Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/kvm_util.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
   7
   8#define _GNU_SOURCE /* for program_invocation_name */
   9#include "test_util.h"
  10#include "kvm_util.h"
  11#include "processor.h"
 
  12
  13#include <assert.h>
  14#include <sched.h>
  15#include <sys/mman.h>
  16#include <sys/types.h>
  17#include <sys/stat.h>
  18#include <unistd.h>
  19#include <linux/kernel.h>
  20
  21#define KVM_UTIL_MIN_PFN	2
  22
 
 
 
 
  23static int vcpu_mmap_sz(void);
  24
  25int open_path_or_exit(const char *path, int flags)
  26{
  27	int fd;
  28
  29	fd = open(path, flags);
  30	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
 
  31
  32	return fd;
  33}
  34
  35/*
  36 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
  37 *
  38 * Input Args:
  39 *   flags - The flags to pass when opening KVM_DEV_PATH.
  40 *
  41 * Return:
  42 *   The opened file descriptor of /dev/kvm.
  43 */
  44static int _open_kvm_dev_path_or_exit(int flags)
  45{
  46	return open_path_or_exit(KVM_DEV_PATH, flags);
  47}
  48
  49int open_kvm_dev_path_or_exit(void)
  50{
  51	return _open_kvm_dev_path_or_exit(O_RDONLY);
  52}
  53
  54static bool get_module_param_bool(const char *module_name, const char *param)
 
  55{
  56	const int path_size = 128;
  57	char path[path_size];
  58	char value;
  59	ssize_t r;
  60	int fd;
  61
  62	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
  63		     module_name, param);
  64	TEST_ASSERT(r < path_size,
  65		    "Failed to construct sysfs path in %d bytes.", path_size);
  66
  67	fd = open_path_or_exit(path, O_RDONLY);
  68
  69	r = read(fd, &value, 1);
  70	TEST_ASSERT(r == 1, "read(%s) failed", path);
 
  71
  72	r = close(fd);
  73	TEST_ASSERT(!r, "close(%s) failed", path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75	if (value == 'Y')
  76		return true;
  77	else if (value == 'N')
  78		return false;
  79
  80	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
  81}
  82
 
 
 
 
 
  83bool get_kvm_intel_param_bool(const char *param)
  84{
  85	return get_module_param_bool("kvm_intel", param);
  86}
  87
  88bool get_kvm_amd_param_bool(const char *param)
  89{
  90	return get_module_param_bool("kvm_amd", param);
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93/*
  94 * Capability
  95 *
  96 * Input Args:
  97 *   cap - Capability
  98 *
  99 * Output Args: None
 100 *
 101 * Return:
 102 *   On success, the Value corresponding to the capability (KVM_CAP_*)
 103 *   specified by the value of cap.  On failure a TEST_ASSERT failure
 104 *   is produced.
 105 *
 106 * Looks up and returns the value corresponding to the capability
 107 * (KVM_CAP_*) given by cap.
 108 */
 109unsigned int kvm_check_cap(long cap)
 110{
 111	int ret;
 112	int kvm_fd;
 113
 114	kvm_fd = open_kvm_dev_path_or_exit();
 115	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
 116	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
 117
 118	close(kvm_fd);
 119
 120	return (unsigned int)ret;
 121}
 122
 123void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
 124{
 125	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
 126		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
 127	else
 128		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
 129	vm->dirty_ring_size = ring_size;
 130}
 131
 132static void vm_open(struct kvm_vm *vm)
 133{
 134	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
 135
 136	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
 137
 138	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
 139	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
 140}
 141
 142const char *vm_guest_mode_string(uint32_t i)
 143{
 144	static const char * const strings[] = {
 145		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
 
 146		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
 147		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
 148		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
 149		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
 150		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
 151		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
 152		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
 153		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
 154		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
 155		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
 156		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
 157		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
 158		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
 159		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
 160	};
 161	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
 162		       "Missing new mode strings?");
 163
 164	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
 165
 166	return strings[i];
 167}
 168
 169const struct vm_guest_mode_params vm_guest_mode_params[] = {
 170	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
 
 171	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
 172	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
 173	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
 174	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
 175	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
 176	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
 177	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
 178	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
 179	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
 180	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
 181	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
 182	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
 183	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
 184	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
 185};
 186_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
 187	       "Missing new mode params?");
 188
 189/*
 190 * Initializes vm->vpages_valid to match the canonical VA space of the
 191 * architecture.
 192 *
 193 * The default implementation is valid for architectures which split the
 194 * range addressed by a single page table into a low and high region
 195 * based on the MSB of the VA. On architectures with this behavior
 196 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
 197 */
 198__weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
 199{
 200	sparsebit_set_num(vm->vpages_valid,
 201		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 202	sparsebit_set_num(vm->vpages_valid,
 203		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
 204		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 205}
 206
 207struct kvm_vm *____vm_create(enum vm_guest_mode mode)
 208{
 209	struct kvm_vm *vm;
 210
 211	vm = calloc(1, sizeof(*vm));
 212	TEST_ASSERT(vm != NULL, "Insufficient Memory");
 213
 214	INIT_LIST_HEAD(&vm->vcpus);
 215	vm->regions.gpa_tree = RB_ROOT;
 216	vm->regions.hva_tree = RB_ROOT;
 217	hash_init(vm->regions.slot_hash);
 218
 219	vm->mode = mode;
 220	vm->type = 0;
 221
 222	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
 223	vm->va_bits = vm_guest_mode_params[mode].va_bits;
 224	vm->page_size = vm_guest_mode_params[mode].page_size;
 225	vm->page_shift = vm_guest_mode_params[mode].page_shift;
 226
 227	/* Setup mode specific traits. */
 228	switch (vm->mode) {
 229	case VM_MODE_P52V48_4K:
 230		vm->pgtable_levels = 4;
 231		break;
 232	case VM_MODE_P52V48_64K:
 233		vm->pgtable_levels = 3;
 234		break;
 235	case VM_MODE_P48V48_4K:
 236		vm->pgtable_levels = 4;
 237		break;
 238	case VM_MODE_P48V48_64K:
 239		vm->pgtable_levels = 3;
 240		break;
 241	case VM_MODE_P40V48_4K:
 242	case VM_MODE_P36V48_4K:
 243		vm->pgtable_levels = 4;
 244		break;
 245	case VM_MODE_P40V48_64K:
 246	case VM_MODE_P36V48_64K:
 247		vm->pgtable_levels = 3;
 248		break;
 
 249	case VM_MODE_P48V48_16K:
 250	case VM_MODE_P40V48_16K:
 251	case VM_MODE_P36V48_16K:
 252		vm->pgtable_levels = 4;
 253		break;
 254	case VM_MODE_P36V47_16K:
 255		vm->pgtable_levels = 3;
 256		break;
 257	case VM_MODE_PXXV48_4K:
 258#ifdef __x86_64__
 259		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
 
 260		/*
 261		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
 262		 * it doesn't take effect unless a CR4.LA57 is set, which it
 263		 * isn't for this VM_MODE.
 264		 */
 265		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
 266			    "Linear address width (%d bits) not supported",
 267			    vm->va_bits);
 268		pr_debug("Guest physical address width detected: %d\n",
 269			 vm->pa_bits);
 270		vm->pgtable_levels = 4;
 271		vm->va_bits = 48;
 272#else
 273		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
 274#endif
 275		break;
 276	case VM_MODE_P47V64_4K:
 277		vm->pgtable_levels = 5;
 278		break;
 279	case VM_MODE_P44V64_4K:
 280		vm->pgtable_levels = 5;
 281		break;
 282	default:
 283		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
 284	}
 285
 286#ifdef __aarch64__
 
 287	if (vm->pa_bits != 40)
 288		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
 289#endif
 290
 291	vm_open(vm);
 292
 293	/* Limit to VA-bit canonical virtual addresses. */
 294	vm->vpages_valid = sparsebit_alloc();
 295	vm_vaddr_populate_bitmap(vm);
 296
 297	/* Limit physical addresses to PA-bits. */
 298	vm->max_gfn = vm_compute_max_gfn(vm);
 299
 300	/* Allocate and setup memory for guest. */
 301	vm->vpages_mapped = sparsebit_alloc();
 302
 303	return vm;
 304}
 305
 306static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
 307				     uint32_t nr_runnable_vcpus,
 308				     uint64_t extra_mem_pages)
 309{
 
 310	uint64_t nr_pages;
 311
 312	TEST_ASSERT(nr_runnable_vcpus,
 313		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
 314
 315	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
 316		    "nr_vcpus = %d too large for host, max-vcpus = %d",
 317		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
 318
 319	/*
 320	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
 321	 * test code and other per-VM assets that will be loaded into memslot0.
 322	 */
 323	nr_pages = 512;
 324
 325	/* Account for the per-vCPU stacks on behalf of the test. */
 326	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
 327
 328	/*
 329	 * Account for the number of pages needed for the page tables.  The
 330	 * maximum page table size for a memory region will be when the
 331	 * smallest page size is used. Considering each page contains x page
 332	 * table descriptors, the total extra size for page tables (for extra
 333	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
 334	 * than N/x*2.
 335	 */
 336	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
 337
 
 
 
 338	return vm_adjust_num_guest_pages(mode, nr_pages);
 339}
 340
 341struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
 342			   uint64_t nr_extra_pages)
 343{
 344	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
 345						 nr_extra_pages);
 346	struct userspace_mem_region *slot0;
 347	struct kvm_vm *vm;
 348	int i;
 349
 350	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
 351		 vm_guest_mode_string(mode), nr_pages);
 352
 353	vm = ____vm_create(mode);
 354
 355	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
 356	for (i = 0; i < NR_MEM_REGIONS; i++)
 357		vm->memslots[i] = 0;
 358
 359	kvm_vm_elf_load(vm, program_invocation_name);
 360
 361	/*
 362	 * TODO: Add proper defines to protect the library's memslots, and then
 363	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
 364	 * read-only memslots as MMIO, and creating a read-only memslot for the
 365	 * MMIO region would prevent silently clobbering the MMIO region.
 366	 */
 367	slot0 = memslot2region(vm, 0);
 368	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
 369
 
 
 
 
 
 
 
 370	kvm_arch_vm_post_create(vm);
 371
 372	return vm;
 373}
 374
 375/*
 376 * VM Create with customized parameters
 377 *
 378 * Input Args:
 379 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 380 *   nr_vcpus - VCPU count
 381 *   extra_mem_pages - Non-slot0 physical memory total size
 382 *   guest_code - Guest entry point
 383 *   vcpuids - VCPU IDs
 384 *
 385 * Output Args: None
 386 *
 387 * Return:
 388 *   Pointer to opaque structure that describes the created VM.
 389 *
 390 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
 391 * extra_mem_pages is only used to calculate the maximum page table size,
 392 * no real memory allocation for non-slot0 memory in this function.
 393 */
 394struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
 395				      uint64_t extra_mem_pages,
 396				      void *guest_code, struct kvm_vcpu *vcpus[])
 397{
 398	struct kvm_vm *vm;
 399	int i;
 400
 401	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
 402
 403	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
 404
 405	for (i = 0; i < nr_vcpus; ++i)
 406		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
 407
 408	return vm;
 409}
 410
 411struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
 412					 uint64_t extra_mem_pages,
 413					 void *guest_code)
 
 414{
 415	struct kvm_vcpu *vcpus[1];
 416	struct kvm_vm *vm;
 417
 418	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
 419				    guest_code, vcpus);
 420
 421	*vcpu = vcpus[0];
 422	return vm;
 423}
 424
 425/*
 426 * VM Restart
 427 *
 428 * Input Args:
 429 *   vm - VM that has been released before
 430 *
 431 * Output Args: None
 432 *
 433 * Reopens the file descriptors associated to the VM and reinstates the
 434 * global state, such as the irqchip and the memory regions that are mapped
 435 * into the guest.
 436 */
 437void kvm_vm_restart(struct kvm_vm *vmp)
 438{
 439	int ctr;
 440	struct userspace_mem_region *region;
 441
 442	vm_open(vmp);
 443	if (vmp->has_irqchip)
 444		vm_create_irqchip(vmp);
 445
 446	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
 447		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
 448		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
 
 449			    "  rc: %i errno: %i\n"
 450			    "  slot: %u flags: 0x%x\n"
 451			    "  guest_phys_addr: 0x%llx size: 0x%llx",
 452			    ret, errno, region->region.slot,
 453			    region->region.flags,
 454			    region->region.guest_phys_addr,
 455			    region->region.memory_size);
 456	}
 457}
 458
 459__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
 460					      uint32_t vcpu_id)
 461{
 462	return __vm_vcpu_add(vm, vcpu_id);
 463}
 464
 465struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
 466{
 467	kvm_vm_restart(vm);
 468
 469	return vm_vcpu_recreate(vm, 0);
 470}
 471
 472void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
 473{
 474	cpu_set_t mask;
 475	int r;
 476
 477	CPU_ZERO(&mask);
 478	CPU_SET(pcpu, &mask);
 479	r = sched_setaffinity(0, sizeof(mask), &mask);
 480	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
 481}
 482
 483static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
 484{
 485	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
 486
 487	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
 488		    "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
 489	return pcpu;
 490}
 491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
 493			    int nr_vcpus)
 494{
 495	cpu_set_t allowed_mask;
 496	char *cpu, *cpu_list;
 497	char delim[2] = ",";
 498	int i, r;
 499
 500	cpu_list = strdup(pcpus_string);
 501	TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
 502
 503	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
 504	TEST_ASSERT(!r, "sched_getaffinity() failed");
 505
 506	cpu = strtok(cpu_list, delim);
 507
 508	/* 1. Get all pcpus for vcpus. */
 509	for (i = 0; i < nr_vcpus; i++) {
 510		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
 511		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
 512		cpu = strtok(NULL, delim);
 513	}
 514
 515	/* 2. Check if the main worker needs to be pinned. */
 516	if (cpu) {
 517		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
 518		cpu = strtok(NULL, delim);
 519	}
 520
 521	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
 522	free(cpu_list);
 523}
 524
 525/*
 526 * Userspace Memory Region Find
 527 *
 528 * Input Args:
 529 *   vm - Virtual Machine
 530 *   start - Starting VM physical address
 531 *   end - Ending VM physical address, inclusive.
 532 *
 533 * Output Args: None
 534 *
 535 * Return:
 536 *   Pointer to overlapping region, NULL if no such region.
 537 *
 538 * Searches for a region with any physical memory that overlaps with
 539 * any portion of the guest physical addresses from start to end
 540 * inclusive.  If multiple overlapping regions exist, a pointer to any
 541 * of the regions is returned.  Null is returned only when no overlapping
 542 * region exists.
 543 */
 544static struct userspace_mem_region *
 545userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
 546{
 547	struct rb_node *node;
 548
 549	for (node = vm->regions.gpa_tree.rb_node; node; ) {
 550		struct userspace_mem_region *region =
 551			container_of(node, struct userspace_mem_region, gpa_node);
 552		uint64_t existing_start = region->region.guest_phys_addr;
 553		uint64_t existing_end = region->region.guest_phys_addr
 554			+ region->region.memory_size - 1;
 555		if (start <= existing_end && end >= existing_start)
 556			return region;
 557
 558		if (start < existing_start)
 559			node = node->rb_left;
 560		else
 561			node = node->rb_right;
 562	}
 563
 564	return NULL;
 565}
 566
 567/*
 568 * KVM Userspace Memory Region Find
 569 *
 570 * Input Args:
 571 *   vm - Virtual Machine
 572 *   start - Starting VM physical address
 573 *   end - Ending VM physical address, inclusive.
 574 *
 575 * Output Args: None
 576 *
 577 * Return:
 578 *   Pointer to overlapping region, NULL if no such region.
 579 *
 580 * Public interface to userspace_mem_region_find. Allows tests to look up
 581 * the memslot datastructure for a given range of guest physical memory.
 582 */
 583struct kvm_userspace_memory_region *
 584kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
 585				 uint64_t end)
 586{
 587	struct userspace_mem_region *region;
 588
 589	region = userspace_mem_region_find(vm, start, end);
 590	if (!region)
 591		return NULL;
 592
 593	return &region->region;
 594}
 595
 596__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
 597{
 598
 599}
 600
 601/*
 602 * VM VCPU Remove
 603 *
 604 * Input Args:
 605 *   vcpu - VCPU to remove
 606 *
 607 * Output Args: None
 608 *
 609 * Return: None, TEST_ASSERT failures for all error conditions
 610 *
 611 * Removes a vCPU from a VM and frees its resources.
 612 */
 613static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
 614{
 615	int ret;
 616
 617	if (vcpu->dirty_gfns) {
 618		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
 619		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 620		vcpu->dirty_gfns = NULL;
 621	}
 622
 623	ret = munmap(vcpu->run, vcpu_mmap_sz());
 624	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 625
 626	ret = close(vcpu->fd);
 627	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 628
 629	list_del(&vcpu->list);
 630
 631	vcpu_arch_free(vcpu);
 632	free(vcpu);
 633}
 634
 635void kvm_vm_release(struct kvm_vm *vmp)
 636{
 637	struct kvm_vcpu *vcpu, *tmp;
 638	int ret;
 639
 640	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
 641		vm_vcpu_rm(vmp, vcpu);
 642
 643	ret = close(vmp->fd);
 644	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 645
 646	ret = close(vmp->kvm_fd);
 647	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 648}
 649
 650static void __vm_mem_region_delete(struct kvm_vm *vm,
 651				   struct userspace_mem_region *region,
 652				   bool unlink)
 653{
 654	int ret;
 655
 656	if (unlink) {
 657		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
 658		rb_erase(&region->hva_node, &vm->regions.hva_tree);
 659		hash_del(&region->slot_node);
 660	}
 661
 662	region->region.memory_size = 0;
 663	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
 664
 665	sparsebit_free(&region->unused_phy_pages);
 
