Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	       monitoring
   5 * Based on lm75.c and lm85.c
   6 * Supports adm1030 / adm1031
   7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   8 * Reworked by Jean Delvare <jdelvare@suse.de>
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/jiffies.h>
  15#include <linux/i2c.h>
  16#include <linux/hwmon.h>
  17#include <linux/hwmon-sysfs.h>
  18#include <linux/err.h>
  19#include <linux/mutex.h>
  20
  21/* Following macros takes channel parameter starting from 0 to 2 */
  22#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  23#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  24#define ADM1031_REG_PWM			(0x22)
  25#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  26#define ADM1031_REG_FAN_FILTER		(0x23)
  27
  28#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  29#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  30#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  31#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  32
  33#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  34#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  35
  36#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  37
  38#define ADM1031_REG_CONF1		0x00
  39#define ADM1031_REG_CONF2		0x01
  40#define ADM1031_REG_EXT_TEMP		0x06
  41
  42#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  43#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  44#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  45
  46#define ADM1031_CONF2_PWM1_ENABLE	0x01
  47#define ADM1031_CONF2_PWM2_ENABLE	0x02
  48#define ADM1031_CONF2_TACH1_ENABLE	0x04
  49#define ADM1031_CONF2_TACH2_ENABLE	0x08
  50#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  51
  52#define ADM1031_UPDATE_RATE_MASK	0x1c
  53#define ADM1031_UPDATE_RATE_SHIFT	2
  54
  55/* Addresses to scan */
  56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  57
  58enum chips { adm1030, adm1031 };
  59
  60typedef u8 auto_chan_table_t[8][2];
  61
  62/* Each client has this additional data */
  63struct adm1031_data {
  64	struct i2c_client *client;
  65	const struct attribute_group *groups[3];
  66	struct mutex update_lock;
  67	int chip_type;
  68	bool valid;		/* true if following fields are valid */
  69	unsigned long last_updated;	/* In jiffies */
  70	unsigned int update_interval;	/* In milliseconds */
  71	/*
  72	 * The chan_select_table contains the possible configurations for
  73	 * auto fan control.
  74	 */
  75	const auto_chan_table_t *chan_select_table;
  76	u16 alarm;
  77	u8 conf1;
  78	u8 conf2;
  79	u8 fan[2];
  80	u8 fan_div[2];
  81	u8 fan_min[2];
  82	u8 pwm[2];
  83	u8 old_pwm[2];
  84	s8 temp[3];
  85	u8 ext_temp[3];
  86	u8 auto_temp[3];
  87	u8 auto_temp_min[3];
  88	u8 auto_temp_off[3];
  89	u8 auto_temp_max[3];
  90	s8 temp_offset[3];
  91	s8 temp_min[3];
  92	s8 temp_max[3];
  93	s8 temp_crit[3];
  94};
  95
  96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
  97{
  98	return i2c_smbus_read_byte_data(client, reg);
  99}
 100
 101static inline int
 102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 103{
 104	return i2c_smbus_write_byte_data(client, reg, value);
 105}
 106
 107static struct adm1031_data *adm1031_update_device(struct device *dev)
 108{
 109	struct adm1031_data *data = dev_get_drvdata(dev);
 110	struct i2c_client *client = data->client;
 111	unsigned long next_update;
 112	int chan;
 113
 114	mutex_lock(&data->update_lock);
 115
 116	next_update = data->last_updated
 117	  + msecs_to_jiffies(data->update_interval);
 118	if (time_after(jiffies, next_update) || !data->valid) {
 119
 120		dev_dbg(&client->dev, "Starting adm1031 update\n");
 121		for (chan = 0;
 122		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
 123			u8 oldh, newh;
 124
 125			oldh =
 126			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 127			data->ext_temp[chan] =
 128			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
 129			newh =
 130			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 131			if (newh != oldh) {
 132				data->ext_temp[chan] =
 133				    adm1031_read_value(client,
 134						       ADM1031_REG_EXT_TEMP);
 135#ifdef DEBUG
 136				oldh =
 137				    adm1031_read_value(client,
 138						       ADM1031_REG_TEMP(chan));
 139
 140				/* oldh is actually newer */
 141				if (newh != oldh)
 142					dev_warn(&client->dev,
 143					  "Remote temperature may be wrong.\n");
 144#endif
 145			}
 146			data->temp[chan] = newh;
 147
 148			data->temp_offset[chan] =
 149			    adm1031_read_value(client,
 150					       ADM1031_REG_TEMP_OFFSET(chan));
 151			data->temp_min[chan] =
 152			    adm1031_read_value(client,
 153					       ADM1031_REG_TEMP_MIN(chan));
 154			data->temp_max[chan] =
 155			    adm1031_read_value(client,
 156					       ADM1031_REG_TEMP_MAX(chan));
 157			data->temp_crit[chan] =
 158			    adm1031_read_value(client,
 159					       ADM1031_REG_TEMP_CRIT(chan));
 160			data->auto_temp[chan] =
 161			    adm1031_read_value(client,
 162					       ADM1031_REG_AUTO_TEMP(chan));
 163
 164		}
 165
 166		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
 167		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 168
 169		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
 170		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
 171		if (data->chip_type == adm1030)
 172			data->alarm &= 0xc0ff;
 173
 174		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
 175		     chan++) {
 176			data->fan_div[chan] =
 177			    adm1031_read_value(client,
 178					       ADM1031_REG_FAN_DIV(chan));
 179			data->fan_min[chan] =
 180			    adm1031_read_value(client,
 181					       ADM1031_REG_FAN_MIN(chan));
 182			data->fan[chan] =
 183			    adm1031_read_value(client,
 184					       ADM1031_REG_FAN_SPEED(chan));
 185			data->pwm[chan] =
 186			  (adm1031_read_value(client,
 187					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
 188		}
 189		data->last_updated = jiffies;
 190		data->valid = true;
 191	}
 192
 193	mutex_unlock(&data->update_lock);
 194
 195	return data;
 196}
 197
 198#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 199					((val + 500) / 1000)))
 200
 201#define TEMP_FROM_REG(val)		((val) * 1000)
 202
 203#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 204
 205#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 206#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 207						      (val) | 0x70 : (val))
 208
 209#define FAN_FROM_REG(reg, div)		((reg) ? \
 210					 (11250 * 60) / ((reg) * (div)) : 0)
 211
 212static int FAN_TO_REG(int reg, int div)
 213{
 214	int tmp;
 215	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
 216	return tmp > 255 ? 255 : tmp;
 217}
 218
 219#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 220
 221#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
 222#define PWM_FROM_REG(val)		((val) << 4)
 223
 224#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 225#define FAN_CHAN_TO_REG(val, reg)	\
 226	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 227
 228#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 229	((((val) / 500) & 0xf8) | ((reg) & 0x7))
 230#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
 231#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 232
 233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 234
 235#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 236	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 237
 238#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 239	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 240	AUTO_TEMP_MIN_FROM_REG(reg))
 241
 242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 243{
 244	int ret;
 245	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
 246
 247	ret = ((reg & 0xf8) |
 248	       (range < 10000 ? 0 :
 249		range < 20000 ? 1 :
 250		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 251	return ret;
 252}
 253
 254/* FAN auto control */
 255#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 256	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
 257
 258/*
 259 * The tables below contains the possible values for the auto fan
 260 * control bitfields. the index in the table is the register value.
 261 * MSb is the auto fan control enable bit, so the four first entries
 262 * in the table disables auto fan control when both bitfields are zero.
 263 */
 264static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 265	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 266	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 267	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 268	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 269	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 270};
 271
 272static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 273	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 274	{ 2 /* 0b10 */		, 0 },
 275	{ 0xff /* invalid */	, 0 },
 276	{ 0xff /* invalid */	, 0 },
 277	{ 3 /* 0b11 */		, 0 },
 278};
 279
 280/*
 281 * That function checks if a bitfield is valid and returns the other bitfield
 282 * nearest match if no exact match where found.
