Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31
 32#ifdef CONFIG_ACPI
 33/*
 34 * Used while adding mapping for ACPI tables.
 35 * Can be reused when other iomem regions need be mapped
 36 */
 37struct init_pgtable_data {
 38	struct x86_mapping_info *info;
 39	pgd_t *level4p;
 40};
 41
 42static int mem_region_callback(struct resource *res, void *arg)
 43{
 44	struct init_pgtable_data *data = arg;
 45	unsigned long mstart, mend;
 46
 47	mstart = res->start;
 48	mend = mstart + resource_size(res) - 1;
 49
 50	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 
 51}
 52
 53static int
 54map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 55{
 56	struct init_pgtable_data data;
 57	unsigned long flags;
 58	int ret;
 59
 60	data.info = info;
 61	data.level4p = level4p;
 62	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 63
 64	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 65				  &data, mem_region_callback);
 66	if (ret && ret != -EINVAL)
 67		return ret;
 68
 69	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 70	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 71				  &data, mem_region_callback);
 72	if (ret && ret != -EINVAL)
 73		return ret;
 74
 75	return 0;
 76}
 77#else
 78static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 79#endif
 80
 81#ifdef CONFIG_KEXEC_FILE
 82const struct kexec_file_ops * const kexec_file_loaders[] = {
 83		&kexec_bzImage64_ops,
 84		NULL
 85};
 86#endif
 87
 88static int
 89map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 90{
 91#ifdef CONFIG_EFI
 92	unsigned long mstart, mend;
 93
 94	if (!efi_enabled(EFI_BOOT))
 95		return 0;
 96
 97	mstart = (boot_params.efi_info.efi_systab |
 98			((u64)boot_params.efi_info.efi_systab_hi<<32));
 99
100	if (efi_enabled(EFI_64BIT))
101		mend = mstart + sizeof(efi_system_table_64_t);
102	else
103		mend = mstart + sizeof(efi_system_table_32_t);
104
105	if (!mstart)
106		return 0;
107
108	return kernel_ident_mapping_init(info, level4p, mstart, mend);
109#endif
110	return 0;
111}
112
113static void free_transition_pgtable(struct kimage *image)
114{
115	free_page((unsigned long)image->arch.p4d);
116	image->arch.p4d = NULL;
117	free_page((unsigned long)image->arch.pud);
118	image->arch.pud = NULL;
119	free_page((unsigned long)image->arch.pmd);
120	image->arch.pmd = NULL;
121	free_page((unsigned long)image->arch.pte);
122	image->arch.pte = NULL;
123}
124
125static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
126{
127	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
128	unsigned long vaddr, paddr;
129	int result = -ENOMEM;
130	p4d_t *p4d;
131	pud_t *pud;
132	pmd_t *pmd;
133	pte_t *pte;
134
135	vaddr = (unsigned long)relocate_kernel;
136	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
137	pgd += pgd_index(vaddr);
138	if (!pgd_present(*pgd)) {
139		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
140		if (!p4d)
141			goto err;
142		image->arch.p4d = p4d;
143		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
144	}
145	p4d = p4d_offset(pgd, vaddr);
146	if (!p4d_present(*p4d)) {
147		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
148		if (!pud)
149			goto err;
150		image->arch.pud = pud;
151		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
152	}
153	pud = pud_offset(p4d, vaddr);
154	if (!pud_present(*pud)) {
155		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
156		if (!pmd)
157			goto err;
158		image->arch.pmd = pmd;
159		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
160	}
161	pmd = pmd_offset(pud, vaddr);
162	if (!pmd_present(*pmd)) {
163		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
164		if (!pte)
165			goto err;
166		image->arch.pte = pte;
167		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
168	}
169	pte = pte_offset_kernel(pmd, vaddr);
170
171	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