 666	ret = munmap(region->mmap_start, region->mmap_size);
 667	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 668	if (region->fd >= 0) {
 669		/* There's an extra map when using shared memory. */
 670		ret = munmap(region->mmap_alias, region->mmap_size);
 671		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 672		close(region->fd);
 673	}
 
 
 674
 675	free(region);
 676}
 677
 678/*
 679 * Destroys and frees the VM pointed to by vmp.
 680 */
 681void kvm_vm_free(struct kvm_vm *vmp)
 682{
 683	int ctr;
 684	struct hlist_node *node;
 685	struct userspace_mem_region *region;
 686
 687	if (vmp == NULL)
 688		return;
 689
 690	/* Free cached stats metadata and close FD */
 691	if (vmp->stats_fd) {
 692		free(vmp->stats_desc);
 693		close(vmp->stats_fd);
 694	}
 695
 696	/* Free userspace_mem_regions. */
 697	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
 698		__vm_mem_region_delete(vmp, region, false);
 699
 700	/* Free sparsebit arrays. */
 701	sparsebit_free(&vmp->vpages_valid);
 702	sparsebit_free(&vmp->vpages_mapped);
 703
 704	kvm_vm_release(vmp);
 705
 706	/* Free the structure describing the VM. */
 707	free(vmp);
 708}
 709
 710int kvm_memfd_alloc(size_t size, bool hugepages)
 711{
 712	int memfd_flags = MFD_CLOEXEC;
 713	int fd, r;
 714
 715	if (hugepages)
 716		memfd_flags |= MFD_HUGETLB;
 717
 718	fd = memfd_create("kvm_selftest", memfd_flags);
 719	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
 720
 721	r = ftruncate(fd, size);
 722	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
 723
 724	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
 725	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
 726
 727	return fd;
 728}
 729
 730/*
 731 * Memory Compare, host virtual to guest virtual
 732 *
 733 * Input Args:
 734 *   hva - Starting host virtual address
 735 *   vm - Virtual Machine
 736 *   gva - Starting guest virtual address
 737 *   len - number of bytes to compare
 738 *
 739 * Output Args: None
 740 *
 741 * Input/Output Args: None
 742 *
 743 * Return:
 744 *   Returns 0 if the bytes starting at hva for a length of len
 745 *   are equal the guest virtual bytes starting at gva.  Returns
 746 *   a value < 0, if bytes at hva are less than those at gva.
 747 *   Otherwise a value > 0 is returned.
 748 *
 749 * Compares the bytes starting at the host virtual address hva, for
 750 * a length of len, to the guest bytes starting at the guest virtual
 751 * address given by gva.
 752 */
 753int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
 754{
 755	size_t amt;
 756
 757	/*
 758	 * Compare a batch of bytes until either a match is found
 759	 * or all the bytes have been compared.
 760	 */
 761	for (uintptr_t offset = 0; offset < len; offset += amt) {
 762		uintptr_t ptr1 = (uintptr_t)hva + offset;
 763
 764		/*
 765		 * Determine host address for guest virtual address
 766		 * at offset.
 767		 */
 768		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
 769
 770		/*
 771		 * Determine amount to compare on this pass.
 772		 * Don't allow the comparsion to cross a page boundary.
 773		 */
 774		amt = len - offset;
 775		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
 776			amt = vm->page_size - (ptr1 % vm->page_size);
 777		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
 778			amt = vm->page_size - (ptr2 % vm->page_size);
 779
 780		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
 781		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
 782
 783		/*
 784		 * Perform the comparison.  If there is a difference
 785		 * return that result to the caller, otherwise need
 786		 * to continue on looking for a mismatch.
 787		 */
 788		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
 789		if (ret != 0)
 790			return ret;
 791	}
 792
 793	/*
 794	 * No mismatch found.  Let the caller know the two memory
 795	 * areas are equal.
 796	 */
 797	return 0;
 798}
 799
 800static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
 801					       struct userspace_mem_region *region)
 802{
 803	struct rb_node **cur, *parent;
 804
 805	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
 806		struct userspace_mem_region *cregion;
 807
 808		cregion = container_of(*cur, typeof(*cregion), gpa_node);
 809		parent = *cur;
 810		if (region->region.guest_phys_addr <
 811		    cregion->region.guest_phys_addr)
 812			cur = &(*cur)->rb_left;
 813		else {
 814			TEST_ASSERT(region->region.guest_phys_addr !=
 815				    cregion->region.guest_phys_addr,
 816				    "Duplicate GPA in region tree");
 817
 818			cur = &(*cur)->rb_right;
 819		}
 820	}
 821
 822	rb_link_node(&region->gpa_node, parent, cur);
 823	rb_insert_color(&region->gpa_node, gpa_tree);
 824}
 825
 826static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
 827					       struct userspace_mem_region *region)
 828{
 829	struct rb_node **cur, *parent;
 830
 831	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
 832		struct userspace_mem_region *cregion;
 833
 834		cregion = container_of(*cur, typeof(*cregion), hva_node);
 835		parent = *cur;
 836		if (region->host_mem < cregion->host_mem)
 837			cur = &(*cur)->rb_left;
 838		else {
 839			TEST_ASSERT(region->host_mem !=
 840				    cregion->host_mem,
 841				    "Duplicate HVA in region tree");
 842
 843			cur = &(*cur)->rb_right;
 844		}
 845	}
 846
 847	rb_link_node(&region->hva_node, parent, cur);
 848	rb_insert_color(&region->hva_node, hva_tree);
 849}
 850
 851
 852int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 853				uint64_t gpa, uint64_t size, void *hva)
 854{
 855	struct kvm_userspace_memory_region region = {
 856		.slot = slot,
 857		.flags = flags,
 858		.guest_phys_addr = gpa,
 859		.memory_size = size,
 860		.userspace_addr = (uintptr_t)hva,
 861	};
 862
 863	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
 864}
 865
 866void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 867			       uint64_t gpa, uint64_t size, void *hva)
 868{
 869	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
 870
 871	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
 872		    errno, strerror(errno));
 873}
 874
 875/*
 876 * VM Userspace Memory Region Add
 877 *
 878 * Input Args:
 879 *   vm - Virtual Machine
 880 *   src_type - Storage source for this region.
 881 *              NULL to use anonymous memory.
 882 *   guest_paddr - Starting guest physical address
 883 *   slot - KVM region slot
 884 *   npages - Number of physical pages
 885 *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
 886 *
 887 * Output Args: None
 888 *
 889 * Return: None
 890 *
 891 * Allocates a memory area of the number of pages specified by npages
 892 * and maps it to the VM specified by vm, at a starting physical address
 893 * given by guest_paddr.  The region is created with a KVM region slot
 894 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
 895 * region is created with the flags given by flags.
 896 */
 897void vm_userspace_mem_region_add(struct kvm_vm *vm,
 898	enum vm_mem_backing_src_type src_type,
 899	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
 900	uint32_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 901{
 902	int ret;
 903	struct userspace_mem_region *region;
 904	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
 
 905	size_t alignment;
 906
 
 
 907	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
 908		"Number of guest pages is not compatible with the host. "
 909		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
 910
 911	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
 912		"address not on a page boundary.\n"
 913		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
 914		guest_paddr, vm->page_size);
 915	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
 916		<= vm->max_gfn, "Physical range beyond maximum "
 917		"supported physical address,\n"
 918		"  guest_paddr: 0x%lx npages: 0x%lx\n"
 919		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 920		guest_paddr, npages, vm->max_gfn, vm->page_size);
 921
 922	/*
 923	 * Confirm a mem region with an overlapping address doesn't
 924	 * already exist.
 925	 */
 926	region = (struct userspace_mem_region *) userspace_mem_region_find(
 927		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
 928	if (region != NULL)
 929		TEST_FAIL("overlapping userspace_mem_region already "
 930			"exists\n"
 931			"  requested guest_paddr: 0x%lx npages: 0x%lx "
 932			"page_size: 0x%x\n"
 933			"  existing guest_paddr: 0x%lx size: 0x%lx",
 934			guest_paddr, npages, vm->page_size,
 935			(uint64_t) region->region.guest_phys_addr,
 936			(uint64_t) region->region.memory_size);
 937
 938	/* Confirm no region with the requested slot already exists. */
 939	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
 940			       slot) {
 941		if (region->region.slot != slot)
 942			continue;
 943
 944		TEST_FAIL("A mem region with the requested slot "
 945			"already exists.\n"
 946			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
 947			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
 948			slot, guest_paddr, npages,
 949			region->region.slot,
 950			(uint64_t) region->region.guest_phys_addr,
 951			(uint64_t) region->region.memory_size);
 952	}
 953
 954	/* Allocate and initialize new mem region structure. */
 955	region = calloc(1, sizeof(*region));
 956	TEST_ASSERT(region != NULL, "Insufficient Memory");
 957	region->mmap_size = npages * vm->page_size;
 958
 959#ifdef __s390x__
 960	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
 961	alignment = 0x100000;
 962#else
 963	alignment = 1;
 964#endif
 965
 966	/*
 967	 * When using THP mmap is not guaranteed to returned a hugepage aligned
 968	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
 969	 * because mmap will always return an address aligned to the HugeTLB
 970	 * page size.
 971	 */
 972	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
 973		alignment = max(backing_src_pagesz, alignment);
 974
 975	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
 976
 977	/* Add enough memory to align up if necessary */
 978	if (alignment > 1)
 979		region->mmap_size += alignment;
 980
 981	region->fd = -1;
 982	if (backing_src_is_shared(src_type))
 983		region->fd = kvm_memfd_alloc(region->mmap_size,
 984					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
 985
 986	region->mmap_start = mmap(NULL, region->mmap_size,
 987				  PROT_READ | PROT_WRITE,
 988				  vm_mem_backing_src_alias(src_type)->flag,
 989				  region->fd, 0);
 990	TEST_ASSERT(region->mmap_start != MAP_FAILED,
 991		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
 992
 993	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
 994		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
 995		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
 996		    region->mmap_start, backing_src_pagesz);
 997
 998	/* Align host address */
 999	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1000
1001	/* As needed perform madvise */
1002	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1003	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1004		ret = madvise(region->host_mem, npages * vm->page_size,
1005			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1006		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1007			    region->host_mem, npages * vm->page_size,
1008			    vm_mem_backing_src_alias(src_type)->name);
1009	}
1010
1011	region->backing_src_type = src_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012	region->unused_phy_pages = sparsebit_alloc();
 
 
1013	sparsebit_set_num(region->unused_phy_pages,
1014		guest_paddr >> vm->page_shift, npages);
1015	region->region.slot = slot;
1016	region->region.flags = flags;
1017	region->region.guest_phys_addr = guest_paddr;
1018	region->region.memory_size = npages * vm->page_size;
1019	region->region.userspace_addr = (uintptr_t) region->host_mem;
1020	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1021	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1022		"  rc: %i errno: %i\n"
1023		"  slot: %u flags: 0x%x\n"
1024		"  guest_phys_addr: 0x%lx size: 0x%lx",
1025		ret, errno, slot, flags,
1026		guest_paddr, (uint64_t) region->region.memory_size);
 
1027
1028	/* Add to quick lookup data structures */
1029	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1030	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1031	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1032
1033	/* If shared memory, create an alias. */
1034	if (region->fd >= 0) {
1035		region->mmap_alias = mmap(NULL, region->mmap_size,
1036					  PROT_READ | PROT_WRITE,
1037					  vm_mem_backing_src_alias(src_type)->flag,
1038					  region->fd, 0);
1039		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1040			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1041
1042		/* Align host alias address */
1043		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1044	}
1045}
1046
 
 
 
 
 
 
 
