the rate effectively gets locked as exclusivity can't be preempted.
 923 *
 924 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 925 * clk_rate_exclusive_put(). Calls to this function may sleep.
 926 * Returns 0 on success, -EERROR otherwise
 927 */
 928int clk_rate_exclusive_get(struct clk *clk)
 929{
 930	if (!clk)
 931		return 0;
 932
 933	clk_prepare_lock();
 934	clk_core_rate_protect(clk->core);
 935	clk->exclusive_count++;
 936	clk_prepare_unlock();
 937
 938	return 0;
 939}
 940EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 941
 942static void clk_core_unprepare(struct clk_core *core)
 943{
 944	lockdep_assert_held(&prepare_lock);
 945
 946	if (!core)
 947		return;
 948
 949	if (WARN(core->prepare_count == 0,
 950	    "%s already unprepared\n", core->name))
 951		return;
 952
 953	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 954	    "Unpreparing critical %s\n", core->name))
 955		return;
 956
 957	if (core->flags & CLK_SET_RATE_GATE)
 958		clk_core_rate_unprotect(core);
 959
 960	if (--core->prepare_count > 0)
 961		return;
 962
 963	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 964
 965	trace_clk_unprepare(core);
 966
 967	if (core->ops->unprepare)
 968		core->ops->unprepare(core->hw);
 969
 970	trace_clk_unprepare_complete(core);
 971	clk_core_unprepare(core->parent);
 972	clk_pm_runtime_put(core);
 973}
 974
 975static void clk_core_unprepare_lock(struct clk_core *core)
 976{
 977	clk_prepare_lock();
 978	clk_core_unprepare(core);
 979	clk_prepare_unlock();
 980}
 981
 982/**
 983 * clk_unprepare - undo preparation of a clock source
 984 * @clk: the clk being unprepared
 985 *
 986 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 987 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 988 * if the operation may sleep.  One example is a clk which is accessed over
 989 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 990 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 991 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 992 */
 993void clk_unprepare(struct clk *clk)
 994{
 995	if (IS_ERR_OR_NULL(clk))
 996		return;
 997
 998	clk_core_unprepare_lock(clk->core);
 999}
1000EXPORT_SYMBOL_GPL(clk_unprepare);
1001
1002static int clk_core_prepare(struct clk_core *core)
1003{
1004	int ret = 0;
1005
1006	lockdep_assert_held(&prepare_lock);
1007
1008	if (!core)
1009		return 0;
1010
1011	if (core->prepare_count == 0) {
1012		ret = clk_pm_runtime_get(core);
1013		if (ret)
1014			return ret;
1015
1016		ret = clk_core_prepare(core->parent);
1017		if (ret)
1018			goto runtime_put;
1019
1020		trace_clk_prepare(core);
1021
1022		if (core->ops->prepare)
1023			ret = core->ops->prepare(core->hw);
1024
1025		trace_clk_prepare_complete(core);
1026
1027		if (ret)
1028			goto unprepare;
1029	}
1030
1031	core->prepare_count++;
1032
1033	/*
1034	 * CLK_SET_RATE_GATE is a special case of clock protection
1035	 * Instead of a consumer claiming exclusive rate control, it is
1036	 * actually the provider which prevents any consumer from making any
1037	 * operation which could result in a rate change or rate glitch while
1038	 * the clock is prepared.
1039	 */
1040	if (core->flags & CLK_SET_RATE_GATE)
1041		clk_core_rate_protect(core);
1042
1043	return 0;
1044unprepare:
1045	clk_core_unprepare(core->parent);
1046runtime_put:
1047	clk_pm_runtime_put(core);
1048	return ret;
1049}
1050
1051static int clk_core_prepare_lock(struct clk_core *core)
1052{
1053	int ret;
1054
1055	clk_prepare_lock();
1056	ret = clk_core_prepare(core);
1057	clk_prepare_unlock();
1058
1059	return ret;
1060}
1061
1062/**
1063 * clk_prepare - prepare a clock source
1064 * @clk: the clk being prepared
1065 *
1066 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1067 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1068 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1069 * the complex case a clk ungate operation may require a fast and a slow part.
1070 * It is this reason that clk_prepare and clk_enable are not mutually
1071 * exclusive.  In fact clk_prepare must be called before clk_enable.
1072 * Returns 0 on success, -EERROR otherwise.
1073 */
1074int clk_prepare(struct clk *clk)
1075{
1076	if (!clk)
1077		return 0;
1078
1079	return clk_core_prepare_lock(clk->core);
1080}
1081EXPORT_SYMBOL_GPL(clk_prepare);
1082
1083static void clk_core_disable(struct clk_core *core)
1084{
1085	lockdep_assert_held(&enable_lock);
1086
1087	if (!core)
1088		return;
1089
1090	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1091		return;
1092
1093	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1094	    "Disabling critical %s\n", core->name))
1095		return;
1096
1097	if (--core->enable_count > 0)
1098		return;
1099
1100	trace_clk_disable(core);
1101
1102	if (core->ops->disable)
1103		core->ops->disable(core->hw);
1104
1105	trace_clk_disable_complete(core);
1106
1107	clk_core_disable(core->parent);
1108}
1109
1110static void clk_core_disable_lock(struct clk_core *core)
1111{
1112	unsigned long flags;
1113
1114	flags = clk_enable_lock();
1115	clk_core_disable(core);
1116	clk_enable_unlock(flags);
1117}
1118
1119/**
1120 * clk_disable - gate a clock
1121 * @clk: the clk being gated
1122 *
1123 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1124 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1125 * clk if the operation is fast and will never sleep.  One example is a
1126 * SoC-internal clk which is controlled via simple register writes.  In the
1127 * complex case a clk gate operation may require a fast and a slow part.  It is
1128 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1129 * In fact clk_disable must be called before clk_unprepare.
1130 */
1131void clk_disable(struct clk *clk)
1132{
1133	if (IS_ERR_OR_NULL(clk))
1134		return;
1135
1136	clk_core_disable_lock(clk->core);
1137}
1138EXPORT_SYMBOL_GPL(clk_disable);
1139
1140static int clk_core_enable(struct clk_core *core)
1141{
1142	int ret = 0;
1143
1144	lockdep_assert_held(&enable_lock);
1145
1146	if (!core)
1147		return 0;
1148
1149	if (WARN(core->prepare_count == 0,
1150	    "Enabling unprepared %s\n", core->name))
1151		return -ESHUTDOWN;
1152
1153	if (core->enable_count == 0) {
1154		ret = clk_core_enable(core->parent);
1155
1156		if (ret)
1157			return ret;
1158
1159		trace_clk_enable(core);
1160
1161		if (core->ops->enable)
1162			ret = core->ops->enable(core->hw);
1163
1164		trace_clk_enable_complete(core);
1165
1166		if (ret) {
1167			clk_core_disable(core->parent);
1168			return ret;
1169		}
1170	}
1171
1172	core->enable_count++;
1173	return 0;
1174}
1175
1176static int clk_core_enable_lock(struct clk_core *core)
1177{
1178	unsigned long flags;
1179	int ret;
1180
1181	flags = clk_enable_lock();
1182	ret = clk_core_enable(core);
1183	clk_enable_unlock(flags);
1184
1185	return ret;
1186}
1187
1188/**
1189 * clk_gate_restore_context - restore context for poweroff
1190 * @hw: the clk_hw pointer of clock whose state is to be restored
1191 *
1192 * The clock gate restore context function enables or disables
1193 * the gate clocks based on the enable_count. This is done in cases
1194 * where the clock context is lost and based on the enable_count
1195 * the clock either needs to be enabled/disabled. This
1196 * helps restore the state of gate clocks.
1197 */
1198void clk_gate_restore_context(struct clk_hw *hw)
1199{
1200	struct clk_core *core = hw->core;
1201
1202	if (core->enable_count)
1203		core->ops->enable(hw);
1204	else
1205		core->ops->disable(hw);
1206}
1207EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1208
1209static int clk_core_save_context(struct clk_core *core)
1210{
1211	struct clk_core *child;
1212	int ret = 0;
1213
1214	hlist_for_each_entry(child, &core->children, child_node) {
1215		ret = clk_core_save_context(child);
1216		if (ret < 0)
1217			return ret;
1218	}
1219
1220	if (core->ops && core->ops->save_context)
1221		ret = core->ops->save_context(core->hw);
1222
1223	return ret;
1224}
1225
1226static void clk_core_restore_context(struct clk_core *core)
1227{
1228	struct clk_core *child;
1229
1230	if (core->ops && core->ops->restore_context)
1231		core->ops->restore_context(core->hw);
1232
1233	hlist_for_each_entry(child, &core->children, child_node)
1234		clk_core_restore_context(child);
1235}
1236
1237/**
1238 * clk_save_context - save clock context for poweroff
1239 *
1240 * Saves the context of the clock register for powerstates in which the
1241 * contents of the registers will be lost. Occurs deep within the suspend
1242 * code.  Returns 0 on success.
1243 */
1244int clk_save_context(void)
1245{
1246	struct clk_core *clk;
1247	int ret;
1248
1249	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1250		ret = clk_core_save_context(clk);
1251		if (ret < 0)
1252			return ret;
1253	}
1254
1255	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1256		ret = clk_core_save_context(clk);
1257		if (ret < 0)
1258			return ret;
1259	}
1260
1261	return 0;
1262}
1263EXPORT_SYMBOL_GPL(clk_save_context);
1264
1265/**
1266 * clk_restore_context - restore clock context after poweroff
1267 *
1268 * Restore the saved clock context upon resume.
1269 *
1270 */
1271void clk_restore_context(void)
1272{
1273	struct clk_core *core;
1274
1275	hlist_for_each_entry(core, &clk_root_list, child_node)
1276		clk_core_restore_context(core);
1277
1278	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1279		clk_core_restore_context(core);
1280}
1281EXPORT_SYMBOL_GPL(clk_restore_context);
1282
1283/**
1284 * clk_enable - ungate a clock
1285 * @clk: the clk being ungated
1286 *
1287 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1288 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1289 * if the operation will never sleep.  One example is a SoC-internal clk which
1290 * is controlled via simple register writes.  In the complex case a clk ungate
1291 * operation may require a fast and a slow part.  It is this reason that
1292 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1293 * must be called before clk_enable.  Returns 0 on success, -EERROR
1294 * otherwise.
1295 */
1296int clk_enable(struct clk *clk)
1297{
1298	if (!clk)
1299		return 0;
1300
1301	return clk_core_enable_lock(clk->core);
1302}
1303EXPORT_SYMBOL_GPL(clk_enable);
1304
1305/**
1306 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1307 * @clk: clock source
1308 *
1309 * Returns true if clk_prepare() implicitly enables the clock, effectively
1310 * making clk_enable()/clk_disable() no-ops, false otherwise.
1311 *
1312 * This is of interest mainly to power management code where actually
1313 * disabling the clock also requires unpreparing it to have any material
1314 * effect.
1315 *
1316 * Regardless of the value returned here, the caller must always invoke
1317 * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1318 * to be right.
1319 */
1320bool clk_is_enabled_when_prepared(struct clk *clk)
1321{
1322	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1323}
1324EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1325
1326static int clk_core_prepare_enable(struct clk_core *core)
1327{
1328	int ret;
1329
1330	ret = clk_core_prepare_lock(core);
1331	if (ret)
1332		return ret;
1333
1334	ret = clk_core_enable_lock(core);
1335	if (ret)
1336		clk_core_unprepare_lock(core);
1337
1338	return ret;
1339}
1340
1341static void clk_core_disable_unprepare(struct clk_core *core)
1342{
1343	clk_core_disable_lock(core);
1344	clk_core_unprepare_lock(core);
1345}
1346
1347static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1348{
1349	struct clk_core *child;
1350
1351	lockdep_assert_held(&prepare_lock);
1352
1353	hlist_for_each_entry(child, &core->children, child_node)
1354		clk_unprepare_unused_subtree(child);
1355
1356	if (core->prepare_count)
1357		return;
1358
1359	if (core->flags & CLK_IGNORE_UNUSED)
1360		return;
1361
1362	if (clk_pm_runtime_get(core))
1363		return;
1364
1365	if (clk_core_is_prepared(core)) {
1366		trace_clk_unprepare(core);
1367		if (core->ops->unprepare_unused)
1368			core->ops->unprepare_unused(core->hw);
1369		else if (core->ops->unprepare)
1370			core->ops->unprepare(core->hw);
1371		trace_clk_unprepare_complete(core);
1372	}
1373
1374	clk_pm_runtime_put(core);
1375}
1376
1377static void __init clk_disable_unused_subtree(struct clk_core *core)
1378{
1379	struct clk_core *child;
1380	unsigned long flags;
1381
1382	lockdep_assert_held(&prepare_lock);
1383
1384	hlist_for_each_entry(child, &core->children, child_node)
1385		clk_disable_unused_subtree(child);
1386
1387	if (core->flags & CLK_OPS_PARENT_ENABLE)
1388		clk_core_prepare_enable(core->parent);
1389
1390	if (clk_pm_runtime_get(core))
1391		goto unprepare_out;
1392
1393	flags = clk_enable_lock();
1394
1395	if (core->enable_count)
1396		goto unlock_out;
1397
1398	if (core->flags & CLK_IGNORE_UNUSED)
1399		goto unlock_out;
1400
1401	/*
1402	 * some gate clocks have special needs during the disable-unused
1403	 * sequence.  call .disable_unused if available, otherwise fall
1404	 * back to .disable
1405	 */
1406	if (clk_core_is_enabled(core)) {
1407		trace_clk_disable(core);
1408		if (core->ops->disable_unused)
1409			core->ops->disable_unused(core->hw);
1410		else if (core->ops->disable)
1411			core->ops->disable(core->hw);
1412		trace_clk_disable_complete(core);
1413	}
1414
1415unlock_out:
1416	clk_enable_unlock(flags);
1417	clk_pm_runtime_put(core);
1418unprepare_out:
1419	if (core->flags & CLK_OPS_PARENT_ENABLE)
1420		clk_core_disable_unprepare(core->parent);
1421}
1422
1423static bool clk_ignore_unused __initdata;
1424static int __init clk_ignore_unused_setup(char *__unused)
1425{
1426	clk_ignore_unused = true;
1427	return 1;
1428}
1429__setup("clk_ignore_unused", clk_ignore_unused_setup);
1430
1431static int __init clk_disable_unused(void)
1432{
1433	struct clk_core *core;
1434
1435	if (clk_ignore_unused) {
1436		pr_warn("clk: Not disabling unused clocks\n");
1437		return 0;
1438	}
1439
1440	pr_info("clk: Disabling unused clocks\n");
1441
1442	clk_prepare_lock();
1443
1444	hlist_for_each_entry(core, &clk_root_list, child_node)
1445		clk_disable_unused_subtree(core);
1446
1447	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1448		clk_disable_unused_subtree(core);
1449
1450	hlist_for_each_entry(core, &clk_root_list, child_node)
1451		clk_unprepare_unused_subtree(core);
1452
1453	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1454		clk_unprepare_unused_subtree(core);
1455
1456	clk_prepare_unlock();
1457
1458	return 0;
1459}
1460late_initcall_sync(clk_disable_unused);
1461
1462static int clk_core_determine_round_nolock(struct clk_core *core,
1463					   struct clk_rate_request *req)
1464{
1465	long rate;
1466
1467	lockdep_assert_held(&prepare_lock);
1468
1469	if (!core)
1470		return 0;
1471
1472	/*
1473	 * Some clock providers hand-craft their clk_rate_requests and
1474	 * might not fill min_rate and max_rate.
1475	 *
1476	 * If it's the case, clamping the rate is equivalent to setting
1477	 * the rate to 0 which is bad. Skip the clamping but complain so
1478	 * that it gets fixed, hopefully.