 283 */
 284static int
 285get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
 286{
 287	int i;
 288	int first_match = -1, exact_match = -1;
 289	u8 other_reg_val =
 290	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 291
 292	if (val == 0)
 293		return 0;
 294
 295	for (i = 0; i < 8; i++) {
 296		if ((val == (*data->chan_select_table)[i][chan]) &&
 297		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 298		     other_reg_val)) {
 299			/* We found an exact match */
 300			exact_match = i;
 301			break;
 302		} else if (val == (*data->chan_select_table)[i][chan] &&
 303			   first_match == -1) {
 304			/*
 305			 * Save the first match in case of an exact match has
 306			 * not been found
 307			 */
 308			first_match = i;
 309		}
 310	}
 311
 312	if (exact_match >= 0)
 313		return exact_match;
 314	else if (first_match >= 0)
 315		return first_match;
 316
 317	return -EINVAL;
 318}
 319
 320static ssize_t fan_auto_channel_show(struct device *dev,
 321				     struct device_attribute *attr, char *buf)
 322{
 323	int nr = to_sensor_dev_attr(attr)->index;
 324	struct adm1031_data *data = adm1031_update_device(dev);
 325	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 326}
 327
 328static ssize_t
 329fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
 330		       const char *buf, size_t count)
 331{
 332	struct adm1031_data *data = dev_get_drvdata(dev);
 333	struct i2c_client *client = data->client;
 334	int nr = to_sensor_dev_attr(attr)->index;
 335	long val;
 336	u8 reg;
 337	int ret;
 338	u8 old_fan_mode;
 339
 340	ret = kstrtol(buf, 10, &val);
 341	if (ret)
 342		return ret;
 343
 344	old_fan_mode = data->conf1;
 345
 346	mutex_lock(&data->update_lock);
 347
 348	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
 349	if (ret < 0) {
 350		mutex_unlock(&data->update_lock);
 351		return ret;
 352	}
 353	reg = ret;
 354	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 355	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 356	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 357		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 358			/*
 359			 * Switch to Auto Fan Mode
 360			 * Save PWM registers
 361			 * Set PWM registers to 33% Both
 362			 */
 363			data->old_pwm[0] = data->pwm[0];
 364			data->old_pwm[1] = data->pwm[1];
 365			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 366		} else {
 367			/* Switch to Manual Mode */
 368			data->pwm[0] = data->old_pwm[0];
 369			data->pwm[1] = data->old_pwm[1];
 370			/* Restore PWM registers */
 371			adm1031_write_value(client, ADM1031_REG_PWM,
 372					    data->pwm[0] | (data->pwm[1] << 4));
 373		}
 374	}
 375	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 376	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 377	mutex_unlock(&data->update_lock);
 378	return count;
 379}
 380
 381static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
 382static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
 383
 384/* Auto Temps */
 385static ssize_t auto_temp_off_show(struct device *dev,
 386				  struct device_attribute *attr, char *buf)
 387{
 388	int nr = to_sensor_dev_attr(attr)->index;
 389	struct adm1031_data *data = adm1031_update_device(dev);
 390	return sprintf(buf, "%d\n",
 391		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 392}
 393static ssize_t auto_temp_min_show(struct device *dev,
 394				  struct device_attribute *attr, char *buf)
 395{
 396	int nr = to_sensor_dev_attr(attr)->index;
 397	struct adm1031_data *data = adm1031_update_device(dev);
 398	return sprintf(buf, "%d\n",
 399		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 400}
 401static ssize_t
 402auto_temp_min_store(struct device *dev, struct device_attribute *attr,
 403		    const char *buf, size_t count)
 404{
 405	struct adm1031_data *data = dev_get_drvdata(dev);
 406	struct i2c_client *client = data->client;
 407	int nr = to_sensor_dev_attr(attr)->index;
 408	long val;
 409	int ret;
 410
 411	ret = kstrtol(buf, 10, &val);
 412	if (ret)
 413		return ret;
 414
 415	val = clamp_val(val, 0, 127000);
 416	mutex_lock(&data->update_lock);
 417	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 418	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 419			    data->auto_temp[nr]);
 420	mutex_unlock(&data->update_lock);
 421	return count;
 422}
 423static ssize_t auto_temp_max_show(struct device *dev,
 424				  struct device_attribute *attr, char *buf)
 425{
 426	int nr = to_sensor_dev_attr(attr)->index;
 427	struct adm1031_data *data = adm1031_update_device(dev);
 428	return sprintf(buf, "%d\n",
 429		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 430}
 431static ssize_t
 432auto_temp_max_store(struct device *dev, struct device_attribute *attr,
 433		    const char *buf, size_t count)
 434{
 435	struct adm1031_data *data = dev_get_drvdata(dev);
 436	struct i2c_client *client = data->client;
 437	int nr = to_sensor_dev_attr(attr)->index;
 438	long val;
 439	int ret;
 440
 441	ret = kstrtol(buf, 10, &val);
 442	if (ret)
 443		return ret;
 444
 445	val = clamp_val(val, 0, 127000);
 446	mutex_lock(&data->update_lock);
 447	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
 448						  data->pwm[nr]);
 449	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 450			    data->temp_max[nr]);
 451	mutex_unlock(&data->update_lock);
 452	return count;
 453}
 454
 455static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
 456static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
 457static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
 458static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
 459static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
 460static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
 461static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
 462static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
 463static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
 464
 465/* pwm */
 466static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 467			char *buf)
 468{
 469	int nr = to_sensor_dev_attr(attr)->index;
 470	struct adm1031_data *data = adm1031_update_device(dev);
 471	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 472}
 473static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 474			 const char *buf, size_t count)
 475{
 476	struct adm1031_data *data = dev_get_drvdata(dev);
 477	struct i2c_client *client = data->client;
 478	int nr = to_sensor_dev_attr(attr)->index;
 479	long val;
 480	int ret, reg;
 481
 482	ret = kstrtol(buf, 10, &val);
 483	if (ret)
 484		return ret;
 485
 486	mutex_lock(&data->update_lock);
 487	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 488	    (((val>>4) & 0xf) != 5)) {
 489		/* In automatic mode, the only PWM accepted is 33% */
 490		mutex_unlock(&data->update_lock);
 491		return -EINVAL;
 492	}
 493	data->pwm[nr] = PWM_TO_REG(val);
 494	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 495	adm1031_write_value(client, ADM1031_REG_PWM,
 496			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 497			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 498	mutex_unlock(&data->update_lock);
 499	return count;
 500}
 501
 502static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 503static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 504static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
 505static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
 506
 507/* Fans */
 508
 509/*
 510 * That function checks the cases where the fan reading is not
 511 * relevant.  It is used to provide 0 as fan reading when the fan is
 512 * not supposed to run
 513 */
 514static int trust_fan_readings(struct adm1031_data *data, int chan)
 515{
 516	int res = 0;
 517
 518	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 519		switch (data->conf1 & 0x60) {
 520		case 0x00:
 521			/*
 522			 * remote temp1 controls fan1,
 523			 * remote temp2 controls fan2
 524			 */
 525			res = data->temp[chan+1] >=
 526			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 527			break;
 528		case 0x20:	/* remote temp1 controls both fans */
 529			res =
 530			    data->temp[1] >=
 531			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 532			break;
 533		case 0x40:	/* remote temp2 controls both fans */
 534			res =
 535			    data->temp[2] >=
 536			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 537			break;
 538		case 0x60:	/* max controls both fans */
 539			res =
 540			    data->temp[0] >=
 541			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 542			    || data->temp[1] >=
 543			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 544			    || (data->chip_type == adm1031
 545				&& data->temp[2] >=
 546				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 547			break;
 548		}
 549	} else {
 550		res = data->pwm[chan] > 0;
 551	}
 552	return res;
 553}
 554
 555static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 556			char *buf)
 557{
 558	int nr = to_sensor_dev_attr(attr)->index;
 559	struct adm1031_data *data = adm1031_update_device(dev);
 560	int value;
 561
 562	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 563				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 564	return sprintf(buf, "%d\n", value);
 565}
 566
 567static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
 568			    char *buf)
 569{
 570	int nr = to_sensor_dev_attr(attr)->index;
 571	struct adm1031_data *data = adm1031_update_device(dev);
 572	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 573}
 574static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 575			    char *buf)
 576{
 577	int nr = to_sensor_dev_attr(attr)->index;
 578	struct adm1031_data *data = adm1031_update_device(dev);
 579	return sprintf(buf, "%d\n",
 580		       FAN_FROM_REG(data->fan_min[nr],
 581				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 582}
 583static ssize_t fan_min_store(struct device *dev,
 584			     struct device_attribute *attr, const char *buf,
 585			     size_t count)
 586{
 587	struct adm1031_data *data = dev_get_drvdata(dev);
