Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CMAC: Cipher Block Mode for Authentication
  4 *
  5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  6 *
  7 * Based on work by:
  8 *  Copyright © 2013 Tom St Denis <tstdenis@elliptictech.com>
  9 * Based on crypto/xcbc.c:
 10 *  Copyright © 2006 USAGI/WIDE Project,
 11 *   Author: Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 12 */
 13
 14#include <crypto/internal/cipher.h>
 15#include <crypto/internal/hash.h>
 16#include <linux/err.h>
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19
 20/*
 21 * +------------------------
 22 * | <parent tfm>
 23 * +------------------------
 24 * | cmac_tfm_ctx
 25 * +------------------------
 26 * | consts (block size * 2)
 27 * +------------------------
 28 */
 29struct cmac_tfm_ctx {
 30	struct crypto_cipher *child;
 31	u8 ctx[];
 32};
 33
 34/*
 35 * +------------------------
 36 * | <shash desc>
 37 * +------------------------
 38 * | cmac_desc_ctx
 39 * +------------------------
 40 * | odds (block size)
 41 * +------------------------
 42 * | prev (block size)
 43 * +------------------------
 44 */
 45struct cmac_desc_ctx {
 46	unsigned int len;
 47	u8 ctx[];
 48};
 49
 50static int crypto_cmac_digest_setkey(struct crypto_shash *parent,
 51				     const u8 *inkey, unsigned int keylen)
 52{
 53	unsigned long alignmask = crypto_shash_alignmask(parent);
 54	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(parent);
 55	unsigned int bs = crypto_shash_blocksize(parent);
 56	__be64 *consts = PTR_ALIGN((void *)ctx->ctx,
 57				   (alignmask | (__alignof__(__be64) - 1)) + 1);
 58	u64 _const[2];
 59	int i, err = 0;
 60	u8 msb_mask, gfmask;
 61
 62	err = crypto_cipher_setkey(ctx->child, inkey, keylen);
 63	if (err)
 64		return err;
 65
 66	/* encrypt the zero block */
 67	memset(consts, 0, bs);
 68	crypto_cipher_encrypt_one(ctx->child, (u8 *)consts, (u8 *)consts);
 69
 70	switch (bs) {
 71	case 16:
 72		gfmask = 0x87;
 73		_const[0] = be64_to_cpu(consts[1]);
 74		_const[1] = be64_to_cpu(consts[0]);
 75
 76		/* gf(2^128) multiply zero-ciphertext with u and u^2 */
 77		for (i = 0; i < 4; i += 2) {
 78			msb_mask = ((s64)_const[1] >> 63) & gfmask;
 79			_const[1] = (_const[1] << 1) | (_const[0] >> 63);
 80			_const[0] = (_const[0] << 1) ^ msb_mask;
 81
 82			consts[i + 0] = cpu_to_be64(_const[1]);
 83			consts[i + 1] = cpu_to_be64(_const[0]);
 84		}
 85
 86		break;
 87	case 8:
 88		gfmask = 0x1B;
 89		_const[0] = be64_to_cpu(consts[0]);
 90
 91		/* gf(2^64) multiply zero-ciphertext with u and u^2 */
 92		for (i = 0; i < 2; i++) {
 93			msb_mask = ((s64)_const[0] >> 63) & gfmask;
 94			_const[0] = (_const[0] << 1) ^ msb_mask;
 95
 96			consts[i] = cpu_to_be64(_const[0]);
 97		}
 98
 99		break;
100	}
101
102	return 0;
103}
104
105static int crypto_cmac_digest_init(struct shash_desc *pdesc)
106{
107	unsigned long alignmask = crypto_shash_alignmask(pdesc->tfm);
108	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
109	int bs = crypto_shash_blocksize(pdesc->tfm);
110	u8 *prev = PTR_ALIGN((void *)ctx->ctx, alignmask + 1) + bs;
111
112	ctx->len = 0;
113	memset(prev, 0, bs);
114
115	return 0;
116}
117
118static int crypto_cmac_digest_update(struct shash_desc *pdesc, const u8 *p,
119				     unsigned int len)
120{
121	struct crypto_shash *parent = pdesc->tfm;
122	unsigned long alignmask = crypto_shash_alignmask(parent);
123	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
124	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
125	struct crypto_cipher *tfm = tctx->child;
126	int bs = crypto_shash_blocksize(parent);
127	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
128	u8 *prev = odds + bs;
129
130	/* checking the data can fill the block */
131	if ((ctx->len + len) <= bs) {
132		memcpy(odds + ctx->len, p, len);
133		ctx->len += len;
134		return 0;
135	}
136
137	/* filling odds with new data and encrypting it */
138	memcpy(odds + ctx->len, p, bs - ctx->len);
139	len -= bs - ctx->len;
140	p += bs - ctx->len;
141
142	crypto_xor(prev, odds, bs);
143	crypto_cipher_encrypt_one(tfm, prev, prev);
144
145	/* clearing the length */
146	ctx->len = 0;
147
148	/* encrypting the rest of data */
149	while (len > bs) {
150		crypto_xor(prev, p, bs);
151		crypto_cipher_encrypt_one(tfm, prev, prev);
152		p += bs;
153		len -= bs;
154	}
155
156	/* keeping the surplus of blocksize */
157	if (len) {
158		memcpy(odds, p, len);
159		ctx->len = len;
160	}
161
162	return 0;
163}
164
165static int crypto_cmac_digest_final(struct shash_desc *pdesc, u8 *out)
166{
167	struct crypto_shash *parent = pdesc->tfm;
168	unsigned long alignmask = crypto_shash_alignmask(parent);
169	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
170	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
171	struct crypto_cipher *tfm = tctx->child;
172	int bs = crypto_shash_blocksize(parent);
173	u8 *consts = PTR_ALIGN((void *)tctx->ctx,
174			       (alignmask | (__alignof__(__be64) - 1)) + 1);
175	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
176	u8 *prev = odds + bs;
177	unsigned int offset = 0;
178
179	if (ctx->len != bs) {
180		unsigned int rlen;
181		u8 *p = odds + ctx->len;
182
183		*p = 0x80;
184		p++;
185
186		rlen = bs - ctx->len - 1;
187		if (rlen)
188			memset(p, 0, rlen);
189
190		offset += bs;
191	}
192
193	crypto_xor(prev, odds, bs);
194	crypto_xor(prev, consts + offset, bs);
195
196	crypto_cipher_encrypt_one(tfm, out, prev);
197
198	return 0;
199}
200
201static int cmac_init_tfm(struct crypto_tfm *tfm)
202{
 