 
1047/*
1048 * Memslot to region
1049 *
1050 * Input Args:
1051 *   vm - Virtual Machine
1052 *   memslot - KVM memory slot ID
1053 *
1054 * Output Args: None
1055 *
1056 * Return:
1057 *   Pointer to memory region structure that describe memory region
1058 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1059 *   on error (e.g. currently no memory region using memslot as a KVM
1060 *   memory slot ID).
1061 */
1062struct userspace_mem_region *
1063memslot2region(struct kvm_vm *vm, uint32_t memslot)
1064{
1065	struct userspace_mem_region *region;
1066
1067	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1068			       memslot)
1069		if (region->region.slot == memslot)
1070			return region;
1071
1072	fprintf(stderr, "No mem region with the requested slot found,\n"
1073		"  requested slot: %u\n", memslot);
1074	fputs("---- vm dump ----\n", stderr);
1075	vm_dump(stderr, vm, 2);
1076	TEST_FAIL("Mem region not found");
1077	return NULL;
1078}
1079
1080/*
1081 * VM Memory Region Flags Set
1082 *
1083 * Input Args:
1084 *   vm - Virtual Machine
1085 *   flags - Starting guest physical address
1086 *
1087 * Output Args: None
1088 *
1089 * Return: None
1090 *
1091 * Sets the flags of the memory region specified by the value of slot,
1092 * to the values given by flags.
1093 */
1094void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1095{
1096	int ret;
1097	struct userspace_mem_region *region;
1098
1099	region = memslot2region(vm, slot);
1100
1101	region->region.flags = flags;
1102
1103	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1104
1105	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1106		"  rc: %i errno: %i slot: %u flags: 0x%x",
1107		ret, errno, slot, flags);
1108}
1109
1110/*
1111 * VM Memory Region Move
1112 *
1113 * Input Args:
1114 *   vm - Virtual Machine
1115 *   slot - Slot of the memory region to move
1116 *   new_gpa - Starting guest physical address
1117 *
1118 * Output Args: None
1119 *
1120 * Return: None
1121 *
1122 * Change the gpa of a memory region.
1123 */
1124void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1125{
1126	struct userspace_mem_region *region;
1127	int ret;
1128
1129	region = memslot2region(vm, slot);
1130
1131	region->region.guest_phys_addr = new_gpa;
1132
1133	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1134
1135	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1136		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1137		    ret, errno, slot, new_gpa);
1138}
1139
1140/*
1141 * VM Memory Region Delete
1142 *
1143 * Input Args:
1144 *   vm - Virtual Machine
1145 *   slot - Slot of the memory region to delete
1146 *
1147 * Output Args: None
1148 *
1149 * Return: None
1150 *
1151 * Delete a memory region.
1152 */
1153void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1154{
1155	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156}
1157
1158/* Returns the size of a vCPU's kvm_run structure. */
1159static int vcpu_mmap_sz(void)
1160{
1161	int dev_fd, ret;
1162
1163	dev_fd = open_kvm_dev_path_or_exit();
1164
1165	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1166	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1167		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1168
1169	close(dev_fd);
1170
1171	return ret;
1172}
1173
1174static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1175{
1176	struct kvm_vcpu *vcpu;
1177
1178	list_for_each_entry(vcpu, &vm->vcpus, list) {
1179		if (vcpu->id == vcpu_id)
1180			return true;
1181	}
1182
1183	return false;
1184}
1185
1186/*
1187 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1188 * No additional vCPU setup is done.  Returns the vCPU.
1189 */
1190struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1191{
1192	struct kvm_vcpu *vcpu;
1193
1194	/* Confirm a vcpu with the specified id doesn't already exist. */
1195	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1196
1197	/* Allocate and initialize new vcpu structure. */
1198	vcpu = calloc(1, sizeof(*vcpu));
1199	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1200
1201	vcpu->vm = vm;
1202	vcpu->id = vcpu_id;
1203	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1204	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1205
1206	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1207		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1208		vcpu_mmap_sz(), sizeof(*vcpu->run));
1209	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1210		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1211	TEST_ASSERT(vcpu->run != MAP_FAILED,
1212		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1213
1214	/* Add to linked-list of VCPUs. */
1215	list_add(&vcpu->list, &vm->vcpus);
1216
1217	return vcpu;
1218}
1219
1220/*
1221 * VM Virtual Address Unused Gap
1222 *
1223 * Input Args:
1224 *   vm - Virtual Machine
1225 *   sz - Size (bytes)
1226 *   vaddr_min - Minimum Virtual Address
1227 *
1228 * Output Args: None
1229 *
1230 * Return:
1231 *   Lowest virtual address at or below vaddr_min, with at least
1232 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1233 *   size sz is available.
1234 *
1235 * Within the VM specified by vm, locates the lowest starting virtual
1236 * address >= vaddr_min, that has at least sz unallocated bytes.  A
1237 * TEST_ASSERT failure occurs for invalid input or no area of at least
1238 * sz unallocated bytes >= vaddr_min is available.
1239 */
1240vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1241			       vm_vaddr_t vaddr_min)
1242{
1243	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1244
1245	/* Determine lowest permitted virtual page index. */
1246	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1247	if ((pgidx_start * vm->page_size) < vaddr_min)
1248		goto no_va_found;
1249
1250	/* Loop over section with enough valid virtual page indexes. */
1251	if (!sparsebit_is_set_num(vm->vpages_valid,
1252		pgidx_start, pages))
1253		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1254			pgidx_start, pages);
1255	do {
1256		/*
1257		 * Are there enough unused virtual pages available at
1258		 * the currently proposed starting virtual page index.
1259		 * If not, adjust proposed starting index to next
1260		 * possible.
1261		 */
1262		if (sparsebit_is_clear_num(vm->vpages_mapped,
1263			pgidx_start, pages))
1264			goto va_found;
1265		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1266			pgidx_start, pages);
1267		if (pgidx_start == 0)
1268			goto no_va_found;
1269
1270		/*
1271		 * If needed, adjust proposed starting virtual address,
1272		 * to next range of valid virtual addresses.
1273		 */
1274		if (!sparsebit_is_set_num(vm->vpages_valid,
1275			pgidx_start, pages)) {
1276			pgidx_start = sparsebit_next_set_num(
1277				vm->vpages_valid, pgidx_start, pages);
1278			if (pgidx_start == 0)
1279				goto no_va_found;
1280		}
1281	} while (pgidx_start != 0);
1282
1283no_va_found:
1284	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1285
1286	/* NOT REACHED */
1287	return -1;
1288
1289va_found:
1290	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1291		pgidx_start, pages),
1292		"Unexpected, invalid virtual page index range,\n"
1293		"  pgidx_start: 0x%lx\n"
1294		"  pages: 0x%lx",
1295		pgidx_start, pages);
1296	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1297		pgidx_start, pages),
1298		"Unexpected, pages already mapped,\n"
1299		"  pgidx_start: 0x%lx\n"
1300		"  pages: 0x%lx",
1301		pgidx_start, pages);
1302
1303	return pgidx_start * vm->page_size;
1304}
1305
1306vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1307			    enum kvm_mem_region_type type)
 
 
1308{
1309	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1310
1311	virt_pgd_alloc(vm);
1312	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1313					      KVM_UTIL_MIN_PFN * vm->page_size,
1314					      vm->memslots[type]);
1315
1316	/*
1317	 * Find an unused range of virtual page addresses of at least
1318	 * pages in length.
1319	 */
1320	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1321
1322	/* Map the virtual pages. */
1323	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1324		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1325
1326		virt_pg_map(vm, vaddr, paddr);
1327
1328		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1329	}
1330
1331	return vaddr_start;
1332}
1333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334/*
1335 * VM Virtual Address Allocate
1336 *
1337 * Input Args:
1338 *   vm - Virtual Machine
1339 *   sz - Size in bytes
1340 *   vaddr_min - Minimum starting virtual address
1341 *
1342 * Output Args: None
1343 *
1344 * Return:
1345 *   Starting guest virtual address
1346 *
1347 * Allocates at least sz bytes within the virtual address space of the vm
1348 * given by vm.  The allocated bytes are mapped to a virtual address >=
1349 * the address given by vaddr_min.  Note that each allocation uses a
1350 * a unique set of pages, with the minimum real allocation being at least
1351 * a page. The allocated physical space comes from the TEST_DATA memory region.
1352 */
1353vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354{
1355	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1356}
1357
1358/*
1359 * VM Virtual Address Allocate Pages
1360 *
1361 * Input Args:
1362 *   vm - Virtual Machine
1363 *
1364 * Output Args: None
1365 *
1366 * Return:
1367 *   Starting guest virtual address
1368 *
1369 * Allocates at least N system pages worth of bytes within the virtual address
1370 * space of the vm.
1371 */
1372vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1373{
1374	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1375}
1376
1377vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1378{
1379	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1380}
1381
1382/*
1383 * VM Virtual Address Allocate Page
1384 *
1385 * Input Args:
1386 *   vm - Virtual Machine
1387 *
1388 * Output Args: None
1389 *
1390 * Return:
1391 *   Starting guest virtual address
1392 *
1393 * Allocates at least one system page worth of bytes within the virtual address
1394 * space of the vm.
1395 */
1396vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1397{
1398	return vm_vaddr_alloc_pages(vm, 1);
1399}
1400
1401/*
1402 * Map a range of VM virtual address to the VM's physical address
1403 *
1404 * Input Args:
1405 *   vm - Virtual Machine
1406 *   vaddr - Virtuall address to map
1407 *   paddr - VM Physical Address
1408 *   npages - The number of pages to map
1409 *
1410 * Output Args: None
1411 *
1412 * Return: None
1413 *
1414 * Within the VM given by @vm, creates a virtual translation for
1415 * @npages starting at @vaddr to the page range starting at @paddr.
1416 */
1417void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1418	      unsigned int npages)
1419{
1420	size_t page_size = vm->page_size;
1421	size_t size = npages * page_size;
1422
1423	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1424	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1425
1426	while (npages--) {
1427		virt_pg_map(vm, vaddr, paddr);
1428		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1429
1430		vaddr += page_size;
1431		paddr += page_size;
1432	}
1433}
1434
1435/*
1436 * Address VM Physical to Host Virtual
1437 *
1438 * Input Args:
1439 *   vm - Virtual Machine
1440 *   gpa - VM physical address
1441 *
1442 * Output Args: None
1443 *
1444 * Return:
1445 *   Equivalent host virtual address
1446 *
1447 * Locates the memory region containing the VM physical address given
1448 * by gpa, within the VM given by vm.  When found, the host virtual
1449 * address providing the memory to the vm physical address is returned.
1450 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1451 */
1452void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1453{
1454	struct userspace_mem_region *region;
1455
 
 
1456	region = userspace_mem_region_find(vm, gpa, gpa);
1457	if (!region) {
1458		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1459		return NULL;
1460	}
1461
1462	return (void *)((uintptr_t)region->host_mem
1463		+ (gpa - region->region.guest_phys_addr));
1464}
1465
1466/*
1467 * Address Host Virtual to VM Physical
1468 *
1469 * Input Args:
1470 *   vm - Virtual Machine
1471 *   hva - Host virtual address
1472 *
1473 * Output Args: None
1474 *
1475 * Return:
1476 *   Equivalent VM physical address
1477 *
1478 * Locates the memory region containing the host virtual address given
1479 * by hva, within the VM given by vm.  When found, the equivalent
1480 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1481 * region containing hva exists.
1482 */
1483vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1484{
1485	struct rb_node *node;
1486
1487	for (node = vm->regions.hva_tree.rb_node; node; ) {
1488		struct userspace_mem_region *region =
1489			container_of(node, struct userspace_mem_region, hva_node);
1490
1491		if (hva >= region->host_mem) {
1492			if (hva <= (region->host_mem
1493				+ region->region.memory_size - 1))
1494				return (vm_paddr_t)((uintptr_t)
1495					region->region.guest_phys_addr
1496					+ (hva - (uintptr_t)region->host_mem));
1497
1498			node = node->rb_right;
1499		} else
1500			node = node->rb_left;
1501	}
1502
1503	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1504	return -1;
1505}
1506
1507/*
1508 * Address VM physical to Host Virtual *alias*.
1509 *
1510 * Input Args:
1511 *   vm - Virtual Machine
1512 *   gpa - VM physical address
1513 *
1514 * Output Args: None
1515 *
1516 * Return:
1517 *   Equivalent address within the host virtual *alias* area, or NULL
1518 *   (without failing the test) if the guest memory is not shared (so
1519 *   no alias exists).
1520 *
1521 * Create a writable, shared virtual=>physical alias for the specific GPA.
1522 * The primary use case is to allow the host selftest to manipulate guest
1523 * memory without mapping said memory in the guest's address space. And, for
1524 * userfaultfd-based demand paging, to do so without triggering userfaults.
1525 */
1526void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1527{
1528	struct userspace_mem_region *region;
1529	uintptr_t offset;
1530
1531	region = userspace_mem_region_find(vm, gpa, gpa);
1532	if (!region)
1533		return NULL;
1534
1535	if (!region->host_alias)
1536		return NULL;
1537
1538	offset = gpa - region->region.guest_phys_addr;
1539	return (void *) ((uintptr_t) region->host_alias + offset);
1540}
1541
1542/* Create an interrupt controller chip for the specified VM. */
1543void vm_create_irqchip(struct kvm_vm *vm)
1544{
1545	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1546
1547	vm->has_irqchip = true;
1548}
1549
1550int _vcpu_run(struct kvm_vcpu *vcpu)
1551{
1552	int rc;
1553
1554	do {
1555		rc = __vcpu_run(vcpu);
1556	} while (rc == -1 && errno == EINTR);
1557
1558	assert_on_unhandled_exception(vcpu);
1559
1560	return rc;
1561}
1562
1563/*
1564 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1565 * Assert if the KVM returns an error (other than -EINTR).
1566 */
1567void vcpu_run(struct kvm_vcpu *vcpu)
1568{
1569	int ret = _vcpu_run(vcpu);
1570
1571	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1572}
1573
1574void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1575{
1576	int ret;
1577
1578	vcpu->run->immediate_exit = 1;
1579	ret = __vcpu_run(vcpu);
1580	vcpu->run->immediate_exit = 0;
1581
1582	TEST_ASSERT(ret == -1 && errno == EINTR,
1583		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1584		    ret, errno);
1585}
1586
1587/*
1588 * Get the list of guest registers which are supported for
1589 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1590 * it is the caller's responsibility to free the list.
1591 */
1592struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1593{
1594	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1595	int ret;
1596
1597	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1598	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1599
1600	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1601	reg_list->n = reg_list_n.n;
1602	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1603	return reg_list;
1604}
1605
1606void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1607{
1608	uint32_t page_size = getpagesize();
1609	uint32_t size = vcpu->vm->dirty_ring_size;
1610
1611	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1612
1613	if (!vcpu->dirty_gfns) {
1614		void *addr;
1615
1616		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1617			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1618		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1619
1620		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1621			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1622		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1623
1624		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1625			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1626		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1627
1628		vcpu->dirty_gfns = addr;
1629		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1630	}
1631
1632	return vcpu->dirty_gfns;
1633}
1634
1635/*
1636 * Device Ioctl
1637 */
1638
1639int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1640{
1641	struct kvm_device_attr attribute = {
1642		.group = group,
1643		.attr = attr,
1644		.flags = 0,
1645	};
1646
1647	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1648}
1649
1650int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1651{
1652	struct kvm_create_device create_dev = {
1653		.type = type,
1654		.flags = KVM_CREATE_DEVICE_TEST,
1655	};
1656
1657	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1658}
1659
1660int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1661{
1662	struct kvm_create_device create_dev = {
1663		.type = type,
1664		.fd = -1,
1665		.flags = 0,
1666	};
1667	int err;
1668
1669	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1670	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1671	return err ? : create_dev.fd;
1672}
1673
1674int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1675{
1676	struct kvm_device_attr kvmattr = {
1677		.group = group,
1678		.attr = attr,
1679		.flags = 0,
1680		.addr = (uintptr_t)val,
1681	};
1682
1683	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1684}
1685
1686int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1687{
1688	struct kvm_device_attr kvmattr = {
1689		.group = group,
1690		.attr = attr,
1691		.flags = 0,
1692		.addr = (uintptr_t)val,
1693	};
1694
1695	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1696}
1697
1698/*
1699 * IRQ related functions.
1700 */
1701
1702int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1703{
1704	struct kvm_irq_level irq_level = {
1705		.irq    = irq,
1706		.level  = level,
1707	};
1708
1709	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1710}
1711
1712void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1713{
1714	int ret = _kvm_irq_line(vm, irq, level);
1715
1716	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1717}
1718
1719struct kvm_irq_routing *kvm_gsi_routing_create(void)
1720{
1721	struct kvm_irq_routing *routing;
1722	size_t size;
1723
1724	size = sizeof(struct kvm_irq_routing);
1725	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1726	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1727	routing = calloc(1, size);
1728	assert(routing);
1729
1730	return routing;
1731}
1732
1733void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1734		uint32_t gsi, uint32_t pin)
1735{
1736	int i;
1737
1738	assert(routing);
1739	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1740
1741	i = routing->nr;
1742	routing->entries[i].gsi = gsi;
1743	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1744	routing->entries[i].flags = 0;
1745	routing->entries[i].u.irqchip.irqchip = 0;
1746	routing->entries[i].u.irqchip.pin = pin;
1747	routing->nr++;
1748}
1749
1750int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1751{
1752	int ret;
1753
1754	assert(routing);
1755	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1756	free(routing);
1757
1758	return ret;
1759}
1760
1761void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1762{
1763	int ret;
1764
1765	ret = _kvm_gsi_routing_write(vm, routing);
1766	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1767}
1768
1769/*
1770 * VM Dump
1771 *
1772 * Input Args:
1773 *   vm - Virtual Machine
1774 *   indent - Left margin indent amount
1775 *
1776 * Output Args:
1777 *   stream - Output FILE stream
1778 *
1779 * Return: None
1780 *
1781 * Dumps the current state of the VM given by vm, to the FILE stream
1782 * given by stream.
1783 */
1784void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1785{
1786	int ctr;
1787	struct userspace_mem_region *region;
1788	struct kvm_vcpu *vcpu;
1789
1790	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1791	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1792	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1793	fprintf(stream, "%*sMem Regions:\n", indent, "");
1794	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1795		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1796			"host_virt: %p\n", indent + 2, "",
1797			(uint64_t) region->region.guest_phys_addr,
1798			(uint64_t) region->region.memory_size,
1799			region->host_mem);
1800		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1801		sparsebit_dump(stream, region->unused_phy_pages, 0);
 