 588	struct i2c_client *client = data->client;
 589	int nr = to_sensor_dev_attr(attr)->index;
 590	long val;
 591	int ret;
 592
 593	ret = kstrtol(buf, 10, &val);
 594	if (ret)
 595		return ret;
 596
 597	mutex_lock(&data->update_lock);
 598	if (val) {
 599		data->fan_min[nr] =
 600			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 601	} else {
 602		data->fan_min[nr] = 0xff;
 603	}
 604	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 605	mutex_unlock(&data->update_lock);
 606	return count;
 607}
 608static ssize_t fan_div_store(struct device *dev,
 609			     struct device_attribute *attr, const char *buf,
 610			     size_t count)
 611{
 612	struct adm1031_data *data = dev_get_drvdata(dev);
 613	struct i2c_client *client = data->client;
 614	int nr = to_sensor_dev_attr(attr)->index;
 615	long val;
 616	u8 tmp;
 617	int old_div;
 618	int new_min;
 619	int ret;
 620
 621	ret = kstrtol(buf, 10, &val);
 622	if (ret)
 623		return ret;
 624
 625	tmp = val == 8 ? 0xc0 :
 626	      val == 4 ? 0x80 :
 627	      val == 2 ? 0x40 :
 628	      val == 1 ? 0x00 :
 629	      0xff;
 630	if (tmp == 0xff)
 631		return -EINVAL;
 632
 633	mutex_lock(&data->update_lock);
 634	/* Get fresh readings */
 635	data->fan_div[nr] = adm1031_read_value(client,
 636					       ADM1031_REG_FAN_DIV(nr));
 637	data->fan_min[nr] = adm1031_read_value(client,
 638					       ADM1031_REG_FAN_MIN(nr));
 639
 640	/* Write the new clock divider and fan min */
 641	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 642	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 643	new_min = data->fan_min[nr] * old_div / val;
 644	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 645
 646	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 647			    data->fan_div[nr]);
 648	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 649			    data->fan_min[nr]);
 650
 651	/* Invalidate the cache: fan speed is no longer valid */
 652	data->valid = false;
 653	mutex_unlock(&data->update_lock);
 654	return count;
 655}
 656
 657static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 658static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 659static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
 660static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 661static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 662static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
 663
 664/* Temps */
 665static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 666			 char *buf)
 667{
 668	int nr = to_sensor_dev_attr(attr)->index;
 669	struct adm1031_data *data = adm1031_update_device(dev);
 670	int ext;
 671	ext = nr == 0 ?
 672	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 673	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 674	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 675}
 676static ssize_t temp_offset_show(struct device *dev,
 677				struct device_attribute *attr, char *buf)
 678{
 679	int nr = to_sensor_dev_attr(attr)->index;
 680	struct adm1031_data *data = adm1031_update_device(dev);
 681	return sprintf(buf, "%d\n",
 682		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 683}
 684static ssize_t temp_min_show(struct device *dev,
 685			     struct device_attribute *attr, char *buf)
 686{
 687	int nr = to_sensor_dev_attr(attr)->index;
 688	struct adm1031_data *data = adm1031_update_device(dev);
 689	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 690}
 691static ssize_t temp_max_show(struct device *dev,
 692			     struct device_attribute *attr, char *buf)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct adm1031_data *data = adm1031_update_device(dev);
 696	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 697}
 698static ssize_t temp_crit_show(struct device *dev,
 699			      struct device_attribute *attr, char *buf)
 700{
 701	int nr = to_sensor_dev_attr(attr)->index;
 702	struct adm1031_data *data = adm1031_update_device(dev);
 703	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 704}
 705static ssize_t temp_offset_store(struct device *dev,
 706				 struct device_attribute *attr,
 707				 const char *buf, size_t count)
 708{
 709	struct adm1031_data *data = dev_get_drvdata(dev);
 710	struct i2c_client *client = data->client;
 711	int nr = to_sensor_dev_attr(attr)->index;
 712	long val;
 713	int ret;
 714
 715	ret = kstrtol(buf, 10, &val);
 716	if (ret)
 717		return ret;
 718
 719	val = clamp_val(val, -15000, 15000);
 720	mutex_lock(&data->update_lock);
 721	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 722	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 723			    data->temp_offset[nr]);
 724	mutex_unlock(&data->update_lock);
 725	return count;
 726}
 727static ssize_t temp_min_store(struct device *dev,
 728			      struct device_attribute *attr, const char *buf,
 729			      size_t count)
 730{
 731	struct adm1031_data *data = dev_get_drvdata(dev);
 732	struct i2c_client *client = data->client;
 733	int nr = to_sensor_dev_attr(attr)->index;
 734	long val;
 735	int ret;
 736
 737	ret = kstrtol(buf, 10, &val);
 738	if (ret)
 739		return ret;
 740
 741	val = clamp_val(val, -55000, 127000);
 742	mutex_lock(&data->update_lock);
 743	data->temp_min[nr] = TEMP_TO_REG(val);
 744	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 745			    data->temp_min[nr]);
 746	mutex_unlock(&data->update_lock);
 747	return count;
 748}
 749static ssize_t temp_max_store(struct device *dev,
 750			      struct device_attribute *attr, const char *buf,
 751			      size_t count)
 752{
 753	struct adm1031_data *data = dev_get_drvdata(dev);
 754	struct i2c_client *client = data->client;
 755	int nr = to_sensor_dev_attr(attr)->index;
 756	long val;
 757	int ret;
 758
 759	ret = kstrtol(buf, 10, &val);
 760	if (ret)
 761		return ret;
 762
 763	val = clamp_val(val, -55000, 127000);
 764	mutex_lock(&data->update_lock);
 765	data->temp_max[nr] = TEMP_TO_REG(val);
 766	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 767			    data->temp_max[nr]);
 768	mutex_unlock(&data->update_lock);
 769	return count;
 770}
 771static ssize_t temp_crit_store(struct device *dev,
 772			       struct device_attribute *attr, const char *buf,
 773			       size_t count)
 774{
 775	struct adm1031_data *data = dev_get_drvdata(dev);
 776	struct i2c_client *client = data->client;
 777	int nr = to_sensor_dev_attr(attr)->index;
 778	long val;
 779	int ret;
 780
 781	ret = kstrtol(buf, 10, &val);
 782	if (ret)
 783		return ret;
 784
 785	val = clamp_val(val, -55000, 127000);
 786	mutex_lock(&data->update_lock);
 787	data->temp_crit[nr] = TEMP_TO_REG(val);
 788	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 789			    data->temp_crit[nr]);
 790	mutex_unlock(&data->update_lock);
 791	return count;
 792}
 793
 794static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
 795static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
 796static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
 797static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
 798static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
 799static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
 800static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
 801static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
 802static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
 803static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
 804static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
 805static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
 806static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
 807static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
 808static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
 809
 810/* Alarms */
 811static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 812			   char *buf)
 813{
 814	struct adm1031_data *data = adm1031_update_device(dev);
 815	return sprintf(buf, "%d\n", data->alarm);
 816}
 817
 818static DEVICE_ATTR_RO(alarms);
 819
 820static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 821			  char *buf)
 822{
 823	int bitnr = to_sensor_dev_attr(attr)->index;
 824	struct adm1031_data *data = adm1031_update_device(dev);
 825	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 826}
 827
 828static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
 829static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
 830static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
 831static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
 832static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
 833static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
 834static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
 835static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
 836static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
 837static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
 838static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
 839static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
 840static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
 841static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
 842static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
 843
 844/* Update Interval */
 845static const unsigned int update_intervals[] = {
 846	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 847};
 848
 849static ssize_t update_interval_show(struct device *dev,
 850				    struct device_attribute *attr, char *buf)
 851{
 852	struct adm1031_data *data = dev_get_drvdata(dev);
 853
 854	return sprintf(buf, "%u\n", data->update_interval);
 855}
 856
 857static ssize_t update_interval_store(struct device *dev,
 858				     struct device_attribute *attr,
 859				     const char *buf, size_t count)
 860{
 861	struct adm1031_data *data = dev_get_drvdata(dev);
 862	struct i2c_client *client = data->client;
 863	unsigned long val;
 864	int i, err;
 865	u8 reg;
 866
 867	err = kstrtoul(buf, 10, &val);
 868	if (err)
 869		return err;
 870
 871	/*
 872	 * Find the nearest update interval from the table.
