Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
 
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
  46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  47
  48static struct dso *machine__kernel_dso(struct machine *machine)
  49{
  50	return machine->vmlinux_map->dso;
  51}
  52
  53static void dsos__init(struct dsos *dsos)
  54{
  55	INIT_LIST_HEAD(&dsos->head);
  56	dsos->root = RB_ROOT;
  57	init_rwsem(&dsos->lock);
  58}
  59
  60static void machine__threads_init(struct machine *machine)
  61{
  62	int i;
  63
  64	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  65		struct threads *threads = &machine->threads[i];
  66		threads->entries = RB_ROOT_CACHED;
  67		init_rwsem(&threads->lock);
  68		threads->nr = 0;
  69		INIT_LIST_HEAD(&threads->dead);
  70		threads->last_match = NULL;
  71	}
  72}
  73
  74static int machine__set_mmap_name(struct machine *machine)
  75{
  76	if (machine__is_host(machine))
  77		machine->mmap_name = strdup("[kernel.kallsyms]");
  78	else if (machine__is_default_guest(machine))
  79		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  80	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  81			  machine->pid) < 0)
  82		machine->mmap_name = NULL;
  83
  84	return machine->mmap_name ? 0 : -ENOMEM;
  85}
  86
  87static void thread__set_guest_comm(struct thread *thread, pid_t pid)
  88{
  89	char comm[64];
  90
  91	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  92	thread__set_comm(thread, comm, 0);
  93}
  94
  95int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  96{
  97	int err = -ENOMEM;
  98
  99	memset(machine, 0, sizeof(*machine));
 100	machine->kmaps = maps__new(machine);
 101	if (machine->kmaps == NULL)
 102		return -ENOMEM;
 103
 104	RB_CLEAR_NODE(&machine->rb_node);
 105	dsos__init(&machine->dsos);
 106
 107	machine__threads_init(machine);
 108
 109	machine->vdso_info = NULL;
 110	machine->env = NULL;
 111
 112	machine->pid = pid;
 113
 114	machine->id_hdr_size = 0;
 115	machine->kptr_restrict_warned = false;
 116	machine->comm_exec = false;
 117	machine->kernel_start = 0;
 118	machine->vmlinux_map = NULL;
 119
 120	machine->root_dir = strdup(root_dir);
 121	if (machine->root_dir == NULL)
 122		goto out;
 123
 124	if (machine__set_mmap_name(machine))
 125		goto out;
 126
 127	if (pid != HOST_KERNEL_ID) {
 128		struct thread *thread = machine__findnew_thread(machine, -1,
 129								pid);
 130
 131		if (thread == NULL)
 132			goto out;
 133
 134		thread__set_guest_comm(thread, pid);
 135		thread__put(thread);
 136	}
 137
 138	machine->current_tid = NULL;
 139	err = 0;
 140
 141out:
 142	if (err) {
 143		zfree(&machine->kmaps);
 144		zfree(&machine->root_dir);
 145		zfree(&machine->mmap_name);
 146	}
 147	return 0;
 148}
 149
 150struct machine *machine__new_host(void)
 151{
 152	struct machine *machine = malloc(sizeof(*machine));
 153
 154	if (machine != NULL) {
 155		machine__init(machine, "", HOST_KERNEL_ID);
 156
 157		if (machine__create_kernel_maps(machine) < 0)
 158			goto out_delete;
 
 
 159	}
 160
 161	return machine;
 162out_delete:
 163	free(machine);
 164	return NULL;
 165}
 166
 167struct machine *machine__new_kallsyms(void)
 168{
 169	struct machine *machine = machine__new_host();
 170	/*
 171	 * FIXME:
 172	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 173	 *    ask for not using the kcore parsing code, once this one is fixed
 174	 *    to create a map per module.
 175	 */
 176	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 177		machine__delete(machine);
 178		machine = NULL;
 179	}
 180
 181	return machine;
 182}
 183
 184static void dsos__purge(struct dsos *dsos)
 185{
 186	struct dso *pos, *n;
 187
 188	down_write(&dsos->lock);
 189
 190	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 191		RB_CLEAR_NODE(&pos->rb_node);
 192		pos->root = NULL;
 193		list_del_init(&pos->node);
 194		dso__put(pos);
 195	}
 196
 197	up_write(&dsos->lock);
 198}
 199
 200static void dsos__exit(struct dsos *dsos)
 201{
 202	dsos__purge(dsos);
 203	exit_rwsem(&dsos->lock);
 204}
 205
 206void machine__delete_threads(struct machine *machine)
 207{
 208	struct rb_node *nd;
 209	int i;
 210
 211	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 212		struct threads *threads = &machine->threads[i];
 213		down_write(&threads->lock);
 214		nd = rb_first_cached(&threads->entries);
 215		while (nd) {
 216			struct thread *t = rb_entry(nd, struct thread, rb_node);
 217
 218			nd = rb_next(nd);
 219			__machine__remove_thread(machine, t, false);
 220		}
 221		up_write(&threads->lock);
 222	}
 223}
 224
 225void machine__exit(struct machine *machine)
 226{
 227	int i;
 228
 229	if (machine == NULL)
 230		return;
 231
 232	machine__destroy_kernel_maps(machine);
 233	maps__delete(machine->kmaps);
 234	dsos__exit(&machine->dsos);
 235	machine__exit_vdso(machine);
 236	zfree(&machine->root_dir);
 237	zfree(&machine->mmap_name);
 238	zfree(&machine->current_tid);
 239	zfree(&machine->kallsyms_filename);
 240
 241	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 242		struct threads *threads = &machine->threads[i];
 243		struct thread *thread, *n;
 244		/*
 245		 * Forget about the dead, at this point whatever threads were
 246		 * left in the dead lists better have a reference count taken
 247		 * by who is using them, and then, when they drop those references
 248		 * and it finally hits zero, thread__put() will check and see that
 249		 * its not in the dead threads list and will not try to remove it
 250		 * from there, just calling thread__delete() straight away.
 251		 */
 252		list_for_each_entry_safe(thread, n, &threads->dead, node)
 253			list_del_init(&thread->node);
 254
 255		exit_rwsem(&threads->lock);
 256	}
 257}
 258
 259void machine__delete(struct machine *machine)
 260{
 261	if (machine) {
 262		machine__exit(machine);
 263		free(machine);
 264	}
 265}
 266
 267void machines__init(struct machines *machines)
 268{
 269	machine__init(&machines->host, "", HOST_KERNEL_ID);
 270	machines->guests = RB_ROOT_CACHED;
 271}
 272
 273void machines__exit(struct machines *machines)
 274{
 275	machine__exit(&machines->host);
 276	/* XXX exit guest */
 277}
 278
 279struct machine *machines__add(struct machines *machines, pid_t pid,
 280			      const char *root_dir)
 281{
 282	struct rb_node **p = &machines->guests.rb_root.rb_node;
 283	struct rb_node *parent = NULL;
 284	struct machine *pos, *machine = malloc(sizeof(*machine));
 285	bool leftmost = true;
 286
 287	if (machine == NULL)
 288		return NULL;
 289
 290	if (machine__init(machine, root_dir, pid) != 0) {
 291		free(machine);
 292		return NULL;
 293	}
 294
 295	while (*p != NULL) {
 296		parent = *p;
 297		pos = rb_entry(parent, struct machine, rb_node);
 298		if (pid < pos->pid)
 299			p = &(*p)->rb_left;
 300		else {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		}
 304	}
 305
 306	rb_link_node(&machine->rb_node, parent, p);
 307	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 308
 309	machine->machines = machines;
 310
 311	return machine;
 312}
 313
 314void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 315{
 316	struct rb_node *nd;
 317
 318	machines->host.comm_exec = comm_exec;
 319
 320	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 321		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 322
 323		machine->comm_exec = comm_exec;
 324	}
 325}
 326
 327struct machine *machines__find(struct machines *machines, pid_t pid)
 328{
 329	struct rb_node **p = &machines->guests.rb_root.rb_node;
 330	struct rb_node *parent = NULL;
 331	struct machine *machine;
 332	struct machine *default_machine = NULL;
 333
 334	if (pid == HOST_KERNEL_ID)
 335		return &machines->host;
 336
 337	while (*p != NULL) {
 338		parent = *p;
 339		machine = rb_entry(parent, struct machine, rb_node);
 340		if (pid < machine->pid)
 341			p = &(*p)->rb_left;
 342		else if (pid > machine->pid)
 343			p = &(*p)->rb_right;
 344		else
 345			return machine;
 346		if (!machine->pid)
 347			default_machine = machine;
 348	}
 349
 350	return default_machine;
 351}
 352
 353struct machine *machines__findnew(struct machines *machines, pid_t pid)
 354{
 355	char path[PATH_MAX];
 356	const char *root_dir = "";
 357	struct machine *machine = machines__find(machines, pid);
 358
 359	if (machine && (machine->pid == pid))
 360		goto out;
 361
 362	if ((pid != HOST_KERNEL_ID) &&
 363	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 364	    (symbol_conf.guestmount)) {
 365		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 366		if (access(path, R_OK)) {
 367			static struct strlist *seen;
 368
 369			if (!seen)
 370				seen = strlist__new(NULL, NULL);
 371
 372			if (!strlist__has_entry(seen, path)) {
 373				pr_err("Can't access file %s\n", path);
 374				strlist__add(seen, path);
 375			}
 376			machine = NULL;
 377			goto out;
 378		}
 379		root_dir = path;
 380	}
 381
 382	machine = machines__add(machines, pid, root_dir);
 383out:
 384	return machine;
 385}
 386
 387struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 388{
 389	struct machine *machine = machines__find(machines, pid);
 390
 391	if (!machine)
 392		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 393	return machine;
 394}
 395
 396/*
 397 * A common case for KVM test programs is that the test program acts as the
 398 * hypervisor, creating, running and destroying the virtual machine, and
 399 * providing the guest object code from its own object code. In this case,
 400 * the VM is not running an OS, but only the functions loaded into it by the
 401 * hypervisor test program, and conveniently, loaded at the same virtual
 402 * addresses.
 403 *
 404 * Normally to resolve addresses, MMAP events are needed to map addresses
 405 * back to the object code and debug symbols for that object code.
 406 *
 407 * Currently, there is no way to get such mapping information from guests
 408 * but, in the scenario described above, the guest has the same mappings
 409 * as the hypervisor, so support for that scenario can be achieved.
 410 *
 411 * To support that, copy the host thread's maps to the guest thread's maps.
 412 * Note, we do not discover the guest until we encounter a guest event,
 413 * which works well because it is not until then that we know that the host
 414 * thread's maps have been set up.
 415 *
 416 * This function returns the guest thread. Apart from keeping the data
 417 * structures sane, using a thread belonging to the guest machine, instead
 418 * of the host thread, allows it to have its own comm (refer
 419 * thread__set_guest_comm()).
 420 */
 421static struct thread *findnew_guest_code(struct machine *machine,
 422					 struct machine *host_machine,
 423					 pid_t pid)
 424{
 425	struct thread *host_thread;
 426	struct thread *thread;
 427	int err;
 428
 429	if (!machine)
 430		return NULL;
 431
 432	thread = machine__findnew_thread(machine, -1, pid);
 433	if (!thread)
 434		return NULL;
 435
 436	/* Assume maps are set up if there are any */
 437	if (thread->maps->nr_maps)
 438		return thread;
 439
 440	host_thread = machine__find_thread(host_machine, -1, pid);
 441	if (!host_thread)
 442		goto out_err;
 443
 444	thread__set_guest_comm(thread, pid);
 445
 446	/*
 447	 * Guest code can be found in hypervisor process at the same address
 448	 * so copy host maps.
 449	 */
 450	err = maps__clone(thread, host_thread->maps);
 451	thread__put(host_thread);
 452	if (err)
 453		goto out_err;
 454
 455	return thread;
 456
 457out_err:
 458	thread__zput(thread);
 459	return NULL;
 460}
 461
 462struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 463{
 464	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 465	struct machine *machine = machines__findnew(machines, pid);
 466
 467	return findnew_guest_code(machine, host_machine, pid);
 468}
 469
 470struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 471{
 472	struct machines *machines = machine->machines;
 473	struct machine *host_machine;
 474
 475	if (!machines)
 476		return NULL;
 477
 478	host_machine = machines__find(machines, HOST_KERNEL_ID);
 479
 480	return findnew_guest_code(machine, host_machine, pid);
 481}
 482
 483void machines__process_guests(struct machines *machines,
 484			      machine__process_t process, void *data)
 485{
 486	struct rb_node *nd;
 487
 488	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 489		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 490		process(pos, data);
 491	}
 492}
 493
 494void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 495{
 496	struct rb_node *node;
 497	struct machine *machine;
 498
 499	machines->host.id_hdr_size = id_hdr_size;
 500
 501	for (node = rb_first_cached(&machines->guests); node;
 502	     node = rb_next(node)) {
 503		machine = rb_entry(node, struct machine, rb_node);
 504		machine->id_hdr_size = id_hdr_size;
 505	}
 506
 507	return;
 508}
 509
 510static void machine__update_thread_pid(struct machine *machine,
 511				       struct thread *th, pid_t pid)
 512{
 513	struct thread *leader;
 514
 515	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 516		return;
 517
 518	th->pid_ = pid;
 519
 520	if (th->pid_ == th->tid)
 521		return;
 522
 523	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 524	if (!leader)
 525		goto out_err;
 526
 527	if (!leader->maps)
 528		leader->maps = maps__new(machine);
 529
 530	if (!leader->maps)
 531		goto out_err;
 532
 533	if (th->maps == leader->maps)
 534		return;
 535
 536	if (th->maps) {
 537		/*
 538		 * Maps are created from MMAP events which provide the pid and
 539		 * tid.  Consequently there never should be any maps on a thread
 540		 * with an unknown pid.  Just print an error if there are.
 541		 */
 542		if (!maps__empty(th->maps))
 543			pr_err("Discarding thread maps for %d:%d\n",
 544			       th->pid_, th->tid);
 545		maps__put(th->maps);
 546	}
 547
 548	th->maps = maps__get(leader->maps);
 549out_put:
 550	thread__put(leader);
 551	return;
 552out_err:
 553	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 554	goto out_put;
 555}
 556
 557/*
 558 * Front-end cache - TID lookups come in blocks,
 559 * so most of the time we dont have to look up
 560 * the full rbtree:
 561 */
 562static struct thread*
 563__threads__get_last_match(struct threads *threads, struct machine *machine,
 564			  int pid, int tid)
 565{
 566	struct thread *th;
 567
 568	th = threads->last_match;
 569	if (th != NULL) {
 570		if (th->tid == tid) {
 571			machine__update_thread_pid(machine, th, pid);
 572			return thread__get(th);
 573		}
 574
 575		threads->last_match = NULL;
 576	}
 577
 578	return NULL;
 579}
 580
 581static struct thread*
 582threads__get_last_match(struct threads *threads, struct machine *machine,
 583			int pid, int tid)
 584{
 585	struct thread *th = NULL;
 586
 587	if (perf_singlethreaded)
 588		th = __threads__get_last_match(threads, machine, pid, tid);
 589
 590	return th;
 591}
 592
 593static void
 594__threads__set_last_match(struct threads *threads, struct thread *th)
 595{
 596	threads->last_match = th;
 597}
 598
 599static void
 600threads__set_last_match(struct threads *threads, struct thread *th)
 601{
 602	if (perf_singlethreaded)
 603		__threads__set_last_match(threads, th);
 604}
 605
 606/*
 607 * Caller must eventually drop thread->refcnt returned with a successful
 608 * lookup/new thread inserted.
 609 */
 610static struct thread *____machine__findnew_thread(struct machine *machine,
 611						  struct threads *threads,
 612						  pid_t pid, pid_t tid,
 613						  bool create)
 614{
 615	struct rb_node **p = &threads->entries.rb_root.rb_node;
 616	struct rb_node *parent = NULL;
 617	struct thread *th;
 618	bool leftmost = true;
 619
 620	th = threads__get_last_match(threads, machine, pid, tid);
 621	if (th)
 622		return th;
 623
 624	while (*p != NULL) {
 625		parent = *p;
 626		th = rb_entry(parent, struct thread, rb_node);
 627
 628		if (th->tid == tid) {
 629			threads__set_last_match(threads, th);
 630			machine__update_thread_pid(machine, th, pid);
 631			return thread__get(th);
 632		}
 633
 634		if (tid < th->tid)
 635			p = &(*p)->rb_left;
 636		else {
 637			p = &(*p)->rb_right;
 638			leftmost = false;
 639		}
 640	}
 641
 642	if (!create)
 643		return NULL;
 644
 645	th = thread__new(pid, tid);
 646	if (th != NULL) {
 647		rb_link_node(&th->rb_node, parent, p);
 648		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 649
 650		/*
 651		 * We have to initialize maps separately after rb tree is updated.
 
 652		 *
 653		 * The reason is that we call machine__findnew_thread
 654		 * within thread__init_maps to find the thread
 655		 * leader and that would screwed the rb tree.
 656		 */
 657		if (thread__init_maps(th, machine)) {
 658			rb_erase_cached(&th->rb_node, &threads->entries);
 659			RB_CLEAR_NODE(&th->rb_node);
 660			thread__put(th);
 661			return NULL;
 662		}
 663		/*
 664		 * It is now in the rbtree, get a ref
 665		 */
 666		thread__get(th);
 667		threads__set_last_match(threads, th);
 668		++threads->nr;
 669	}
 670
 671	return th;
 672}
 673
 674struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 675{
 676	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 677}
 678
 679struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 680				       pid_t tid)
 681{
 682	struct threads *threads = machine__threads(machine, tid);
 683	struct thread *th;
 684
 685	down_write(&threads->lock);
 686	th = __machine__findnew_thread(machine, pid, tid);
 687	up_write(&threads->lock);
 688	return th;
 689}
 690
 691struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 692				    pid_t tid)
 693{
 694	struct threads *threads = machine__threads(machine, tid);
 695	struct thread *th;
 696
 697	down_read(&threads->lock);
 698	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 699	up_read(&threads->lock);
 700	return th;
 701}
 702
 703/*
 704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 705 * So here a single thread is created for that, but actually there is a separate
 706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 707 * is only 1. That causes problems for some tools, requiring workarounds. For
 708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 709 */
 710struct thread *machine__idle_thread(struct machine *machine)
 711{
 712	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 713
 714	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 715	    thread__set_namespaces(thread, 0, NULL))
 716		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 717
 718	return thread;
 719}
 720
 721struct comm *machine__thread_exec_comm(struct machine *machine,
 722				       struct thread *thread)
 723{
 724	if (machine->comm_exec)
 725		return thread__exec_comm(thread);
 726	else
 727		return thread__comm(thread);
 728}
 729
 730int machine__process_comm_event(struct machine *machine, union perf_event *event,
 731				struct perf_sample *sample)
 732{
 733	struct thread *thread = machine__findnew_thread(machine,
 734							event->comm.pid,
 735							event->comm.tid);
 736	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 737	int err = 0;
 738
 739	if (exec)
 740		machine->comm_exec = true;
 741
 742	if (dump_trace)
 743		perf_event__fprintf_comm(event, stdout);
 744
 745	if (thread == NULL ||
 746	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 747		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 748		err = -1;
 749	}
 750
 751	thread__put(thread);
 752
 753	return err;
 754}
 755
 756int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 757				      union perf_event *event,
 758				      struct perf_sample *sample __maybe_unused)
 759{
 760	struct thread *thread = machine__findnew_thread(machine,
 761							event->namespaces.pid,
 762							event->namespaces.tid);
 763	int err = 0;
 764
 765	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 766		  "\nWARNING: kernel seems to support more namespaces than perf"
 767		  " tool.\nTry updating the perf tool..\n\n");
 768
 769	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 770		  "\nWARNING: perf tool seems to support more namespaces than"
 771		  " the kernel.\nTry updating the kernel..\n\n");
 772
 773	if (dump_trace)
 774		perf_event__fprintf_namespaces(event, stdout);
 775
 776	if (thread == NULL ||
 777	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 778		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 779		err = -1;
 780	}
 781
 782	thread__put(thread);
 783
 784	return err;
 785}
 786
 787int machine__process_cgroup_event(struct machine *machine,
 788				  union perf_event *event,
 789				  struct perf_sample *sample __maybe_unused)
 790{
 791	struct cgroup *cgrp;
 792
 793	if (dump_trace)
 794		perf_event__fprintf_cgroup(event, stdout);
 795
 796	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 797	if (cgrp == NULL)
 798		return -ENOMEM;
 799
 800	return 0;
 801}
 802
 803int machine__process_lost_event(struct machine *machine __maybe_unused,
 804				union perf_event *event, struct perf_sample *sample __maybe_unused)
 805{
 806	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 807		    event->lost.id, event->lost.lost);
 808	return 0;
 809}
 810
 811int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 812					union perf_event *event, struct perf_sample *sample)
 813{
 814	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 815		    sample->id, event->lost_samples.lost);
 
 816	return 0;
 817}
 818
 819static struct dso *machine__findnew_module_dso(struct machine *machine,
 820					       struct kmod_path *m,
 821					       const char *filename)
 822{
 823	struct dso *dso;
 824
 825	down_write(&machine->dsos.lock);
 826
 827	dso = __dsos__find(&machine->dsos, m->name, true);
 828	if (!dso) {
 829		dso = __dsos__addnew(&machine->dsos, m->name);
 830		if (dso == NULL)
 831			goto out_unlock;
 832
 833		dso__set_module_info(dso, m, machine);
 834		dso__set_long_name(dso, strdup(filename), true);
 835		dso->kernel = DSO_SPACE__KERNEL;
 836	}
 837
 838	dso__get(dso);
 839out_unlock:
 840	up_write(&machine->dsos.lock);
 841	return dso;
 842}
 843
 844int machine__process_aux_event(struct machine *machine __maybe_unused,
 845			       union perf_event *event)
 846{
 847	if (dump_trace)
 848		perf_event__fprintf_aux(event, stdout);
 849	return 0;
 850}
 851
 852int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 853					union perf_event *event)
 854{
 855	if (dump_trace)
 856		perf_event__fprintf_itrace_start(event, stdout);
 857	return 0;
 858}
 859
 860int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 861					    union perf_event *event)
 862{
 863	if (dump_trace)
 864		perf_event__fprintf_aux_output_hw_id(event, stdout);
 865	return 0;
 866}
 867
 868int machine__process_switch_event(struct machine *machine __maybe_unused,
 869				  union perf_event *event)
 870{
 871	if (dump_trace)
 872		perf_event__fprintf_switch(event, stdout);
 873	return 0;
 874}
 875
 876static int machine__process_ksymbol_register(struct machine *machine,
 877					     union perf_event *event,
 878					     struct perf_sample *sample __maybe_unused)
 879{
 880	struct symbol *sym;
 
 881	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 
 882
 883	if (!map) {
 884		struct dso *dso = dso__new(event->ksymbol.name);
 885
 886		if (dso) {
 887			dso->kernel = DSO_SPACE__KERNEL;
 888			map = map__new2(0, dso);
 889			dso__put(dso);
 890		}
 891
 892		if (!dso || !map) {
 893			return -ENOMEM;
 
 
 894		}
 895
 896		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 897			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 898			map->dso->data.file_size = event->ksymbol.len;
 899			dso__set_loaded(map->dso);
 