 
 
 
1802	}
1803	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1804	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1805	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1806		vm->pgd_created);
1807	if (vm->pgd_created) {
1808		fprintf(stream, "%*sVirtual Translation Tables:\n",
1809			indent + 2, "");
1810		virt_dump(stream, vm, indent + 4);
1811	}
1812	fprintf(stream, "%*sVCPUs:\n", indent, "");
1813
1814	list_for_each_entry(vcpu, &vm->vcpus, list)
1815		vcpu_dump(stream, vcpu, indent + 2);
1816}
1817
 
 
1818/* Known KVM exit reasons */
1819static struct exit_reason {
1820	unsigned int reason;
1821	const char *name;
1822} exit_reasons_known[] = {
1823	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1824	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1825	{KVM_EXIT_IO, "IO"},
1826	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1827	{KVM_EXIT_DEBUG, "DEBUG"},
1828	{KVM_EXIT_HLT, "HLT"},
1829	{KVM_EXIT_MMIO, "MMIO"},
1830	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1831	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1832	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1833	{KVM_EXIT_INTR, "INTR"},
1834	{KVM_EXIT_SET_TPR, "SET_TPR"},
1835	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1836	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1837	{KVM_EXIT_S390_RESET, "S390_RESET"},
1838	{KVM_EXIT_DCR, "DCR"},
1839	{KVM_EXIT_NMI, "NMI"},
1840	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1841	{KVM_EXIT_OSI, "OSI"},
1842	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1843	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1844	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1845	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1846	{KVM_EXIT_XEN, "XEN"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1848	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1849#endif
1850};
1851
1852/*
1853 * Exit Reason String
1854 *
1855 * Input Args:
1856 *   exit_reason - Exit reason
1857 *
1858 * Output Args: None
1859 *
1860 * Return:
1861 *   Constant string pointer describing the exit reason.
1862 *
1863 * Locates and returns a constant string that describes the KVM exit
1864 * reason given by exit_reason.  If no such string is found, a constant
1865 * string of "Unknown" is returned.
1866 */
1867const char *exit_reason_str(unsigned int exit_reason)
1868{
1869	unsigned int n1;
1870
1871	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1872		if (exit_reason == exit_reasons_known[n1].reason)
1873			return exit_reasons_known[n1].name;
1874	}
1875
1876	return "Unknown";
1877}
1878
1879/*
1880 * Physical Contiguous Page Allocator
1881 *
1882 * Input Args:
1883 *   vm - Virtual Machine
1884 *   num - number of pages
1885 *   paddr_min - Physical address minimum
1886 *   memslot - Memory region to allocate page from
 
1887 *
1888 * Output Args: None
1889 *
1890 * Return:
1891 *   Starting physical address
1892 *
1893 * Within the VM specified by vm, locates a range of available physical
1894 * pages at or above paddr_min. If found, the pages are marked as in use
1895 * and their base address is returned. A TEST_ASSERT failure occurs if
1896 * not enough pages are available at or above paddr_min.
1897 */
1898vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1899			      vm_paddr_t paddr_min, uint32_t memslot)
 
1900{
1901	struct userspace_mem_region *region;
1902	sparsebit_idx_t pg, base;
1903
1904	TEST_ASSERT(num > 0, "Must allocate at least one page");
1905
1906	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1907		"not divisible by page size.\n"
1908		"  paddr_min: 0x%lx page_size: 0x%x",
1909		paddr_min, vm->page_size);
1910
1911	region = memslot2region(vm, memslot);
1912	base = pg = paddr_min >> vm->page_shift;
 
1913
 
1914	do {
1915		for (; pg < base + num; ++pg) {
1916			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1917				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1918				break;
1919			}
1920		}
1921	} while (pg && pg != base + num);
1922
1923	if (pg == 0) {
1924		fprintf(stderr, "No guest physical page available, "
1925			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1926			paddr_min, vm->page_size, memslot);
1927		fputs("---- vm dump ----\n", stderr);
1928		vm_dump(stderr, vm, 2);
1929		abort();
1930	}
1931
1932	for (pg = base; pg < base + num; ++pg)
1933		sparsebit_clear(region->unused_phy_pages, pg);
 
 
 
1934
1935	return base * vm->page_size;
1936}
1937
1938vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1939			     uint32_t memslot)
1940{
1941	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1942}
1943
1944/* Arbitrary minimum physical address used for virtual translation tables. */
1945#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1946
1947vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1948{
1949	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1950				 vm->memslots[MEM_REGION_PT]);
1951}
1952
1953/*
1954 * Address Guest Virtual to Host Virtual
1955 *
1956 * Input Args:
1957 *   vm - Virtual Machine
1958 *   gva - VM virtual address
1959 *
1960 * Output Args: None
1961 *
1962 * Return:
1963 *   Equivalent host virtual address
1964 */
1965void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1966{
1967	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1968}
1969
1970unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1971{
1972	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1973}
1974
1975static unsigned int vm_calc_num_pages(unsigned int num_pages,
1976				      unsigned int page_shift,
1977				      unsigned int new_page_shift,
1978				      bool ceil)
1979{
1980	unsigned int n = 1 << (new_page_shift - page_shift);
1981
1982	if (page_shift >= new_page_shift)
1983		return num_pages * (1 << (page_shift - new_page_shift));
1984
1985	return num_pages / n + !!(ceil && num_pages % n);
1986}
1987
1988static inline int getpageshift(void)
1989{
1990	return __builtin_ffs(getpagesize()) - 1;
1991}
1992
1993unsigned int
1994vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1995{
1996	return vm_calc_num_pages(num_guest_pages,
1997				 vm_guest_mode_params[mode].page_shift,
1998				 getpageshift(), true);
1999}
2000
2001unsigned int
2002vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2003{
2004	return vm_calc_num_pages(num_host_pages, getpageshift(),
2005				 vm_guest_mode_params[mode].page_shift, false);
2006}
2007
2008unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2009{
2010	unsigned int n;
2011	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2012	return vm_adjust_num_guest_pages(mode, n);
2013}
2014
2015/*
2016 * Read binary stats descriptors
2017 *
2018 * Input Args:
2019 *   stats_fd - the file descriptor for the binary stats file from which to read
2020 *   header - the binary stats metadata header corresponding to the given FD
2021 *
2022 * Output Args: None
2023 *
2024 * Return:
2025 *   A pointer to a newly allocated series of stat descriptors.
2026 *   Caller is responsible for freeing the returned kvm_stats_desc.
2027 *
2028 * Read the stats descriptors from the binary stats interface.
2029 */
2030struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2031					      struct kvm_stats_header *header)
2032{
2033	struct kvm_stats_desc *stats_desc;
2034	ssize_t desc_size, total_size, ret;
2035
2036	desc_size = get_stats_descriptor_size(header);
2037	total_size = header->num_desc * desc_size;
2038
2039	stats_desc = calloc(header->num_desc, desc_size);
2040	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2041
2042	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2043	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2044
2045	return stats_desc;
2046}
2047
2048/*
2049 * Read stat data for a particular stat
2050 *
2051 * Input Args:
2052 *   stats_fd - the file descriptor for the binary stats file from which to read
2053 *   header - the binary stats metadata header corresponding to the given FD
2054 *   desc - the binary stat metadata for the particular stat to be read
2055 *   max_elements - the maximum number of 8-byte values to read into data
2056 *
2057 * Output Args:
2058 *   data - the buffer into which stat data should be read
2059 *
2060 * Read the data values of a specified stat from the binary stats interface.
2061 */
2062void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2063		    struct kvm_stats_desc *desc, uint64_t *data,
2064		    size_t max_elements)
2065{
2066	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2067	size_t size = nr_elements * sizeof(*data);
2068	ssize_t ret;
2069
2070	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2071	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2072
2073	ret = pread(stats_fd, data, size,
2074		    header->data_offset + desc->offset);
2075
2076	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2077		    desc->name, errno, strerror(errno));
2078	TEST_ASSERT(ret == size,
2079		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2080		    desc->name, size, ret);
2081}
2082
2083/*
2084 * Read the data of the named stat
2085 *
2086 * Input Args:
2087 *   vm - the VM for which the stat should be read
2088 *   stat_name - the name of the stat to read
2089 *   max_elements - the maximum number of 8-byte values to read into data
2090 *
2091 * Output Args:
2092 *   data - the buffer into which stat data should be read
2093 *
2094 * Read the data values of a specified stat from the binary stats interface.
2095 */
2096void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2097		   size_t max_elements)
2098{
2099	struct kvm_stats_desc *desc;
2100	size_t size_desc;
2101	int i;
2102
2103	if (!vm->stats_fd) {
2104		vm->stats_fd = vm_get_stats_fd(vm);
2105		read_stats_header(vm->stats_fd, &vm->stats_header);
2106		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2107							&vm->stats_header);
2108	}
2109
2110	size_desc = get_stats_descriptor_size(&vm->stats_header);
2111
2112	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2113		desc = (void *)vm->stats_desc + (i * size_desc);
2114
2115		if (strcmp(desc->name, stat_name))
2116			continue;
2117
2118		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2119			       data, max_elements);
2120
2121		break;
2122	}
2123}
2124
2125__weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2126{
2127}
2128
2129__weak void kvm_selftest_arch_init(void)
2130{
2131}
2132
2133void __attribute((constructor)) kvm_selftest_init(void)
2134{
2135	/* Tell stdout not to buffer its content. */
2136	setbuf(stdout, NULL);
2137
 
 
 
2138	kvm_selftest_arch_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * tools/testing/selftests/kvm/lib/kvm_util.c
   4 *
   5 * Copyright (C) 2018, Google LLC.
   6 */
 
 
   7#include "test_util.h"
   8#include "kvm_util.h"
   9#include "processor.h"
  10#include "ucall_common.h"
  11
  12#include <assert.h>
  13#include <sched.h>
  14#include <sys/mman.h>
  15#include <sys/types.h>
  16#include <sys/stat.h>
  17#include <unistd.h>
  18#include <linux/kernel.h>
  19
  20#define KVM_UTIL_MIN_PFN	2
  21
  22uint32_t guest_random_seed;
  23struct guest_random_state guest_rng;
  24static uint32_t last_guest_seed;
  25
  26static int vcpu_mmap_sz(void);
  27
  28int open_path_or_exit(const char *path, int flags)
  29{
  30	int fd;
  31
  32	fd = open(path, flags);
  33	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
  34	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
  35
  36	return fd;
  37}
  38
  39/*
  40 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
  41 *
  42 * Input Args:
  43 *   flags - The flags to pass when opening KVM_DEV_PATH.
  44 *
  45 * Return:
  46 *   The opened file descriptor of /dev/kvm.
  47 */
  48static int _open_kvm_dev_path_or_exit(int flags)
  49{
  50	return open_path_or_exit(KVM_DEV_PATH, flags);
  51}
  52
  53int open_kvm_dev_path_or_exit(void)
  54{
  55	return _open_kvm_dev_path_or_exit(O_RDONLY);
  56}
  57
  58static ssize_t get_module_param(const char *module_name, const char *param,
  59				void *buffer, size_t buffer_size)
  60{
  61	const int path_size = 128;
  62	char path[path_size];
  63	ssize_t bytes_read;
  64	int fd, r;
 
