Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25#include <linux/stackprotector.h>
26
27#include <asm/cmdline.h>
28#include <asm/perf_event.h>
29#include <asm/mmu_context.h>
30#include <asm/doublefault.h>
31#include <asm/archrandom.h>
32#include <asm/hypervisor.h>
33#include <asm/processor.h>
34#include <asm/tlbflush.h>
35#include <asm/debugreg.h>
36#include <asm/sections.h>
37#include <asm/vsyscall.h>
38#include <linux/topology.h>
39#include <linux/cpumask.h>
40#include <linux/atomic.h>
41#include <asm/proto.h>
42#include <asm/setup.h>
43#include <asm/apic.h>
44#include <asm/desc.h>
45#include <asm/fpu/api.h>
46#include <asm/mtrr.h>
47#include <asm/hwcap2.h>
48#include <linux/numa.h>
49#include <asm/numa.h>
50#include <asm/asm.h>
51#include <asm/bugs.h>
52#include <asm/cpu.h>
53#include <asm/mce.h>
54#include <asm/msr.h>
55#include <asm/cacheinfo.h>
56#include <asm/memtype.h>
57#include <asm/microcode.h>
58#include <asm/microcode_intel.h>
59#include <asm/intel-family.h>
60#include <asm/cpu_device_id.h>
61#include <asm/uv/uv.h>
62#include <asm/sigframe.h>
63#include <asm/traps.h>
64#include <asm/sev.h>
65
66#include "cpu.h"
67
68u32 elf_hwcap2 __read_mostly;
69
70/* all of these masks are initialized in setup_cpu_local_masks() */
71cpumask_var_t cpu_initialized_mask;
72cpumask_var_t cpu_callout_mask;
73cpumask_var_t cpu_callin_mask;
74
75/* representing cpus for which sibling maps can be computed */
76cpumask_var_t cpu_sibling_setup_mask;
77
78/* Number of siblings per CPU package */
79int smp_num_siblings = 1;
80EXPORT_SYMBOL(smp_num_siblings);
81
82/* Last level cache ID of each logical CPU */
83DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
84
85u16 get_llc_id(unsigned int cpu)
86{
87 return per_cpu(cpu_llc_id, cpu);
88}
89EXPORT_SYMBOL_GPL(get_llc_id);
90
91/* L2 cache ID of each logical CPU */
92DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
93
94static struct ppin_info {
95 int feature;
96 int msr_ppin_ctl;
97 int msr_ppin;
98} ppin_info[] = {
99 [X86_VENDOR_INTEL] = {
100 .feature = X86_FEATURE_INTEL_PPIN,
101 .msr_ppin_ctl = MSR_PPIN_CTL,
102 .msr_ppin = MSR_PPIN
103 },
104 [X86_VENDOR_AMD] = {
105 .feature = X86_FEATURE_AMD_PPIN,
106 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
107 .msr_ppin = MSR_AMD_PPIN
108 },
109};
110
111static const struct x86_cpu_id ppin_cpuids[] = {
112 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
113 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
114
115 /* Legacy models without CPUID enumeration */
116 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
126
127 {}
128};
129
130static void ppin_init(struct cpuinfo_x86 *c)
131{
132 const struct x86_cpu_id *id;
133 unsigned long long val;
134 struct ppin_info *info;
135
136 id = x86_match_cpu(ppin_cpuids);
137 if (!id)
138 return;
139
140 /*
141 * Testing the presence of the MSR is not enough. Need to check
142 * that the PPIN_CTL allows reading of the PPIN.
143 */
144 info = (struct ppin_info *)id->driver_data;
145
146 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
147 goto clear_ppin;
148
149 if ((val & 3UL) == 1UL) {
150 /* PPIN locked in disabled mode */
151 goto clear_ppin;
152 }
153
154 /* If PPIN is disabled, try to enable */
155 if (!(val & 2UL)) {
156 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
157 rdmsrl_safe(info->msr_ppin_ctl, &val);
158 }
159
160 /* Is the enable bit set? */
161 if (val & 2UL) {
162 c->ppin = __rdmsr(info->msr_ppin);
163 set_cpu_cap(c, info->feature);
164 return;
165 }
166
167clear_ppin:
168 clear_cpu_cap(c, info->feature);
169}
170
171/* correctly size the local cpu masks */
172void __init setup_cpu_local_masks(void)
173{
174 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
175 alloc_bootmem_cpumask_var(&cpu_callin_mask);
176 alloc_bootmem_cpumask_var(&cpu_callout_mask);
177 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
178}
179
180static void default_init(struct cpuinfo_x86 *c)
181{
182#ifdef CONFIG_X86_64
183 cpu_detect_cache_sizes(c);
184#else
185 /* Not much we can do here... */
186 /* Check if at least it has cpuid */
187 if (c->cpuid_level == -1) {
188 /* No cpuid. It must be an ancient CPU */
189 if (c->x86 == 4)
190 strcpy(c->x86_model_id, "486");
191 else if (c->x86 == 3)
192 strcpy(c->x86_model_id, "386");
193 }
194#endif
195}
196
197static const struct cpu_dev default_cpu = {
198 .c_init = default_init,
199 .c_vendor = "Unknown",
200 .c_x86_vendor = X86_VENDOR_UNKNOWN,
201};
202
203static const struct cpu_dev *this_cpu = &default_cpu;
204
205DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
206#ifdef CONFIG_X86_64
207 /*
208 * We need valid kernel segments for data and code in long mode too
209 * IRET will check the segment types kkeil 2000/10/28
210 * Also sysret mandates a special GDT layout
211 *
212 * TLS descriptors are currently at a different place compared to i386.
213 * Hopefully nobody expects them at a fixed place (Wine?)
214 */
215 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
217 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
221#else
222 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
223 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
224 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
225 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
226 /*
227 * Segments used for calling PnP BIOS have byte granularity.
228 * They code segments and data segments have fixed 64k limits,
229 * the transfer segment sizes are set at run time.
230 */
231 /* 32-bit code */
232 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
233 /* 16-bit code */
234 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
235 /* 16-bit data */
236 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
237 /* 16-bit data */
238 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
239 /* 16-bit data */
240 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
241 /*
242 * The APM segments have byte granularity and their bases
243 * are set at run time. All have 64k limits.
244 */
245 /* 32-bit code */
246 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
247 /* 16-bit code */
248 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
249 /* data */
250 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
251
252 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
254#endif
255} };
256EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
257
258#ifdef CONFIG_X86_64
259static int __init x86_nopcid_setup(char *s)
260{
261 /* nopcid doesn't accept parameters */
262 if (s)
263 return -EINVAL;
264
265 /* do not emit a message if the feature is not present */
266 if (!boot_cpu_has(X86_FEATURE_PCID))
267 return 0;
268
269 setup_clear_cpu_cap(X86_FEATURE_PCID);
270 pr_info("nopcid: PCID feature disabled\n");
271 return 0;
272}
273early_param("nopcid", x86_nopcid_setup);
274#endif
275
276static int __init x86_noinvpcid_setup(char *s)
277{
278 /* noinvpcid doesn't accept parameters */
279 if (s)
280 return -EINVAL;
281
282 /* do not emit a message if the feature is not present */
283 if (!boot_cpu_has(X86_FEATURE_INVPCID))
284 return 0;
285
286 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
287 pr_info("noinvpcid: INVPCID feature disabled\n");
288 return 0;
289}
290early_param("noinvpcid", x86_noinvpcid_setup);
291
292#ifdef CONFIG_X86_32
293static int cachesize_override = -1;
294static int disable_x86_serial_nr = 1;
295
296static int __init cachesize_setup(char *str)
297{
298 get_option(&str, &cachesize_override);
299 return 1;
300}
301__setup("cachesize=", cachesize_setup);
302
303/* Standard macro to see if a specific flag is changeable */
304static inline int flag_is_changeable_p(u32 flag)
305{
306 u32 f1, f2;
307
308 /*
309 * Cyrix and IDT cpus allow disabling of CPUID
310 * so the code below may return different results
311 * when it is executed before and after enabling
312 * the CPUID. Add "volatile" to not allow gcc to
313 * optimize the subsequent calls to this function.
314 */
315 asm volatile ("pushfl \n\t"
316 "pushfl \n\t"
317 "popl %0 \n\t"
318 "movl %0, %1 \n\t"
319 "xorl %2, %0 \n\t"
320 "pushl %0 \n\t"
321 "popfl \n\t"
322 "pushfl \n\t"
323 "popl %0 \n\t"
324 "popfl \n\t"
325
326 : "=&r" (f1), "=&r" (f2)
327 : "ir" (flag));
328
329 return ((f1^f2) & flag) != 0;
330}
331
332/* Probe for the CPUID instruction */
333int have_cpuid_p(void)
334{
335 return flag_is_changeable_p(X86_EFLAGS_ID);
336}
337
338static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339{
340 unsigned long lo, hi;
341
342 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
343 return;
344
345 /* Disable processor serial number: */
346
347 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
348 lo |= 0x200000;
349 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
350
351 pr_notice("CPU serial number disabled.\n");
352 clear_cpu_cap(c, X86_FEATURE_PN);
353
354 /* Disabling the serial number may affect the cpuid level */
355 c->cpuid_level = cpuid_eax(0);
356}
357
358static int __init x86_serial_nr_setup(char *s)
359{
360 disable_x86_serial_nr = 0;
361 return 1;
362}
363__setup("serialnumber", x86_serial_nr_setup);
364#else
365static inline int flag_is_changeable_p(u32 flag)
366{
367 return 1;
368}
369static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
370{
371}
372#endif
373
374static __always_inline void setup_smep(struct cpuinfo_x86 *c)
375{
376 if (cpu_has(c, X86_FEATURE_SMEP))
377 cr4_set_bits(X86_CR4_SMEP);
378}
379
380static __always_inline void setup_smap(struct cpuinfo_x86 *c)
381{
382 unsigned long eflags = native_save_fl();
383
384 /* This should have been cleared long ago */
385 BUG_ON(eflags & X86_EFLAGS_AC);
386
387 if (cpu_has(c, X86_FEATURE_SMAP))
388 cr4_set_bits(X86_CR4_SMAP);
389}
390
391static __always_inline void setup_umip(struct cpuinfo_x86 *c)
392{
393 /* Check the boot processor, plus build option for UMIP. */
394 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
395 goto out;
396
397 /* Check the current processor's cpuid bits. */
398 if (!cpu_has(c, X86_FEATURE_UMIP))
399 goto out;
400
401 cr4_set_bits(X86_CR4_UMIP);
402
403 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
404
405 return;
406
407out:
408 /*
409 * Make sure UMIP is disabled in case it was enabled in a
410 * previous boot (e.g., via kexec).
411 */
412 cr4_clear_bits(X86_CR4_UMIP);
413}
414
415/* These bits should not change their value after CPU init is finished. */
416static const unsigned long cr4_pinned_mask =
417 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
418 X86_CR4_FSGSBASE | X86_CR4_CET;
419static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
420static unsigned long cr4_pinned_bits __ro_after_init;
421
422void native_write_cr0(unsigned long val)
423{
424 unsigned long bits_missing = 0;
425
426set_register:
427 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
428
429 if (static_branch_likely(&cr_pinning)) {
430 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
431 bits_missing = X86_CR0_WP;
432 val |= bits_missing;
433 goto set_register;
434 }
435 /* Warn after we've set the missing bits. */
436 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
437 }
438}
439EXPORT_SYMBOL(native_write_cr0);
440
441void __no_profile native_write_cr4(unsigned long val)
442{
443 unsigned long bits_changed = 0;
444
445set_register:
446 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
447
448 if (static_branch_likely(&cr_pinning)) {
449 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
450 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
451 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
452 goto set_register;
453 }
454 /* Warn after we've corrected the changed bits. */
455 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
456 bits_changed);
457 }
458}
459#if IS_MODULE(CONFIG_LKDTM)
460EXPORT_SYMBOL_GPL(native_write_cr4);
461#endif
462
463void cr4_update_irqsoff(unsigned long set, unsigned long clear)
464{
465 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
466
467 lockdep_assert_irqs_disabled();
468
469 newval = (cr4 & ~clear) | set;
470 if (newval != cr4) {
471 this_cpu_write(cpu_tlbstate.cr4, newval);
472 __write_cr4(newval);
473 }
474}
475EXPORT_SYMBOL(cr4_update_irqsoff);
476
477/* Read the CR4 shadow. */
478unsigned long cr4_read_shadow(void)
479{
480 return this_cpu_read(cpu_tlbstate.cr4);
481}
482EXPORT_SYMBOL_GPL(cr4_read_shadow);
483
484void cr4_init(void)
485{
486 unsigned long cr4 = __read_cr4();
487
488 if (boot_cpu_has(X86_FEATURE_PCID))
489 cr4 |= X86_CR4_PCIDE;
490 if (static_branch_likely(&cr_pinning))
491 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
492
493 __write_cr4(cr4);
494
495 /* Initialize cr4 shadow for this CPU. */
496 this_cpu_write(cpu_tlbstate.cr4, cr4);
497}
498
499/*
500 * Once CPU feature detection is finished (and boot params have been
501 * parsed), record any of the sensitive CR bits that are set, and
502 * enable CR pinning.
503 */
504static void __init setup_cr_pinning(void)
505{
506 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
507 static_key_enable(&cr_pinning.key);
508}
509
510static __init int x86_nofsgsbase_setup(char *arg)
511{
512 /* Require an exact match without trailing characters. */
513 if (strlen(arg))
514 return 0;
515
516 /* Do not emit a message if the feature is not present. */
517 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
518 return 1;
519
520 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
521 pr_info("FSGSBASE disabled via kernel command line\n");
522 return 1;
523}
524__setup("nofsgsbase", x86_nofsgsbase_setup);
525
526/*
527 * Protection Keys are not available in 32-bit mode.
528 */
529static bool pku_disabled;
530
531static __always_inline void setup_pku(struct cpuinfo_x86 *c)
532{
533 if (c == &boot_cpu_data) {
534 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
535 return;
536 /*
537 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
538 * bit to be set. Enforce it.
539 */
540 setup_force_cpu_cap(X86_FEATURE_OSPKE);
541
542 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
543 return;
544 }
545
546 cr4_set_bits(X86_CR4_PKE);
547 /* Load the default PKRU value */
548 pkru_write_default();
549}
550
551#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
552static __init int setup_disable_pku(char *arg)
553{
554 /*
555 * Do not clear the X86_FEATURE_PKU bit. All of the
556 * runtime checks are against OSPKE so clearing the
557 * bit does nothing.
558 *
559 * This way, we will see "pku" in cpuinfo, but not
560 * "ospke", which is exactly what we want. It shows
561 * that the CPU has PKU, but the OS has not enabled it.
562 * This happens to be exactly how a system would look
563 * if we disabled the config option.
564 */
565 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
566 pku_disabled = true;
567 return 1;
568}
569__setup("nopku", setup_disable_pku);
570#endif /* CONFIG_X86_64 */
571
572#ifdef CONFIG_X86_KERNEL_IBT
573
574__noendbr u64 ibt_save(void)
575{
576 u64 msr = 0;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrl(MSR_IA32_S_CET, msr);
580 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
581 }
582
583 return msr;
584}
585
586__noendbr void ibt_restore(u64 save)
587{
588 u64 msr;
589
590 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
591 rdmsrl(MSR_IA32_S_CET, msr);
592 msr &= ~CET_ENDBR_EN;
593 msr |= (save & CET_ENDBR_EN);
594 wrmsrl(MSR_IA32_S_CET, msr);
595 }
596}
597
598#endif
599
600static __always_inline void setup_cet(struct cpuinfo_x86 *c)
601{
602 u64 msr = CET_ENDBR_EN;
603
604 if (!HAS_KERNEL_IBT ||
605 !cpu_feature_enabled(X86_FEATURE_IBT))
606 return;
607
608 wrmsrl(MSR_IA32_S_CET, msr);
609 cr4_set_bits(X86_CR4_CET);
610
611 if (!ibt_selftest()) {
612 pr_err("IBT selftest: Failed!\n");
613 wrmsrl(MSR_IA32_S_CET, 0);
614 setup_clear_cpu_cap(X86_FEATURE_IBT);
615 return;
616 }
617}
618
619__noendbr void cet_disable(void)
620{
621 if (cpu_feature_enabled(X86_FEATURE_IBT))
622 wrmsrl(MSR_IA32_S_CET, 0);
623}
624
625/*
626 * Some CPU features depend on higher CPUID levels, which may not always
627 * be available due to CPUID level capping or broken virtualization
628 * software. Add those features to this table to auto-disable them.