 873	 * Use it to determine the matching update rate.
 874	 */
 875	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 876		if (val >= update_intervals[i])
 877			break;
 878	}
 879	/* if not found, we point to the last entry (lowest update interval) */
 880
 881	/* set the new update rate while preserving other settings */
 882	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 883	reg &= ~ADM1031_UPDATE_RATE_MASK;
 884	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 885	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 886
 887	mutex_lock(&data->update_lock);
 888	data->update_interval = update_intervals[i];
 889	mutex_unlock(&data->update_lock);
 890
 891	return count;
 892}
 893
 894static DEVICE_ATTR_RW(update_interval);
 895
 896static struct attribute *adm1031_attributes[] = {
 897	&sensor_dev_attr_fan1_input.dev_attr.attr,
 898	&sensor_dev_attr_fan1_div.dev_attr.attr,
 899	&sensor_dev_attr_fan1_min.dev_attr.attr,
 900	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 901	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 902	&sensor_dev_attr_pwm1.dev_attr.attr,
 903	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 904	&sensor_dev_attr_temp1_input.dev_attr.attr,
 905	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 906	&sensor_dev_attr_temp1_min.dev_attr.attr,
 907	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 908	&sensor_dev_attr_temp1_max.dev_attr.attr,
 909	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 910	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 911	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 912	&sensor_dev_attr_temp2_input.dev_attr.attr,
 913	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 914	&sensor_dev_attr_temp2_min.dev_attr.attr,
 915	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 916	&sensor_dev_attr_temp2_max.dev_attr.attr,
 917	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 918	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 919	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 920	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 921
 922	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 923	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 924	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 925
 926	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 927	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 928	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 929
 930	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 931
 932	&dev_attr_update_interval.attr,
 933	&dev_attr_alarms.attr,
 934
 935	NULL
 936};
 937
 938static const struct attribute_group adm1031_group = {
 939	.attrs = adm1031_attributes,
 940};
 941
 942static struct attribute *adm1031_attributes_opt[] = {
 943	&sensor_dev_attr_fan2_input.dev_attr.attr,
 944	&sensor_dev_attr_fan2_div.dev_attr.attr,
 945	&sensor_dev_attr_fan2_min.dev_attr.attr,
 946	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 947	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 948	&sensor_dev_attr_pwm2.dev_attr.attr,
 949	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 950	&sensor_dev_attr_temp3_input.dev_attr.attr,
 951	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 952	&sensor_dev_attr_temp3_min.dev_attr.attr,
 953	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 954	&sensor_dev_attr_temp3_max.dev_attr.attr,
 955	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 956	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 957	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 958	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 959	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 960	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 961	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 962	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 963	NULL
 964};
 965
 966static const struct attribute_group adm1031_group_opt = {
 967	.attrs = adm1031_attributes_opt,
 968};
 969
 970/* Return 0 if detection is successful, -ENODEV otherwise */
 971static int adm1031_detect(struct i2c_client *client,
 972			  struct i2c_board_info *info)
 973{
 974	struct i2c_adapter *adapter = client->adapter;
 975	const char *name;
 976	int id, co;
 977
 978	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 979		return -ENODEV;
 980
 981	id = i2c_smbus_read_byte_data(client, 0x3d);
 982	co = i2c_smbus_read_byte_data(client, 0x3e);
 983
 984	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 985		return -ENODEV;
 986	name = (id == 0x30) ? "adm1030" : "adm1031";
 987
 988	strscpy(info->type, name, I2C_NAME_SIZE);
 989
 990	return 0;
 991}
 992
 993static void adm1031_init_client(struct i2c_client *client)
 994{
 995	unsigned int read_val;
 996	unsigned int mask;
 997	int i;
 998	struct adm1031_data *data = i2c_get_clientdata(client);
 999
1000	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001	if (data->chip_type == adm1031) {
1002		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003			ADM1031_CONF2_TACH2_ENABLE);
1004	}
1005	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1006	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007	if ((read_val | mask) != read_val)
1008		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012		adm1031_write_value(client, ADM1031_REG_CONF1,
1013				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014	}
1015
1016	/* Read the chip's update rate */
1017	mask = ADM1031_UPDATE_RATE_MASK;
1018	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020	/* Save it as update interval */
1021	data->update_interval = update_intervals[i];
1022}
1023
1024static const struct i2c_device_id adm1031_id[];
1025
1026static int adm1031_probe(struct i2c_client *client)
1027{
1028	struct device *dev = &client->dev;
1029	struct device *hwmon_dev;
1030	struct adm1031_data *data;
1031
1032	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033	if (!data)
1034		return -ENOMEM;
1035
1036	i2c_set_clientdata(client, data);
1037	data->client = client;
1038	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039	mutex_init(&data->update_lock);
1040
1041	if (data->chip_type == adm1030)
1042		data->chan_select_table = &auto_channel_select_table_adm1030;
1043	else
1044		data->chan_select_table = &auto_channel_select_table_adm1031;
1045
1046	/* Initialize the ADM1031 chip */
1047	adm1031_init_client(client);
1048
1049	/* sysfs hooks */
1050	data->groups[0] = &adm1031_group;
1051	if (data->chip_type == adm1031)
1052		data->groups[1] = &adm1031_group_opt;
1053
1054	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055							   data, data->groups);
1056	return PTR_ERR_OR_ZERO(hwmon_dev);
1057}
1058
1059static const struct i2c_device_id adm1031_id[] = {
1060	{ "adm1030", adm1030 },
1061	{ "adm1031", adm1031 },
1062	{ }
1063};
1064MODULE_DEVICE_TABLE(i2c, adm1031_id);
1065
1066static struct i2c_driver adm1031_driver = {
1067	.class		= I2C_CLASS_HWMON,
1068	.driver = {
1069		.name = "adm1031",
1070	},
1071	.probe_new	= adm1031_probe,
1072	.id_table	= adm1031_id,
1073	.detect		= adm1031_detect,
1074	.address_list	= normal_i2c,
1075};
1076
1077module_i2c_driver(adm1031_driver);
1078
1079MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	       monitoring
   5 * Based on lm75.c and lm85.c
   6 * Supports adm1030 / adm1031
   7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   8 * Reworked by Jean Delvare <jdelvare@suse.de>
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/jiffies.h>
  15#include <linux/i2c.h>
  16#include <linux/hwmon.h>
  17#include <linux/hwmon-sysfs.h>
  18#include <linux/err.h>
  19#include <linux/mutex.h>
  20
  21/* Following macros takes channel parameter starting from 0 to 2 */
  22#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  23#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  24#define ADM1031_REG_PWM			(0x22)
  25#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  26#define ADM1031_REG_FAN_FILTER		(0x23)
  27
  28#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  29#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  30#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  31#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  32
  33#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  34#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  35
  36#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  37
  38#define ADM1031_REG_CONF1		0x00
  39#define ADM1031_REG_CONF2		0x01
  40#define ADM1031_REG_EXT_TEMP		0x06
  41
  42#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  43#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  44#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  45
  46#define ADM1031_CONF2_PWM1_ENABLE	0x01
  47#define ADM1031_CONF2_PWM2_ENABLE	0x02
  48#define ADM1031_CONF2_TACH1_ENABLE	0x04
  49#define ADM1031_CONF2_TACH2_ENABLE	0x08
  50#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  51
  52#define ADM1031_UPDATE_RATE_MASK	0x1c
  53#define ADM1031_UPDATE_RATE_SHIFT	2
  54
  55/* Addresses to scan */
  56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  57
  58enum chips { adm1030, adm1031 };
  59
  60typedef u8 auto_chan_table_t[8][2];
  61
  62/* Each client has this additional data */
  63struct adm1031_data {
  64	struct i2c_client *client;
  65	const struct attribute_group *groups[3];
  66	struct mutex update_lock;
  67	int chip_type;
  68	bool valid;		/* true if following fields are valid */
  69	unsigned long last_updated;	/* In jiffies */
  70	unsigned int update_interval;	/* In milliseconds */
  71	/*
  72	 * The chan_select_table contains the possible configurations for
  73	 * auto fan control.
