Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include <subcmd/pager.h>
  30#include <subcmd/parse-options.h>
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
  36#include "util/data.h"
  37#include "util/debug.h"
  38#include "util/string2.h"
  39#include "util/tracepoint.h"
 
  40#include <linux/err.h>
  41#include <traceevent/event-parse.h>
  42
  43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  44FILE *open_memstream(char **ptr, size_t *sizeloc);
  45#endif
  46
  47#define SUPPORT_OLD_POWER_EVENTS 1
  48#define PWR_EVENT_EXIT -1
  49
  50struct per_pid;
  51struct power_event;
  52struct wake_event;
  53
  54struct timechart {
  55	struct perf_tool	tool;
  56	struct per_pid		*all_data;
  57	struct power_event	*power_events;
  58	struct wake_event	*wake_events;
  59	int			proc_num;
  60	unsigned int		numcpus;
  61	u64			min_freq,	/* Lowest CPU frequency seen */
  62				max_freq,	/* Highest CPU frequency seen */
  63				turbo_frequency,
  64				first_time, last_time;
  65	bool			power_only,
  66				tasks_only,
  67				with_backtrace,
  68				topology;
  69	bool			force;
  70	/* IO related settings */
  71	bool			io_only,
  72				skip_eagain;
  73	u64			io_events;
  74	u64			min_time,
  75				merge_dist;
  76};
  77
  78struct per_pidcomm;
  79struct cpu_sample;
  80struct io_sample;
  81
  82/*
  83 * Datastructure layout:
  84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  85 * Each "pid" entry, has a list of "comm"s.
  86 *	this is because we want to track different programs different, while
  87 *	exec will reuse the original pid (by design).
  88 * Each comm has a list of samples that will be used to draw
  89 * final graph.
  90 */
  91
  92struct per_pid {
  93	struct per_pid *next;
  94
  95	int		pid;
  96	int		ppid;
  97
  98	u64		start_time;
  99	u64		end_time;
 100	u64		total_time;
 101	u64		total_bytes;
 102	int		display;
 103
 104	struct per_pidcomm *all;
 105	struct per_pidcomm *current;
 106};
 107
 108
 109struct per_pidcomm {
 110	struct per_pidcomm *next;
 111
 112	u64		start_time;
 113	u64		end_time;
 114	u64		total_time;
 115	u64		max_bytes;
 116	u64		total_bytes;
 117
 118	int		Y;
 119	int		display;
 120
 121	long		state;
 122	u64		state_since;
 123
 124	char		*comm;
 125
 126	struct cpu_sample *samples;
 127	struct io_sample  *io_samples;
 128};
 129
 130struct sample_wrapper {
 131	struct sample_wrapper *next;
 132
 133	u64		timestamp;
 134	unsigned char	data[];
 135};
 136
 137#define TYPE_NONE	0
 138#define TYPE_RUNNING	1
 139#define TYPE_WAITING	2
 140#define TYPE_BLOCKED	3
 141
 142struct cpu_sample {
 143	struct cpu_sample *next;
 144
 145	u64 start_time;
 146	u64 end_time;
 147	int type;
 148	int cpu;
 149	const char *backtrace;
 150};
 151
 152enum {
 153	IOTYPE_READ,
 154	IOTYPE_WRITE,
 155	IOTYPE_SYNC,
 156	IOTYPE_TX,
 157	IOTYPE_RX,
 158	IOTYPE_POLL,
 159};
 160
 161struct io_sample {
 162	struct io_sample *next;
 163
 164	u64 start_time;
 165	u64 end_time;
 166	u64 bytes;
 167	int type;
 168	int fd;
 169	int err;
 170	int merges;
 171};
 172
 173#define CSTATE 1
 174#define PSTATE 2
 175
 176struct power_event {
 177	struct power_event *next;
 178	int type;
 179	int state;
 180	u64 start_time;
 181	u64 end_time;
 182	int cpu;
 183};
 184
 185struct wake_event {
 186	struct wake_event *next;
 187	int waker;
 188	int wakee;
 189	u64 time;
 190	const char *backtrace;
 191};
 192
 193struct process_filter {
 194	char			*name;
 195	int			pid;
 196	struct process_filter	*next;
 197};
 198
 199static struct process_filter *process_filter;
 200
 201
 202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 203{
 204	struct per_pid *cursor = tchart->all_data;
 205
 206	while (cursor) {
 207		if (cursor->pid == pid)
 208			return cursor;
 209		cursor = cursor->next;
 210	}
 211	cursor = zalloc(sizeof(*cursor));
 212	assert(cursor != NULL);
 213	cursor->pid = pid;
 214	cursor->next = tchart->all_data;
 215	tchart->all_data = cursor;
 216	return cursor;
 217}
 218
 219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
 220{
 221	struct per_pidcomm *c;
 222
 223	c = zalloc(sizeof(*c));
 224	if (!c)
 225		return NULL;