  65
  66	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
  67		     module_name, param);
  68	TEST_ASSERT(r < path_size,
  69		    "Failed to construct sysfs path in %d bytes.", path_size);
  70
  71	fd = open_path_or_exit(path, O_RDONLY);
  72
  73	bytes_read = read(fd, buffer, buffer_size);
  74	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
  75		    path, bytes_read, buffer_size);
  76
  77	r = close(fd);
  78	TEST_ASSERT(!r, "close(%s) failed", path);
  79	return bytes_read;
  80}
  81
  82static int get_module_param_integer(const char *module_name, const char *param)
  83{
  84	/*
  85	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
  86	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
  87	 * at the end.
  88	 */
  89	char value[16 + 1 + 1];
  90	ssize_t r;
  91
  92	memset(value, '\0', sizeof(value));
  93
  94	r = get_module_param(module_name, param, value, sizeof(value));
  95	TEST_ASSERT(value[r - 1] == '\n',
  96		    "Expected trailing newline, got char '%c'", value[r - 1]);
  97
  98	/*
  99	 * Squash the newline, otherwise atoi_paranoid() will complain about
 100	 * trailing non-NUL characters in the string.
 101	 */
 102	value[r - 1] = '\0';
 103	return atoi_paranoid(value);
 104}
 105
 106static bool get_module_param_bool(const char *module_name, const char *param)
 107{
 108	char value;
 109	ssize_t r;
 110
 111	r = get_module_param(module_name, param, &value, sizeof(value));
 112	TEST_ASSERT_EQ(r, 1);
 113
 114	if (value == 'Y')
 115		return true;
 116	else if (value == 'N')
 117		return false;
 118
 119	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
 120}
 121
 122bool get_kvm_param_bool(const char *param)
 123{
 124	return get_module_param_bool("kvm", param);
 125}
 126
 127bool get_kvm_intel_param_bool(const char *param)
 128{
 129	return get_module_param_bool("kvm_intel", param);
 130}
 131
 132bool get_kvm_amd_param_bool(const char *param)
 133{
 134	return get_module_param_bool("kvm_amd", param);
 135}
 136
 137int get_kvm_param_integer(const char *param)
 138{
 139	return get_module_param_integer("kvm", param);
 140}
 141
 142int get_kvm_intel_param_integer(const char *param)
 143{
 144	return get_module_param_integer("kvm_intel", param);
 145}
 146
 147int get_kvm_amd_param_integer(const char *param)
 148{
 149	return get_module_param_integer("kvm_amd", param);
 150}
 151
 152/*
 153 * Capability
 154 *
 155 * Input Args:
 156 *   cap - Capability
 157 *
 158 * Output Args: None
 159 *
 160 * Return:
 161 *   On success, the Value corresponding to the capability (KVM_CAP_*)
 162 *   specified by the value of cap.  On failure a TEST_ASSERT failure
 163 *   is produced.
 164 *
 165 * Looks up and returns the value corresponding to the capability
 166 * (KVM_CAP_*) given by cap.
 167 */
 168unsigned int kvm_check_cap(long cap)
 169{
 170	int ret;
 171	int kvm_fd;
 172
 173	kvm_fd = open_kvm_dev_path_or_exit();
 174	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
 175	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
 176
 177	close(kvm_fd);
 178
 179	return (unsigned int)ret;
 180}
 181
 182void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
 183{
 184	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
 185		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
 186	else
 187		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
 188	vm->dirty_ring_size = ring_size;
 189}
 190
 191static void vm_open(struct kvm_vm *vm)
 192{
 193	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
 194
 195	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
 196
 197	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
 198	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
 199}
 200
 201const char *vm_guest_mode_string(uint32_t i)
 202{
 203	static const char * const strings[] = {
 204		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
 205		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
 206		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
 207		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
 208		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
 209		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
 210		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
 211		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
 212		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
 213		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
 214		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
 215		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
 216		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
 217		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
 218		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
 219		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
 220	};
 221	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
 222		       "Missing new mode strings?");
 223
 224	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
 225
 226	return strings[i];
 227}
 228
 229const struct vm_guest_mode_params vm_guest_mode_params[] = {
 230	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
 231	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
 232	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
 233	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
 234	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
 235	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
 236	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
 237	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
 238	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
 239	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
 240	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
 241	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
 242	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
 243	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
 244	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
 245	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
 246};
 247_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
 248	       "Missing new mode params?");
 249
 250/*
 251 * Initializes vm->vpages_valid to match the canonical VA space of the
 252 * architecture.
 253 *
 254 * The default implementation is valid for architectures which split the
 255 * range addressed by a single page table into a low and high region
 256 * based on the MSB of the VA. On architectures with this behavior
 257 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
 258 */
 259__weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
 260{
 261	sparsebit_set_num(vm->vpages_valid,
 262		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 263	sparsebit_set_num(vm->vpages_valid,
 264		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
 265		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
 266}
 267
 268struct kvm_vm *____vm_create(struct vm_shape shape)
 269{
 270	struct kvm_vm *vm;
 271
 272	vm = calloc(1, sizeof(*vm));
 273	TEST_ASSERT(vm != NULL, "Insufficient Memory");
 274
 275	INIT_LIST_HEAD(&vm->vcpus);
 276	vm->regions.gpa_tree = RB_ROOT;
 277	vm->regions.hva_tree = RB_ROOT;
 278	hash_init(vm->regions.slot_hash);
 279
 280	vm->mode = shape.mode;
 281	vm->type = shape.type;
 282
 283	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
 284	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
 285	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
 286	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
 287
 288	/* Setup mode specific traits. */
 289	switch (vm->mode) {
 290	case VM_MODE_P52V48_4K:
 291		vm->pgtable_levels = 4;
 292		break;
 293	case VM_MODE_P52V48_64K:
 294		vm->pgtable_levels = 3;
 295		break;
 296	case VM_MODE_P48V48_4K:
 297		vm->pgtable_levels = 4;
 298		break;
 299	case VM_MODE_P48V48_64K:
 300		vm->pgtable_levels = 3;
 301		break;
 302	case VM_MODE_P40V48_4K:
 303	case VM_MODE_P36V48_4K:
 304		vm->pgtable_levels = 4;
 305		break;
 306	case VM_MODE_P40V48_64K:
 307	case VM_MODE_P36V48_64K:
 308		vm->pgtable_levels = 3;
 309		break;
 310	case VM_MODE_P52V48_16K:
 311	case VM_MODE_P48V48_16K:
 312	case VM_MODE_P40V48_16K:
 313	case VM_MODE_P36V48_16K:
 314		vm->pgtable_levels = 4;
 315		break;
 316	case VM_MODE_P36V47_16K:
 317		vm->pgtable_levels = 3;
 318		break;
 319	case VM_MODE_PXXV48_4K:
 320#ifdef __x86_64__
 321		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
 322		kvm_init_vm_address_properties(vm);
 323		/*
 324		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
 325		 * it doesn't take effect unless a CR4.LA57 is set, which it
 326		 * isn't for this mode (48-bit virtual address space).
 327		 */
 328		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
 329			    "Linear address width (%d bits) not supported",
 330			    vm->va_bits);
 331		pr_debug("Guest physical address width detected: %d\n",
 332			 vm->pa_bits);
 333		vm->pgtable_levels = 4;
 334		vm->va_bits = 48;
 335#else
 336		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
 337#endif
 338		break;
 339	case VM_MODE_P47V64_4K:
 340		vm->pgtable_levels = 5;
 341		break;
 342	case VM_MODE_P44V64_4K:
 343		vm->pgtable_levels = 5;
 344		break;
 345	default:
 346		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
 347	}
 348
 349#ifdef __aarch64__
 350	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
 351	if (vm->pa_bits != 40)
 352		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
 353#endif
 354
 355	vm_open(vm);
 356
 357	/* Limit to VA-bit canonical virtual addresses. */
 358	vm->vpages_valid = sparsebit_alloc();
 359	vm_vaddr_populate_bitmap(vm);
 360
 361	/* Limit physical addresses to PA-bits. */
 362	vm->max_gfn = vm_compute_max_gfn(vm);
 363
 364	/* Allocate and setup memory for guest. */
 365	vm->vpages_mapped = sparsebit_alloc();
 366
 367	return vm;
 368}
 369
 370static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
 371				     uint32_t nr_runnable_vcpus,
 372				     uint64_t extra_mem_pages)
 373{
 374	uint64_t page_size = vm_guest_mode_params[mode].page_size;
 375	uint64_t nr_pages;
 376
 377	TEST_ASSERT(nr_runnable_vcpus,
 378		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
 379
 380	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
 381		    "nr_vcpus = %d too large for host, max-vcpus = %d",
 382		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
 383
 384	/*
 385	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
 386	 * test code and other per-VM assets that will be loaded into memslot0.
 387	 */
 388	nr_pages = 512;
 389
 390	/* Account for the per-vCPU stacks on behalf of the test. */
 391	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
 392
 393	/*
 394	 * Account for the number of pages needed for the page tables.  The
 395	 * maximum page table size for a memory region will be when the
 396	 * smallest page size is used. Considering each page contains x page
 397	 * table descriptors, the total extra size for page tables (for extra
 398	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
 399	 * than N/x*2.
 400	 */
 401	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
 402
 403	/* Account for the number of pages needed by ucall. */
 404	nr_pages += ucall_nr_pages_required(page_size);
 405
 406	return vm_adjust_num_guest_pages(mode, nr_pages);
 407}
 408
 409struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
 410			   uint64_t nr_extra_pages)
 411{
 412	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
 413						 nr_extra_pages);
 414	struct userspace_mem_region *slot0;
 415	struct kvm_vm *vm;
 416	int i;
 417
 418	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
 419		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
 420
 421	vm = ____vm_create(shape);
 422
 423	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
 424	for (i = 0; i < NR_MEM_REGIONS; i++)
 425		vm->memslots[i] = 0;
 426
 427	kvm_vm_elf_load(vm, program_invocation_name);
 428
 429	/*
 430	 * TODO: Add proper defines to protect the library's memslots, and then
 431	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
 432	 * read-only memslots as MMIO, and creating a read-only memslot for the
 433	 * MMIO region would prevent silently clobbering the MMIO region.
 434	 */
 435	slot0 = memslot2region(vm, 0);
 436	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
 437
 438	if (guest_random_seed != last_guest_seed) {
 439		pr_info("Random seed: 0x%x\n", guest_random_seed);
 440		last_guest_seed = guest_random_seed;
 441	}
 442	guest_rng = new_guest_random_state(guest_random_seed);
 443	sync_global_to_guest(vm, guest_rng);
 444
 445	kvm_arch_vm_post_create(vm);
 446
 447	return vm;
 448}
 449
 450/*
 451 * VM Create with customized parameters
 452 *
 453 * Input Args:
 454 *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
 455 *   nr_vcpus - VCPU count
 456 *   extra_mem_pages - Non-slot0 physical memory total size
 457 *   guest_code - Guest entry point
 458 *   vcpuids - VCPU IDs
 459 *
 460 * Output Args: None
 461 *
 462 * Return:
 463 *   Pointer to opaque structure that describes the created VM.
 464 *
 465 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
 466 * extra_mem_pages is only used to calculate the maximum page table size,
 467 * no real memory allocation for non-slot0 memory in this function.
 468 */
 469struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
 470				      uint64_t extra_mem_pages,
 471				      void *guest_code, struct kvm_vcpu *vcpus[])
 472{
 473	struct kvm_vm *vm;
 474	int i;
 475
 476	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
 477
 478	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
 479
 480	for (i = 0; i < nr_vcpus; ++i)
 481		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
 482
 483	return vm;
 484}
 485
 486struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
 487					       struct kvm_vcpu **vcpu,
 488					       uint64_t extra_mem_pages,
 489					       void *guest_code)
 490{
 491	struct kvm_vcpu *vcpus[1];
 492	struct kvm_vm *vm;
 493
 494	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
 
 495
 496	*vcpu = vcpus[0];
 497	return vm;
 498}
 499
 500/*
 501 * VM Restart
 502 *
 503 * Input Args:
 504 *   vm - VM that has been released before
 505 *
 506 * Output Args: None
 507 *
 508 * Reopens the file descriptors associated to the VM and reinstates the
 509 * global state, such as the irqchip and the memory regions that are mapped
 510 * into the guest.
 511 */
 512void kvm_vm_restart(struct kvm_vm *vmp)
 513{
 514	int ctr;
 515	struct userspace_mem_region *region;
 516
 517	vm_open(vmp);
 518	if (vmp->has_irqchip)
 519		vm_create_irqchip(vmp);
 520
 521	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
 522		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
 523
 524		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
 525			    "  rc: %i errno: %i\n"
 526			    "  slot: %u flags: 0x%x\n"
 527			    "  guest_phys_addr: 0x%llx size: 0x%llx",
 528			    ret, errno, region->region.slot,
 529			    region->region.flags,
 530			    region->region.guest_phys_addr,
 531			    region->region.memory_size);
 532	}
 533}
 534
 535__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
 536					      uint32_t vcpu_id)
 537{
 538	return __vm_vcpu_add(vm, vcpu_id);
 539}
 540
 541struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
 542{
 543	kvm_vm_restart(vm);
 544
 545	return vm_vcpu_recreate(vm, 0);
 546}
 547
 548void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
 549{
 550	cpu_set_t mask;
 551	int r;
 552
 553	CPU_ZERO(&mask);
 554	CPU_SET(pcpu, &mask);
 555	r = sched_setaffinity(0, sizeof(mask), &mask);
 556	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
 557}
 558
 559static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
 560{
 561	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
 562
 563	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
 564		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
 565	return pcpu;
 566}
 567
 568void kvm_print_vcpu_pinning_help(void)
 569{
 570	const char *name = program_invocation_name;
 571
 572	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
 573	       "     values (target pCPU), one for each vCPU, plus an optional\n"
 574	       "     entry for the main application task (specified via entry\n"
 575	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
 576	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
 577	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
 578	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
 579	       "         %s -v 3 -c 22,23,24,50\n\n"
 580	       "     To leave the application task unpinned, drop the final entry:\n\n"
 581	       "         %s -v 3 -c 22,23,24\n\n"
 582	       "     (default: no pinning)\n", name, name);
 583}
 584
 585void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
 586			    int nr_vcpus)
 587{
 588	cpu_set_t allowed_mask;
 589	char *cpu, *cpu_list;
 590	char delim[2] = ",";
 591	int i, r;
 592
 593	cpu_list = strdup(pcpus_string);
 594	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
 595
 596	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
 597	TEST_ASSERT(!r, "sched_getaffinity() failed");
 598
 599	cpu = strtok(cpu_list, delim);
 600
 601	/* 1. Get all pcpus for vcpus. */
 602	for (i = 0; i < nr_vcpus; i++) {
 603		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
 604		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
 605		cpu = strtok(NULL, delim);
 606	}
 607
 608	/* 2. Check if the main worker needs to be pinned. */
 609	if (cpu) {
 610		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
 611		cpu = strtok(NULL, delim);
 612	}
 613
 614	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
 615	free(cpu_list);
 616}
 617
 618/*
 619 * Userspace Memory Region Find
 620 *
 621 * Input Args:
 622 *   vm - Virtual Machine
 623 *   start - Starting VM physical address
 624 *   end - Ending VM physical address, inclusive.
 625 *
 626 * Output Args: None
 627 *
 628 * Return:
 629 *   Pointer to overlapping region, NULL if no such region.
 630 *
 631 * Searches for a region with any physical memory that overlaps with
 632 * any portion of the guest physical addresses from start to end
 633 * inclusive.  If multiple overlapping regions exist, a pointer to any
 634 * of the regions is returned.  Null is returned only when no overlapping
 635 * region exists.
 636 */
 637static struct userspace_mem_region *
 638userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
 639{
 640	struct rb_node *node;
 641
 642	for (node = vm->regions.gpa_tree.rb_node; node; ) {
 643		struct userspace_mem_region *region =
 644			container_of(node, struct userspace_mem_region, gpa_node);
 645		uint64_t existing_start = region->region.guest_phys_addr;
 646		uint64_t existing_end = region->region.guest_phys_addr
 647			+ region->region.memory_size - 1;
 648		if (start <= existing_end && end >= existing_start)
 649			return region;
 650
 651		if (start < existing_start)
 652			node = node->rb_left;
 653		else
 654			node = node->rb_right;
 655	}
 656
 657	return NULL;
 658}
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
 661{
 662
 663}
 664
 665/*
 666 * VM VCPU Remove
 667 *
 668 * Input Args:
 669 *   vcpu - VCPU to remove
 670 *
 671 * Output Args: None
 672 *
 673 * Return: None, TEST_ASSERT failures for all error conditions
 674 *
 675 * Removes a vCPU from a VM and frees its resources.
 676 */
 677static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
 678{
 679	int ret;
 680
 681	if (vcpu->dirty_gfns) {
 682		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
 683		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 684		vcpu->dirty_gfns = NULL;
 685	}
 686
 687	ret = munmap(vcpu->run, vcpu_mmap_sz());
 688	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 689
 690	ret = close(vcpu->fd);
 691	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 692
 693	list_del(&vcpu->list);
 694
 695	vcpu_arch_free(vcpu);
 696	free(vcpu);
 697}
 698
 699void kvm_vm_release(struct kvm_vm *vmp)
 700{
 701	struct kvm_vcpu *vcpu, *tmp;
 702	int ret;
 703
 704	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
 705		vm_vcpu_rm(vmp, vcpu);
 706
 707	ret = close(vmp->fd);
 708	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 709
 710	ret = close(vmp->kvm_fd);
 711	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
 712}
 713
 714static void __vm_mem_region_delete(struct kvm_vm *vm,
 715				   struct userspace_mem_region *region)
 