 
 
 
 
 
 
 
 900		}
 901
 902		map->start = event->ksymbol.addr;
 903		map->end = map->start + event->ksymbol.len;
 904		maps__insert(machine__kernel_maps(machine), map);
 905		map__put(map);
 906		dso__set_loaded(dso);
 907
 908		if (is_bpf_image(event->ksymbol.name)) {
 909			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 910			dso__set_long_name(dso, "", false);
 911		}
 
 
 912	}
 913
 914	sym = symbol__new(map->map_ip(map, map->start),
 915			  event->ksymbol.len,
 916			  0, 0, event->ksymbol.name);
 917	if (!sym)
 918		return -ENOMEM;
 919	dso__insert_symbol(map->dso, sym);
 920	return 0;
 
 
 
 
 
 921}
 922
 923static int machine__process_ksymbol_unregister(struct machine *machine,
 924					       union perf_event *event,
 925					       struct perf_sample *sample __maybe_unused)
 926{
 927	struct symbol *sym;
 928	struct map *map;
 929
 930	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 931	if (!map)
 932		return 0;
 933
 934	if (map != machine->vmlinux_map)
 935		maps__remove(machine__kernel_maps(machine), map);
 936	else {
 937		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
 
 
 938		if (sym)
 939			dso__delete_symbol(map->dso, sym);
 940	}
 941
 942	return 0;
 943}
 944
 945int machine__process_ksymbol(struct machine *machine __maybe_unused,
 946			     union perf_event *event,
 947			     struct perf_sample *sample)
 948{
 949	if (dump_trace)
 950		perf_event__fprintf_ksymbol(event, stdout);
 951
 952	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 953		return machine__process_ksymbol_unregister(machine, event,
 954							   sample);
 955	return machine__process_ksymbol_register(machine, event, sample);
 956}
 957
 958int machine__process_text_poke(struct machine *machine, union perf_event *event,
 959			       struct perf_sample *sample __maybe_unused)
 960{
 961	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
 962	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 
 963
 964	if (dump_trace)
 965		perf_event__fprintf_text_poke(event, machine, stdout);
 966
 967	if (!event->text_poke.new_len)
 968		return 0;
 969
 970	if (cpumode != PERF_RECORD_MISC_KERNEL) {
 971		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 972		return 0;
 973	}
 974
 975	if (map && map->dso) {
 976		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 977		int ret;
 978
 979		/*
 980		 * Kernel maps might be changed when loading symbols so loading
 981		 * must be done prior to using kernel maps.
 982		 */
 983		map__load(map);
 984		ret = dso__data_write_cache_addr(map->dso, map, machine,
 985						 event->text_poke.addr,
 986						 new_bytes,
 987						 event->text_poke.new_len);
 988		if (ret != event->text_poke.new_len)
 989			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 990				 event->text_poke.addr);
 991	} else {
 992		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 993			 event->text_poke.addr);
 994	}
 995
 
 996	return 0;
 997}
 998
 999static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000					      const char *filename)
1001{
1002	struct map *map = NULL;
1003	struct kmod_path m;
1004	struct dso *dso;
 
1005
1006	if (kmod_path__parse_name(&m, filename))
1007		return NULL;
1008
1009	dso = machine__findnew_module_dso(machine, &m, filename);
1010	if (dso == NULL)
1011		goto out;
1012
1013	map = map__new2(start, dso);
1014	if (map == NULL)
1015		goto out;
1016
1017	maps__insert(machine__kernel_maps(machine), map);
1018
1019	/* Put the map here because maps__insert already got it */
1020	map__put(map);
 
 
1021out:
1022	/* put the dso here, corresponding to  machine__findnew_module_dso */
1023	dso__put(dso);
1024	zfree(&m.name);
1025	return map;
1026}
1027
1028size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029{
1030	struct rb_node *nd;
1031	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032
1033	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035		ret += __dsos__fprintf(&pos->dsos.head, fp);
1036	}
1037
1038	return ret;
1039}
1040
1041size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042				     bool (skip)(struct dso *dso, int parm), int parm)
1043{
1044	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045}
1046
1047size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048				     bool (skip)(struct dso *dso, int parm), int parm)
1049{
1050	struct rb_node *nd;
1051	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052
1053	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056	}
1057	return ret;
1058}
1059
1060size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061{
1062	int i;
1063	size_t printed = 0;
1064	struct dso *kdso = machine__kernel_dso(machine);
1065
1066	if (kdso->has_build_id) {
1067		char filename[PATH_MAX];
1068		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069					   false))
1070			printed += fprintf(fp, "[0] %s\n", filename);
1071	}
1072
1073	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074		printed += fprintf(fp, "[%d] %s\n",
1075				   i + kdso->has_build_id, vmlinux_path[i]);
1076
1077	return printed;
1078}
1079
1080size_t machine__fprintf(struct machine *machine, FILE *fp)
1081{
1082	struct rb_node *nd;
1083	size_t ret;
1084	int i;
1085
1086	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087		struct threads *threads = &machine->threads[i];
1088
1089		down_read(&threads->lock);
1090
1091		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 
 
1092
1093		for (nd = rb_first_cached(&threads->entries); nd;
1094		     nd = rb_next(nd)) {
1095			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 
1096
1097			ret += thread__fprintf(pos, fp);
1098		}
 
 
 
 
 
1099
1100		up_read(&threads->lock);
1101	}
1102	return ret;
1103}
1104
1105static struct dso *machine__get_kernel(struct machine *machine)
1106{
1107	const char *vmlinux_name = machine->mmap_name;
1108	struct dso *kernel;
1109
1110	if (machine__is_host(machine)) {
1111		if (symbol_conf.vmlinux_name)
1112			vmlinux_name = symbol_conf.vmlinux_name;
1113
1114		kernel = machine__findnew_kernel(machine, vmlinux_name,
1115						 "[kernel]", DSO_SPACE__KERNEL);
1116	} else {
1117		if (symbol_conf.default_guest_vmlinux_name)
1118			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119
1120		kernel = machine__findnew_kernel(machine, vmlinux_name,
1121						 "[guest.kernel]",
1122						 DSO_SPACE__KERNEL_GUEST);
1123	}
1124
1125	if (kernel != NULL && (!kernel->has_build_id))
1126		dso__read_running_kernel_build_id(kernel, machine);
1127
1128	return kernel;
1129}
1130
1131void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1132				    size_t bufsz)
1133{
1134	if (machine__is_default_guest(machine))
1135		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1136	else
1137		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1138}
1139
1140const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1141
1142/* Figure out the start address of kernel map from /proc/kallsyms.
1143 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1144 * symbol_name if it's not that important.
1145 */
1146static int machine__get_running_kernel_start(struct machine *machine,
1147					     const char **symbol_name,
1148					     u64 *start, u64 *end)
1149{
1150	char filename[PATH_MAX];
1151	int i, err = -1;
1152	const char *name;
1153	u64 addr = 0;
1154
1155	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1156
1157	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1158		return 0;
1159
1160	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1161		err = kallsyms__get_function_start(filename, name, &addr);
1162		if (!err)
1163			break;
1164	}
1165
1166	if (err)
1167		return -1;
1168
1169	if (symbol_name)
1170		*symbol_name = name;
1171
1172	*start = addr;
1173
1174	err = kallsyms__get_function_start(filename, "_etext", &addr);
 
 
1175	if (!err)
1176		*end = addr;
1177
1178	return 0;
1179}
1180
1181int machine__create_extra_kernel_map(struct machine *machine,
1182				     struct dso *kernel,
1183				     struct extra_kernel_map *xm)
1184{
1185	struct kmap *kmap;
1186	struct map *map;
 
1187
1188	map = map__new2(xm->start, kernel);
1189	if (!map)
1190		return -1;
1191
1192	map->end   = xm->end;
1193	map->pgoff = xm->pgoff;
1194
1195	kmap = map__kmap(map);
1196
1197	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1198
1199	maps__insert(machine__kernel_maps(machine), map);
1200
1201	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1202		  kmap->name, map->start, map->end);
 
 
1203
1204	map__put(map);
1205
1206	return 0;
1207}
1208
1209static u64 find_entry_trampoline(struct dso *dso)
1210{
1211	/* Duplicates are removed so lookup all aliases */
1212	const char *syms[] = {
1213		"_entry_trampoline",
1214		"__entry_trampoline_start",
1215		"entry_SYSCALL_64_trampoline",
1216	};
1217	struct symbol *sym = dso__first_symbol(dso);
1218	unsigned int i;
1219
1220	for (; sym; sym = dso__next_symbol(sym)) {
1221		if (sym->binding != STB_GLOBAL)
1222			continue;
1223		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1224			if (!strcmp(sym->name, syms[i]))
1225				return sym->start;
1226		}
1227	}
1228
1229	return 0;
1230}
1231
1232/*
1233 * These values can be used for kernels that do not have symbols for the entry
1234 * trampolines in kallsyms.
1235 */
1236#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1237#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1238#define X86_64_ENTRY_TRAMPOLINE		0x6000
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240/* Map x86_64 PTI entry trampolines */
1241int machine__map_x86_64_entry_trampolines(struct machine *machine,
1242					  struct dso *kernel)
1243{
1244	struct maps *kmaps = machine__kernel_maps(machine);
 
 
 
1245	int nr_cpus_avail, cpu;
1246	bool found = false;
1247	struct map *map;
1248	u64 pgoff;
1249
1250	/*
1251	 * In the vmlinux case, pgoff is a virtual address which must now be
1252	 * mapped to a vmlinux offset.
1253	 */
1254	maps__for_each_entry(kmaps, map) {
1255		struct kmap *kmap = __map__kmap(map);
1256		struct map *dest_map;
1257
1258		if (!kmap || !is_entry_trampoline(kmap->name))
1259			continue;
1260
1261		dest_map = maps__find(kmaps, map->pgoff);
1262		if (dest_map != map)
1263			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1264		found = true;
1265	}
1266	if (found || machine->trampolines_mapped)
1267		return 0;
1268
1269	pgoff = find_entry_trampoline(kernel);
1270	if (!pgoff)
1271		return 0;
1272
1273	nr_cpus_avail = machine__nr_cpus_avail(machine);
1274
1275	/* Add a 1 page map for each CPU's entry trampoline */
1276	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1277		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1278			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1279			 X86_64_ENTRY_TRAMPOLINE;
1280		struct extra_kernel_map xm = {
1281			.start = va,
1282			.end   = va + page_size,
1283			.pgoff = pgoff,
1284		};
1285
1286		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1287
1288		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1289			return -1;
1290	}
1291
1292	machine->trampolines_mapped = nr_cpus_avail;
1293
1294	return 0;
1295}
1296
1297int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1298					     struct dso *kernel __maybe_unused)
1299{
1300	return 0;
1301}
1302
1303static int
1304__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1305{
1306	/* In case of renewal the kernel map, destroy previous one */
1307	machine__destroy_kernel_maps(machine);
1308
 
1309	machine->vmlinux_map = map__new2(0, kernel);
1310	if (machine->vmlinux_map == NULL)
1311		return -1;
1312
1313	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1314	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1315	return 0;
1316}
1317
1318void machine__destroy_kernel_maps(struct machine *machine)
1319{
1320	struct kmap *kmap;
1321	struct map *map = machine__kernel_map(machine);
1322
1323	if (map == NULL)
1324		return;
1325
1326	kmap = map__kmap(map);
1327	maps__remove(machine__kernel_maps(machine), map);
1328	if (kmap && kmap->ref_reloc_sym) {
1329		zfree((char **)&kmap->ref_reloc_sym->name);
1330		zfree(&kmap->ref_reloc_sym);
1331	}
1332
1333	map__zput(machine->vmlinux_map);
1334}
1335
1336int machines__create_guest_kernel_maps(struct machines *machines)
1337{
1338	int ret = 0;
1339	struct dirent **namelist = NULL;
1340	int i, items = 0;
1341	char path[PATH_MAX];
1342	pid_t pid;
1343	char *endp;
1344
1345	if (symbol_conf.default_guest_vmlinux_name ||
1346	    symbol_conf.default_guest_modules ||
1347	    symbol_conf.default_guest_kallsyms) {
1348		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1349	}
1350
1351	if (symbol_conf.guestmount) {
1352		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1353		if (items <= 0)
1354			return -ENOENT;
1355		for (i = 0; i < items; i++) {
1356			if (!isdigit(namelist[i]->d_name[0])) {
1357				/* Filter out . and .. */
1358				continue;
1359			}
1360			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1361			if ((*endp != '\0') ||
1362			    (endp == namelist[i]->d_name) ||
1363			    (errno == ERANGE)) {
1364				pr_debug("invalid directory (%s). Skipping.\n",
1365					 namelist[i]->d_name);
1366				continue;
1367			}
1368			sprintf(path, "%s/%s/proc/kallsyms",
1369				symbol_conf.guestmount,
1370				namelist[i]->d_name);
1371			ret = access(path, R_OK);
1372			if (ret) {
1373				pr_debug("Can't access file %s\n", path);
1374				goto failure;
1375			}
1376			machines__create_kernel_maps(machines, pid);
1377		}
1378failure:
1379		free(namelist);
1380	}
1381
1382	return ret;
1383}
1384
1385void machines__destroy_kernel_maps(struct machines *machines)
1386{
1387	struct rb_node *next = rb_first_cached(&machines->guests);
1388
1389	machine__destroy_kernel_maps(&machines->host);
1390
1391	while (next) {
1392		struct machine *pos = rb_entry(next, struct machine, rb_node);
1393
1394		next = rb_next(&pos->rb_node);
1395		rb_erase_cached(&pos->rb_node, &machines->guests);
1396		machine__delete(pos);
1397	}
1398}
1399
1400int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1401{
1402	struct machine *machine = machines__findnew(machines, pid);
1403
1404	if (machine == NULL)
1405		return -1;
1406
1407	return machine__create_kernel_maps(machine);
1408}
1409
1410int machine__load_kallsyms(struct machine *machine, const char *filename)
1411{
1412	struct map *map = machine__kernel_map(machine);
1413	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
 
1414
1415	if (ret > 0) {
1416		dso__set_loaded(map->dso);
1417		/*
1418		 * Since /proc/kallsyms will have multiple sessions for the
1419		 * kernel, with modules between them, fixup the end of all
1420		 * sections.
1421		 */
1422		maps__fixup_end(machine__kernel_maps(machine));
1423	}
1424
1425	return ret;
1426}
1427
1428int machine__load_vmlinux_path(struct machine *machine)
1429{
1430	struct map *map = machine__kernel_map(machine);
1431	int ret = dso__load_vmlinux_path(map->dso, map);
 
1432
1433	if (ret > 0)
1434		dso__set_loaded(map->dso);
1435
1436	return ret;
1437}
1438
1439static char *get_kernel_version(const char *root_dir)
1440{
1441	char version[PATH_MAX];
1442	FILE *file;
1443	char *name, *tmp;
1444	const char *prefix = "Linux version ";
1445
1446	sprintf(version, "%s/proc/version", root_dir);
1447	file = fopen(version, "r");
1448	if (!file)
1449		return NULL;
1450
1451	tmp = fgets(version, sizeof(version), file);
1452	fclose(file);
1453	if (!tmp)
1454		return NULL;
1455
1456	name = strstr(version, prefix);
1457	if (!name)
1458		return NULL;
1459	name += strlen(prefix);
1460	tmp = strchr(name, ' ');
1461	if (tmp)
1462		*tmp = '\0';
1463
1464	return strdup(name);
1465}
1466
1467static bool is_kmod_dso(struct dso *dso)
1468{
1469	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1470	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1471}
1472
1473static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1474{
1475	char *long_name;
 
1476	struct map *map = maps__find_by_name(maps, m->name);
1477
1478	if (map == NULL)
1479		return 0;
1480
1481	long_name = strdup(path);
1482	if (long_name == NULL)
 
1483		return -ENOMEM;
 
1484
1485	dso__set_long_name(map->dso, long_name, true);
1486	dso__kernel_module_get_build_id(map->dso, "");
 
1487
1488	/*
1489	 * Full name could reveal us kmod compression, so
1490	 * we need to update the symtab_type if needed.
1491	 */
1492	if (m->comp && is_kmod_dso(map->dso)) {
1493		map->dso->symtab_type++;
1494		map->dso->comp = m->comp;
1495	}
1496
1497	return 0;
1498}
1499
1500static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1501{
1502	struct dirent *dent;
1503	DIR *dir = opendir(dir_name);
1504	int ret = 0;
1505
1506	if (!dir) {
1507		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1508		return -1;
1509	}
1510
1511	while ((dent = readdir(dir)) != NULL) {
1512		char path[PATH_MAX];
1513		struct stat st;
1514
1515		/*sshfs might return bad dent->d_type, so we have to stat*/
1516		path__join(path, sizeof(path), dir_name, dent->d_name);
1517		if (stat(path, &st))
1518			continue;
1519
1520		if (S_ISDIR(st.st_mode)) {
1521			if (!strcmp(dent->d_name, ".") ||
1522			    !strcmp(dent->d_name, ".."))
1523				continue;
1524
1525			/* Do not follow top-level source and build symlinks */
1526			if (depth == 0) {
1527				if (!strcmp(dent->d_name, "source") ||
1528				    !strcmp(dent->d_name, "build"))
1529					continue;
1530			}
1531
1532			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1533			if (ret < 0)
1534				goto out;
1535		} else {
1536			struct kmod_path m;
1537
1538			ret = kmod_path__parse_name(&m, dent->d_name);
1539			if (ret)
1540				goto out;
1541
1542			if (m.kmod)
1543				ret = maps__set_module_path(maps, path, &m);
1544
1545			zfree(&m.name);
1546
1547			if (ret)
1548				goto out;
1549		}
1550	}
1551
1552out:
1553	closedir(dir);
1554	return ret;
1555}
1556
1557static int machine__set_modules_path(struct machine *machine)
1558{
1559	char *version;
1560	char modules_path[PATH_MAX];
1561
1562	version = get_kernel_version(machine->root_dir);
1563	if (!version)
1564		return -1;
1565
1566	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1567		 machine->root_dir, version);
1568	free(version);
1569
1570	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1571}
1572int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1573				u64 *size __maybe_unused,
1574				const char *name __maybe_unused)
1575{
1576	return 0;
1577}
1578
1579static int machine__create_module(void *arg, const char *name, u64 start,
1580				  u64 size)
1581{
1582	struct machine *machine = arg;
1583	struct map *map;
1584
1585	if (arch__fix_module_text_start(&start, &size, name) < 0)
1586		return -1;
1587
1588	map = machine__addnew_module_map(machine, start, name);
1589	if (map == NULL)
1590		return -1;
1591	map->end = start + size;
1592
1593	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1594
 
 
1595	return 0;
1596}
1597
1598static int machine__create_modules(struct machine *machine)
1599{
1600	const char *modules;
1601	char path[PATH_MAX];
1602
1603	if (machine__is_default_guest(machine)) {
1604		modules = symbol_conf.default_guest_modules;
1605	} else {
1606		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1607		modules = path;
1608	}
1609
1610	if (symbol__restricted_filename(modules, "/proc/modules"))
1611		return -1;
1612
1613	if (modules__parse(modules, machine, machine__create_module))
1614		return -1;
1615
1616	if (!machine__set_modules_path(machine))
1617		return 0;
1618
1619	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1620
1621	return 0;
1622}
1623
1624static void machine__set_kernel_mmap(struct machine *machine,
1625				     u64 start, u64 end)
1626{
1627	machine->vmlinux_map->start = start;
1628	machine->vmlinux_map->end   = end;
1629	/*
1630	 * Be a bit paranoid here, some perf.data file came with
1631	 * a zero sized synthesized MMAP event for the kernel.
1632	 */
1633	if (start == 0 && end == 0)
1634		machine->vmlinux_map->end = ~0ULL;
1635}
1636
1637static void machine__update_kernel_mmap(struct machine *machine,
1638				     u64 start, u64 end)
1639{
1640	struct map *map = machine__kernel_map(machine);
 
1641
1642	map__get(map);
1643	maps__remove(machine__kernel_maps(machine), map);
1644
 
 
1645	machine__set_kernel_mmap(machine, start, end);
 
 
1646
1647	maps__insert(machine__kernel_maps(machine), map);
1648	map__put(map);
1649}
1650
1651int machine__create_kernel_maps(struct machine *machine)
1652{
1653	struct dso *kernel = machine__get_kernel(machine);
1654	const char *name = NULL;
1655	struct map *map;
1656	u64 start = 0, end = ~0ULL;
1657	int ret;
1658
1659	if (kernel == NULL)
1660		return -1;
1661
1662	ret = __machine__create_kernel_maps(machine, kernel);
1663	if (ret < 0)
1664		goto out_put;
1665
1666	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1667		if (machine__is_host(machine))
1668			pr_debug("Problems creating module maps, "
1669				 "continuing anyway...\n");
1670		else
1671			pr_debug("Problems creating module maps for guest %d, "
1672				 "continuing anyway...\n", machine->pid);
1673	}
1674
1675	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1676		if (name &&
1677		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1678			machine__destroy_kernel_maps(machine);
1679			ret = -1;
1680			goto out_put;
1681		}
1682
1683		/*
1684		 * we have a real start address now, so re-order the kmaps
1685		 * assume it's the last in the kmaps
1686		 */
1687		machine__update_kernel_mmap(machine, start, end);
 
 
1688	}
1689
1690	if (machine__create_extra_kernel_maps(machine, kernel))
1691		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1692
1693	if (end == ~0ULL) {
1694		/* update end address of the kernel map using adjacent module address */
1695		map = map__next(machine__kernel_map(machine));
1696		if (map)
1697			machine__set_kernel_mmap(machine, start, map->start);
 
 
 
 
1698	}
1699
1700out_put:
1701	dso__put(kernel);
1702	return ret;
1703}
1704
1705static bool machine__uses_kcore(struct machine *machine)
1706{
1707	struct dso *dso;
1708
1709	list_for_each_entry(dso, &machine->dsos.head, node) {
1710		if (dso__is_kcore(dso))
1711			return true;
1712	}
1713
1714	return false;
 
 
1715}
1716
1717static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1718					     struct extra_kernel_map *xm)
1719{
1720	return machine__is(machine, "x86_64") &&
1721	       is_entry_trampoline(xm->name);
1722}
1723
1724static int machine__process_extra_kernel_map(struct machine *machine,
1725					     struct extra_kernel_map *xm)
1726{
1727	struct dso *kernel = machine__kernel_dso(machine);
1728
1729	if (kernel == NULL)
1730		return -1;
1731
1732	return machine__create_extra_kernel_map(machine, kernel, xm);
1733}
1734
1735static int machine__process_kernel_mmap_event(struct machine *machine,
1736					      struct extra_kernel_map *xm,
1737					      struct build_id *bid)
1738{
1739	struct map *map;
1740	enum dso_space_type dso_space;
1741	bool is_kernel_mmap;
1742	const char *mmap_name = machine->mmap_name;
1743
1744	/* If we have maps from kcore then we do not need or want any others */
1745	if (machine__uses_kcore(machine))
1746		return 0;
1747
1748	if (machine__is_host(machine))
1749		dso_space = DSO_SPACE__KERNEL;
1750	else
1751		dso_space = DSO_SPACE__KERNEL_GUEST;
1752
1753	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1754	if (!is_kernel_mmap && !machine__is_host(machine)) {
1755		/*
1756		 * If the event was recorded inside the guest and injected into
1757		 * the host perf.data file, then it will match a host mmap_name,
1758		 * so try that - see machine__set_mmap_name().
1759		 */
1760		mmap_name = "[kernel.kallsyms]";
1761		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1762	}
1763	if (xm->name[0] == '/' ||
1764	    (!is_kernel_mmap && xm->name[0] == '[')) {
1765		map = machine__addnew_module_map(machine, xm->start,
1766						 xm->name);
1767		if (map == NULL)
1768			goto out_problem;
1769
1770		map->end = map->start + xm->end - xm->start;
1771
1772		if (build_id__is_defined(bid))
1773			dso__set_build_id(map->dso, bid);
1774
 