  74	 */
  75	const auto_chan_table_t *chan_select_table;
  76	u16 alarm;
  77	u8 conf1;
  78	u8 conf2;
  79	u8 fan[2];
  80	u8 fan_div[2];
  81	u8 fan_min[2];
  82	u8 pwm[2];
  83	u8 old_pwm[2];
  84	s8 temp[3];
  85	u8 ext_temp[3];
  86	u8 auto_temp[3];
  87	u8 auto_temp_min[3];
  88	u8 auto_temp_off[3];
  89	u8 auto_temp_max[3];
  90	s8 temp_offset[3];
  91	s8 temp_min[3];
  92	s8 temp_max[3];
  93	s8 temp_crit[3];
  94};
  95
  96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
  97{
  98	return i2c_smbus_read_byte_data(client, reg);
  99}
 100
 101static inline int
 102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 103{
 104	return i2c_smbus_write_byte_data(client, reg, value);
 105}
 106
 107static struct adm1031_data *adm1031_update_device(struct device *dev)
 108{
 109	struct adm1031_data *data = dev_get_drvdata(dev);
 110	struct i2c_client *client = data->client;
 111	unsigned long next_update;
 112	int chan;
 113
 114	mutex_lock(&data->update_lock);
 115
 116	next_update = data->last_updated
 117	  + msecs_to_jiffies(data->update_interval);
 118	if (time_after(jiffies, next_update) || !data->valid) {
 119
 120		dev_dbg(&client->dev, "Starting adm1031 update\n");
 121		for (chan = 0;
 122		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
 123			u8 oldh, newh;
 124
 125			oldh =
 126			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 127			data->ext_temp[chan] =
 128			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
 129			newh =
 130			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 131			if (newh != oldh) {
 132				data->ext_temp[chan] =
 133				    adm1031_read_value(client,
 134						       ADM1031_REG_EXT_TEMP);
 135#ifdef DEBUG
 136				oldh =
 137				    adm1031_read_value(client,
 138						       ADM1031_REG_TEMP(chan));
 139
 140				/* oldh is actually newer */
 141				if (newh != oldh)
 142					dev_warn(&client->dev,
 143					  "Remote temperature may be wrong.\n");
 144#endif
 145			}
 146			data->temp[chan] = newh;
 147
 148			data->temp_offset[chan] =
 149			    adm1031_read_value(client,
 150					       ADM1031_REG_TEMP_OFFSET(chan));
 151			data->temp_min[chan] =
 152			    adm1031_read_value(client,
 153					       ADM1031_REG_TEMP_MIN(chan));
 154			data->temp_max[chan] =
 155			    adm1031_read_value(client,
 156					       ADM1031_REG_TEMP_MAX(chan));
 157			data->temp_crit[chan] =
 158			    adm1031_read_value(client,
 159					       ADM1031_REG_TEMP_CRIT(chan));
 160			data->auto_temp[chan] =
 161			    adm1031_read_value(client,
 162					       ADM1031_REG_AUTO_TEMP(chan));
 163
 164		}
 165
 166		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
 167		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 168
 169		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
 170		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
 171		if (data->chip_type == adm1030)
 172			data->alarm &= 0xc0ff;
 173
 174		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
 175		     chan++) {
 176			data->fan_div[chan] =
 177			    adm1031_read_value(client,
 178					       ADM1031_REG_FAN_DIV(chan));
 179			data->fan_min[chan] =
 180			    adm1031_read_value(client,
 181					       ADM1031_REG_FAN_MIN(chan));
 182			data->fan[chan] =
 183			    adm1031_read_value(client,
 184					       ADM1031_REG_FAN_SPEED(chan));
 185			data->pwm[chan] =
 186			  (adm1031_read_value(client,
 187					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
 188		}
 189		data->last_updated = jiffies;
 190		data->valid = true;
 191	}
 192
 193	mutex_unlock(&data->update_lock);
 194
 195	return data;
 196}
 197
 198#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 199					((val + 500) / 1000)))
 200
 201#define TEMP_FROM_REG(val)		((val) * 1000)
 202
 203#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 204
 205#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 206#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 207						      (val) | 0x70 : (val))
 208
 209#define FAN_FROM_REG(reg, div)		((reg) ? \
 210					 (11250 * 60) / ((reg) * (div)) : 0)
 211
 212static int FAN_TO_REG(int reg, int div)
 213{
 214	int tmp;
 215	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
 216	return tmp > 255 ? 255 : tmp;
 217}
 218
 219#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 220
 221#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
 222#define PWM_FROM_REG(val)		((val) << 4)
 223
 224#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 225#define FAN_CHAN_TO_REG(val, reg)	\
 226	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 227
 228#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 229	((((val) / 500) & 0xf8) | ((reg) & 0x7))
 230#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
 231#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 232
 233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 234
 235#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 236	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 237
 238#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 239	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 240	AUTO_TEMP_MIN_FROM_REG(reg))
 241
 242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 243{
 244	int ret;
 245	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
 246
 247	ret = ((reg & 0xf8) |
 248	       (range < 10000 ? 0 :
 249		range < 20000 ? 1 :
 250		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 251	return ret;
 252}
 253
 254/* FAN auto control */
 255#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 256	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
 257
 258/*
 259 * The tables below contains the possible values for the auto fan
 260 * control bitfields. the index in the table is the register value.
 261 * MSb is the auto fan control enable bit, so the four first entries
 262 * in the table disables auto fan control when both bitfields are zero.
 263 */
 264static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 265	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 266	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 267	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 268	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 269	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 270};
 271
 272static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 273	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 274	{ 2 /* 0b10 */		, 0 },
 275	{ 0xff /* invalid */	, 0 },
 276	{ 0xff /* invalid */	, 0 },
 277	{ 3 /* 0b11 */		, 0 },
 278};
 279
 280/*
 281 * That function checks if a bitfield is valid and returns the other bitfield
 282 * nearest match if no exact match where found.