172		prot = PAGE_KERNEL_EXEC;
173
174	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
175	return 0;
176err:
177	return result;
178}
179
180static void *alloc_pgt_page(void *data)
181{
182	struct kimage *image = (struct kimage *)data;
183	struct page *page;
184	void *p = NULL;
185
186	page = kimage_alloc_control_pages(image, 0);
187	if (page) {
188		p = page_address(page);
189		clear_page(p);
190	}
191
192	return p;
193}
194
195static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
196{
197	struct x86_mapping_info info = {
198		.alloc_pgt_page	= alloc_pgt_page,
199		.context	= image,
200		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
201		.kernpg_flag	= _KERNPG_TABLE_NOENC,
202	};
203	unsigned long mstart, mend;
204	pgd_t *level4p;
205	int result;
206	int i;
207
208	level4p = (pgd_t *)__va(start_pgtable);
209	clear_page(level4p);
210
211	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
212		info.page_flag   |= _PAGE_ENC;
213		info.kernpg_flag |= _PAGE_ENC;
214	}
215
216	if (direct_gbpages)
217		info.direct_gbpages = true;
218
219	for (i = 0; i < nr_pfn_mapped; i++) {
220		mstart = pfn_mapped[i].start << PAGE_SHIFT;
221		mend   = pfn_mapped[i].end << PAGE_SHIFT;
222
223		result = kernel_ident_mapping_init(&info,
224						 level4p, mstart, mend);
225		if (result)
226			return result;
227	}
228
229	/*
230	 * segments's mem ranges could be outside 0 ~ max_pfn,
231	 * for example when jump back to original kernel from kexeced kernel.
232	 * or first kernel is booted with user mem map, and second kernel
233	 * could be loaded out of that range.
234	 */
235	for (i = 0; i < image->nr_segments; i++) {
236		mstart = image->segment[i].mem;
237		mend   = mstart + image->segment[i].memsz;
238
239		result = kernel_ident_mapping_init(&info,
240						 level4p, mstart, mend);
241
242		if (result)
243			return result;
244	}
245
246	/*
247	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
248	 * not covered by pfn_mapped.
249	 */
250	result = map_efi_systab(&info, level4p);
251	if (result)
252		return result;
253
254	result = map_acpi_tables(&info, level4p);
255	if (result)
256		return result;
257
258	return init_transition_pgtable(image, level4p);
259}
260
261static void load_segments(void)
262{
263	__asm__ __volatile__ (
264		"\tmovl %0,%%ds\n"
265		"\tmovl %0,%%es\n"
266		"\tmovl %0,%%ss\n"
267		"\tmovl %0,%%fs\n"
268		"\tmovl %0,%%gs\n"
269		: : "a" (__KERNEL_DS) : "memory"
270		);
271}
272
273int machine_kexec_prepare(struct kimage *image)
274{
275	unsigned long start_pgtable;
276	int result;
277
278	/* Calculate the offsets */
279	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
280
281	/* Setup the identity mapped 64bit page table */
282	result = init_pgtable(image, start_pgtable);
283	if (result)
284		return result;
285
286	return 0;
287}
288
289void machine_kexec_cleanup(struct kimage *image)
290{
291	free_transition_pgtable(image);
292}
293
294/*
295 * Do not allocate memory (or fail in any way) in machine_kexec().
296 * We are past the point of no return, committed to rebooting now.
297 */
298void machine_kexec(struct kimage *image)
299{
300	unsigned long page_list[PAGES_NR];
301	void *control_page;
302	int save_ftrace_enabled;
303
304#ifdef CONFIG_KEXEC_JUMP
305	if (image->preserve_context)
306		save_processor_state();
307#endif
308
309	save_ftrace_enabled = __ftrace_enabled_save();
310
311	/* Interrupts aren't acceptable while we reboot */
312	local_irq_disable();
313	hw_breakpoint_disable();
314	cet_disable();
315
316	if (image->preserve_context) {
317#ifdef CONFIG_X86_IO_APIC
318		/*
319		 * We need to put APICs in legacy mode so that we can
320		 * get timer interrupts in second kernel. kexec/kdump
321		 * paths already have calls to restore_boot_irq_mode()
322		 * in one form or other. kexec jump path also need one.