629 */
630struct cpuid_dependent_feature {
631 u32 feature;
632 u32 level;
633};
634
635static const struct cpuid_dependent_feature
636cpuid_dependent_features[] = {
637 { X86_FEATURE_MWAIT, 0x00000005 },
638 { X86_FEATURE_DCA, 0x00000009 },
639 { X86_FEATURE_XSAVE, 0x0000000d },
640 { 0, 0 }
641};
642
643static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
644{
645 const struct cpuid_dependent_feature *df;
646
647 for (df = cpuid_dependent_features; df->feature; df++) {
648
649 if (!cpu_has(c, df->feature))
650 continue;
651 /*
652 * Note: cpuid_level is set to -1 if unavailable, but
653 * extended_extended_level is set to 0 if unavailable
654 * and the legitimate extended levels are all negative
655 * when signed; hence the weird messing around with
656 * signs here...
657 */
658 if (!((s32)df->level < 0 ?
659 (u32)df->level > (u32)c->extended_cpuid_level :
660 (s32)df->level > (s32)c->cpuid_level))
661 continue;
662
663 clear_cpu_cap(c, df->feature);
664 if (!warn)
665 continue;
666
667 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
668 x86_cap_flag(df->feature), df->level);
669 }
670}
671
672/*
673 * Naming convention should be: <Name> [(<Codename>)]
674 * This table only is used unless init_<vendor>() below doesn't set it;
675 * in particular, if CPUID levels 0x80000002..4 are supported, this
676 * isn't used
677 */
678
679/* Look up CPU names by table lookup. */
680static const char *table_lookup_model(struct cpuinfo_x86 *c)
681{
682#ifdef CONFIG_X86_32
683 const struct legacy_cpu_model_info *info;
684
685 if (c->x86_model >= 16)
686 return NULL; /* Range check */
687
688 if (!this_cpu)
689 return NULL;
690
691 info = this_cpu->legacy_models;
692
693 while (info->family) {
694 if (info->family == c->x86)
695 return info->model_names[c->x86_model];
696 info++;
697 }
698#endif
699 return NULL; /* Not found */
700}
701
702/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
703__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
704__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705
706#ifdef CONFIG_X86_32
707/* The 32-bit entry code needs to find cpu_entry_area. */
708DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
709#endif
710
711/* Load the original GDT from the per-cpu structure */
712void load_direct_gdt(int cpu)
713{
714 struct desc_ptr gdt_descr;
715
716 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
717 gdt_descr.size = GDT_SIZE - 1;
718 load_gdt(&gdt_descr);
719}
720EXPORT_SYMBOL_GPL(load_direct_gdt);
721
722/* Load a fixmap remapping of the per-cpu GDT */
723void load_fixmap_gdt(int cpu)
724{
725 struct desc_ptr gdt_descr;
726
727 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
728 gdt_descr.size = GDT_SIZE - 1;
729 load_gdt(&gdt_descr);
730}
731EXPORT_SYMBOL_GPL(load_fixmap_gdt);
732
733/**
734 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
735 * @cpu: The CPU number for which this is invoked
736 *
737 * Invoked during early boot to switch from early GDT and early per CPU to
738 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
739 * switch is implicit by loading the direct GDT. On 64bit this requires
740 * to update GSBASE.
741 */
742void __init switch_gdt_and_percpu_base(int cpu)
743{
744 load_direct_gdt(cpu);
745
746#ifdef CONFIG_X86_64
747 /*
748 * No need to load %gs. It is already correct.
749 *
750 * Writing %gs on 64bit would zero GSBASE which would make any per
751 * CPU operation up to the point of the wrmsrl() fault.
752 *
753 * Set GSBASE to the new offset. Until the wrmsrl() happens the
754 * early mapping is still valid. That means the GSBASE update will
755 * lose any prior per CPU data which was not copied over in
756 * setup_per_cpu_areas().
757 *
758 * This works even with stackprotector enabled because the
759 * per CPU stack canary is 0 in both per CPU areas.
760 */
761 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
762#else
763 /*
764 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
765 * it is required to load FS again so that the 'hidden' part is
766 * updated from the new GDT. Up to this point the early per CPU
767 * translation is active. Any content of the early per CPU data
768 * which was not copied over in setup_per_cpu_areas() is lost.
769 */
770 loadsegment(fs, __KERNEL_PERCPU);
771#endif
772}
773
774static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
775
776static void get_model_name(struct cpuinfo_x86 *c)
777{
778 unsigned int *v;
779 char *p, *q, *s;
780
781 if (c->extended_cpuid_level < 0x80000004)
782 return;
783
784 v = (unsigned int *)c->x86_model_id;
785 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
786 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
787 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
788 c->x86_model_id[48] = 0;
789
790 /* Trim whitespace */
791 p = q = s = &c->x86_model_id[0];
792
793 while (*p == ' ')
794 p++;
795
796 while (*p) {
797 /* Note the last non-whitespace index */
798 if (!isspace(*p))
799 s = q;
800
801 *q++ = *p++;
802 }
803
804 *(s + 1) = '\0';
805}
806
807void detect_num_cpu_cores(struct cpuinfo_x86 *c)
808{
809 unsigned int eax, ebx, ecx, edx;
810
811 c->x86_max_cores = 1;
812 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
813 return;
814
815 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
816 if (eax & 0x1f)
817 c->x86_max_cores = (eax >> 26) + 1;
818}
819
820void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
821{
822 unsigned int n, dummy, ebx, ecx, edx, l2size;
823
824 n = c->extended_cpuid_level;
825
826 if (n >= 0x80000005) {
827 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
828 c->x86_cache_size = (ecx>>24) + (edx>>24);
829#ifdef CONFIG_X86_64
830 /* On K8 L1 TLB is inclusive, so don't count it */
831 c->x86_tlbsize = 0;
832#endif
833 }
834
835 if (n < 0x80000006) /* Some chips just has a large L1. */
836 return;
837
838 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
839 l2size = ecx >> 16;
840
841#ifdef CONFIG_X86_64
842 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
843#else
844 /* do processor-specific cache resizing */
845 if (this_cpu->legacy_cache_size)
846 l2size = this_cpu->legacy_cache_size(c, l2size);
847
848 /* Allow user to override all this if necessary. */
849 if (cachesize_override != -1)
850 l2size = cachesize_override;
851
852 if (l2size == 0)
853 return; /* Again, no L2 cache is possible */
854#endif
855
856 c->x86_cache_size = l2size;
857}
858
859u16 __read_mostly tlb_lli_4k[NR_INFO];
860u16 __read_mostly tlb_lli_2m[NR_INFO];
861u16 __read_mostly tlb_lli_4m[NR_INFO];
862u16 __read_mostly tlb_lld_4k[NR_INFO];
863u16 __read_mostly tlb_lld_2m[NR_INFO];
864u16 __read_mostly tlb_lld_4m[NR_INFO];
865u16 __read_mostly tlb_lld_1g[NR_INFO];
866
867static void cpu_detect_tlb(struct cpuinfo_x86 *c)
868{
869 if (this_cpu->c_detect_tlb)
870 this_cpu->c_detect_tlb(c);
871
872 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
873 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
874 tlb_lli_4m[ENTRIES]);
875
876 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
877 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
878 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
879}
880
881int detect_ht_early(struct cpuinfo_x86 *c)
882{
883#ifdef CONFIG_SMP
884 u32 eax, ebx, ecx, edx;
885
886 if (!cpu_has(c, X86_FEATURE_HT))
887 return -1;
888
889 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
890 return -1;
891
892 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
893 return -1;
894
895 cpuid(1, &eax, &ebx, &ecx, &edx);
896
897 smp_num_siblings = (ebx & 0xff0000) >> 16;
898 if (smp_num_siblings == 1)
899 pr_info_once("CPU0: Hyper-Threading is disabled\n");
900#endif
901 return 0;
902}
903
904void detect_ht(struct cpuinfo_x86 *c)
905{
906#ifdef CONFIG_SMP
907 int index_msb, core_bits;
908
909 if (detect_ht_early(c) < 0)
910 return;
911
912 index_msb = get_count_order(smp_num_siblings);
913 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
914
915 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
916
917 index_msb = get_count_order(smp_num_siblings);
918
919 core_bits = get_count_order(c->x86_max_cores);
920
921 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
922 ((1 << core_bits) - 1);
923#endif
924}
925
926static void get_cpu_vendor(struct cpuinfo_x86 *c)
927{
928 char *v = c->x86_vendor_id;
929 int i;
930
931 for (i = 0; i < X86_VENDOR_NUM; i++) {
932 if (!cpu_devs[i])
933 break;
934
935 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
936 (cpu_devs[i]->c_ident[1] &&
937 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
938
939 this_cpu = cpu_devs[i];
940 c->x86_vendor = this_cpu->c_x86_vendor;
941 return;
942 }
943 }
944
945 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
946 "CPU: Your system may be unstable.\n", v);
947
948 c->x86_vendor = X86_VENDOR_UNKNOWN;
949 this_cpu = &default_cpu;
950}
951
952void cpu_detect(struct cpuinfo_x86 *c)
953{
954 /* Get vendor name */
955 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
956 (unsigned int *)&c->x86_vendor_id[0],
957 (unsigned int *)&c->x86_vendor_id[8],
958 (unsigned int *)&c->x86_vendor_id[4]);
959
960 c->x86 = 4;
961 /* Intel-defined flags: level 0x00000001 */
962 if (c->cpuid_level >= 0x00000001) {
963 u32 junk, tfms, cap0, misc;
964
965 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
966 c->x86 = x86_family(tfms);
967 c->x86_model = x86_model(tfms);
968 c->x86_stepping = x86_stepping(tfms);
969
970 if (cap0 & (1<<19)) {
971 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
972 c->x86_cache_alignment = c->x86_clflush_size;
973 }
974 }
975}
976
977static void apply_forced_caps(struct cpuinfo_x86 *c)
978{
979 int i;
980
981 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
982 c->x86_capability[i] &= ~cpu_caps_cleared[i];
983 c->x86_capability[i] |= cpu_caps_set[i];
984 }
985}
986
987static void init_speculation_control(struct cpuinfo_x86 *c)
988{
989 /*
990 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
991 * and they also have a different bit for STIBP support. Also,
992 * a hypervisor might have set the individual AMD bits even on
993 * Intel CPUs, for finer-grained selection of what's available.
994 */
995 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
996 set_cpu_cap(c, X86_FEATURE_IBRS);
997 set_cpu_cap(c, X86_FEATURE_IBPB);
998 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
999 }
1000
1001 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1002 set_cpu_cap(c, X86_FEATURE_STIBP);
1003
1004 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1005 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1006 set_cpu_cap(c, X86_FEATURE_SSBD);
1007
1008 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1009 set_cpu_cap(c, X86_FEATURE_IBRS);
1010 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1011 }
1012
1013 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1014 set_cpu_cap(c, X86_FEATURE_IBPB);
1015
1016 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1017 set_cpu_cap(c, X86_FEATURE_STIBP);
1018 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1019 }
1020
1021 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1022 set_cpu_cap(c, X86_FEATURE_SSBD);
1023 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1025 }
1026}
1027
1028void get_cpu_cap(struct cpuinfo_x86 *c)
1029{
1030 u32 eax, ebx, ecx, edx;
1031
1032 /* Intel-defined flags: level 0x00000001 */
1033 if (c->cpuid_level >= 0x00000001) {
1034 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1035
1036 c->x86_capability[CPUID_1_ECX] = ecx;
1037 c->x86_capability[CPUID_1_EDX] = edx;
1038 }
1039
1040 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1041 if (c->cpuid_level >= 0x00000006)
1042 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1043
1044 /* Additional Intel-defined flags: level 0x00000007 */
1045 if (c->cpuid_level >= 0x00000007) {
1046 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1047 c->x86_capability[CPUID_7_0_EBX] = ebx;
1048 c->x86_capability[CPUID_7_ECX] = ecx;
1049 c->x86_capability[CPUID_7_EDX] = edx;
1050
1051 /* Check valid sub-leaf index before accessing it */
1052 if (eax >= 1) {
1053 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1054 c->x86_capability[CPUID_7_1_EAX] = eax;
1055 }
1056 }
1057
1058 /* Extended state features: level 0x0000000d */
1059 if (c->cpuid_level >= 0x0000000d) {
1060 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1061
1062 c->x86_capability[CPUID_D_1_EAX] = eax;
1063 }
1064
1065 /* AMD-defined flags: level 0x80000001 */
1066 eax = cpuid_eax(0x80000000);
1067 c->extended_cpuid_level = eax;
1068
1069 if ((eax & 0xffff0000) == 0x80000000) {
1070 if (eax >= 0x80000001) {
1071 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1072
1073 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1074 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1075 }
1076 }
1077
1078 if (c->extended_cpuid_level >= 0x80000007) {
1079 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1080
1081 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1082 c->x86_power = edx;
1083 }
1084
1085 if (c->extended_cpuid_level >= 0x80000008) {
1086 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1087 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1088 }
1089
1090 if (c->extended_cpuid_level >= 0x8000000a)
1091 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1092
1093 if (c->extended_cpuid_level >= 0x8000001f)
1094 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1095
1096 init_scattered_cpuid_features(c);
1097 init_speculation_control(c);
1098
1099 /*
1100 * Clear/Set all flags overridden by options, after probe.
1101 * This needs to happen each time we re-probe, which may happen
1102 * several times during CPU initialization.
1103 */
1104 apply_forced_caps(c);
1105}
1106
1107void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1108{
1109 u32 eax, ebx, ecx, edx;
1110
1111 if (c->extended_cpuid_level >= 0x80000008) {
1112 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1113
1114 c->x86_virt_bits = (eax >> 8) & 0xff;
1115 c->x86_phys_bits = eax & 0xff;
1116 }
1117#ifdef CONFIG_X86_32
1118 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1119 c->x86_phys_bits = 36;
1120#endif
1121 c->x86_cache_bits = c->x86_phys_bits;
1122}
1123
1124static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1125{
1126#ifdef CONFIG_X86_32
1127 int i;
1128
1129 /*
1130 * First of all, decide if this is a 486 or higher
1131 * It's a 486 if we can modify the AC flag
1132 */
1133 if (flag_is_changeable_p(X86_EFLAGS_AC))
1134 c->x86 = 4;
1135 else
1136 c->x86 = 3;
1137
1138 for (i = 0; i < X86_VENDOR_NUM; i++)
1139 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1140 c->x86_vendor_id[0] = 0;
1141 cpu_devs[i]->c_identify(c);
1142 if (c->x86_vendor_id[0]) {
1143 get_cpu_vendor(c);
1144 break;
1145 }
1146 }
1147#endif
1148}
1149
1150#define NO_SPECULATION BIT(0)
1151#define NO_MELTDOWN BIT(1)
1152#define NO_SSB BIT(2)
1153#define NO_L1TF BIT(3)
1154#define NO_MDS BIT(4)
1155#define MSBDS_ONLY BIT(5)
1156#define NO_SWAPGS BIT(6)
1157#define NO_ITLB_MULTIHIT BIT(7)
1158#define NO_SPECTRE_V2 BIT(8)
1159#define NO_MMIO BIT(9)
1160#define NO_EIBRS_PBRSB BIT(10)
1161
1162#define VULNWL(vendor, family, model, whitelist) \
1163 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1164
1165#define VULNWL_INTEL(model, whitelist) \
1166 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1167
1168#define VULNWL_AMD(family, whitelist) \
1169 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1170
1171#define VULNWL_HYGON(family, whitelist) \
1172 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1173
1174static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1175 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1176 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1177 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1178 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1179 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1180 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1181
1182 /* Intel Family 6 */
1183 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1184 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1185 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1186 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1187
1188 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1189 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1190 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1191 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1192 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1193
1194 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200
1201 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1202
1203 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205
1206 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1207 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1208 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1209
1210 /*
1211 * Technically, swapgs isn't serializing on AMD (despite it previously
1212 * being documented as such in the APM). But according to AMD, %gs is
1213 * updated non-speculatively, and the issuing of %gs-relative memory
1214 * operands will be blocked until the %gs update completes, which is
1215 * good enough for our purposes.