 283 */
 284static int
 285get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
 286{
 287	int i;
 288	int first_match = -1, exact_match = -1;
 289	u8 other_reg_val =
 290	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 291
 292	if (val == 0)
 293		return 0;
 294
 295	for (i = 0; i < 8; i++) {
 296		if ((val == (*data->chan_select_table)[i][chan]) &&
 297		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 298		     other_reg_val)) {
 299			/* We found an exact match */
 300			exact_match = i;
 301			break;
 302		} else if (val == (*data->chan_select_table)[i][chan] &&
 303			   first_match == -1) {
 304			/*
 305			 * Save the first match in case of an exact match has
 306			 * not been found
 307			 */
 308			first_match = i;
 309		}
 310	}
 311
 312	if (exact_match >= 0)
 313		return exact_match;
 314	else if (first_match >= 0)
 315		return first_match;
 316
 317	return -EINVAL;
 318}
 319
 320static ssize_t fan_auto_channel_show(struct device *dev,
 321				     struct device_attribute *attr, char *buf)
 322{
 323	int nr = to_sensor_dev_attr(attr)->index;
 324	struct adm1031_data *data = adm1031_update_device(dev);
 325	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 326}
 327
 328static ssize_t
 329fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
 330		       const char *buf, size_t count)
 331{
 332	struct adm1031_data *data = dev_get_drvdata(dev);
 333	struct i2c_client *client = data->client;
 334	int nr = to_sensor_dev_attr(attr)->index;
 335	long val;
 336	u8 reg;
 337	int ret;
 338	u8 old_fan_mode;
 339
 340	ret = kstrtol(buf, 10, &val);
 341	if (ret)
 342		return ret;
 343
 344	old_fan_mode = data->conf1;
 345
 346	mutex_lock(&data->update_lock);
 347
 348	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
 349	if (ret < 0) {
 350		mutex_unlock(&data->update_lock);
 351		return ret;
 352	}
 353	reg = ret;
 354	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 355	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 356	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 357		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 358			/*
 359			 * Switch to Auto Fan Mode
 360			 * Save PWM registers
 361			 * Set PWM registers to 33% Both
 362			 */
 363			data->old_pwm[0] = data->pwm[0];
 364			data->old_pwm[1] = data->pwm[1];
 365			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 366		} else {
 367			/* Switch to Manual Mode */
 368			data->pwm[0] = data->old_pwm[0];
 369			data->pwm[1] = data->old_pwm[1];
 370			/* Restore PWM registers */
 371			adm1031_write_value(client, ADM1031_REG_PWM,
 372					    data->pwm[0] | (data->pwm[1] << 4));
 373		}
 374	}
 375	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 376	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 377	mutex_unlock(&data->update_lock);
 378	return count;
 379}
 380
 381static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
 382static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
 383
 384/* Auto Temps */
 385static ssize_t auto_temp_off_show(struct device *dev,
 386				  struct device_attribute *attr, char *buf)
 387{
 388	int nr = to_sensor_dev_attr(attr)->index;
 389	struct adm1031_data *data = adm1031_update_device(dev);
 390	return sprintf(buf, "%d\n",
 391		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 392}
 393static ssize_t auto_temp_min_show(struct device *dev,
 394				  struct device_attribute *attr, char *buf)
 395{
 396	int nr = to_sensor_dev_attr(attr)->index;
 397	struct adm1031_data *data = adm1031_update_device(dev);
 398	return sprintf(buf, "%d\n",
 399		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 400}
 401static ssize_t
 402auto_temp_min_store(struct device *dev, struct device_attribute *attr,
 403		    const char *buf, size_t count)
 404{
 405	struct adm1031_data *data = dev_get_drvdata(dev);
 406	struct i2c_client *client = data->client;
 407	int nr = to_sensor_dev_attr(attr)->index;
 408	long val;
 409	int ret;
 410
 411	ret = kstrtol(buf, 10, &val);
 412	if (ret)
 413		return ret;
 414
 415	val = clamp_val(val, 0, 127000);
 416	mutex_lock(&data->update_lock);
 417	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 418	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 419			    data->auto_temp[nr]);
 420	mutex_unlock(&data->update_lock);
 421	return count;
 422}
 423static ssize_t auto_temp_max_show(struct device *dev,
 424				  struct device_attribute *attr, char *buf)
 425{
 426	int nr = to_sensor_dev_attr(attr)->index;
 427	struct adm1031_data *data = adm1031_update_device(dev);
 428	return sprintf(buf, "%d\n",
 429		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 430}
 431static ssize_t
 432auto_temp_max_store(struct device *dev, struct device_attribute *attr,
 433		    const char *buf, size_t count)
 434{
 435	struct adm1031_data *data = dev_get_drvdata(dev);
 436	struct i2c_client *client = data->client;
 437	int nr = to_sensor_dev_attr(attr)->index;
 438	long val;
 439	int ret;
 440
 441	ret = kstrtol(buf, 10, &val);
 442	if (ret)
 443		return ret;
 444
 445	val = clamp_val(val, 0, 127000);
 446	mutex_lock(&data->update_lock);
 447	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
 448						  data->pwm[nr]);
 449	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 450			    data->temp_max[nr]);
 451	mutex_unlock(&data->update_lock);
 452	return count;
 453}
 454
 455static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
 456static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
 457static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
 458static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
 459static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
 460static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
 461static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
 462static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
 463static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
 464
 465/* pwm */
 466static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 467			char *buf)
 468{
 469	int nr = to_sensor_dev_attr(attr)->index;
 470	struct adm1031_data *data = adm1031_update_device(dev);
 471	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 472}
 473static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 474			 const char *buf, size_t count)
 475{
 476	struct adm1031_data *data = dev_get_drvdata(dev);
 477	struct i2c_client *client = data->client;
 478	int nr = to_sensor_dev_attr(attr)->index;
 479	long val;
 480	int ret, reg;
 481
 482	ret = kstrtol(buf, 10, &val);
 483	if (ret)
 484		return ret;
 485
 486	mutex_lock(&data->update_lock);
 487	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 488	    (((val>>4) & 0xf) != 5)) {
 489		/* In automatic mode, the only PWM accepted is 33% */
 490		mutex_unlock(&data->update_lock);
 491		return -EINVAL;
 492	}
 493	data->pwm[nr] = PWM_TO_REG(val);
 494	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 495	adm1031_write_value(client, ADM1031_REG_PWM,
 496			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 497			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 498	mutex_unlock(&data->update_lock);
 499	return count;
 500}
 501
 502static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 503static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 504static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
 505static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
 506
 507/* Fans */
 508
 509/*
 510 * That function checks the cases where the fan reading is not
 511 * relevant.  It is used to provide 0 as fan reading when the fan is
 512 * not supposed to run
 513 */
 514static int trust_fan_readings(struct adm1031_data *data, int chan)
 515{
 516	int res = 0;
 517
 518	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 519		switch (data->conf1 & 0x60) {
 520		case 0x00:
 521			/*
 522			 * remote temp1 controls fan1,
 523			 * remote temp2 controls fan2
 524			 */
 525			res = data->temp[chan+1] >=
 526			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 527			break;
 528		case 0x20:	/* remote temp1 controls both fans */
 529			res =
 530			    data->temp[1] >=
 531			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 532			break;
 533		case 0x40:	/* remote temp2 controls both fans */
 534			res =
 535			    data->temp[2] >=
 536			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 537			break;
 538		case 0x60:	/* max controls both fans */
 539			res =
 540			    data->temp[0] >=
 541			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 542			    || data->temp[1] >=
 543			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 544			    || (data->chip_type == adm1031
 545				&& data->temp[2] >=
 546				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 547			break;
 548		}
 549	} else {
 550		res = data->pwm[chan] > 0;
 551	}
 552	return res;
 553}
 554
 555static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 556			char *buf)
 557{
 558	int nr = to_sensor_dev_attr(attr)->index;
 559	struct adm1031_data *data = adm1031_update_device(dev);
 560	int value;
 561
 562	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 563				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 564	return sprintf(buf, "%d\n", value);
 565}
 566
 567static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
 568			    char *buf)
 569{
 570	int nr = to_sensor_dev_attr(attr)->index;
 571	struct adm1031_data *data = adm1031_update_device(dev);
 572	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 573}
 574static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 575			    char *buf)
 576{
 577	int nr = to_sensor_dev_attr(attr)->index;
 578	struct adm1031_data *data = adm1031_update_device(dev);
 579	return sprintf(buf, "%d\n",
 580		       FAN_FROM_REG(data->fan_min[nr],
 581				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 582}
 583static ssize_t fan_min_store(struct device *dev,
 584			     struct device_attribute *attr, const char *buf,
 585			     size_t count)
 586{
 587	struct adm1031_data *data = dev_get_drvdata(dev);