323		 */
324		clear_IO_APIC();
325		restore_boot_irq_mode();
326#endif
327	}
328
329	control_page = page_address(image->control_code_page) + PAGE_SIZE;
330	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
331
332	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
333	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
334	page_list[PA_TABLE_PAGE] =
335	  (unsigned long)__pa(page_address(image->control_code_page));
336
337	if (image->type == KEXEC_TYPE_DEFAULT)
338		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
339						<< PAGE_SHIFT);
340
341	/*
342	 * The segment registers are funny things, they have both a
343	 * visible and an invisible part.  Whenever the visible part is
344	 * set to a specific selector, the invisible part is loaded
345	 * with from a table in memory.  At no other time is the
346	 * descriptor table in memory accessed.
347	 *
348	 * I take advantage of this here by force loading the
349	 * segments, before I zap the gdt with an invalid value.
350	 */
351	load_segments();
352	/*
353	 * The gdt & idt are now invalid.
354	 * If you want to load them you must set up your own idt & gdt.
355	 */
356	native_idt_invalidate();
357	native_gdt_invalidate();
358
359	/* now call it */
360	image->start = relocate_kernel((unsigned long)image->head,
361				       (unsigned long)page_list,
362				       image->start,
363				       image->preserve_context,
364				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
365
366#ifdef CONFIG_KEXEC_JUMP
367	if (image->preserve_context)
368		restore_processor_state();
369#endif
370
371	__ftrace_enabled_restore(save_ftrace_enabled);
372}
373
374/* arch-dependent functionality related to kexec file-based syscall */
375
376#ifdef CONFIG_KEXEC_FILE
377void *arch_kexec_kernel_image_load(struct kimage *image)
378{
379	if (!image->fops || !image->fops->load)
380		return ERR_PTR(-ENOEXEC);
381
382	return image->fops->load(image, image->kernel_buf,
383				 image->kernel_buf_len, image->initrd_buf,
384				 image->initrd_buf_len, image->cmdline_buf,
385				 image->cmdline_buf_len);
386}
387
388/*
389 * Apply purgatory relocations.
390 *
391 * @pi:		Purgatory to be relocated.
392 * @section:	Section relocations applying to.
393 * @relsec:	Section containing RELAs.
394 * @symtabsec:	Corresponding symtab.
395 *
396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397 */
398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399				     Elf_Shdr *section, const Elf_Shdr *relsec,
400				     const Elf_Shdr *symtabsec)
401{
402	unsigned int i;
403	Elf64_Rela *rel;
404	Elf64_Sym *sym;
405	void *location;
406	unsigned long address, sec_base, value;
407	const char *strtab, *name, *shstrtab;
408	const Elf_Shdr *sechdrs;
409
410	/* String & section header string table */
411	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415	rel = (void *)pi->ehdr + relsec->sh_offset;
416
417	pr_debug("Applying relocate section %s to %u\n",
418		 shstrtab + relsec->sh_name, relsec->sh_info);
419
420	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422		/*
423		 * rel[i].r_offset contains byte offset from beginning
424		 * of section to the storage unit affected.
425		 *
426		 * This is location to update. This is temporary buffer
427		 * where section is currently loaded. This will finally be
428		 * loaded to a different address later, pointed to by
429		 * ->sh_addr. kexec takes care of moving it
430		 *  (kexec_load_segment()).
431		 */
432		location = pi->purgatory_buf;
433		location += section->sh_offset;
434		location += rel[i].r_offset;
435
436		/* Final address of the location */
437		address = section->sh_addr + rel[i].r_offset;
438
439		/*
440		 * rel[i].r_info contains information about symbol table index
441		 * w.r.t which relocation must be made and type of relocation
442		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443		 * these respectively.