 226	p->current = c;
 227	c->next = p->all;
 228	p->all = c;
 229	return c;
 230}
 231
 232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 233{
 234	struct per_pid *p;
 235	struct per_pidcomm *c;
 236	p = find_create_pid(tchart, pid);
 237	c = p->all;
 238	while (c) {
 239		if (c->comm && strcmp(c->comm, comm) == 0) {
 240			p->current = c;
 241			return;
 242		}
 243		if (!c->comm) {
 244			c->comm = strdup(comm);
 245			p->current = c;
 246			return;
 247		}
 248		c = c->next;
 249	}
 250	c = create_pidcomm(p);
 251	assert(c != NULL);
 252	c->comm = strdup(comm);
 253}
 254
 255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 256{
 257	struct per_pid *p, *pp;
 258	p = find_create_pid(tchart, pid);
 259	pp = find_create_pid(tchart, ppid);
 260	p->ppid = ppid;
 261	if (pp->current && pp->current->comm && !p->current)
 262		pid_set_comm(tchart, pid, pp->current->comm);
 263
 264	p->start_time = timestamp;
 265	if (p->current && !p->current->start_time) {
 266		p->current->start_time = timestamp;
 267		p->current->state_since = timestamp;
 268	}
 269}
 270
 271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 272{
 273	struct per_pid *p;
 274	p = find_create_pid(tchart, pid);
 275	p->end_time = timestamp;
 276	if (p->current)
 277		p->current->end_time = timestamp;
 278}
 279
 280static void pid_put_sample(struct timechart *tchart, int pid, int type,
 281			   unsigned int cpu, u64 start, u64 end,
 282			   const char *backtrace)
 283{
 284	struct per_pid *p;
 285	struct per_pidcomm *c;
 286	struct cpu_sample *sample;
 287
 288	p = find_create_pid(tchart, pid);
 289	c = p->current;
 290	if (!c) {
 291		c = create_pidcomm(p);
 292		assert(c != NULL);
 293	}
 294
 295	sample = zalloc(sizeof(*sample));
 296	assert(sample != NULL);
 297	sample->start_time = start;
 298	sample->end_time = end;
 299	sample->type = type;
 300	sample->next = c->samples;
 301	sample->cpu = cpu;
 302	sample->backtrace = backtrace;
 303	c->samples = sample;
 304
 305	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 306		c->total_time += (end-start);
 307		p->total_time += (end-start);
 308	}
 309
 310	if (c->start_time == 0 || c->start_time > start)
 311		c->start_time = start;
 312	if (p->start_time == 0 || p->start_time > start)
 313		p->start_time = start;
 314}
 315
 316#define MAX_CPUS 4096
 317
 318static u64 cpus_cstate_start_times[MAX_CPUS];
 319static int cpus_cstate_state[MAX_CPUS];
 320static u64 cpus_pstate_start_times[MAX_CPUS];
 321static u64 cpus_pstate_state[MAX_CPUS];
 322
 323static int process_comm_event(struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 330	return 0;
 331}
 332
 333static int process_fork_event(struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 340	return 0;
 341}
 342
 343static int process_exit_event(struct perf_tool *tool,
 344			      union perf_event *event,
 345			      struct perf_sample *sample __maybe_unused,
 346			      struct machine *machine __maybe_unused)
 347{
 348	struct timechart *tchart = container_of(tool, struct timechart, tool);
 349	pid_exit(tchart, event->fork.pid, event->fork.time);
 350	return 0;
 351}
 352
 353#ifdef SUPPORT_OLD_POWER_EVENTS
 354static int use_old_power_events;
 355#endif
 356
 357static void c_state_start(int cpu, u64 timestamp, int state)
 358{
 359	cpus_cstate_start_times[cpu] = timestamp;
 360	cpus_cstate_state[cpu] = state;
 361}
 362
 363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 364{
 365	struct power_event *pwr = zalloc(sizeof(*pwr));
 366
 367	if (!pwr)
 368		return;
 369
 370	pwr->state = cpus_cstate_state[cpu];
 371	pwr->start_time = cpus_cstate_start_times[cpu];
 372	pwr->end_time = timestamp;
 373	pwr->cpu = cpu;
 374	pwr->type = CSTATE;
 375	pwr->next = tchart->power_events;
 376
 377	tchart->power_events = pwr;
 378}
 379
 380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
 381					u64 timestamp)
 382{
 383	struct power_event *pwr = zalloc(sizeof(*pwr));
 384
 385	if (!pwr)
 386		return NULL;
 387
 388	pwr->state = cpus_pstate_state[cpu];
 389	pwr->start_time = cpus_pstate_start_times[cpu];
 390	pwr->end_time = timestamp;
 391	pwr->cpu = cpu;