1479	 */
1480	if (!req->min_rate && !req->max_rate)
1481		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1482			__func__, core->name);
1483	else
1484		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1485
1486	/*
1487	 * At this point, core protection will be disabled
1488	 * - if the provider is not protected at all
1489	 * - if the calling consumer is the only one which has exclusivity
1490	 *   over the provider
1491	 */
1492	if (clk_core_rate_is_protected(core)) {
1493		req->rate = core->rate;
1494	} else if (core->ops->determine_rate) {
1495		return core->ops->determine_rate(core->hw, req);
1496	} else if (core->ops->round_rate) {
1497		rate = core->ops->round_rate(core->hw, req->rate,
1498					     &req->best_parent_rate);
1499		if (rate < 0)
1500			return rate;
1501
1502		req->rate = rate;
1503	} else {
1504		return -EINVAL;
1505	}
1506
1507	return 0;
1508}
1509
1510static void clk_core_init_rate_req(struct clk_core * const core,
1511				   struct clk_rate_request *req,
1512				   unsigned long rate)
1513{
1514	struct clk_core *parent;
1515
1516	if (WARN_ON(!req))
1517		return;
1518
1519	memset(req, 0, sizeof(*req));
1520	req->max_rate = ULONG_MAX;
1521
1522	if (!core)
1523		return;
1524
1525	req->core = core;
1526	req->rate = rate;
1527	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1528
1529	parent = core->parent;
1530	if (parent) {
1531		req->best_parent_hw = parent->hw;
1532		req->best_parent_rate = parent->rate;
1533	} else {
1534		req->best_parent_hw = NULL;
1535		req->best_parent_rate = 0;
1536	}
1537}
1538
1539/**
1540 * clk_hw_init_rate_request - Initializes a clk_rate_request
1541 * @hw: the clk for which we want to submit a rate request
1542 * @req: the clk_rate_request structure we want to initialise
1543 * @rate: the rate which is to be requested
1544 *
1545 * Initializes a clk_rate_request structure to submit to
1546 * __clk_determine_rate() or similar functions.
1547 */
1548void clk_hw_init_rate_request(const struct clk_hw *hw,
1549			      struct clk_rate_request *req,
1550			      unsigned long rate)
1551{
1552	if (WARN_ON(!hw || !req))
1553		return;
1554
1555	clk_core_init_rate_req(hw->core, req, rate);
1556}
1557EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1558
1559/**
1560 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1561 * @hw: the original clock that got the rate request
1562 * @old_req: the original clk_rate_request structure we want to forward
1563 * @parent: the clk we want to forward @old_req to
1564 * @req: the clk_rate_request structure we want to initialise
1565 * @parent_rate: The rate which is to be requested to @parent
1566 *
1567 * Initializes a clk_rate_request structure to submit to a clock parent
1568 * in __clk_determine_rate() or similar functions.
1569 */
1570void clk_hw_forward_rate_request(const struct clk_hw *hw,
1571				 const struct clk_rate_request *old_req,
1572				 const struct clk_hw *parent,
1573				 struct clk_rate_request *req,
1574				 unsigned long parent_rate)
1575{
1576	if (WARN_ON(!hw || !old_req || !parent || !req))
1577		return;
1578
1579	clk_core_forward_rate_req(hw->core, old_req,
1580				  parent->core, req,
1581				  parent_rate);
1582}
1583EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1584
1585static bool clk_core_can_round(struct clk_core * const core)
1586{
1587	return core->ops->determine_rate || core->ops->round_rate;
1588}
1589
1590static int clk_core_round_rate_nolock(struct clk_core *core,
1591				      struct clk_rate_request *req)
1592{
1593	int ret;
1594
1595	lockdep_assert_held(&prepare_lock);
1596
1597	if (!core) {
1598		req->rate = 0;
1599		return 0;
1600	}
1601
1602	if (clk_core_can_round(core))
1603		return clk_core_determine_round_nolock(core, req);
1604
1605	if (core->flags & CLK_SET_RATE_PARENT) {
1606		struct clk_rate_request parent_req;
1607
1608		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1609
1610		trace_clk_rate_request_start(&parent_req);
1611
1612		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1613		if (ret)
1614			return ret;
1615
1616		trace_clk_rate_request_done(&parent_req);
1617
1618		req->best_parent_rate = parent_req.rate;
1619		req->rate = parent_req.rate;
1620
1621		return 0;
1622	}
1623
1624	req->rate = core->rate;
1625	return 0;
1626}
1627
1628/**
1629 * __clk_determine_rate - get the closest rate actually supported by a clock
1630 * @hw: determine the rate of this clock
1631 * @req: target rate request
1632 *
1633 * Useful for clk_ops such as .set_rate and .determine_rate.
1634 */
1635int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1636{
1637	if (!hw) {
1638		req->rate = 0;
1639		return 0;
1640	}
1641
1642	return clk_core_round_rate_nolock(hw->core, req);
1643}
1644EXPORT_SYMBOL_GPL(__clk_determine_rate);
1645
1646/**
1647 * clk_hw_round_rate() - round the given rate for a hw clk
1648 * @hw: the hw clk for which we are rounding a rate
1649 * @rate: the rate which is to be rounded
1650 *
1651 * Takes in a rate as input and rounds it to a rate that the clk can actually
1652 * use.
1653 *
1654 * Context: prepare_lock must be held.
1655 *          For clk providers to call from within clk_ops such as .round_rate,
1656 *          .determine_rate.
1657 *
1658 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1659 *         else returns the parent rate.
1660 */
1661unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1662{
1663	int ret;
1664	struct clk_rate_request req;
1665
1666	clk_core_init_rate_req(hw->core, &req, rate);
1667
1668	trace_clk_rate_request_start(&req);
1669
1670	ret = clk_core_round_rate_nolock(hw->core, &req);
1671	if (ret)
1672		return 0;
1673
1674	trace_clk_rate_request_done(&req);
1675
1676	return req.rate;
1677}
1678EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1679
1680/**
1681 * clk_round_rate - round the given rate for a clk
1682 * @clk: the clk for which we are rounding a rate
1683 * @rate: the rate which is to be rounded
1684 *
1685 * Takes in a rate as input and rounds it to a rate that the clk can actually
1686 * use which is then returned.  If clk doesn't support round_rate operation
1687 * then the parent rate is returned.
1688 */
1689long clk_round_rate(struct clk *clk, unsigned long rate)
1690{
1691	struct clk_rate_request req;
1692	int ret;
1693
1694	if (!clk)
1695		return 0;
1696
1697	clk_prepare_lock();
1698
1699	if (clk->exclusive_count)
1700		clk_core_rate_unprotect(clk->core);
1701
1702	clk_core_init_rate_req(clk->core, &req, rate);
1703
1704	trace_clk_rate_request_start(&req);
1705
1706	ret = clk_core_round_rate_nolock(clk->core, &req);
1707
1708	trace_clk_rate_request_done(&req);
1709
1710	if (clk->exclusive_count)
1711		clk_core_rate_protect(clk->core);
1712
1713	clk_prepare_unlock();
1714
1715	if (ret)
1716		return ret;
1717
1718	return req.rate;
1719}
1720EXPORT_SYMBOL_GPL(clk_round_rate);
1721
1722/**
1723 * __clk_notify - call clk notifier chain
1724 * @core: clk that is changing rate
1725 * @msg: clk notifier type (see include/linux/clk.h)
1726 * @old_rate: old clk rate
1727 * @new_rate: new clk rate
1728 *
1729 * Triggers a notifier call chain on the clk rate-change notification
1730 * for 'clk'.  Passes a pointer to the struct clk and the previous
1731 * and current rates to the notifier callback.  Intended to be called by
1732 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1733 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1734 * a driver returns that.
1735 */
1736static int __clk_notify(struct clk_core *core, unsigned long msg,
1737		unsigned long old_rate, unsigned long new_rate)
1738{
1739	struct clk_notifier *cn;
1740	struct clk_notifier_data cnd;
1741	int ret = NOTIFY_DONE;
1742
1743	cnd.old_rate = old_rate;
1744	cnd.new_rate = new_rate;
1745
1746	list_for_each_entry(cn, &clk_notifier_list, node) {
1747		if (cn->clk->core == core) {
1748			cnd.clk = cn->clk;
1749			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1750					&cnd);
1751			if (ret & NOTIFY_STOP_MASK)
1752				return ret;
1753		}
1754	}
1755
1756	return ret;
1757}
1758
1759/**
1760 * __clk_recalc_accuracies
1761 * @core: first clk in the subtree
1762 *
1763 * Walks the subtree of clks starting with clk and recalculates accuracies as
1764 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1765 * callback then it is assumed that the clock will take on the accuracy of its
1766 * parent.
1767 */
1768static void __clk_recalc_accuracies(struct clk_core *core)
1769{
1770	unsigned long parent_accuracy = 0;
1771	struct clk_core *child;
1772
1773	lockdep_assert_held(&prepare_lock);
1774
1775	if (core->parent)
1776		parent_accuracy = core->parent->accuracy;
1777
1778	if (core->ops->recalc_accuracy)
1779		core->accuracy = core->ops->recalc_accuracy(core->hw,
1780							  parent_accuracy);
1781	else
1782		core->accuracy = parent_accuracy;
1783
1784	hlist_for_each_entry(child, &core->children, child_node)
1785		__clk_recalc_accuracies(child);
1786}
1787
1788static long clk_core_get_accuracy_recalc(struct clk_core *core)
1789{
1790	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1791		__clk_recalc_accuracies(core);
1792
1793	return clk_core_get_accuracy_no_lock(core);
1794}
1795
1796/**
1797 * clk_get_accuracy - return the accuracy of clk
1798 * @clk: the clk whose accuracy is being returned
1799 *
1800 * Simply returns the cached accuracy of the clk, unless
1801 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1802 * issued.
1803 * If clk is NULL then returns 0.
1804 */
1805long clk_get_accuracy(struct clk *clk)
1806{
1807	long accuracy;
1808
1809	if (!clk)
1810		return 0;
1811
1812	clk_prepare_lock();
1813	accuracy = clk_core_get_accuracy_recalc(clk->core);
1814	clk_prepare_unlock();
1815
1816	return accuracy;
1817}
1818EXPORT_SYMBOL_GPL(clk_get_accuracy);
1819
1820static unsigned long clk_recalc(struct clk_core *core,
1821				unsigned long parent_rate)
1822{
1823	unsigned long rate = parent_rate;
1824
1825	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1826		rate = core->ops->recalc_rate(core->hw, parent_rate);
1827		clk_pm_runtime_put(core);
1828	}
1829	return rate;
1830}
1831
1832/**
1833 * __clk_recalc_rates
1834 * @core: first clk in the subtree
1835 * @update_req: Whether req_rate should be updated with the new rate
1836 * @msg: notification type (see include/linux/clk.h)
1837 *
1838 * Walks the subtree of clks starting with clk and recalculates rates as it
1839 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1840 * it is assumed that the clock will take on the rate of its parent.
1841 *
1842 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1843 * if necessary.
1844 */
1845static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1846			       unsigned long msg)
1847{
1848	unsigned long old_rate;
1849	unsigned long parent_rate = 0;
1850	struct clk_core *child;
1851
1852	lockdep_assert_held(&prepare_lock);
1853
1854	old_rate = core->rate;
1855
1856	if (core->parent)
1857		parent_rate = core->parent->rate;
1858
1859	core->rate = clk_recalc(core, parent_rate);
1860	if (update_req)
1861		core->req_rate = core->rate;
1862
1863	/*
1864	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1865	 * & ABORT_RATE_CHANGE notifiers
1866	 */
1867	if (core->notifier_count && msg)
1868		__clk_notify(core, msg, old_rate, core->rate);
1869
1870	hlist_for_each_entry(child, &core->children, child_node)
1871		__clk_recalc_rates(child, update_req, msg);
1872}
1873
1874static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1875{
1876	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1877		__clk_recalc_rates(core, false, 0);
1878
1879	return clk_core_get_rate_nolock(core);
1880}
1881
1882/**
1883 * clk_get_rate - return the rate of clk
1884 * @clk: the clk whose rate is being returned
1885 *
1886 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1887 * is set, which means a recalc_rate will be issued. Can be called regardless of
1888 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1889 * 0.
1890 */
1891unsigned long clk_get_rate(struct clk *clk)
1892{
1893	unsigned long rate;
1894
1895	if (!clk)
1896		return 0;
1897
1898	clk_prepare_lock();
1899	rate = clk_core_get_rate_recalc(clk->core);
1900	clk_prepare_unlock();
1901
1902	return rate;
1903}
1904EXPORT_SYMBOL_GPL(clk_get_rate);
1905
1906static int clk_fetch_parent_index(struct clk_core *core,
1907				  struct clk_core *parent)
1908{
1909	int i;
1910
1911	if (!parent)
1912		return -EINVAL;
1913
1914	for (i = 0; i < core->num_parents; i++) {
1915		/* Found it first try! */
1916		if (core->parents[i].core == parent)
1917			return i;
1918
1919		/* Something else is here, so keep looking */
1920		if (core->parents[i].core)
1921			continue;
1922
1923		/* Maybe core hasn't been cached but the hw is all we know? */
1924		if (core->parents[i].hw) {
1925			if (core->parents[i].hw == parent->hw)
1926				break;
1927
1928			/* Didn't match, but we're expecting a clk_hw */
1929			continue;
1930		}
1931
1932		/* Maybe it hasn't been cached (clk_set_parent() path) */
1933		if (parent == clk_core_get(core, i))
1934			break;
1935
1936		/* Fallback to comparing globally unique names */
1937		if (core->parents[i].name &&
1938		    !strcmp(parent->name, core->parents[i].name))
1939			break;
1940	}
1941
1942	if (i == core->num_parents)
1943		return -EINVAL;
1944
1945	core->parents[i].core = parent;
1946	return i;
1947}
1948
1949/**
1950 * clk_hw_get_parent_index - return the index of the parent clock
1951 * @hw: clk_hw associated with the clk being consumed
1952 *
1953 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1954 * clock does not have a current parent.
1955 */
1956int clk_hw_get_parent_index(struct clk_hw *hw)
1957{
1958	struct clk_hw *parent = clk_hw_get_parent(hw);
1959
1960	if (WARN_ON(parent == NULL))
1961		return -EINVAL;
1962
1963	return clk_fetch_parent_index(hw->core, parent->core);
1964}
1965EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1966
1967/*
1968 * Update the orphan status of @core and all its children.
1969 */
1970static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1971{
1972	struct clk_core *child;
1973
1974	core->orphan = is_orphan;
1975
1976	hlist_for_each_entry(child, &core->children, child_node)
1977		clk_core_update_orphan_status(child, is_orphan);
1978}
1979
1980static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1981{
1982	bool was_orphan = core->orphan;
1983
1984	hlist_del(&core->child_node);
1985
1986	if (new_parent) {
1987		bool becomes_orphan = new_parent->orphan;
1988
1989		/* avoid duplicate POST_RATE_CHANGE notifications */
1990		if (new_parent->new_child == core)
1991			new_parent->new_child = NULL;
1992
1993		hlist_add_head(&core->child_node, &new_parent->children);
1994
1995		if (was_orphan != becomes_orphan)
1996			clk_core_update_orphan_status(core, becomes_orphan);
1997	} else {
1998		hlist_add_head(&core->child_node, &clk_orphan_list);
1999		if (!was_orphan)
2000			clk_core_update_orphan_status(core, true);
2001	}
2002
2003	core->parent = new_parent;
2004}
2005
2006static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2007					   struct clk_core *parent)
2008{
2009	unsigned long flags;
2010	struct clk_core *old_parent = core->parent;
2011
2012	/*
2013	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2014	 *
2015	 * 2. Migrate prepare state between parents and prevent race with
2016	 * clk_enable().
2017	 *
2018	 * If the clock is not prepared, then a race with
2019	 * clk_enable/disable() is impossible since we already have the
2020	 * prepare lock (future calls to clk_enable() need to be preceded by
2021	 * a clk_prepare()).
2022	 *
2023	 * If the clock is prepared, migrate the prepared state to the new
2024	 * parent and also protect against a race with clk_enable() by
2025	 * forcing the clock and the new parent on.  This ensures that all
2026	 * future calls to clk_enable() are practically NOPs with respect to
2027	 * hardware and software states.
2028	 *
2029	 * See also: Comment for clk_set_parent() below.
2030	 */
2031
2032	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2033	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2034		clk_core_prepare_enable(old_parent);
2035		clk_core_prepare_enable(parent);
2036	}
2037
2038	/* migrate prepare count if > 0 */
2039	if (core->prepare_count) {
2040		clk_core_prepare_enable(parent);
2041		clk_core_enable_lock(core);
2042	}
2043
2044	/* update the clk tree topology */
2045	flags = clk_enable_lock();
2046	clk_reparent(core, parent);
2047	clk_enable_unlock(flags);
2048
2049	return old_parent;
2050}
2051
2052static void __clk_set_parent_after(struct clk_core *core,
2053				   struct clk_core *parent,
2054				   struct clk_core *old_parent)
2055{
2056	/*
2057	 * Finish the migration of prepare state and undo the changes done
2058	 * for preventing a race with clk_enable().