444		 */
445		sym = (void *)pi->ehdr + symtabsec->sh_offset;
446		sym += ELF64_R_SYM(rel[i].r_info);
447
448		if (sym->st_name)
449			name = strtab + sym->st_name;
450		else
451			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454			 name, sym->st_info, sym->st_shndx, sym->st_value,
455			 sym->st_size);
456
457		if (sym->st_shndx == SHN_UNDEF) {
458			pr_err("Undefined symbol: %s\n", name);
459			return -ENOEXEC;
460		}
461
462		if (sym->st_shndx == SHN_COMMON) {
463			pr_err("symbol '%s' in common section\n", name);
464			return -ENOEXEC;
465		}
466
467		if (sym->st_shndx == SHN_ABS)
468			sec_base = 0;
469		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470			pr_err("Invalid section %d for symbol %s\n",
471			       sym->st_shndx, name);
472			return -ENOEXEC;
473		} else
474			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476		value = sym->st_value;
477		value += sec_base;
478		value += rel[i].r_addend;
479
480		switch (ELF64_R_TYPE(rel[i].r_info)) {
481		case R_X86_64_NONE:
482			break;
483		case R_X86_64_64:
484			*(u64 *)location = value;
485			break;
486		case R_X86_64_32:
487			*(u32 *)location = value;
488			if (value != *(u32 *)location)
489				goto overflow;
490			break;
491		case R_X86_64_32S:
492			*(s32 *)location = value;
493			if ((s64)value != *(s32 *)location)
494				goto overflow;
495			break;
496		case R_X86_64_PC32:
497		case R_X86_64_PLT32:
498			value -= (u64)address;
499			*(u32 *)location = value;
500			break;
501		default:
502			pr_err("Unknown rela relocation: %llu\n",
503			       ELF64_R_TYPE(rel[i].r_info));
504			return -ENOEXEC;
505		}
506	}
507	return 0;
508
509overflow:
510	pr_err("Overflow in relocation type %d value 0x%lx\n",
511	       (int)ELF64_R_TYPE(rel[i].r_info), value);
512	return -ENOEXEC;
513}
514
515int arch_kimage_file_post_load_cleanup(struct kimage *image)
516{
517	vfree(image->elf_headers);
518	image->elf_headers = NULL;
519	image->elf_headers_sz = 0;
520
521	return kexec_image_post_load_cleanup_default(image);
522}
523#endif /* CONFIG_KEXEC_FILE */
524
525static int
526kexec_mark_range(unsigned long start, unsigned long end, bool protect)
527{
528	struct page *page;
529	unsigned int nr_pages;
530
531	/*
532	 * For physical range: [start, end]. We must skip the unassigned
533	 * crashk resource with zero-valued "end" member.
534	 */
535	if (!end || start > end)
536		return 0;
537
538	page = pfn_to_page(start >> PAGE_SHIFT);
539	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
540	if (protect)
541		return set_pages_ro(page, nr_pages);
542	else
543		return set_pages_rw(page, nr_pages);
544}
545
546static void kexec_mark_crashkres(bool protect)
547{
548	unsigned long control;
549
550	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
551
552	/* Don't touch the control code page used in crash_kexec().*/
553	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
554	/* Control code page is located in the 2nd page. */
555	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
556	control += KEXEC_CONTROL_PAGE_SIZE;
557	kexec_mark_range(control, crashk_res.end, protect);
558}
559
560void arch_kexec_protect_crashkres(void)
561{
562	kexec_mark_crashkres(true);
563}
564
565void arch_kexec_unprotect_crashkres(void)
566{
567	kexec_mark_crashkres(false);
568}
569
570/*
571 * During a traditional boot under SME, SME will encrypt the kernel,
572 * so the SME kexec kernel also needs to be un-encrypted in order to
573 * replicate a normal SME boot.
574 *
575 * During a traditional boot under SEV, the kernel has already been
576 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
577 * order to replicate a normal SEV boot.
578 */
579int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
580{
581	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
582		return 0;
583
584	/*
585	 * If host memory encryption is active we need to be sure that kexec
586	 * pages are not encrypted because when we boot to the new kernel the
587	 * pages won't be accessed encrypted (initially).