 392	pwr->type = PSTATE;
 393	pwr->next = tchart->power_events;
 394	if (!pwr->start_time)
 395		pwr->start_time = tchart->first_time;
 396
 397	tchart->power_events = pwr;
 398	return pwr;
 399}
 400
 401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 402{
 403	struct power_event *pwr;
 404
 405	if (new_freq > 8000000) /* detect invalid data */
 406		return;
 407
 408	pwr = p_state_end(tchart, cpu, timestamp);
 409	if (!pwr)
 410		return;
 411
 412	cpus_pstate_state[cpu] = new_freq;
 413	cpus_pstate_start_times[cpu] = timestamp;
 414
 415	if ((u64)new_freq > tchart->max_freq)
 416		tchart->max_freq = new_freq;
 417
 418	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 419		tchart->min_freq = new_freq;
 420
 421	if (new_freq == tchart->max_freq - 1000)
 422		tchart->turbo_frequency = tchart->max_freq;
 423}
 424
 425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 426			 int waker, int wakee, u8 flags, const char *backtrace)
 427{
 428	struct per_pid *p;
 429	struct wake_event *we = zalloc(sizeof(*we));
 430
 431	if (!we)
 432		return;
 433
 434	we->time = timestamp;
 435	we->waker = waker;
 436	we->backtrace = backtrace;
 437
 438	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 439		we->waker = -1;
 440
 441	we->wakee = wakee;
 442	we->next = tchart->wake_events;
 443	tchart->wake_events = we;
 444	p = find_create_pid(tchart, we->wakee);
 445
 446	if (p && p->current && p->current->state == TYPE_NONE) {
 447		p->current->state_since = timestamp;
 448		p->current->state = TYPE_WAITING;
 449	}
 450	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 451		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 452			       p->current->state_since, timestamp, NULL);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 459			 int prev_pid, int next_pid, u64 prev_state,
 460			 const char *backtrace)
 461{
 462	struct per_pid *p = NULL, *prev_p;
 463
 464	prev_p = find_create_pid(tchart, prev_pid);
 465
 466	p = find_create_pid(tchart, next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 470			       prev_p->current->state_since, timestamp,
 471			       backtrace);
 472	if (p && p->current) {
 473		if (p->current->state != TYPE_NONE)
 474			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 475				       p->current->state_since, timestamp,
 476				       backtrace);
 477
 478		p->current->state_since = timestamp;
 479		p->current->state = TYPE_RUNNING;
 480	}
 481
 482	if (prev_p->current) {
 483		prev_p->current->state = TYPE_NONE;
 484		prev_p->current->state_since = timestamp;
 485		if (prev_state & 2)
 486			prev_p->current->state = TYPE_BLOCKED;
 487		if (prev_state == 0)
 488			prev_p->current->state = TYPE_WAITING;
 489	}
 490}
 491
 492static const char *cat_backtrace(union perf_event *event,
 493				 struct perf_sample *sample,
 494				 struct machine *machine)
 495{
 496	struct addr_location al;
 497	unsigned int i;
 498	char *p = NULL;
 499	size_t p_len;
 500	u8 cpumode = PERF_RECORD_MISC_USER;
 501	struct addr_location tal;
 502	struct ip_callchain *chain = sample->callchain;
 503	FILE *f = open_memstream(&p, &p_len);
 504
 505	if (!f) {
 506		perror("open_memstream error");
 507		return NULL;
 508	}
 509
 
 510	if (!chain)
 511		goto exit;
 512
 513	if (machine__resolve(machine, &al, sample) < 0) {
 514		fprintf(stderr, "problem processing %d event, skipping it.\n",
 515			event->header.type);
 516		goto exit;
 517	}
 518
 519	for (i = 0; i < chain->nr; i++) {
 520		u64 ip;
 
 521
 522		if (callchain_param.order == ORDER_CALLEE)
 523			ip = chain->ips[i];
 524		else
 525			ip = chain->ips[chain->nr - i - 1];
 526
 527		if (ip >= PERF_CONTEXT_MAX) {
 528			switch (ip) {
 529			case PERF_CONTEXT_HV:
 530				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 531				break;
 532			case PERF_CONTEXT_KERNEL:
 533				cpumode = PERF_RECORD_MISC_KERNEL;
 534				break;
 535			case PERF_CONTEXT_USER:
 536				cpumode = PERF_RECORD_MISC_USER;
 537				break;
 538			default:
 539				pr_debug("invalid callchain context: "
 540					 "%"PRId64"\n", (s64) ip);
 541
 542				/*
 543				 * It seems the callchain is corrupted.
 544				 * Discard all.