2059	 */
2060	if (core->prepare_count) {
2061		clk_core_disable_lock(core);
2062		clk_core_disable_unprepare(old_parent);
2063	}
2064
2065	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2066	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2067		clk_core_disable_unprepare(parent);
2068		clk_core_disable_unprepare(old_parent);
2069	}
2070}
2071
2072static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2073			    u8 p_index)
2074{
2075	unsigned long flags;
2076	int ret = 0;
2077	struct clk_core *old_parent;
2078
2079	old_parent = __clk_set_parent_before(core, parent);
2080
2081	trace_clk_set_parent(core, parent);
2082
2083	/* change clock input source */
2084	if (parent && core->ops->set_parent)
2085		ret = core->ops->set_parent(core->hw, p_index);
2086
2087	trace_clk_set_parent_complete(core, parent);
2088
2089	if (ret) {
2090		flags = clk_enable_lock();
2091		clk_reparent(core, old_parent);
2092		clk_enable_unlock(flags);
2093
2094		__clk_set_parent_after(core, old_parent, parent);
2095
2096		return ret;
2097	}
2098
2099	__clk_set_parent_after(core, parent, old_parent);
2100
2101	return 0;
2102}
2103
2104/**
2105 * __clk_speculate_rates
2106 * @core: first clk in the subtree
2107 * @parent_rate: the "future" rate of clk's parent
2108 *
2109 * Walks the subtree of clks starting with clk, speculating rates as it
2110 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2111 *
2112 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2113 * pre-rate change notifications and returns early if no clks in the
2114 * subtree have subscribed to the notifications.  Note that if a clk does not
2115 * implement the .recalc_rate callback then it is assumed that the clock will
2116 * take on the rate of its parent.
2117 */
2118static int __clk_speculate_rates(struct clk_core *core,
2119				 unsigned long parent_rate)
2120{
2121	struct clk_core *child;
2122	unsigned long new_rate;
2123	int ret = NOTIFY_DONE;
2124
2125	lockdep_assert_held(&prepare_lock);
2126
2127	new_rate = clk_recalc(core, parent_rate);
2128
2129	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2130	if (core->notifier_count)
2131		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2132
2133	if (ret & NOTIFY_STOP_MASK) {
2134		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2135				__func__, core->name, ret);
2136		goto out;
2137	}
2138
2139	hlist_for_each_entry(child, &core->children, child_node) {
2140		ret = __clk_speculate_rates(child, new_rate);
2141		if (ret & NOTIFY_STOP_MASK)
2142			break;
2143	}
2144
2145out:
2146	return ret;
2147}
2148
2149static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2150			     struct clk_core *new_parent, u8 p_index)
2151{
2152	struct clk_core *child;
2153
2154	core->new_rate = new_rate;
2155	core->new_parent = new_parent;
2156	core->new_parent_index = p_index;
2157	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2158	core->new_child = NULL;
2159	if (new_parent && new_parent != core->parent)
2160		new_parent->new_child = core;
2161
2162	hlist_for_each_entry(child, &core->children, child_node) {
2163		child->new_rate = clk_recalc(child, new_rate);
2164		clk_calc_subtree(child, child->new_rate, NULL, 0);
2165	}
2166}
2167
2168/*
2169 * calculate the new rates returning the topmost clock that has to be
2170 * changed.
2171 */
2172static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2173					   unsigned long rate)
2174{
2175	struct clk_core *top = core;
2176	struct clk_core *old_parent, *parent;
2177	unsigned long best_parent_rate = 0;
2178	unsigned long new_rate;
2179	unsigned long min_rate;
2180	unsigned long max_rate;
2181	int p_index = 0;
2182	long ret;
2183
2184	/* sanity */
2185	if (IS_ERR_OR_NULL(core))
2186		return NULL;
2187
2188	/* save parent rate, if it exists */
2189	parent = old_parent = core->parent;
2190	if (parent)
2191		best_parent_rate = parent->rate;
2192
2193	clk_core_get_boundaries(core, &min_rate, &max_rate);
2194
2195	/* find the closest rate and parent clk/rate */
2196	if (clk_core_can_round(core)) {
2197		struct clk_rate_request req;
2198
2199		clk_core_init_rate_req(core, &req, rate);
2200
2201		trace_clk_rate_request_start(&req);
2202
2203		ret = clk_core_determine_round_nolock(core, &req);
2204		if (ret < 0)
2205			return NULL;
2206
2207		trace_clk_rate_request_done(&req);
2208
2209		best_parent_rate = req.best_parent_rate;
2210		new_rate = req.rate;
2211		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2212
2213		if (new_rate < min_rate || new_rate > max_rate)
2214			return NULL;
2215	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2216		/* pass-through clock without adjustable parent */
2217		core->new_rate = core->rate;
2218		return NULL;
2219	} else {
2220		/* pass-through clock with adjustable parent */
2221		top = clk_calc_new_rates(parent, rate);
2222		new_rate = parent->new_rate;
2223		goto out;
2224	}
2225
2226	/* some clocks must be gated to change parent */
2227	if (parent != old_parent &&
2228	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2229		pr_debug("%s: %s not gated but wants to reparent\n",
2230			 __func__, core->name);
2231		return NULL;
2232	}
2233
2234	/* try finding the new parent index */
2235	if (parent && core->num_parents > 1) {
2236		p_index = clk_fetch_parent_index(core, parent);
2237		if (p_index < 0) {
2238			pr_debug("%s: clk %s can not be parent of clk %s\n",
2239				 __func__, parent->name, core->name);
2240			return NULL;
2241		}
2242	}
2243
2244	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2245	    best_parent_rate != parent->rate)
2246		top = clk_calc_new_rates(parent, best_parent_rate);
2247
2248out:
2249	clk_calc_subtree(core, new_rate, parent, p_index);
2250
2251	return top;
2252}
2253
2254/*
2255 * Notify about rate changes in a subtree. Always walk down the whole tree
2256 * so that in case of an error we can walk down the whole tree again and
2257 * abort the change.
2258 */
2259static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2260						  unsigned long event)
2261{
2262	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2263	int ret = NOTIFY_DONE;
2264
2265	if (core->rate == core->new_rate)
2266		return NULL;
2267
2268	if (core->notifier_count) {
2269		ret = __clk_notify(core, event, core->rate, core->new_rate);
2270		if (ret & NOTIFY_STOP_MASK)
2271			fail_clk = core;
2272	}
2273
2274	hlist_for_each_entry(child, &core->children, child_node) {
2275		/* Skip children who will be reparented to another clock */
2276		if (child->new_parent && child->new_parent != core)
2277			continue;
2278		tmp_clk = clk_propagate_rate_change(child, event);
2279		if (tmp_clk)
2280			fail_clk = tmp_clk;
2281	}
2282
2283	/* handle the new child who might not be in core->children yet */
2284	if (core->new_child) {
2285		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2286		if (tmp_clk)
2287			fail_clk = tmp_clk;
2288	}
2289
2290	return fail_clk;
2291}
2292
2293/*
2294 * walk down a subtree and set the new rates notifying the rate
2295 * change on the way
2296 */
2297static void clk_change_rate(struct clk_core *core)
2298{
2299	struct clk_core *child;
2300	struct hlist_node *tmp;
2301	unsigned long old_rate;
2302	unsigned long best_parent_rate = 0;
2303	bool skip_set_rate = false;
2304	struct clk_core *old_parent;
2305	struct clk_core *parent = NULL;
2306
2307	old_rate = core->rate;
2308
2309	if (core->new_parent) {
2310		parent = core->new_parent;
2311		best_parent_rate = core->new_parent->rate;
2312	} else if (core->parent) {
2313		parent = core->parent;
2314		best_parent_rate = core->parent->rate;
2315	}
2316
2317	if (clk_pm_runtime_get(core))
2318		return;
2319
2320	if (core->flags & CLK_SET_RATE_UNGATE) {
2321		clk_core_prepare(core);
2322		clk_core_enable_lock(core);
2323	}
2324
2325	if (core->new_parent && core->new_parent != core->parent) {
2326		old_parent = __clk_set_parent_before(core, core->new_parent);
2327		trace_clk_set_parent(core, core->new_parent);
2328
2329		if (core->ops->set_rate_and_parent) {
2330			skip_set_rate = true;
2331			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2332					best_parent_rate,
2333					core->new_parent_index);
2334		} else if (core->ops->set_parent) {
2335			core->ops->set_parent(core->hw, core->new_parent_index);
2336		}
2337
2338		trace_clk_set_parent_complete(core, core->new_parent);
2339		__clk_set_parent_after(core, core->new_parent, old_parent);
2340	}
2341
2342	if (core->flags & CLK_OPS_PARENT_ENABLE)
2343		clk_core_prepare_enable(parent);
2344
2345	trace_clk_set_rate(core, core->new_rate);
2346
2347	if (!skip_set_rate && core->ops->set_rate)
2348		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2349
2350	trace_clk_set_rate_complete(core, core->new_rate);
2351
2352	core->rate = clk_recalc(core, best_parent_rate);
2353
2354	if (core->flags & CLK_SET_RATE_UNGATE) {
2355		clk_core_disable_lock(core);
2356		clk_core_unprepare(core);
2357	}
2358
2359	if (core->flags & CLK_OPS_PARENT_ENABLE)
2360		clk_core_disable_unprepare(parent);
2361
2362	if (core->notifier_count && old_rate != core->rate)
2363		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2364
2365	if (core->flags & CLK_RECALC_NEW_RATES)
2366		(void)clk_calc_new_rates(core, core->new_rate);
2367
2368	/*
2369	 * Use safe iteration, as change_rate can actually swap parents
2370	 * for certain clock types.
2371	 */
2372	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2373		/* Skip children who will be reparented to another clock */
2374		if (child->new_parent && child->new_parent != core)
2375			continue;
2376		clk_change_rate(child);
2377	}
2378
2379	/* handle the new child who might not be in core->children yet */
2380	if (core->new_child)
2381		clk_change_rate(core->new_child);
2382
2383	clk_pm_runtime_put(core);
2384}
2385
2386static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2387						     unsigned long req_rate)
2388{
2389	int ret, cnt;
2390	struct clk_rate_request req;
2391
2392	lockdep_assert_held(&prepare_lock);
2393
2394	if (!core)
2395		return 0;
2396
2397	/* simulate what the rate would be if it could be freely set */
2398	cnt = clk_core_rate_nuke_protect(core);
2399	if (cnt < 0)
2400		return cnt;
2401
2402	clk_core_init_rate_req(core, &req, req_rate);
2403
2404	trace_clk_rate_request_start(&req);
2405
2406	ret = clk_core_round_rate_nolock(core, &req);
2407
2408	trace_clk_rate_request_done(&req);
2409
2410	/* restore the protection */
2411	clk_core_rate_restore_protect(core, cnt);
2412
2413	return ret ? 0 : req.rate;
2414}
2415
2416static int clk_core_set_rate_nolock(struct clk_core *core,
2417				    unsigned long req_rate)
2418{
2419	struct clk_core *top, *fail_clk;
2420	unsigned long rate;
2421	int ret;
2422
2423	if (!core)
2424		return 0;
2425
2426	rate = clk_core_req_round_rate_nolock(core, req_rate);
2427
2428	/* bail early if nothing to do */
2429	if (rate == clk_core_get_rate_nolock(core))
2430		return 0;
2431
2432	/* fail on a direct rate set of a protected provider */
2433	if (clk_core_rate_is_protected(core))
2434		return -EBUSY;
2435
2436	/* calculate new rates and get the topmost changed clock */
2437	top = clk_calc_new_rates(core, req_rate);
2438	if (!top)
2439		return -EINVAL;
2440
2441	ret = clk_pm_runtime_get(core);
2442	if (ret)
2443		return ret;
2444
2445	/* notify that we are about to change rates */
2446	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2447	if (fail_clk) {
2448		pr_debug("%s: failed to set %s rate\n", __func__,
2449				fail_clk->name);
2450		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2451		ret = -EBUSY;
2452		goto err;
2453	}
2454
2455	/* change the rates */
2456	clk_change_rate(top);
2457
2458	core->req_rate = req_rate;
2459err:
2460	clk_pm_runtime_put(core);
2461
2462	return ret;
2463}
2464
2465/**
2466 * clk_set_rate - specify a new rate for clk
2467 * @clk: the clk whose rate is being changed
2468 * @rate: the new rate for clk
2469 *
2470 * In the simplest case clk_set_rate will only adjust the rate of clk.
2471 *
2472 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2473 * propagate up to clk's parent; whether or not this happens depends on the
2474 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2475 * after calling .round_rate then upstream parent propagation is ignored.  If
2476 * *parent_rate comes back with a new rate for clk's parent then we propagate
2477 * up to clk's parent and set its rate.  Upward propagation will continue
2478 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2479 * .round_rate stops requesting changes to clk's parent_rate.
2480 *
2481 * Rate changes are accomplished via tree traversal that also recalculates the
2482 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2483 *
2484 * Returns 0 on success, -EERROR otherwise.
2485 */
2486int clk_set_rate(struct clk *clk, unsigned long rate)
2487{
2488	int ret;
2489
2490	if (!clk)
2491		return 0;
2492
2493	/* prevent racing with updates to the clock topology */
2494	clk_prepare_lock();
2495
2496	if (clk->exclusive_count)
2497		clk_core_rate_unprotect(clk->core);
2498
2499	ret = clk_core_set_rate_nolock(clk->core, rate);
2500
2501	if (clk->exclusive_count)
2502		clk_core_rate_protect(clk->core);
2503
2504	clk_prepare_unlock();
2505
2506	return ret;
2507}
2508EXPORT_SYMBOL_GPL(clk_set_rate);
2509
2510/**
2511 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2512 * @clk: the clk whose rate is being changed
2513 * @rate: the new rate for clk
2514 *
2515 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2516 * within a critical section
2517 *
2518 * This can be used initially to ensure that at least 1 consumer is
2519 * satisfied when several consumers are competing for exclusivity over the
2520 * same clock provider.
2521 *
2522 * The exclusivity is not applied if setting the rate failed.
2523 *
2524 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2525 * clk_rate_exclusive_put().
2526 *
2527 * Returns 0 on success, -EERROR otherwise.
2528 */
2529int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2530{
2531	int ret;
2532
2533	if (!clk)
2534		return 0;
2535
2536	/* prevent racing with updates to the clock topology */
2537	clk_prepare_lock();
2538
2539	/*
2540	 * The temporary protection removal is not here, on purpose
2541	 * This function is meant to be used instead of clk_rate_protect,
2542	 * so before the consumer code path protect the clock provider
2543	 */
2544
2545	ret = clk_core_set_rate_nolock(clk->core, rate);
2546	if (!ret) {
2547		clk_core_rate_protect(clk->core);
2548		clk->exclusive_count++;
2549	}
2550
2551	clk_prepare_unlock();
2552
2553	return ret;
2554}
2555EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2556
2557static int clk_set_rate_range_nolock(struct clk *clk,
2558				     unsigned long min,
2559				     unsigned long max)
2560{
2561	int ret = 0;
2562	unsigned long old_min, old_max, rate;
2563
2564	lockdep_assert_held(&prepare_lock);
2565
2566	if (!clk)
2567		return 0;
2568
2569	trace_clk_set_rate_range(clk->core, min, max);
2570
2571	if (min > max) {
2572		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2573		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2574		       min, max);
2575		return -EINVAL;
2576	}
2577
2578	if (clk->exclusive_count)
2579		clk_core_rate_unprotect(clk->core);
2580
2581	/* Save the current values in case we need to rollback the change */
2582	old_min = clk->min_rate;
2583	old_max = clk->max_rate;
2584	clk->min_rate = min;
2585	clk->max_rate = max;
2586
2587	if (!clk_core_check_boundaries(clk->core, min, max)) {
2588		ret = -EINVAL;
2589		goto out;
2590	}
2591
2592	rate = clk->core->req_rate;
2593	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2594		rate = clk_core_get_rate_recalc(clk->core);
2595
2596	/*
2597	 * Since the boundaries have been changed, let's give the
2598	 * opportunity to the provider to adjust the clock rate based on
2599	 * the new boundaries.
2600	 *
2601	 * We also need to handle the case where the clock is currently
2602	 * outside of the boundaries. Clamping the last requested rate
2603	 * to the current minimum and maximum will also handle this.