588	 */
589	return set_memory_decrypted((unsigned long)vaddr, pages);
590}
591
592void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
593{
594	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
595		return;
596
597	/*
598	 * If host memory encryption is active we need to reset the pages back
599	 * to being an encrypted mapping before freeing them.
600	 */
601	set_memory_encrypted((unsigned long)vaddr, pages);
602}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31
 32#ifdef CONFIG_ACPI
 33/*
 34 * Used while adding mapping for ACPI tables.
 35 * Can be reused when other iomem regions need be mapped
 36 */
 37struct init_pgtable_data {
 38	struct x86_mapping_info *info;
 39	pgd_t *level4p;
 40};
 41
 42static int mem_region_callback(struct resource *res, void *arg)
 43{
 44	struct init_pgtable_data *data = arg;
 
 
 
 
 45
 46	return kernel_ident_mapping_init(data->info, data->level4p,
 47					 res->start, res->end + 1);
 48}
 49
 50static int
 51map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 52{
 53	struct init_pgtable_data data;
 54	unsigned long flags;
 55	int ret;
 56
 57	data.info = info;
 58	data.level4p = level4p;
 59	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 60
 61	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 62				  &data, mem_region_callback);
 63	if (ret && ret != -EINVAL)
 64		return ret;
 65
 66	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 67	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 68				  &data, mem_region_callback);
 69	if (ret && ret != -EINVAL)
 70		return ret;
 71
 72	return 0;
 73}
 74#else
 75static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 76#endif
 77
 78#ifdef CONFIG_KEXEC_FILE
 79const struct kexec_file_ops * const kexec_file_loaders[] = {
 80		&kexec_bzImage64_ops,
 81		NULL
 82};
 83#endif
 84
 85static int
 86map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 87{
 88#ifdef CONFIG_EFI
 89	unsigned long mstart, mend;
 90
 91	if (!efi_enabled(EFI_BOOT))
 92		return 0;
 93
 94	mstart = (boot_params.efi_info.efi_systab |
 95			((u64)boot_params.efi_info.efi_systab_hi<<32));
 96
 97	if (efi_enabled(EFI_64BIT))
 98		mend = mstart + sizeof(efi_system_table_64_t);
 99	else
100		mend = mstart + sizeof(efi_system_table_32_t);
101
102	if (!mstart)
103		return 0;
104
105	return kernel_ident_mapping_init(info, level4p, mstart, mend);
106#endif
107	return 0;
108}
109
110static void free_transition_pgtable(struct kimage *image)
111{
112	free_page((unsigned long)image->arch.p4d);
113	image->arch.p4d = NULL;
114	free_page((unsigned long)image->arch.pud);
115	image->arch.pud = NULL;
116	free_page((unsigned long)image->arch.pmd);
117	image->arch.pmd = NULL;
118	free_page((unsigned long)image->arch.pte);
119	image->arch.pte = NULL;
120}
121
122static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
123{
124	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
125	unsigned long vaddr, paddr;
126	int result = -ENOMEM;
127	p4d_t *p4d;
128	pud_t *pud;
129	pmd_t *pmd;
130	pte_t *pte;
131
132	vaddr = (unsigned long)relocate_kernel;
133	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
134	pgd += pgd_index(vaddr);
135	if (!pgd_present(*pgd)) {
136		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
137		if (!p4d)
138			goto err;
139		image->arch.p4d = p4d;
140		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
141	}
142	p4d = p4d_offset(pgd, vaddr);
143	if (!p4d_present(*p4d)) {
144		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
145		if (!pud)
146			goto err;
147		image->arch.pud = pud;
148		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
149	}
150	pud = pud_offset(p4d, vaddr);
151	if (!pud_present(*pud)) {
152		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
153		if (!pmd)
154			goto err;
155		image->arch.pmd = pmd;
156		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
157	}
158	pmd = pmd_offset(pud, vaddr);
159	if (!pmd_present(*pmd)) {
160		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
161		if (!pte)