 716{
 717	int ret;
 718
 719	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
 720	rb_erase(&region->hva_node, &vm->regions.hva_tree);
 721	hash_del(&region->slot_node);
 
 
 
 
 
 722
 723	sparsebit_free(&region->unused_phy_pages);
 724	sparsebit_free(&region->protected_phy_pages);
 725	ret = munmap(region->mmap_start, region->mmap_size);
 726	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 727	if (region->fd >= 0) {
 728		/* There's an extra map when using shared memory. */
 729		ret = munmap(region->mmap_alias, region->mmap_size);
 730		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
 731		close(region->fd);
 732	}
 733	if (region->region.guest_memfd >= 0)
 734		close(region->region.guest_memfd);
 735
 736	free(region);
 737}
 738
 739/*
 740 * Destroys and frees the VM pointed to by vmp.
 741 */
 742void kvm_vm_free(struct kvm_vm *vmp)
 743{
 744	int ctr;
 745	struct hlist_node *node;
 746	struct userspace_mem_region *region;
 747
 748	if (vmp == NULL)
 749		return;
 750
 751	/* Free cached stats metadata and close FD */
 752	if (vmp->stats_fd) {
 753		free(vmp->stats_desc);
 754		close(vmp->stats_fd);
 755	}
 756
 757	/* Free userspace_mem_regions. */
 758	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
 759		__vm_mem_region_delete(vmp, region);
 760
 761	/* Free sparsebit arrays. */
 762	sparsebit_free(&vmp->vpages_valid);
 763	sparsebit_free(&vmp->vpages_mapped);
 764
 765	kvm_vm_release(vmp);
 766
 767	/* Free the structure describing the VM. */
 768	free(vmp);
 769}
 770
 771int kvm_memfd_alloc(size_t size, bool hugepages)
 772{
 773	int memfd_flags = MFD_CLOEXEC;
 774	int fd, r;
 775
 776	if (hugepages)
 777		memfd_flags |= MFD_HUGETLB;
 778
 779	fd = memfd_create("kvm_selftest", memfd_flags);
 780	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
 781
 782	r = ftruncate(fd, size);
 783	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
 784
 785	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
 786	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
 787
 788	return fd;
 789}
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
 792					       struct userspace_mem_region *region)
 793{
 794	struct rb_node **cur, *parent;
 795
 796	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
 797		struct userspace_mem_region *cregion;
 798
 799		cregion = container_of(*cur, typeof(*cregion), gpa_node);
 800		parent = *cur;
 801		if (region->region.guest_phys_addr <
 802		    cregion->region.guest_phys_addr)
 803			cur = &(*cur)->rb_left;
 804		else {
 805			TEST_ASSERT(region->region.guest_phys_addr !=
 806				    cregion->region.guest_phys_addr,
 807				    "Duplicate GPA in region tree");
 808
 809			cur = &(*cur)->rb_right;
 810		}
 811	}
 812
 813	rb_link_node(&region->gpa_node, parent, cur);
 814	rb_insert_color(&region->gpa_node, gpa_tree);
 815}
 816
 817static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
 818					       struct userspace_mem_region *region)
 819{
 820	struct rb_node **cur, *parent;
 821
 822	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
 823		struct userspace_mem_region *cregion;
 824
 825		cregion = container_of(*cur, typeof(*cregion), hva_node);
 826		parent = *cur;
 827		if (region->host_mem < cregion->host_mem)
 828			cur = &(*cur)->rb_left;
 829		else {
 830			TEST_ASSERT(region->host_mem !=
 831				    cregion->host_mem,
 832				    "Duplicate HVA in region tree");
 833
 834			cur = &(*cur)->rb_right;
 835		}
 836	}
 837
 838	rb_link_node(&region->hva_node, parent, cur);
 839	rb_insert_color(&region->hva_node, hva_tree);
 840}
 841
 842
 843int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 844				uint64_t gpa, uint64_t size, void *hva)
 845{
 846	struct kvm_userspace_memory_region region = {
 847		.slot = slot,
 848		.flags = flags,
 849		.guest_phys_addr = gpa,
 850		.memory_size = size,
 851		.userspace_addr = (uintptr_t)hva,
 852	};
 853
 854	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
 855}
 856
 857void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 858			       uint64_t gpa, uint64_t size, void *hva)
 859{
 860	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
 861
 862	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
 863		    errno, strerror(errno));
 864}
 865
 866#define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
 867	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
 868		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
 869
 870int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 871				 uint64_t gpa, uint64_t size, void *hva,
 872				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
 873{
 874	struct kvm_userspace_memory_region2 region = {
 875		.slot = slot,
 876		.flags = flags,
 877		.guest_phys_addr = gpa,
 878		.memory_size = size,
 879		.userspace_addr = (uintptr_t)hva,
 880		.guest_memfd = guest_memfd,
 881		.guest_memfd_offset = guest_memfd_offset,
 882	};
 883
 884	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
 885
 886	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
 887}
 888
 889void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
 890				uint64_t gpa, uint64_t size, void *hva,
 891				uint32_t guest_memfd, uint64_t guest_memfd_offset)
 892{
 893	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
 894					       guest_memfd, guest_memfd_offset);
 895
 896	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
 897		    errno, strerror(errno));
 898}
 899
 900
 901/* FIXME: This thing needs to be ripped apart and rewritten. */
 902void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
 903		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
 904		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
 905{
 906	int ret;
 907	struct userspace_mem_region *region;
 908	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
 909	size_t mem_size = npages * vm->page_size;
 910	size_t alignment;
 911
 912	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
 913
 914	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
 915		"Number of guest pages is not compatible with the host. "
 916		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
 917
 918	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
 919		"address not on a page boundary.\n"
 920		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
 921		guest_paddr, vm->page_size);
 922	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
 923		<= vm->max_gfn, "Physical range beyond maximum "
 924		"supported physical address,\n"
 925		"  guest_paddr: 0x%lx npages: 0x%lx\n"
 926		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
 927		guest_paddr, npages, vm->max_gfn, vm->page_size);
 928
 929	/*
 930	 * Confirm a mem region with an overlapping address doesn't
 931	 * already exist.
 932	 */
 933	region = (struct userspace_mem_region *) userspace_mem_region_find(
 934		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
 935	if (region != NULL)
 936		TEST_FAIL("overlapping userspace_mem_region already "
 937			"exists\n"
 938			"  requested guest_paddr: 0x%lx npages: 0x%lx "
 939			"page_size: 0x%x\n"
 940			"  existing guest_paddr: 0x%lx size: 0x%lx",
 941			guest_paddr, npages, vm->page_size,
 942			(uint64_t) region->region.guest_phys_addr,
 943			(uint64_t) region->region.memory_size);
 944
 945	/* Confirm no region with the requested slot already exists. */
 946	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
 947			       slot) {
 948		if (region->region.slot != slot)
 949			continue;
 950
 951		TEST_FAIL("A mem region with the requested slot "
 952			"already exists.\n"
 953			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
 954			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
 955			slot, guest_paddr, npages,
 956			region->region.slot,
 957			(uint64_t) region->region.guest_phys_addr,
 958			(uint64_t) region->region.memory_size);
 959	}
 960
 961	/* Allocate and initialize new mem region structure. */
 962	region = calloc(1, sizeof(*region));
 963	TEST_ASSERT(region != NULL, "Insufficient Memory");
 964	region->mmap_size = mem_size;
 965
 966#ifdef __s390x__
 967	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
 968	alignment = 0x100000;
 969#else
 970	alignment = 1;
 971#endif
 972
 973	/*
 974	 * When using THP mmap is not guaranteed to returned a hugepage aligned
 975	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
 976	 * because mmap will always return an address aligned to the HugeTLB
 977	 * page size.
 978	 */
 979	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
 980		alignment = max(backing_src_pagesz, alignment);
 981
 982	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
 983
 984	/* Add enough memory to align up if necessary */
 985	if (alignment > 1)
 986		region->mmap_size += alignment;
 987
 988	region->fd = -1;
 989	if (backing_src_is_shared(src_type))
 990		region->fd = kvm_memfd_alloc(region->mmap_size,
 991					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
 992
 993	region->mmap_start = mmap(NULL, region->mmap_size,
 994				  PROT_READ | PROT_WRITE,
 995				  vm_mem_backing_src_alias(src_type)->flag,
 996				  region->fd, 0);
 997	TEST_ASSERT(region->mmap_start != MAP_FAILED,
 998		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
 999
1000	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1001		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1002		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1003		    region->mmap_start, backing_src_pagesz);
1004
1005	/* Align host address */
1006	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1007
1008	/* As needed perform madvise */
1009	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1010	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1011		ret = madvise(region->host_mem, mem_size,
1012			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1013		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1014			    region->host_mem, mem_size,
1015			    vm_mem_backing_src_alias(src_type)->name);
1016	}
1017
1018	region->backing_src_type = src_type;
1019
1020	if (flags & KVM_MEM_GUEST_MEMFD) {
1021		if (guest_memfd < 0) {
1022			uint32_t guest_memfd_flags = 0;
1023			TEST_ASSERT(!guest_memfd_offset,
1024				    "Offset must be zero when creating new guest_memfd");
1025			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1026		} else {
1027			/*
1028			 * Install a unique fd for each memslot so that the fd
1029			 * can be closed when the region is deleted without
1030			 * needing to track if the fd is owned by the framework
1031			 * or by the caller.
1032			 */
1033			guest_memfd = dup(guest_memfd);
1034			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1035		}
1036
1037		region->region.guest_memfd = guest_memfd;
1038		region->region.guest_memfd_offset = guest_memfd_offset;
1039	} else {
1040		region->region.guest_memfd = -1;
1041	}
1042
1043	region->unused_phy_pages = sparsebit_alloc();
1044	if (vm_arch_has_protected_memory(vm))
1045		region->protected_phy_pages = sparsebit_alloc();
1046	sparsebit_set_num(region->unused_phy_pages,
1047		guest_paddr >> vm->page_shift, npages);
1048	region->region.slot = slot;
1049	region->region.flags = flags;
1050	region->region.guest_phys_addr = guest_paddr;
1051	region->region.memory_size = npages * vm->page_size;
1052	region->region.userspace_addr = (uintptr_t) region->host_mem;
1053	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1054	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1055		"  rc: %i errno: %i\n"
1056		"  slot: %u flags: 0x%x\n"
1057		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1058		ret, errno, slot, flags,
1059		guest_paddr, (uint64_t) region->region.memory_size,
1060		region->region.guest_memfd);
1061
1062	/* Add to quick lookup data structures */
1063	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1064	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1065	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1066
1067	/* If shared memory, create an alias. */
1068	if (region->fd >= 0) {
1069		region->mmap_alias = mmap(NULL, region->mmap_size,
1070					  PROT_READ | PROT_WRITE,
1071					  vm_mem_backing_src_alias(src_type)->flag,
1072					  region->fd, 0);
1073		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1074			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1075
1076		/* Align host alias address */
1077		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1078	}
1079}
1080
1081void vm_userspace_mem_region_add(struct kvm_vm *vm,
1082				 enum vm_mem_backing_src_type src_type,
1083				 uint64_t guest_paddr, uint32_t slot,
1084				 uint64_t npages, uint32_t flags)
1085{
1086	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1087}
1088
1089/*
1090 * Memslot to region
1091 *
1092 * Input Args:
1093 *   vm - Virtual Machine
1094 *   memslot - KVM memory slot ID
1095 *
1096 * Output Args: None
1097 *
1098 * Return:
1099 *   Pointer to memory region structure that describe memory region
1100 *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1101 *   on error (e.g. currently no memory region using memslot as a KVM
1102 *   memory slot ID).
1103 */
1104struct userspace_mem_region *
1105memslot2region(struct kvm_vm *vm, uint32_t memslot)
1106{
1107	struct userspace_mem_region *region;
1108
1109	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1110			       memslot)
1111		if (region->region.slot == memslot)
1112			return region;
1113
1114	fprintf(stderr, "No mem region with the requested slot found,\n"
1115		"  requested slot: %u\n", memslot);
1116	fputs("---- vm dump ----\n", stderr);
1117	vm_dump(stderr, vm, 2);
1118	TEST_FAIL("Mem region not found");
1119	return NULL;
1120}
1121
1122/*
1123 * VM Memory Region Flags Set
1124 *
1125 * Input Args:
1126 *   vm - Virtual Machine
1127 *   flags - Starting guest physical address
1128 *
1129 * Output Args: None
1130 *
1131 * Return: None
1132 *
1133 * Sets the flags of the memory region specified by the value of slot,
1134 * to the values given by flags.
1135 */
1136void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1137{
1138	int ret;
1139	struct userspace_mem_region *region;
1140
1141	region = memslot2region(vm, slot);
1142
1143	region->region.flags = flags;
1144
1145	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1146
1147	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1148		"  rc: %i errno: %i slot: %u flags: 0x%x",
1149		ret, errno, slot, flags);
1150}
1151
1152/*
1153 * VM Memory Region Move
1154 *
1155 * Input Args:
1156 *   vm - Virtual Machine
1157 *   slot - Slot of the memory region to move
1158 *   new_gpa - Starting guest physical address
1159 *
1160 * Output Args: None
1161 *
1162 * Return: None
1163 *
1164 * Change the gpa of a memory region.
1165 */
1166void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1167{
1168	struct userspace_mem_region *region;
1169	int ret;
1170
1171	region = memslot2region(vm, slot);
1172
1173	region->region.guest_phys_addr = new_gpa;
1174
1175	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1176
1177	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1178		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1179		    ret, errno, slot, new_gpa);
1180}
1181
1182/*
1183 * VM Memory Region Delete
1184 *
1185 * Input Args:
1186 *   vm - Virtual Machine
1187 *   slot - Slot of the memory region to delete
1188 *
1189 * Output Args: None
1190 *
1191 * Return: None
1192 *
1193 * Delete a memory region.
1194 */
1195void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1196{
1197	struct userspace_mem_region *region = memslot2region(vm, slot);
1198
1199	region->region.memory_size = 0;
1200	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1201
1202	__vm_mem_region_delete(vm, region);
1203}
1204
1205void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1206			    bool punch_hole)
1207{
1208	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1209	struct userspace_mem_region *region;
1210	uint64_t end = base + size;
1211	uint64_t gpa, len;
1212	off_t fd_offset;
1213	int ret;
1214
1215	for (gpa = base; gpa < end; gpa += len) {
1216		uint64_t offset;
1217
1218		region = userspace_mem_region_find(vm, gpa, gpa);
1219		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1220			    "Private memory region not found for GPA 0x%lx", gpa);
1221
1222		offset = gpa - region->region.guest_phys_addr;
1223		fd_offset = region->region.guest_memfd_offset + offset;
1224		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1225
1226		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1227		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1228			    punch_hole ? "punch hole" : "allocate", gpa, len,
1229			    region->region.guest_memfd, mode, fd_offset);
1230	}
1231}
1232
1233/* Returns the size of a vCPU's kvm_run structure. */
1234static int vcpu_mmap_sz(void)
1235{
1236	int dev_fd, ret;
1237
1238	dev_fd = open_kvm_dev_path_or_exit();
1239
1240	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1241	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1242		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1243
1244	close(dev_fd);
1245
1246	return ret;
1247}
1248
1249static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1250{
1251	struct kvm_vcpu *vcpu;
1252
1253	list_for_each_entry(vcpu, &vm->vcpus, list) {
1254		if (vcpu->id == vcpu_id)
1255			return true;
1256	}
1257
1258	return false;
1259}
1260
1261/*
1262 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1263 * No additional vCPU setup is done.  Returns the vCPU.
1264 */
1265struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1266{
1267	struct kvm_vcpu *vcpu;
1268
1269	/* Confirm a vcpu with the specified id doesn't already exist. */
1270	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1271
1272	/* Allocate and initialize new vcpu structure. */
1273	vcpu = calloc(1, sizeof(*vcpu));
1274	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1275
1276	vcpu->vm = vm;
1277	vcpu->id = vcpu_id;
1278	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1279	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1280
1281	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1282		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1283		vcpu_mmap_sz(), sizeof(*vcpu->run));
1284	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1285		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1286	TEST_ASSERT(vcpu->run != MAP_FAILED,
1287		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1288
1289	/* Add to linked-list of VCPUs. */
1290	list_add(&vcpu->list, &vm->vcpus);
1291
1292	return vcpu;
1293}
1294
1295/*
1296 * VM Virtual Address Unused Gap
1297 *
1298 * Input Args:
1299 *   vm - Virtual Machine
1300 *   sz - Size (bytes)
1301 *   vaddr_min - Minimum Virtual Address
1302 *
1303 * Output Args: None
1304 *
1305 * Return:
1306 *   Lowest virtual address at or below vaddr_min, with at least
1307 *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1308 *   size sz is available.
1309 *
1310 * Within the VM specified by vm, locates the lowest starting virtual
1311 * address >= vaddr_min, that has at least sz unallocated bytes.  A
1312 * TEST_ASSERT failure occurs for invalid input or no area of at least
1313 * sz unallocated bytes >= vaddr_min is available.
1314 */
1315vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1316			       vm_vaddr_t vaddr_min)
1317{
1318	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1319
1320	/* Determine lowest permitted virtual page index. */
1321	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1322	if ((pgidx_start * vm->page_size) < vaddr_min)
1323		goto no_va_found;
1324
1325	/* Loop over section with enough valid virtual page indexes. */
1326	if (!sparsebit_is_set_num(vm->vpages_valid,
1327		pgidx_start, pages))
1328		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1329			pgidx_start, pages);
1330	do {
1331		/*
1332		 * Are there enough unused virtual pages available at
1333		 * the currently proposed starting virtual page index.
1334		 * If not, adjust proposed starting index to next
1335		 * possible.
1336		 */
1337		if (sparsebit_is_clear_num(vm->vpages_mapped,
1338			pgidx_start, pages))
1339			goto va_found;
1340		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1341			pgidx_start, pages);
1342		if (pgidx_start == 0)
1343			goto no_va_found;
1344
1345		/*
1346		 * If needed, adjust proposed starting virtual address,
1347		 * to next range of valid virtual addresses.
1348		 */
1349		if (!sparsebit_is_set_num(vm->vpages_valid,
1350			pgidx_start, pages)) {