 545				 */
 546				zfree(&p);
 547				goto exit_put;
 548			}
 549			continue;
 550		}
 551
 
 552		tal.filtered = 0;
 553		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 554			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 555		else
 556			fprintf(f, "..... %016" PRIx64 "\n", ip);
 
 
 557	}
 558exit_put:
 559	addr_location__put(&al);
 560exit:
 
 561	fclose(f);
 562
 563	return p;
 564}
 565
 566typedef int (*tracepoint_handler)(struct timechart *tchart,
 567				  struct evsel *evsel,
 568				  struct perf_sample *sample,
 569				  const char *backtrace);
 570
 571static int process_sample_event(struct perf_tool *tool,
 572				union perf_event *event,
 573				struct perf_sample *sample,
 574				struct evsel *evsel,
 575				struct machine *machine)
 576{
 577	struct timechart *tchart = container_of(tool, struct timechart, tool);
 578
 579	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 580		if (!tchart->first_time || tchart->first_time > sample->time)
 581			tchart->first_time = sample->time;
 582		if (tchart->last_time < sample->time)
 583			tchart->last_time = sample->time;
 584	}
 585
 586	if (evsel->handler != NULL) {
 587		tracepoint_handler f = evsel->handler;
 588		return f(tchart, evsel, sample,
 589			 cat_backtrace(event, sample, machine));
 590	}
 591
 592	return 0;
 593}
 594
 595static int
 596process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 597			struct evsel *evsel,
 598			struct perf_sample *sample,
 599			const char *backtrace __maybe_unused)
 600{
 601	u32 state  = evsel__intval(evsel, sample, "state");
 602	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 603
 604	if (state == (u32)PWR_EVENT_EXIT)
 605		c_state_end(tchart, cpu_id, sample->time);
 606	else
 607		c_state_start(cpu_id, sample->time, state);
 608	return 0;
 609}
 610
 611static int
 612process_sample_cpu_frequency(struct timechart *tchart,
 613			     struct evsel *evsel,
 614			     struct perf_sample *sample,
 615			     const char *backtrace __maybe_unused)
 616{
 617	u32 state  = evsel__intval(evsel, sample, "state");
 618	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 619
 620	p_state_change(tchart, cpu_id, sample->time, state);
 621	return 0;
 622}
 623
 624static int
 625process_sample_sched_wakeup(struct timechart *tchart,
 626			    struct evsel *evsel,
 627			    struct perf_sample *sample,
 628			    const char *backtrace)
 629{
 630	u8 flags  = evsel__intval(evsel, sample, "common_flags");
 631	int waker = evsel__intval(evsel, sample, "common_pid");
 632	int wakee = evsel__intval(evsel, sample, "pid");
 633
 634	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 635	return 0;
 636}
 637
 638static int
 639process_sample_sched_switch(struct timechart *tchart,
 640			    struct evsel *evsel,
 641			    struct perf_sample *sample,
 642			    const char *backtrace)
 643{
 644	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 645	int next_pid   = evsel__intval(evsel, sample, "next_pid");
 646	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 647
 648	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 649		     prev_state, backtrace);
 650	return 0;
 651}
 652
 653#ifdef SUPPORT_OLD_POWER_EVENTS
 654static int
 655process_sample_power_start(struct timechart *tchart __maybe_unused,
 656			   struct evsel *evsel,
 657			   struct perf_sample *sample,
 658			   const char *backtrace __maybe_unused)
 659{
 660	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 661	u64 value  = evsel__intval(evsel, sample, "value");
 662
 663	c_state_start(cpu_id, sample->time, value);
 664	return 0;
 665}
 666
 667static int
 668process_sample_power_end(struct timechart *tchart,
 669			 struct evsel *evsel __maybe_unused,
 670			 struct perf_sample *sample,
 671			 const char *backtrace __maybe_unused)
 672{
 673	c_state_end(tchart, sample->cpu, sample->time);
 674	return 0;
 675}
 676
 677static int
 678process_sample_power_frequency(struct timechart *tchart,
 679			       struct evsel *evsel,
 680			       struct perf_sample *sample,
 681			       const char *backtrace __maybe_unused)
 682{
 683	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 684	u64 value  = evsel__intval(evsel, sample, "value");
 685
 686	p_state_change(tchart, cpu_id, sample->time, value);
 687	return 0;
 688}
 689#endif /* SUPPORT_OLD_POWER_EVENTS */
 690
 691/*
 692 * After the last sample we need to wrap up the current C/P state
 693 * and close out each CPU for these.
 694 */
 695static void end_sample_processing(struct timechart *tchart)
 696{
 697	u64 cpu;
 698	struct power_event *pwr;
 699
 700	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 701		/* C state */
 702#if 0
 703		pwr = zalloc(sizeof(*pwr));
 704		if (!pwr)
 705			return;
 706
 707		pwr->state = cpus_cstate_state[cpu];
 708		pwr->start_time = cpus_cstate_start_times[cpu];