162			goto err;
163		image->arch.pte = pte;
164		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
165	}
166	pte = pte_offset_kernel(pmd, vaddr);
167
168	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
169		prot = PAGE_KERNEL_EXEC;
170
171	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
172	return 0;
173err:
174	return result;
175}
176
177static void *alloc_pgt_page(void *data)
178{
179	struct kimage *image = (struct kimage *)data;
180	struct page *page;
181	void *p = NULL;
182
183	page = kimage_alloc_control_pages(image, 0);
184	if (page) {
185		p = page_address(page);
186		clear_page(p);
187	}
188
189	return p;
190}
191
192static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
193{
194	struct x86_mapping_info info = {
195		.alloc_pgt_page	= alloc_pgt_page,
196		.context	= image,
197		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
198		.kernpg_flag	= _KERNPG_TABLE_NOENC,
199	};
200	unsigned long mstart, mend;
201	pgd_t *level4p;
202	int result;
203	int i;
204
205	level4p = (pgd_t *)__va(start_pgtable);
206	clear_page(level4p);
207
208	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
209		info.page_flag   |= _PAGE_ENC;
210		info.kernpg_flag |= _PAGE_ENC;
211	}
212
213	if (direct_gbpages)
214		info.direct_gbpages = true;
215
216	for (i = 0; i < nr_pfn_mapped; i++) {
217		mstart = pfn_mapped[i].start << PAGE_SHIFT;
218		mend   = pfn_mapped[i].end << PAGE_SHIFT;
219
220		result = kernel_ident_mapping_init(&info,
221						 level4p, mstart, mend);
222		if (result)
223			return result;
224	}
225
226	/*
227	 * segments's mem ranges could be outside 0 ~ max_pfn,
228	 * for example when jump back to original kernel from kexeced kernel.
229	 * or first kernel is booted with user mem map, and second kernel
230	 * could be loaded out of that range.
231	 */
232	for (i = 0; i < image->nr_segments; i++) {
233		mstart = image->segment[i].mem;
234		mend   = mstart + image->segment[i].memsz;
235
236		result = kernel_ident_mapping_init(&info,
237						 level4p, mstart, mend);
238
239		if (result)
240			return result;
241	}
242
243	/*
244	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
245	 * not covered by pfn_mapped.
246	 */
247	result = map_efi_systab(&info, level4p);
248	if (result)
249		return result;
250
251	result = map_acpi_tables(&info, level4p);
252	if (result)
253		return result;
254
255	return init_transition_pgtable(image, level4p);
256}
257
258static void load_segments(void)
259{
260	__asm__ __volatile__ (
261		"\tmovl %0,%%ds\n"
262		"\tmovl %0,%%es\n"
263		"\tmovl %0,%%ss\n"
264		"\tmovl %0,%%fs\n"
265		"\tmovl %0,%%gs\n"
266		: : "a" (__KERNEL_DS) : "memory"
267		);
268}
269
270int machine_kexec_prepare(struct kimage *image)
271{
272	unsigned long start_pgtable;
273	int result;
274
275	/* Calculate the offsets */
276	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
277
278	/* Setup the identity mapped 64bit page table */
279	result = init_pgtable(image, start_pgtable);
280	if (result)
281		return result;
282
283	return 0;
284}
285
286void machine_kexec_cleanup(struct kimage *image)
287{
288	free_transition_pgtable(image);
289}
290
291/*
292 * Do not allocate memory (or fail in any way) in machine_kexec().
293 * We are past the point of no return, committed to rebooting now.
294 */
295void machine_kexec(struct kimage *image)
296{
297	unsigned long page_list[PAGES_NR];
298	void *control_page;
299	int save_ftrace_enabled;
300
301#ifdef CONFIG_KEXEC_JUMP
302	if (image->preserve_context)
303		save_processor_state();
304#endif
305
306	save_ftrace_enabled = __ftrace_enabled_save();
307
308	/* Interrupts aren't acceptable while we reboot */
309	local_irq_disable();
310	hw_breakpoint_disable();
311	cet_disable();
312
313	if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315		/*
316		 * We need to put APICs in legacy mode so that we can
317		 * get timer interrupts in second kernel. kexec/kdump
318		 * paths already have calls to restore_boot_irq_mode()
319		 * in one form or other. kexec jump path also need one.