1351			pgidx_start = sparsebit_next_set_num(
1352				vm->vpages_valid, pgidx_start, pages);
1353			if (pgidx_start == 0)
1354				goto no_va_found;
1355		}
1356	} while (pgidx_start != 0);
1357
1358no_va_found:
1359	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1360
1361	/* NOT REACHED */
1362	return -1;
1363
1364va_found:
1365	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1366		pgidx_start, pages),
1367		"Unexpected, invalid virtual page index range,\n"
1368		"  pgidx_start: 0x%lx\n"
1369		"  pages: 0x%lx",
1370		pgidx_start, pages);
1371	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1372		pgidx_start, pages),
1373		"Unexpected, pages already mapped,\n"
1374		"  pgidx_start: 0x%lx\n"
1375		"  pages: 0x%lx",
1376		pgidx_start, pages);
1377
1378	return pgidx_start * vm->page_size;
1379}
1380
1381static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1382				     vm_vaddr_t vaddr_min,
1383				     enum kvm_mem_region_type type,
1384				     bool protected)
1385{
1386	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1387
1388	virt_pgd_alloc(vm);
1389	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1390						KVM_UTIL_MIN_PFN * vm->page_size,
1391						vm->memslots[type], protected);
1392
1393	/*
1394	 * Find an unused range of virtual page addresses of at least
1395	 * pages in length.
1396	 */
1397	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1398
1399	/* Map the virtual pages. */
1400	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1401		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1402
1403		virt_pg_map(vm, vaddr, paddr);
1404
1405		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1406	}
1407
1408	return vaddr_start;
1409}
1410
1411vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1412			    enum kvm_mem_region_type type)
1413{
1414	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1415				  vm_arch_has_protected_memory(vm));
1416}
1417
1418vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1419				 vm_vaddr_t vaddr_min,
1420				 enum kvm_mem_region_type type)
1421{
1422	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1423}
1424
1425/*
1426 * VM Virtual Address Allocate
1427 *
1428 * Input Args:
1429 *   vm - Virtual Machine
1430 *   sz - Size in bytes
1431 *   vaddr_min - Minimum starting virtual address
1432 *
1433 * Output Args: None
1434 *
1435 * Return:
1436 *   Starting guest virtual address
1437 *
1438 * Allocates at least sz bytes within the virtual address space of the vm
1439 * given by vm.  The allocated bytes are mapped to a virtual address >=
1440 * the address given by vaddr_min.  Note that each allocation uses a
1441 * a unique set of pages, with the minimum real allocation being at least
1442 * a page. The allocated physical space comes from the TEST_DATA memory region.
1443 */
1444vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1445{
1446	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1447}
1448
1449/*
1450 * VM Virtual Address Allocate Pages
1451 *
1452 * Input Args:
1453 *   vm - Virtual Machine
1454 *
1455 * Output Args: None
1456 *
1457 * Return:
1458 *   Starting guest virtual address
1459 *
1460 * Allocates at least N system pages worth of bytes within the virtual address
1461 * space of the vm.
1462 */
1463vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1464{
1465	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1466}
1467
1468vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1469{
1470	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1471}
1472
1473/*
1474 * VM Virtual Address Allocate Page
1475 *
1476 * Input Args:
1477 *   vm - Virtual Machine
1478 *
1479 * Output Args: None
1480 *
1481 * Return:
1482 *   Starting guest virtual address
1483 *
1484 * Allocates at least one system page worth of bytes within the virtual address
1485 * space of the vm.
1486 */
1487vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1488{
1489	return vm_vaddr_alloc_pages(vm, 1);
1490}
1491
1492/*
1493 * Map a range of VM virtual address to the VM's physical address
1494 *
1495 * Input Args:
1496 *   vm - Virtual Machine
1497 *   vaddr - Virtuall address to map
1498 *   paddr - VM Physical Address
1499 *   npages - The number of pages to map
1500 *
1501 * Output Args: None
1502 *
1503 * Return: None
1504 *
1505 * Within the VM given by @vm, creates a virtual translation for
1506 * @npages starting at @vaddr to the page range starting at @paddr.
1507 */
1508void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1509	      unsigned int npages)
1510{
1511	size_t page_size = vm->page_size;
1512	size_t size = npages * page_size;
1513
1514	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1515	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1516
1517	while (npages--) {
1518		virt_pg_map(vm, vaddr, paddr);
1519		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1520
1521		vaddr += page_size;
1522		paddr += page_size;
1523	}
1524}
1525
1526/*
1527 * Address VM Physical to Host Virtual
1528 *
1529 * Input Args:
1530 *   vm - Virtual Machine
1531 *   gpa - VM physical address
1532 *
1533 * Output Args: None
1534 *
1535 * Return:
1536 *   Equivalent host virtual address
1537 *
1538 * Locates the memory region containing the VM physical address given
1539 * by gpa, within the VM given by vm.  When found, the host virtual
1540 * address providing the memory to the vm physical address is returned.
1541 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1542 */
1543void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1544{
1545	struct userspace_mem_region *region;
1546
1547	gpa = vm_untag_gpa(vm, gpa);
1548
1549	region = userspace_mem_region_find(vm, gpa, gpa);
1550	if (!region) {
1551		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1552		return NULL;
1553	}
1554
1555	return (void *)((uintptr_t)region->host_mem
1556		+ (gpa - region->region.guest_phys_addr));
1557}
1558
1559/*
1560 * Address Host Virtual to VM Physical
1561 *
1562 * Input Args:
1563 *   vm - Virtual Machine
1564 *   hva - Host virtual address
1565 *
1566 * Output Args: None
1567 *
1568 * Return:
1569 *   Equivalent VM physical address
1570 *
1571 * Locates the memory region containing the host virtual address given
1572 * by hva, within the VM given by vm.  When found, the equivalent
1573 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1574 * region containing hva exists.
1575 */
1576vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1577{
1578	struct rb_node *node;
1579
1580	for (node = vm->regions.hva_tree.rb_node; node; ) {
1581		struct userspace_mem_region *region =
1582			container_of(node, struct userspace_mem_region, hva_node);
1583
1584		if (hva >= region->host_mem) {
1585			if (hva <= (region->host_mem
1586				+ region->region.memory_size - 1))
1587				return (vm_paddr_t)((uintptr_t)
1588					region->region.guest_phys_addr
1589					+ (hva - (uintptr_t)region->host_mem));
1590
1591			node = node->rb_right;
1592		} else
1593			node = node->rb_left;
1594	}
1595
1596	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1597	return -1;
1598}
1599
1600/*
1601 * Address VM physical to Host Virtual *alias*.
1602 *
1603 * Input Args:
1604 *   vm - Virtual Machine
1605 *   gpa - VM physical address
1606 *
1607 * Output Args: None
1608 *
1609 * Return:
1610 *   Equivalent address within the host virtual *alias* area, or NULL
1611 *   (without failing the test) if the guest memory is not shared (so
1612 *   no alias exists).
1613 *
1614 * Create a writable, shared virtual=>physical alias for the specific GPA.
1615 * The primary use case is to allow the host selftest to manipulate guest
1616 * memory without mapping said memory in the guest's address space. And, for
1617 * userfaultfd-based demand paging, to do so without triggering userfaults.
1618 */
1619void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1620{
1621	struct userspace_mem_region *region;
1622	uintptr_t offset;
1623
1624	region = userspace_mem_region_find(vm, gpa, gpa);
1625	if (!region)
1626		return NULL;
1627
1628	if (!region->host_alias)
1629		return NULL;
1630
1631	offset = gpa - region->region.guest_phys_addr;
1632	return (void *) ((uintptr_t) region->host_alias + offset);
1633}
1634
1635/* Create an interrupt controller chip for the specified VM. */
1636void vm_create_irqchip(struct kvm_vm *vm)
1637{
1638	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1639
1640	vm->has_irqchip = true;
1641}
1642
1643int _vcpu_run(struct kvm_vcpu *vcpu)
1644{
1645	int rc;
1646
1647	do {
1648		rc = __vcpu_run(vcpu);
1649	} while (rc == -1 && errno == EINTR);
1650
1651	assert_on_unhandled_exception(vcpu);
1652
1653	return rc;
1654}
1655
1656/*
1657 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1658 * Assert if the KVM returns an error (other than -EINTR).
1659 */
1660void vcpu_run(struct kvm_vcpu *vcpu)
1661{
1662	int ret = _vcpu_run(vcpu);
1663
1664	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1665}
1666
1667void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1668{
1669	int ret;
1670
1671	vcpu->run->immediate_exit = 1;
1672	ret = __vcpu_run(vcpu);
1673	vcpu->run->immediate_exit = 0;
1674
1675	TEST_ASSERT(ret == -1 && errno == EINTR,
1676		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1677		    ret, errno);
1678}
1679
1680/*
1681 * Get the list of guest registers which are supported for
1682 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1683 * it is the caller's responsibility to free the list.
1684 */
1685struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1686{
1687	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1688	int ret;
1689
1690	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1691	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1692
1693	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1694	reg_list->n = reg_list_n.n;
1695	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1696	return reg_list;
1697}
1698
1699void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1700{
1701	uint32_t page_size = getpagesize();
1702	uint32_t size = vcpu->vm->dirty_ring_size;
1703
1704	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1705
1706	if (!vcpu->dirty_gfns) {
1707		void *addr;
1708
1709		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1710			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1711		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1712
1713		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1714			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1715		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1716
1717		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1718			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1719		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1720
1721		vcpu->dirty_gfns = addr;
1722		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1723	}
1724
1725	return vcpu->dirty_gfns;
1726}
1727
1728/*
1729 * Device Ioctl
1730 */
1731
1732int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1733{
1734	struct kvm_device_attr attribute = {
1735		.group = group,
1736		.attr = attr,
1737		.flags = 0,
1738	};
1739
1740	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1741}
1742
1743int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1744{
1745	struct kvm_create_device create_dev = {
1746		.type = type,
1747		.flags = KVM_CREATE_DEVICE_TEST,
1748	};
1749
1750	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1751}
1752
1753int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1754{
1755	struct kvm_create_device create_dev = {
1756		.type = type,
1757		.fd = -1,
1758		.flags = 0,
1759	};
1760	int err;
1761
1762	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1763	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1764	return err ? : create_dev.fd;
1765}
1766
1767int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1768{
1769	struct kvm_device_attr kvmattr = {
1770		.group = group,
1771		.attr = attr,
1772		.flags = 0,
1773		.addr = (uintptr_t)val,
1774	};
1775
1776	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1777}
1778
1779int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1780{
1781	struct kvm_device_attr kvmattr = {
1782		.group = group,
1783		.attr = attr,
1784		.flags = 0,
1785		.addr = (uintptr_t)val,
1786	};
1787
1788	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1789}
1790
1791/*
1792 * IRQ related functions.
1793 */
1794
1795int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1796{
1797	struct kvm_irq_level irq_level = {
1798		.irq    = irq,
1799		.level  = level,
1800	};
1801
1802	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1803}
1804
1805void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1806{
1807	int ret = _kvm_irq_line(vm, irq, level);
1808
1809	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1810}
1811
1812struct kvm_irq_routing *kvm_gsi_routing_create(void)
1813{
1814	struct kvm_irq_routing *routing;
1815	size_t size;
1816
1817	size = sizeof(struct kvm_irq_routing);
1818	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1819	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1820	routing = calloc(1, size);
1821	assert(routing);
1822
1823	return routing;
1824}
1825
1826void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1827		uint32_t gsi, uint32_t pin)
1828{
1829	int i;
1830
1831	assert(routing);
1832	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1833
1834	i = routing->nr;
1835	routing->entries[i].gsi = gsi;
1836	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1837	routing->entries[i].flags = 0;
1838	routing->entries[i].u.irqchip.irqchip = 0;
1839	routing->entries[i].u.irqchip.pin = pin;
1840	routing->nr++;
1841}
1842
1843int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1844{
1845	int ret;
1846
1847	assert(routing);
1848	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1849	free(routing);
1850
1851	return ret;
1852}
1853
1854void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1855{
1856	int ret;
1857
1858	ret = _kvm_gsi_routing_write(vm, routing);
1859	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1860}
1861
1862/*
1863 * VM Dump
1864 *
1865 * Input Args:
1866 *   vm - Virtual Machine
1867 *   indent - Left margin indent amount
1868 *
1869 * Output Args:
1870 *   stream - Output FILE stream
1871 *
1872 * Return: None
1873 *
1874 * Dumps the current state of the VM given by vm, to the FILE stream
1875 * given by stream.
1876 */
1877void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1878{
1879	int ctr;
1880	struct userspace_mem_region *region;
1881	struct kvm_vcpu *vcpu;
1882
1883	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1884	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1885	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1886	fprintf(stream, "%*sMem Regions:\n", indent, "");
1887	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1888		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1889			"host_virt: %p\n", indent + 2, "",
1890			(uint64_t) region->region.guest_phys_addr,
1891			(uint64_t) region->region.memory_size,
1892			region->host_mem);
1893		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1894		sparsebit_dump(stream, region->unused_phy_pages, 0);
1895		if (region->protected_phy_pages) {
1896			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1897			sparsebit_dump(stream, region->protected_phy_pages, 0);
1898		}
1899	}
1900	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1901	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1902	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1903		vm->pgd_created);
1904	if (vm->pgd_created) {
1905		fprintf(stream, "%*sVirtual Translation Tables:\n",
1906			indent + 2, "");
1907		virt_dump(stream, vm, indent + 4);
1908	}
1909	fprintf(stream, "%*sVCPUs:\n", indent, "");
1910
1911	list_for_each_entry(vcpu, &vm->vcpus, list)
1912		vcpu_dump(stream, vcpu, indent + 2);
1913}
1914
1915#define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1916
1917/* Known KVM exit reasons */
1918static struct exit_reason {
1919	unsigned int reason;
1920	const char *name;
1921} exit_reasons_known[] = {
1922	KVM_EXIT_STRING(UNKNOWN),
1923	KVM_EXIT_STRING(EXCEPTION),
1924	KVM_EXIT_STRING(IO),
1925	KVM_EXIT_STRING(HYPERCALL),
1926	KVM_EXIT_STRING(DEBUG),
1927	KVM_EXIT_STRING(HLT),
1928	KVM_EXIT_STRING(MMIO),
1929	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1930	KVM_EXIT_STRING(SHUTDOWN),
1931	KVM_EXIT_STRING(FAIL_ENTRY),
1932	KVM_EXIT_STRING(INTR),
1933	KVM_EXIT_STRING(SET_TPR),
1934	KVM_EXIT_STRING(TPR_ACCESS),
1935	KVM_EXIT_STRING(S390_SIEIC),
1936	KVM_EXIT_STRING(S390_RESET),
1937	KVM_EXIT_STRING(DCR),
1938	KVM_EXIT_STRING(NMI),
1939	KVM_EXIT_STRING(INTERNAL_ERROR),
1940	KVM_EXIT_STRING(OSI),
1941	KVM_EXIT_STRING(PAPR_HCALL),
1942	KVM_EXIT_STRING(S390_UCONTROL),
1943	KVM_EXIT_STRING(WATCHDOG),
1944	KVM_EXIT_STRING(S390_TSCH),
1945	KVM_EXIT_STRING(EPR),
1946	KVM_EXIT_STRING(SYSTEM_EVENT),
1947	KVM_EXIT_STRING(S390_STSI),
1948	KVM_EXIT_STRING(IOAPIC_EOI),
1949	KVM_EXIT_STRING(HYPERV),
1950	KVM_EXIT_STRING(ARM_NISV),
1951	KVM_EXIT_STRING(X86_RDMSR),
1952	KVM_EXIT_STRING(X86_WRMSR),
1953	KVM_EXIT_STRING(DIRTY_RING_FULL),
1954	KVM_EXIT_STRING(AP_RESET_HOLD),
1955	KVM_EXIT_STRING(X86_BUS_LOCK),
1956	KVM_EXIT_STRING(XEN),
1957	KVM_EXIT_STRING(RISCV_SBI),
1958	KVM_EXIT_STRING(RISCV_CSR),
1959	KVM_EXIT_STRING(NOTIFY),
1960#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1961	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1962#endif
1963};
1964
1965/*
1966 * Exit Reason String
1967 *
1968 * Input Args:
1969 *   exit_reason - Exit reason
1970 *
1971 * Output Args: None
1972 *
1973 * Return:
1974 *   Constant string pointer describing the exit reason.
1975 *
1976 * Locates and returns a constant string that describes the KVM exit
1977 * reason given by exit_reason.  If no such string is found, a constant
1978 * string of "Unknown" is returned.
1979 */
1980const char *exit_reason_str(unsigned int exit_reason)
1981{
1982	unsigned int n1;
1983
1984	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1985		if (exit_reason == exit_reasons_known[n1].reason)
1986			return exit_reasons_known[n1].name;
1987	}
1988
1989	return "Unknown";
1990}
1991
1992/*
1993 * Physical Contiguous Page Allocator
1994 *
1995 * Input Args:
1996 *   vm - Virtual Machine
1997 *   num - number of pages
1998 *   paddr_min - Physical address minimum
1999 *   memslot - Memory region to allocate page from
2000 *   protected - True if the pages will be used as protected/private memory
2001 *
2002 * Output Args: None
2003 *
2004 * Return:
2005 *   Starting physical address
2006 *
2007 * Within the VM specified by vm, locates a range of available physical
2008 * pages at or above paddr_min. If found, the pages are marked as in use
2009 * and their base address is returned. A TEST_ASSERT failure occurs if
2010 * not enough pages are available at or above paddr_min.
2011 */
2012vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2013				vm_paddr_t paddr_min, uint32_t memslot,
2014				bool protected)
2015{
2016	struct userspace_mem_region *region;
2017	sparsebit_idx_t pg, base;
2018
2019	TEST_ASSERT(num > 0, "Must allocate at least one page");
2020
2021	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2022		"not divisible by page size.\n"
2023		"  paddr_min: 0x%lx page_size: 0x%x",
2024		paddr_min, vm->page_size);
2025
2026	region = memslot2region(vm, memslot);
2027	TEST_ASSERT(!protected || region->protected_phy_pages,
2028		    "Region doesn't support protected memory");
2029
2030	base = pg = paddr_min >> vm->page_shift;
2031	do {
2032		for (; pg < base + num; ++pg) {
2033			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2034				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2035				break;
2036			}
2037		}
2038	} while (pg && pg != base + num);
2039
2040	if (pg == 0) {
2041		fprintf(stderr, "No guest physical page available, "
2042			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2043			paddr_min, vm->page_size, memslot);
2044		fputs("---- vm dump ----\n", stderr);
2045		vm_dump(stderr, vm, 2);
2046		abort();
2047	}
2048
2049	for (pg = base; pg < base + num; ++pg) {
2050		sparsebit_clear(region->unused_phy_pages, pg);
2051		if (protected)
2052			sparsebit_set(region->protected_phy_pages, pg);
2053	}
2054
2055	return base * vm->page_size;
2056}
2057
2058vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2059			     uint32_t memslot)
2060{
2061	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2062}
2063
 