 709		pwr->end_time = tchart->last_time;
 710		pwr->cpu = cpu;
 711		pwr->type = CSTATE;
 712		pwr->next = tchart->power_events;
 713
 714		tchart->power_events = pwr;
 715#endif
 716		/* P state */
 717
 718		pwr = p_state_end(tchart, cpu, tchart->last_time);
 719		if (!pwr)
 720			return;
 721
 722		if (!pwr->state)
 723			pwr->state = tchart->min_freq;
 724	}
 725}
 726
 727static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 728			       u64 start, int fd)
 729{
 730	struct per_pid *p = find_create_pid(tchart, pid);
 731	struct per_pidcomm *c = p->current;
 732	struct io_sample *sample;
 733	struct io_sample *prev;
 734
 735	if (!c) {
 736		c = create_pidcomm(p);
 737		if (!c)
 738			return -ENOMEM;
 739	}
 740
 741	prev = c->io_samples;
 742
 743	if (prev && prev->start_time && !prev->end_time) {
 744		pr_warning("Skip invalid start event: "
 745			   "previous event already started!\n");
 746
 747		/* remove previous event that has been started,
 748		 * we are not sure we will ever get an end for it */
 749		c->io_samples = prev->next;
 750		free(prev);
 751		return 0;
 752	}
 753
 754	sample = zalloc(sizeof(*sample));
 755	if (!sample)
 756		return -ENOMEM;
 757	sample->start_time = start;
 758	sample->type = type;
 759	sample->fd = fd;
 760	sample->next = c->io_samples;
 761	c->io_samples = sample;
 762
 763	if (c->start_time == 0 || c->start_time > start)
 764		c->start_time = start;
 765
 766	return 0;
 767}
 768
 769static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 770			     u64 end, long ret)
 771{
 772	struct per_pid *p = find_create_pid(tchart, pid);
 773	struct per_pidcomm *c = p->current;
 774	struct io_sample *sample, *prev;
 775
 776	if (!c) {
 777		pr_warning("Invalid pidcomm!\n");
 778		return -1;
 779	}
 780
 781	sample = c->io_samples;
 782
 783	if (!sample) /* skip partially captured events */
 784		return 0;
 785
 786	if (sample->end_time) {
 787		pr_warning("Skip invalid end event: "
 788			   "previous event already ended!\n");
 789		return 0;
 790	}
 791
 792	if (sample->type != type) {
 793		pr_warning("Skip invalid end event: invalid event type!\n");
 794		return 0;
 795	}
 796
 797	sample->end_time = end;
 798	prev = sample->next;
 799
 800	/* we want to be able to see small and fast transfers, so make them
 801	 * at least min_time long, but don't overlap them */
 802	if (sample->end_time - sample->start_time < tchart->min_time)
 803		sample->end_time = sample->start_time + tchart->min_time;
 804	if (prev && sample->start_time < prev->end_time) {
 805		if (prev->err) /* try to make errors more visible */
 806			sample->start_time = prev->end_time;
 807		else
 808			prev->end_time = sample->start_time;
 809	}
 810
 811	if (ret < 0) {
 812		sample->err = ret;
 813	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 814		   type == IOTYPE_TX || type == IOTYPE_RX) {
 815
 816		if ((u64)ret > c->max_bytes)
 817			c->max_bytes = ret;
 818
 819		c->total_bytes += ret;
 820		p->total_bytes += ret;
 821		sample->bytes = ret;
 822	}
 823
 824	/* merge two requests to make svg smaller and render-friendly */
 825	if (prev &&
 826	    prev->type == sample->type &&
 827	    prev->err == sample->err &&
 828	    prev->fd == sample->fd &&
 829	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 830
 831		sample->bytes += prev->bytes;
 832		sample->merges += prev->merges + 1;
 833
 834		sample->start_time = prev->start_time;
 835		sample->next = prev->next;
 836		free(prev);
 837
 838		if (!sample->err && sample->bytes > c->max_bytes)
 839			c->max_bytes = sample->bytes;
 840	}
 841
 842	tchart->io_events++;
 843
 844	return 0;
 845}
 846
 847static int
 848process_enter_read(struct timechart *tchart,
 849		   struct evsel *evsel,
 850		   struct perf_sample *sample)
 851{
 852	long fd = evsel__intval(evsel, sample, "fd");
 853	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 854				   sample->time, fd);
 855}
 856
 857static int
 858process_exit_read(struct timechart *tchart,
 859		  struct evsel *evsel,
 860		  struct perf_sample *sample)
 861{
 862	long ret = evsel__intval(evsel, sample, "ret");
 863	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 864				 sample->time, ret);
 865}
 866
 867static int
 868process_enter_write(struct timechart *tchart,
 869		    struct evsel *evsel,
 870		    struct perf_sample *sample)
 871{
 872	long fd = evsel__intval(evsel, sample, "fd");
 873	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 874				   sample->time, fd);
 875}
 876
 877static int
 878process_exit_write(struct timechart *tchart,
 879		   struct evsel *evsel,
 880		   struct perf_sample *sample)
 881{
 882	long ret = evsel__intval(evsel, sample, "ret");
 883	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 884				 sample->time, ret);
 885}
 886
 887static int
 888process_enter_sync(struct timechart *tchart,