320		 */
321		clear_IO_APIC();
322		restore_boot_irq_mode();
323#endif
324	}
325
326	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331	page_list[PA_TABLE_PAGE] =
332	  (unsigned long)__pa(page_address(image->control_code_page));
333
334	if (image->type == KEXEC_TYPE_DEFAULT)
335		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336						<< PAGE_SHIFT);
337
338	/*
339	 * The segment registers are funny things, they have both a
340	 * visible and an invisible part.  Whenever the visible part is
341	 * set to a specific selector, the invisible part is loaded
342	 * with from a table in memory.  At no other time is the
343	 * descriptor table in memory accessed.
344	 *
345	 * I take advantage of this here by force loading the
346	 * segments, before I zap the gdt with an invalid value.
347	 */
348	load_segments();
349	/*
350	 * The gdt & idt are now invalid.
351	 * If you want to load them you must set up your own idt & gdt.
352	 */
353	native_idt_invalidate();
354	native_gdt_invalidate();
355
356	/* now call it */
357	image->start = relocate_kernel((unsigned long)image->head,
358				       (unsigned long)page_list,
359				       image->start,
360				       image->preserve_context,
361				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
362
363#ifdef CONFIG_KEXEC_JUMP
364	if (image->preserve_context)
365		restore_processor_state();
366#endif
367
368	__ftrace_enabled_restore(save_ftrace_enabled);
369}
370
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
 
 
 
 
 
 
 
 
 
 
 
374/*
375 * Apply purgatory relocations.
376 *
377 * @pi:		Purgatory to be relocated.
378 * @section:	Section relocations applying to.
379 * @relsec:	Section containing RELAs.
380 * @symtabsec:	Corresponding symtab.
381 *
382 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
383 */
384int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
385				     Elf_Shdr *section, const Elf_Shdr *relsec,
386				     const Elf_Shdr *symtabsec)
387{
388	unsigned int i;
389	Elf64_Rela *rel;
390	Elf64_Sym *sym;
391	void *location;
392	unsigned long address, sec_base, value;
393	const char *strtab, *name, *shstrtab;
394	const Elf_Shdr *sechdrs;
395
396	/* String & section header string table */
397	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
398	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
399	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
400
401	rel = (void *)pi->ehdr + relsec->sh_offset;
402
403	pr_debug("Applying relocate section %s to %u\n",
404		 shstrtab + relsec->sh_name, relsec->sh_info);
405
406	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
407
408		/*
409		 * rel[i].r_offset contains byte offset from beginning
410		 * of section to the storage unit affected.
411		 *
412		 * This is location to update. This is temporary buffer
413		 * where section is currently loaded. This will finally be
414		 * loaded to a different address later, pointed to by
415		 * ->sh_addr. kexec takes care of moving it
416		 *  (kexec_load_segment()).
417		 */
418		location = pi->purgatory_buf;
419		location += section->sh_offset;
420		location += rel[i].r_offset;
421
422		/* Final address of the location */
423		address = section->sh_addr + rel[i].r_offset;
424
425		/*
426		 * rel[i].r_info contains information about symbol table index
427		 * w.r.t which relocation must be made and type of relocation
428		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
429		 * these respectively.