1775	} else if (is_kernel_mmap) {
1776		const char *symbol_name = xm->name + strlen(mmap_name);
1777		/*
1778		 * Should be there already, from the build-id table in
1779		 * the header.
1780		 */
1781		struct dso *kernel = NULL;
1782		struct dso *dso;
1783
1784		down_read(&machine->dsos.lock);
1785
1786		list_for_each_entry(dso, &machine->dsos.head, node) {
1787
1788			/*
1789			 * The cpumode passed to is_kernel_module is not the
1790			 * cpumode of *this* event. If we insist on passing
1791			 * correct cpumode to is_kernel_module, we should
1792			 * record the cpumode when we adding this dso to the
1793			 * linked list.
1794			 *
1795			 * However we don't really need passing correct
1796			 * cpumode.  We know the correct cpumode must be kernel
1797			 * mode (if not, we should not link it onto kernel_dsos
1798			 * list).
1799			 *
1800			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1801			 * is_kernel_module() treats it as a kernel cpumode.
1802			 */
1803
1804			if (!dso->kernel ||
1805			    is_kernel_module(dso->long_name,
1806					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1807				continue;
1808
1809
1810			kernel = dso;
1811			break;
1812		}
1813
1814		up_read(&machine->dsos.lock);
1815
1816		if (kernel == NULL)
1817			kernel = machine__findnew_dso(machine, machine->mmap_name);
1818		if (kernel == NULL)
1819			goto out_problem;
1820
1821		kernel->kernel = dso_space;
1822		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1823			dso__put(kernel);
1824			goto out_problem;
1825		}
1826
1827		if (strstr(kernel->long_name, "vmlinux"))
1828			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1829
1830		machine__update_kernel_mmap(machine, xm->start, xm->end);
 
 
 
1831
1832		if (build_id__is_defined(bid))
1833			dso__set_build_id(kernel, bid);
1834
1835		/*
1836		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1837		 * symbol. Effectively having zero here means that at record
1838		 * time /proc/sys/kernel/kptr_restrict was non zero.
1839		 */
1840		if (xm->pgoff != 0) {
1841			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1842							symbol_name,
1843							xm->pgoff);
1844		}
1845
1846		if (machine__is_default_guest(machine)) {
1847			/*
1848			 * preload dso of guest kernel and modules
1849			 */
1850			dso__load(kernel, machine__kernel_map(machine));
1851		}
 
1852	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1853		return machine__process_extra_kernel_map(machine, xm);
1854	}
1855	return 0;
1856out_problem:
1857	return -1;
1858}
1859
1860int machine__process_mmap2_event(struct machine *machine,
1861				 union perf_event *event,
1862				 struct perf_sample *sample)
1863{
1864	struct thread *thread;
1865	struct map *map;
1866	struct dso_id dso_id = {
1867		.maj = event->mmap2.maj,
1868		.min = event->mmap2.min,
1869		.ino = event->mmap2.ino,
1870		.ino_generation = event->mmap2.ino_generation,
1871	};
1872	struct build_id __bid, *bid = NULL;
1873	int ret = 0;
1874
1875	if (dump_trace)
1876		perf_event__fprintf_mmap2(event, stdout);
1877
1878	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1879		bid = &__bid;
1880		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1881	}
1882
1883	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1884	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1885		struct extra_kernel_map xm = {
1886			.start = event->mmap2.start,
1887			.end   = event->mmap2.start + event->mmap2.len,
1888			.pgoff = event->mmap2.pgoff,
1889		};
1890
1891		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1892		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1893		if (ret < 0)
1894			goto out_problem;
1895		return 0;
1896	}
1897
1898	thread = machine__findnew_thread(machine, event->mmap2.pid,
1899					event->mmap2.tid);
1900	if (thread == NULL)
1901		goto out_problem;
1902
1903	map = map__new(machine, event->mmap2.start,
1904			event->mmap2.len, event->mmap2.pgoff,
1905			&dso_id, event->mmap2.prot,
1906			event->mmap2.flags, bid,
1907			event->mmap2.filename, thread);
1908
1909	if (map == NULL)
1910		goto out_problem_map;
1911
1912	ret = thread__insert_map(thread, map);
1913	if (ret)
1914		goto out_problem_insert;
1915
1916	thread__put(thread);
1917	map__put(map);
1918	return 0;
1919
1920out_problem_insert:
1921	map__put(map);
1922out_problem_map:
1923	thread__put(thread);
1924out_problem:
1925	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1926	return 0;
1927}
1928
1929int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1930				struct perf_sample *sample)
1931{
1932	struct thread *thread;
1933	struct map *map;
1934	u32 prot = 0;
1935	int ret = 0;
1936
1937	if (dump_trace)
1938		perf_event__fprintf_mmap(event, stdout);
1939
1940	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1941	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1942		struct extra_kernel_map xm = {
1943			.start = event->mmap.start,
1944			.end   = event->mmap.start + event->mmap.len,
1945			.pgoff = event->mmap.pgoff,
1946		};
1947
1948		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1949		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1950		if (ret < 0)
1951			goto out_problem;
1952		return 0;
1953	}
1954
1955	thread = machine__findnew_thread(machine, event->mmap.pid,
1956					 event->mmap.tid);
1957	if (thread == NULL)
1958		goto out_problem;
1959
1960	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1961		prot = PROT_EXEC;
1962
1963	map = map__new(machine, event->mmap.start,
1964			event->mmap.len, event->mmap.pgoff,
1965			NULL, prot, 0, NULL, event->mmap.filename, thread);
1966
1967	if (map == NULL)
1968		goto out_problem_map;
1969
1970	ret = thread__insert_map(thread, map);
1971	if (ret)
1972		goto out_problem_insert;
1973
1974	thread__put(thread);
1975	map__put(map);
1976	return 0;
1977
1978out_problem_insert:
1979	map__put(map);
1980out_problem_map:
1981	thread__put(thread);
1982out_problem:
1983	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1984	return 0;
1985}
1986
1987static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1988{
1989	struct threads *threads = machine__threads(machine, th->tid);
1990
1991	if (threads->last_match == th)
1992		threads__set_last_match(threads, NULL);
1993
1994	if (lock)
1995		down_write(&threads->lock);
1996
1997	BUG_ON(refcount_read(&th->refcnt) == 0);
1998
1999	rb_erase_cached(&th->rb_node, &threads->entries);
2000	RB_CLEAR_NODE(&th->rb_node);
2001	--threads->nr;
2002	/*
2003	 * Move it first to the dead_threads list, then drop the reference,
2004	 * if this is the last reference, then the thread__delete destructor
2005	 * will be called and we will remove it from the dead_threads list.
2006	 */
2007	list_add_tail(&th->node, &threads->dead);
2008
2009	/*
2010	 * We need to do the put here because if this is the last refcount,
2011	 * then we will be touching the threads->dead head when removing the
2012	 * thread.
2013	 */
2014	thread__put(th);
2015
2016	if (lock)
2017		up_write(&threads->lock);
2018}
2019
2020void machine__remove_thread(struct machine *machine, struct thread *th)
2021{
2022	return __machine__remove_thread(machine, th, true);
2023}
2024
2025int machine__process_fork_event(struct machine *machine, union perf_event *event,
2026				struct perf_sample *sample)
2027{
2028	struct thread *thread = machine__find_thread(machine,
2029						     event->fork.pid,
2030						     event->fork.tid);
2031	struct thread *parent = machine__findnew_thread(machine,
2032							event->fork.ppid,
2033							event->fork.ptid);
2034	bool do_maps_clone = true;
2035	int err = 0;
2036
2037	if (dump_trace)
2038		perf_event__fprintf_task(event, stdout);
2039
2040	/*
2041	 * There may be an existing thread that is not actually the parent,
2042	 * either because we are processing events out of order, or because the
2043	 * (fork) event that would have removed the thread was lost. Assume the
2044	 * latter case and continue on as best we can.
2045	 */
2046	if (parent->pid_ != (pid_t)event->fork.ppid) {
2047		dump_printf("removing erroneous parent thread %d/%d\n",
2048			    parent->pid_, parent->tid);
2049		machine__remove_thread(machine, parent);
2050		thread__put(parent);
2051		parent = machine__findnew_thread(machine, event->fork.ppid,
2052						 event->fork.ptid);
2053	}
2054
2055	/* if a thread currently exists for the thread id remove it */
2056	if (thread != NULL) {
2057		machine__remove_thread(machine, thread);
2058		thread__put(thread);
2059	}
2060
2061	thread = machine__findnew_thread(machine, event->fork.pid,
2062					 event->fork.tid);
2063	/*
2064	 * When synthesizing FORK events, we are trying to create thread
2065	 * objects for the already running tasks on the machine.
2066	 *
2067	 * Normally, for a kernel FORK event, we want to clone the parent's
2068	 * maps because that is what the kernel just did.
2069	 *
2070	 * But when synthesizing, this should not be done.  If we do, we end up
2071	 * with overlapping maps as we process the synthesized MMAP2 events that
2072	 * get delivered shortly thereafter.
2073	 *
2074	 * Use the FORK event misc flags in an internal way to signal this
2075	 * situation, so we can elide the map clone when appropriate.
2076	 */
2077	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2078		do_maps_clone = false;
2079
2080	if (thread == NULL || parent == NULL ||
2081	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2082		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2083		err = -1;
2084	}
2085	thread__put(thread);
2086	thread__put(parent);
2087
2088	return err;
2089}
2090
2091int machine__process_exit_event(struct machine *machine, union perf_event *event,
2092				struct perf_sample *sample __maybe_unused)
2093{
2094	struct thread *thread = machine__find_thread(machine,
2095						     event->fork.pid,
2096						     event->fork.tid);
2097
2098	if (dump_trace)
2099		perf_event__fprintf_task(event, stdout);
2100
2101	if (thread != NULL) {
2102		thread__exited(thread);
2103		thread__put(thread);
 
 
2104	}
2105
2106	return 0;
2107}
2108
2109int machine__process_event(struct machine *machine, union perf_event *event,
2110			   struct perf_sample *sample)
2111{
2112	int ret;
2113
2114	switch (event->header.type) {
2115	case PERF_RECORD_COMM:
2116		ret = machine__process_comm_event(machine, event, sample); break;
2117	case PERF_RECORD_MMAP:
2118		ret = machine__process_mmap_event(machine, event, sample); break;
2119	case PERF_RECORD_NAMESPACES:
2120		ret = machine__process_namespaces_event(machine, event, sample); break;
2121	case PERF_RECORD_CGROUP:
2122		ret = machine__process_cgroup_event(machine, event, sample); break;
2123	case PERF_RECORD_MMAP2:
2124		ret = machine__process_mmap2_event(machine, event, sample); break;
2125	case PERF_RECORD_FORK:
2126		ret = machine__process_fork_event(machine, event, sample); break;
2127	case PERF_RECORD_EXIT:
2128		ret = machine__process_exit_event(machine, event, sample); break;
2129	case PERF_RECORD_LOST:
2130		ret = machine__process_lost_event(machine, event, sample); break;
2131	case PERF_RECORD_AUX:
2132		ret = machine__process_aux_event(machine, event); break;
2133	case PERF_RECORD_ITRACE_START:
2134		ret = machine__process_itrace_start_event(machine, event); break;
2135	case PERF_RECORD_LOST_SAMPLES:
2136		ret = machine__process_lost_samples_event(machine, event, sample); break;
2137	case PERF_RECORD_SWITCH:
2138	case PERF_RECORD_SWITCH_CPU_WIDE:
2139		ret = machine__process_switch_event(machine, event); break;
2140	case PERF_RECORD_KSYMBOL:
2141		ret = machine__process_ksymbol(machine, event, sample); break;
2142	case PERF_RECORD_BPF_EVENT:
2143		ret = machine__process_bpf(machine, event, sample); break;
2144	case PERF_RECORD_TEXT_POKE:
2145		ret = machine__process_text_poke(machine, event, sample); break;
2146	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2147		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2148	default:
2149		ret = -1;
2150		break;
2151	}
2152
2153	return ret;
2154}
2155
2156static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2157{
2158	if (!regexec(regex, sym->name, 0, NULL, 0))
2159		return true;
2160	return false;
2161}
2162
2163static void ip__resolve_ams(struct thread *thread,
2164			    struct addr_map_symbol *ams,
2165			    u64 ip)
2166{
2167	struct addr_location al;
2168
2169	memset(&al, 0, sizeof(al));
2170	/*
2171	 * We cannot use the header.misc hint to determine whether a
2172	 * branch stack address is user, kernel, guest, hypervisor.
2173	 * Branches may straddle the kernel/user/hypervisor boundaries.
2174	 * Thus, we have to try consecutively until we find a match
2175	 * or else, the symbol is unknown
2176	 */
2177	thread__find_cpumode_addr_location(thread, ip, &al);
2178
2179	ams->addr = ip;
2180	ams->al_addr = al.addr;
2181	ams->al_level = al.level;
2182	ams->ms.maps = al.maps;
2183	ams->ms.sym = al.sym;
2184	ams->ms.map = al.map;
2185	ams->phys_addr = 0;
2186	ams->data_page_size = 0;
 
2187}
2188
2189static void ip__resolve_data(struct thread *thread,
2190			     u8 m, struct addr_map_symbol *ams,
2191			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2192{
2193	struct addr_location al;
2194
2195	memset(&al, 0, sizeof(al));
2196
2197	thread__find_symbol(thread, m, addr, &al);
2198
2199	ams->addr = addr;
2200	ams->al_addr = al.addr;
2201	ams->al_level = al.level;
2202	ams->ms.maps = al.maps;
2203	ams->ms.sym = al.sym;
2204	ams->ms.map = al.map;
2205	ams->phys_addr = phys_addr;
2206	ams->data_page_size = daddr_page_size;
 
2207}
2208
2209struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2210				     struct addr_location *al)
2211{
2212	struct mem_info *mi = mem_info__new();
2213
2214	if (!mi)
2215		return NULL;
2216
2217	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2218	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2219			 sample->addr, sample->phys_addr,
2220			 sample->data_page_size);
2221	mi->data_src.val = sample->data_src;
2222
2223	return mi;
2224}
2225
2226static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2227{
2228	struct map *map = ms->map;
2229	char *srcline = NULL;
 
2230
2231	if (!map || callchain_param.key == CCKEY_FUNCTION)
2232		return srcline;
2233
2234	srcline = srcline__tree_find(&map->dso->srclines, ip);
 
2235	if (!srcline) {
2236		bool show_sym = false;
2237		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2238
2239		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2240				      ms->sym, show_sym, show_addr, ip);
2241		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2242	}
2243
2244	return srcline;
2245}
2246
2247struct iterations {
2248	int nr_loop_iter;
2249	u64 cycles;
2250};
2251
2252static int add_callchain_ip(struct thread *thread,
2253			    struct callchain_cursor *cursor,
2254			    struct symbol **parent,
2255			    struct addr_location *root_al,
2256			    u8 *cpumode,
2257			    u64 ip,
2258			    bool branch,
2259			    struct branch_flags *flags,
2260			    struct iterations *iter,
2261			    u64 branch_from)
 
2262{
2263	struct map_symbol ms;
2264	struct addr_location al;
2265	int nr_loop_iter = 0;
2266	u64 iter_cycles = 0;
2267	const char *srcline = NULL;
2268
 
2269	al.filtered = 0;
2270	al.sym = NULL;
2271	al.srcline = NULL;
2272	if (!cpumode) {
2273		thread__find_cpumode_addr_location(thread, ip, &al);
2274	} else {
2275		if (ip >= PERF_CONTEXT_MAX) {
2276			switch (ip) {
2277			case PERF_CONTEXT_HV:
2278				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2279				break;
2280			case PERF_CONTEXT_KERNEL:
2281				*cpumode = PERF_RECORD_MISC_KERNEL;
2282				break;
2283			case PERF_CONTEXT_USER:
2284				*cpumode = PERF_RECORD_MISC_USER;
2285				break;
2286			default:
2287				pr_debug("invalid callchain context: "
2288					 "%"PRId64"\n", (s64) ip);
2289				/*
2290				 * It seems the callchain is corrupted.
2291				 * Discard all.
2292				 */
2293				callchain_cursor_reset(cursor);
2294				return 1;
 
2295			}
2296			return 0;
2297		}
2298		thread__find_symbol(thread, *cpumode, ip, &al);
 
2299	}
2300
2301	if (al.sym != NULL) {
2302		if (perf_hpp_list.parent && !*parent &&
2303		    symbol__match_regex(al.sym, &parent_regex))
2304			*parent = al.sym;
2305		else if (have_ignore_callees && root_al &&
2306		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2307			/* Treat this symbol as the root,
2308			   forgetting its callees. */
2309			*root_al = al;
2310			callchain_cursor_reset(cursor);
2311		}
2312	}
2313
2314	if (symbol_conf.hide_unresolved && al.sym == NULL)
2315		return 0;
2316
2317	if (iter) {
2318		nr_loop_iter = iter->nr_loop_iter;
2319		iter_cycles = iter->cycles;
2320	}
2321
2322	ms.maps = al.maps;
2323	ms.map = al.map;
2324	ms.sym = al.sym;
2325	srcline = callchain_srcline(&ms, al.addr);
2326	return callchain_cursor_append(cursor, ip, &ms,
2327				       branch, flags, nr_loop_iter,
2328				       iter_cycles, branch_from, srcline);
 
 
 
 
2329}
2330
2331struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2332					   struct addr_location *al)
2333{
2334	unsigned int i;
2335	const struct branch_stack *bs = sample->branch_stack;
2336	struct branch_entry *entries = perf_sample__branch_entries(sample);
 
2337	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2338
2339	if (!bi)
2340		return NULL;
2341
2342	for (i = 0; i < bs->nr; i++) {
2343		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2344		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2345		bi[i].flags = entries[i].flags;
 
 
2346	}
2347	return bi;
2348}
2349
2350static void save_iterations(struct iterations *iter,
2351			    struct branch_entry *be, int nr)
2352{
2353	int i;
2354
2355	iter->nr_loop_iter++;
2356	iter->cycles = 0;
2357
2358	for (i = 0; i < nr; i++)
2359		iter->cycles += be[i].flags.cycles;
2360}
2361
2362#define CHASHSZ 127
2363#define CHASHBITS 7
2364#define NO_ENTRY 0xff
2365
2366#define PERF_MAX_BRANCH_DEPTH 127
2367
2368/* Remove loops. */
2369static int remove_loops(struct branch_entry *l, int nr,
2370			struct iterations *iter)
2371{
2372	int i, j, off;
2373	unsigned char chash[CHASHSZ];
2374
2375	memset(chash, NO_ENTRY, sizeof(chash));
2376
2377	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2378
2379	for (i = 0; i < nr; i++) {
2380		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2381
2382		/* no collision handling for now */
2383		if (chash[h] == NO_ENTRY) {
2384			chash[h] = i;
2385		} else if (l[chash[h]].from == l[i].from) {
2386			bool is_loop = true;
2387			/* check if it is a real loop */
2388			off = 0;
2389			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2390				if (l[j].from != l[i + off].from) {
2391					is_loop = false;
2392					break;
2393				}
2394			if (is_loop) {
2395				j = nr - (i + off);
2396				if (j > 0) {
2397					save_iterations(iter + i + off,
2398						l + i, off);
2399
2400					memmove(iter + i, iter + i + off,
2401						j * sizeof(*iter));
2402
2403					memmove(l + i, l + i + off,
2404						j * sizeof(*l));
2405				}
2406
2407				nr -= off;
2408			}
2409		}
2410	}
2411	return nr;
2412}
2413
2414static int lbr_callchain_add_kernel_ip(struct thread *thread,
2415				       struct callchain_cursor *cursor,
2416				       struct perf_sample *sample,
2417				       struct symbol **parent,
2418				       struct addr_location *root_al,
2419				       u64 branch_from,
2420				       bool callee, int end)
 
2421{
2422	struct ip_callchain *chain = sample->callchain;
2423	u8 cpumode = PERF_RECORD_MISC_USER;
2424	int err, i;
2425
2426	if (callee) {
2427		for (i = 0; i < end + 1; i++) {
2428			err = add_callchain_ip(thread, cursor, parent,
2429					       root_al, &cpumode, chain->ips[i],
2430					       false, NULL, NULL, branch_from);
 
2431			if (err)
2432				return err;
2433		}
2434		return 0;
2435	}
2436
2437	for (i = end; i >= 0; i--) {
2438		err = add_callchain_ip(thread, cursor, parent,
2439				       root_al, &cpumode, chain->ips[i],
2440				       false, NULL, NULL, branch_from);
 
2441		if (err)
2442			return err;
2443	}
2444
2445	return 0;
2446}
2447
2448static void save_lbr_cursor_node(struct thread *thread,
2449				 struct callchain_cursor *cursor,
2450				 int idx)
2451{
2452	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2453
2454	if (!lbr_stitch)
2455		return;
2456
2457	if (cursor->pos == cursor->nr) {
2458		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2459		return;
2460	}
2461
2462	if (!cursor->curr)
2463		cursor->curr = cursor->first;
2464	else
2465		cursor->curr = cursor->curr->next;
 
 
2466	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2467	       sizeof(struct callchain_cursor_node));
 
 
2468
2469	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2470	cursor->pos++;
2471}
2472
2473static int lbr_callchain_add_lbr_ip(struct thread *thread,
2474				    struct callchain_cursor *cursor,
2475				    struct perf_sample *sample,
2476				    struct symbol **parent,
2477				    struct addr_location *root_al,
2478				    u64 *branch_from,
2479				    bool callee)
 