 889		   struct evsel *evsel,
 890		   struct perf_sample *sample)
 891{
 892	long fd = evsel__intval(evsel, sample, "fd");
 893	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 894				   sample->time, fd);
 895}
 896
 897static int
 898process_exit_sync(struct timechart *tchart,
 899		  struct evsel *evsel,
 900		  struct perf_sample *sample)
 901{
 902	long ret = evsel__intval(evsel, sample, "ret");
 903	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 904				 sample->time, ret);
 905}
 906
 907static int
 908process_enter_tx(struct timechart *tchart,
 909		 struct evsel *evsel,
 910		 struct perf_sample *sample)
 911{
 912	long fd = evsel__intval(evsel, sample, "fd");
 913	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 914				   sample->time, fd);
 915}
 916
 917static int
 918process_exit_tx(struct timechart *tchart,
 919		struct evsel *evsel,
 920		struct perf_sample *sample)
 921{
 922	long ret = evsel__intval(evsel, sample, "ret");
 923	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 924				 sample->time, ret);
 925}
 926
 927static int
 928process_enter_rx(struct timechart *tchart,
 929		 struct evsel *evsel,
 930		 struct perf_sample *sample)
 931{
 932	long fd = evsel__intval(evsel, sample, "fd");
 933	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 934				   sample->time, fd);
 935}
 936
 937static int
 938process_exit_rx(struct timechart *tchart,
 939		struct evsel *evsel,
 940		struct perf_sample *sample)
 941{
 942	long ret = evsel__intval(evsel, sample, "ret");
 943	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 944				 sample->time, ret);
 945}
 946
 947static int
 948process_enter_poll(struct timechart *tchart,
 949		   struct evsel *evsel,
 950		   struct perf_sample *sample)
 951{
 952	long fd = evsel__intval(evsel, sample, "fd");
 953	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 954				   sample->time, fd);
 955}
 956
 957static int
 958process_exit_poll(struct timechart *tchart,
 959		  struct evsel *evsel,
 960		  struct perf_sample *sample)
 961{
 962	long ret = evsel__intval(evsel, sample, "ret");
 963	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 964				 sample->time, ret);
 965}
 966
 967/*
 968 * Sort the pid datastructure
 969 */
 970static void sort_pids(struct timechart *tchart)
 971{
 972	struct per_pid *new_list, *p, *cursor, *prev;
 973	/* sort by ppid first, then by pid, lowest to highest */
 974
 975	new_list = NULL;
 976
 977	while (tchart->all_data) {
 978		p = tchart->all_data;
 979		tchart->all_data = p->next;
 980		p->next = NULL;
 981
 982		if (new_list == NULL) {
 983			new_list = p;
 984			p->next = NULL;
 985			continue;
 986		}
 987		prev = NULL;
 988		cursor = new_list;
 989		while (cursor) {
 990			if (cursor->ppid > p->ppid ||
 991				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 992				/* must insert before */
 993				if (prev) {
 994					p->next = prev->next;
 995					prev->next = p;
 996					cursor = NULL;
 997					continue;
 998				} else {
 999					p->next = new_list;
1000					new_list = p;
1001					cursor = NULL;
1002					continue;
1003				}
1004			}
1005
1006			prev = cursor;
1007			cursor = cursor->next;
1008			if (!cursor)
1009				prev->next = p;
1010		}
1011	}
1012	tchart->all_data = new_list;
1013}
1014
1015
1016static void draw_c_p_states(struct timechart *tchart)
1017{
1018	struct power_event *pwr;
1019	pwr = tchart->power_events;
1020
1021	/*
1022	 * two pass drawing so that the P state bars are on top of the C state blocks
1023	 */
1024	while (pwr) {
1025		if (pwr->type == CSTATE)
1026			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027		pwr = pwr->next;
1028	}
1029
1030	pwr = tchart->power_events;
1031	while (pwr) {
1032		if (pwr->type == PSTATE) {
1033			if (!pwr->state)
1034				pwr->state = tchart->min_freq;
1035			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036		}
1037		pwr = pwr->next;
1038	}
1039}
1040
1041static void draw_wakeups(struct timechart *tchart)
1042{
1043	struct wake_event *we;
1044	struct per_pid *p;
1045	struct per_pidcomm *c;
1046
1047	we = tchart->wake_events;
1048	while (we) {
1049		int from = 0, to = 0;
1050		char *task_from = NULL, *task_to = NULL;
1051
1052		/* locate the column of the waker and wakee */
1053		p = tchart->all_data;
1054		while (p) {
1055			if (p->pid == we->waker || p->pid == we->wakee) {
1056				c = p->all;
1057				while (c) {
1058					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059						if (p->pid == we->waker && !from) {
1060							from = c->Y;
1061							task_from = strdup(c->comm);
1062						}
1063						if (p->pid == we->wakee && !to) {
1064							to = c->Y;
1065							task_to = strdup(c->comm);
1066						}
1067					}
1068					c = c->next;
1069				}
1070				c = p->all;
1071				while (c) {
1072					if (p->pid == we->waker && !from) {
1073						from = c->Y;