1216 */
1217
1218 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1219 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1220 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1221
1222 /* AMD Family 0xf - 0x12 */
1223 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1224 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1225 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1226 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1227
1228 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1229 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231
1232 /* Zhaoxin Family 7 */
1233 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1234 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1235 {}
1236};
1237
1238#define VULNBL(vendor, family, model, blacklist) \
1239 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1240
1241#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1242 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1243 INTEL_FAM6_##model, steppings, \
1244 X86_FEATURE_ANY, issues)
1245
1246#define VULNBL_AMD(family, blacklist) \
1247 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1248
1249#define VULNBL_HYGON(family, blacklist) \
1250 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1251
1252#define SRBDS BIT(0)
1253/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1254#define MMIO BIT(1)
1255/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1256#define MMIO_SBDS BIT(2)
1257/* CPU is affected by RETbleed, speculating where you would not expect it */
1258#define RETBLEED BIT(3)
1259/* CPU is affected by SMT (cross-thread) return predictions */
1260#define SMT_RSB BIT(4)
1261
1262static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1263 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1264 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1265 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1266 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1267 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1268 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1269 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1270 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1271 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1272 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1273 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1274 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1275 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1276 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1277 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1278 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1279 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1280 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1281 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1282 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1283 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1284 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1285 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1286 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1287 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1288 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1289
1290 VULNBL_AMD(0x15, RETBLEED),
1291 VULNBL_AMD(0x16, RETBLEED),
1292 VULNBL_AMD(0x17, RETBLEED | SMT_RSB),
1293 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1294 {}
1295};
1296
1297static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1298{
1299 const struct x86_cpu_id *m = x86_match_cpu(table);
1300
1301 return m && !!(m->driver_data & which);
1302}
1303
1304u64 x86_read_arch_cap_msr(void)
1305{
1306 u64 ia32_cap = 0;
1307
1308 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1309 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1310
1311 return ia32_cap;
1312}
1313
1314static bool arch_cap_mmio_immune(u64 ia32_cap)
1315{
1316 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1317 ia32_cap & ARCH_CAP_PSDP_NO &&
1318 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1319}
1320
1321static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1322{
1323 u64 ia32_cap = x86_read_arch_cap_msr();
1324
1325 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1326 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1327 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1328 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1329
1330 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1331 return;
1332
1333 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1334
1335 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1336 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1337
1338 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1339 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1340 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1341 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1342
1343 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1344 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1345
1346 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1347 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1348 setup_force_cpu_bug(X86_BUG_MDS);
1349 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1350 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1351 }
1352
1353 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1354 setup_force_cpu_bug(X86_BUG_SWAPGS);
1355
1356 /*
1357 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1358 * - TSX is supported or
1359 * - TSX_CTRL is present
1360 *
1361 * TSX_CTRL check is needed for cases when TSX could be disabled before
1362 * the kernel boot e.g. kexec.
1363 * TSX_CTRL check alone is not sufficient for cases when the microcode
1364 * update is not present or running as guest that don't get TSX_CTRL.
1365 */
1366 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1367 (cpu_has(c, X86_FEATURE_RTM) ||
1368 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1369 setup_force_cpu_bug(X86_BUG_TAA);
1370
1371 /*
1372 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1373 * in the vulnerability blacklist.
1374 *
1375 * Some of the implications and mitigation of Shared Buffers Data
1376 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1377 * SRBDS.
1378 */
1379 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1380 cpu_has(c, X86_FEATURE_RDSEED)) &&
1381 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1382 setup_force_cpu_bug(X86_BUG_SRBDS);
1383
1384 /*
1385 * Processor MMIO Stale Data bug enumeration
1386 *
1387 * Affected CPU list is generally enough to enumerate the vulnerability,
1388 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1389 * not want the guest to enumerate the bug.
1390 *
1391 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1392 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1393 */
1394 if (!arch_cap_mmio_immune(ia32_cap)) {
1395 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1396 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1397 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1398 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1399 }
1400
1401 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1402 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1403 setup_force_cpu_bug(X86_BUG_RETBLEED);
1404 }
1405
1406 if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1407 !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1408 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1409 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1410
1411 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1412 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1413
1414 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1415 return;
1416
1417 /* Rogue Data Cache Load? No! */
1418 if (ia32_cap & ARCH_CAP_RDCL_NO)
1419 return;
1420
1421 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1422
1423 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1424 return;
1425
1426 setup_force_cpu_bug(X86_BUG_L1TF);
1427}
1428
1429/*
1430 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1431 * unfortunately, that's not true in practice because of early VIA
1432 * chips and (more importantly) broken virtualizers that are not easy
1433 * to detect. In the latter case it doesn't even *fail* reliably, so
1434 * probing for it doesn't even work. Disable it completely on 32-bit
1435 * unless we can find a reliable way to detect all the broken cases.
1436 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1437 */
1438static void detect_nopl(void)
1439{
1440#ifdef CONFIG_X86_32
1441 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1442#else
1443 setup_force_cpu_cap(X86_FEATURE_NOPL);
1444#endif
1445}
1446
1447/*
1448 * We parse cpu parameters early because fpu__init_system() is executed
1449 * before parse_early_param().
1450 */
1451static void __init cpu_parse_early_param(void)
1452{
1453 char arg[128];
1454 char *argptr = arg, *opt;
1455 int arglen, taint = 0;
1456
1457#ifdef CONFIG_X86_32
1458 if (cmdline_find_option_bool(boot_command_line, "no387"))
1459#ifdef CONFIG_MATH_EMULATION
1460 setup_clear_cpu_cap(X86_FEATURE_FPU);
1461#else
1462 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1463#endif
1464
1465 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1466 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1467#endif
1468
1469 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1470 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1471
1472 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1473 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1474
1475 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1476 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1477
1478 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1479 if (arglen <= 0)
1480 return;
1481
1482 pr_info("Clearing CPUID bits:");
1483
1484 while (argptr) {
1485 bool found __maybe_unused = false;
1486 unsigned int bit;
1487
1488 opt = strsep(&argptr, ",");
1489
1490 /*
1491 * Handle naked numbers first for feature flags which don't
1492 * have names.
1493 */
1494 if (!kstrtouint(opt, 10, &bit)) {
1495 if (bit < NCAPINTS * 32) {
1496
1497#ifdef CONFIG_X86_FEATURE_NAMES
1498 /* empty-string, i.e., ""-defined feature flags */
1499 if (!x86_cap_flags[bit])
1500 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1501 else
1502#endif
1503 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1504
1505 setup_clear_cpu_cap(bit);
1506 taint++;
1507 }
1508 /*
1509 * The assumption is that there are no feature names with only
1510 * numbers in the name thus go to the next argument.
1511 */
1512 continue;
1513 }
1514
1515#ifdef CONFIG_X86_FEATURE_NAMES
1516 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1517 if (!x86_cap_flag(bit))
1518 continue;
1519
1520 if (strcmp(x86_cap_flag(bit), opt))
1521 continue;
1522
1523 pr_cont(" %s", opt);
1524 setup_clear_cpu_cap(bit);
1525 taint++;
1526 found = true;
1527 break;
1528 }
1529
1530 if (!found)
1531 pr_cont(" (unknown: %s)", opt);
1532#endif
1533 }
1534 pr_cont("\n");
1535
1536 if (taint)
1537 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1538}
1539
1540/*
1541 * Do minimum CPU detection early.
1542 * Fields really needed: vendor, cpuid_level, family, model, mask,
1543 * cache alignment.
1544 * The others are not touched to avoid unwanted side effects.
1545 *
1546 * WARNING: this function is only called on the boot CPU. Don't add code
1547 * here that is supposed to run on all CPUs.
1548 */
1549static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1550{
1551#ifdef CONFIG_X86_64
1552 c->x86_clflush_size = 64;
1553 c->x86_phys_bits = 36;
1554 c->x86_virt_bits = 48;
1555#else
1556 c->x86_clflush_size = 32;
1557 c->x86_phys_bits = 32;
1558 c->x86_virt_bits = 32;
1559#endif
1560 c->x86_cache_alignment = c->x86_clflush_size;
1561
1562 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1563 c->extended_cpuid_level = 0;
1564
1565 if (!have_cpuid_p())
1566 identify_cpu_without_cpuid(c);
1567
1568 /* cyrix could have cpuid enabled via c_identify()*/
1569 if (have_cpuid_p()) {
1570 cpu_detect(c);
1571 get_cpu_vendor(c);
1572 get_cpu_cap(c);
1573 get_cpu_address_sizes(c);
1574 setup_force_cpu_cap(X86_FEATURE_CPUID);
1575 cpu_parse_early_param();
1576
1577 if (this_cpu->c_early_init)
1578 this_cpu->c_early_init(c);
1579
1580 c->cpu_index = 0;
1581 filter_cpuid_features(c, false);
1582
1583 if (this_cpu->c_bsp_init)
1584 this_cpu->c_bsp_init(c);
1585 } else {
1586 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1587 }
1588
1589 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1590
1591 cpu_set_bug_bits(c);
1592
1593 sld_setup(c);
1594
1595 fpu__init_system(c);
1596
1597 init_sigframe_size();
1598
1599#ifdef CONFIG_X86_32
1600 /*
1601 * Regardless of whether PCID is enumerated, the SDM says
1602 * that it can't be enabled in 32-bit mode.
1603 */
1604 setup_clear_cpu_cap(X86_FEATURE_PCID);
1605#endif
1606
1607 /*
1608 * Later in the boot process pgtable_l5_enabled() relies on
1609 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1610 * enabled by this point we need to clear the feature bit to avoid
1611 * false-positives at the later stage.
1612 *
1613 * pgtable_l5_enabled() can be false here for several reasons:
1614 * - 5-level paging is disabled compile-time;
1615 * - it's 32-bit kernel;
1616 * - machine doesn't support 5-level paging;
1617 * - user specified 'no5lvl' in kernel command line.
1618 */
1619 if (!pgtable_l5_enabled())
1620 setup_clear_cpu_cap(X86_FEATURE_LA57);
1621
1622 detect_nopl();
1623}
1624
1625void __init early_cpu_init(void)
1626{
1627 const struct cpu_dev *const *cdev;
1628 int count = 0;
1629
1630#ifdef CONFIG_PROCESSOR_SELECT
1631 pr_info("KERNEL supported cpus:\n");
1632#endif
1633
1634 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1635 const struct cpu_dev *cpudev = *cdev;
1636
1637 if (count >= X86_VENDOR_NUM)
1638 break;
1639 cpu_devs[count] = cpudev;
1640 count++;
1641
1642#ifdef CONFIG_PROCESSOR_SELECT
1643 {
1644 unsigned int j;
1645
1646 for (j = 0; j < 2; j++) {
1647 if (!cpudev->c_ident[j])
1648 continue;
1649 pr_info(" %s %s\n", cpudev->c_vendor,
1650 cpudev->c_ident[j]);
1651 }
1652 }
1653#endif
1654 }
1655 early_identify_cpu(&boot_cpu_data);
1656}
1657
1658static bool detect_null_seg_behavior(void)
1659{
1660 /*
1661 * Empirically, writing zero to a segment selector on AMD does
1662 * not clear the base, whereas writing zero to a segment
1663 * selector on Intel does clear the base. Intel's behavior
1664 * allows slightly faster context switches in the common case
1665 * where GS is unused by the prev and next threads.
1666 *
1667 * Since neither vendor documents this anywhere that I can see,
1668 * detect it directly instead of hard-coding the choice by
1669 * vendor.
1670 *
1671 * I've designated AMD's behavior as the "bug" because it's
1672 * counterintuitive and less friendly.
1673 */
1674
1675 unsigned long old_base, tmp;
1676 rdmsrl(MSR_FS_BASE, old_base);
1677 wrmsrl(MSR_FS_BASE, 1);
1678 loadsegment(fs, 0);
1679 rdmsrl(MSR_FS_BASE, tmp);
1680 wrmsrl(MSR_FS_BASE, old_base);
1681 return tmp == 0;
1682}
1683
1684void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1685{
1686 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1687 if (!IS_ENABLED(CONFIG_X86_64))
1688 return;
1689
1690 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1691 if (c->extended_cpuid_level >= 0x80000021 &&
1692 cpuid_eax(0x80000021) & BIT(6))
1693 return;
1694
1695 /*
1696 * CPUID bit above wasn't set. If this kernel is still running
1697 * as a HV guest, then the HV has decided not to advertize
1698 * that CPUID bit for whatever reason. For example, one
1699 * member of the migration pool might be vulnerable. Which
1700 * means, the bug is present: set the BUG flag and return.
1701 */
1702 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1703 set_cpu_bug(c, X86_BUG_NULL_SEG);
1704 return;
1705 }
1706
1707 /*
1708 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1709 * 0x18 is the respective family for Hygon.
1710 */
1711 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1712 detect_null_seg_behavior())
1713 return;
1714
1715 /* All the remaining ones are affected */
1716 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717}
1718
1719static void generic_identify(struct cpuinfo_x86 *c)
1720{
1721 c->extended_cpuid_level = 0;
1722
1723 if (!have_cpuid_p())
1724 identify_cpu_without_cpuid(c);
1725
1726 /* cyrix could have cpuid enabled via c_identify()*/
1727 if (!have_cpuid_p())
1728 return;
1729
1730 cpu_detect(c);
1731
1732 get_cpu_vendor(c);
1733
1734 get_cpu_cap(c);
1735
1736 get_cpu_address_sizes(c);
1737
1738 if (c->cpuid_level >= 0x00000001) {
1739 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1740#ifdef CONFIG_X86_32
1741# ifdef CONFIG_SMP
1742 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1743# else
1744 c->apicid = c->initial_apicid;
1745# endif
1746#endif
1747 c->phys_proc_id = c->initial_apicid;
1748 }
1749
1750 get_model_name(c); /* Default name */
1751
1752 /*
1753 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1754 * systems that run Linux at CPL > 0 may or may not have the
1755 * issue, but, even if they have the issue, there's absolutely
1756 * nothing we can do about it because we can't use the real IRET
1757 * instruction.
1758 *
1759 * NB: For the time being, only 32-bit kernels support
1760 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1761 * whether to apply espfix using paravirt hooks. If any
1762 * non-paravirt system ever shows up that does *not* have the
1763 * ESPFIX issue, we can change this.
1764 */
1765#ifdef CONFIG_X86_32
1766 set_cpu_bug(c, X86_BUG_ESPFIX);
1767#endif
1768}
1769
1770/*
1771 * Validate that ACPI/mptables have the same information about the
1772 * effective APIC id and update the package map.
1773 */
1774static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1775{
1776#ifdef CONFIG_SMP
1777 unsigned int apicid, cpu = smp_processor_id();
1778
1779 apicid = apic->cpu_present_to_apicid(cpu);
1780
1781 if (apicid != c->apicid) {
1782 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1783 cpu, apicid, c->initial_apicid);
1784 }
1785 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1786 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1787#else
1788 c->logical_proc_id = 0;
1789#endif
1790}
1791
1792/*
1793 * This does the hard work of actually picking apart the CPU stuff...