 588	struct i2c_client *client = data->client;
 589	int nr = to_sensor_dev_attr(attr)->index;
 590	long val;
 591	int ret;
 592
 593	ret = kstrtol(buf, 10, &val);
 594	if (ret)
 595		return ret;
 596
 597	mutex_lock(&data->update_lock);
 598	if (val) {
 599		data->fan_min[nr] =
 600			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 601	} else {
 602		data->fan_min[nr] = 0xff;
 603	}
 604	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 605	mutex_unlock(&data->update_lock);
 606	return count;
 607}
 608static ssize_t fan_div_store(struct device *dev,
 609			     struct device_attribute *attr, const char *buf,
 610			     size_t count)
 611{
 612	struct adm1031_data *data = dev_get_drvdata(dev);
 613	struct i2c_client *client = data->client;
 614	int nr = to_sensor_dev_attr(attr)->index;
 615	long val;
 616	u8 tmp;
 617	int old_div;
 618	int new_min;
 619	int ret;
 620
 621	ret = kstrtol(buf, 10, &val);
 622	if (ret)
 623		return ret;
 624
 625	tmp = val == 8 ? 0xc0 :
 626	      val == 4 ? 0x80 :
 627	      val == 2 ? 0x40 :
 628	      val == 1 ? 0x00 :
 629	      0xff;
 630	if (tmp == 0xff)
 631		return -EINVAL;
 632
 633	mutex_lock(&data->update_lock);
 634	/* Get fresh readings */
 635	data->fan_div[nr] = adm1031_read_value(client,
 636					       ADM1031_REG_FAN_DIV(nr));
 637	data->fan_min[nr] = adm1031_read_value(client,
 638					       ADM1031_REG_FAN_MIN(nr));
 639
 640	/* Write the new clock divider and fan min */
 641	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 642	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 643	new_min = data->fan_min[nr] * old_div / val;
 644	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 645
 646	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 647			    data->fan_div[nr]);
 648	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 649			    data->fan_min[nr]);
 650
 651	/* Invalidate the cache: fan speed is no longer valid */
 652	data->valid = false;
 653	mutex_unlock(&data->update_lock);
 654	return count;
 655}
 656
 657static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 658static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 659static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
 660static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 661static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 662static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
 663
 664/* Temps */
 665static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 666			 char *buf)
 667{
 668	int nr = to_sensor_dev_attr(attr)->index;
 669	struct adm1031_data *data = adm1031_update_device(dev);
 670	int ext;
 671	ext = nr == 0 ?
 672	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 673	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 674	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 675}
 676static ssize_t temp_offset_show(struct device *dev,
 677				struct device_attribute *attr, char *buf)
 678{
 679	int nr = to_sensor_dev_attr(attr)->index;
 680	struct adm1031_data *data = adm1031_update_device(dev);
 681	return sprintf(buf, "%d\n",
 682		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 683}
 684static ssize_t temp_min_show(struct device *dev,
 685			     struct device_attribute *attr, char *buf)
 686{
 687	int nr = to_sensor_dev_attr(attr)->index;
 688	struct adm1031_data *data = adm1031_update_device(dev);
 689	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 690}
 691static ssize_t temp_max_show(struct device *dev,
 692			     struct device_attribute *attr, char *buf)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct adm1031_data *data = adm1031_update_device(dev);
 696	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 697}
 698static ssize_t temp_crit_show(struct device *dev,
 699			      struct device_attribute *attr, char *buf)
 700{
 701	int nr = to_sensor_dev_attr(attr)->index;
 702	struct adm1031_data *data = adm1031_update_device(dev);
 703	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 704}
 705static ssize_t temp_offset_store(struct device *dev,
 706				 struct device_attribute *attr,
 707				 const char *buf, size_t count)
 708{
 709	struct adm1031_data *data = dev_get_drvdata(dev);
 710	struct i2c_client *client = data->client;
 711	int nr = to_sensor_dev_attr(attr)->index;
 712	long val;
 713	int ret;
 714
 715	ret = kstrtol(buf, 10, &val);
 716	if (ret)
 717		return ret;
 718
 719	val = clamp_val(val, -15000, 15000);
 720	mutex_lock(&data->update_lock);
 721	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 722	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 723			    data->temp_offset[nr]);
 724	mutex_unlock(&data->update_lock);
 725	return count;
 726}
 727static ssize_t temp_min_store(struct device *dev,
 728			      struct device_attribute *attr, const char *buf,
 729			      size_t count)
 730{
 731	struct adm1031_data *data = dev_get_drvdata(dev);
 732	struct i2c_client *client = data->client;
 733	int nr = to_sensor_dev_attr(attr)->index;
 734	long val;
 735	int ret;
 736
 737	ret = kstrtol(buf, 10, &val);
 738	if (ret)
 739		return ret;
 740
 741	val = clamp_val(val, -55000, 127000);
 742	mutex_lock(&data->update_lock);
 743	data->temp_min[nr] = TEMP_TO_REG(val);
 744	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 745			    data->temp_min[nr]);
 746	mutex_unlock(&data->update_lock);
 747	return count;
 748}
 749static ssize_t temp_max_store(struct device *dev,
 750			      struct device_attribute *attr, const char *buf,
 751			      size_t count)
 752{
 753	struct adm1031_data *data = dev_get_drvdata(dev);
 754	struct i2c_client *client = data->client;
 755	int nr = to_sensor_dev_attr(attr)->index;
 756	long val;
 757	int ret;
 758
 759	ret = kstrtol(buf, 10, &val);
 760	if (ret)
 761		return ret;
 762
 763	val = clamp_val(val, -55000, 127000);
 764	mutex_lock(&data->update_lock);
 765	data->temp_max[nr] = TEMP_TO_REG(val);
 766	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 767			    data->temp_max[nr]);
 768	mutex_unlock(&data->update_lock);
 769	return count;
 770}
 771static ssize_t temp_crit_store(struct device *dev,
 772			       struct device_attribute *attr, const char *buf,
 773			       size_t count)
 774{
 775	struct adm1031_data *data = dev_get_drvdata(dev);
 776	struct i2c_client *client = data->client;
 777	int nr = to_sensor_dev_attr(attr)->index;
 778	long val;
 779	int ret;
 780
 781	ret = kstrtol(buf, 10, &val);
 782	if (ret)
 783		return ret;
 784
 785	val = clamp_val(val, -55000, 127000);
 786	mutex_lock(&data->update_lock);
 787	data->temp_crit[nr] = TEMP_TO_REG(val);
 788	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 789			    data->temp_crit[nr]);
 790	mutex_unlock(&data->update_lock);
 791	return count;
 792}
 793
 794static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
 795static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
 796static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
 797static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
 798static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
 799static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
 800static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
 801static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
 802static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
 803static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
 804static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
 805static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
 806static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
 807static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
 808static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
 809
 810/* Alarms */
 811static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 812			   char *buf)
 813{
 814	struct adm1031_data *data = adm1031_update_device(dev);
 815	return sprintf(buf, "%d\n", data->alarm);
 816}
 817
 818static DEVICE_ATTR_RO(alarms);
 819
 820static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 821			  char *buf)
 822{
 823	int bitnr = to_sensor_dev_attr(attr)->index;
 824	struct adm1031_data *data = adm1031_update_device(dev);
 825	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 826}
 827
 828static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
 829static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
 830static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
 831static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
 832static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
 833static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
 834static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
 835static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
 836static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
 837static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
 838static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
 839static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
 840static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
 841static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
 842static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
 843
 844/* Update Interval */
 845static const unsigned int update_intervals[] = {
 846	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 847};
 848
 849static ssize_t update_interval_show(struct device *dev,
 850				    struct device_attribute *attr, char *buf)
 851{
 852	struct adm1031_data *data = dev_get_drvdata(dev);
 853
 854	return sprintf(buf, "%u\n", data->update_interval);
 855}
 856
 857static ssize_t update_interval_store(struct device *dev,
 858				     struct device_attribute *attr,
 859				     const char *buf, size_t count)
 860{
 861	struct adm1031_data *data = dev_get_drvdata(dev);
 862	struct i2c_client *client = data->client;
 863	unsigned long val;
 864	int i, err;
 865	u8 reg;
 866
 867	err = kstrtoul(buf, 10, &val);
 868	if (err)
 869		return err;
 870
 871	/*
 872	 * Find the nearest update interval from the table.