1074						task_from = strdup(c->comm);
1075					}
1076					if (p->pid == we->wakee && !to) {
1077						to = c->Y;
1078						task_to = strdup(c->comm);
1079					}
1080					c = c->next;
1081				}
1082			}
1083			p = p->next;
1084		}
1085
1086		if (!task_from) {
1087			task_from = malloc(40);
1088			sprintf(task_from, "[%i]", we->waker);
1089		}
1090		if (!task_to) {
1091			task_to = malloc(40);
1092			sprintf(task_to, "[%i]", we->wakee);
1093		}
1094
1095		if (we->waker == -1)
1096			svg_interrupt(we->time, to, we->backtrace);
1097		else if (from && to && abs(from - to) == 1)
1098			svg_wakeline(we->time, from, to, we->backtrace);
1099		else
1100			svg_partial_wakeline(we->time, from, task_from, to,
1101					     task_to, we->backtrace);
1102		we = we->next;
1103
1104		free(task_from);
1105		free(task_to);
1106	}
1107}
1108
1109static void draw_cpu_usage(struct timechart *tchart)
1110{
1111	struct per_pid *p;
1112	struct per_pidcomm *c;
1113	struct cpu_sample *sample;
1114	p = tchart->all_data;
1115	while (p) {
1116		c = p->all;
1117		while (c) {
1118			sample = c->samples;
1119			while (sample) {
1120				if (sample->type == TYPE_RUNNING) {
1121					svg_process(sample->cpu,
1122						    sample->start_time,
1123						    sample->end_time,
1124						    p->pid,
1125						    c->comm,
1126						    sample->backtrace);
1127				}
1128
1129				sample = sample->next;
1130			}
1131			c = c->next;
1132		}
1133		p = p->next;
1134	}
1135}
1136
1137static void draw_io_bars(struct timechart *tchart)
1138{
1139	const char *suf;
1140	double bytes;
1141	char comm[256];
1142	struct per_pid *p;
1143	struct per_pidcomm *c;
1144	struct io_sample *sample;
1145	int Y = 1;
1146
1147	p = tchart->all_data;
1148	while (p) {
1149		c = p->all;
1150		while (c) {
1151			if (!c->display) {
1152				c->Y = 0;
1153				c = c->next;
1154				continue;
1155			}
1156
1157			svg_box(Y, c->start_time, c->end_time, "process3");
1158			sample = c->io_samples;
1159			for (sample = c->io_samples; sample; sample = sample->next) {
1160				double h = (double)sample->bytes / c->max_bytes;
1161
1162				if (tchart->skip_eagain &&
1163				    sample->err == -EAGAIN)
1164					continue;
1165
1166				if (sample->err)
1167					h = 1;
1168
1169				if (sample->type == IOTYPE_SYNC)
1170					svg_fbox(Y,
1171						sample->start_time,
1172						sample->end_time,
1173						1,
1174						sample->err ? "error" : "sync",
1175						sample->fd,
1176						sample->err,
1177						sample->merges);
1178				else if (sample->type == IOTYPE_POLL)
1179					svg_fbox(Y,
1180						sample->start_time,
1181						sample->end_time,
1182						1,
1183						sample->err ? "error" : "poll",
1184						sample->fd,
1185						sample->err,
1186						sample->merges);
1187				else if (sample->type == IOTYPE_READ)
1188					svg_ubox(Y,
1189						sample->start_time,
1190						sample->end_time,
1191						h,
1192						sample->err ? "error" : "disk",
1193						sample->fd,
1194						sample->err,
1195						sample->merges);
1196				else if (sample->type == IOTYPE_WRITE)
1197					svg_lbox(Y,
1198						sample->start_time,
1199						sample->end_time,
1200						h,
1201						sample->err ? "error" : "disk",
1202						sample->fd,
1203						sample->err,
1204						sample->merges);
1205				else if (sample->type == IOTYPE_RX)
1206					svg_ubox(Y,
1207						sample->start_time,
1208						sample->end_time,
1209						h,
1210						sample->err ? "error" : "net",
1211						sample->fd,
1212						sample->err,
1213						sample->merges);
1214				else if (sample->type == IOTYPE_TX)
1215					svg_lbox(Y,
1216						sample->start_time,
1217						sample->end_time,
1218						h,
1219						sample->err ? "error" : "net",
1220						sample->fd,
1221						sample->err,
1222						sample->merges);
1223			}
1224
1225			suf = "";
1226			bytes = c->total_bytes;
1227			if (bytes > 1024) {
1228				bytes = bytes / 1024;
1229				suf = "K";
1230			}
1231			if (bytes > 1024) {
1232				bytes = bytes / 1024;
1233				suf = "M";
1234			}
1235			if (bytes > 1024) {
1236				bytes = bytes / 1024;
1237				suf = "G";
1238			}
1239
1240
1241			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242			svg_text(Y, c->start_time, comm);
1243
1244			c->Y = Y;
1245			Y++;
1246			c = c->next;
1247		}
1248		p = p->next;
1249	}
1250}
1251
1252static void draw_process_bars(struct timechart *tchart)
1253{
1254	struct per_pid *p;
1255	struct per_pidcomm *c;
1256	struct cpu_sample *sample;
1257	int Y = 0;
1258
1259	Y = 2 * tchart->numcpus + 2;
1260
1261	p = tchart->all_data;
1262	while (p) {
1263		c = p->all;
1264		while (c) {
1265			if (!c->display) {
1266				c->Y = 0;
1267				c = c->next;
1268				continue;
1269			}
1270
1271			svg_box(Y, c->start_time, c->end_time, "process");
1272			sample = c->samples;
1273			while (sample) {
1274				if (sample->type == TYPE_RUNNING)
1275					svg_running(Y, sample->cpu,
1276						    sample->start_time,