2480{
2481	struct branch_stack *lbr_stack = sample->branch_stack;
2482	struct branch_entry *entries = perf_sample__branch_entries(sample);
2483	u8 cpumode = PERF_RECORD_MISC_USER;
2484	int lbr_nr = lbr_stack->nr;
2485	struct branch_flags *flags;
2486	int err, i;
2487	u64 ip;
2488
2489	/*
2490	 * The curr and pos are not used in writing session. They are cleared
2491	 * in callchain_cursor_commit() when the writing session is closed.
2492	 * Using curr and pos to track the current cursor node.
2493	 */
2494	if (thread->lbr_stitch) {
2495		cursor->curr = NULL;
2496		cursor->pos = cursor->nr;
2497		if (cursor->nr) {
2498			cursor->curr = cursor->first;
2499			for (i = 0; i < (int)(cursor->nr - 1); i++)
2500				cursor->curr = cursor->curr->next;
2501		}
2502	}
2503
2504	if (callee) {
2505		/* Add LBR ip from first entries.to */
2506		ip = entries[0].to;
2507		flags = &entries[0].flags;
2508		*branch_from = entries[0].from;
2509		err = add_callchain_ip(thread, cursor, parent,
2510				       root_al, &cpumode, ip,
2511				       true, flags, NULL,
2512				       *branch_from);
2513		if (err)
2514			return err;
2515
2516		/*
2517		 * The number of cursor node increases.
2518		 * Move the current cursor node.
2519		 * But does not need to save current cursor node for entry 0.
2520		 * It's impossible to stitch the whole LBRs of previous sample.
2521		 */
2522		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2523			if (!cursor->curr)
2524				cursor->curr = cursor->first;
2525			else
2526				cursor->curr = cursor->curr->next;
2527			cursor->pos++;
2528		}
2529
2530		/* Add LBR ip from entries.from one by one. */
2531		for (i = 0; i < lbr_nr; i++) {
2532			ip = entries[i].from;
2533			flags = &entries[i].flags;
2534			err = add_callchain_ip(thread, cursor, parent,
2535					       root_al, &cpumode, ip,
2536					       true, flags, NULL,
2537					       *branch_from);
2538			if (err)
2539				return err;
2540			save_lbr_cursor_node(thread, cursor, i);
2541		}
2542		return 0;
2543	}
2544
2545	/* Add LBR ip from entries.from one by one. */
2546	for (i = lbr_nr - 1; i >= 0; i--) {
2547		ip = entries[i].from;
2548		flags = &entries[i].flags;
2549		err = add_callchain_ip(thread, cursor, parent,
2550				       root_al, &cpumode, ip,
2551				       true, flags, NULL,
2552				       *branch_from);
2553		if (err)
2554			return err;
2555		save_lbr_cursor_node(thread, cursor, i);
2556	}
2557
2558	/* Add LBR ip from first entries.to */
2559	ip = entries[0].to;
2560	flags = &entries[0].flags;
2561	*branch_from = entries[0].from;
2562	err = add_callchain_ip(thread, cursor, parent,
2563			       root_al, &cpumode, ip,
2564			       true, flags, NULL,
2565			       *branch_from);
2566	if (err)
2567		return err;
 
 
2568
2569	return 0;
2570}
2571
2572static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2573					     struct callchain_cursor *cursor)
2574{
2575	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2576	struct callchain_cursor_node *cnode;
2577	struct stitch_list *stitch_node;
2578	int err;
2579
2580	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2581		cnode = &stitch_node->cursor;
2582
2583		err = callchain_cursor_append(cursor, cnode->ip,
2584					      &cnode->ms,
2585					      cnode->branch,
2586					      &cnode->branch_flags,
2587					      cnode->nr_loop_iter,
2588					      cnode->iter_cycles,
2589					      cnode->branch_from,
2590					      cnode->srcline);
2591		if (err)
2592			return err;
2593	}
2594	return 0;
2595}
2596
2597static struct stitch_list *get_stitch_node(struct thread *thread)
2598{
2599	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2600	struct stitch_list *stitch_node;
2601
2602	if (!list_empty(&lbr_stitch->free_lists)) {
2603		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2604					       struct stitch_list, node);
2605		list_del(&stitch_node->node);
2606
2607		return stitch_node;
2608	}
2609
2610	return malloc(sizeof(struct stitch_list));
2611}
2612
2613static bool has_stitched_lbr(struct thread *thread,
2614			     struct perf_sample *cur,
2615			     struct perf_sample *prev,
2616			     unsigned int max_lbr,
2617			     bool callee)
2618{
2619	struct branch_stack *cur_stack = cur->branch_stack;
2620	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2621	struct branch_stack *prev_stack = prev->branch_stack;
2622	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2623	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2624	int i, j, nr_identical_branches = 0;
2625	struct stitch_list *stitch_node;
2626	u64 cur_base, distance;
2627
2628	if (!cur_stack || !prev_stack)
2629		return false;
2630
2631	/* Find the physical index of the base-of-stack for current sample. */
2632	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2633
2634	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2635						     (max_lbr + prev_stack->hw_idx - cur_base);
2636	/* Previous sample has shorter stack. Nothing can be stitched. */
2637	if (distance + 1 > prev_stack->nr)
2638		return false;
2639
2640	/*
2641	 * Check if there are identical LBRs between two samples.
2642	 * Identical LBRs must have same from, to and flags values. Also,
2643	 * they have to be saved in the same LBR registers (same physical
2644	 * index).
2645	 *
2646	 * Starts from the base-of-stack of current sample.
2647	 */
2648	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2649		if ((prev_entries[i].from != cur_entries[j].from) ||
2650		    (prev_entries[i].to != cur_entries[j].to) ||
2651		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2652			break;
2653		nr_identical_branches++;
2654	}
2655
2656	if (!nr_identical_branches)
2657		return false;
2658
2659	/*
2660	 * Save the LBRs between the base-of-stack of previous sample
2661	 * and the base-of-stack of current sample into lbr_stitch->lists.
2662	 * These LBRs will be stitched later.
2663	 */
2664	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2665
2666		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2667			continue;
2668
2669		stitch_node = get_stitch_node(thread);
2670		if (!stitch_node)
2671			return false;
2672
2673		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2674		       sizeof(struct callchain_cursor_node));
2675
 
 
 
2676		if (callee)
2677			list_add(&stitch_node->node, &lbr_stitch->lists);
2678		else
2679			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2680	}
2681
2682	return true;
2683}
2684
2685static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2686{
2687	if (thread->lbr_stitch)
2688		return true;
2689
2690	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2691	if (!thread->lbr_stitch)
2692		goto err;
2693
2694	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2695	if (!thread->lbr_stitch->prev_lbr_cursor)
 
2696		goto free_lbr_stitch;
2697
2698	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2699	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
 
 
2700
2701	return true;
2702
2703free_lbr_stitch:
2704	zfree(&thread->lbr_stitch);
 
2705err:
2706	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2707	thread->lbr_stitch_enable = false;
2708	return false;
2709}
2710
2711/*
2712 * Resolve LBR callstack chain sample
2713 * Return:
2714 * 1 on success get LBR callchain information
2715 * 0 no available LBR callchain information, should try fp
2716 * negative error code on other errors.
2717 */
2718static int resolve_lbr_callchain_sample(struct thread *thread,
2719					struct callchain_cursor *cursor,
2720					struct perf_sample *sample,
2721					struct symbol **parent,
2722					struct addr_location *root_al,
2723					int max_stack,
2724					unsigned int max_lbr)
 
2725{
2726	bool callee = (callchain_param.order == ORDER_CALLEE);
2727	struct ip_callchain *chain = sample->callchain;
2728	int chain_nr = min(max_stack, (int)chain->nr), i;
2729	struct lbr_stitch *lbr_stitch;
2730	bool stitched_lbr = false;
2731	u64 branch_from = 0;
2732	int err;
2733
2734	for (i = 0; i < chain_nr; i++) {
2735		if (chain->ips[i] == PERF_CONTEXT_USER)
2736			break;
2737	}
2738
2739	/* LBR only affects the user callchain */
2740	if (i == chain_nr)
2741		return 0;
2742
2743	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2744	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2745		lbr_stitch = thread->lbr_stitch;
2746
2747		stitched_lbr = has_stitched_lbr(thread, sample,
2748						&lbr_stitch->prev_sample,
2749						max_lbr, callee);
2750
2751		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2752			list_replace_init(&lbr_stitch->lists,
2753					  &lbr_stitch->free_lists);
 
 
 
 
2754		}
2755		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2756	}
2757
2758	if (callee) {
2759		/* Add kernel ip */
2760		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2761						  parent, root_al, branch_from,
2762						  true, i);
2763		if (err)
2764			goto error;
2765
2766		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2767					       root_al, &branch_from, true);
2768		if (err)
2769			goto error;
2770
2771		if (stitched_lbr) {
2772			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2773			if (err)
2774				goto error;
2775		}
2776
2777	} else {
2778		if (stitched_lbr) {
2779			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2780			if (err)
2781				goto error;
2782		}
2783		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2784					       root_al, &branch_from, false);
2785		if (err)
2786			goto error;
2787
2788		/* Add kernel ip */
2789		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2790						  parent, root_al, branch_from,
2791						  false, i);
2792		if (err)
2793			goto error;
2794	}
2795	return 1;
2796
2797error:
2798	return (err < 0) ? err : 0;
2799}
2800
2801static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2802			     struct callchain_cursor *cursor,
2803			     struct symbol **parent,
2804			     struct addr_location *root_al,
2805			     u8 *cpumode, int ent)
2806{
2807	int err = 0;
2808
2809	while (--ent >= 0) {
2810		u64 ip = chain->ips[ent];
2811
2812		if (ip >= PERF_CONTEXT_MAX) {
2813			err = add_callchain_ip(thread, cursor, parent,
2814					       root_al, cpumode, ip,
2815					       false, NULL, NULL, 0);
2816			break;
2817		}
2818	}
2819	return err;
2820}
2821
2822static u64 get_leaf_frame_caller(struct perf_sample *sample,
2823		struct thread *thread, int usr_idx)
2824{
2825	if (machine__normalized_is(thread->maps->machine, "arm64"))
2826		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2827	else
2828		return 0;
2829}
2830
2831static int thread__resolve_callchain_sample(struct thread *thread,
2832					    struct callchain_cursor *cursor,
2833					    struct evsel *evsel,
2834					    struct perf_sample *sample,
2835					    struct symbol **parent,
2836					    struct addr_location *root_al,
2837					    int max_stack)
 
2838{
2839	struct branch_stack *branch = sample->branch_stack;
2840	struct branch_entry *entries = perf_sample__branch_entries(sample);
2841	struct ip_callchain *chain = sample->callchain;
2842	int chain_nr = 0;
2843	u8 cpumode = PERF_RECORD_MISC_USER;
2844	int i, j, err, nr_entries, usr_idx;
2845	int skip_idx = -1;
2846	int first_call = 0;
2847	u64 leaf_frame_caller;
2848
2849	if (chain)
2850		chain_nr = chain->nr;
2851
2852	if (evsel__has_branch_callstack(evsel)) {
2853		struct perf_env *env = evsel__env(evsel);
2854
2855		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2856						   root_al, max_stack,
2857						   !env ? 0 : env->max_branches);
 
2858		if (err)
2859			return (err < 0) ? err : 0;
2860	}
2861
2862	/*
2863	 * Based on DWARF debug information, some architectures skip
2864	 * a callchain entry saved by the kernel.
2865	 */
2866	skip_idx = arch_skip_callchain_idx(thread, chain);
2867
2868	/*
2869	 * Add branches to call stack for easier browsing. This gives
2870	 * more context for a sample than just the callers.
2871	 *
2872	 * This uses individual histograms of paths compared to the
2873	 * aggregated histograms the normal LBR mode uses.
2874	 *
2875	 * Limitations for now:
2876	 * - No extra filters
2877	 * - No annotations (should annotate somehow)
2878	 */
2879
2880	if (branch && callchain_param.branch_callstack) {
2881		int nr = min(max_stack, (int)branch->nr);
2882		struct branch_entry be[nr];
2883		struct iterations iter[nr];
2884
2885		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2886			pr_warning("corrupted branch chain. skipping...\n");
2887			goto check_calls;
2888		}
2889
2890		for (i = 0; i < nr; i++) {
2891			if (callchain_param.order == ORDER_CALLEE) {
2892				be[i] = entries[i];
2893
2894				if (chain == NULL)
2895					continue;
2896
2897				/*
2898				 * Check for overlap into the callchain.
2899				 * The return address is one off compared to
2900				 * the branch entry. To adjust for this
2901				 * assume the calling instruction is not longer
2902				 * than 8 bytes.
2903				 */
2904				if (i == skip_idx ||
2905				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2906					first_call++;
2907				else if (be[i].from < chain->ips[first_call] &&
2908				    be[i].from >= chain->ips[first_call] - 8)
2909					first_call++;
2910			} else
2911				be[i] = entries[branch->nr - i - 1];
2912		}
2913
2914		memset(iter, 0, sizeof(struct iterations) * nr);
2915		nr = remove_loops(be, nr, iter);
2916
2917		for (i = 0; i < nr; i++) {
2918			err = add_callchain_ip(thread, cursor, parent,
2919					       root_al,
2920					       NULL, be[i].to,
2921					       true, &be[i].flags,
2922					       NULL, be[i].from);
2923
2924			if (!err)
2925				err = add_callchain_ip(thread, cursor, parent, root_al,
2926						       NULL, be[i].from,
2927						       true, &be[i].flags,
2928						       &iter[i], 0);
 
2929			if (err == -EINVAL)
2930				break;
2931			if (err)
2932				return err;
2933		}
2934
2935		if (chain_nr == 0)
2936			return 0;
2937
2938		chain_nr -= nr;
2939	}
2940
2941check_calls:
2942	if (chain && callchain_param.order != ORDER_CALLEE) {
2943		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2944					&cpumode, chain->nr - first_call);
2945		if (err)
2946			return (err < 0) ? err : 0;
2947	}
2948	for (i = first_call, nr_entries = 0;
2949	     i < chain_nr && nr_entries < max_stack; i++) {
2950		u64 ip;
2951
2952		if (callchain_param.order == ORDER_CALLEE)
2953			j = i;
2954		else
2955			j = chain->nr - i - 1;
2956
2957#ifdef HAVE_SKIP_CALLCHAIN_IDX
2958		if (j == skip_idx)
2959			continue;
2960#endif
2961		ip = chain->ips[j];
2962		if (ip < PERF_CONTEXT_MAX)
2963                       ++nr_entries;
2964		else if (callchain_param.order != ORDER_CALLEE) {
2965			err = find_prev_cpumode(chain, thread, cursor, parent,
2966						root_al, &cpumode, j);
2967			if (err)
2968				return (err < 0) ? err : 0;
2969			continue;
2970		}
2971
2972		/*
2973		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2974		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2975		 * the index will be different in order to add the missing frame
2976		 * at the right place.
2977		 */
2978
2979		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2980
2981		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2982
2983			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2984
2985			/*
2986			 * check if leaf_frame_Caller != ip to not add the same
2987			 * value twice.
2988			 */
2989
2990			if (leaf_frame_caller && leaf_frame_caller != ip) {
2991
2992				err = add_callchain_ip(thread, cursor, parent,
2993					       root_al, &cpumode, leaf_frame_caller,
2994					       false, NULL, NULL, 0);
2995				if (err)
2996					return (err < 0) ? err : 0;
2997			}
2998		}
2999
3000		err = add_callchain_ip(thread, cursor, parent,
3001				       root_al, &cpumode, ip,
3002				       false, NULL, NULL, 0);
3003
3004		if (err)
3005			return (err < 0) ? err : 0;
3006	}
3007
3008	return 0;
3009}
3010
3011static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3012{
3013	struct symbol *sym = ms->sym;
3014	struct map *map = ms->map;
3015	struct inline_node *inline_node;
3016	struct inline_list *ilist;
 
3017	u64 addr;
3018	int ret = 1;
 
3019
3020	if (!symbol_conf.inline_name || !map || !sym)
3021		return ret;
3022
3023	addr = map__map_ip(map, ip);
3024	addr = map__rip_2objdump(map, addr);
 
3025
3026	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3027	if (!inline_node) {
3028		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3029		if (!inline_node)
3030			return ret;
3031		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3032	}
3033
 
 
 
 
3034	list_for_each_entry(ilist, &inline_node->val, list) {
3035		struct map_symbol ilist_ms = {
3036			.maps = ms->maps,
3037			.map = map,
3038			.sym = ilist->symbol,
3039		};
3040		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3041					      NULL, 0, 0, 0, ilist->srcline);
3042
3043		if (ret != 0)
3044			return ret;
3045	}
 
3046
3047	return ret;
3048}
3049
3050static int unwind_entry(struct unwind_entry *entry, void *arg)
3051{
3052	struct callchain_cursor *cursor = arg;
3053	const char *srcline = NULL;
3054	u64 addr = entry->ip;
3055
3056	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3057		return 0;
3058
3059	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3060		return 0;
3061
3062	/*
3063	 * Convert entry->ip from a virtual address to an offset in
3064	 * its corresponding binary.
3065	 */
3066	if (entry->ms.map)
3067		addr = map__map_ip(entry->ms.map, entry->ip);
3068
3069	srcline = callchain_srcline(&entry->ms, addr);
3070	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3071				       false, NULL, 0, 0, 0, srcline);
3072}
3073
3074static int thread__resolve_callchain_unwind(struct thread *thread,
3075					    struct callchain_cursor *cursor,
3076					    struct evsel *evsel,
3077					    struct perf_sample *sample,
3078					    int max_stack)
3079{
3080	/* Can we do dwarf post unwind? */
3081	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3082	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3083		return 0;
3084
3085	/* Bail out if nothing was captured. */
3086	if ((!sample->user_regs.regs) ||
3087	    (!sample->user_stack.size))
3088		return 0;
3089
 
 
 
3090	return unwind__get_entries(unwind_entry, cursor,
3091				   thread, sample, max_stack, false);
3092}
3093
3094int thread__resolve_callchain(struct thread *thread,
3095			      struct callchain_cursor *cursor,
3096			      struct evsel *evsel,
3097			      struct perf_sample *sample,
3098			      struct symbol **parent,
3099			      struct addr_location *root_al,
3100			      int max_stack)
 
3101{
3102	int ret = 0;
3103
 
 
 
3104	callchain_cursor_reset(cursor);
3105
3106	if (callchain_param.order == ORDER_CALLEE) {
3107		ret = thread__resolve_callchain_sample(thread, cursor,
3108						       evsel, sample,
3109						       parent, root_al,
3110						       max_stack);
3111		if (ret)
3112			return ret;
3113		ret = thread__resolve_callchain_unwind(thread, cursor,
3114						       evsel, sample,
3115						       max_stack);
3116	} else {
3117		ret = thread__resolve_callchain_unwind(thread, cursor,
3118						       evsel, sample,
3119						       max_stack);
3120		if (ret)
3121			return ret;
3122		ret = thread__resolve_callchain_sample(thread, cursor,
3123						       evsel, sample,
3124						       parent, root_al,
3125						       max_stack);
3126	}
3127
3128	return ret;
3129}
3130
3131int machine__for_each_thread(struct machine *machine,
3132			     int (*fn)(struct thread *thread, void *p),
3133			     void *priv)
3134{
3135	struct threads *threads;
3136	struct rb_node *nd;
3137	struct thread *thread;
3138	int rc = 0;
3139	int i;
3140
3141	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3142		threads = &machine->threads[i];
3143		for (nd = rb_first_cached(&threads->entries); nd;
3144		     nd = rb_next(nd)) {
3145			thread = rb_entry(nd, struct thread, rb_node);
3146			rc = fn(thread, priv);
3147			if (rc != 0)
3148				return rc;
3149		}
3150
3151		list_for_each_entry(thread, &threads->dead, node) {
3152			rc = fn(thread, priv);
3153			if (rc != 0)
3154				return rc;
3155		}
3156	}
3157	return rc;
3158}
3159
3160int machines__for_each_thread(struct machines *machines,
3161			      int (*fn)(struct thread *thread, void *p),
3162			      void *priv)
3163{
3164	struct rb_node *nd;
3165	int rc = 0;
3166
3167	rc = machine__for_each_thread(&machines->host, fn, priv);
3168	if (rc != 0)
3169		return rc;
3170
3171	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3172		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3173
3174		rc = machine__for_each_thread(machine, fn, priv);
3175		if (rc != 0)
3176			return rc;
3177	}
3178	return rc;
3179}
3180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181pid_t machine__get_current_tid(struct machine *machine, int cpu)
3182{
3183	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3184		return -1;
3185
3186	return machine->current_tid[cpu];
3187}
3188
3189int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3190			     pid_t tid)
3191{
3192	struct thread *thread;
3193	const pid_t init_val = -1;
3194
3195	if (cpu < 0)
3196		return -EINVAL;
3197
3198	if (realloc_array_as_needed(machine->current_tid,
3199				    machine->current_tid_sz,
3200				    (unsigned int)cpu,
3201				    &init_val))
3202		return -ENOMEM;
3203
3204	machine->current_tid[cpu] = tid;
3205
3206	thread = machine__findnew_thread(machine, pid, tid);
3207	if (!thread)
3208		return -ENOMEM;
3209
3210	thread->cpu = cpu;
3211	thread__put(thread);
3212
3213	return 0;
3214}
3215
3216/*
3217 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3218 * machine__normalized_is() if a normalized arch is needed.
3219 */
3220bool machine__is(struct machine *machine, const char *arch)
3221{
3222	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3223}
3224
3225bool machine__normalized_is(struct machine *machine, const char *arch)
3226{
3227	return machine && !strcmp(perf_env__arch(machine->env), arch);
3228}
3229
3230int machine__nr_cpus_avail(struct machine *machine)
3231{
3232	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3233}
3234
3235int machine__get_kernel_start(struct machine *machine)
3236{
3237	struct map *map = machine__kernel_map(machine);
3238	int err = 0;
3239
3240	/*
3241	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3242	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3243	 * all addresses including kernel addresses are less than 2^32.  In
3244	 * that case (32-bit system), if the kernel mapping is unknown, all
3245	 * addresses will be assumed to be in user space - see
3246	 * machine__kernel_ip().
3247	 */
3248	machine->kernel_start = 1ULL << 63;
3249	if (map) {
3250		err = map__load(map);
3251		/*
3252		 * On x86_64, PTI entry trampolines are less than the
3253		 * start of kernel text, but still above 2^63. So leave
3254		 * kernel_start = 1ULL << 63 for x86_64.
3255		 */
3256		if (!err && !machine__is(machine, "x86_64"))
3257			machine->kernel_start = map->start;
3258	}
3259	return err;
3260}
3261
3262u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3263{
3264	u8 addr_cpumode = cpumode;
3265	bool kernel_ip;
3266
3267	if (!machine->single_address_space)
3268		goto out;
3269
3270	kernel_ip = machine__kernel_ip(machine, addr);
3271	switch (cpumode) {
3272	case PERF_RECORD_MISC_KERNEL:
3273	case PERF_RECORD_MISC_USER:
3274		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3275					   PERF_RECORD_MISC_USER;
3276		break;
3277	case PERF_RECORD_MISC_GUEST_KERNEL:
3278	case PERF_RECORD_MISC_GUEST_USER:
3279		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3280					   PERF_RECORD_MISC_GUEST_USER;
3281		break;
3282	default:
3283		break;
3284	}
3285out:
3286	return addr_cpumode;
3287}
3288
3289struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
 
3290{
3291	return dsos__findnew_id(&machine->dsos, filename, id);
3292}
3293
3294struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3295{
3296	return machine__findnew_dso_id(machine, filename, NULL);
3297}
3298
3299char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3300{
3301	struct machine *machine = vmachine;
3302	struct map *map;
3303	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3304
3305	if (sym == NULL)
3306		return NULL;
3307
3308	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3309	*addrp = map->unmap_ip(map, sym->start);
3310	return sym->name;
3311}
3312
 
 
 
 
 
 
 
 
 
 
 
 
 
3313int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3314{
3315	struct dso *pos;
3316	int err = 0;
 
 
 