 
 
203	struct crypto_cipher *cipher;
204	struct crypto_instance *inst = (void *)tfm->__crt_alg;
205	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
206	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
207
 
208	cipher = crypto_spawn_cipher(spawn);
209	if (IS_ERR(cipher))
210		return PTR_ERR(cipher);
211
212	ctx->child = cipher;
213
214	return 0;
215};
216
217static void cmac_exit_tfm(struct crypto_tfm *tfm)
218{
219	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220	crypto_free_cipher(ctx->child);
221}
222
223static int cmac_create(struct crypto_template *tmpl, struct rtattr **tb)
224{
225	struct shash_instance *inst;
226	struct crypto_cipher_spawn *spawn;
227	struct crypto_alg *alg;
228	unsigned long alignmask;
229	u32 mask;
230	int err;
231
232	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
233	if (err)
234		return err;
235
236	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
237	if (!inst)
238		return -ENOMEM;
239	spawn = shash_instance_ctx(inst);
240
241	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
242				 crypto_attr_alg_name(tb[1]), 0, mask);
243	if (err)
244		goto err_free_inst;
245	alg = crypto_spawn_cipher_alg(spawn);
246
247	switch (alg->cra_blocksize) {
248	case 16:
249	case 8:
250		break;
251	default:
252		err = -EINVAL;
253		goto err_free_inst;
254	}
255
256	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
257	if (err)
258		goto err_free_inst;
259
260	alignmask = alg->cra_alignmask;
261	inst->alg.base.cra_alignmask = alignmask;
262	inst->alg.base.cra_priority = alg->cra_priority;
263	inst->alg.base.cra_blocksize = alg->cra_blocksize;
 