 873	 * Use it to determine the matching update rate.
 874	 */
 875	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 876		if (val >= update_intervals[i])
 877			break;
 878	}
 879	/* if not found, we point to the last entry (lowest update interval) */
 880
 881	/* set the new update rate while preserving other settings */
 882	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 883	reg &= ~ADM1031_UPDATE_RATE_MASK;
 884	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 885	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 886
 887	mutex_lock(&data->update_lock);
 888	data->update_interval = update_intervals[i];
 889	mutex_unlock(&data->update_lock);
 890
 891	return count;
 892}
 893
 894static DEVICE_ATTR_RW(update_interval);
 895
 896static struct attribute *adm1031_attributes[] = {
 897	&sensor_dev_attr_fan1_input.dev_attr.attr,
 898	&sensor_dev_attr_fan1_div.dev_attr.attr,
 899	&sensor_dev_attr_fan1_min.dev_attr.attr,
 900	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 901	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 902	&sensor_dev_attr_pwm1.dev_attr.attr,
 903	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 904	&sensor_dev_attr_temp1_input.dev_attr.attr,
 905	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 906	&sensor_dev_attr_temp1_min.dev_attr.attr,
 907	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 908	&sensor_dev_attr_temp1_max.dev_attr.attr,
 909	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 910	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 911	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 912	&sensor_dev_attr_temp2_input.dev_attr.attr,
 913	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 914	&sensor_dev_attr_temp2_min.dev_attr.attr,
 915	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 916	&sensor_dev_attr_temp2_max.dev_attr.attr,
 917	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 918	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 919	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 920	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 921
 922	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 923	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 924	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 925
 926	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 927	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 928	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 929
 930	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 931
 932	&dev_attr_update_interval.attr,
 933	&dev_attr_alarms.attr,
 934
 935	NULL
 936};
 937
 938static const struct attribute_group adm1031_group = {
 939	.attrs = adm1031_attributes,
 940};
 941
 942static struct attribute *adm1031_attributes_opt[] = {
 943	&sensor_dev_attr_fan2_input.dev_attr.attr,
 944	&sensor_dev_attr_fan2_div.dev_attr.attr,
 945	&sensor_dev_attr_fan2_min.dev_attr.attr,
 946	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 947	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 948	&sensor_dev_attr_pwm2.dev_attr.attr,
 949	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 950	&sensor_dev_attr_temp3_input.dev_attr.attr,
 951	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 952	&sensor_dev_attr_temp3_min.dev_attr.attr,
 953	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 954	&sensor_dev_attr_temp3_max.dev_attr.attr,
 955	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 956	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 957	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 958	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 959	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 960	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 961	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 962	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 963	NULL
 964};
 965
 966static const struct attribute_group adm1031_group_opt = {
 967	.attrs = adm1031_attributes_opt,
 968};
 969
 970/* Return 0 if detection is successful, -ENODEV otherwise */
 971static int adm1031_detect(struct i2c_client *client,
 972			  struct i2c_board_info *info)
 973{
 974	struct i2c_adapter *adapter = client->adapter;
 975	const char *name;
 976	int id, co;
 977
 978	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 979		return -ENODEV;
 980
 981	id = i2c_smbus_read_byte_data(client, 0x3d);
 982	co = i2c_smbus_read_byte_data(client, 0x3e);
 983
 984	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 985		return -ENODEV;
 986	name = (id == 0x30) ? "adm1030" : "adm1031";
 987
 988	strscpy(info->type, name, I2C_NAME_SIZE);
 989
 990	return 0;
 991}
 992
 993static void adm1031_init_client(struct i2c_client *client)
 994{
 995	unsigned int read_val;
 996	unsigned int mask;
 997	int i;
 998	struct adm1031_data *data = i2c_get_clientdata(client);
 999
1000	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001	if (data->chip_type == adm1031) {
1002		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003			ADM1031_CONF2_TACH2_ENABLE);
1004	}
1005	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1006	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007	if ((read_val | mask) != read_val)
1008		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012		adm1031_write_value(client, ADM1031_REG_CONF1,
1013				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014	}
1015
1016	/* Read the chip's update rate */
1017	mask = ADM1031_UPDATE_RATE_MASK;
1018	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020	/* Save it as update interval */
1021	data->update_interval = update_intervals[i];
1022}
1023
1024static const struct i2c_device_id adm1031_id[];
1025
1026static int adm1031_probe(struct i2c_client *client)
1027{
1028	struct device *dev = &client->dev;
1029	struct device *hwmon_dev;
1030	struct adm1031_data *data;
1031
1032	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033	if (!data)
1034		return -ENOMEM;
1035
1036	i2c_set_clientdata(client, data);
1037	data->client = client;
1038	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039	mutex_init(&data->update_lock);
1040
1041	if (data->chip_type == adm1030)
1042		data->chan_select_table = &auto_channel_select_table_adm1030;
1043	else
1044		data->chan_select_table = &auto_channel_select_table_adm1031;
1045
1046	/* Initialize the ADM1031 chip */
1047	adm1031_init_client(client);
1048
1049	/* sysfs hooks */
1050	data->groups[0] = &adm1031_group;
1051	if (data->chip_type == adm1031)
1052		data->groups[1] = &adm1031_group_opt;
1053
1054	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055							   data, data->groups);
1056	return PTR_ERR_OR_ZERO(hwmon_dev);
1057}
1058
1059static const struct i2c_device_id adm1031_id[] = {
1060	{ "adm1030", adm1030 },
1061	{ "adm1031", adm1031 },
1062	{ }
1063};
1064MODULE_DEVICE_TABLE(i2c, adm1031_id);
1065
1066static struct i2c_driver adm1031_driver = {
1067	.class		= I2C_CLASS_HWMON,
1068	.driver = {
1069		.name = "adm1031",
1070	},
1071	.probe_new	= adm1031_probe,
1072	.id_table	= adm1031_id,
1073	.detect		= adm1031_detect,
1074	.address_list	= normal_i2c,
1075};
1076
1077module_i2c_driver(adm1031_driver);
1078
1079MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081MODULE_LICENSE("GPL");