 
 
2064vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2065{
2066	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2067				 vm->memslots[MEM_REGION_PT]);
2068}
2069
2070/*
2071 * Address Guest Virtual to Host Virtual
2072 *
2073 * Input Args:
2074 *   vm - Virtual Machine
2075 *   gva - VM virtual address
2076 *
2077 * Output Args: None
2078 *
2079 * Return:
2080 *   Equivalent host virtual address
2081 */
2082void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2083{
2084	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2085}
2086
2087unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2088{
2089	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2090}
2091
2092static unsigned int vm_calc_num_pages(unsigned int num_pages,
2093				      unsigned int page_shift,
2094				      unsigned int new_page_shift,
2095				      bool ceil)
2096{
2097	unsigned int n = 1 << (new_page_shift - page_shift);
2098
2099	if (page_shift >= new_page_shift)
2100		return num_pages * (1 << (page_shift - new_page_shift));
2101
2102	return num_pages / n + !!(ceil && num_pages % n);
2103}
2104
2105static inline int getpageshift(void)
2106{
2107	return __builtin_ffs(getpagesize()) - 1;
2108}
2109
2110unsigned int
2111vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2112{
2113	return vm_calc_num_pages(num_guest_pages,
2114				 vm_guest_mode_params[mode].page_shift,
2115				 getpageshift(), true);
2116}
2117
2118unsigned int
2119vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2120{
2121	return vm_calc_num_pages(num_host_pages, getpageshift(),
2122				 vm_guest_mode_params[mode].page_shift, false);
2123}
2124
2125unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2126{
2127	unsigned int n;
2128	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2129	return vm_adjust_num_guest_pages(mode, n);
2130}
2131
2132/*
2133 * Read binary stats descriptors
2134 *
2135 * Input Args:
2136 *   stats_fd - the file descriptor for the binary stats file from which to read
2137 *   header - the binary stats metadata header corresponding to the given FD
2138 *
2139 * Output Args: None
2140 *
2141 * Return:
2142 *   A pointer to a newly allocated series of stat descriptors.
2143 *   Caller is responsible for freeing the returned kvm_stats_desc.
2144 *
2145 * Read the stats descriptors from the binary stats interface.
2146 */
2147struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2148					      struct kvm_stats_header *header)
2149{
2150	struct kvm_stats_desc *stats_desc;
2151	ssize_t desc_size, total_size, ret;
2152
2153	desc_size = get_stats_descriptor_size(header);
2154	total_size = header->num_desc * desc_size;
2155
2156	stats_desc = calloc(header->num_desc, desc_size);
2157	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2158
2159	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2160	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2161
2162	return stats_desc;
2163}
2164
2165/*
2166 * Read stat data for a particular stat
2167 *
2168 * Input Args:
2169 *   stats_fd - the file descriptor for the binary stats file from which to read
2170 *   header - the binary stats metadata header corresponding to the given FD
2171 *   desc - the binary stat metadata for the particular stat to be read
2172 *   max_elements - the maximum number of 8-byte values to read into data
2173 *
2174 * Output Args:
2175 *   data - the buffer into which stat data should be read
2176 *
2177 * Read the data values of a specified stat from the binary stats interface.
2178 */
2179void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2180		    struct kvm_stats_desc *desc, uint64_t *data,
2181		    size_t max_elements)
2182{
2183	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2184	size_t size = nr_elements * sizeof(*data);
2185	ssize_t ret;
2186
2187	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2188	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2189
2190	ret = pread(stats_fd, data, size,
2191		    header->data_offset + desc->offset);
2192
2193	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2194		    desc->name, errno, strerror(errno));
2195	TEST_ASSERT(ret == size,
2196		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2197		    desc->name, size, ret);
2198}
2199
2200/*
2201 * Read the data of the named stat
2202 *
2203 * Input Args:
2204 *   vm - the VM for which the stat should be read
2205 *   stat_name - the name of the stat to read
2206 *   max_elements - the maximum number of 8-byte values to read into data
2207 *
2208 * Output Args:
2209 *   data - the buffer into which stat data should be read
2210 *
2211 * Read the data values of a specified stat from the binary stats interface.
2212 */
2213void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2214		   size_t max_elements)
2215{
2216	struct kvm_stats_desc *desc;
2217	size_t size_desc;
2218	int i;
2219
2220	if (!vm->stats_fd) {
2221		vm->stats_fd = vm_get_stats_fd(vm);
2222		read_stats_header(vm->stats_fd, &vm->stats_header);
2223		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2224							&vm->stats_header);
2225	}
2226
2227	size_desc = get_stats_descriptor_size(&vm->stats_header);
2228
2229	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2230		desc = (void *)vm->stats_desc + (i * size_desc);
2231
2232		if (strcmp(desc->name, stat_name))
2233			continue;
2234
2235		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2236			       data, max_elements);
2237
2238		break;
2239	}
2240}
2241
2242__weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2243{
2244}
2245
2246__weak void kvm_selftest_arch_init(void)
2247{
2248}
2249
2250void __attribute((constructor)) kvm_selftest_init(void)
2251{
2252	/* Tell stdout not to buffer its content. */
2253	setbuf(stdout, NULL);
2254
2255	guest_random_seed = last_guest_seed = random();
2256	pr_info("Random seed: 0x%x\n", guest_random_seed);
2257
2258	kvm_selftest_arch_init();
2259}
2260
2261bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2262{
2263	sparsebit_idx_t pg = 0;
2264	struct userspace_mem_region *region;
2265
2266	if (!vm_arch_has_protected_memory(vm))
2267		return false;
2268
2269	region = userspace_mem_region_find(vm, paddr, paddr);
2270	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2271
2272	pg = paddr >> vm->page_shift;
2273	return sparsebit_is_set(region->protected_phy_pages, pg);
2274}