3317
3318	list_for_each_entry(pos, &machine->dsos.head, node) {
3319		if (fn(pos, machine, priv))
3320			err = -1;
3321	}
3322	return err;
3323}
3324
3325int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3326{
3327	struct maps *maps = machine__kernel_maps(machine);
3328	struct map *map;
3329	int err = 0;
3330
3331	for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3332		err = fn(map, priv);
3333		if (err != 0) {
3334			break;
3335		}
3336	}
3337	return err;
3338}
3339
3340bool machine__is_lock_function(struct machine *machine, u64 addr)
3341{
3342	if (!machine->sched.text_start) {
3343		struct map *kmap;
3344		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3345
3346		if (!sym) {
3347			/* to avoid retry */
3348			machine->sched.text_start = 1;
3349			return false;
3350		}
3351
3352		machine->sched.text_start = kmap->unmap_ip(kmap, sym->start);
3353
3354		/* should not fail from here */
3355		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3356		machine->sched.text_end = kmap->unmap_ip(kmap, sym->start);
3357
3358		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3359		machine->lock.text_start = kmap->unmap_ip(kmap, sym->start);
3360
3361		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3362		machine->lock.text_end = kmap->unmap_ip(kmap, sym->start);
 
 
 
 
 
 
 
 
 
 
 
3363	}
3364
3365	/* failed to get kernel symbols */
3366	if (machine->sched.text_start == 1)
3367		return false;
3368
3369	/* mutex and rwsem functions are in sched text section */
3370	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3371		return true;
3372
3373	/* spinlock functions are in lock text section */
3374	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3375		return true;
3376
 
 
 
 
 
 
 
 
 
 
 
 
 
3377	return false;
 
 
 
 
 
3378}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "mem-info.h"
  20#include "path.h"
  21#include "srcline.h"
  22#include "symbol.h"
  23#include "sort.h"
  24#include "strlist.h"
  25#include "target.h"
  26#include "thread.h"
  27#include "util.h"
  28#include "vdso.h"
  29#include <stdbool.h>
  30#include <sys/types.h>
  31#include <sys/stat.h>
  32#include <unistd.h>
  33#include "unwind.h"
  34#include "linux/hash.h"
  35#include "asm/bug.h"
  36#include "bpf-event.h"
  37#include <internal/lib.h> // page_size
  38#include "cgroup.h"
  39#include "arm64-frame-pointer-unwind-support.h"
  40
  41#include <linux/ctype.h>
  42#include <symbol/kallsyms.h>
  43#include <linux/mman.h>
  44#include <linux/string.h>
  45#include <linux/zalloc.h>
  46
 
 
  47static struct dso *machine__kernel_dso(struct machine *machine)
  48{
  49	return map__dso(machine->vmlinux_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50}
  51
  52static int machine__set_mmap_name(struct machine *machine)
  53{
  54	if (machine__is_host(machine))
  55		machine->mmap_name = strdup("[kernel.kallsyms]");
  56	else if (machine__is_default_guest(machine))
  57		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  58	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  59			  machine->pid) < 0)
  60		machine->mmap_name = NULL;
  61
  62	return machine->mmap_name ? 0 : -ENOMEM;
  63}
  64
  65static void thread__set_guest_comm(struct thread *thread, pid_t pid)
  66{
  67	char comm[64];
  68
  69	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  70	thread__set_comm(thread, comm, 0);
  71}
  72
  73int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  74{
  75	int err = -ENOMEM;
  76
  77	memset(machine, 0, sizeof(*machine));
  78	machine->kmaps = maps__new(machine);
  79	if (machine->kmaps == NULL)
  80		return -ENOMEM;
  81
  82	RB_CLEAR_NODE(&machine->rb_node);
  83	dsos__init(&machine->dsos);
  84
  85	threads__init(&machine->threads);
  86
  87	machine->vdso_info = NULL;
  88	machine->env = NULL;
  89
  90	machine->pid = pid;
  91
  92	machine->id_hdr_size = 0;
  93	machine->kptr_restrict_warned = false;
  94	machine->comm_exec = false;
  95	machine->kernel_start = 0;
  96	machine->vmlinux_map = NULL;
  97
  98	machine->root_dir = strdup(root_dir);
  99	if (machine->root_dir == NULL)
 100		goto out;
 101
 102	if (machine__set_mmap_name(machine))
 103		goto out;
 104
 105	if (pid != HOST_KERNEL_ID) {
 106		struct thread *thread = machine__findnew_thread(machine, -1,
 107								pid);
 108
 109		if (thread == NULL)
 110			goto out;
 111
 112		thread__set_guest_comm(thread, pid);
 113		thread__put(thread);
 114	}
 115
 116	machine->current_tid = NULL;
 117	err = 0;
 118
 119out:
 120	if (err) {
 121		zfree(&machine->kmaps);
 122		zfree(&machine->root_dir);
 123		zfree(&machine->mmap_name);
 124	}
 125	return 0;
 126}
 127
 128struct machine *machine__new_host(void)
 129{
 130	struct machine *machine = malloc(sizeof(*machine));
 131
 132	if (machine != NULL) {
 133		machine__init(machine, "", HOST_KERNEL_ID);
 134
 135		if (machine__create_kernel_maps(machine) < 0)
 136			goto out_delete;
 137
 138		machine->env = &perf_env;
 139	}
 140
 141	return machine;
 142out_delete:
 143	free(machine);
 144	return NULL;
 145}
 146
 147struct machine *machine__new_kallsyms(void)
 148{
 149	struct machine *machine = machine__new_host();
 150	/*
 151	 * FIXME:
 152	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 153	 *    ask for not using the kcore parsing code, once this one is fixed
 154	 *    to create a map per module.
 155	 */
 156	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 157		machine__delete(machine);
 158		machine = NULL;
 159	}
 160
 161	return machine;
 162}
 163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164void machine__delete_threads(struct machine *machine)
 165{
 166	threads__remove_all_threads(&machine->threads);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169void machine__exit(struct machine *machine)
 170{
 
 
 171	if (machine == NULL)
 172		return;
 173
 174	machine__destroy_kernel_maps(machine);
 175	maps__zput(machine->kmaps);
 176	dsos__exit(&machine->dsos);
 177	machine__exit_vdso(machine);
 178	zfree(&machine->root_dir);
 179	zfree(&machine->mmap_name);
 180	zfree(&machine->current_tid);
 181	zfree(&machine->kallsyms_filename);
 182
 183	threads__exit(&machine->threads);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184}
 185
 186void machine__delete(struct machine *machine)
 187{
 188	if (machine) {
 189		machine__exit(machine);
 190		free(machine);
 191	}
 192}
 193
 194void machines__init(struct machines *machines)
 195{
 196	machine__init(&machines->host, "", HOST_KERNEL_ID);
 197	machines->guests = RB_ROOT_CACHED;
 198}
 199
 200void machines__exit(struct machines *machines)
 201{
 202	machine__exit(&machines->host);
 203	/* XXX exit guest */
 204}
 205
 206struct machine *machines__add(struct machines *machines, pid_t pid,
 207			      const char *root_dir)
 208{
 209	struct rb_node **p = &machines->guests.rb_root.rb_node;
 210	struct rb_node *parent = NULL;
 211	struct machine *pos, *machine = malloc(sizeof(*machine));
 212	bool leftmost = true;
 213
 214	if (machine == NULL)
 215		return NULL;
 216
 217	if (machine__init(machine, root_dir, pid) != 0) {
 218		free(machine);
 219		return NULL;
 220	}
 221
 222	while (*p != NULL) {
 223		parent = *p;
 224		pos = rb_entry(parent, struct machine, rb_node);
 225		if (pid < pos->pid)
 226			p = &(*p)->rb_left;
 227		else {
 228			p = &(*p)->rb_right;
 229			leftmost = false;
 230		}
 231	}
 232
 233	rb_link_node(&machine->rb_node, parent, p);
 234	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 235
 236	machine->machines = machines;
 237
 238	return machine;
 239}
 240
 241void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 242{
 243	struct rb_node *nd;
 244
 245	machines->host.comm_exec = comm_exec;
 246
 247	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 248		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 249
 250		machine->comm_exec = comm_exec;
 251	}
 252}
 253
 254struct machine *machines__find(struct machines *machines, pid_t pid)
 255{
 256	struct rb_node **p = &machines->guests.rb_root.rb_node;
 257	struct rb_node *parent = NULL;
 258	struct machine *machine;
 259	struct machine *default_machine = NULL;
 260
 261	if (pid == HOST_KERNEL_ID)
 262		return &machines->host;
 263
 264	while (*p != NULL) {
 265		parent = *p;
 266		machine = rb_entry(parent, struct machine, rb_node);
 267		if (pid < machine->pid)
 268			p = &(*p)->rb_left;
 269		else if (pid > machine->pid)
 270			p = &(*p)->rb_right;
 271		else
 272			return machine;
 273		if (!machine->pid)
 274			default_machine = machine;
 275	}
 276
 277	return default_machine;
 278}
 279
 280struct machine *machines__findnew(struct machines *machines, pid_t pid)
 281{
 282	char path[PATH_MAX];
 283	const char *root_dir = "";
 284	struct machine *machine = machines__find(machines, pid);
 285
 286	if (machine && (machine->pid == pid))
 287		goto out;
 288
 289	if ((pid != HOST_KERNEL_ID) &&
 290	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 291	    (symbol_conf.guestmount)) {
 292		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 293		if (access(path, R_OK)) {
 294			static struct strlist *seen;
 295
 296			if (!seen)
 297				seen = strlist__new(NULL, NULL);
 298
 299			if (!strlist__has_entry(seen, path)) {
 300				pr_err("Can't access file %s\n", path);
 301				strlist__add(seen, path);
 302			}
 303			machine = NULL;
 304			goto out;
 305		}
 306		root_dir = path;
 307	}
 308
 309	machine = machines__add(machines, pid, root_dir);
 310out:
 311	return machine;
 312}
 313
 314struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 315{
 316	struct machine *machine = machines__find(machines, pid);
 317
 318	if (!machine)
 319		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 320	return machine;
 321}
 322
 323/*
 324 * A common case for KVM test programs is that the test program acts as the
 325 * hypervisor, creating, running and destroying the virtual machine, and
 326 * providing the guest object code from its own object code. In this case,
 327 * the VM is not running an OS, but only the functions loaded into it by the
 328 * hypervisor test program, and conveniently, loaded at the same virtual
 329 * addresses.
 330 *
 331 * Normally to resolve addresses, MMAP events are needed to map addresses
 332 * back to the object code and debug symbols for that object code.
 333 *
 334 * Currently, there is no way to get such mapping information from guests
 335 * but, in the scenario described above, the guest has the same mappings
 336 * as the hypervisor, so support for that scenario can be achieved.
 337 *
 338 * To support that, copy the host thread's maps to the guest thread's maps.
 339 * Note, we do not discover the guest until we encounter a guest event,
 340 * which works well because it is not until then that we know that the host
 341 * thread's maps have been set up.
 342 *
 343 * This function returns the guest thread. Apart from keeping the data
 344 * structures sane, using a thread belonging to the guest machine, instead
 345 * of the host thread, allows it to have its own comm (refer
 346 * thread__set_guest_comm()).
 347 */
 348static struct thread *findnew_guest_code(struct machine *machine,
 349					 struct machine *host_machine,
 350					 pid_t pid)
 351{
 352	struct thread *host_thread;
 353	struct thread *thread;
 354	int err;
 355
 356	if (!machine)
 357		return NULL;
 358
 359	thread = machine__findnew_thread(machine, -1, pid);
 360	if (!thread)
 361		return NULL;
 362
 363	/* Assume maps are set up if there are any */
 364	if (!maps__empty(thread__maps(thread)))
 365		return thread;
 366
 367	host_thread = machine__find_thread(host_machine, -1, pid);
 368	if (!host_thread)
 369		goto out_err;
 370
 371	thread__set_guest_comm(thread, pid);
 372
 373	/*
 374	 * Guest code can be found in hypervisor process at the same address
 375	 * so copy host maps.
 376	 */
 377	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
 378	thread__put(host_thread);
 379	if (err)
 380		goto out_err;
 381
 382	return thread;
 383
 384out_err:
 385	thread__zput(thread);
 386	return NULL;
 387}
 388
 389struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 390{
 391	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 392	struct machine *machine = machines__findnew(machines, pid);
 393
 394	return findnew_guest_code(machine, host_machine, pid);
 395}
 396
 397struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 398{
 399	struct machines *machines = machine->machines;
 400	struct machine *host_machine;
 401
 402	if (!machines)
 403		return NULL;
 404
 405	host_machine = machines__find(machines, HOST_KERNEL_ID);
 406
 407	return findnew_guest_code(machine, host_machine, pid);
 408}
 409
 410void machines__process_guests(struct machines *machines,
 411			      machine__process_t process, void *data)
 412{
 413	struct rb_node *nd;
 414
 415	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 416		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 417		process(pos, data);
 418	}
 419}
 420
 421void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 422{
 423	struct rb_node *node;
 424	struct machine *machine;
 425
 426	machines->host.id_hdr_size = id_hdr_size;
 427
 428	for (node = rb_first_cached(&machines->guests); node;
 429	     node = rb_next(node)) {
 430		machine = rb_entry(node, struct machine, rb_node);
 431		machine->id_hdr_size = id_hdr_size;
 432	}
 433
 434	return;
 435}
 436
 437static void machine__update_thread_pid(struct machine *machine,
 438				       struct thread *th, pid_t pid)
 439{
 440	struct thread *leader;
 441
 442	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
 443		return;
 444
 445	thread__set_pid(th, pid);
 446
 447	if (thread__pid(th) == thread__tid(th))
 448		return;
 449
 450	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
 451	if (!leader)
 452		goto out_err;
 453
 454	if (!thread__maps(leader))
 455		thread__set_maps(leader, maps__new(machine));
 456
 457	if (!thread__maps(leader))
 458		goto out_err;
 459
 460	if (thread__maps(th) == thread__maps(leader))
 461		goto out_put;
 462
 463	if (thread__maps(th)) {
 464		/*
 465		 * Maps are created from MMAP events which provide the pid and
 466		 * tid.  Consequently there never should be any maps on a thread
 467		 * with an unknown pid.  Just print an error if there are.
 468		 */
 469		if (!maps__empty(thread__maps(th)))
 470			pr_err("Discarding thread maps for %d:%d\n",
 471				thread__pid(th), thread__tid(th));
 472		maps__put(thread__maps(th));
 473	}
 474
 475	thread__set_maps(th, maps__get(thread__maps(leader)));
 476out_put:
 477	thread__put(leader);
 478	return;
 479out_err:
 480	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
 481	goto out_put;
 482}
 483
 484/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485 * Caller must eventually drop thread->refcnt returned with a successful
 486 * lookup/new thread inserted.
 487 */
 488static struct thread *__machine__findnew_thread(struct machine *machine,
 489						pid_t pid,
 490						pid_t tid,
 491						bool create)
 492{
 493	struct thread *th = threads__find(&machine->threads, tid);
 494	bool created;
 
 
 495
 496	if (th) {
 497		machine__update_thread_pid(machine, th, pid);
 498		return th;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499	}
 
 500	if (!create)
 501		return NULL;
 502
 503	th = threads__findnew(&machine->threads, pid, tid, &created);
 504	if (created) {
 
 
 
 505		/*
 506		 * We have to initialize maps separately after rb tree is
 507		 * updated.
 508		 *
 509		 * The reason is that we call machine__findnew_thread within
 510		 * thread__init_maps to find the thread leader and that would
 511		 * screwed the rb tree.
 512		 */
 513		if (thread__init_maps(th, machine)) {
 514			pr_err("Thread init failed thread %d\n", pid);
 515			threads__remove(&machine->threads, th);
 516			thread__put(th);
 517			return NULL;
 518		}
 519	} else
 520		machine__update_thread_pid(machine, th, pid);
 
 
 
 
 
 521
 522	return th;
 523}
 524
 525struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 
 
 
 
 
 
 526{
 527	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
 
 
 
 
 
 
 528}
 529
 530struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 531				    pid_t tid)
 532{
 533	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
 
 
 
 
 
 
 534}
 535
 536/*
 537 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 538 * So here a single thread is created for that, but actually there is a separate
 539 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 540 * is only 1. That causes problems for some tools, requiring workarounds. For
 541 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 542 */
 543struct thread *machine__idle_thread(struct machine *machine)
 544{
 545	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 546
 547	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 548	    thread__set_namespaces(thread, 0, NULL))
 549		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 550
 551	return thread;
 552}
 553
 554struct comm *machine__thread_exec_comm(struct machine *machine,
 555				       struct thread *thread)
 556{
 557	if (machine->comm_exec)
 558		return thread__exec_comm(thread);
 559	else
 560		return thread__comm(thread);
 561}
 562
 563int machine__process_comm_event(struct machine *machine, union perf_event *event,
 564				struct perf_sample *sample)
 565{
 566	struct thread *thread = machine__findnew_thread(machine,
 567							event->comm.pid,
 568							event->comm.tid);
 569	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 570	int err = 0;
 571
 572	if (exec)
 573		machine->comm_exec = true;
 574
 575	if (dump_trace)
 576		perf_event__fprintf_comm(event, stdout);
 577
 578	if (thread == NULL ||
 579	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 580		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 581		err = -1;
 582	}
 583
 584	thread__put(thread);
 585
 586	return err;
 587}
 588
 589int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 590				      union perf_event *event,
 591				      struct perf_sample *sample __maybe_unused)
 592{
 593	struct thread *thread = machine__findnew_thread(machine,
 594							event->namespaces.pid,
 595							event->namespaces.tid);
 596	int err = 0;
 597
 598	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 599		  "\nWARNING: kernel seems to support more namespaces than perf"
 600		  " tool.\nTry updating the perf tool..\n\n");
 601
 602	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 603		  "\nWARNING: perf tool seems to support more namespaces than"
 604		  " the kernel.\nTry updating the kernel..\n\n");
 605
 606	if (dump_trace)
 607		perf_event__fprintf_namespaces(event, stdout);
 608
 609	if (thread == NULL ||
 610	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 611		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 612		err = -1;
 613	}
 614
 615	thread__put(thread);
 616
 617	return err;
 618}
 619
 620int machine__process_cgroup_event(struct machine *machine,
 621				  union perf_event *event,
 622				  struct perf_sample *sample __maybe_unused)
 623{
 624	struct cgroup *cgrp;
 625
 626	if (dump_trace)
 627		perf_event__fprintf_cgroup(event, stdout);
 628
 629	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 630	if (cgrp == NULL)
 631		return -ENOMEM;
 632
 633	return 0;
 634}
 635
 636int machine__process_lost_event(struct machine *machine __maybe_unused,
 637				union perf_event *event, struct perf_sample *sample __maybe_unused)
 638{
 639	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 640		    event->lost.id, event->lost.lost);
 641	return 0;
 642}
 643
 644int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 645					union perf_event *event, struct perf_sample *sample)
 646{
 647	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
 648		    sample->id, event->lost_samples.lost,
 649		    event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
 650	return 0;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653int machine__process_aux_event(struct machine *machine __maybe_unused,
 654			       union perf_event *event)
 655{
 656	if (dump_trace)
 657		perf_event__fprintf_aux(event, stdout);
 658	return 0;
 659}
 660
 661int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 662					union perf_event *event)
 663{
 664	if (dump_trace)
 665		perf_event__fprintf_itrace_start(event, stdout);
 666	return 0;
 667}
 668
 669int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 670					    union perf_event *event)
 671{
 672	if (dump_trace)
 673		perf_event__fprintf_aux_output_hw_id(event, stdout);
 674	return 0;
 675}
 676
 677int machine__process_switch_event(struct machine *machine __maybe_unused,
 678				  union perf_event *event)
 679{
 680	if (dump_trace)
 681		perf_event__fprintf_switch(event, stdout);
 682	return 0;
 683}
 684
 685static int machine__process_ksymbol_register(struct machine *machine,
 686					     union perf_event *event,
 687					     struct perf_sample *sample __maybe_unused)
 688{
 689	struct symbol *sym;
 690	struct dso *dso = NULL;
 691	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 692	int err = 0;
 693
 694	if (!map) {
 695		dso = dso__new(event->ksymbol.name);
 696
 697		if (!dso) {
 698			err = -ENOMEM;
 699			goto out;
 
 700		}
 701		dso__set_kernel(dso, DSO_SPACE__KERNEL);
 702		map = map__new2(0, dso);
 703		if (!map) {
 704			err = -ENOMEM;
 705			goto out;
 706		}
 
 707		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 708			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
 709			dso__data(dso)->file_size = event->ksymbol.len;
 710			dso__set_loaded(dso);
 711		}
 712
 713		map__set_start(map, event->ksymbol.addr);
 714		map__set_end(map, map__start(map) + event->ksymbol.len);
 715		err = maps__insert(machine__kernel_maps(machine), map);
 716		if (err) {
 717			err = -ENOMEM;
 718			goto out;
 719		}
 720
 
 
 