2604	 *
2605	 * FIXME:
2606	 * There is a catch. It may fail for the usual reason (clock
2607	 * broken, clock protected, etc) but also because:
2608	 * - round_rate() was not favorable and fell on the wrong
2609	 *   side of the boundary
2610	 * - the determine_rate() callback does not really check for
2611	 *   this corner case when determining the rate
2612	 */
2613	rate = clamp(rate, min, max);
2614	ret = clk_core_set_rate_nolock(clk->core, rate);
2615	if (ret) {
2616		/* rollback the changes */
2617		clk->min_rate = old_min;
2618		clk->max_rate = old_max;
2619	}
2620
2621out:
2622	if (clk->exclusive_count)
2623		clk_core_rate_protect(clk->core);
2624
2625	return ret;
2626}
2627
2628/**
2629 * clk_set_rate_range - set a rate range for a clock source
2630 * @clk: clock source
2631 * @min: desired minimum clock rate in Hz, inclusive
2632 * @max: desired maximum clock rate in Hz, inclusive
2633 *
2634 * Return: 0 for success or negative errno on failure.
2635 */
2636int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2637{
2638	int ret;
2639
2640	if (!clk)
2641		return 0;
2642
2643	clk_prepare_lock();
2644
2645	ret = clk_set_rate_range_nolock(clk, min, max);
2646
2647	clk_prepare_unlock();
2648
2649	return ret;
2650}
2651EXPORT_SYMBOL_GPL(clk_set_rate_range);
2652
2653/**
2654 * clk_set_min_rate - set a minimum clock rate for a clock source
2655 * @clk: clock source
2656 * @rate: desired minimum clock rate in Hz, inclusive
2657 *
2658 * Returns success (0) or negative errno.
2659 */
2660int clk_set_min_rate(struct clk *clk, unsigned long rate)
2661{
2662	if (!clk)
2663		return 0;
2664
2665	trace_clk_set_min_rate(clk->core, rate);
2666
2667	return clk_set_rate_range(clk, rate, clk->max_rate);
2668}
2669EXPORT_SYMBOL_GPL(clk_set_min_rate);
2670
2671/**
2672 * clk_set_max_rate - set a maximum clock rate for a clock source
2673 * @clk: clock source
2674 * @rate: desired maximum clock rate in Hz, inclusive
2675 *
2676 * Returns success (0) or negative errno.
2677 */
2678int clk_set_max_rate(struct clk *clk, unsigned long rate)
2679{
2680	if (!clk)
2681		return 0;
2682
2683	trace_clk_set_max_rate(clk->core, rate);
2684
2685	return clk_set_rate_range(clk, clk->min_rate, rate);
2686}
2687EXPORT_SYMBOL_GPL(clk_set_max_rate);
2688
2689/**
2690 * clk_get_parent - return the parent of a clk
2691 * @clk: the clk whose parent gets returned
2692 *
2693 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2694 */
2695struct clk *clk_get_parent(struct clk *clk)
2696{
2697	struct clk *parent;
2698
2699	if (!clk)
2700		return NULL;
2701
2702	clk_prepare_lock();
2703	/* TODO: Create a per-user clk and change callers to call clk_put */
2704	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2705	clk_prepare_unlock();
2706
2707	return parent;
2708}
2709EXPORT_SYMBOL_GPL(clk_get_parent);
2710
2711static struct clk_core *__clk_init_parent(struct clk_core *core)
2712{
2713	u8 index = 0;
2714
2715	if (core->num_parents > 1 && core->ops->get_parent)
2716		index = core->ops->get_parent(core->hw);
2717
2718	return clk_core_get_parent_by_index(core, index);
2719}
2720
2721static void clk_core_reparent(struct clk_core *core,
2722				  struct clk_core *new_parent)
2723{
2724	clk_reparent(core, new_parent);
2725	__clk_recalc_accuracies(core);
2726	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2727}
2728
2729void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2730{
2731	if (!hw)
2732		return;
2733
2734	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2735}
2736
2737/**
2738 * clk_has_parent - check if a clock is a possible parent for another
2739 * @clk: clock source
2740 * @parent: parent clock source
2741 *
2742 * This function can be used in drivers that need to check that a clock can be
2743 * the parent of another without actually changing the parent.
2744 *
2745 * Returns true if @parent is a possible parent for @clk, false otherwise.
2746 */
2747bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2748{
2749	/* NULL clocks should be nops, so return success if either is NULL. */
2750	if (!clk || !parent)
2751		return true;
2752
2753	return clk_core_has_parent(clk->core, parent->core);
2754}
2755EXPORT_SYMBOL_GPL(clk_has_parent);
2756
2757static int clk_core_set_parent_nolock(struct clk_core *core,
2758				      struct clk_core *parent)
2759{
2760	int ret = 0;
2761	int p_index = 0;
2762	unsigned long p_rate = 0;
2763
2764	lockdep_assert_held(&prepare_lock);
2765
2766	if (!core)
2767		return 0;
2768
2769	if (core->parent == parent)
2770		return 0;
2771
2772	/* verify ops for multi-parent clks */
2773	if (core->num_parents > 1 && !core->ops->set_parent)
2774		return -EPERM;
2775
2776	/* check that we are allowed to re-parent if the clock is in use */
2777	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2778		return -EBUSY;
2779
2780	if (clk_core_rate_is_protected(core))
2781		return -EBUSY;
2782
2783	/* try finding the new parent index */
2784	if (parent) {
2785		p_index = clk_fetch_parent_index(core, parent);
2786		if (p_index < 0) {
2787			pr_debug("%s: clk %s can not be parent of clk %s\n",
2788					__func__, parent->name, core->name);
2789			return p_index;
2790		}
2791		p_rate = parent->rate;
2792	}
2793
2794	ret = clk_pm_runtime_get(core);
2795	if (ret)
2796		return ret;
2797
2798	/* propagate PRE_RATE_CHANGE notifications */
2799	ret = __clk_speculate_rates(core, p_rate);
2800
2801	/* abort if a driver objects */
2802	if (ret & NOTIFY_STOP_MASK)
2803		goto runtime_put;
2804
2805	/* do the re-parent */
2806	ret = __clk_set_parent(core, parent, p_index);
2807
2808	/* propagate rate an accuracy recalculation accordingly */
2809	if (ret) {
2810		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2811	} else {
2812		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2813		__clk_recalc_accuracies(core);
2814	}
2815
2816runtime_put:
2817	clk_pm_runtime_put(core);
2818
2819	return ret;
2820}
2821
2822int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2823{
2824	return clk_core_set_parent_nolock(hw->core, parent->core);
2825}
2826EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2827
2828/**
2829 * clk_set_parent - switch the parent of a mux clk
2830 * @clk: the mux clk whose input we are switching
2831 * @parent: the new input to clk
2832 *
2833 * Re-parent clk to use parent as its new input source.  If clk is in
2834 * prepared state, the clk will get enabled for the duration of this call. If
2835 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2836 * that, the reparenting is glitchy in hardware, etc), use the
2837 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2838 *
2839 * After successfully changing clk's parent clk_set_parent will update the
2840 * clk topology, sysfs topology and propagate rate recalculation via
2841 * __clk_recalc_rates.
2842 *
2843 * Returns 0 on success, -EERROR otherwise.
2844 */
2845int clk_set_parent(struct clk *clk, struct clk *parent)
2846{
2847	int ret;
2848
2849	if (!clk)
2850		return 0;
2851
2852	clk_prepare_lock();
2853
2854	if (clk->exclusive_count)
2855		clk_core_rate_unprotect(clk->core);
2856
2857	ret = clk_core_set_parent_nolock(clk->core,
2858					 parent ? parent->core : NULL);
2859
2860	if (clk->exclusive_count)
2861		clk_core_rate_protect(clk->core);
2862
2863	clk_prepare_unlock();
2864
2865	return ret;
2866}
2867EXPORT_SYMBOL_GPL(clk_set_parent);
2868
2869static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2870{
2871	int ret = -EINVAL;
2872
2873	lockdep_assert_held(&prepare_lock);
2874
2875	if (!core)
2876		return 0;
2877
2878	if (clk_core_rate_is_protected(core))
2879		return -EBUSY;
2880
2881	trace_clk_set_phase(core, degrees);
2882
2883	if (core->ops->set_phase) {
2884		ret = core->ops->set_phase(core->hw, degrees);
2885		if (!ret)
2886			core->phase = degrees;
2887	}
2888
2889	trace_clk_set_phase_complete(core, degrees);
2890
2891	return ret;
2892}
2893
2894/**
2895 * clk_set_phase - adjust the phase shift of a clock signal
2896 * @clk: clock signal source
2897 * @degrees: number of degrees the signal is shifted
2898 *
2899 * Shifts the phase of a clock signal by the specified
2900 * degrees. Returns 0 on success, -EERROR otherwise.
2901 *
2902 * This function makes no distinction about the input or reference
2903 * signal that we adjust the clock signal phase against. For example
2904 * phase locked-loop clock signal generators we may shift phase with
2905 * respect to feedback clock signal input, but for other cases the
2906 * clock phase may be shifted with respect to some other, unspecified
2907 * signal.
2908 *
2909 * Additionally the concept of phase shift does not propagate through
2910 * the clock tree hierarchy, which sets it apart from clock rates and
2911 * clock accuracy. A parent clock phase attribute does not have an
2912 * impact on the phase attribute of a child clock.
2913 */
2914int clk_set_phase(struct clk *clk, int degrees)
2915{
2916	int ret;
2917
2918	if (!clk)
2919		return 0;
2920
2921	/* sanity check degrees */
2922	degrees %= 360;
2923	if (degrees < 0)
2924		degrees += 360;
2925
2926	clk_prepare_lock();
2927
2928	if (clk->exclusive_count)
2929		clk_core_rate_unprotect(clk->core);
2930
2931	ret = clk_core_set_phase_nolock(clk->core, degrees);
2932
2933	if (clk->exclusive_count)
2934		clk_core_rate_protect(clk->core);
2935
2936	clk_prepare_unlock();
2937
2938	return ret;
2939}
2940EXPORT_SYMBOL_GPL(clk_set_phase);
2941
2942static int clk_core_get_phase(struct clk_core *core)
2943{
2944	int ret;
2945
2946	lockdep_assert_held(&prepare_lock);
2947	if (!core->ops->get_phase)
2948		return 0;
2949
2950	/* Always try to update cached phase if possible */
2951	ret = core->ops->get_phase(core->hw);
2952	if (ret >= 0)
2953		core->phase = ret;
2954
2955	return ret;
2956}
2957
2958/**
2959 * clk_get_phase - return the phase shift of a clock signal
2960 * @clk: clock signal source
2961 *
2962 * Returns the phase shift of a clock node in degrees, otherwise returns
2963 * -EERROR.
2964 */
2965int clk_get_phase(struct clk *clk)
2966{
2967	int ret;
2968
2969	if (!clk)
2970		return 0;
2971
2972	clk_prepare_lock();
2973	ret = clk_core_get_phase(clk->core);
2974	clk_prepare_unlock();
2975
2976	return ret;
2977}
2978EXPORT_SYMBOL_GPL(clk_get_phase);
2979
2980static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2981{
2982	/* Assume a default value of 50% */
2983	core->duty.num = 1;
2984	core->duty.den = 2;
2985}
2986
2987static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2988
2989static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2990{
2991	struct clk_duty *duty = &core->duty;
2992	int ret = 0;
2993
2994	if (!core->ops->get_duty_cycle)
2995		return clk_core_update_duty_cycle_parent_nolock(core);
2996
2997	ret = core->ops->get_duty_cycle(core->hw, duty);
2998	if (ret)
2999		goto reset;
3000
3001	/* Don't trust the clock provider too much */
3002	if (duty->den == 0 || duty->num > duty->den) {
3003		ret = -EINVAL;
3004		goto reset;
3005	}
3006
3007	return 0;
3008
3009reset:
3010	clk_core_reset_duty_cycle_nolock(core);
3011	return ret;
3012}
3013
3014static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3015{
3016	int ret = 0;
3017
3018	if (core->parent &&
3019	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3020		ret = clk_core_update_duty_cycle_nolock(core->parent);
3021		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3022	} else {
3023		clk_core_reset_duty_cycle_nolock(core);
3024	}
3025
3026	return ret;
3027}
3028
3029static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3030						 struct clk_duty *duty);
3031
3032static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3033					  struct clk_duty *duty)
3034{
3035	int ret;
3036
3037	lockdep_assert_held(&prepare_lock);
3038
3039	if (clk_core_rate_is_protected(core))
3040		return -EBUSY;
3041
3042	trace_clk_set_duty_cycle(core, duty);
3043
3044	if (!core->ops->set_duty_cycle)
3045		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3046
3047	ret = core->ops->set_duty_cycle(core->hw, duty);
3048	if (!ret)
3049		memcpy(&core->duty, duty, sizeof(*duty));
3050
3051	trace_clk_set_duty_cycle_complete(core, duty);
3052
3053	return ret;
3054}
3055
3056static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3057						 struct clk_duty *duty)
3058{
3059	int ret = 0;
3060
3061	if (core->parent &&
3062	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3063		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3064		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3065	}
3066
3067	return ret;
3068}
3069
3070/**
3071 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3072 * @clk: clock signal source
3073 * @num: numerator of the duty cycle ratio to be applied
3074 * @den: denominator of the duty cycle ratio to be applied
3075 *
3076 * Apply the duty cycle ratio if the ratio is valid and the clock can
3077 * perform this operation
3078 *
3079 * Returns (0) on success, a negative errno otherwise.
3080 */
3081int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3082{
3083	int ret;
3084	struct clk_duty duty;
3085
3086	if (!clk)
3087		return 0;
3088
3089	/* sanity check the ratio */
3090	if (den == 0 || num > den)
3091		return -EINVAL;
3092
3093	duty.num = num;
3094	duty.den = den;
3095
3096	clk_prepare_lock();
3097
3098	if (clk->exclusive_count)
3099		clk_core_rate_unprotect(clk->core);
3100
3101	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3102
3103	if (clk->exclusive_count)
3104		clk_core_rate_protect(clk->core);
3105
3106	clk_prepare_unlock();
3107
3108	return ret;
3109}
3110EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3111
3112static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3113					  unsigned int scale)
3114{
3115	struct clk_duty *duty = &core->duty;
3116	int ret;
3117
3118	clk_prepare_lock();
3119
3120	ret = clk_core_update_duty_cycle_nolock(core);
3121	if (!ret)
3122		ret = mult_frac(scale, duty->num, duty->den);
3123
3124	clk_prepare_unlock();
3125
3126	return ret;
3127}
3128
3129/**
3130 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3131 * @clk: clock signal source
3132 * @scale: scaling factor to be applied to represent the ratio as an integer
3133 *
3134 * Returns the duty cycle ratio of a clock node multiplied by the provided
3135 * scaling factor, or negative errno on error.
3136 */
3137int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3138{
3139	if (!clk)
3140		return 0;
3141
3142	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3143}
3144EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3145
3146/**
3147 * clk_is_match - check if two clk's point to the same hardware clock
3148 * @p: clk compared against q
3149 * @q: clk compared against p
3150 *
3151 * Returns true if the two struct clk pointers both point to the same hardware
3152 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3153 * share the same struct clk_core object.
3154 *
3155 * Returns false otherwise. Note that two NULL clks are treated as matching.