 
264
265	inst->alg.digestsize = alg->cra_blocksize;
266	inst->alg.descsize =
267		ALIGN(sizeof(struct cmac_desc_ctx), crypto_tfm_ctx_alignment())
268		+ (alignmask & ~(crypto_tfm_ctx_alignment() - 1))
269		+ alg->cra_blocksize * 2;
270
271	inst->alg.base.cra_ctxsize =
272		ALIGN(sizeof(struct cmac_tfm_ctx), crypto_tfm_ctx_alignment())
273		+ ((alignmask | (__alignof__(__be64) - 1)) &
274		   ~(crypto_tfm_ctx_alignment() - 1))
275		+ alg->cra_blocksize * 2;
276
277	inst->alg.base.cra_init = cmac_init_tfm;
278	inst->alg.base.cra_exit = cmac_exit_tfm;
279
280	inst->alg.init = crypto_cmac_digest_init;
281	inst->alg.update = crypto_cmac_digest_update;
282	inst->alg.final = crypto_cmac_digest_final;
283	inst->alg.setkey = crypto_cmac_digest_setkey;
 
 
 
284
285	inst->free = shash_free_singlespawn_instance;
286
287	err = shash_register_instance(tmpl, inst);
288	if (err) {
289err_free_inst:
290		shash_free_singlespawn_instance(inst);
291	}
292	return err;
293}
294
295static struct crypto_template crypto_cmac_tmpl = {
296	.name = "cmac",
297	.create = cmac_create,
298	.module = THIS_MODULE,
299};
300
301static int __init crypto_cmac_module_init(void)
302{
303	return crypto_register_template(&crypto_cmac_tmpl);
304}
305
306static void __exit crypto_cmac_module_exit(void)
307{
308	crypto_unregister_template(&crypto_cmac_tmpl);
309}
310
311subsys_initcall(crypto_cmac_module_init);
312module_exit(crypto_cmac_module_exit);
313
314MODULE_LICENSE("GPL");
315MODULE_DESCRIPTION("CMAC keyed hash algorithm");
316MODULE_ALIAS_CRYPTO("cmac");
317MODULE_IMPORT_NS(CRYPTO_INTERNAL);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CMAC: Cipher Block Mode for Authentication
  4 *
  5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  6 *
  7 * Based on work by:
  8 *  Copyright © 2013 Tom St Denis <tstdenis@elliptictech.com>
  9 * Based on crypto/xcbc.c:
 10 *  Copyright © 2006 USAGI/WIDE Project,
 11 *   Author: Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 12 */
 13
 14#include <crypto/internal/cipher.h>
 15#include <crypto/internal/hash.h>
 16#include <linux/err.h>
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19
 20/*
 21 * +------------------------
 22 * | <parent tfm>
 23 * +------------------------
 24 * | cmac_tfm_ctx
 25 * +------------------------
 26 * | consts (block size * 2)
 27 * +------------------------
 28 */
 29struct cmac_tfm_ctx {
 30	struct crypto_cipher *child;
 31	__be64 consts[];
 32};
 33
 34/*
 35 * +------------------------
 36 * | <shash desc>
 37 * +------------------------
 38 * | cmac_desc_ctx
 39 * +------------------------
 40 * | odds (block size)
 41 * +------------------------
 42 * | prev (block size)
 43 * +------------------------
 44 */
 45struct cmac_desc_ctx {
 46	unsigned int len;
 47	u8 odds[];
 48};
 49
 50static int crypto_cmac_digest_setkey(struct crypto_shash *parent,
 51				     const u8 *inkey, unsigned int keylen)
 52{
 
 53	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(parent);
 54	unsigned int bs = crypto_shash_blocksize(parent);
 55	__be64 *consts = ctx->consts;
 