1794 */
1795static void identify_cpu(struct cpuinfo_x86 *c)
1796{
1797 int i;
1798
1799 c->loops_per_jiffy = loops_per_jiffy;
1800 c->x86_cache_size = 0;
1801 c->x86_vendor = X86_VENDOR_UNKNOWN;
1802 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1803 c->x86_vendor_id[0] = '\0'; /* Unset */
1804 c->x86_model_id[0] = '\0'; /* Unset */
1805 c->x86_max_cores = 1;
1806 c->x86_coreid_bits = 0;
1807 c->cu_id = 0xff;
1808#ifdef CONFIG_X86_64
1809 c->x86_clflush_size = 64;
1810 c->x86_phys_bits = 36;
1811 c->x86_virt_bits = 48;
1812#else
1813 c->cpuid_level = -1; /* CPUID not detected */
1814 c->x86_clflush_size = 32;
1815 c->x86_phys_bits = 32;
1816 c->x86_virt_bits = 32;
1817#endif
1818 c->x86_cache_alignment = c->x86_clflush_size;
1819 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1820#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1821 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1822#endif
1823
1824 generic_identify(c);
1825
1826 if (this_cpu->c_identify)
1827 this_cpu->c_identify(c);
1828
1829 /* Clear/Set all flags overridden by options, after probe */
1830 apply_forced_caps(c);
1831
1832#ifdef CONFIG_X86_64
1833 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1834#endif
1835
1836 /*
1837 * Vendor-specific initialization. In this section we
1838 * canonicalize the feature flags, meaning if there are
1839 * features a certain CPU supports which CPUID doesn't
1840 * tell us, CPUID claiming incorrect flags, or other bugs,
1841 * we handle them here.
1842 *
1843 * At the end of this section, c->x86_capability better
1844 * indicate the features this CPU genuinely supports!
1845 */
1846 if (this_cpu->c_init)
1847 this_cpu->c_init(c);
1848
1849 /* Disable the PN if appropriate */
1850 squash_the_stupid_serial_number(c);
1851
1852 /* Set up SMEP/SMAP/UMIP */
1853 setup_smep(c);
1854 setup_smap(c);
1855 setup_umip(c);
1856
1857 /* Enable FSGSBASE instructions if available. */
1858 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1859 cr4_set_bits(X86_CR4_FSGSBASE);
1860 elf_hwcap2 |= HWCAP2_FSGSBASE;
1861 }
1862
1863 /*
1864 * The vendor-specific functions might have changed features.
1865 * Now we do "generic changes."
1866 */
1867
1868 /* Filter out anything that depends on CPUID levels we don't have */
1869 filter_cpuid_features(c, true);
1870
1871 /* If the model name is still unset, do table lookup. */
1872 if (!c->x86_model_id[0]) {
1873 const char *p;
1874 p = table_lookup_model(c);
1875 if (p)
1876 strcpy(c->x86_model_id, p);
1877 else
1878 /* Last resort... */
1879 sprintf(c->x86_model_id, "%02x/%02x",
1880 c->x86, c->x86_model);
1881 }
1882
1883#ifdef CONFIG_X86_64
1884 detect_ht(c);
1885#endif
1886
1887 x86_init_rdrand(c);
1888 setup_pku(c);
1889 setup_cet(c);
1890
1891 /*
1892 * Clear/Set all flags overridden by options, need do it
1893 * before following smp all cpus cap AND.
1894 */
1895 apply_forced_caps(c);
1896
1897 /*
1898 * On SMP, boot_cpu_data holds the common feature set between
1899 * all CPUs; so make sure that we indicate which features are
1900 * common between the CPUs. The first time this routine gets
1901 * executed, c == &boot_cpu_data.
1902 */
1903 if (c != &boot_cpu_data) {
1904 /* AND the already accumulated flags with these */
1905 for (i = 0; i < NCAPINTS; i++)
1906 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1907
1908 /* OR, i.e. replicate the bug flags */
1909 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1910 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1911 }
1912
1913 ppin_init(c);
1914
1915 /* Init Machine Check Exception if available. */
1916 mcheck_cpu_init(c);
1917
1918 select_idle_routine(c);
1919
1920#ifdef CONFIG_NUMA
1921 numa_add_cpu(smp_processor_id());
1922#endif
1923}
1924
1925/*
1926 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1927 * on 32-bit kernels:
1928 */
1929#ifdef CONFIG_X86_32
1930void enable_sep_cpu(void)
1931{
1932 struct tss_struct *tss;
1933 int cpu;
1934
1935 if (!boot_cpu_has(X86_FEATURE_SEP))
1936 return;
1937
1938 cpu = get_cpu();
1939 tss = &per_cpu(cpu_tss_rw, cpu);
1940
1941 /*
1942 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1943 * see the big comment in struct x86_hw_tss's definition.
1944 */
1945
1946 tss->x86_tss.ss1 = __KERNEL_CS;
1947 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1948 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1949 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1950
1951 put_cpu();
1952}
1953#endif
1954
1955void __init identify_boot_cpu(void)
1956{
1957 identify_cpu(&boot_cpu_data);
1958 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1959 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1960#ifdef CONFIG_X86_32
1961 sysenter_setup();
1962 enable_sep_cpu();
1963#endif
1964 cpu_detect_tlb(&boot_cpu_data);
1965 setup_cr_pinning();
1966
1967 tsx_init();
1968}
1969
1970void identify_secondary_cpu(struct cpuinfo_x86 *c)
1971{
1972 BUG_ON(c == &boot_cpu_data);
1973 identify_cpu(c);
1974#ifdef CONFIG_X86_32
1975 enable_sep_cpu();
1976#endif
1977 validate_apic_and_package_id(c);
1978 x86_spec_ctrl_setup_ap();
1979 update_srbds_msr();
1980
1981 tsx_ap_init();
1982}
1983
1984void print_cpu_info(struct cpuinfo_x86 *c)
1985{
1986 const char *vendor = NULL;
1987
1988 if (c->x86_vendor < X86_VENDOR_NUM) {
1989 vendor = this_cpu->c_vendor;
1990 } else {
1991 if (c->cpuid_level >= 0)
1992 vendor = c->x86_vendor_id;
1993 }
1994
1995 if (vendor && !strstr(c->x86_model_id, vendor))
1996 pr_cont("%s ", vendor);
1997
1998 if (c->x86_model_id[0])
1999 pr_cont("%s", c->x86_model_id);
2000 else
2001 pr_cont("%d86", c->x86);
2002
2003 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2004
2005 if (c->x86_stepping || c->cpuid_level >= 0)
2006 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2007 else
2008 pr_cont(")\n");
2009}
2010
2011/*
2012 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2013 * function prevents it from becoming an environment variable for init.
2014 */
2015static __init int setup_clearcpuid(char *arg)
2016{
2017 return 1;
2018}
2019__setup("clearcpuid=", setup_clearcpuid);
2020
2021DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2022 .current_task = &init_task,
2023 .preempt_count = INIT_PREEMPT_COUNT,
2024 .top_of_stack = TOP_OF_INIT_STACK,
2025};
2026EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2027
2028#ifdef CONFIG_X86_64
2029DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2030 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2031EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2032
2033static void wrmsrl_cstar(unsigned long val)
2034{
2035 /*
2036 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2037 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2038 * guest. Avoid the pointless write on all Intel CPUs.
2039 */
2040 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2041 wrmsrl(MSR_CSTAR, val);
2042}
2043
2044/* May not be marked __init: used by software suspend */
2045void syscall_init(void)
2046{
2047 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2048 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2049
2050#ifdef CONFIG_IA32_EMULATION
2051 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2052 /*
2053 * This only works on Intel CPUs.
2054 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2055 * This does not cause SYSENTER to jump to the wrong location, because
2056 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2057 */
2058 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2059 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2060 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2061 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2062#else
2063 wrmsrl_cstar((unsigned long)ignore_sysret);
2064 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2065 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2066 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2067#endif
2068
2069 /*
2070 * Flags to clear on syscall; clear as much as possible
2071 * to minimize user space-kernel interference.
2072 */
2073 wrmsrl(MSR_SYSCALL_MASK,
2074 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2075 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2076 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2077 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2078 X86_EFLAGS_AC|X86_EFLAGS_ID);
2079}
2080
2081#else /* CONFIG_X86_64 */
2082
2083#ifdef CONFIG_STACKPROTECTOR
2084DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2085EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2086#endif
2087
2088#endif /* CONFIG_X86_64 */
2089
2090/*
2091 * Clear all 6 debug registers:
2092 */
2093static void clear_all_debug_regs(void)
2094{
2095 int i;
2096
2097 for (i = 0; i < 8; i++) {
2098 /* Ignore db4, db5 */
2099 if ((i == 4) || (i == 5))
2100 continue;
2101
2102 set_debugreg(0, i);
2103 }
2104}
2105
2106#ifdef CONFIG_KGDB
2107/*
2108 * Restore debug regs if using kgdbwait and you have a kernel debugger
2109 * connection established.
2110 */
2111static void dbg_restore_debug_regs(void)
2112{
2113 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2114 arch_kgdb_ops.correct_hw_break();
2115}
2116#else /* ! CONFIG_KGDB */
2117#define dbg_restore_debug_regs()
2118#endif /* ! CONFIG_KGDB */
2119
2120static void wait_for_master_cpu(int cpu)
2121{
2122#ifdef CONFIG_SMP
2123 /*
2124 * wait for ACK from master CPU before continuing
2125 * with AP initialization
2126 */
2127 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2128 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2129 cpu_relax();
2130#endif
2131}
2132
2133#ifdef CONFIG_X86_64
2134static inline void setup_getcpu(int cpu)
2135{
2136 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2137 struct desc_struct d = { };
2138
2139 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2140 wrmsr(MSR_TSC_AUX, cpudata, 0);
2141
2142 /* Store CPU and node number in limit. */
2143 d.limit0 = cpudata;
2144 d.limit1 = cpudata >> 16;
2145
2146 d.type = 5; /* RO data, expand down, accessed */
2147 d.dpl = 3; /* Visible to user code */
2148 d.s = 1; /* Not a system segment */
2149 d.p = 1; /* Present */
2150 d.d = 1; /* 32-bit */
2151
2152 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2153}
2154
2155static inline void ucode_cpu_init(int cpu)
2156{
2157 if (cpu)
2158 load_ucode_ap();
2159}
2160
2161static inline void tss_setup_ist(struct tss_struct *tss)
2162{
2163 /* Set up the per-CPU TSS IST stacks */
2164 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2165 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2166 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2167 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2168 /* Only mapped when SEV-ES is active */
2169 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2170}
2171
2172#else /* CONFIG_X86_64 */
2173
2174static inline void setup_getcpu(int cpu) { }
2175
2176static inline void ucode_cpu_init(int cpu)
2177{
2178 show_ucode_info_early();
2179}
2180
2181static inline void tss_setup_ist(struct tss_struct *tss) { }
2182
2183#endif /* !CONFIG_X86_64 */
2184
2185static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2186{
2187 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2188
2189#ifdef CONFIG_X86_IOPL_IOPERM
2190 tss->io_bitmap.prev_max = 0;
2191 tss->io_bitmap.prev_sequence = 0;
2192 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2193 /*
2194 * Invalidate the extra array entry past the end of the all
2195 * permission bitmap as required by the hardware.
2196 */
2197 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2198#endif
2199}
2200
2201/*
2202 * Setup everything needed to handle exceptions from the IDT, including the IST
2203 * exceptions which use paranoid_entry().
2204 */
2205void cpu_init_exception_handling(void)
2206{
2207 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2208 int cpu = raw_smp_processor_id();
2209
2210 /* paranoid_entry() gets the CPU number from the GDT */
2211 setup_getcpu(cpu);
2212
2213 /* IST vectors need TSS to be set up. */
2214 tss_setup_ist(tss);
2215 tss_setup_io_bitmap(tss);
2216 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2217
2218 load_TR_desc();
2219
2220 /* GHCB needs to be setup to handle #VC. */
2221 setup_ghcb();
2222
2223 /* Finally load the IDT */
2224 load_current_idt();
2225}
2226
2227/*
2228 * cpu_init() initializes state that is per-CPU. Some data is already
2229 * initialized (naturally) in the bootstrap process, such as the GDT. We
2230 * reload it nevertheless, this function acts as a 'CPU state barrier',
2231 * nothing should get across.
2232 */
2233void cpu_init(void)
2234{
2235 struct task_struct *cur = current;
2236 int cpu = raw_smp_processor_id();
2237
2238 wait_for_master_cpu(cpu);
2239
2240 ucode_cpu_init(cpu);
2241
2242#ifdef CONFIG_NUMA
2243 if (this_cpu_read(numa_node) == 0 &&
2244 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2245 set_numa_node(early_cpu_to_node(cpu));
2246#endif
2247 pr_debug("Initializing CPU#%d\n", cpu);
2248
2249 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2250 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2251 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2252
2253 if (IS_ENABLED(CONFIG_X86_64)) {
2254 loadsegment(fs, 0);
2255 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2256 syscall_init();
2257
2258 wrmsrl(MSR_FS_BASE, 0);
2259 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2260 barrier();
2261
2262 x2apic_setup();
2263 }
2264
2265 mmgrab(&init_mm);
2266 cur->active_mm = &init_mm;
2267 BUG_ON(cur->mm);
2268 initialize_tlbstate_and_flush();
2269 enter_lazy_tlb(&init_mm, cur);
2270
2271 /*
2272 * sp0 points to the entry trampoline stack regardless of what task
2273 * is running.
2274 */
2275 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2276
2277 load_mm_ldt(&init_mm);
2278
2279 clear_all_debug_regs();
2280 dbg_restore_debug_regs();
2281
2282 doublefault_init_cpu_tss();
2283
2284 fpu__init_cpu();
2285
2286 if (is_uv_system())
2287 uv_cpu_init();
2288
2289 load_fixmap_gdt(cpu);
2290}
2291
2292#ifdef CONFIG_SMP
2293void cpu_init_secondary(void)
2294{
2295 /*
2296 * Relies on the BP having set-up the IDT tables, which are loaded
2297 * on this CPU in cpu_init_exception_handling().
2298 */
2299 cpu_init_exception_handling();
2300 cpu_init();
2301}
2302#endif
2303
2304#ifdef CONFIG_MICROCODE_LATE_LOADING
2305/*
2306 * The microcode loader calls this upon late microcode load to recheck features,
2307 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2308 * hotplug lock.
2309 */
2310void microcode_check(void)
2311{
2312 struct cpuinfo_x86 info;
2313
2314 perf_check_microcode();
2315
2316 /* Reload CPUID max function as it might've changed. */
2317 info.cpuid_level = cpuid_eax(0);
2318
2319 /*
2320 * Copy all capability leafs to pick up the synthetic ones so that
2321 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2322 * get overwritten in get_cpu_cap().