3156 */
3157bool clk_is_match(const struct clk *p, const struct clk *q)
3158{
3159	/* trivial case: identical struct clk's or both NULL */
3160	if (p == q)
3161		return true;
3162
3163	/* true if clk->core pointers match. Avoid dereferencing garbage */
3164	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3165		if (p->core == q->core)
3166			return true;
3167
3168	return false;
3169}
3170EXPORT_SYMBOL_GPL(clk_is_match);
3171
3172/***        debugfs support        ***/
3173
3174#ifdef CONFIG_DEBUG_FS
3175#include <linux/debugfs.h>
3176
3177static struct dentry *rootdir;
3178static int inited = 0;
3179static DEFINE_MUTEX(clk_debug_lock);
3180static HLIST_HEAD(clk_debug_list);
3181
3182static struct hlist_head *orphan_list[] = {
3183	&clk_orphan_list,
3184	NULL,
3185};
3186
3187static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3188				 int level)
3189{
3190	int phase;
3191	struct clk *clk_user;
3192	int multi_node = 0;
3193
3194	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3195		   level * 3 + 1, "",
3196		   35 - level * 3, c->name,
3197		   c->enable_count, c->prepare_count, c->protect_count,
3198		   clk_core_get_rate_recalc(c),
3199		   clk_core_get_accuracy_recalc(c));
3200
3201	phase = clk_core_get_phase(c);
3202	if (phase >= 0)
3203		seq_printf(s, "%-5d", phase);
3204	else
3205		seq_puts(s, "-----");
3206
3207	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3208
3209	if (c->ops->is_enabled)
3210		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3211	else if (!c->ops->enable)
3212		seq_printf(s, " %5c ", 'Y');
3213	else
3214		seq_printf(s, " %5c ", '?');
3215
3216	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3217		seq_printf(s, "%*s%-*s  %-25s\n",
3218			   level * 3 + 2 + 105 * multi_node, "",
3219			   30,
3220			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3221			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3222
3223		multi_node = 1;
3224	}
3225
3226}
3227
3228static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3229				     int level)
3230{
3231	struct clk_core *child;
3232
3233	clk_pm_runtime_get(c);
3234	clk_summary_show_one(s, c, level);
3235	clk_pm_runtime_put(c);
3236
3237	hlist_for_each_entry(child, &c->children, child_node)
3238		clk_summary_show_subtree(s, child, level + 1);
3239}
3240
3241static int clk_summary_show(struct seq_file *s, void *data)
3242{
3243	struct clk_core *c;
3244	struct hlist_head **lists = s->private;
3245
3246	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3247	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3248	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3249
 
 
 
3250
3251	clk_prepare_lock();
3252
3253	for (; *lists; lists++)
3254		hlist_for_each_entry(c, *lists, child_node)
3255			clk_summary_show_subtree(s, c, 0);
3256
3257	clk_prepare_unlock();
3258
3259	return 0;
3260}
3261DEFINE_SHOW_ATTRIBUTE(clk_summary);
3262
3263static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3264{
3265	int phase;
3266	unsigned long min_rate, max_rate;
3267
3268	clk_core_get_boundaries(c, &min_rate, &max_rate);
3269
3270	/* This should be JSON format, i.e. elements separated with a comma */
3271	seq_printf(s, "\"%s\": { ", c->name);
3272	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3273	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3274	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3275	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3276	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3277	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3278	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3279	phase = clk_core_get_phase(c);
3280	if (phase >= 0)
3281		seq_printf(s, "\"phase\": %d,", phase);
3282	seq_printf(s, "\"duty_cycle\": %u",
3283		   clk_core_get_scaled_duty_cycle(c, 100000));
3284}
3285
3286static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3287{
3288	struct clk_core *child;
3289
3290	clk_dump_one(s, c, level);
3291
3292	hlist_for_each_entry(child, &c->children, child_node) {
3293		seq_putc(s, ',');
3294		clk_dump_subtree(s, child, level + 1);
3295	}
3296
3297	seq_putc(s, '}');
3298}
3299
3300static int clk_dump_show(struct seq_file *s, void *data)
3301{
3302	struct clk_core *c;
3303	bool first_node = true;
3304	struct hlist_head **lists = s->private;
3305
3306	seq_putc(s, '{');
3307	clk_prepare_lock();
3308
3309	for (; *lists; lists++) {
3310		hlist_for_each_entry(c, *lists, child_node) {
3311			if (!first_node)
3312				seq_putc(s, ',');
3313			first_node = false;
3314			clk_dump_subtree(s, c, 0);
3315		}
3316	}
3317
3318	clk_prepare_unlock();
3319
3320	seq_puts(s, "}\n");
3321	return 0;
3322}
3323DEFINE_SHOW_ATTRIBUTE(clk_dump);
3324
3325#undef CLOCK_ALLOW_WRITE_DEBUGFS
3326#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3327/*
3328 * This can be dangerous, therefore don't provide any real compile time
3329 * configuration option for this feature.
3330 * People who want to use this will need to modify the source code directly.
3331 */
3332static int clk_rate_set(void *data, u64 val)
3333{
3334	struct clk_core *core = data;
3335	int ret;
3336
3337	clk_prepare_lock();
3338	ret = clk_core_set_rate_nolock(core, val);
3339	clk_prepare_unlock();
3340
3341	return ret;
3342}
3343
3344#define clk_rate_mode	0644
3345
3346static int clk_phase_set(void *data, u64 val)
3347{
3348	struct clk_core *core = data;
3349	int degrees = do_div(val, 360);
3350	int ret;
3351
3352	clk_prepare_lock();
3353	ret = clk_core_set_phase_nolock(core, degrees);
3354	clk_prepare_unlock();
3355
3356	return ret;
3357}
3358
3359#define clk_phase_mode	0644
3360
3361static int clk_prepare_enable_set(void *data, u64 val)
3362{
3363	struct clk_core *core = data;
3364	int ret = 0;
3365
3366	if (val)
3367		ret = clk_prepare_enable(core->hw->clk);
3368	else
3369		clk_disable_unprepare(core->hw->clk);
3370
3371	return ret;
3372}
3373
3374static int clk_prepare_enable_get(void *data, u64 *val)
3375{
3376	struct clk_core *core = data;
3377
3378	*val = core->enable_count && core->prepare_count;
3379	return 0;
3380}
3381
3382DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3383			 clk_prepare_enable_set, "%llu\n");
3384
3385#else
3386#define clk_rate_set	NULL
3387#define clk_rate_mode	0444
3388
3389#define clk_phase_set	NULL
3390#define clk_phase_mode	0644
3391#endif
3392
3393static int clk_rate_get(void *data, u64 *val)
3394{
3395	struct clk_core *core = data;
3396
3397	clk_prepare_lock();
3398	*val = clk_core_get_rate_recalc(core);
3399	clk_prepare_unlock();
3400
3401	return 0;
3402}
3403
3404DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3405
3406static int clk_phase_get(void *data, u64 *val)
3407{
3408	struct clk_core *core = data;
3409
3410	*val = core->phase;
3411	return 0;
3412}
3413
3414DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3415
3416static const struct {
3417	unsigned long flag;
3418	const char *name;
3419} clk_flags[] = {
3420#define ENTRY(f) { f, #f }
3421	ENTRY(CLK_SET_RATE_GATE),
3422	ENTRY(CLK_SET_PARENT_GATE),
3423	ENTRY(CLK_SET_RATE_PARENT),
3424	ENTRY(CLK_IGNORE_UNUSED),
3425	ENTRY(CLK_GET_RATE_NOCACHE),
3426	ENTRY(CLK_SET_RATE_NO_REPARENT),
3427	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3428	ENTRY(CLK_RECALC_NEW_RATES),
3429	ENTRY(CLK_SET_RATE_UNGATE),
3430	ENTRY(CLK_IS_CRITICAL),
3431	ENTRY(CLK_OPS_PARENT_ENABLE),
3432	ENTRY(CLK_DUTY_CYCLE_PARENT),
3433#undef ENTRY
3434};
3435
3436static int clk_flags_show(struct seq_file *s, void *data)
3437{
3438	struct clk_core *core = s->private;
3439	unsigned long flags = core->flags;
3440	unsigned int i;
3441
3442	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3443		if (flags & clk_flags[i].flag) {
3444			seq_printf(s, "%s\n", clk_flags[i].name);
3445			flags &= ~clk_flags[i].flag;
3446		}
3447	}
3448	if (flags) {
3449		/* Unknown flags */
3450		seq_printf(s, "0x%lx\n", flags);
3451	}
3452
3453	return 0;
3454}
3455DEFINE_SHOW_ATTRIBUTE(clk_flags);
3456
3457static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3458				 unsigned int i, char terminator)
3459{
3460	struct clk_core *parent;
3461	const char *name = NULL;
3462
3463	/*
3464	 * Go through the following options to fetch a parent's name.
3465	 *
3466	 * 1. Fetch the registered parent clock and use its name
3467	 * 2. Use the global (fallback) name if specified
3468	 * 3. Use the local fw_name if provided
3469	 * 4. Fetch parent clock's clock-output-name if DT index was set
3470	 *
3471	 * This may still fail in some cases, such as when the parent is
3472	 * specified directly via a struct clk_hw pointer, but it isn't
3473	 * registered (yet).
3474	 */
3475	parent = clk_core_get_parent_by_index(core, i);
3476	if (parent) {
3477		seq_puts(s, parent->name);
3478	} else if (core->parents[i].name) {
3479		seq_puts(s, core->parents[i].name);
3480	} else if (core->parents[i].fw_name) {
3481		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3482	} else {
3483		if (core->parents[i].index >= 0)
3484			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3485		if (!name)
3486			name = "(missing)";
3487
3488		seq_puts(s, name);
3489	}
3490
3491	seq_putc(s, terminator);
3492}
3493
3494static int possible_parents_show(struct seq_file *s, void *data)
3495{
3496	struct clk_core *core = s->private;
3497	int i;
3498
3499	for (i = 0; i < core->num_parents - 1; i++)
3500		possible_parent_show(s, core, i, ' ');
3501
3502	possible_parent_show(s, core, i, '\n');
3503
3504	return 0;
3505}
3506DEFINE_SHOW_ATTRIBUTE(possible_parents);
3507
3508static int current_parent_show(struct seq_file *s, void *data)
3509{
3510	struct clk_core *core = s->private;
3511
3512	if (core->parent)
3513		seq_printf(s, "%s\n", core->parent->name);
3514
3515	return 0;
3516}
3517DEFINE_SHOW_ATTRIBUTE(current_parent);
3518
3519#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3520static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3521				    size_t count, loff_t *ppos)
3522{
3523	struct seq_file *s = file->private_data;
3524	struct clk_core *core = s->private;
3525	struct clk_core *parent;
3526	u8 idx;
3527	int err;
3528
3529	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3530	if (err < 0)
3531		return err;
3532
3533	parent = clk_core_get_parent_by_index(core, idx);
3534	if (!parent)
3535		return -ENOENT;
3536
3537	clk_prepare_lock();
3538	err = clk_core_set_parent_nolock(core, parent);
3539	clk_prepare_unlock();
3540	if (err)
3541		return err;
3542
3543	return count;
3544}
3545
3546static const struct file_operations current_parent_rw_fops = {
3547	.open		= current_parent_open,
3548	.write		= current_parent_write,
3549	.read		= seq_read,
3550	.llseek		= seq_lseek,
3551	.release	= single_release,
3552};
3553#endif
3554
3555static int clk_duty_cycle_show(struct seq_file *s, void *data)
3556{
3557	struct clk_core *core = s->private;
3558	struct clk_duty *duty = &core->duty;
3559
3560	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3561
3562	return 0;
3563}
3564DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3565
3566static int clk_min_rate_show(struct seq_file *s, void *data)
3567{
3568	struct clk_core *core = s->private;
3569	unsigned long min_rate, max_rate;
3570
3571	clk_prepare_lock();
3572	clk_core_get_boundaries(core, &min_rate, &max_rate);
3573	clk_prepare_unlock();
3574	seq_printf(s, "%lu\n", min_rate);
3575
3576	return 0;
3577}
3578DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3579
3580static int clk_max_rate_show(struct seq_file *s, void *data)
3581{
3582	struct clk_core *core = s->private;
3583	unsigned long min_rate, max_rate;
3584
3585	clk_prepare_lock();
3586	clk_core_get_boundaries(core, &min_rate, &max_rate);
3587	clk_prepare_unlock();
3588	seq_printf(s, "%lu\n", max_rate);
3589
3590	return 0;
3591}
3592DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3593
3594static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3595{
3596	struct dentry *root;
3597
3598	if (!core || !pdentry)
3599		return;
3600
3601	root = debugfs_create_dir(core->name, pdentry);
3602	core->dentry = root;
3603
3604	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3605			    &clk_rate_fops);
3606	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3607	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3608	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3609	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3610			    &clk_phase_fops);
3611	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3612	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3613	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3614	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3615	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3616	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3617			    &clk_duty_cycle_fops);
3618#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3619	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3620			    &clk_prepare_enable_fops);
3621
3622	if (core->num_parents > 1)
3623		debugfs_create_file("clk_parent", 0644, root, core,
3624				    &current_parent_rw_fops);
3625	else
3626#endif
3627	if (core->num_parents > 0)
3628		debugfs_create_file("clk_parent", 0444, root, core,
3629				    &current_parent_fops);
3630
3631	if (core->num_parents > 1)
3632		debugfs_create_file("clk_possible_parents", 0444, root, core,
3633				    &possible_parents_fops);
3634
3635	if (core->ops->debug_init)
3636		core->ops->debug_init(core->hw, core->dentry);
3637}
3638
3639/**
3640 * clk_debug_register - add a clk node to the debugfs clk directory
3641 * @core: the clk being added to the debugfs clk directory
3642 *
3643 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3644 * initialized.  Otherwise it bails out early since the debugfs clk directory
3645 * will be created lazily by clk_debug_init as part of a late_initcall.
3646 */
3647static void clk_debug_register(struct clk_core *core)
3648{
3649	mutex_lock(&clk_debug_lock);
3650	hlist_add_head(&core->debug_node, &clk_debug_list);
3651	if (inited)
3652		clk_debug_create_one(core, rootdir);
3653	mutex_unlock(&clk_debug_lock);
3654}
3655
3656 /**
3657 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3658 * @core: the clk being removed from the debugfs clk directory
3659 *
3660 * Dynamically removes a clk and all its child nodes from the
3661 * debugfs clk directory if clk->dentry points to debugfs created by
3662 * clk_debug_register in __clk_core_init.
3663 */
3664static void clk_debug_unregister(struct clk_core *core)
3665{
3666	mutex_lock(&clk_debug_lock);
3667	hlist_del_init(&core->debug_node);
3668	debugfs_remove_recursive(core->dentry);
3669	core->dentry = NULL;
3670	mutex_unlock(&clk_debug_lock);
3671}
3672
3673/**
3674 * clk_debug_init - lazily populate the debugfs clk directory
3675 *
3676 * clks are often initialized very early during boot before memory can be
3677 * dynamically allocated and well before debugfs is setup. This function
3678 * populates the debugfs clk directory once at boot-time when we know that
3679 * debugfs is setup. It should only be called once at boot-time, all other clks
3680 * added dynamically will be done so with clk_debug_register.
3681 */
3682static int __init clk_debug_init(void)
3683{
3684	struct clk_core *core;
3685
3686#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3687	pr_warn("\n");
3688	pr_warn("********************************************************************\n");
3689	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3690	pr_warn("**                                                                **\n");
3691	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3692	pr_warn("**                                                                **\n");
3693	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3694	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3695	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3696	pr_warn("**                                                                **\n");
3697	pr_warn("** If you see this message and you are not debugging the          **\n");
3698	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3699	pr_warn("**                                                                **\n");
3700	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3701	pr_warn("********************************************************************\n");
3702#endif
3703
3704	rootdir = debugfs_create_dir("clk", NULL);
3705
3706	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3707			    &clk_summary_fops);
3708	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3709			    &clk_dump_fops);
3710	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3711			    &clk_summary_fops);
3712	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3713			    &clk_dump_fops);
3714
3715	mutex_lock(&clk_debug_lock);
3716	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3717		clk_debug_create_one(core, rootdir);
3718
3719	inited = 1;
3720	mutex_unlock(&clk_debug_lock);
3721
3722	return 0;
3723}
3724late_initcall(clk_debug_init);
3725#else
3726static inline void clk_debug_register(struct clk_core *core) { }
3727static inline void clk_debug_unregister(struct clk_core *core)
3728{
3729}
3730#endif
3731
3732static void clk_core_reparent_orphans_nolock(void)
3733{
3734	struct clk_core *orphan;
3735	struct hlist_node *tmp2;
3736
3737	/*
3738	 * walk the list of orphan clocks and reparent any that newly finds a
3739	 * parent.
3740	 */
3741	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3742		struct clk_core *parent = __clk_init_parent(orphan);
3743
3744		/*
3745		 * We need to use __clk_set_parent_before() and _after() to
3746		 * properly migrate any prepare/enable count of the orphan
3747		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3748		 * are enabled during init but might not have a parent yet.
3749		 */
3750		if (parent) {
3751			/* update the clk tree topology */
3752			__clk_set_parent_before(orphan, parent);
3753			__clk_set_parent_after(orphan, parent, NULL);
3754			__clk_recalc_accuracies(orphan);
3755			__clk_recalc_rates(orphan, true, 0);
3756
3757			/*
3758			 * __clk_init_parent() will set the initial req_rate to
3759			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3760			 * is an orphan when it's registered.
3761			 *
3762			 * 'req_rate' is used by clk_set_rate_range() and
3763			 * clk_put() to trigger a clk_set_rate() call whenever
3764			 * the boundaries are modified. Let's make sure
3765			 * 'req_rate' is set to something non-zero so that
3766			 * clk_set_rate_range() doesn't drop the frequency.
3767			 */
3768			orphan->req_rate = orphan->rate;
3769		}
3770	}
3771}
3772
3773/**
3774 * __clk_core_init - initialize the data structures in a struct clk_core
3775 * @core:	clk_core being initialized
3776 *
3777 * Initializes the lists in struct clk_core, queries the hardware for the
3778 * parent and rate and sets them both.