 
 721		dso__set_loaded(dso);
 722
 723		if (is_bpf_image(event->ksymbol.name)) {
 724			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
 725			dso__set_long_name(dso, "", false);
 726		}
 727	} else {
 728		dso = dso__get(map__dso(map));
 729	}
 730
 731	sym = symbol__new(map__map_ip(map, map__start(map)),
 732			  event->ksymbol.len,
 733			  0, 0, event->ksymbol.name);
 734	if (!sym) {
 735		err = -ENOMEM;
 736		goto out;
 737	}
 738	dso__insert_symbol(dso, sym);
 739out:
 740	map__put(map);
 741	dso__put(dso);
 742	return err;
 743}
 744
 745static int machine__process_ksymbol_unregister(struct machine *machine,
 746					       union perf_event *event,
 747					       struct perf_sample *sample __maybe_unused)
 748{
 749	struct symbol *sym;
 750	struct map *map;
 751
 752	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 753	if (!map)
 754		return 0;
 755
 756	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
 757		maps__remove(machine__kernel_maps(machine), map);
 758	else {
 759		struct dso *dso = map__dso(map);
 760
 761		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
 762		if (sym)
 763			dso__delete_symbol(dso, sym);
 764	}
 765	map__put(map);
 766	return 0;
 767}
 768
 769int machine__process_ksymbol(struct machine *machine __maybe_unused,
 770			     union perf_event *event,
 771			     struct perf_sample *sample)
 772{
 773	if (dump_trace)
 774		perf_event__fprintf_ksymbol(event, stdout);
 775
 776	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 777		return machine__process_ksymbol_unregister(machine, event,
 778							   sample);
 779	return machine__process_ksymbol_register(machine, event, sample);
 780}
 781
 782int machine__process_text_poke(struct machine *machine, union perf_event *event,
 783			       struct perf_sample *sample __maybe_unused)
 784{
 785	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
 786	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 787	struct dso *dso = map ? map__dso(map) : NULL;
 788
 789	if (dump_trace)
 790		perf_event__fprintf_text_poke(event, machine, stdout);
 791
 792	if (!event->text_poke.new_len)
 793		goto out;
 794
 795	if (cpumode != PERF_RECORD_MISC_KERNEL) {
 796		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 797		goto out;
 798	}
 799
 800	if (dso) {
 801		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 802		int ret;
 803
 804		/*
 805		 * Kernel maps might be changed when loading symbols so loading
 806		 * must be done prior to using kernel maps.
 807		 */
 808		map__load(map);
 809		ret = dso__data_write_cache_addr(dso, map, machine,
 810						 event->text_poke.addr,
 811						 new_bytes,
 812						 event->text_poke.new_len);
 813		if (ret != event->text_poke.new_len)
 814			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 815				 event->text_poke.addr);
 816	} else {
 817		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 818			 event->text_poke.addr);
 819	}
 820out:
 821	map__put(map);
 822	return 0;
 823}
 824
 825static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 826					      const char *filename)
 827{
 828	struct map *map = NULL;
 829	struct kmod_path m;
 830	struct dso *dso;
 831	int err;
 832
 833	if (kmod_path__parse_name(&m, filename))
 834		return NULL;
 835
 836	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
 837	if (dso == NULL)
 838		goto out;
 839
 840	map = map__new2(start, dso);
 841	if (map == NULL)
 842		goto out;
 843
 844	err = maps__insert(machine__kernel_maps(machine), map);
 845	/* If maps__insert failed, return NULL. */
 846	if (err) {
 847		map__put(map);
 848		map = NULL;
 849	}
 850out:
 851	/* put the dso here, corresponding to  machine__findnew_module_dso */
 852	dso__put(dso);
 853	zfree(&m.name);
 854	return map;
 855}
 856
 857size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 858{
 859	struct rb_node *nd;
 860	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
 861
 862	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 863		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 864		ret += dsos__fprintf(&pos->dsos, fp);
 865	}
 866
 867	return ret;
 868}
 869
 870size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 871				     bool (skip)(struct dso *dso, int parm), int parm)
 872{
 873	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
 874}
 875
 876size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 877				     bool (skip)(struct dso *dso, int parm), int parm)
 878{
 879	struct rb_node *nd;
 880	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 881
 882	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 883		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 884		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 885	}
 886	return ret;
 887}
 888
 889size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 890{
 891	int i;
 892	size_t printed = 0;
 893	struct dso *kdso = machine__kernel_dso(machine);
 894
 895	if (dso__has_build_id(kdso)) {
 896		char filename[PATH_MAX];
 897
 898		if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
 899			printed += fprintf(fp, "[0] %s\n", filename);
 900	}
 901
 902	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
 903		printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
 904				   vmlinux_path[i]);
 905	}
 906	return printed;
 907}
 908
 909struct machine_fprintf_cb_args {
 910	FILE *fp;
 911	size_t printed;
 912};
 
 
 
 
 
 
 913
 914static int machine_fprintf_cb(struct thread *thread, void *data)
 915{
 916	struct machine_fprintf_cb_args *args = data;
 917
 918	/* TODO: handle fprintf errors. */
 919	args->printed += thread__fprintf(thread, args->fp);
 920	return 0;
 921}
 922
 923size_t machine__fprintf(struct machine *machine, FILE *fp)
 924{
 925	struct machine_fprintf_cb_args args = {
 926		.fp = fp,
 927		.printed = 0,
 928	};
 929	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
 930
 931	machine__for_each_thread(machine, machine_fprintf_cb, &args);
 932	return ret + args.printed;
 
 933}
 934
 935static struct dso *machine__get_kernel(struct machine *machine)
 936{
 937	const char *vmlinux_name = machine->mmap_name;
 938	struct dso *kernel;
 939
 940	if (machine__is_host(machine)) {
 941		if (symbol_conf.vmlinux_name)
 942			vmlinux_name = symbol_conf.vmlinux_name;
 943
 944		kernel = machine__findnew_kernel(machine, vmlinux_name,
 945						 "[kernel]", DSO_SPACE__KERNEL);
 946	} else {
 947		if (symbol_conf.default_guest_vmlinux_name)
 948			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 949
 950		kernel = machine__findnew_kernel(machine, vmlinux_name,
 951						 "[guest.kernel]",
 952						 DSO_SPACE__KERNEL_GUEST);
 953	}
 954
 955	if (kernel != NULL && (!dso__has_build_id(kernel)))
 956		dso__read_running_kernel_build_id(kernel, machine);
 957
 958	return kernel;
 959}
 960
 961void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 962				    size_t bufsz)
 963{
 964	if (machine__is_default_guest(machine))
 965		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 966	else
 967		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 968}
 969
 970const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 971
 972/* Figure out the start address of kernel map from /proc/kallsyms.
 973 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 974 * symbol_name if it's not that important.
 975 */
 976static int machine__get_running_kernel_start(struct machine *machine,
 977					     const char **symbol_name,
 978					     u64 *start, u64 *end)
 979{
 980	char filename[PATH_MAX];
 981	int i, err = -1;
 982	const char *name;
 983	u64 addr = 0;
 984
 985	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 986
 987	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 988		return 0;
 989
 990	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 991		err = kallsyms__get_function_start(filename, name, &addr);
 992		if (!err)
 993			break;
 994	}
 995
 996	if (err)
 997		return -1;
 998
 999	if (symbol_name)
1000		*symbol_name = name;
1001
1002	*start = addr;
1003
1004	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1005	if (err)
1006		err = kallsyms__get_symbol_start(filename, "_etext", &addr);
1007	if (!err)
1008		*end = addr;
1009
1010	return 0;
1011}
1012
1013int machine__create_extra_kernel_map(struct machine *machine,
1014				     struct dso *kernel,
1015				     struct extra_kernel_map *xm)
1016{
1017	struct kmap *kmap;
1018	struct map *map;
1019	int err;
1020
1021	map = map__new2(xm->start, kernel);
1022	if (!map)
1023		return -ENOMEM;
1024
1025	map__set_end(map, xm->end);
1026	map__set_pgoff(map, xm->pgoff);
1027
1028	kmap = map__kmap(map);
1029
1030	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1031
1032	err = maps__insert(machine__kernel_maps(machine), map);
1033
1034	if (!err) {
1035		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1036			kmap->name, map__start(map), map__end(map));
1037	}
1038
1039	map__put(map);
1040
1041	return err;
1042}
1043
1044static u64 find_entry_trampoline(struct dso *dso)
1045{
1046	/* Duplicates are removed so lookup all aliases */
1047	const char *syms[] = {
1048		"_entry_trampoline",
1049		"__entry_trampoline_start",
1050		"entry_SYSCALL_64_trampoline",
1051	};
1052	struct symbol *sym = dso__first_symbol(dso);
1053	unsigned int i;
1054
1055	for (; sym; sym = dso__next_symbol(sym)) {
1056		if (sym->binding != STB_GLOBAL)
1057			continue;
1058		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1059			if (!strcmp(sym->name, syms[i]))
1060				return sym->start;
1061		}
1062	}
1063
1064	return 0;
1065}
1066
1067/*
1068 * These values can be used for kernels that do not have symbols for the entry
1069 * trampolines in kallsyms.
1070 */
1071#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1072#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1073#define X86_64_ENTRY_TRAMPOLINE		0x6000
1074
1075struct machine__map_x86_64_entry_trampolines_args {
1076	struct maps *kmaps;
1077	bool found;
1078};
1079
1080static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1081{
1082	struct machine__map_x86_64_entry_trampolines_args *args = data;
1083	struct map *dest_map;
1084	struct kmap *kmap = __map__kmap(map);
1085
1086	if (!kmap || !is_entry_trampoline(kmap->name))
1087		return 0;
1088
1089	dest_map = maps__find(args->kmaps, map__pgoff(map));
1090	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1091		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1092
1093	map__put(dest_map);
1094	args->found = true;
1095	return 0;
1096}
1097
1098/* Map x86_64 PTI entry trampolines */
1099int machine__map_x86_64_entry_trampolines(struct machine *machine,
1100					  struct dso *kernel)
1101{
1102	struct machine__map_x86_64_entry_trampolines_args args = {
1103		.kmaps = machine__kernel_maps(machine),
1104		.found = false,
1105	};
1106	int nr_cpus_avail, cpu;
 
 
1107	u64 pgoff;
1108
1109	/*
1110	 * In the vmlinux case, pgoff is a virtual address which must now be
1111	 * mapped to a vmlinux offset.
1112	 */
1113	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
 
 
 
 
 
1114
1115	if (args.found || machine->trampolines_mapped)
 
 
 
 
 
1116		return 0;
1117
1118	pgoff = find_entry_trampoline(kernel);
1119	if (!pgoff)
1120		return 0;
1121
1122	nr_cpus_avail = machine__nr_cpus_avail(machine);
1123
1124	/* Add a 1 page map for each CPU's entry trampoline */
1125	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1126		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1127			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1128			 X86_64_ENTRY_TRAMPOLINE;
1129		struct extra_kernel_map xm = {
1130			.start = va,
1131			.end   = va + page_size,
1132			.pgoff = pgoff,
1133		};
1134
1135		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1136
1137		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1138			return -1;
1139	}
1140
1141	machine->trampolines_mapped = nr_cpus_avail;
1142
1143	return 0;
1144}
1145
1146int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1147					     struct dso *kernel __maybe_unused)
1148{
1149	return 0;
1150}
1151
1152static int
1153__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1154{
1155	/* In case of renewal the kernel map, destroy previous one */
1156	machine__destroy_kernel_maps(machine);
1157
1158	map__put(machine->vmlinux_map);
1159	machine->vmlinux_map = map__new2(0, kernel);
1160	if (machine->vmlinux_map == NULL)
1161		return -ENOMEM;
1162
1163	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1164	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
 
1165}
1166
1167void machine__destroy_kernel_maps(struct machine *machine)
1168{
1169	struct kmap *kmap;
1170	struct map *map = machine__kernel_map(machine);
1171
1172	if (map == NULL)
1173		return;
1174
1175	kmap = map__kmap(map);
1176	maps__remove(machine__kernel_maps(machine), map);
1177	if (kmap && kmap->ref_reloc_sym) {
1178		zfree((char **)&kmap->ref_reloc_sym->name);
1179		zfree(&kmap->ref_reloc_sym);
1180	}
1181
1182	map__zput(machine->vmlinux_map);
1183}
1184
1185int machines__create_guest_kernel_maps(struct machines *machines)
1186{
1187	int ret = 0;
1188	struct dirent **namelist = NULL;
1189	int i, items = 0;
1190	char path[PATH_MAX];
1191	pid_t pid;
1192	char *endp;
1193
1194	if (symbol_conf.default_guest_vmlinux_name ||
1195	    symbol_conf.default_guest_modules ||
1196	    symbol_conf.default_guest_kallsyms) {
1197		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1198	}
1199
1200	if (symbol_conf.guestmount) {
1201		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1202		if (items <= 0)
1203			return -ENOENT;
1204		for (i = 0; i < items; i++) {
1205			if (!isdigit(namelist[i]->d_name[0])) {
1206				/* Filter out . and .. */
1207				continue;
1208			}
1209			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1210			if ((*endp != '\0') ||
1211			    (endp == namelist[i]->d_name) ||
1212			    (errno == ERANGE)) {
1213				pr_debug("invalid directory (%s). Skipping.\n",
1214					 namelist[i]->d_name);
1215				continue;
1216			}
1217			sprintf(path, "%s/%s/proc/kallsyms",
1218				symbol_conf.guestmount,
1219				namelist[i]->d_name);
1220			ret = access(path, R_OK);
1221			if (ret) {
1222				pr_debug("Can't access file %s\n", path);
1223				goto failure;
1224			}
1225			machines__create_kernel_maps(machines, pid);
1226		}
1227failure:
1228		free(namelist);
1229	}
1230
1231	return ret;
1232}
1233
1234void machines__destroy_kernel_maps(struct machines *machines)
1235{
1236	struct rb_node *next = rb_first_cached(&machines->guests);
1237
1238	machine__destroy_kernel_maps(&machines->host);
1239
1240	while (next) {
1241		struct machine *pos = rb_entry(next, struct machine, rb_node);
1242
1243		next = rb_next(&pos->rb_node);
1244		rb_erase_cached(&pos->rb_node, &machines->guests);
1245		machine__delete(pos);
1246	}
1247}
1248
1249int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1250{
1251	struct machine *machine = machines__findnew(machines, pid);
1252
1253	if (machine == NULL)
1254		return -1;
1255
1256	return machine__create_kernel_maps(machine);
1257}
1258
1259int machine__load_kallsyms(struct machine *machine, const char *filename)
1260{
1261	struct map *map = machine__kernel_map(machine);
1262	struct dso *dso = map__dso(map);
1263	int ret = __dso__load_kallsyms(dso, filename, map, true);
1264
1265	if (ret > 0) {
1266		dso__set_loaded(dso);
1267		/*
1268		 * Since /proc/kallsyms will have multiple sessions for the
1269		 * kernel, with modules between them, fixup the end of all
1270		 * sections.
1271		 */
1272		maps__fixup_end(machine__kernel_maps(machine));
1273	}
1274
1275	return ret;
1276}
1277
1278int machine__load_vmlinux_path(struct machine *machine)
1279{
1280	struct map *map = machine__kernel_map(machine);
1281	struct dso *dso = map__dso(map);
1282	int ret = dso__load_vmlinux_path(dso, map);
1283
1284	if (ret > 0)
1285		dso__set_loaded(dso);
1286
1287	return ret;
1288}
1289
1290static char *get_kernel_version(const char *root_dir)
1291{
1292	char version[PATH_MAX];
1293	FILE *file;
1294	char *name, *tmp;
1295	const char *prefix = "Linux version ";
1296
1297	sprintf(version, "%s/proc/version", root_dir);
1298	file = fopen(version, "r");
1299	if (!file)
1300		return NULL;
1301
1302	tmp = fgets(version, sizeof(version), file);
1303	fclose(file);
1304	if (!tmp)
1305		return NULL;
1306
1307	name = strstr(version, prefix);
1308	if (!name)
1309		return NULL;
1310	name += strlen(prefix);
1311	tmp = strchr(name, ' ');
1312	if (tmp)
1313		*tmp = '\0';
1314
1315	return strdup(name);
1316}
1317
1318static bool is_kmod_dso(struct dso *dso)
1319{
1320	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1321	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1322}
1323
1324static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1325{
1326	char *long_name;
1327	struct dso *dso;
1328	struct map *map = maps__find_by_name(maps, m->name);
1329
1330	if (map == NULL)
1331		return 0;
1332
1333	long_name = strdup(path);
1334	if (long_name == NULL) {
1335		map__put(map);
1336		return -ENOMEM;
1337	}
1338
1339	dso = map__dso(map);
1340	dso__set_long_name(dso, long_name, true);
1341	dso__kernel_module_get_build_id(dso, "");
1342
1343	/*
1344	 * Full name could reveal us kmod compression, so
1345	 * we need to update the symtab_type if needed.
1346	 */
1347	if (m->comp && is_kmod_dso(dso)) {
1348		dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1349		dso__set_comp(dso, m->comp);
1350	}
1351	map__put(map);
1352	return 0;
1353}
1354
1355static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1356{
1357	struct dirent *dent;
1358	DIR *dir = opendir(dir_name);
1359	int ret = 0;
1360
1361	if (!dir) {
1362		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1363		return -1;
1364	}
1365
1366	while ((dent = readdir(dir)) != NULL) {
1367		char path[PATH_MAX];
1368		struct stat st;
1369
1370		/*sshfs might return bad dent->d_type, so we have to stat*/
1371		path__join(path, sizeof(path), dir_name, dent->d_name);
1372		if (stat(path, &st))
1373			continue;
1374
1375		if (S_ISDIR(st.st_mode)) {
1376			if (!strcmp(dent->d_name, ".") ||
1377			    !strcmp(dent->d_name, ".."))
1378				continue;
1379
1380			/* Do not follow top-level source and build symlinks */
1381			if (depth == 0) {
1382				if (!strcmp(dent->d_name, "source") ||
1383				    !strcmp(dent->d_name, "build"))
1384					continue;
1385			}
1386
1387			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1388			if (ret < 0)
1389				goto out;
1390		} else {
1391			struct kmod_path m;
1392
1393			ret = kmod_path__parse_name(&m, dent->d_name);
1394			if (ret)
1395				goto out;
1396
1397			if (m.kmod)
1398				ret = maps__set_module_path(maps, path, &m);
1399
1400			zfree(&m.name);
1401
1402			if (ret)
1403				goto out;
1404		}
1405	}
1406
1407out:
1408	closedir(dir);
1409	return ret;
1410}
1411
1412static int machine__set_modules_path(struct machine *machine)
1413{
1414	char *version;
1415	char modules_path[PATH_MAX];
1416
1417	version = get_kernel_version(machine->root_dir);
1418	if (!version)
1419		return -1;
1420
1421	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1422		 machine->root_dir, version);
1423	free(version);
1424
1425	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1426}
1427int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1428				u64 *size __maybe_unused,
1429				const char *name __maybe_unused)
1430{
1431	return 0;
1432}
1433
1434static int machine__create_module(void *arg, const char *name, u64 start,
1435				  u64 size)
1436{
1437	struct machine *machine = arg;
1438	struct map *map;
1439
1440	if (arch__fix_module_text_start(&start, &size, name) < 0)
1441		return -1;
1442
1443	map = machine__addnew_module_map(machine, start, name);
1444	if (map == NULL)
1445		return -1;
1446	map__set_end(map, start + size);
 
 
1447
1448	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1449	map__put(map);
1450	return 0;
1451}
1452
1453static int machine__create_modules(struct machine *machine)
1454{
1455	const char *modules;
1456	char path[PATH_MAX];
1457
1458	if (machine__is_default_guest(machine)) {
1459		modules = symbol_conf.default_guest_modules;
1460	} else {
1461		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1462		modules = path;
1463	}
1464
1465	if (symbol__restricted_filename(modules, "/proc/modules"))
1466		return -1;
1467
1468	if (modules__parse(modules, machine, machine__create_module))
1469		return -1;
1470
1471	if (!machine__set_modules_path(machine))
1472		return 0;
1473
1474	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1475
1476	return 0;
1477}
1478
1479static void machine__set_kernel_mmap(struct machine *machine,
1480				     u64 start, u64 end)
1481{
1482	map__set_start(machine->vmlinux_map, start);
1483	map__set_end(machine->vmlinux_map, end);
1484	/*
1485	 * Be a bit paranoid here, some perf.data file came with
1486	 * a zero sized synthesized MMAP event for the kernel.
1487	 */
1488	if (start == 0 && end == 0)
1489		map__set_end(machine->vmlinux_map, ~0ULL);
1490}
1491
1492static int machine__update_kernel_mmap(struct machine *machine,
1493				     u64 start, u64 end)
1494{
1495	struct map *orig, *updated;
1496	int err;
1497
1498	orig = machine->vmlinux_map;
1499	updated = map__get(orig);
1500
1501	machine->vmlinux_map = updated;
1502	maps__remove(machine__kernel_maps(machine), orig);
1503	machine__set_kernel_mmap(machine, start, end);
1504	err = maps__insert(machine__kernel_maps(machine), updated);
1505	map__put(orig);
1506
1507	return err;
 
1508}
1509
1510int machine__create_kernel_maps(struct machine *machine)
1511{
1512	struct dso *kernel = machine__get_kernel(machine);
1513	const char *name = NULL;
 
1514	u64 start = 0, end = ~0ULL;
1515	int ret;
1516
1517	if (kernel == NULL)
1518		return -1;
1519
1520	ret = __machine__create_kernel_maps(machine, kernel);
1521	if (ret < 0)
1522		goto out_put;
1523
1524	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1525		if (machine__is_host(machine))
1526			pr_debug("Problems creating module maps, "
1527				 "continuing anyway...\n");
1528		else
1529			pr_debug("Problems creating module maps for guest %d, "
1530				 "continuing anyway...\n", machine->pid);
1531	}
1532
1533	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1534		if (name &&
1535		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1536			machine__destroy_kernel_maps(machine);
1537			ret = -1;
1538			goto out_put;
1539		}
1540
1541		/*
1542		 * we have a real start address now, so re-order the kmaps
1543		 * assume it's the last in the kmaps
1544		 */
1545		ret = machine__update_kernel_mmap(machine, start, end);
1546		if (ret < 0)
1547			goto out_put;
1548	}
1549
1550	if (machine__create_extra_kernel_maps(machine, kernel))
1551		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1552
1553	if (end == ~0ULL) {
1554		/* update end address of the kernel map using adjacent module address */
1555		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1556							 machine__kernel_map(machine));
1557
1558		if (next) {
1559			machine__set_kernel_mmap(machine, start, map__start(next));
1560			map__put(next);
1561		}
1562	}
1563
1564out_put:
1565	dso__put(kernel);
1566	return ret;
1567}
1568
1569static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1570{
1571	return dso__is_kcore(dso) ? 1 : 0;
1572}
 
 
 
 
1573
1574static bool machine__uses_kcore(struct machine *machine)
1575{
1576	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1577}
1578
1579static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1580					     struct extra_kernel_map *xm)
1581{
1582	return machine__is(machine, "x86_64") &&
1583	       is_entry_trampoline(xm->name);
1584}
1585
1586static int machine__process_extra_kernel_map(struct machine *machine,
1587					     struct extra_kernel_map *xm)
1588{
1589	struct dso *kernel = machine__kernel_dso(machine);
1590
1591	if (kernel == NULL)
1592		return -1;
1593
1594	return machine__create_extra_kernel_map(machine, kernel, xm);
1595}
1596
1597static int machine__process_kernel_mmap_event(struct machine *machine,
1598					      struct extra_kernel_map *xm,
1599					      struct build_id *bid)
1600{
 