2323 */
2324 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2325
2326 get_cpu_cap(&info);
2327
2328 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2329 return;
2330
2331 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2332 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2333}
2334#endif
2335
2336/*
2337 * Invoked from core CPU hotplug code after hotplug operations
2338 */
2339void arch_smt_update(void)
2340{
2341 /* Handle the speculative execution misfeatures */
2342 cpu_bugs_smt_update();
2343 /* Check whether IPI broadcasting can be enabled */
2344 apic_smt_update();
2345}
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/mem_encrypt.h>
22#include <linux/smp.h>
23#include <linux/cpu.h>
24#include <linux/io.h>
25#include <linux/syscore_ops.h>
26#include <linux/pgtable.h>
27#include <linux/stackprotector.h>
28#include <linux/utsname.h>
29
30#include <asm/alternative.h>
31#include <asm/cmdline.h>
32#include <asm/perf_event.h>
33#include <asm/mmu_context.h>
34#include <asm/doublefault.h>
35#include <asm/archrandom.h>
36#include <asm/hypervisor.h>
37#include <asm/processor.h>
38#include <asm/tlbflush.h>
39#include <asm/debugreg.h>
40#include <asm/sections.h>
41#include <asm/vsyscall.h>
42#include <linux/topology.h>
43#include <linux/cpumask.h>
44#include <linux/atomic.h>
45#include <asm/proto.h>
46#include <asm/setup.h>
47#include <asm/apic.h>
48#include <asm/desc.h>
49#include <asm/fpu/api.h>
50#include <asm/mtrr.h>
51#include <asm/hwcap2.h>
52#include <linux/numa.h>
53#include <asm/numa.h>
54#include <asm/asm.h>
55#include <asm/bugs.h>
56#include <asm/cpu.h>
57#include <asm/mce.h>
58#include <asm/msr.h>
59#include <asm/cacheinfo.h>
60#include <asm/memtype.h>
61#include <asm/microcode.h>
62#include <asm/intel-family.h>
63#include <asm/cpu_device_id.h>
64#include <asm/uv/uv.h>
65#include <asm/ia32.h>
66#include <asm/set_memory.h>
67#include <asm/traps.h>
68#include <asm/sev.h>
69#include <asm/tdx.h>
70
71#include "cpu.h"
72
73u32 elf_hwcap2 __read_mostly;
74
75/* Number of siblings per CPU package */
76int smp_num_siblings = 1;
77EXPORT_SYMBOL(smp_num_siblings);
78
79static struct ppin_info {
80 int feature;
81 int msr_ppin_ctl;
82 int msr_ppin;
83} ppin_info[] = {
84 [X86_VENDOR_INTEL] = {
85 .feature = X86_FEATURE_INTEL_PPIN,
86 .msr_ppin_ctl = MSR_PPIN_CTL,
87 .msr_ppin = MSR_PPIN
88 },
89 [X86_VENDOR_AMD] = {
90 .feature = X86_FEATURE_AMD_PPIN,
91 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
92 .msr_ppin = MSR_AMD_PPIN
93 },
94};
95
96static const struct x86_cpu_id ppin_cpuids[] = {
97 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
98 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
99
100 /* Legacy models without CPUID enumeration */
101 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
102 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
103 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
104 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
105 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
107 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
108 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
110 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
111 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
112
113 {}
114};
115
116static void ppin_init(struct cpuinfo_x86 *c)
117{
118 const struct x86_cpu_id *id;
119 unsigned long long val;
120 struct ppin_info *info;
121
122 id = x86_match_cpu(ppin_cpuids);
123 if (!id)
124 return;
125
126 /*
127 * Testing the presence of the MSR is not enough. Need to check
128 * that the PPIN_CTL allows reading of the PPIN.
129 */
130 info = (struct ppin_info *)id->driver_data;
131
132 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
133 goto clear_ppin;
134
135 if ((val & 3UL) == 1UL) {
136 /* PPIN locked in disabled mode */
137 goto clear_ppin;
138 }
139
140 /* If PPIN is disabled, try to enable */
141 if (!(val & 2UL)) {
142 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
143 rdmsrl_safe(info->msr_ppin_ctl, &val);
144 }
145
146 /* Is the enable bit set? */
147 if (val & 2UL) {
148 c->ppin = __rdmsr(info->msr_ppin);
149 set_cpu_cap(c, info->feature);
150 return;
151 }
152
153clear_ppin:
154 clear_cpu_cap(c, info->feature);
155}
156
157static void default_init(struct cpuinfo_x86 *c)
158{
159#ifdef CONFIG_X86_64
160 cpu_detect_cache_sizes(c);
161#else
162 /* Not much we can do here... */
163 /* Check if at least it has cpuid */
164 if (c->cpuid_level == -1) {
165 /* No cpuid. It must be an ancient CPU */
166 if (c->x86 == 4)
167 strcpy(c->x86_model_id, "486");
168 else if (c->x86 == 3)
169 strcpy(c->x86_model_id, "386");
170 }
171#endif
172}
173
174static const struct cpu_dev default_cpu = {
175 .c_init = default_init,
176 .c_vendor = "Unknown",
177 .c_x86_vendor = X86_VENDOR_UNKNOWN,
178};
179
180static const struct cpu_dev *this_cpu = &default_cpu;
181
182DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
183#ifdef CONFIG_X86_64
184 /*
185 * We need valid kernel segments for data and code in long mode too
186 * IRET will check the segment types kkeil 2000/10/28
187 * Also sysret mandates a special GDT layout
188 *
189 * TLS descriptors are currently at a different place compared to i386.
190 * Hopefully nobody expects them at a fixed place (Wine?)
191 */
192 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
193 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
194 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
195 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
196 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
197 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
198#else
199 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
200 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
201 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
202 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
203 /*
204 * Segments used for calling PnP BIOS have byte granularity.
205 * They code segments and data segments have fixed 64k limits,
206 * the transfer segment sizes are set at run time.
207 */
208 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
209 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
210 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
211 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
213 /*
214 * The APM segments have byte granularity and their bases
215 * are set at run time. All have 64k limits.
216 */
217 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
218 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
219 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
220
221 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
223#endif
224} };
225EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
226
227#ifdef CONFIG_X86_64
228static int __init x86_nopcid_setup(char *s)
229{
230 /* nopcid doesn't accept parameters */
231 if (s)
232 return -EINVAL;
233
234 /* do not emit a message if the feature is not present */
235 if (!boot_cpu_has(X86_FEATURE_PCID))
236 return 0;
237
238 setup_clear_cpu_cap(X86_FEATURE_PCID);
239 pr_info("nopcid: PCID feature disabled\n");
240 return 0;
241}
242early_param("nopcid", x86_nopcid_setup);
243#endif
244
245static int __init x86_noinvpcid_setup(char *s)
246{
247 /* noinvpcid doesn't accept parameters */
248 if (s)
249 return -EINVAL;
250
251 /* do not emit a message if the feature is not present */
252 if (!boot_cpu_has(X86_FEATURE_INVPCID))
253 return 0;
254
255 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
256 pr_info("noinvpcid: INVPCID feature disabled\n");
257 return 0;
258}
259early_param("noinvpcid", x86_noinvpcid_setup);
260
261#ifdef CONFIG_X86_32
262static int cachesize_override = -1;
263static int disable_x86_serial_nr = 1;
264
265static int __init cachesize_setup(char *str)
266{
267 get_option(&str, &cachesize_override);
268 return 1;
269}
270__setup("cachesize=", cachesize_setup);
271
272/* Standard macro to see if a specific flag is changeable */
273static inline int flag_is_changeable_p(u32 flag)
274{
275 u32 f1, f2;
276
277 /*
278 * Cyrix and IDT cpus allow disabling of CPUID
279 * so the code below may return different results
280 * when it is executed before and after enabling
281 * the CPUID. Add "volatile" to not allow gcc to
282 * optimize the subsequent calls to this function.
283 */
284 asm volatile ("pushfl \n\t"
285 "pushfl \n\t"
286 "popl %0 \n\t"
287 "movl %0, %1 \n\t"
288 "xorl %2, %0 \n\t"
289 "pushl %0 \n\t"
290 "popfl \n\t"
291 "pushfl \n\t"
292 "popl %0 \n\t"
293 "popfl \n\t"
294
295 : "=&r" (f1), "=&r" (f2)
296 : "ir" (flag));
297
298 return ((f1^f2) & flag) != 0;
299}
300
301/* Probe for the CPUID instruction */
302int have_cpuid_p(void)
303{
304 return flag_is_changeable_p(X86_EFLAGS_ID);
305}
306
307static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
308{
309 unsigned long lo, hi;
310
311 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
312 return;
313
314 /* Disable processor serial number: */
315
316 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
317 lo |= 0x200000;
318 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
319
320 pr_notice("CPU serial number disabled.\n");
321 clear_cpu_cap(c, X86_FEATURE_PN);
322
323 /* Disabling the serial number may affect the cpuid level */
324 c->cpuid_level = cpuid_eax(0);
325}
326
327static int __init x86_serial_nr_setup(char *s)
328{
329 disable_x86_serial_nr = 0;
330 return 1;
331}
332__setup("serialnumber", x86_serial_nr_setup);
333#else
334static inline int flag_is_changeable_p(u32 flag)
335{
336 return 1;
337}
338static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339{
340}
341#endif
342
343static __always_inline void setup_smep(struct cpuinfo_x86 *c)
344{
345 if (cpu_has(c, X86_FEATURE_SMEP))
346 cr4_set_bits(X86_CR4_SMEP);
347}
348
349static __always_inline void setup_smap(struct cpuinfo_x86 *c)
350{
351 unsigned long eflags = native_save_fl();
352
353 /* This should have been cleared long ago */
354 BUG_ON(eflags & X86_EFLAGS_AC);
355
356 if (cpu_has(c, X86_FEATURE_SMAP))
357 cr4_set_bits(X86_CR4_SMAP);
358}
359
360static __always_inline void setup_umip(struct cpuinfo_x86 *c)
361{
362 /* Check the boot processor, plus build option for UMIP. */
363 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
364 goto out;
365
366 /* Check the current processor's cpuid bits. */
367 if (!cpu_has(c, X86_FEATURE_UMIP))
368 goto out;
369
370 cr4_set_bits(X86_CR4_UMIP);
371
372 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
373
374 return;
375
376out:
377 /*
378 * Make sure UMIP is disabled in case it was enabled in a
379 * previous boot (e.g., via kexec).
380 */
381 cr4_clear_bits(X86_CR4_UMIP);
382}
383
384/* These bits should not change their value after CPU init is finished. */
385static const unsigned long cr4_pinned_mask =
386 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
387 X86_CR4_FSGSBASE | X86_CR4_CET;
388static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
389static unsigned long cr4_pinned_bits __ro_after_init;
390
391void native_write_cr0(unsigned long val)
392{
393 unsigned long bits_missing = 0;
394
395set_register:
396 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
400 bits_missing = X86_CR0_WP;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
406 }
407}
408EXPORT_SYMBOL(native_write_cr0);
409
410void __no_profile native_write_cr4(unsigned long val)
411{
412 unsigned long bits_changed = 0;
413
414set_register:
415 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
416
417 if (static_branch_likely(&cr_pinning)) {
418 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
419 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
420 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
421 goto set_register;
422 }
423 /* Warn after we've corrected the changed bits. */
424 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
425 bits_changed);
426 }
427}
428#if IS_MODULE(CONFIG_LKDTM)
429EXPORT_SYMBOL_GPL(native_write_cr4);
430#endif
431
432void cr4_update_irqsoff(unsigned long set, unsigned long clear)
433{
434 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
435
436 lockdep_assert_irqs_disabled();
437
438 newval = (cr4 & ~clear) | set;
439 if (newval != cr4) {
440 this_cpu_write(cpu_tlbstate.cr4, newval);
441 __write_cr4(newval);
442 }
443}
444EXPORT_SYMBOL(cr4_update_irqsoff);
445
446/* Read the CR4 shadow. */
447unsigned long cr4_read_shadow(void)
448{
449 return this_cpu_read(cpu_tlbstate.cr4);
450}
451EXPORT_SYMBOL_GPL(cr4_read_shadow);
452
453void cr4_init(void)
454{
455 unsigned long cr4 = __read_cr4();
456
457 if (boot_cpu_has(X86_FEATURE_PCID))
458 cr4 |= X86_CR4_PCIDE;
459 if (static_branch_likely(&cr_pinning))
460 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
461
462 __write_cr4(cr4);
463
464 /* Initialize cr4 shadow for this CPU. */
465 this_cpu_write(cpu_tlbstate.cr4, cr4);
466}
467
468/*
469 * Once CPU feature detection is finished (and boot params have been
470 * parsed), record any of the sensitive CR bits that are set, and
471 * enable CR pinning.
472 */
473static void __init setup_cr_pinning(void)
474{
475 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
476 static_key_enable(&cr_pinning.key);
477}
478
479static __init int x86_nofsgsbase_setup(char *arg)
480{
481 /* Require an exact match without trailing characters. */
482 if (strlen(arg))
483 return 0;
484
485 /* Do not emit a message if the feature is not present. */
486 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
487 return 1;
488
489 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
490 pr_info("FSGSBASE disabled via kernel command line\n");
491 return 1;
492}
493__setup("nofsgsbase", x86_nofsgsbase_setup);
494
495/*
496 * Protection Keys are not available in 32-bit mode.
497 */
498static bool pku_disabled;
499
500static __always_inline void setup_pku(struct cpuinfo_x86 *c)
501{
502 if (c == &boot_cpu_data) {
503 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
504 return;
505 /*
506 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
507 * bit to be set. Enforce it.
508 */
509 setup_force_cpu_cap(X86_FEATURE_OSPKE);
510
511 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
512 return;
513 }
514
515 cr4_set_bits(X86_CR4_PKE);
516 /* Load the default PKRU value */
517 pkru_write_default();
518}
519
520#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
521static __init int setup_disable_pku(char *arg)
522{
523 /*
524 * Do not clear the X86_FEATURE_PKU bit. All of the
525 * runtime checks are against OSPKE so clearing the
526 * bit does nothing.
527 *
528 * This way, we will see "pku" in cpuinfo, but not
529 * "ospke", which is exactly what we want. It shows
530 * that the CPU has PKU, but the OS has not enabled it.
531 * This happens to be exactly how a system would look
532 * if we disabled the config option.
533 */
534 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
535 pku_disabled = true;
536 return 1;
537}
538__setup("nopku", setup_disable_pku);
539#endif
540
541#ifdef CONFIG_X86_KERNEL_IBT
542
543__noendbr u64 ibt_save(bool disable)
544{
545 u64 msr = 0;
546
547 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
548 rdmsrl(MSR_IA32_S_CET, msr);
549 if (disable)
550 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
551 }
552
553 return msr;
554}
555
556__noendbr void ibt_restore(u64 save)
557{
558 u64 msr;
559
560 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
561 rdmsrl(MSR_IA32_S_CET, msr);
562 msr &= ~CET_ENDBR_EN;
563 msr |= (save & CET_ENDBR_EN);
564 wrmsrl(MSR_IA32_S_CET, msr);
565 }
566}
567
568#endif
569
570static __always_inline void setup_cet(struct cpuinfo_x86 *c)
571{
572 bool user_shstk, kernel_ibt;
573
574 if (!IS_ENABLED(CONFIG_X86_CET))
575 return;
576
577 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
578 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
579 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
580
581 if (!kernel_ibt && !user_shstk)
582 return;
583
584 if (user_shstk)
585 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
586
587 if (kernel_ibt)
588 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
589 else
590 wrmsrl(MSR_IA32_S_CET, 0);
591
592 cr4_set_bits(X86_CR4_CET);
593
594 if (kernel_ibt && ibt_selftest()) {
595 pr_err("IBT selftest: Failed!\n");
596 wrmsrl(MSR_IA32_S_CET, 0);
597 setup_clear_cpu_cap(X86_FEATURE_IBT);
598 }
599}
600
601__noendbr void cet_disable(void)
602{
603 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
604 cpu_feature_enabled(X86_FEATURE_SHSTK)))
605 return;
606
607 wrmsrl(MSR_IA32_S_CET, 0);
608 wrmsrl(MSR_IA32_U_CET, 0);
609}
610
611/*
612 * Some CPU features depend on higher CPUID levels, which may not always
613 * be available due to CPUID level capping or broken virtualization
614 * software. Add those features to this table to auto-disable them.
615 */
616struct cpuid_dependent_feature {
617 u32 feature;
618 u32 level;
619};
620
621static const struct cpuid_dependent_feature
622cpuid_dependent_features[] = {
623 { X86_FEATURE_MWAIT, 0x00000005 },
624 { X86_FEATURE_DCA, 0x00000009 },
625 { X86_FEATURE_XSAVE, 0x0000000d },
626 { 0, 0 }
627};
628
629static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
630{
631 const struct cpuid_dependent_feature *df;
632
633 for (df = cpuid_dependent_features; df->feature; df++) {
634
635 if (!cpu_has(c, df->feature))
636 continue;
637 /*
638 * Note: cpuid_level is set to -1 if unavailable, but
639 * extended_extended_level is set to 0 if unavailable
640 * and the legitimate extended levels are all negative
641 * when signed; hence the weird messing around with
642 * signs here...
643 */
644 if (!((s32)df->level < 0 ?