 56	u64 _const[2];
 57	int i, err = 0;
 58	u8 msb_mask, gfmask;
 59
 60	err = crypto_cipher_setkey(ctx->child, inkey, keylen);
 61	if (err)
 62		return err;
 63
 64	/* encrypt the zero block */
 65	memset(consts, 0, bs);
 66	crypto_cipher_encrypt_one(ctx->child, (u8 *)consts, (u8 *)consts);
 67
 68	switch (bs) {
 69	case 16:
 70		gfmask = 0x87;
 71		_const[0] = be64_to_cpu(consts[1]);
 72		_const[1] = be64_to_cpu(consts[0]);
 73
 74		/* gf(2^128) multiply zero-ciphertext with u and u^2 */
 75		for (i = 0; i < 4; i += 2) {
 76			msb_mask = ((s64)_const[1] >> 63) & gfmask;
 77			_const[1] = (_const[1] << 1) | (_const[0] >> 63);
 78			_const[0] = (_const[0] << 1) ^ msb_mask;
 79
 80			consts[i + 0] = cpu_to_be64(_const[1]);
 81			consts[i + 1] = cpu_to_be64(_const[0]);
 82		}
 83
 84		break;
 85	case 8:
 86		gfmask = 0x1B;
 87		_const[0] = be64_to_cpu(consts[0]);
 88
 89		/* gf(2^64) multiply zero-ciphertext with u and u^2 */
 90		for (i = 0; i < 2; i++) {
 91			msb_mask = ((s64)_const[0] >> 63) & gfmask;
 92			_const[0] = (_const[0] << 1) ^ msb_mask;
 93
 94			consts[i] = cpu_to_be64(_const[0]);
 95		}
 96
 97		break;
 98	}
 99
100	return 0;
101}
102
103static int crypto_cmac_digest_init(struct shash_desc *pdesc)
104{
 
105	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
106	int bs = crypto_shash_blocksize(pdesc->tfm);
107	u8 *prev = &ctx->odds[bs];
108
109	ctx->len = 0;
110	memset(prev, 0, bs);
111
112	return 0;
113}
114
115static int crypto_cmac_digest_update(struct shash_desc *pdesc, const u8 *p,
116				     unsigned int len)
117{
118	struct crypto_shash *parent = pdesc->tfm;
 
119	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
120	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
121	struct crypto_cipher *tfm = tctx->child;
122	int bs = crypto_shash_blocksize(parent);
123	u8 *odds = ctx->odds;
124	u8 *prev = odds + bs;
125
126	/* checking the data can fill the block */
127	if ((ctx->len + len) <= bs) {
128		memcpy(odds + ctx->len, p, len);
129		ctx->len += len;
130		return 0;
131	}
132
133	/* filling odds with new data and encrypting it */
134	memcpy(odds + ctx->len, p, bs - ctx->len);
135	len -= bs - ctx->len;
136	p += bs - ctx->len;
137
138	crypto_xor(prev, odds, bs);
139	crypto_cipher_encrypt_one(tfm, prev, prev);
140
141	/* clearing the length */
142	ctx->len = 0;
143
144	/* encrypting the rest of data */
145	while (len > bs) {
146		crypto_xor(prev, p, bs);
147		crypto_cipher_encrypt_one(tfm, prev, prev);
148		p += bs;
149		len -= bs;
150	}
151
152	/* keeping the surplus of blocksize */
153	if (len) {
154		memcpy(odds, p, len);
155		ctx->len = len;
156	}
157
158	return 0;
159}
160
161static int crypto_cmac_digest_final(struct shash_desc *pdesc, u8 *out)
162{
163	struct crypto_shash *parent = pdesc->tfm;
 
164	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
165	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
166	struct crypto_cipher *tfm = tctx->child;
167	int bs = crypto_shash_blocksize(parent);
168	u8 *odds = ctx->odds;
 
 
169	u8 *prev = odds + bs;
170	unsigned int offset = 0;
171
172	if (ctx->len != bs) {
173		unsigned int rlen;
174		u8 *p = odds + ctx->len;
175
176		*p = 0x80;
177		p++;
178
179		rlen = bs - ctx->len - 1;
180		if (rlen)
181			memset(p, 0, rlen);
182
183		offset += bs;
184	}
185
186	crypto_xor(prev, odds, bs);
187	crypto_xor(prev, (const u8 *)tctx->consts + offset, bs);
188
189	crypto_cipher_encrypt_one(tfm, out, prev);
190
191	return 0;
192}
193
194static int cmac_init_tfm(struct crypto_shash *tfm)
195{
196	struct shash_instance *inst = shash_alg_instance(tfm);
197	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
198	struct crypto_cipher_spawn *spawn;
199	struct crypto_cipher *cipher;
 