1601	enum dso_space_type dso_space;
1602	bool is_kernel_mmap;
1603	const char *mmap_name = machine->mmap_name;
1604
1605	/* If we have maps from kcore then we do not need or want any others */
1606	if (machine__uses_kcore(machine))
1607		return 0;
1608
1609	if (machine__is_host(machine))
1610		dso_space = DSO_SPACE__KERNEL;
1611	else
1612		dso_space = DSO_SPACE__KERNEL_GUEST;
1613
1614	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1615	if (!is_kernel_mmap && !machine__is_host(machine)) {
1616		/*
1617		 * If the event was recorded inside the guest and injected into
1618		 * the host perf.data file, then it will match a host mmap_name,
1619		 * so try that - see machine__set_mmap_name().
1620		 */
1621		mmap_name = "[kernel.kallsyms]";
1622		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1623	}
1624	if (xm->name[0] == '/' ||
1625	    (!is_kernel_mmap && xm->name[0] == '[')) {
1626		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1627
1628		if (map == NULL)
1629			goto out_problem;
1630
1631		map__set_end(map, map__start(map) + xm->end - xm->start);
1632
1633		if (build_id__is_defined(bid))
1634			dso__set_build_id(map__dso(map), bid);
1635
1636		map__put(map);
1637	} else if (is_kernel_mmap) {
1638		const char *symbol_name = xm->name + strlen(mmap_name);
1639		/*
1640		 * Should be there already, from the build-id table in
1641		 * the header.
1642		 */
1643		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644
1645		if (kernel == NULL)
1646			kernel = machine__findnew_dso(machine, machine->mmap_name);
1647		if (kernel == NULL)
1648			goto out_problem;
1649
1650		dso__set_kernel(kernel, dso_space);
1651		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1652			dso__put(kernel);
1653			goto out_problem;
1654		}
1655
1656		if (strstr(dso__long_name(kernel), "vmlinux"))
1657			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1658
1659		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1660			dso__put(kernel);
1661			goto out_problem;
1662		}
1663
1664		if (build_id__is_defined(bid))
1665			dso__set_build_id(kernel, bid);
1666
1667		/*
1668		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1669		 * symbol. Effectively having zero here means that at record
1670		 * time /proc/sys/kernel/kptr_restrict was non zero.
1671		 */
1672		if (xm->pgoff != 0) {
1673			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1674							symbol_name,
1675							xm->pgoff);
1676		}
1677
1678		if (machine__is_default_guest(machine)) {
1679			/*
1680			 * preload dso of guest kernel and modules
1681			 */
1682			dso__load(kernel, machine__kernel_map(machine));
1683		}
1684		dso__put(kernel);
1685	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1686		return machine__process_extra_kernel_map(machine, xm);
1687	}
1688	return 0;
1689out_problem:
1690	return -1;
1691}
1692
1693int machine__process_mmap2_event(struct machine *machine,
1694				 union perf_event *event,
1695				 struct perf_sample *sample)
1696{
1697	struct thread *thread;
1698	struct map *map;
1699	struct dso_id dso_id = {
1700		.maj = event->mmap2.maj,
1701		.min = event->mmap2.min,
1702		.ino = event->mmap2.ino,
1703		.ino_generation = event->mmap2.ino_generation,
1704	};
1705	struct build_id __bid, *bid = NULL;
1706	int ret = 0;
1707
1708	if (dump_trace)
1709		perf_event__fprintf_mmap2(event, stdout);
1710
1711	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1712		bid = &__bid;
1713		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1714	}
1715
1716	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1717	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1718		struct extra_kernel_map xm = {
1719			.start = event->mmap2.start,
1720			.end   = event->mmap2.start + event->mmap2.len,
1721			.pgoff = event->mmap2.pgoff,
1722		};
1723
1724		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1725		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1726		if (ret < 0)
1727			goto out_problem;
1728		return 0;
1729	}
1730
1731	thread = machine__findnew_thread(machine, event->mmap2.pid,
1732					event->mmap2.tid);
1733	if (thread == NULL)
1734		goto out_problem;
1735
1736	map = map__new(machine, event->mmap2.start,
1737			event->mmap2.len, event->mmap2.pgoff,
1738			&dso_id, event->mmap2.prot,
1739			event->mmap2.flags, bid,
1740			event->mmap2.filename, thread);
1741
1742	if (map == NULL)
1743		goto out_problem_map;
1744
1745	ret = thread__insert_map(thread, map);
1746	if (ret)
1747		goto out_problem_insert;
1748
1749	thread__put(thread);
1750	map__put(map);
1751	return 0;
1752
1753out_problem_insert:
1754	map__put(map);
1755out_problem_map:
1756	thread__put(thread);
1757out_problem:
1758	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1759	return 0;
1760}
1761
1762int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1763				struct perf_sample *sample)
1764{
1765	struct thread *thread;
1766	struct map *map;
1767	u32 prot = 0;
1768	int ret = 0;
1769
1770	if (dump_trace)
1771		perf_event__fprintf_mmap(event, stdout);
1772
1773	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1774	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1775		struct extra_kernel_map xm = {
1776			.start = event->mmap.start,
1777			.end   = event->mmap.start + event->mmap.len,
1778			.pgoff = event->mmap.pgoff,
1779		};
1780
1781		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1782		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1783		if (ret < 0)
1784			goto out_problem;
1785		return 0;
1786	}
1787
1788	thread = machine__findnew_thread(machine, event->mmap.pid,
1789					 event->mmap.tid);
1790	if (thread == NULL)
1791		goto out_problem;
1792
1793	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1794		prot = PROT_EXEC;
1795
1796	map = map__new(machine, event->mmap.start,
1797			event->mmap.len, event->mmap.pgoff,
1798			NULL, prot, 0, NULL, event->mmap.filename, thread);
1799
1800	if (map == NULL)
1801		goto out_problem_map;
1802
1803	ret = thread__insert_map(thread, map);
1804	if (ret)
1805		goto out_problem_insert;
1806
1807	thread__put(thread);
1808	map__put(map);
1809	return 0;
1810
1811out_problem_insert:
1812	map__put(map);
1813out_problem_map:
1814	thread__put(thread);
1815out_problem:
1816	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1817	return 0;
1818}
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820void machine__remove_thread(struct machine *machine, struct thread *th)
1821{
1822	return threads__remove(&machine->threads, th);
1823}
1824
1825int machine__process_fork_event(struct machine *machine, union perf_event *event,
1826				struct perf_sample *sample)
1827{
1828	struct thread *thread = machine__find_thread(machine,
1829						     event->fork.pid,
1830						     event->fork.tid);
1831	struct thread *parent = machine__findnew_thread(machine,
1832							event->fork.ppid,
1833							event->fork.ptid);
1834	bool do_maps_clone = true;
1835	int err = 0;
1836
1837	if (dump_trace)
1838		perf_event__fprintf_task(event, stdout);
1839
1840	/*
1841	 * There may be an existing thread that is not actually the parent,
1842	 * either because we are processing events out of order, or because the
1843	 * (fork) event that would have removed the thread was lost. Assume the
1844	 * latter case and continue on as best we can.
1845	 */
1846	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1847		dump_printf("removing erroneous parent thread %d/%d\n",
1848			    thread__pid(parent), thread__tid(parent));
1849		machine__remove_thread(machine, parent);
1850		thread__put(parent);
1851		parent = machine__findnew_thread(machine, event->fork.ppid,
1852						 event->fork.ptid);
1853	}
1854
1855	/* if a thread currently exists for the thread id remove it */
1856	if (thread != NULL) {
1857		machine__remove_thread(machine, thread);
1858		thread__put(thread);
1859	}
1860
1861	thread = machine__findnew_thread(machine, event->fork.pid,
1862					 event->fork.tid);
1863	/*
1864	 * When synthesizing FORK events, we are trying to create thread
1865	 * objects for the already running tasks on the machine.
1866	 *
1867	 * Normally, for a kernel FORK event, we want to clone the parent's
1868	 * maps because that is what the kernel just did.
1869	 *
1870	 * But when synthesizing, this should not be done.  If we do, we end up
1871	 * with overlapping maps as we process the synthesized MMAP2 events that
1872	 * get delivered shortly thereafter.
1873	 *
1874	 * Use the FORK event misc flags in an internal way to signal this
1875	 * situation, so we can elide the map clone when appropriate.
1876	 */
1877	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1878		do_maps_clone = false;
1879
1880	if (thread == NULL || parent == NULL ||
1881	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1882		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1883		err = -1;
1884	}
1885	thread__put(thread);
1886	thread__put(parent);
1887
1888	return err;
1889}
1890
1891int machine__process_exit_event(struct machine *machine, union perf_event *event,
1892				struct perf_sample *sample __maybe_unused)
1893{
1894	struct thread *thread = machine__find_thread(machine,
1895						     event->fork.pid,
1896						     event->fork.tid);
1897
1898	if (dump_trace)
1899		perf_event__fprintf_task(event, stdout);
1900
1901	if (thread != NULL) {
1902		if (symbol_conf.keep_exited_threads)
1903			thread__set_exited(thread, /*exited=*/true);
1904		else
1905			machine__remove_thread(machine, thread);
1906	}
1907	thread__put(thread);
1908	return 0;
1909}
1910
1911int machine__process_event(struct machine *machine, union perf_event *event,
1912			   struct perf_sample *sample)
1913{
1914	int ret;
1915
1916	switch (event->header.type) {
1917	case PERF_RECORD_COMM:
1918		ret = machine__process_comm_event(machine, event, sample); break;
1919	case PERF_RECORD_MMAP:
1920		ret = machine__process_mmap_event(machine, event, sample); break;
1921	case PERF_RECORD_NAMESPACES:
1922		ret = machine__process_namespaces_event(machine, event, sample); break;
1923	case PERF_RECORD_CGROUP:
1924		ret = machine__process_cgroup_event(machine, event, sample); break;
1925	case PERF_RECORD_MMAP2:
1926		ret = machine__process_mmap2_event(machine, event, sample); break;
1927	case PERF_RECORD_FORK:
1928		ret = machine__process_fork_event(machine, event, sample); break;
1929	case PERF_RECORD_EXIT:
1930		ret = machine__process_exit_event(machine, event, sample); break;
1931	case PERF_RECORD_LOST:
1932		ret = machine__process_lost_event(machine, event, sample); break;
1933	case PERF_RECORD_AUX:
1934		ret = machine__process_aux_event(machine, event); break;
1935	case PERF_RECORD_ITRACE_START:
1936		ret = machine__process_itrace_start_event(machine, event); break;
1937	case PERF_RECORD_LOST_SAMPLES:
1938		ret = machine__process_lost_samples_event(machine, event, sample); break;
1939	case PERF_RECORD_SWITCH:
1940	case PERF_RECORD_SWITCH_CPU_WIDE:
1941		ret = machine__process_switch_event(machine, event); break;
1942	case PERF_RECORD_KSYMBOL:
1943		ret = machine__process_ksymbol(machine, event, sample); break;
1944	case PERF_RECORD_BPF_EVENT:
1945		ret = machine__process_bpf(machine, event, sample); break;
1946	case PERF_RECORD_TEXT_POKE:
1947		ret = machine__process_text_poke(machine, event, sample); break;
1948	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1949		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1950	default:
1951		ret = -1;
1952		break;
1953	}
1954
1955	return ret;
1956}
1957
1958static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1959{
1960	return regexec(regex, sym->name, 0, NULL, 0) == 0;
 
 
1961}
1962
1963static void ip__resolve_ams(struct thread *thread,
1964			    struct addr_map_symbol *ams,
1965			    u64 ip)
1966{
1967	struct addr_location al;
1968
1969	addr_location__init(&al);
1970	/*
1971	 * We cannot use the header.misc hint to determine whether a
1972	 * branch stack address is user, kernel, guest, hypervisor.
1973	 * Branches may straddle the kernel/user/hypervisor boundaries.
1974	 * Thus, we have to try consecutively until we find a match
1975	 * or else, the symbol is unknown
1976	 */
1977	thread__find_cpumode_addr_location(thread, ip, &al);
1978
1979	ams->addr = ip;
1980	ams->al_addr = al.addr;
1981	ams->al_level = al.level;
1982	ams->ms.maps = maps__get(al.maps);
1983	ams->ms.sym = al.sym;
1984	ams->ms.map = map__get(al.map);
1985	ams->phys_addr = 0;
1986	ams->data_page_size = 0;
1987	addr_location__exit(&al);
1988}
1989
1990static void ip__resolve_data(struct thread *thread,
1991			     u8 m, struct addr_map_symbol *ams,
1992			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1993{
1994	struct addr_location al;
1995
1996	addr_location__init(&al);
1997
1998	thread__find_symbol(thread, m, addr, &al);
1999
2000	ams->addr = addr;
2001	ams->al_addr = al.addr;
2002	ams->al_level = al.level;
2003	ams->ms.maps = maps__get(al.maps);
2004	ams->ms.sym = al.sym;
2005	ams->ms.map = map__get(al.map);
2006	ams->phys_addr = phys_addr;
2007	ams->data_page_size = daddr_page_size;
2008	addr_location__exit(&al);
2009}
2010
2011struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2012				     struct addr_location *al)
2013{
2014	struct mem_info *mi = mem_info__new();
2015
2016	if (!mi)
2017		return NULL;
2018
2019	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2020	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2021			 sample->addr, sample->phys_addr,
2022			 sample->data_page_size);
2023	mem_info__data_src(mi)->val = sample->data_src;
2024
2025	return mi;
2026}
2027
2028static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2029{
2030	struct map *map = ms->map;
2031	char *srcline = NULL;
2032	struct dso *dso;
2033
2034	if (!map || callchain_param.key == CCKEY_FUNCTION)
2035		return srcline;
2036
2037	dso = map__dso(map);
2038	srcline = srcline__tree_find(dso__srclines(dso), ip);
2039	if (!srcline) {
2040		bool show_sym = false;
2041		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2042
2043		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2044				      ms->sym, show_sym, show_addr, ip);
2045		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2046	}
2047
2048	return srcline;
2049}
2050
2051struct iterations {
2052	int nr_loop_iter;
2053	u64 cycles;
2054};
2055
2056static int add_callchain_ip(struct thread *thread,
2057			    struct callchain_cursor *cursor,
2058			    struct symbol **parent,
2059			    struct addr_location *root_al,
2060			    u8 *cpumode,
2061			    u64 ip,
2062			    bool branch,
2063			    struct branch_flags *flags,
2064			    struct iterations *iter,
2065			    u64 branch_from,
2066			    bool symbols)
2067{
2068	struct map_symbol ms = {};
2069	struct addr_location al;
2070	int nr_loop_iter = 0, err = 0;
2071	u64 iter_cycles = 0;
2072	const char *srcline = NULL;
2073
2074	addr_location__init(&al);
2075	al.filtered = 0;
2076	al.sym = NULL;
2077	al.srcline = NULL;
2078	if (!cpumode) {
2079		thread__find_cpumode_addr_location(thread, ip, &al);
2080	} else {
2081		if (ip >= PERF_CONTEXT_MAX) {
2082			switch (ip) {
2083			case PERF_CONTEXT_HV:
2084				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2085				break;
2086			case PERF_CONTEXT_KERNEL:
2087				*cpumode = PERF_RECORD_MISC_KERNEL;
2088				break;
2089			case PERF_CONTEXT_USER:
2090				*cpumode = PERF_RECORD_MISC_USER;
2091				break;
2092			default:
2093				pr_debug("invalid callchain context: "
2094					 "%"PRId64"\n", (s64) ip);
2095				/*
2096				 * It seems the callchain is corrupted.
2097				 * Discard all.
2098				 */
2099				callchain_cursor_reset(cursor);
2100				err = 1;
2101				goto out;
2102			}
2103			goto out;
2104		}
2105		if (symbols)
2106			thread__find_symbol(thread, *cpumode, ip, &al);
2107	}
2108
2109	if (al.sym != NULL) {
2110		if (perf_hpp_list.parent && !*parent &&
2111		    symbol__match_regex(al.sym, &parent_regex))
2112			*parent = al.sym;
2113		else if (have_ignore_callees && root_al &&
2114		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2115			/* Treat this symbol as the root,
2116			   forgetting its callees. */
2117			addr_location__copy(root_al, &al);
2118			callchain_cursor_reset(cursor);
2119		}
2120	}
2121
2122	if (symbol_conf.hide_unresolved && al.sym == NULL)
2123		goto out;
2124
2125	if (iter) {
2126		nr_loop_iter = iter->nr_loop_iter;
2127		iter_cycles = iter->cycles;
2128	}
2129
2130	ms.maps = maps__get(al.maps);
2131	ms.map = map__get(al.map);
2132	ms.sym = al.sym;
2133	srcline = callchain_srcline(&ms, al.addr);
2134	err = callchain_cursor_append(cursor, ip, &ms,
2135				      branch, flags, nr_loop_iter,
2136				      iter_cycles, branch_from, srcline);
2137out:
2138	addr_location__exit(&al);
2139	map_symbol__exit(&ms);
2140	return err;
2141}
2142
2143struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2144					   struct addr_location *al)
2145{
2146	unsigned int i;
2147	const struct branch_stack *bs = sample->branch_stack;
2148	struct branch_entry *entries = perf_sample__branch_entries(sample);
2149	u64 *branch_stack_cntr = sample->branch_stack_cntr;
2150	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2151
2152	if (!bi)
2153		return NULL;
2154
2155	for (i = 0; i < bs->nr; i++) {
2156		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2157		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2158		bi[i].flags = entries[i].flags;
2159		if (branch_stack_cntr)
2160			bi[i].branch_stack_cntr  = branch_stack_cntr[i];
2161	}
2162	return bi;
2163}
2164
2165static void save_iterations(struct iterations *iter,
2166			    struct branch_entry *be, int nr)
2167{
2168	int i;
2169
2170	iter->nr_loop_iter++;
2171	iter->cycles = 0;
2172
2173	for (i = 0; i < nr; i++)
2174		iter->cycles += be[i].flags.cycles;
2175}
2176
2177#define CHASHSZ 127
2178#define CHASHBITS 7
2179#define NO_ENTRY 0xff
2180
2181#define PERF_MAX_BRANCH_DEPTH 127
2182
2183/* Remove loops. */
2184static int remove_loops(struct branch_entry *l, int nr,
2185			struct iterations *iter)
2186{
2187	int i, j, off;
2188	unsigned char chash[CHASHSZ];
2189
2190	memset(chash, NO_ENTRY, sizeof(chash));
2191
2192	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2193
2194	for (i = 0; i < nr; i++) {
2195		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2196
2197		/* no collision handling for now */
2198		if (chash[h] == NO_ENTRY) {
2199			chash[h] = i;
2200		} else if (l[chash[h]].from == l[i].from) {
2201			bool is_loop = true;
2202			/* check if it is a real loop */
2203			off = 0;
2204			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2205				if (l[j].from != l[i + off].from) {
2206					is_loop = false;
2207					break;
2208				}
2209			if (is_loop) {
2210				j = nr - (i + off);
2211				if (j > 0) {
2212					save_iterations(iter + i + off,
2213						l + i, off);
2214
2215					memmove(iter + i, iter + i + off,
2216						j * sizeof(*iter));
2217
2218					memmove(l + i, l + i + off,
2219						j * sizeof(*l));
2220				}
2221
2222				nr -= off;
2223			}
2224		}
2225	}
2226	return nr;
2227}
2228
2229static int lbr_callchain_add_kernel_ip(struct thread *thread,
2230				       struct callchain_cursor *cursor,
2231				       struct perf_sample *sample,
2232				       struct symbol **parent,
2233				       struct addr_location *root_al,
2234				       u64 branch_from,
2235				       bool callee, int end,
2236				       bool symbols)
2237{
2238	struct ip_callchain *chain = sample->callchain;
2239	u8 cpumode = PERF_RECORD_MISC_USER;
2240	int err, i;
2241
2242	if (callee) {
2243		for (i = 0; i < end + 1; i++) {
2244			err = add_callchain_ip(thread, cursor, parent,
2245					       root_al, &cpumode, chain->ips[i],
2246					       false, NULL, NULL, branch_from,
2247					       symbols);
2248			if (err)
2249				return err;
2250		}
2251		return 0;
2252	}
2253
2254	for (i = end; i >= 0; i--) {
2255		err = add_callchain_ip(thread, cursor, parent,
2256				       root_al, &cpumode, chain->ips[i],
2257				       false, NULL, NULL, branch_from,
2258				       symbols);
2259		if (err)
2260			return err;
2261	}
2262
2263	return 0;
2264}
2265
2266static void save_lbr_cursor_node(struct thread *thread,
2267				 struct callchain_cursor *cursor,
2268				 int idx)
2269{
2270	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2271
2272	if (!lbr_stitch)
2273		return;
2274
2275	if (cursor->pos == cursor->nr) {
2276		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2277		return;
2278	}
2279
2280	if (!cursor->curr)
2281		cursor->curr = cursor->first;
2282	else
2283		cursor->curr = cursor->curr->next;
2284
2285	map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2286	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2287	       sizeof(struct callchain_cursor_node));
2288	lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2289	lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2290
2291	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292	cursor->pos++;
2293}
2294
2295static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296				    struct callchain_cursor *cursor,
2297				    struct perf_sample *sample,
2298				    struct symbol **parent,
2299				    struct addr_location *root_al,
2300				    u64 *branch_from,
2301				    bool callee,
2302				    bool symbols)
2303{
2304	struct branch_stack *lbr_stack = sample->branch_stack;
2305	struct branch_entry *entries = perf_sample__branch_entries(sample);
2306	u8 cpumode = PERF_RECORD_MISC_USER;
2307	int lbr_nr = lbr_stack->nr;
2308	struct branch_flags *flags;
2309	int err, i;
2310	u64 ip;
2311
2312	/*
2313	 * The curr and pos are not used in writing session. They are cleared
2314	 * in callchain_cursor_commit() when the writing session is closed.
2315	 * Using curr and pos to track the current cursor node.
2316	 */
2317	if (thread__lbr_stitch(thread)) {
2318		cursor->curr = NULL;
2319		cursor->pos = cursor->nr;
2320		if (cursor->nr) {
2321			cursor->curr = cursor->first;
2322			for (i = 0; i < (int)(cursor->nr - 1); i++)
2323				cursor->curr = cursor->curr->next;
2324		}
2325	}
2326
2327	if (callee) {
2328		/* Add LBR ip from first entries.to */
2329		ip = entries[0].to;
2330		flags = &entries[0].flags;
2331		*branch_from = entries[0].from;
2332		err = add_callchain_ip(thread, cursor, parent,
2333				       root_al, &cpumode, ip,
2334				       true, flags, NULL,
2335				       *branch_from, symbols);
2336		if (err)
2337			return err;
2338
2339		/*
2340		 * The number of cursor node increases.
2341		 * Move the current cursor node.
2342		 * But does not need to save current cursor node for entry 0.
2343		 * It's impossible to stitch the whole LBRs of previous sample.
2344		 */
2345		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2346			if (!cursor->curr)
2347				cursor->curr = cursor->first;
2348			else
2349				cursor->curr = cursor->curr->next;
2350			cursor->pos++;
2351		}
2352
2353		/* Add LBR ip from entries.from one by one. */
2354		for (i = 0; i < lbr_nr; i++) {
2355			ip = entries[i].from;
2356			flags = &entries[i].flags;
2357			err = add_callchain_ip(thread, cursor, parent,
2358					       root_al, &cpumode, ip,
2359					       true, flags, NULL,
2360					       *branch_from, symbols);
2361			if (err)
2362				return err;
2363			save_lbr_cursor_node(thread, cursor, i);
2364		}
2365		return 0;
2366	}
2367
2368	/* Add LBR ip from entries.from one by one. */
2369	for (i = lbr_nr - 1; i >= 0; i--) {
2370		ip = entries[i].from;
2371		flags = &entries[i].flags;
2372		err = add_callchain_ip(thread, cursor, parent,
2373				       root_al, &cpumode, ip,
2374				       true, flags, NULL,
2375				       *branch_from, symbols);
2376		if (err)
2377			return err;
2378		save_lbr_cursor_node(thread, cursor, i);
2379	}
2380
2381	if (lbr_nr > 0) {
2382		/* Add LBR ip from first entries.to */
2383		ip = entries[0].to;
2384		flags = &entries[0].flags;
2385		*branch_from = entries[0].from;
2386		err = add_callchain_ip(thread, cursor, parent,
2387				root_al, &cpumode, ip,
2388				true, flags, NULL,
2389				*branch_from, symbols);
2390		if (err)
2391			return err;
2392	}
2393
2394	return 0;
2395}
2396
2397static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2398					     struct callchain_cursor *cursor)
2399{
2400	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2401	struct callchain_cursor_node *cnode;
2402	struct stitch_list *stitch_node;
2403	int err;
2404
2405	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2406		cnode = &stitch_node->cursor;
2407
2408		err = callchain_cursor_append(cursor, cnode->ip,
2409					      &cnode->ms,
2410					      cnode->branch,
2411					      &cnode->branch_flags,
2412					      cnode->nr_loop_iter,
2413					      cnode->iter_cycles,
2414					      cnode->branch_from,
2415					      cnode->srcline);
2416		if (err)
2417			return err;
2418	}
2419	return 0;
2420}
2421
2422static struct stitch_list *get_stitch_node(struct thread *thread)
2423{
2424	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2425	struct stitch_list *stitch_node;
2426
2427	if (!list_empty(&lbr_stitch->free_lists)) {
2428		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2429					       struct stitch_list, node);
2430		list_del(&stitch_node->node);
2431
2432		return stitch_node;
2433	}
2434
2435	return malloc(sizeof(struct stitch_list));
2436}
2437
2438static bool has_stitched_lbr(struct thread *thread,
2439			     struct perf_sample *cur,
2440			     struct perf_sample *prev,
2441			     unsigned int max_lbr,
2442			     bool callee)
2443{
2444	struct branch_stack *cur_stack = cur->branch_stack;
2445	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2446	struct branch_stack *prev_stack = prev->branch_stack;
2447	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2448	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2449	int i, j, nr_identical_branches = 0;
2450	struct stitch_list *stitch_node;
2451	u64 cur_base, distance;
2452
2453	if (!cur_stack || !prev_stack)
2454		return false;
2455
2456	/* Find the physical index of the base-of-stack for current sample. */
2457	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2458
2459	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2460						     (max_lbr + prev_stack->hw_idx - cur_base);
2461	/* Previous sample has shorter stack. Nothing can be stitched. */
2462	if (distance + 1 > prev_stack->nr)
2463		return false;
2464
2465	/*
2466	 * Check if there are identical LBRs between two samples.
2467	 * Identical LBRs must have same from, to and flags values. Also,
2468	 * they have to be saved in the same LBR registers (same physical
2469	 * index).
2470	 *
2471	 * Starts from the base-of-stack of current sample.
2472	 */
2473	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2474		if ((prev_entries[i].from != cur_entries[j].from) ||
2475		    (prev_entries[i].to != cur_entries[j].to) ||
2476		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2477			break;
2478		nr_identical_branches++;
2479	}
2480
2481	if (!nr_identical_branches)
2482		return false;
2483
2484	/*
2485	 * Save the LBRs between the base-of-stack of previous sample
2486	 * and the base-of-stack of current sample into lbr_stitch->lists.
2487	 * These LBRs will be stitched later.
2488	 */
2489	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2490
2491		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2492			continue;
2493
2494		stitch_node = get_stitch_node(thread);
2495		if (!stitch_node)
2496			return false;
2497
2498		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2499		       sizeof(struct callchain_cursor_node));
2500
2501		stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2502		stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2503
2504		if (callee)
2505			list_add(&stitch_node->node, &lbr_stitch->lists);
2506		else
2507			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2508	}
2509
2510	return true;
2511}
2512
2513static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2514{
2515	if (thread__lbr_stitch(thread))
2516		return true;
2517
2518	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2519	if (!thread__lbr_stitch(thread))
2520		goto err;
2521
2522	thread__lbr_stitch(thread)->prev_lbr_cursor =
2523		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2524	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2525		goto free_lbr_stitch;
2526
2527	thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2528
2529	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2530	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2531
2532	return true;
2533
2534free_lbr_stitch:
2535	free(thread__lbr_stitch(thread));
2536	thread__set_lbr_stitch(thread, NULL);
2537err:
2538	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2539	thread__set_lbr_stitch_enable(thread, false);
2540	return false;
2541}
2542
2543/*
2544 * Resolve LBR callstack chain sample
2545 * Return:
2546 * 1 on success get LBR callchain information
2547 * 0 no available LBR callchain information, should try fp
2548 * negative error code on other errors.
2549 */
2550static int resolve_lbr_callchain_sample(struct thread *thread,
2551					struct callchain_cursor *cursor,
2552					struct perf_sample *sample,
2553					struct symbol **parent,
2554					struct addr_location *root_al,
2555					int max_stack,
2556					unsigned int max_lbr,
2557					bool symbols)
2558{
2559	bool callee = (callchain_param.order == ORDER_CALLEE);
2560	struct ip_callchain *chain = sample->callchain;
2561	int chain_nr = min(max_stack, (int)chain->nr), i;
2562	struct lbr_stitch *lbr_stitch;
2563	bool stitched_lbr = false;
2564	u64 branch_from = 0;
2565	int err;
2566
2567	for (i = 0; i < chain_nr; i++) {
2568		if (chain->ips[i] == PERF_CONTEXT_USER)
2569			break;
2570	}
2571
2572	/* LBR only affects the user callchain */
2573	if (i == chain_nr)
2574		return 0;
2575
2576	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2577	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2578		lbr_stitch = thread__lbr_stitch(thread);
2579
2580		stitched_lbr = has_stitched_lbr(thread, sample,
2581						&lbr_stitch->prev_sample,
2582						max_lbr, callee);
2583
2584		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2585			struct stitch_list *stitch_node;
2586
2587			list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2588				map_symbol__exit(&stitch_node->cursor.ms);
2589
2590			list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2591		}
2592		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2593	}
2594
2595	if (callee) {
2596		/* Add kernel ip */
2597		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2598						  parent, root_al, branch_from,
2599						  true, i, symbols);
2600		if (err)
2601			goto error;
2602
2603		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2604					       root_al, &branch_from, true, symbols);
2605		if (err)
2606			goto error;
2607
2608		if (stitched_lbr) {
2609			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2610			if (err)
2611				goto error;
2612		}
2613
2614	} else {
2615		if (stitched_lbr) {
2616			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2617			if (err)
2618				goto error;
2619		}
2620		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2621					       root_al, &branch_from, false, symbols);
2622		if (err)
2623			goto error;
2624
2625		/* Add kernel ip */
2626		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2627						  parent, root_al, branch_from,
2628						  false, i, symbols);
2629		if (err)
2630			goto error;
2631	}
2632	return 1;
2633
2634error:
2635	return (err < 0) ? err : 0;
2636}
2637
2638static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2639			     struct callchain_cursor *cursor,
2640			     struct symbol **parent,
2641			     struct addr_location *root_al,
2642			     u8 *cpumode, int ent, bool symbols)
2643{
2644	int err = 0;
2645
2646	while (--ent >= 0) {
2647		u64 ip = chain->ips[ent];
2648
2649		if (ip >= PERF_CONTEXT_MAX) {
2650			err = add_callchain_ip(thread, cursor, parent,
2651					       root_al, cpumode, ip,
2652					       false, NULL, NULL, 0, symbols);
2653			break;
2654		}
2655	}
2656	return err;
2657}
2658
2659static u64 get_leaf_frame_caller(struct perf_sample *sample,
2660		struct thread *thread, int usr_idx)
2661{
2662	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2663		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2664	else
2665		return 0;
2666}
2667
2668static int thread__resolve_callchain_sample(struct thread *thread,
2669					    struct callchain_cursor *cursor,
2670					    struct evsel *evsel,
2671					    struct perf_sample *sample,
2672					    struct symbol **parent,
2673					    struct addr_location *root_al,
2674					    int max_stack,
2675					    bool symbols)
2676{
2677	struct branch_stack *branch = sample->branch_stack;
2678	struct branch_entry *entries = perf_sample__branch_entries(sample);
2679	struct ip_callchain *chain = sample->callchain;
2680	int chain_nr = 0;
2681	u8 cpumode = PERF_RECORD_MISC_USER;
2682	int i, j, err, nr_entries, usr_idx;
2683	int skip_idx = -1;
2684	int first_call = 0;
2685	u64 leaf_frame_caller;
2686
2687	if (chain)
2688		chain_nr = chain->nr;
2689
2690	if (evsel__has_branch_callstack(evsel)) {
2691		struct perf_env *env = evsel__env(evsel);
2692
2693		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2694						   root_al, max_stack,
2695						   !env ? 0 : env->max_branches,
2696						   symbols);
2697		if (err)
2698			return (err < 0) ? err : 0;
2699	}
2700
2701	/*
2702	 * Based on DWARF debug information, some architectures skip
2703	 * a callchain entry saved by the kernel.
2704	 */
2705	skip_idx = arch_skip_callchain_idx(thread, chain);
2706
2707	/*
2708	 * Add branches to call stack for easier browsing. This gives
2709	 * more context for a sample than just the callers.
2710	 *
2711	 * This uses individual histograms of paths compared to the
2712	 * aggregated histograms the normal LBR mode uses.
2713	 *
2714	 * Limitations for now:
2715	 * - No extra filters
2716	 * - No annotations (should annotate somehow)
2717	 */
2718
2719	if (branch && callchain_param.branch_callstack) {
2720		int nr = min(max_stack, (int)branch->nr);
2721		struct branch_entry be[nr];
2722		struct iterations iter[nr];
2723
2724		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2725			pr_warning("corrupted branch chain. skipping...\n");
2726			goto check_calls;
2727		}
2728
2729		for (i = 0; i < nr; i++) {
2730			if (callchain_param.order == ORDER_CALLEE) {
2731				be[i] = entries[i];
2732
2733				if (chain == NULL)
2734					continue;
2735
2736				/*
2737				 * Check for overlap into the callchain.
2738				 * The return address is one off compared to
2739				 * the branch entry. To adjust for this
2740				 * assume the calling instruction is not longer
2741				 * than 8 bytes.
2742				 */
2743				if (i == skip_idx ||
2744				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2745					first_call++;
2746				else if (be[i].from < chain->ips[first_call] &&
2747				    be[i].from >= chain->ips[first_call] - 8)
2748					first_call++;
2749			} else
2750				be[i] = entries[branch->nr - i - 1];
2751		}
2752
2753		memset(iter, 0, sizeof(struct iterations) * nr);
2754		nr = remove_loops(be, nr, iter);
2755
2756		for (i = 0; i < nr; i++) {
2757			err = add_callchain_ip(thread, cursor, parent,
2758					       root_al,
2759					       NULL, be[i].to,
2760					       true, &be[i].flags,
2761					       NULL, be[i].from, symbols);
2762
2763			if (!err) {
2764				err = add_callchain_ip(thread, cursor, parent, root_al,
2765						       NULL, be[i].from,
2766						       true, &be[i].flags,
2767						       &iter[i], 0, symbols);
2768			}
2769			if (err == -EINVAL)
2770				break;
2771			if (err)
2772				return err;
2773		}
2774
2775		if (chain_nr == 0)
2776			return 0;
2777
2778		chain_nr -= nr;
2779	}
2780
2781check_calls:
2782	if (chain && callchain_param.order != ORDER_CALLEE) {
2783		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2784					&cpumode, chain->nr - first_call, symbols);
2785		if (err)
2786			return (err < 0) ? err : 0;
2787	}
2788	for (i = first_call, nr_entries = 0;
2789	     i < chain_nr && nr_entries < max_stack; i++) {
2790		u64 ip;
2791
2792		if (callchain_param.order == ORDER_CALLEE)
2793			j = i;
2794		else
2795			j = chain->nr - i - 1;
2796
2797#ifdef HAVE_SKIP_CALLCHAIN_IDX
2798		if (j == skip_idx)
2799			continue;
2800#endif
2801		ip = chain->ips[j];
2802		if (ip < PERF_CONTEXT_MAX)
2803                       ++nr_entries;
2804		else if (callchain_param.order != ORDER_CALLEE) {
2805			err = find_prev_cpumode(chain, thread, cursor, parent,
2806						root_al, &cpumode, j, symbols);
2807			if (err)
2808				return (err < 0) ? err : 0;
2809			continue;
2810		}
2811
2812		/*
2813		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2814		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2815		 * the index will be different in order to add the missing frame
2816		 * at the right place.
2817		 */
2818
2819		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2820
2821		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2822
2823			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2824
2825			/*
2826			 * check if leaf_frame_Caller != ip to not add the same
2827			 * value twice.
2828			 */
2829
2830			if (leaf_frame_caller && leaf_frame_caller != ip) {
2831
2832				err = add_callchain_ip(thread, cursor, parent,
2833						root_al, &cpumode, leaf_frame_caller,
2834						false, NULL, NULL, 0, symbols);
2835				if (err)
2836					return (err < 0) ? err : 0;
2837			}
2838		}
2839
2840		err = add_callchain_ip(thread, cursor, parent,
2841				       root_al, &cpumode, ip,
2842				       false, NULL, NULL, 0, symbols);
2843
2844		if (err)
2845			return (err < 0) ? err : 0;
2846	}
2847
2848	return 0;
2849}
2850
2851static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2852{
2853	struct symbol *sym = ms->sym;
2854	struct map *map = ms->map;
2855	struct inline_node *inline_node;
2856	struct inline_list *ilist;
2857	struct dso *dso;
2858	u64 addr;
2859	int ret = 1;
2860	struct map_symbol ilist_ms;
2861
2862	if (!symbol_conf.inline_name || !map || !sym)
2863		return ret;
2864
2865	addr = map__dso_map_ip(map, ip);
2866	addr = map__rip_2objdump(map, addr);
2867	dso = map__dso(map);
2868
2869	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2870	if (!inline_node) {
2871		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2872		if (!inline_node)
2873			return ret;
2874		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2875	}
2876
2877	ilist_ms = (struct map_symbol) {
2878		.maps = maps__get(ms->maps),
2879		.map = map__get(map),
2880	};
2881	list_for_each_entry(ilist, &inline_node->val, list) {
2882		ilist_ms.sym = ilist->symbol;
 