645 (u32)df->level > (u32)c->extended_cpuid_level :
646 (s32)df->level > (s32)c->cpuid_level))
647 continue;
648
649 clear_cpu_cap(c, df->feature);
650 if (!warn)
651 continue;
652
653 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
654 x86_cap_flag(df->feature), df->level);
655 }
656}
657
658/*
659 * Naming convention should be: <Name> [(<Codename>)]
660 * This table only is used unless init_<vendor>() below doesn't set it;
661 * in particular, if CPUID levels 0x80000002..4 are supported, this
662 * isn't used
663 */
664
665/* Look up CPU names by table lookup. */
666static const char *table_lookup_model(struct cpuinfo_x86 *c)
667{
668#ifdef CONFIG_X86_32
669 const struct legacy_cpu_model_info *info;
670
671 if (c->x86_model >= 16)
672 return NULL; /* Range check */
673
674 if (!this_cpu)
675 return NULL;
676
677 info = this_cpu->legacy_models;
678
679 while (info->family) {
680 if (info->family == c->x86)
681 return info->model_names[c->x86_model];
682 info++;
683 }
684#endif
685 return NULL; /* Not found */
686}
687
688/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
689__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
691
692#ifdef CONFIG_X86_32
693/* The 32-bit entry code needs to find cpu_entry_area. */
694DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
695#endif
696
697/* Load the original GDT from the per-cpu structure */
698void load_direct_gdt(int cpu)
699{
700 struct desc_ptr gdt_descr;
701
702 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
703 gdt_descr.size = GDT_SIZE - 1;
704 load_gdt(&gdt_descr);
705}
706EXPORT_SYMBOL_GPL(load_direct_gdt);
707
708/* Load a fixmap remapping of the per-cpu GDT */
709void load_fixmap_gdt(int cpu)
710{
711 struct desc_ptr gdt_descr;
712
713 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
714 gdt_descr.size = GDT_SIZE - 1;
715 load_gdt(&gdt_descr);
716}
717EXPORT_SYMBOL_GPL(load_fixmap_gdt);
718
719/**
720 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
721 * @cpu: The CPU number for which this is invoked
722 *
723 * Invoked during early boot to switch from early GDT and early per CPU to
724 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
725 * switch is implicit by loading the direct GDT. On 64bit this requires
726 * to update GSBASE.
727 */
728void __init switch_gdt_and_percpu_base(int cpu)
729{
730 load_direct_gdt(cpu);
731
732#ifdef CONFIG_X86_64
733 /*
734 * No need to load %gs. It is already correct.
735 *
736 * Writing %gs on 64bit would zero GSBASE which would make any per
737 * CPU operation up to the point of the wrmsrl() fault.
738 *
739 * Set GSBASE to the new offset. Until the wrmsrl() happens the
740 * early mapping is still valid. That means the GSBASE update will
741 * lose any prior per CPU data which was not copied over in
742 * setup_per_cpu_areas().
743 *
744 * This works even with stackprotector enabled because the
745 * per CPU stack canary is 0 in both per CPU areas.
746 */
747 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
748#else
749 /*
750 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
751 * it is required to load FS again so that the 'hidden' part is
752 * updated from the new GDT. Up to this point the early per CPU
753 * translation is active. Any content of the early per CPU data
754 * which was not copied over in setup_per_cpu_areas() is lost.
755 */
756 loadsegment(fs, __KERNEL_PERCPU);
757#endif
758}
759
760static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
761
762static void get_model_name(struct cpuinfo_x86 *c)
763{
764 unsigned int *v;
765 char *p, *q, *s;
766
767 if (c->extended_cpuid_level < 0x80000004)
768 return;
769
770 v = (unsigned int *)c->x86_model_id;
771 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
772 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
773 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
774 c->x86_model_id[48] = 0;
775
776 /* Trim whitespace */
777 p = q = s = &c->x86_model_id[0];
778
779 while (*p == ' ')
780 p++;
781
782 while (*p) {
783 /* Note the last non-whitespace index */
784 if (!isspace(*p))
785 s = q;
786
787 *q++ = *p++;
788 }
789
790 *(s + 1) = '\0';
791}
792
793void detect_num_cpu_cores(struct cpuinfo_x86 *c)
794{
795 unsigned int eax, ebx, ecx, edx;
796
797 c->x86_max_cores = 1;
798 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
799 return;
800
801 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
802 if (eax & 0x1f)
803 c->x86_max_cores = (eax >> 26) + 1;
804}
805
806void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
807{
808 unsigned int n, dummy, ebx, ecx, edx, l2size;
809
810 n = c->extended_cpuid_level;
811
812 if (n >= 0x80000005) {
813 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
814 c->x86_cache_size = (ecx>>24) + (edx>>24);
815#ifdef CONFIG_X86_64
816 /* On K8 L1 TLB is inclusive, so don't count it */
817 c->x86_tlbsize = 0;
818#endif
819 }
820
821 if (n < 0x80000006) /* Some chips just has a large L1. */
822 return;
823
824 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
825 l2size = ecx >> 16;
826
827#ifdef CONFIG_X86_64
828 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
829#else
830 /* do processor-specific cache resizing */
831 if (this_cpu->legacy_cache_size)
832 l2size = this_cpu->legacy_cache_size(c, l2size);
833
834 /* Allow user to override all this if necessary. */
835 if (cachesize_override != -1)
836 l2size = cachesize_override;
837
838 if (l2size == 0)
839 return; /* Again, no L2 cache is possible */
840#endif
841
842 c->x86_cache_size = l2size;
843}
844
845u16 __read_mostly tlb_lli_4k[NR_INFO];
846u16 __read_mostly tlb_lli_2m[NR_INFO];
847u16 __read_mostly tlb_lli_4m[NR_INFO];
848u16 __read_mostly tlb_lld_4k[NR_INFO];
849u16 __read_mostly tlb_lld_2m[NR_INFO];
850u16 __read_mostly tlb_lld_4m[NR_INFO];
851u16 __read_mostly tlb_lld_1g[NR_INFO];
852
853static void cpu_detect_tlb(struct cpuinfo_x86 *c)
854{
855 if (this_cpu->c_detect_tlb)
856 this_cpu->c_detect_tlb(c);
857
858 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
859 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
860 tlb_lli_4m[ENTRIES]);
861
862 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
863 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
864 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
865}
866
867int detect_ht_early(struct cpuinfo_x86 *c)
868{
869#ifdef CONFIG_SMP
870 u32 eax, ebx, ecx, edx;
871
872 if (!cpu_has(c, X86_FEATURE_HT))
873 return -1;
874
875 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
876 return -1;
877
878 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
879 return -1;
880
881 cpuid(1, &eax, &ebx, &ecx, &edx);
882
883 smp_num_siblings = (ebx & 0xff0000) >> 16;
884 if (smp_num_siblings == 1)
885 pr_info_once("CPU0: Hyper-Threading is disabled\n");
886#endif
887 return 0;
888}
889
890void detect_ht(struct cpuinfo_x86 *c)
891{
892#ifdef CONFIG_SMP
893 int index_msb, core_bits;
894
895 if (detect_ht_early(c) < 0)
896 return;
897
898 index_msb = get_count_order(smp_num_siblings);
899 c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
900
901 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
902
903 index_msb = get_count_order(smp_num_siblings);
904
905 core_bits = get_count_order(c->x86_max_cores);
906
907 c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
908 ((1 << core_bits) - 1);
909#endif
910}
911
912static void get_cpu_vendor(struct cpuinfo_x86 *c)
913{
914 char *v = c->x86_vendor_id;
915 int i;
916
917 for (i = 0; i < X86_VENDOR_NUM; i++) {
918 if (!cpu_devs[i])
919 break;
920
921 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
922 (cpu_devs[i]->c_ident[1] &&
923 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
924
925 this_cpu = cpu_devs[i];
926 c->x86_vendor = this_cpu->c_x86_vendor;
927 return;
928 }
929 }
930
931 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
932 "CPU: Your system may be unstable.\n", v);
933
934 c->x86_vendor = X86_VENDOR_UNKNOWN;
935 this_cpu = &default_cpu;
936}
937
938void cpu_detect(struct cpuinfo_x86 *c)
939{
940 /* Get vendor name */
941 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
942 (unsigned int *)&c->x86_vendor_id[0],
943 (unsigned int *)&c->x86_vendor_id[8],
944 (unsigned int *)&c->x86_vendor_id[4]);
945
946 c->x86 = 4;
947 /* Intel-defined flags: level 0x00000001 */
948 if (c->cpuid_level >= 0x00000001) {
949 u32 junk, tfms, cap0, misc;
950
951 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
952 c->x86 = x86_family(tfms);
953 c->x86_model = x86_model(tfms);
954 c->x86_stepping = x86_stepping(tfms);
955
956 if (cap0 & (1<<19)) {
957 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
958 c->x86_cache_alignment = c->x86_clflush_size;
959 }
960 }
961}
962
963static void apply_forced_caps(struct cpuinfo_x86 *c)
964{
965 int i;
966
967 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
968 c->x86_capability[i] &= ~cpu_caps_cleared[i];
969 c->x86_capability[i] |= cpu_caps_set[i];
970 }
971}
972
973static void init_speculation_control(struct cpuinfo_x86 *c)
974{
975 /*
976 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
977 * and they also have a different bit for STIBP support. Also,
978 * a hypervisor might have set the individual AMD bits even on
979 * Intel CPUs, for finer-grained selection of what's available.
980 */
981 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
982 set_cpu_cap(c, X86_FEATURE_IBRS);
983 set_cpu_cap(c, X86_FEATURE_IBPB);
984 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
985 }
986
987 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
988 set_cpu_cap(c, X86_FEATURE_STIBP);
989
990 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
991 cpu_has(c, X86_FEATURE_VIRT_SSBD))
992 set_cpu_cap(c, X86_FEATURE_SSBD);
993
994 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
995 set_cpu_cap(c, X86_FEATURE_IBRS);
996 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
997 }
998
999 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1000 set_cpu_cap(c, X86_FEATURE_IBPB);
1001
1002 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1003 set_cpu_cap(c, X86_FEATURE_STIBP);
1004 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1005 }
1006
1007 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1008 set_cpu_cap(c, X86_FEATURE_SSBD);
1009 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1010 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1011 }
1012}
1013
1014void get_cpu_cap(struct cpuinfo_x86 *c)
1015{
1016 u32 eax, ebx, ecx, edx;
1017
1018 /* Intel-defined flags: level 0x00000001 */
1019 if (c->cpuid_level >= 0x00000001) {
1020 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1021
1022 c->x86_capability[CPUID_1_ECX] = ecx;
1023 c->x86_capability[CPUID_1_EDX] = edx;
1024 }
1025
1026 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1027 if (c->cpuid_level >= 0x00000006)
1028 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1029
1030 /* Additional Intel-defined flags: level 0x00000007 */
1031 if (c->cpuid_level >= 0x00000007) {
1032 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1033 c->x86_capability[CPUID_7_0_EBX] = ebx;
1034 c->x86_capability[CPUID_7_ECX] = ecx;
1035 c->x86_capability[CPUID_7_EDX] = edx;
1036
1037 /* Check valid sub-leaf index before accessing it */
1038 if (eax >= 1) {
1039 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1040 c->x86_capability[CPUID_7_1_EAX] = eax;
1041 }
1042 }
1043
1044 /* Extended state features: level 0x0000000d */
1045 if (c->cpuid_level >= 0x0000000d) {
1046 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1047
1048 c->x86_capability[CPUID_D_1_EAX] = eax;
1049 }
1050
1051 /* AMD-defined flags: level 0x80000001 */
1052 eax = cpuid_eax(0x80000000);
1053 c->extended_cpuid_level = eax;
1054
1055 if ((eax & 0xffff0000) == 0x80000000) {
1056 if (eax >= 0x80000001) {
1057 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1058
1059 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1060 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1061 }
1062 }
1063
1064 if (c->extended_cpuid_level >= 0x80000007) {
1065 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1066
1067 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1068 c->x86_power = edx;
1069 }
1070
1071 if (c->extended_cpuid_level >= 0x80000008) {
1072 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1073 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1074 }
1075
1076 if (c->extended_cpuid_level >= 0x8000000a)
1077 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1078
1079 if (c->extended_cpuid_level >= 0x8000001f)
1080 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1081
1082 if (c->extended_cpuid_level >= 0x80000021)
1083 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1084
1085 init_scattered_cpuid_features(c);
1086 init_speculation_control(c);
1087
1088 /*
1089 * Clear/Set all flags overridden by options, after probe.
1090 * This needs to happen each time we re-probe, which may happen
1091 * several times during CPU initialization.
1092 */
1093 apply_forced_caps(c);
1094}
1095
1096void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1097{
1098 u32 eax, ebx, ecx, edx;
1099 bool vp_bits_from_cpuid = true;
1100
1101 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1102 (c->extended_cpuid_level < 0x80000008))
1103 vp_bits_from_cpuid = false;
1104
1105 if (vp_bits_from_cpuid) {
1106 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1107
1108 c->x86_virt_bits = (eax >> 8) & 0xff;
1109 c->x86_phys_bits = eax & 0xff;
1110 } else {
1111 if (IS_ENABLED(CONFIG_X86_64)) {
1112 c->x86_clflush_size = 64;
1113 c->x86_phys_bits = 36;
1114 c->x86_virt_bits = 48;
1115 } else {
1116 c->x86_clflush_size = 32;
1117 c->x86_virt_bits = 32;
1118 c->x86_phys_bits = 32;
1119
1120 if (cpu_has(c, X86_FEATURE_PAE) ||
1121 cpu_has(c, X86_FEATURE_PSE36))
1122 c->x86_phys_bits = 36;
1123 }
1124 }
1125 c->x86_cache_bits = c->x86_phys_bits;
1126 c->x86_cache_alignment = c->x86_clflush_size;
1127}
1128
1129static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130{
1131#ifdef CONFIG_X86_32
1132 int i;
1133
1134 /*
1135 * First of all, decide if this is a 486 or higher
1136 * It's a 486 if we can modify the AC flag
1137 */
1138 if (flag_is_changeable_p(X86_EFLAGS_AC))
1139 c->x86 = 4;
1140 else
1141 c->x86 = 3;
1142
1143 for (i = 0; i < X86_VENDOR_NUM; i++)
1144 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145 c->x86_vendor_id[0] = 0;
1146 cpu_devs[i]->c_identify(c);
1147 if (c->x86_vendor_id[0]) {
1148 get_cpu_vendor(c);
1149 break;
1150 }
1151 }
1152#endif
1153}
1154
1155#define NO_SPECULATION BIT(0)
1156#define NO_MELTDOWN BIT(1)
1157#define NO_SSB BIT(2)
1158#define NO_L1TF BIT(3)
1159#define NO_MDS BIT(4)
1160#define MSBDS_ONLY BIT(5)
1161#define NO_SWAPGS BIT(6)
1162#define NO_ITLB_MULTIHIT BIT(7)
1163#define NO_SPECTRE_V2 BIT(8)
1164#define NO_MMIO BIT(9)
1165#define NO_EIBRS_PBRSB BIT(10)
1166
1167#define VULNWL(vendor, family, model, whitelist) \
1168 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1169
1170#define VULNWL_INTEL(model, whitelist) \
1171 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1172
1173#define VULNWL_AMD(family, whitelist) \
1174 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1175
1176#define VULNWL_HYGON(family, whitelist) \
1177 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1178
1179static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1180 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1181 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1182 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1183 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1185 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1186
1187 /* Intel Family 6 */
1188 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1189 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1190 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1191 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1192
1193 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1198
1199 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205
1206 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1207
1208 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210
1211 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1213 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1214
1215 /*
1216 * Technically, swapgs isn't serializing on AMD (despite it previously
1217 * being documented as such in the APM). But according to AMD, %gs is
1218 * updated non-speculatively, and the issuing of %gs-relative memory
1219 * operands will be blocked until the %gs update completes, which is
1220 * good enough for our purposes.