3779 */
3780static int __clk_core_init(struct clk_core *core)
3781{
3782	int ret;
3783	struct clk_core *parent;
3784	unsigned long rate;
3785	int phase;
3786
3787	clk_prepare_lock();
3788
3789	/*
3790	 * Set hw->core after grabbing the prepare_lock to synchronize with
3791	 * callers of clk_core_fill_parent_index() where we treat hw->core
3792	 * being NULL as the clk not being registered yet. This is crucial so
3793	 * that clks aren't parented until their parent is fully registered.
3794	 */
3795	core->hw->core = core;
3796
3797	ret = clk_pm_runtime_get(core);
3798	if (ret)
3799		goto unlock;
3800
3801	/* check to see if a clock with this name is already registered */
3802	if (clk_core_lookup(core->name)) {
3803		pr_debug("%s: clk %s already initialized\n",
3804				__func__, core->name);
3805		ret = -EEXIST;
3806		goto out;
3807	}
3808
3809	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3810	if (core->ops->set_rate &&
3811	    !((core->ops->round_rate || core->ops->determine_rate) &&
3812	      core->ops->recalc_rate)) {
3813		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3814		       __func__, core->name);
3815		ret = -EINVAL;
3816		goto out;
3817	}
3818
3819	if (core->ops->set_parent && !core->ops->get_parent) {
3820		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3821		       __func__, core->name);
3822		ret = -EINVAL;
3823		goto out;
3824	}
3825
3826	if (core->ops->set_parent && !core->ops->determine_rate) {
3827		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3828			__func__, core->name);
3829		ret = -EINVAL;
3830		goto out;
3831	}
3832
3833	if (core->num_parents > 1 && !core->ops->get_parent) {
3834		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3835		       __func__, core->name);
3836		ret = -EINVAL;
3837		goto out;
3838	}
3839
3840	if (core->ops->set_rate_and_parent &&
3841			!(core->ops->set_parent && core->ops->set_rate)) {
3842		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3843				__func__, core->name);
3844		ret = -EINVAL;
3845		goto out;
3846	}
3847
3848	/*
3849	 * optional platform-specific magic
3850	 *
3851	 * The .init callback is not used by any of the basic clock types, but
3852	 * exists for weird hardware that must perform initialization magic for
3853	 * CCF to get an accurate view of clock for any other callbacks. It may
3854	 * also be used needs to perform dynamic allocations. Such allocation
3855	 * must be freed in the terminate() callback.
3856	 * This callback shall not be used to initialize the parameters state,
3857	 * such as rate, parent, etc ...
3858	 *
3859	 * If it exist, this callback should called before any other callback of
3860	 * the clock
3861	 */
3862	if (core->ops->init) {
3863		ret = core->ops->init(core->hw);
3864		if (ret)
3865			goto out;
3866	}
3867
3868	parent = core->parent = __clk_init_parent(core);
3869
3870	/*
3871	 * Populate core->parent if parent has already been clk_core_init'd. If
3872	 * parent has not yet been clk_core_init'd then place clk in the orphan
3873	 * list.  If clk doesn't have any parents then place it in the root
3874	 * clk list.
3875	 *
3876	 * Every time a new clk is clk_init'd then we walk the list of orphan
3877	 * clocks and re-parent any that are children of the clock currently
3878	 * being clk_init'd.
3879	 */
3880	if (parent) {
3881		hlist_add_head(&core->child_node, &parent->children);
3882		core->orphan = parent->orphan;
3883	} else if (!core->num_parents) {
3884		hlist_add_head(&core->child_node, &clk_root_list);
3885		core->orphan = false;
3886	} else {
3887		hlist_add_head(&core->child_node, &clk_orphan_list);
3888		core->orphan = true;
3889	}
3890
3891	/*
3892	 * Set clk's accuracy.  The preferred method is to use
3893	 * .recalc_accuracy. For simple clocks and lazy developers the default
3894	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3895	 * parent (or is orphaned) then accuracy is set to zero (perfect
3896	 * clock).
3897	 */
3898	if (core->ops->recalc_accuracy)
3899		core->accuracy = core->ops->recalc_accuracy(core->hw,
3900					clk_core_get_accuracy_no_lock(parent));
3901	else if (parent)
3902		core->accuracy = parent->accuracy;
3903	else
3904		core->accuracy = 0;
3905
3906	/*
3907	 * Set clk's phase by clk_core_get_phase() caching the phase.
3908	 * Since a phase is by definition relative to its parent, just
3909	 * query the current clock phase, or just assume it's in phase.
3910	 */
3911	phase = clk_core_get_phase(core);
3912	if (phase < 0) {
3913		ret = phase;
3914		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3915			core->name);
3916		goto out;
3917	}
3918
3919	/*
3920	 * Set clk's duty cycle.
3921	 */
3922	clk_core_update_duty_cycle_nolock(core);
3923
3924	/*
3925	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3926	 * simple clocks and lazy developers the default fallback is to use the
3927	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3928	 * then rate is set to zero.
3929	 */
3930	if (core->ops->recalc_rate)
3931		rate = core->ops->recalc_rate(core->hw,
3932				clk_core_get_rate_nolock(parent));
3933	else if (parent)
3934		rate = parent->rate;
3935	else
3936		rate = 0;
3937	core->rate = core->req_rate = rate;
3938
3939	/*
3940	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3941	 * don't get accidentally disabled when walking the orphan tree and
3942	 * reparenting clocks
3943	 */
3944	if (core->flags & CLK_IS_CRITICAL) {
3945		ret = clk_core_prepare(core);
3946		if (ret) {
3947			pr_warn("%s: critical clk '%s' failed to prepare\n",
3948			       __func__, core->name);
3949			goto out;
3950		}
3951
3952		ret = clk_core_enable_lock(core);
3953		if (ret) {
3954			pr_warn("%s: critical clk '%s' failed to enable\n",
3955			       __func__, core->name);
3956			clk_core_unprepare(core);
3957			goto out;
3958		}
3959	}
3960
3961	clk_core_reparent_orphans_nolock();
3962
3963	kref_init(&core->ref);
3964out:
3965	clk_pm_runtime_put(core);
3966unlock:
3967	if (ret) {
3968		hlist_del_init(&core->child_node);
3969		core->hw->core = NULL;
3970	}
3971
3972	clk_prepare_unlock();
3973
3974	if (!ret)
3975		clk_debug_register(core);
3976
3977	return ret;
3978}
3979
3980/**
3981 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3982 * @core: clk to add consumer to
3983 * @clk: consumer to link to a clk
3984 */
3985static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3986{
3987	clk_prepare_lock();
3988	hlist_add_head(&clk->clks_node, &core->clks);
3989	clk_prepare_unlock();
3990}
3991
3992/**
3993 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3994 * @clk: consumer to unlink
3995 */
3996static void clk_core_unlink_consumer(struct clk *clk)
3997{
3998	lockdep_assert_held(&prepare_lock);
3999	hlist_del(&clk->clks_node);
4000}
4001
4002/**
4003 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4004 * @core: clk to allocate a consumer for
4005 * @dev_id: string describing device name
4006 * @con_id: connection ID string on device
4007 *
4008 * Returns: clk consumer left unlinked from the consumer list
4009 */
4010static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4011			     const char *con_id)
4012{
4013	struct clk *clk;
4014
4015	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4016	if (!clk)
4017		return ERR_PTR(-ENOMEM);
4018
4019	clk->core = core;
4020	clk->dev_id = dev_id;
4021	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4022	clk->max_rate = ULONG_MAX;
4023
4024	return clk;
4025}
4026
4027/**
4028 * free_clk - Free a clk consumer
4029 * @clk: clk consumer to free
4030 *
4031 * Note, this assumes the clk has been unlinked from the clk_core consumer
4032 * list.
4033 */
4034static void free_clk(struct clk *clk)
4035{
4036	kfree_const(clk->con_id);
4037	kfree(clk);
4038}
4039
4040/**
4041 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4042 * a clk_hw
4043 * @dev: clk consumer device
4044 * @hw: clk_hw associated with the clk being consumed
4045 * @dev_id: string describing device name
4046 * @con_id: connection ID string on device
4047 *
4048 * This is the main function used to create a clk pointer for use by clk
4049 * consumers. It connects a consumer to the clk_core and clk_hw structures
4050 * used by the framework and clk provider respectively.
4051 */
4052struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4053			      const char *dev_id, const char *con_id)
4054{
4055	struct clk *clk;
4056	struct clk_core *core;
4057
4058	/* This is to allow this function to be chained to others */
4059	if (IS_ERR_OR_NULL(hw))
4060		return ERR_CAST(hw);
4061
4062	core = hw->core;
4063	clk = alloc_clk(core, dev_id, con_id);
4064	if (IS_ERR(clk))
4065		return clk;
4066	clk->dev = dev;
4067
4068	if (!try_module_get(core->owner)) {
4069		free_clk(clk);
4070		return ERR_PTR(-ENOENT);
4071	}
4072
4073	kref_get(&core->ref);
4074	clk_core_link_consumer(core, clk);
4075
4076	return clk;
4077}
4078
4079/**
4080 * clk_hw_get_clk - get clk consumer given an clk_hw
4081 * @hw: clk_hw associated with the clk being consumed
4082 * @con_id: connection ID string on device
4083 *
4084 * Returns: new clk consumer
4085 * This is the function to be used by providers which need
4086 * to get a consumer clk and act on the clock element
4087 * Calls to this function must be balanced with calls clk_put()
4088 */
4089struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4090{
4091	struct device *dev = hw->core->dev;
4092	const char *name = dev ? dev_name(dev) : NULL;
4093
4094	return clk_hw_create_clk(dev, hw, name, con_id);
4095}
4096EXPORT_SYMBOL(clk_hw_get_clk);
4097
4098static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4099{
4100	const char *dst;
4101
4102	if (!src) {
4103		if (must_exist)
4104			return -EINVAL;
4105		return 0;
4106	}
4107
4108	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4109	if (!dst)
4110		return -ENOMEM;
4111
4112	return 0;
4113}
4114
4115static int clk_core_populate_parent_map(struct clk_core *core,
4116					const struct clk_init_data *init)
4117{
4118	u8 num_parents = init->num_parents;
4119	const char * const *parent_names = init->parent_names;
4120	const struct clk_hw **parent_hws = init->parent_hws;
4121	const struct clk_parent_data *parent_data = init->parent_data;
4122	int i, ret = 0;
4123	struct clk_parent_map *parents, *parent;
4124
4125	if (!num_parents)
4126		return 0;
4127
4128	/*
4129	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4130	 * having a cache of names/clk_hw pointers to clk_core pointers.
4131	 */
4132	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4133	core->parents = parents;
4134	if (!parents)
4135		return -ENOMEM;
4136
4137	/* Copy everything over because it might be __initdata */
4138	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4139		parent->index = -1;
4140		if (parent_names) {
4141			/* throw a WARN if any entries are NULL */
4142			WARN(!parent_names[i],
4143				"%s: invalid NULL in %s's .parent_names\n",
4144				__func__, core->name);
4145			ret = clk_cpy_name(&parent->name, parent_names[i],
4146					   true);
4147		} else if (parent_data) {
4148			parent->hw = parent_data[i].hw;
4149			parent->index = parent_data[i].index;
4150			ret = clk_cpy_name(&parent->fw_name,
4151					   parent_data[i].fw_name, false);
4152			if (!ret)
4153				ret = clk_cpy_name(&parent->name,
4154						   parent_data[i].name,
4155						   false);
4156		} else if (parent_hws) {
4157			parent->hw = parent_hws[i];
4158		} else {
4159			ret = -EINVAL;
4160			WARN(1, "Must specify parents if num_parents > 0\n");
4161		}
4162
4163		if (ret) {
4164			do {
4165				kfree_const(parents[i].name);
4166				kfree_const(parents[i].fw_name);
4167			} while (--i >= 0);
4168			kfree(parents);
4169
4170			return ret;
4171		}
4172	}
4173
4174	return 0;
4175}
4176
4177static void clk_core_free_parent_map(struct clk_core *core)
4178{
4179	int i = core->num_parents;
4180
4181	if (!core->num_parents)
4182		return;
4183
4184	while (--i >= 0) {
4185		kfree_const(core->parents[i].name);
4186		kfree_const(core->parents[i].fw_name);
4187	}
4188
4189	kfree(core->parents);
4190}
4191
4192static struct clk *
4193__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4194{
4195	int ret;
4196	struct clk_core *core;
4197	const struct clk_init_data *init = hw->init;
4198
4199	/*
4200	 * The init data is not supposed to be used outside of registration path.
4201	 * Set it to NULL so that provider drivers can't use it either and so that
4202	 * we catch use of hw->init early on in the core.
4203	 */
4204	hw->init = NULL;
4205
4206	core = kzalloc(sizeof(*core), GFP_KERNEL);
4207	if (!core) {
4208		ret = -ENOMEM;
4209		goto fail_out;
4210	}
4211
4212	core->name = kstrdup_const(init->name, GFP_KERNEL);
4213	if (!core->name) {
4214		ret = -ENOMEM;
4215		goto fail_name;
4216	}
4217
4218	if (WARN_ON(!init->ops)) {
4219		ret = -EINVAL;
4220		goto fail_ops;
4221	}
4222	core->ops = init->ops;
4223
4224	if (dev && pm_runtime_enabled(dev))
4225		core->rpm_enabled = true;
4226	core->dev = dev;
4227	core->of_node = np;
4228	if (dev && dev->driver)
4229		core->owner = dev->driver->owner;
4230	core->hw = hw;
4231	core->flags = init->flags;
4232	core->num_parents = init->num_parents;
4233	core->min_rate = 0;
4234	core->max_rate = ULONG_MAX;
4235
4236	ret = clk_core_populate_parent_map(core, init);
4237	if (ret)
4238		goto fail_parents;
4239
4240	INIT_HLIST_HEAD(&core->clks);
4241
4242	/*
4243	 * Don't call clk_hw_create_clk() here because that would pin the
4244	 * provider module to itself and prevent it from ever being removed.
4245	 */
4246	hw->clk = alloc_clk(core, NULL, NULL);
4247	if (IS_ERR(hw->clk)) {
4248		ret = PTR_ERR(hw->clk);
4249		goto fail_create_clk;
4250	}
4251
4252	clk_core_link_consumer(core, hw->clk);
4253
4254	ret = __clk_core_init(core);
4255	if (!ret)
4256		return hw->clk;
4257
4258	clk_prepare_lock();
4259	clk_core_unlink_consumer(hw->clk);
4260	clk_prepare_unlock();
4261
4262	free_clk(hw->clk);
4263	hw->clk = NULL;
4264
4265fail_create_clk:
4266	clk_core_free_parent_map(core);
4267fail_parents:
4268fail_ops:
4269	kfree_const(core->name);
4270fail_name:
4271	kfree(core);
4272fail_out:
4273	return ERR_PTR(ret);
4274}
4275
4276/**
4277 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4278 * @dev: Device to get device node of
4279 *
4280 * Return: device node pointer of @dev, or the device node pointer of
4281 * @dev->parent if dev doesn't have a device node, or NULL if neither
4282 * @dev or @dev->parent have a device node.
4283 */
4284static struct device_node *dev_or_parent_of_node(struct device *dev)
4285{
4286	struct device_node *np;
4287
4288	if (!dev)
4289		return NULL;
4290
4291	np = dev_of_node(dev);
4292	if (!np)
4293		np = dev_of_node(dev->parent);
4294
4295	return np;
4296}
4297
4298/**
4299 * clk_register - allocate a new clock, register it and return an opaque cookie
4300 * @dev: device that is registering this clock
4301 * @hw: link to hardware-specific clock data
4302 *
4303 * clk_register is the *deprecated* interface for populating the clock tree with
4304 * new clock nodes. Use clk_hw_register() instead.
4305 *
4306 * Returns: a pointer to the newly allocated struct clk which
4307 * cannot be dereferenced by driver code but may be used in conjunction with the
4308 * rest of the clock API.  In the event of an error clk_register will return an
4309 * error code; drivers must test for an error code after calling clk_register.
4310 */
4311struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4312{
4313	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4314}
4315EXPORT_SYMBOL_GPL(clk_register);
4316
4317/**
4318 * clk_hw_register - register a clk_hw and return an error code
4319 * @dev: device that is registering this clock
4320 * @hw: link to hardware-specific clock data
4321 *
4322 * clk_hw_register is the primary interface for populating the clock tree with
4323 * new clock nodes. It returns an integer equal to zero indicating success or
4324 * less than zero indicating failure. Drivers must test for an error code after
4325 * calling clk_hw_register().