430		 */
431		sym = (void *)pi->ehdr + symtabsec->sh_offset;
432		sym += ELF64_R_SYM(rel[i].r_info);
433
434		if (sym->st_name)
435			name = strtab + sym->st_name;
436		else
437			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
438
439		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
440			 name, sym->st_info, sym->st_shndx, sym->st_value,
441			 sym->st_size);
442
443		if (sym->st_shndx == SHN_UNDEF) {
444			pr_err("Undefined symbol: %s\n", name);
445			return -ENOEXEC;
446		}
447
448		if (sym->st_shndx == SHN_COMMON) {
449			pr_err("symbol '%s' in common section\n", name);
450			return -ENOEXEC;
451		}
452
453		if (sym->st_shndx == SHN_ABS)
454			sec_base = 0;
455		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
456			pr_err("Invalid section %d for symbol %s\n",
457			       sym->st_shndx, name);
458			return -ENOEXEC;
459		} else
460			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
461
462		value = sym->st_value;
463		value += sec_base;
464		value += rel[i].r_addend;
465
466		switch (ELF64_R_TYPE(rel[i].r_info)) {
467		case R_X86_64_NONE:
468			break;
469		case R_X86_64_64:
470			*(u64 *)location = value;
471			break;
472		case R_X86_64_32:
473			*(u32 *)location = value;
474			if (value != *(u32 *)location)
475				goto overflow;
476			break;
477		case R_X86_64_32S:
478			*(s32 *)location = value;
479			if ((s64)value != *(s32 *)location)
480				goto overflow;
481			break;
482		case R_X86_64_PC32:
483		case R_X86_64_PLT32:
484			value -= (u64)address;
485			*(u32 *)location = value;
486			break;
487		default:
488			pr_err("Unknown rela relocation: %llu\n",
489			       ELF64_R_TYPE(rel[i].r_info));
490			return -ENOEXEC;
491		}
492	}
493	return 0;
494
495overflow:
496	pr_err("Overflow in relocation type %d value 0x%lx\n",
497	       (int)ELF64_R_TYPE(rel[i].r_info), value);
498	return -ENOEXEC;
499}
500
501int arch_kimage_file_post_load_cleanup(struct kimage *image)
502{
503	vfree(image->elf_headers);
504	image->elf_headers = NULL;
505	image->elf_headers_sz = 0;
506
507	return kexec_image_post_load_cleanup_default(image);
508}
509#endif /* CONFIG_KEXEC_FILE */
510
511static int
512kexec_mark_range(unsigned long start, unsigned long end, bool protect)
513{
514	struct page *page;
515	unsigned int nr_pages;
516
517	/*
518	 * For physical range: [start, end]. We must skip the unassigned
519	 * crashk resource with zero-valued "end" member.
520	 */
521	if (!end || start > end)
522		return 0;
523
524	page = pfn_to_page(start >> PAGE_SHIFT);
525	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
526	if (protect)
527		return set_pages_ro(page, nr_pages);
528	else
529		return set_pages_rw(page, nr_pages);
530}
531
532static void kexec_mark_crashkres(bool protect)
533{
534	unsigned long control;
535
536	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
537
538	/* Don't touch the control code page used in crash_kexec().*/
539	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
540	/* Control code page is located in the 2nd page. */
541	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
542	control += KEXEC_CONTROL_PAGE_SIZE;
543	kexec_mark_range(control, crashk_res.end, protect);
544}
545
546void arch_kexec_protect_crashkres(void)
547{
548	kexec_mark_crashkres(true);
549}
550
551void arch_kexec_unprotect_crashkres(void)
552{
553	kexec_mark_crashkres(false);
554}
555
556/*
557 * During a traditional boot under SME, SME will encrypt the kernel,
558 * so the SME kexec kernel also needs to be un-encrypted in order to
559 * replicate a normal SME boot.
560 *
561 * During a traditional boot under SEV, the kernel has already been
562 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
563 * order to replicate a normal SEV boot.
564 */
565int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
566{
567	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
568		return 0;
569
570	/*
571	 * If host memory encryption is active we need to be sure that kexec
572	 * pages are not encrypted because when we boot to the new kernel the
573	 * pages won't be accessed encrypted (initially).
574	 */
575	return set_memory_decrypted((unsigned long)vaddr, pages);
576}
577
578void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
579{
580	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
581		return;
582
583	/*
584	 * If host memory encryption is active we need to reset the pages back
585	 * to being an encrypted mapping before freeing them.
586	 */
587	set_memory_encrypted((unsigned long)vaddr, pages);
588}