1221 */
1222
1223 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1224 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1225 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1226
1227 /* AMD Family 0xf - 0x12 */
1228 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232
1233 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1234 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1236
1237 /* Zhaoxin Family 7 */
1238 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1240 {}
1241};
1242
1243#define VULNBL(vendor, family, model, blacklist) \
1244 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1245
1246#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1247 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1248 INTEL_FAM6_##model, steppings, \
1249 X86_FEATURE_ANY, issues)
1250
1251#define VULNBL_AMD(family, blacklist) \
1252 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1253
1254#define VULNBL_HYGON(family, blacklist) \
1255 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1256
1257#define SRBDS BIT(0)
1258/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1259#define MMIO BIT(1)
1260/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1261#define MMIO_SBDS BIT(2)
1262/* CPU is affected by RETbleed, speculating where you would not expect it */
1263#define RETBLEED BIT(3)
1264/* CPU is affected by SMT (cross-thread) return predictions */
1265#define SMT_RSB BIT(4)
1266/* CPU is affected by SRSO */
1267#define SRSO BIT(5)
1268/* CPU is affected by GDS */
1269#define GDS BIT(6)
1270
1271static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1272 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1273 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1274 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1275 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1276 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1277 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1278 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1279 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1280 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1281 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1282 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1283 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1284 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1285 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1286 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1287 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1288 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1289 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1290 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1291 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1292 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1293 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1294 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1295 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1296 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1297 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1298 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1299 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1300
1301 VULNBL_AMD(0x15, RETBLEED),
1302 VULNBL_AMD(0x16, RETBLEED),
1303 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1304 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1305 VULNBL_AMD(0x19, SRSO),
1306 {}
1307};
1308
1309static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1310{
1311 const struct x86_cpu_id *m = x86_match_cpu(table);
1312
1313 return m && !!(m->driver_data & which);
1314}
1315
1316u64 x86_read_arch_cap_msr(void)
1317{
1318 u64 ia32_cap = 0;
1319
1320 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1321 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1322
1323 return ia32_cap;
1324}
1325
1326static bool arch_cap_mmio_immune(u64 ia32_cap)
1327{
1328 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1329 ia32_cap & ARCH_CAP_PSDP_NO &&
1330 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1331}
1332
1333static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1334{
1335 u64 ia32_cap = x86_read_arch_cap_msr();
1336
1337 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1338 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1339 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1340 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1341
1342 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1343 return;
1344
1345 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1346
1347 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1348 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1349
1350 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1351 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1352 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1353 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1354
1355 /*
1356 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1357 * flag and protect from vendor-specific bugs via the whitelist.
1358 */
1359 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1360 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1361 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1362 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1363 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1364 }
1365
1366 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1367 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1368 setup_force_cpu_bug(X86_BUG_MDS);
1369 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1370 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1371 }
1372
1373 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1374 setup_force_cpu_bug(X86_BUG_SWAPGS);
1375
1376 /*
1377 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1378 * - TSX is supported or
1379 * - TSX_CTRL is present
1380 *
1381 * TSX_CTRL check is needed for cases when TSX could be disabled before
1382 * the kernel boot e.g. kexec.
1383 * TSX_CTRL check alone is not sufficient for cases when the microcode
1384 * update is not present or running as guest that don't get TSX_CTRL.
1385 */
1386 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1387 (cpu_has(c, X86_FEATURE_RTM) ||
1388 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1389 setup_force_cpu_bug(X86_BUG_TAA);
1390
1391 /*
1392 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1393 * in the vulnerability blacklist.
1394 *
1395 * Some of the implications and mitigation of Shared Buffers Data
1396 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1397 * SRBDS.
1398 */
1399 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1400 cpu_has(c, X86_FEATURE_RDSEED)) &&
1401 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1402 setup_force_cpu_bug(X86_BUG_SRBDS);
1403
1404 /*
1405 * Processor MMIO Stale Data bug enumeration
1406 *
1407 * Affected CPU list is generally enough to enumerate the vulnerability,
1408 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1409 * not want the guest to enumerate the bug.
1410 *
1411 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1412 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1413 */
1414 if (!arch_cap_mmio_immune(ia32_cap)) {
1415 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1416 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1417 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1418 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1419 }
1420
1421 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1422 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1423 setup_force_cpu_bug(X86_BUG_RETBLEED);
1424 }
1425
1426 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1427 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1428
1429 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1430 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1431 setup_force_cpu_bug(X86_BUG_SRSO);
1432 }
1433
1434 /*
1435 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1436 * an affected processor, the VMM may have disabled the use of GATHER by
1437 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1438 * which means that AVX will be disabled.
1439 */
1440 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1441 boot_cpu_has(X86_FEATURE_AVX))
1442 setup_force_cpu_bug(X86_BUG_GDS);
1443
1444 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1445 return;
1446
1447 /* Rogue Data Cache Load? No! */
1448 if (ia32_cap & ARCH_CAP_RDCL_NO)
1449 return;
1450
1451 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1452
1453 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1454 return;
1455
1456 setup_force_cpu_bug(X86_BUG_L1TF);
1457}
1458
1459/*
1460 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1461 * unfortunately, that's not true in practice because of early VIA
1462 * chips and (more importantly) broken virtualizers that are not easy
1463 * to detect. In the latter case it doesn't even *fail* reliably, so
1464 * probing for it doesn't even work. Disable it completely on 32-bit
1465 * unless we can find a reliable way to detect all the broken cases.
1466 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1467 */
1468static void detect_nopl(void)
1469{
1470#ifdef CONFIG_X86_32
1471 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1472#else
1473 setup_force_cpu_cap(X86_FEATURE_NOPL);
1474#endif
1475}
1476
1477/*
1478 * We parse cpu parameters early because fpu__init_system() is executed
1479 * before parse_early_param().
1480 */
1481static void __init cpu_parse_early_param(void)
1482{
1483 char arg[128];
1484 char *argptr = arg, *opt;
1485 int arglen, taint = 0;
1486
1487#ifdef CONFIG_X86_32
1488 if (cmdline_find_option_bool(boot_command_line, "no387"))
1489#ifdef CONFIG_MATH_EMULATION
1490 setup_clear_cpu_cap(X86_FEATURE_FPU);
1491#else
1492 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1493#endif
1494
1495 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1496 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1497#endif
1498
1499 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1500 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1501
1502 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1503 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1504
1505 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1506 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1507
1508 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1509 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1510
1511 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1512 if (arglen <= 0)
1513 return;
1514
1515 pr_info("Clearing CPUID bits:");
1516
1517 while (argptr) {
1518 bool found __maybe_unused = false;
1519 unsigned int bit;
1520
1521 opt = strsep(&argptr, ",");
1522
1523 /*
1524 * Handle naked numbers first for feature flags which don't
1525 * have names.
1526 */
1527 if (!kstrtouint(opt, 10, &bit)) {
1528 if (bit < NCAPINTS * 32) {
1529
1530 /* empty-string, i.e., ""-defined feature flags */
1531 if (!x86_cap_flags[bit])
1532 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1533 else
1534 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1535
1536 setup_clear_cpu_cap(bit);
1537 taint++;
1538 }
1539 /*
1540 * The assumption is that there are no feature names with only
1541 * numbers in the name thus go to the next argument.
1542 */
1543 continue;
1544 }
1545
1546 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1547 if (!x86_cap_flag(bit))
1548 continue;
1549
1550 if (strcmp(x86_cap_flag(bit), opt))
1551 continue;
1552
1553 pr_cont(" %s", opt);
1554 setup_clear_cpu_cap(bit);
1555 taint++;
1556 found = true;
1557 break;
1558 }
1559
1560 if (!found)
1561 pr_cont(" (unknown: %s)", opt);
1562 }
1563 pr_cont("\n");
1564
1565 if (taint)
1566 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1567}
1568
1569/*
1570 * Do minimum CPU detection early.
1571 * Fields really needed: vendor, cpuid_level, family, model, mask,
1572 * cache alignment.
1573 * The others are not touched to avoid unwanted side effects.
1574 *
1575 * WARNING: this function is only called on the boot CPU. Don't add code
1576 * here that is supposed to run on all CPUs.
1577 */
1578static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1579{
1580 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1581 c->extended_cpuid_level = 0;
1582
1583 if (!have_cpuid_p())
1584 identify_cpu_without_cpuid(c);
1585
1586 /* cyrix could have cpuid enabled via c_identify()*/
1587 if (have_cpuid_p()) {
1588 cpu_detect(c);
1589 get_cpu_vendor(c);
1590 get_cpu_cap(c);
1591 setup_force_cpu_cap(X86_FEATURE_CPUID);
1592 get_cpu_address_sizes(c);
1593 cpu_parse_early_param();
1594
1595 if (this_cpu->c_early_init)
1596 this_cpu->c_early_init(c);
1597
1598 c->cpu_index = 0;
1599 filter_cpuid_features(c, false);
1600
1601 if (this_cpu->c_bsp_init)
1602 this_cpu->c_bsp_init(c);
1603 } else {
1604 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1605 get_cpu_address_sizes(c);
1606 }
1607
1608 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1609
1610 cpu_set_bug_bits(c);
1611
1612 sld_setup(c);
1613
1614#ifdef CONFIG_X86_32
1615 /*
1616 * Regardless of whether PCID is enumerated, the SDM says
1617 * that it can't be enabled in 32-bit mode.
1618 */
1619 setup_clear_cpu_cap(X86_FEATURE_PCID);
1620#endif
1621
1622 /*
1623 * Later in the boot process pgtable_l5_enabled() relies on
1624 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1625 * enabled by this point we need to clear the feature bit to avoid
1626 * false-positives at the later stage.
1627 *
1628 * pgtable_l5_enabled() can be false here for several reasons:
1629 * - 5-level paging is disabled compile-time;
1630 * - it's 32-bit kernel;
1631 * - machine doesn't support 5-level paging;
1632 * - user specified 'no5lvl' in kernel command line.
1633 */
1634 if (!pgtable_l5_enabled())
1635 setup_clear_cpu_cap(X86_FEATURE_LA57);
1636
1637 detect_nopl();
1638}
1639
1640void __init early_cpu_init(void)
1641{
1642 const struct cpu_dev *const *cdev;
1643 int count = 0;
1644
1645#ifdef CONFIG_PROCESSOR_SELECT
1646 pr_info("KERNEL supported cpus:\n");
1647#endif
1648
1649 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1650 const struct cpu_dev *cpudev = *cdev;
1651
1652 if (count >= X86_VENDOR_NUM)
1653 break;
1654 cpu_devs[count] = cpudev;
1655 count++;
1656
1657#ifdef CONFIG_PROCESSOR_SELECT
1658 {
1659 unsigned int j;
1660
1661 for (j = 0; j < 2; j++) {
1662 if (!cpudev->c_ident[j])
1663 continue;
1664 pr_info(" %s %s\n", cpudev->c_vendor,
1665 cpudev->c_ident[j]);
1666 }
1667 }
1668#endif
1669 }
1670 early_identify_cpu(&boot_cpu_data);
1671}
1672
1673static bool detect_null_seg_behavior(void)
1674{
1675 /*
1676 * Empirically, writing zero to a segment selector on AMD does
1677 * not clear the base, whereas writing zero to a segment
1678 * selector on Intel does clear the base. Intel's behavior
1679 * allows slightly faster context switches in the common case
1680 * where GS is unused by the prev and next threads.
1681 *
1682 * Since neither vendor documents this anywhere that I can see,
1683 * detect it directly instead of hard-coding the choice by
1684 * vendor.
1685 *
1686 * I've designated AMD's behavior as the "bug" because it's
1687 * counterintuitive and less friendly.
1688 */
1689
1690 unsigned long old_base, tmp;
1691 rdmsrl(MSR_FS_BASE, old_base);
1692 wrmsrl(MSR_FS_BASE, 1);
1693 loadsegment(fs, 0);
1694 rdmsrl(MSR_FS_BASE, tmp);
1695 wrmsrl(MSR_FS_BASE, old_base);
1696 return tmp == 0;
1697}
1698
1699void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1700{
1701 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1702 if (!IS_ENABLED(CONFIG_X86_64))
1703 return;
1704
1705 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1706 return;
1707
1708 /*
1709 * CPUID bit above wasn't set. If this kernel is still running
1710 * as a HV guest, then the HV has decided not to advertize
1711 * that CPUID bit for whatever reason. For example, one
1712 * member of the migration pool might be vulnerable. Which
1713 * means, the bug is present: set the BUG flag and return.
1714 */
1715 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1716 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717 return;
1718 }
1719
1720 /*
1721 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1722 * 0x18 is the respective family for Hygon.
1723 */
1724 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1725 detect_null_seg_behavior())
1726 return;
1727
1728 /* All the remaining ones are affected */
1729 set_cpu_bug(c, X86_BUG_NULL_SEG);
1730}
1731
1732static void generic_identify(struct cpuinfo_x86 *c)
1733{
1734 c->extended_cpuid_level = 0;
1735
1736 if (!have_cpuid_p())
1737 identify_cpu_without_cpuid(c);
1738
1739 /* cyrix could have cpuid enabled via c_identify()*/
1740 if (!have_cpuid_p())
1741 return;
1742
1743 cpu_detect(c);
1744
1745 get_cpu_vendor(c);
1746
1747 get_cpu_cap(c);
1748
1749 get_cpu_address_sizes(c);
1750
1751 if (c->cpuid_level >= 0x00000001) {
1752 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1753#ifdef CONFIG_X86_32
1754# ifdef CONFIG_SMP
1755 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1756# else
1757 c->topo.apicid = c->topo.initial_apicid;
1758# endif
1759#endif
1760 c->topo.pkg_id = c->topo.initial_apicid;
1761 }
1762
1763 get_model_name(c); /* Default name */
1764
1765 /*
1766 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1767 * systems that run Linux at CPL > 0 may or may not have the
1768 * issue, but, even if they have the issue, there's absolutely
1769 * nothing we can do about it because we can't use the real IRET
1770 * instruction.
1771 *
1772 * NB: For the time being, only 32-bit kernels support
1773 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1774 * whether to apply espfix using paravirt hooks. If any
1775 * non-paravirt system ever shows up that does *not* have the
1776 * ESPFIX issue, we can change this.
1777 */
1778#ifdef CONFIG_X86_32
1779 set_cpu_bug(c, X86_BUG_ESPFIX);
1780#endif
1781}
1782
1783/*
1784 * Validate that ACPI/mptables have the same information about the
1785 * effective APIC id and update the package map.
1786 */
1787static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1788{
1789#ifdef CONFIG_SMP
1790 unsigned int cpu = smp_processor_id();
1791 u32 apicid;
1792
1793 apicid = apic->cpu_present_to_apicid(cpu);
1794
1795 if (apicid != c->topo.apicid) {
1796 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1797 cpu, apicid, c->topo.initial_apicid);
1798 }
1799 BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1800 BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1801#else
1802 c->topo.logical_pkg_id = 0;
1803#endif
1804}
1805
1806/*
1807 * This does the hard work of actually picking apart the CPU stuff...
1808 */
1809static void identify_cpu(struct cpuinfo_x86 *c)
1810{
1811 int i;
1812
1813 c->loops_per_jiffy = loops_per_jiffy;
1814 c->x86_cache_size = 0;
1815 c->x86_vendor = X86_VENDOR_UNKNOWN;
1816 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1817 c->x86_vendor_id[0] = '\0'; /* Unset */
1818 c->x86_model_id[0] = '\0'; /* Unset */
1819 c->x86_max_cores = 1;
1820 c->x86_coreid_bits = 0;
1821 c->topo.cu_id = 0xff;
1822 c->topo.llc_id = BAD_APICID;
1823 c->topo.l2c_id = BAD_APICID;
1824#ifdef CONFIG_X86_64
1825 c->x86_clflush_size = 64;
1826 c->x86_phys_bits = 36;
1827 c->x86_virt_bits = 48;
1828#else
1829 c->cpuid_level = -1; /* CPUID not detected */
1830 c->x86_clflush_size = 32;
1831 c->x86_phys_bits = 32;
1832 c->x86_virt_bits = 32;
1833#endif
1834 c->x86_cache_alignment = c->x86_clflush_size;
1835 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1836#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1837 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1838#endif
1839
1840 generic_identify(c);
1841
1842 if (this_cpu->c_identify)
1843 this_cpu->c_identify(c);
1844
1845 /* Clear/Set all flags overridden by options, after probe */
1846 apply_forced_caps(c);
1847
1848#ifdef CONFIG_X86_64
1849 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1850#endif
1851
1852
1853 /*
1854 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1855 * Hygon will clear it in ->c_init() below.