4326 */
4327int clk_hw_register(struct device *dev, struct clk_hw *hw)
4328{
4329	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4330			       hw));
4331}
4332EXPORT_SYMBOL_GPL(clk_hw_register);
4333
4334/*
4335 * of_clk_hw_register - register a clk_hw and return an error code
4336 * @node: device_node of device that is registering this clock
4337 * @hw: link to hardware-specific clock data
4338 *
4339 * of_clk_hw_register() is the primary interface for populating the clock tree
4340 * with new clock nodes when a struct device is not available, but a struct
4341 * device_node is. It returns an integer equal to zero indicating success or
4342 * less than zero indicating failure. Drivers must test for an error code after
4343 * calling of_clk_hw_register().
4344 */
4345int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4346{
4347	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4348}
4349EXPORT_SYMBOL_GPL(of_clk_hw_register);
4350
4351/* Free memory allocated for a clock. */
4352static void __clk_release(struct kref *ref)
4353{
4354	struct clk_core *core = container_of(ref, struct clk_core, ref);
4355
4356	lockdep_assert_held(&prepare_lock);
4357
4358	clk_core_free_parent_map(core);
4359	kfree_const(core->name);
4360	kfree(core);
4361}
4362
4363/*
4364 * Empty clk_ops for unregistered clocks. These are used temporarily
4365 * after clk_unregister() was called on a clock and until last clock
4366 * consumer calls clk_put() and the struct clk object is freed.
4367 */
4368static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4369{
4370	return -ENXIO;
4371}
4372
4373static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4374{
4375	WARN_ON_ONCE(1);
4376}
4377
4378static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4379					unsigned long parent_rate)
4380{
4381	return -ENXIO;
4382}
4383
4384static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4385{
4386	return -ENXIO;
4387}
4388
4389static int clk_nodrv_determine_rate(struct clk_hw *hw,
4390				    struct clk_rate_request *req)
4391{
4392	return -ENXIO;
4393}
4394
4395static const struct clk_ops clk_nodrv_ops = {
4396	.enable		= clk_nodrv_prepare_enable,
4397	.disable	= clk_nodrv_disable_unprepare,
4398	.prepare	= clk_nodrv_prepare_enable,
4399	.unprepare	= clk_nodrv_disable_unprepare,
4400	.determine_rate	= clk_nodrv_determine_rate,
4401	.set_rate	= clk_nodrv_set_rate,
4402	.set_parent	= clk_nodrv_set_parent,
4403};
4404
4405static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4406						const struct clk_core *target)
4407{
4408	int i;
4409	struct clk_core *child;
4410
4411	for (i = 0; i < root->num_parents; i++)
4412		if (root->parents[i].core == target)
4413			root->parents[i].core = NULL;
4414
4415	hlist_for_each_entry(child, &root->children, child_node)
4416		clk_core_evict_parent_cache_subtree(child, target);
4417}
4418
4419/* Remove this clk from all parent caches */
4420static void clk_core_evict_parent_cache(struct clk_core *core)
4421{
4422	const struct hlist_head **lists;
4423	struct clk_core *root;
4424
4425	lockdep_assert_held(&prepare_lock);
4426
4427	for (lists = all_lists; *lists; lists++)
4428		hlist_for_each_entry(root, *lists, child_node)
4429			clk_core_evict_parent_cache_subtree(root, core);
4430
4431}
4432
4433/**
4434 * clk_unregister - unregister a currently registered clock
4435 * @clk: clock to unregister
4436 */
4437void clk_unregister(struct clk *clk)
4438{
4439	unsigned long flags;
4440	const struct clk_ops *ops;
4441
4442	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4443		return;
4444
4445	clk_debug_unregister(clk->core);
4446
4447	clk_prepare_lock();
4448
4449	ops = clk->core->ops;
4450	if (ops == &clk_nodrv_ops) {
4451		pr_err("%s: unregistered clock: %s\n", __func__,
4452		       clk->core->name);
4453		goto unlock;
4454	}
4455	/*
4456	 * Assign empty clock ops for consumers that might still hold
4457	 * a reference to this clock.
4458	 */
4459	flags = clk_enable_lock();
4460	clk->core->ops = &clk_nodrv_ops;
4461	clk_enable_unlock(flags);
4462
4463	if (ops->terminate)
4464		ops->terminate(clk->core->hw);
4465
4466	if (!hlist_empty(&clk->core->children)) {
4467		struct clk_core *child;
4468		struct hlist_node *t;
4469
4470		/* Reparent all children to the orphan list. */
4471		hlist_for_each_entry_safe(child, t, &clk->core->children,
4472					  child_node)
4473			clk_core_set_parent_nolock(child, NULL);
4474	}
4475
4476	clk_core_evict_parent_cache(clk->core);
4477
4478	hlist_del_init(&clk->core->child_node);
4479
4480	if (clk->core->prepare_count)
4481		pr_warn("%s: unregistering prepared clock: %s\n",
4482					__func__, clk->core->name);
4483
4484	if (clk->core->protect_count)
4485		pr_warn("%s: unregistering protected clock: %s\n",
4486					__func__, clk->core->name);
4487
4488	kref_put(&clk->core->ref, __clk_release);
4489	free_clk(clk);
4490unlock:
4491	clk_prepare_unlock();
4492}
4493EXPORT_SYMBOL_GPL(clk_unregister);
4494
4495/**
4496 * clk_hw_unregister - unregister a currently registered clk_hw
4497 * @hw: hardware-specific clock data to unregister
4498 */
4499void clk_hw_unregister(struct clk_hw *hw)
4500{
4501	clk_unregister(hw->clk);
4502}
4503EXPORT_SYMBOL_GPL(clk_hw_unregister);
4504
4505static void devm_clk_unregister_cb(struct device *dev, void *res)
4506{
4507	clk_unregister(*(struct clk **)res);
4508}
4509
4510static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4511{
4512	clk_hw_unregister(*(struct clk_hw **)res);
4513}
4514
4515/**
4516 * devm_clk_register - resource managed clk_register()
4517 * @dev: device that is registering this clock
4518 * @hw: link to hardware-specific clock data
4519 *
4520 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4521 *
4522 * Clocks returned from this function are automatically clk_unregister()ed on
4523 * driver detach. See clk_register() for more information.
4524 */
4525struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4526{
4527	struct clk *clk;
4528	struct clk **clkp;
4529
4530	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4531	if (!clkp)
4532		return ERR_PTR(-ENOMEM);
4533
4534	clk = clk_register(dev, hw);
4535	if (!IS_ERR(clk)) {
4536		*clkp = clk;
4537		devres_add(dev, clkp);
4538	} else {
4539		devres_free(clkp);
4540	}
4541
4542	return clk;
4543}
4544EXPORT_SYMBOL_GPL(devm_clk_register);
4545
4546/**
4547 * devm_clk_hw_register - resource managed clk_hw_register()
4548 * @dev: device that is registering this clock
4549 * @hw: link to hardware-specific clock data
4550 *
4551 * Managed clk_hw_register(). Clocks registered by this function are
4552 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4553 * for more information.
4554 */
4555int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4556{
4557	struct clk_hw **hwp;
4558	int ret;
4559
4560	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4561	if (!hwp)
4562		return -ENOMEM;
4563
4564	ret = clk_hw_register(dev, hw);
4565	if (!ret) {
4566		*hwp = hw;
4567		devres_add(dev, hwp);
4568	} else {
4569		devres_free(hwp);
4570	}
4571
4572	return ret;
4573}
4574EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4575
4576static void devm_clk_release(struct device *dev, void *res)
4577{
4578	clk_put(*(struct clk **)res);
4579}
4580
4581/**
4582 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4583 * @dev: device that is registering this clock
4584 * @hw: clk_hw associated with the clk being consumed
4585 * @con_id: connection ID string on device
4586 *
4587 * Managed clk_hw_get_clk(). Clocks got with this function are
4588 * automatically clk_put() on driver detach. See clk_put()
4589 * for more information.
4590 */
4591struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4592				const char *con_id)
4593{
4594	struct clk *clk;
4595	struct clk **clkp;
4596
4597	/* This should not happen because it would mean we have drivers
4598	 * passing around clk_hw pointers instead of having the caller use
4599	 * proper clk_get() style APIs
4600	 */
4601	WARN_ON_ONCE(dev != hw->core->dev);
4602
4603	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4604	if (!clkp)
4605		return ERR_PTR(-ENOMEM);
4606
4607	clk = clk_hw_get_clk(hw, con_id);
4608	if (!IS_ERR(clk)) {
4609		*clkp = clk;
4610		devres_add(dev, clkp);
4611	} else {
4612		devres_free(clkp);
4613	}
4614
4615	return clk;
4616}
4617EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4618
4619/*
4620 * clkdev helpers
4621 */
4622
4623void __clk_put(struct clk *clk)
4624{
4625	struct module *owner;
4626
4627	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4628		return;
4629
4630	clk_prepare_lock();
4631
4632	/*
4633	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4634	 * given user should be balanced with calls to clk_rate_exclusive_put()
4635	 * and by that same consumer
4636	 */
4637	if (WARN_ON(clk->exclusive_count)) {
4638		/* We voiced our concern, let's sanitize the situation */
4639		clk->core->protect_count -= (clk->exclusive_count - 1);
4640		clk_core_rate_unprotect(clk->core);
4641		clk->exclusive_count = 0;
4642	}
4643
4644	hlist_del(&clk->clks_node);
4645
4646	/* If we had any boundaries on that clock, let's drop them. */
4647	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4648		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4649
4650	owner = clk->core->owner;
4651	kref_put(&clk->core->ref, __clk_release);
4652
4653	clk_prepare_unlock();
4654
4655	module_put(owner);
4656
4657	free_clk(clk);
4658}
4659
4660/***        clk rate change notifiers        ***/
4661
4662/**
4663 * clk_notifier_register - add a clk rate change notifier
4664 * @clk: struct clk * to watch
4665 * @nb: struct notifier_block * with callback info
4666 *
4667 * Request notification when clk's rate changes.  This uses an SRCU
4668 * notifier because we want it to block and notifier unregistrations are
4669 * uncommon.  The callbacks associated with the notifier must not
4670 * re-enter into the clk framework by calling any top-level clk APIs;
4671 * this will cause a nested prepare_lock mutex.
4672 *
4673 * In all notification cases (pre, post and abort rate change) the original
4674 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4675 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4676 *
4677 * clk_notifier_register() must be called from non-atomic context.
4678 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4679 * allocation failure; otherwise, passes along the return value of
4680 * srcu_notifier_chain_register().
4681 */
4682int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4683{
4684	struct clk_notifier *cn;
4685	int ret = -ENOMEM;
4686
4687	if (!clk || !nb)
4688		return -EINVAL;
4689
4690	clk_prepare_lock();
4691
4692	/* search the list of notifiers for this clk */
4693	list_for_each_entry(cn, &clk_notifier_list, node)
4694		if (cn->clk == clk)
4695			goto found;
4696
4697	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4698	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4699	if (!cn)
4700		goto out;
4701
4702	cn->clk = clk;
4703	srcu_init_notifier_head(&cn->notifier_head);
4704
4705	list_add(&cn->node, &clk_notifier_list);
4706
4707found:
4708	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4709
4710	clk->core->notifier_count++;
4711
4712out:
4713	clk_prepare_unlock();
4714
4715	return ret;
4716}
4717EXPORT_SYMBOL_GPL(clk_notifier_register);
4718
4719/**
4720 * clk_notifier_unregister - remove a clk rate change notifier
4721 * @clk: struct clk *
4722 * @nb: struct notifier_block * with callback info
4723 *
4724 * Request no further notification for changes to 'clk' and frees memory
4725 * allocated in clk_notifier_register.
4726 *
4727 * Returns -EINVAL if called with null arguments; otherwise, passes
4728 * along the return value of srcu_notifier_chain_unregister().
4729 */
4730int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4731{
4732	struct clk_notifier *cn;
4733	int ret = -ENOENT;
4734
4735	if (!clk || !nb)
4736		return -EINVAL;
4737
4738	clk_prepare_lock();
4739
4740	list_for_each_entry(cn, &clk_notifier_list, node) {
4741		if (cn->clk == clk) {
4742			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4743
4744			clk->core->notifier_count--;
4745
4746			/* XXX the notifier code should handle this better */
4747			if (!cn->notifier_head.head) {
4748				srcu_cleanup_notifier_head(&cn->notifier_head);
4749				list_del(&cn->node);
4750				kfree(cn);
4751			}
4752			break;
4753		}
4754	}
4755
4756	clk_prepare_unlock();
4757
4758	return ret;
4759}
4760EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4761
4762struct clk_notifier_devres {
4763	struct clk *clk;
4764	struct notifier_block *nb;
4765};
4766
4767static void devm_clk_notifier_release(struct device *dev, void *res)
4768{
4769	struct clk_notifier_devres *devres = res;
4770
4771	clk_notifier_unregister(devres->clk, devres->nb);
4772}
4773
4774int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4775			       struct notifier_block *nb)
4776{
4777	struct clk_notifier_devres *devres;
4778	int ret;
4779
4780	devres = devres_alloc(devm_clk_notifier_release,
4781			      sizeof(*devres), GFP_KERNEL);
4782
4783	if (!devres)
4784		return -ENOMEM;
4785
4786	ret = clk_notifier_register(clk, nb);
4787	if (!ret) {
4788		devres->clk = clk;
4789		devres->nb = nb;
4790		devres_add(dev, devres);
4791	} else {
4792		devres_free(devres);
4793	}
4794
4795	return ret;
4796}
4797EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4798
4799#ifdef CONFIG_OF
4800static void clk_core_reparent_orphans(void)
4801{
4802	clk_prepare_lock();
4803	clk_core_reparent_orphans_nolock();
4804	clk_prepare_unlock();
4805}
4806
4807/**
4808 * struct of_clk_provider - Clock provider registration structure
4809 * @link: Entry in global list of clock providers
4810 * @node: Pointer to device tree node of clock provider
4811 * @get: Get clock callback.  Returns NULL or a struct clk for the
4812 *       given clock specifier
4813 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4814 *       struct clk_hw for the given clock specifier
4815 * @data: context pointer to be passed into @get callback
4816 */
4817struct of_clk_provider {
4818	struct list_head link;
4819
4820	struct device_node *node;
4821	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4822	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4823	void *data;
4824};
4825
4826extern struct of_device_id __clk_of_table;
4827static const struct of_device_id __clk_of_table_sentinel
4828	__used __section("__clk_of_table_end");
4829
4830static LIST_HEAD(of_clk_providers);
4831static DEFINE_MUTEX(of_clk_mutex);
4832
4833struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4834				     void *data)
4835{
4836	return data;
4837}
4838EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4839
4840struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4841{
4842	return data;
4843}
4844EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4845
4846struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4847{
4848	struct clk_onecell_data *clk_data = data;
4849	unsigned int idx = clkspec->args[0];
4850
4851	if (idx >= clk_data->clk_num) {
4852		pr_err("%s: invalid clock index %u\n", __func__, idx);
4853		return ERR_PTR(-EINVAL);
4854	}
4855
4856	return clk_data->clks[idx];
4857}
4858EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4859
4860struct clk_hw *
4861of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4862{
4863	struct clk_hw_onecell_data *hw_data = data;
4864	unsigned int idx = clkspec->args[0];
4865
4866	if (idx >= hw_data->num) {
4867		pr_err("%s: invalid index %u\n", __func__, idx);
4868		return ERR_PTR(-EINVAL);
4869	}
4870
4871	return hw_data->hws[idx];
4872}
4873EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4874
4875/**
4876 * of_clk_add_provider() - Register a clock provider for a node
4877 * @np: Device node pointer associated with clock provider
4878 * @clk_src_get: callback for decoding clock
4879 * @data: context pointer for @clk_src_get callback.