 
 
200
201	spawn = shash_instance_ctx(inst);
202	cipher = crypto_spawn_cipher(spawn);
203	if (IS_ERR(cipher))
204		return PTR_ERR(cipher);
205
206	ctx->child = cipher;
207
208	return 0;
209}
210
211static int cmac_clone_tfm(struct crypto_shash *tfm, struct crypto_shash *otfm)
212{
213	struct cmac_tfm_ctx *octx = crypto_shash_ctx(otfm);
214	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
215	struct crypto_cipher *cipher;
216
217	cipher = crypto_clone_cipher(octx->child);
218	if (IS_ERR(cipher))
219		return PTR_ERR(cipher);
220
221	ctx->child = cipher;
222
223	return 0;
224}
225
226static void cmac_exit_tfm(struct crypto_shash *tfm)
227{
228	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
229	crypto_free_cipher(ctx->child);
230}
231
232static int cmac_create(struct crypto_template *tmpl, struct rtattr **tb)
233{
234	struct shash_instance *inst;
235	struct crypto_cipher_spawn *spawn;
236	struct crypto_alg *alg;
 
237	u32 mask;
238	int err;
239
240	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
241	if (err)
242		return err;
243
244	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
245	if (!inst)
246		return -ENOMEM;
247	spawn = shash_instance_ctx(inst);
248
249	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
250				 crypto_attr_alg_name(tb[1]), 0, mask);
251	if (err)
252		goto err_free_inst;
253	alg = crypto_spawn_cipher_alg(spawn);
254
255	switch (alg->cra_blocksize) {
256	case 16:
257	case 8:
258		break;
259	default:
260		err = -EINVAL;
261		goto err_free_inst;
262	}
263
264	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
265	if (err)
266		goto err_free_inst;
267
 
 
268	inst->alg.base.cra_priority = alg->cra_priority;
269	inst->alg.base.cra_blocksize = alg->cra_blocksize;
270	inst->alg.base.cra_ctxsize = sizeof(struct cmac_tfm_ctx) +
271				     alg->cra_blocksize * 2;
272
273	inst->alg.digestsize = alg->cra_blocksize;
274	inst->alg.descsize = sizeof(struct cmac_desc_ctx) +
275			     alg->cra_blocksize * 2;
 
 
 
 
 
 
 
 
 
 
 
 
276	inst->alg.init = crypto_cmac_digest_init;
277	inst->alg.update = crypto_cmac_digest_update;
278	inst->alg.final = crypto_cmac_digest_final;
279	inst->alg.setkey = crypto_cmac_digest_setkey;
280	inst->alg.init_tfm = cmac_init_tfm;
281	inst->alg.clone_tfm = cmac_clone_tfm;
282	inst->alg.exit_tfm = cmac_exit_tfm;
283
284	inst->free = shash_free_singlespawn_instance;
285
286	err = shash_register_instance(tmpl, inst);
287	if (err) {
288err_free_inst:
289		shash_free_singlespawn_instance(inst);
290	}
291	return err;
292}
293
294static struct crypto_template crypto_cmac_tmpl = {
295	.name = "cmac",
296	.create = cmac_create,
297	.module = THIS_MODULE,
298};
299
300static int __init crypto_cmac_module_init(void)
301{
302	return crypto_register_template(&crypto_cmac_tmpl);
303}
304
305static void __exit crypto_cmac_module_exit(void)
306{
307	crypto_unregister_template(&crypto_cmac_tmpl);
308}
309
310subsys_initcall(crypto_cmac_module_init);
311module_exit(crypto_cmac_module_exit);
312
313MODULE_LICENSE("GPL");
314MODULE_DESCRIPTION("CMAC keyed hash algorithm");
315MODULE_ALIAS_CRYPTO("cmac");
316MODULE_IMPORT_NS(CRYPTO_INTERNAL);