1856 */
1857 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1858
1859 /*
1860 * Vendor-specific initialization. In this section we
1861 * canonicalize the feature flags, meaning if there are
1862 * features a certain CPU supports which CPUID doesn't
1863 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 * we handle them here.
1865 *
1866 * At the end of this section, c->x86_capability better
1867 * indicate the features this CPU genuinely supports!
1868 */
1869 if (this_cpu->c_init)
1870 this_cpu->c_init(c);
1871
1872 /* Disable the PN if appropriate */
1873 squash_the_stupid_serial_number(c);
1874
1875 /* Set up SMEP/SMAP/UMIP */
1876 setup_smep(c);
1877 setup_smap(c);
1878 setup_umip(c);
1879
1880 /* Enable FSGSBASE instructions if available. */
1881 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 cr4_set_bits(X86_CR4_FSGSBASE);
1883 elf_hwcap2 |= HWCAP2_FSGSBASE;
1884 }
1885
1886 /*
1887 * The vendor-specific functions might have changed features.
1888 * Now we do "generic changes."
1889 */
1890
1891 /* Filter out anything that depends on CPUID levels we don't have */
1892 filter_cpuid_features(c, true);
1893
1894 /* If the model name is still unset, do table lookup. */
1895 if (!c->x86_model_id[0]) {
1896 const char *p;
1897 p = table_lookup_model(c);
1898 if (p)
1899 strcpy(c->x86_model_id, p);
1900 else
1901 /* Last resort... */
1902 sprintf(c->x86_model_id, "%02x/%02x",
1903 c->x86, c->x86_model);
1904 }
1905
1906#ifdef CONFIG_X86_64
1907 detect_ht(c);
1908#endif
1909
1910 x86_init_rdrand(c);
1911 setup_pku(c);
1912 setup_cet(c);
1913
1914 /*
1915 * Clear/Set all flags overridden by options, need do it
1916 * before following smp all cpus cap AND.
1917 */
1918 apply_forced_caps(c);
1919
1920 /*
1921 * On SMP, boot_cpu_data holds the common feature set between
1922 * all CPUs; so make sure that we indicate which features are
1923 * common between the CPUs. The first time this routine gets
1924 * executed, c == &boot_cpu_data.
1925 */
1926 if (c != &boot_cpu_data) {
1927 /* AND the already accumulated flags with these */
1928 for (i = 0; i < NCAPINTS; i++)
1929 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930
1931 /* OR, i.e. replicate the bug flags */
1932 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934 }
1935
1936 ppin_init(c);
1937
1938 /* Init Machine Check Exception if available. */
1939 mcheck_cpu_init(c);
1940
1941 select_idle_routine(c);
1942
1943#ifdef CONFIG_NUMA
1944 numa_add_cpu(smp_processor_id());
1945#endif
1946}
1947
1948/*
1949 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950 * on 32-bit kernels:
1951 */
1952#ifdef CONFIG_X86_32
1953void enable_sep_cpu(void)
1954{
1955 struct tss_struct *tss;
1956 int cpu;
1957
1958 if (!boot_cpu_has(X86_FEATURE_SEP))
1959 return;
1960
1961 cpu = get_cpu();
1962 tss = &per_cpu(cpu_tss_rw, cpu);
1963
1964 /*
1965 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 * see the big comment in struct x86_hw_tss's definition.
1967 */
1968
1969 tss->x86_tss.ss1 = __KERNEL_CS;
1970 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973
1974 put_cpu();
1975}
1976#endif
1977
1978static __init void identify_boot_cpu(void)
1979{
1980 identify_cpu(&boot_cpu_data);
1981 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983#ifdef CONFIG_X86_32
1984 enable_sep_cpu();
1985#endif
1986 cpu_detect_tlb(&boot_cpu_data);
1987 setup_cr_pinning();
1988
1989 tsx_init();
1990 tdx_init();
1991 lkgs_init();
1992}
1993
1994void identify_secondary_cpu(struct cpuinfo_x86 *c)
1995{
1996 BUG_ON(c == &boot_cpu_data);
1997 identify_cpu(c);
1998#ifdef CONFIG_X86_32
1999 enable_sep_cpu();
2000#endif
2001 validate_apic_and_package_id(c);
2002 x86_spec_ctrl_setup_ap();
2003 update_srbds_msr();
2004 if (boot_cpu_has_bug(X86_BUG_GDS))
2005 update_gds_msr();
2006
2007 tsx_ap_init();
2008}
2009
2010void print_cpu_info(struct cpuinfo_x86 *c)
2011{
2012 const char *vendor = NULL;
2013
2014 if (c->x86_vendor < X86_VENDOR_NUM) {
2015 vendor = this_cpu->c_vendor;
2016 } else {
2017 if (c->cpuid_level >= 0)
2018 vendor = c->x86_vendor_id;
2019 }
2020
2021 if (vendor && !strstr(c->x86_model_id, vendor))
2022 pr_cont("%s ", vendor);
2023
2024 if (c->x86_model_id[0])
2025 pr_cont("%s", c->x86_model_id);
2026 else
2027 pr_cont("%d86", c->x86);
2028
2029 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2030
2031 if (c->x86_stepping || c->cpuid_level >= 0)
2032 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2033 else
2034 pr_cont(")\n");
2035}
2036
2037/*
2038 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2039 * function prevents it from becoming an environment variable for init.
2040 */
2041static __init int setup_clearcpuid(char *arg)
2042{
2043 return 1;
2044}
2045__setup("clearcpuid=", setup_clearcpuid);
2046
2047DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2048 .current_task = &init_task,
2049 .preempt_count = INIT_PREEMPT_COUNT,
2050 .top_of_stack = TOP_OF_INIT_STACK,
2051};
2052EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2053
2054#ifdef CONFIG_X86_64
2055DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2056 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2057EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2058
2059static void wrmsrl_cstar(unsigned long val)
2060{
2061 /*
2062 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2063 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2064 * guest. Avoid the pointless write on all Intel CPUs.
2065 */
2066 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2067 wrmsrl(MSR_CSTAR, val);
2068}
2069
2070/* May not be marked __init: used by software suspend */
2071void syscall_init(void)
2072{
2073 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2074 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2075
2076 if (ia32_enabled()) {
2077 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2078 /*
2079 * This only works on Intel CPUs.
2080 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2081 * This does not cause SYSENTER to jump to the wrong location, because
2082 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2083 */
2084 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2085 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2086 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2087 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2088 } else {
2089 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2090 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2091 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2092 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2093 }
2094
2095 /*
2096 * Flags to clear on syscall; clear as much as possible
2097 * to minimize user space-kernel interference.
2098 */
2099 wrmsrl(MSR_SYSCALL_MASK,
2100 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2101 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2102 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2103 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2104 X86_EFLAGS_AC|X86_EFLAGS_ID);
2105}
2106
2107#else /* CONFIG_X86_64 */
2108
2109#ifdef CONFIG_STACKPROTECTOR
2110DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2111EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2112#endif
2113
2114#endif /* CONFIG_X86_64 */
2115
2116/*
2117 * Clear all 6 debug registers:
2118 */
2119static void clear_all_debug_regs(void)
2120{
2121 int i;
2122
2123 for (i = 0; i < 8; i++) {
2124 /* Ignore db4, db5 */
2125 if ((i == 4) || (i == 5))
2126 continue;
2127
2128 set_debugreg(0, i);
2129 }
2130}
2131
2132#ifdef CONFIG_KGDB
2133/*
2134 * Restore debug regs if using kgdbwait and you have a kernel debugger
2135 * connection established.
2136 */
2137static void dbg_restore_debug_regs(void)
2138{
2139 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2140 arch_kgdb_ops.correct_hw_break();
2141}
2142#else /* ! CONFIG_KGDB */
2143#define dbg_restore_debug_regs()
2144#endif /* ! CONFIG_KGDB */
2145
2146static inline void setup_getcpu(int cpu)
2147{
2148 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2149 struct desc_struct d = { };
2150
2151 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2152 wrmsr(MSR_TSC_AUX, cpudata, 0);
2153
2154 /* Store CPU and node number in limit. */
2155 d.limit0 = cpudata;
2156 d.limit1 = cpudata >> 16;
2157
2158 d.type = 5; /* RO data, expand down, accessed */
2159 d.dpl = 3; /* Visible to user code */
2160 d.s = 1; /* Not a system segment */
2161 d.p = 1; /* Present */
2162 d.d = 1; /* 32-bit */
2163
2164 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2165}
2166
2167#ifdef CONFIG_X86_64
2168static inline void tss_setup_ist(struct tss_struct *tss)
2169{
2170 /* Set up the per-CPU TSS IST stacks */
2171 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2172 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2173 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2174 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2175 /* Only mapped when SEV-ES is active */
2176 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2177}
2178#else /* CONFIG_X86_64 */
2179static inline void tss_setup_ist(struct tss_struct *tss) { }
2180#endif /* !CONFIG_X86_64 */
2181
2182static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2183{
2184 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2185
2186#ifdef CONFIG_X86_IOPL_IOPERM
2187 tss->io_bitmap.prev_max = 0;
2188 tss->io_bitmap.prev_sequence = 0;
2189 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2190 /*
2191 * Invalidate the extra array entry past the end of the all
2192 * permission bitmap as required by the hardware.
2193 */
2194 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2195#endif
2196}
2197
2198/*
2199 * Setup everything needed to handle exceptions from the IDT, including the IST
2200 * exceptions which use paranoid_entry().
2201 */
2202void cpu_init_exception_handling(void)
2203{
2204 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2205 int cpu = raw_smp_processor_id();
2206
2207 /* paranoid_entry() gets the CPU number from the GDT */
2208 setup_getcpu(cpu);
2209
2210 /* IST vectors need TSS to be set up. */
2211 tss_setup_ist(tss);
2212 tss_setup_io_bitmap(tss);
2213 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2214
2215 load_TR_desc();
2216
2217 /* GHCB needs to be setup to handle #VC. */
2218 setup_ghcb();
2219
2220 /* Finally load the IDT */
2221 load_current_idt();
2222}
2223
2224/*
2225 * cpu_init() initializes state that is per-CPU. Some data is already
2226 * initialized (naturally) in the bootstrap process, such as the GDT. We
2227 * reload it nevertheless, this function acts as a 'CPU state barrier',
2228 * nothing should get across.
2229 */
2230void cpu_init(void)
2231{
2232 struct task_struct *cur = current;
2233 int cpu = raw_smp_processor_id();
2234
2235#ifdef CONFIG_NUMA
2236 if (this_cpu_read(numa_node) == 0 &&
2237 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2238 set_numa_node(early_cpu_to_node(cpu));
2239#endif
2240 pr_debug("Initializing CPU#%d\n", cpu);
2241
2242 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2243 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2244 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2245
2246 if (IS_ENABLED(CONFIG_X86_64)) {
2247 loadsegment(fs, 0);
2248 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2249 syscall_init();
2250
2251 wrmsrl(MSR_FS_BASE, 0);
2252 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2253 barrier();
2254
2255 x2apic_setup();
2256 }
2257
2258 mmgrab(&init_mm);
2259 cur->active_mm = &init_mm;
2260 BUG_ON(cur->mm);
2261 initialize_tlbstate_and_flush();
2262 enter_lazy_tlb(&init_mm, cur);
2263
2264 /*
2265 * sp0 points to the entry trampoline stack regardless of what task
2266 * is running.
2267 */
2268 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2269
2270 load_mm_ldt(&init_mm);
2271
2272 clear_all_debug_regs();
2273 dbg_restore_debug_regs();
2274
2275 doublefault_init_cpu_tss();
2276
2277 if (is_uv_system())
2278 uv_cpu_init();
2279
2280 load_fixmap_gdt(cpu);
2281}
2282
2283#ifdef CONFIG_MICROCODE_LATE_LOADING
2284/**
2285 * store_cpu_caps() - Store a snapshot of CPU capabilities
2286 * @curr_info: Pointer where to store it
2287 *
2288 * Returns: None
2289 */
2290void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2291{
2292 /* Reload CPUID max function as it might've changed. */
2293 curr_info->cpuid_level = cpuid_eax(0);
2294
2295 /* Copy all capability leafs and pick up the synthetic ones. */
2296 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2297 sizeof(curr_info->x86_capability));
2298
2299 /* Get the hardware CPUID leafs */
2300 get_cpu_cap(curr_info);
2301}
2302
2303/**
2304 * microcode_check() - Check if any CPU capabilities changed after an update.
2305 * @prev_info: CPU capabilities stored before an update.
2306 *
2307 * The microcode loader calls this upon late microcode load to recheck features,
2308 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2309 *
2310 * Return: None
2311 */
2312void microcode_check(struct cpuinfo_x86 *prev_info)
2313{
2314 struct cpuinfo_x86 curr_info;
2315
2316 perf_check_microcode();
2317
2318 amd_check_microcode();
2319
2320 store_cpu_caps(&curr_info);
2321
2322 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2323 sizeof(prev_info->x86_capability)))
2324 return;
2325
2326 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2327 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2328}
2329#endif
2330
2331/*
2332 * Invoked from core CPU hotplug code after hotplug operations
2333 */
2334void arch_smt_update(void)
2335{
2336 /* Handle the speculative execution misfeatures */
2337 cpu_bugs_smt_update();
2338 /* Check whether IPI broadcasting can be enabled */
2339 apic_smt_update();
2340}
2341
2342void __init arch_cpu_finalize_init(void)
2343{
2344 identify_boot_cpu();
2345
2346 /*
2347 * identify_boot_cpu() initialized SMT support information, let the
2348 * core code know.
2349 */
2350 cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2351
2352 if (!IS_ENABLED(CONFIG_SMP)) {
2353 pr_info("CPU: ");
2354 print_cpu_info(&boot_cpu_data);
2355 }
2356
2357 cpu_select_mitigations();
2358
2359 arch_smt_update();
2360
2361 if (IS_ENABLED(CONFIG_X86_32)) {
2362 /*
2363 * Check whether this is a real i386 which is not longer
2364 * supported and fixup the utsname.
2365 */
2366 if (boot_cpu_data.x86 < 4)
2367 panic("Kernel requires i486+ for 'invlpg' and other features");
2368
2369 init_utsname()->machine[1] =
2370 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2371 }
2372
2373 /*
2374 * Must be before alternatives because it might set or clear
2375 * feature bits.
2376 */
2377 fpu__init_system();
2378 fpu__init_cpu();
2379
2380 alternative_instructions();
2381
2382 if (IS_ENABLED(CONFIG_X86_64)) {
2383 /*
2384 * Make sure the first 2MB area is not mapped by huge pages
2385 * There are typically fixed size MTRRs in there and overlapping
2386 * MTRRs into large pages causes slow downs.
2387 *
2388 * Right now we don't do that with gbpages because there seems
2389 * very little benefit for that case.
2390 */
2391 if (!direct_gbpages)
2392 set_memory_4k((unsigned long)__va(0), 1);
2393 } else {
2394 fpu__init_check_bugs();
2395 }
2396
2397 /*
2398 * This needs to be called before any devices perform DMA
2399 * operations that might use the SWIOTLB bounce buffers. It will
2400 * mark the bounce buffers as decrypted so that their usage will
2401 * not cause "plain-text" data to be decrypted when accessed. It
2402 * must be called after late_time_init() so that Hyper-V x86/x64
2403 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2404 */
2405 mem_encrypt_init();
2406}