4880 *
4881 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4882 */
4883int of_clk_add_provider(struct device_node *np,
4884			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4885						   void *data),
4886			void *data)
4887{
4888	struct of_clk_provider *cp;
4889	int ret;
4890
4891	if (!np)
4892		return 0;
4893
4894	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4895	if (!cp)
4896		return -ENOMEM;
4897
4898	cp->node = of_node_get(np);
4899	cp->data = data;
4900	cp->get = clk_src_get;
4901
4902	mutex_lock(&of_clk_mutex);
4903	list_add(&cp->link, &of_clk_providers);
4904	mutex_unlock(&of_clk_mutex);
4905	pr_debug("Added clock from %pOF\n", np);
4906
4907	clk_core_reparent_orphans();
4908
4909	ret = of_clk_set_defaults(np, true);
4910	if (ret < 0)
4911		of_clk_del_provider(np);
4912
4913	fwnode_dev_initialized(&np->fwnode, true);
4914
4915	return ret;
4916}
4917EXPORT_SYMBOL_GPL(of_clk_add_provider);
4918
4919/**
4920 * of_clk_add_hw_provider() - Register a clock provider for a node
4921 * @np: Device node pointer associated with clock provider
4922 * @get: callback for decoding clk_hw
4923 * @data: context pointer for @get callback.
4924 */
4925int of_clk_add_hw_provider(struct device_node *np,
4926			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4927						 void *data),
4928			   void *data)
4929{
4930	struct of_clk_provider *cp;
4931	int ret;
4932
4933	if (!np)
4934		return 0;
4935
4936	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4937	if (!cp)
4938		return -ENOMEM;
4939
4940	cp->node = of_node_get(np);
4941	cp->data = data;
4942	cp->get_hw = get;
4943
4944	mutex_lock(&of_clk_mutex);
4945	list_add(&cp->link, &of_clk_providers);
4946	mutex_unlock(&of_clk_mutex);
4947	pr_debug("Added clk_hw provider from %pOF\n", np);
4948
4949	clk_core_reparent_orphans();
4950
4951	ret = of_clk_set_defaults(np, true);
4952	if (ret < 0)
4953		of_clk_del_provider(np);
4954
4955	fwnode_dev_initialized(&np->fwnode, true);
4956
4957	return ret;
4958}
4959EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4960
4961static void devm_of_clk_release_provider(struct device *dev, void *res)
4962{
4963	of_clk_del_provider(*(struct device_node **)res);
4964}
4965
4966/*
4967 * We allow a child device to use its parent device as the clock provider node
4968 * for cases like MFD sub-devices where the child device driver wants to use
4969 * devm_*() APIs but not list the device in DT as a sub-node.
4970 */
4971static struct device_node *get_clk_provider_node(struct device *dev)
4972{
4973	struct device_node *np, *parent_np;
4974
4975	np = dev->of_node;
4976	parent_np = dev->parent ? dev->parent->of_node : NULL;
4977
4978	if (!of_property_present(np, "#clock-cells"))
4979		if (of_property_present(parent_np, "#clock-cells"))
4980			np = parent_np;
4981
4982	return np;
4983}
4984
4985/**
4986 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4987 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4988 * @get: callback for decoding clk_hw
4989 * @data: context pointer for @get callback
4990 *
4991 * Registers clock provider for given device's node. If the device has no DT
4992 * node or if the device node lacks of clock provider information (#clock-cells)
4993 * then the parent device's node is scanned for this information. If parent node
4994 * has the #clock-cells then it is used in registration. Provider is
4995 * automatically released at device exit.
4996 *
4997 * Return: 0 on success or an errno on failure.
4998 */
4999int devm_of_clk_add_hw_provider(struct device *dev,
5000			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5001					      void *data),
5002			void *data)
5003{
5004	struct device_node **ptr, *np;
5005	int ret;
5006
5007	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5008			   GFP_KERNEL);
5009	if (!ptr)
5010		return -ENOMEM;
5011
5012	np = get_clk_provider_node(dev);
5013	ret = of_clk_add_hw_provider(np, get, data);
5014	if (!ret) {
5015		*ptr = np;
5016		devres_add(dev, ptr);
5017	} else {
5018		devres_free(ptr);
5019	}
5020
5021	return ret;
5022}
5023EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5024
5025/**
5026 * of_clk_del_provider() - Remove a previously registered clock provider
5027 * @np: Device node pointer associated with clock provider
5028 */
5029void of_clk_del_provider(struct device_node *np)
5030{
5031	struct of_clk_provider *cp;
5032
5033	if (!np)
5034		return;
5035
5036	mutex_lock(&of_clk_mutex);
5037	list_for_each_entry(cp, &of_clk_providers, link) {
5038		if (cp->node == np) {
5039			list_del(&cp->link);
5040			fwnode_dev_initialized(&np->fwnode, false);
5041			of_node_put(cp->node);
5042			kfree(cp);
5043			break;
5044		}
5045	}
5046	mutex_unlock(&of_clk_mutex);
5047}
5048EXPORT_SYMBOL_GPL(of_clk_del_provider);
5049
5050/**
5051 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5052 * @np: device node to parse clock specifier from
5053 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5054 * @name: clock name to find and parse. If name is NULL, the index is used
5055 * @out_args: Result of parsing the clock specifier
5056 *
5057 * Parses a device node's "clocks" and "clock-names" properties to find the
5058 * phandle and cells for the index or name that is desired. The resulting clock
5059 * specifier is placed into @out_args, or an errno is returned when there's a
5060 * parsing error. The @index argument is ignored if @name is non-NULL.
5061 *
5062 * Example:
5063 *
5064 * phandle1: clock-controller@1 {
5065 *	#clock-cells = <2>;
5066 * }
5067 *
5068 * phandle2: clock-controller@2 {
5069 *	#clock-cells = <1>;
5070 * }
5071 *
5072 * clock-consumer@3 {
5073 *	clocks = <&phandle1 1 2 &phandle2 3>;
5074 *	clock-names = "name1", "name2";
5075 * }
5076 *
5077 * To get a device_node for `clock-controller@2' node you may call this
5078 * function a few different ways:
5079 *
5080 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5081 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5082 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5083 *
5084 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5085 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5086 * the "clock-names" property of @np.
5087 */
5088static int of_parse_clkspec(const struct device_node *np, int index,
5089			    const char *name, struct of_phandle_args *out_args)
5090{
5091	int ret = -ENOENT;
5092
5093	/* Walk up the tree of devices looking for a clock property that matches */
5094	while (np) {
5095		/*
5096		 * For named clocks, first look up the name in the
5097		 * "clock-names" property.  If it cannot be found, then index
5098		 * will be an error code and of_parse_phandle_with_args() will
5099		 * return -EINVAL.
5100		 */
5101		if (name)
5102			index = of_property_match_string(np, "clock-names", name);
5103		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5104						 index, out_args);
5105		if (!ret)
5106			break;
5107		if (name && index >= 0)
5108			break;
5109
5110		/*
5111		 * No matching clock found on this node.  If the parent node
5112		 * has a "clock-ranges" property, then we can try one of its
5113		 * clocks.
5114		 */
5115		np = np->parent;
5116		if (np && !of_get_property(np, "clock-ranges", NULL))
5117			break;
5118		index = 0;
5119	}
5120
5121	return ret;
5122}
5123
5124static struct clk_hw *
5125__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5126			      struct of_phandle_args *clkspec)
5127{
5128	struct clk *clk;
5129
5130	if (provider->get_hw)
5131		return provider->get_hw(clkspec, provider->data);
5132
5133	clk = provider->get(clkspec, provider->data);
5134	if (IS_ERR(clk))
5135		return ERR_CAST(clk);
5136	return __clk_get_hw(clk);
5137}
5138
5139static struct clk_hw *
5140of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5141{
5142	struct of_clk_provider *provider;
5143	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5144
5145	if (!clkspec)
5146		return ERR_PTR(-EINVAL);
5147
5148	mutex_lock(&of_clk_mutex);
5149	list_for_each_entry(provider, &of_clk_providers, link) {
5150		if (provider->node == clkspec->np) {
5151			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5152			if (!IS_ERR(hw))
5153				break;
5154		}
5155	}
5156	mutex_unlock(&of_clk_mutex);
5157
5158	return hw;
5159}
5160
5161/**
5162 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5163 * @clkspec: pointer to a clock specifier data structure
5164 *
5165 * This function looks up a struct clk from the registered list of clock
5166 * providers, an input is a clock specifier data structure as returned
5167 * from the of_parse_phandle_with_args() function call.
5168 */
5169struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5170{
5171	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5172
5173	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5174}
5175EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5176
5177struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5178			     const char *con_id)
5179{
5180	int ret;
5181	struct clk_hw *hw;
5182	struct of_phandle_args clkspec;
5183
5184	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5185	if (ret)
5186		return ERR_PTR(ret);
5187
5188	hw = of_clk_get_hw_from_clkspec(&clkspec);
5189	of_node_put(clkspec.np);
5190
5191	return hw;
5192}
5193
5194static struct clk *__of_clk_get(struct device_node *np,
5195				int index, const char *dev_id,
5196				const char *con_id)
5197{
5198	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5199
5200	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5201}
5202
5203struct clk *of_clk_get(struct device_node *np, int index)
5204{
5205	return __of_clk_get(np, index, np->full_name, NULL);
5206}
5207EXPORT_SYMBOL(of_clk_get);
5208
5209/**
5210 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5211 * @np: pointer to clock consumer node
5212 * @name: name of consumer's clock input, or NULL for the first clock reference
5213 *
5214 * This function parses the clocks and clock-names properties,
5215 * and uses them to look up the struct clk from the registered list of clock
5216 * providers.
5217 */
5218struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5219{
5220	if (!np)
5221		return ERR_PTR(-ENOENT);
5222
5223	return __of_clk_get(np, 0, np->full_name, name);
5224}
5225EXPORT_SYMBOL(of_clk_get_by_name);
5226
5227/**
5228 * of_clk_get_parent_count() - Count the number of clocks a device node has
5229 * @np: device node to count
5230 *
5231 * Returns: The number of clocks that are possible parents of this node
5232 */
5233unsigned int of_clk_get_parent_count(const struct device_node *np)
5234{
5235	int count;
5236
5237	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5238	if (count < 0)
5239		return 0;
5240
5241	return count;
5242}
5243EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5244
5245const char *of_clk_get_parent_name(const struct device_node *np, int index)
5246{
5247	struct of_phandle_args clkspec;
5248	struct property *prop;
5249	const char *clk_name;
5250	const __be32 *vp;
5251	u32 pv;
5252	int rc;
5253	int count;
5254	struct clk *clk;
5255
5256	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5257					&clkspec);
5258	if (rc)
5259		return NULL;
5260
5261	index = clkspec.args_count ? clkspec.args[0] : 0;
5262	count = 0;
5263
5264	/* if there is an indices property, use it to transfer the index
5265	 * specified into an array offset for the clock-output-names property.
5266	 */
5267	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5268		if (index == pv) {
5269			index = count;
5270			break;
5271		}
5272		count++;
5273	}
5274	/* We went off the end of 'clock-indices' without finding it */
5275	if (prop && !vp)
5276		return NULL;
5277
5278	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5279					  index,
5280					  &clk_name) < 0) {
5281		/*
5282		 * Best effort to get the name if the clock has been
5283		 * registered with the framework. If the clock isn't
5284		 * registered, we return the node name as the name of
5285		 * the clock as long as #clock-cells = 0.
5286		 */
5287		clk = of_clk_get_from_provider(&clkspec);
5288		if (IS_ERR(clk)) {
5289			if (clkspec.args_count == 0)
5290				clk_name = clkspec.np->name;
5291			else
5292				clk_name = NULL;
5293		} else {
5294			clk_name = __clk_get_name(clk);
5295			clk_put(clk);
5296		}
5297	}
5298
5299
5300	of_node_put(clkspec.np);
5301	return clk_name;
5302}
5303EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5304
5305/**
5306 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5307 * number of parents
5308 * @np: Device node pointer associated with clock provider
5309 * @parents: pointer to char array that hold the parents' names
5310 * @size: size of the @parents array
5311 *
5312 * Return: number of parents for the clock node.
5313 */
5314int of_clk_parent_fill(struct device_node *np, const char **parents,
5315		       unsigned int size)
5316{
5317	unsigned int i = 0;
5318
5319	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5320		i++;
5321
5322	return i;
5323}
5324EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5325
5326struct clock_provider {
5327	void (*clk_init_cb)(struct device_node *);
5328	struct device_node *np;
5329	struct list_head node;
5330};
5331
5332/*
5333 * This function looks for a parent clock. If there is one, then it
5334 * checks that the provider for this parent clock was initialized, in
5335 * this case the parent clock will be ready.
5336 */
5337static int parent_ready(struct device_node *np)
5338{
5339	int i = 0;
5340
5341	while (true) {
5342		struct clk *clk = of_clk_get(np, i);
5343
5344		/* this parent is ready we can check the next one */
5345		if (!IS_ERR(clk)) {
5346			clk_put(clk);
5347			i++;
5348			continue;
5349		}
5350
5351		/* at least one parent is not ready, we exit now */
5352		if (PTR_ERR(clk) == -EPROBE_DEFER)
5353			return 0;
5354
5355		/*
5356		 * Here we make assumption that the device tree is
5357		 * written correctly. So an error means that there is
5358		 * no more parent. As we didn't exit yet, then the
5359		 * previous parent are ready. If there is no clock
5360		 * parent, no need to wait for them, then we can
5361		 * consider their absence as being ready
5362		 */
5363		return 1;
5364	}
5365}
5366
5367/**
5368 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5369 * @np: Device node pointer associated with clock provider
5370 * @index: clock index
5371 * @flags: pointer to top-level framework flags
5372 *
5373 * Detects if the clock-critical property exists and, if so, sets the
5374 * corresponding CLK_IS_CRITICAL flag.
5375 *
5376 * Do not use this function. It exists only for legacy Device Tree
5377 * bindings, such as the one-clock-per-node style that are outdated.
5378 * Those bindings typically put all clock data into .dts and the Linux
5379 * driver has no clock data, thus making it impossible to set this flag
5380 * correctly from the driver. Only those drivers may call
5381 * of_clk_detect_critical from their setup functions.
5382 *
5383 * Return: error code or zero on success
5384 */
5385int of_clk_detect_critical(struct device_node *np, int index,
5386			   unsigned long *flags)
5387{
5388	struct property *prop;
5389	const __be32 *cur;
5390	uint32_t idx;
5391
5392	if (!np || !flags)
5393		return -EINVAL;
5394
5395	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5396		if (index == idx)
5397			*flags |= CLK_IS_CRITICAL;
5398
5399	return 0;
5400}
5401
5402/**
5403 * of_clk_init() - Scan and init clock providers from the DT
5404 * @matches: array of compatible values and init functions for providers.
5405 *
5406 * This function scans the device tree for matching clock providers
5407 * and calls their initialization functions. It also does it by trying
5408 * to follow the dependencies.
5409 */
5410void __init of_clk_init(const struct of_device_id *matches)
5411{
5412	const struct of_device_id *match;
5413	struct device_node *np;
5414	struct clock_provider *clk_provider, *next;
5415	bool is_init_done;
5416	bool force = false;
5417	LIST_HEAD(clk_provider_list);
5418
5419	if (!matches)
5420		matches = &__clk_of_table;
5421
5422	/* First prepare the list of the clocks providers */
5423	for_each_matching_node_and_match(np, matches, &match) {
5424		struct clock_provider *parent;
5425
5426		if (!of_device_is_available(np))
5427			continue;
5428
5429		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5430		if (!parent) {
5431			list_for_each_entry_safe(clk_provider, next,
5432						 &clk_provider_list, node) {
5433				list_del(&clk_provider->node);
5434				of_node_put(clk_provider->np);
5435				kfree(clk_provider);
5436			}
5437			of_node_put(np);
5438			return;
5439		}
5440
5441		parent->clk_init_cb = match->data;
5442		parent->np = of_node_get(np);
5443		list_add_tail(&parent->node, &clk_provider_list);
5444	}
5445
5446	while (!list_empty(&clk_provider_list)) {
5447		is_init_done = false;
5448		list_for_each_entry_safe(clk_provider, next,
5449					&clk_provider_list, node) {
5450			if (force || parent_ready(clk_provider->np)) {
5451
5452				/* Don't populate platform devices */
5453				of_node_set_flag(clk_provider->np,
5454						 OF_POPULATED);
5455
5456				clk_provider->clk_init_cb(clk_provider->np);
5457				of_clk_set_defaults(clk_provider->np, true);
5458
5459				list_del(&clk_provider->node);
5460				of_node_put(clk_provider->np);
5461				kfree(clk_provider);
5462				is_init_done = true;
5463			}
5464		}
5465
5466		/*
5467		 * We didn't manage to initialize any of the
5468		 * remaining providers during the last loop, so now we
5469		 * initialize all the remaining ones unconditionally
5470		 * in case the clock parent was not mandatory
5471		 */
5472		if (!is_init_done)
5473			force = true;
5474	}
5475}
5476#endif