 
 
 
2883		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2884					      NULL, 0, 0, 0, ilist->srcline);
2885
2886		if (ret != 0)
2887			return ret;
2888	}
2889	map_symbol__exit(&ilist_ms);
2890
2891	return ret;
2892}
2893
2894static int unwind_entry(struct unwind_entry *entry, void *arg)
2895{
2896	struct callchain_cursor *cursor = arg;
2897	const char *srcline = NULL;
2898	u64 addr = entry->ip;
2899
2900	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2901		return 0;
2902
2903	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2904		return 0;
2905
2906	/*
2907	 * Convert entry->ip from a virtual address to an offset in
2908	 * its corresponding binary.
2909	 */
2910	if (entry->ms.map)
2911		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2912
2913	srcline = callchain_srcline(&entry->ms, addr);
2914	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2915				       false, NULL, 0, 0, 0, srcline);
2916}
2917
2918static int thread__resolve_callchain_unwind(struct thread *thread,
2919					    struct callchain_cursor *cursor,
2920					    struct evsel *evsel,
2921					    struct perf_sample *sample,
2922					    int max_stack, bool symbols)
2923{
2924	/* Can we do dwarf post unwind? */
2925	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2926	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2927		return 0;
2928
2929	/* Bail out if nothing was captured. */
2930	if ((!sample->user_regs.regs) ||
2931	    (!sample->user_stack.size))
2932		return 0;
2933
2934	if (!symbols)
2935		pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2936
2937	return unwind__get_entries(unwind_entry, cursor,
2938				   thread, sample, max_stack, false);
2939}
2940
2941int __thread__resolve_callchain(struct thread *thread,
2942				struct callchain_cursor *cursor,
2943				struct evsel *evsel,
2944				struct perf_sample *sample,
2945				struct symbol **parent,
2946				struct addr_location *root_al,
2947				int max_stack,
2948				bool symbols)
2949{
2950	int ret = 0;
2951
2952	if (cursor == NULL)
2953		return -ENOMEM;
2954
2955	callchain_cursor_reset(cursor);
2956
2957	if (callchain_param.order == ORDER_CALLEE) {
2958		ret = thread__resolve_callchain_sample(thread, cursor,
2959						       evsel, sample,
2960						       parent, root_al,
2961						       max_stack, symbols);
2962		if (ret)
2963			return ret;
2964		ret = thread__resolve_callchain_unwind(thread, cursor,
2965						       evsel, sample,
2966						       max_stack, symbols);
2967	} else {
2968		ret = thread__resolve_callchain_unwind(thread, cursor,
2969						       evsel, sample,
2970						       max_stack, symbols);
2971		if (ret)
2972			return ret;
2973		ret = thread__resolve_callchain_sample(thread, cursor,
2974						       evsel, sample,
2975						       parent, root_al,
2976						       max_stack, symbols);
2977	}
2978
2979	return ret;
2980}
2981
2982int machine__for_each_thread(struct machine *machine,
2983			     int (*fn)(struct thread *thread, void *p),
2984			     void *priv)
2985{
2986	return threads__for_each_thread(&machine->threads, fn, priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2987}
2988
2989int machines__for_each_thread(struct machines *machines,
2990			      int (*fn)(struct thread *thread, void *p),
2991			      void *priv)
2992{
2993	struct rb_node *nd;
2994	int rc = 0;
2995
2996	rc = machine__for_each_thread(&machines->host, fn, priv);
2997	if (rc != 0)
2998		return rc;
2999
3000	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3001		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3002
3003		rc = machine__for_each_thread(machine, fn, priv);
3004		if (rc != 0)
3005			return rc;
3006	}
3007	return rc;
3008}
3009
3010
3011static int thread_list_cb(struct thread *thread, void *data)
3012{
3013	struct list_head *list = data;
3014	struct thread_list *entry = malloc(sizeof(*entry));
3015
3016	if (!entry)
3017		return -ENOMEM;
3018
3019	entry->thread = thread__get(thread);
3020	list_add_tail(&entry->list, list);
3021	return 0;
3022}
3023
3024int machine__thread_list(struct machine *machine, struct list_head *list)
3025{
3026	return machine__for_each_thread(machine, thread_list_cb, list);
3027}
3028
3029void thread_list__delete(struct list_head *list)
3030{
3031	struct thread_list *pos, *next;
3032
3033	list_for_each_entry_safe(pos, next, list, list) {
3034		thread__zput(pos->thread);
3035		list_del(&pos->list);
3036		free(pos);
3037	}
3038}
3039
3040pid_t machine__get_current_tid(struct machine *machine, int cpu)
3041{
3042	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3043		return -1;
3044
3045	return machine->current_tid[cpu];
3046}
3047
3048int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3049			     pid_t tid)
3050{
3051	struct thread *thread;
3052	const pid_t init_val = -1;
3053
3054	if (cpu < 0)
3055		return -EINVAL;
3056
3057	if (realloc_array_as_needed(machine->current_tid,
3058				    machine->current_tid_sz,
3059				    (unsigned int)cpu,
3060				    &init_val))
3061		return -ENOMEM;
3062
3063	machine->current_tid[cpu] = tid;
3064
3065	thread = machine__findnew_thread(machine, pid, tid);
3066	if (!thread)
3067		return -ENOMEM;
3068
3069	thread__set_cpu(thread, cpu);
3070	thread__put(thread);
3071
3072	return 0;
3073}
3074
3075/*
3076 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3077 * machine__normalized_is() if a normalized arch is needed.
3078 */
3079bool machine__is(struct machine *machine, const char *arch)
3080{
3081	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3082}
3083
3084bool machine__normalized_is(struct machine *machine, const char *arch)
3085{
3086	return machine && !strcmp(perf_env__arch(machine->env), arch);
3087}
3088
3089int machine__nr_cpus_avail(struct machine *machine)
3090{
3091	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3092}
3093
3094int machine__get_kernel_start(struct machine *machine)
3095{
3096	struct map *map = machine__kernel_map(machine);
3097	int err = 0;
3098
3099	/*
3100	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3101	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3102	 * all addresses including kernel addresses are less than 2^32.  In
3103	 * that case (32-bit system), if the kernel mapping is unknown, all
3104	 * addresses will be assumed to be in user space - see
3105	 * machine__kernel_ip().
3106	 */
3107	machine->kernel_start = 1ULL << 63;
3108	if (map) {
3109		err = map__load(map);
3110		/*
3111		 * On x86_64, PTI entry trampolines are less than the
3112		 * start of kernel text, but still above 2^63. So leave
3113		 * kernel_start = 1ULL << 63 for x86_64.
3114		 */
3115		if (!err && !machine__is(machine, "x86_64"))
3116			machine->kernel_start = map__start(map);
3117	}
3118	return err;
3119}
3120
3121u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3122{
3123	u8 addr_cpumode = cpumode;
3124	bool kernel_ip;
3125
3126	if (!machine->single_address_space)
3127		goto out;
3128
3129	kernel_ip = machine__kernel_ip(machine, addr);
3130	switch (cpumode) {
3131	case PERF_RECORD_MISC_KERNEL:
3132	case PERF_RECORD_MISC_USER:
3133		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3134					   PERF_RECORD_MISC_USER;
3135		break;
3136	case PERF_RECORD_MISC_GUEST_KERNEL:
3137	case PERF_RECORD_MISC_GUEST_USER:
3138		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3139					   PERF_RECORD_MISC_GUEST_USER;
3140		break;
3141	default:
3142		break;
3143	}
3144out:
3145	return addr_cpumode;
3146}
3147
3148struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3149				    const struct dso_id *id)
3150{
3151	return dsos__findnew_id(&machine->dsos, filename, id);
3152}
3153
3154struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3155{
3156	return machine__findnew_dso_id(machine, filename, NULL);
3157}
3158
3159char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3160{
3161	struct machine *machine = vmachine;
3162	struct map *map;
3163	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3164
3165	if (sym == NULL)
3166		return NULL;
3167
3168	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3169	*addrp = map__unmap_ip(map, sym->start);
3170	return sym->name;
3171}
3172
3173struct machine__for_each_dso_cb_args {
3174	struct machine *machine;
3175	machine__dso_t fn;
3176	void *priv;
3177};
3178
3179static int machine__for_each_dso_cb(struct dso *dso, void *data)
3180{
3181	struct machine__for_each_dso_cb_args *args = data;
3182
3183	return args->fn(dso, args->machine, args->priv);
3184}
3185
3186int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3187{
3188	struct machine__for_each_dso_cb_args args = {
3189		.machine = machine,
3190		.fn = fn,
3191		.priv = priv,
3192	};
3193
3194	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
 
 
 
 
3195}
3196
3197int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3198{
3199	struct maps *maps = machine__kernel_maps(machine);
 
 
3200
3201	return maps__for_each_map(maps, fn, priv);
 
 
 
 
 
 
3202}
3203
3204bool machine__is_lock_function(struct machine *machine, u64 addr)
3205{
3206	if (!machine->sched.text_start) {
3207		struct map *kmap;
3208		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3209
3210		if (!sym) {
3211			/* to avoid retry */
3212			machine->sched.text_start = 1;
3213			return false;
3214		}
3215
3216		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3217
3218		/* should not fail from here */
3219		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3220		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3221
3222		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3223		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3224
3225		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3226		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3227
3228		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3229		if (sym) {
3230			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3231			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3232		}
3233		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3234		if (sym) {
3235			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3236			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3237		}
3238	}
3239
3240	/* failed to get kernel symbols */
3241	if (machine->sched.text_start == 1)
3242		return false;
3243
3244	/* mutex and rwsem functions are in sched text section */
3245	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3246		return true;
3247
3248	/* spinlock functions are in lock text section */
3249	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3250		return true;
3251
3252	/* traceiter functions currently don't have their own section
3253	 * but we consider them lock functions
3254	 */
3255	if (machine->traceiter.text_start != 0) {
3256		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3257			return true;
3258	}
3259
3260	if (machine->trace.text_start != 0) {
3261		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3262			return true;
3263	}
3264
3265	return false;
3266}
3267
3268int machine__hit_all_dsos(struct machine *machine)
3269{
3270	return dsos__hit_all(&machine->dsos);
3271}