1277						    sample->end_time,
1278						    sample->backtrace);
1279				if (sample->type == TYPE_BLOCKED)
1280					svg_blocked(Y, sample->cpu,
1281						    sample->start_time,
1282						    sample->end_time,
1283						    sample->backtrace);
1284				if (sample->type == TYPE_WAITING)
1285					svg_waiting(Y, sample->cpu,
1286						    sample->start_time,
1287						    sample->end_time,
1288						    sample->backtrace);
1289				sample = sample->next;
1290			}
1291
1292			if (c->comm) {
1293				char comm[256];
1294				if (c->total_time > 5000000000) /* 5 seconds */
1295					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296				else
1297					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299				svg_text(Y, c->start_time, comm);
1300			}
1301			c->Y = Y;
1302			Y++;
1303			c = c->next;
1304		}
1305		p = p->next;
1306	}
1307}
1308
1309static void add_process_filter(const char *string)
1310{
1311	int pid = strtoull(string, NULL, 10);
1312	struct process_filter *filt = malloc(sizeof(*filt));
1313
1314	if (!filt)
1315		return;
1316
1317	filt->name = strdup(string);
1318	filt->pid  = pid;
1319	filt->next = process_filter;
1320
1321	process_filter = filt;
1322}
1323
1324static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325{
1326	struct process_filter *filt;
1327	if (!process_filter)
1328		return 1;
1329
1330	filt = process_filter;
1331	while (filt) {
1332		if (filt->pid && p->pid == filt->pid)
1333			return 1;
1334		if (strcmp(filt->name, c->comm) == 0)
1335			return 1;
1336		filt = filt->next;
1337	}
1338	return 0;
1339}
1340
1341static int determine_display_tasks_filtered(struct timechart *tchart)
1342{
1343	struct per_pid *p;
1344	struct per_pidcomm *c;
1345	int count = 0;
1346
1347	p = tchart->all_data;
1348	while (p) {
1349		p->display = 0;
1350		if (p->start_time == 1)
1351			p->start_time = tchart->first_time;
1352
1353		/* no exit marker, task kept running to the end */
1354		if (p->end_time == 0)
1355			p->end_time = tchart->last_time;
1356
1357		c = p->all;
1358
1359		while (c) {
1360			c->display = 0;
1361
1362			if (c->start_time == 1)
1363				c->start_time = tchart->first_time;
1364
1365			if (passes_filter(p, c)) {
1366				c->display = 1;
1367				p->display = 1;
1368				count++;
1369			}
1370
1371			if (c->end_time == 0)
1372				c->end_time = tchart->last_time;
1373
1374			c = c->next;
1375		}
1376		p = p->next;
1377	}
1378	return count;
1379}
1380
1381static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382{
1383	struct per_pid *p;
1384	struct per_pidcomm *c;
1385	int count = 0;
1386
1387	p = tchart->all_data;
1388	while (p) {
1389		p->display = 0;
1390		if (p->start_time == 1)
1391			p->start_time = tchart->first_time;
1392
1393		/* no exit marker, task kept running to the end */
1394		if (p->end_time == 0)
1395			p->end_time = tchart->last_time;
1396		if (p->total_time >= threshold)
1397			p->display = 1;
1398
1399		c = p->all;
1400
1401		while (c) {
1402			c->display = 0;
1403
1404			if (c->start_time == 1)
1405				c->start_time = tchart->first_time;
1406
1407			if (c->total_time >= threshold) {
1408				c->display = 1;
1409				count++;
1410			}
1411
1412			if (c->end_time == 0)
1413				c->end_time = tchart->last_time;
1414
1415			c = c->next;
1416		}
1417		p = p->next;
1418	}
1419	return count;
1420}
1421
1422static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423{
1424	struct per_pid *p;
1425	struct per_pidcomm *c;
1426	int count = 0;
1427
1428	p = timechart->all_data;
1429	while (p) {
1430		/* no exit marker, task kept running to the end */
1431		if (p->end_time == 0)
1432			p->end_time = timechart->last_time;
1433
1434		c = p->all;
1435
1436		while (c) {
1437			c->display = 0;
1438
1439			if (c->total_bytes >= threshold) {
1440				c->display = 1;
1441				count++;
1442			}
1443
1444			if (c->end_time == 0)
1445				c->end_time = timechart->last_time;
1446
1447			c = c->next;
1448		}
1449		p = p->next;
1450	}
1451	return count;
1452}
1453
1454#define BYTES_THRESH (1 * 1024 * 1024)
1455#define TIME_THRESH 10000000
1456
1457static void write_svg_file(struct timechart *tchart, const char *filename)
1458{
1459	u64 i;
1460	int count;
1461	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463	if (tchart->power_only)
1464		tchart->proc_num = 0;
1465
1466	/* We'd like to show at least proc_num tasks;
1467	 * be less picky if we have fewer */
1468	do {
1469		if (process_filter)
1470			count = determine_display_tasks_filtered(tchart);
1471		else if (tchart->io_events)
1472			count = determine_display_io_tasks(tchart, thresh);
1473		else
1474			count = determine_display_tasks(tchart, thresh);
1475		thresh /= 10;
1476	} while (!process_filter && thresh && count < tchart->proc_num);
1477
1478	if (!tchart->proc_num)
1479		count = 0;
1480
1481	if (tchart->io_events) {
1482		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484		svg_time_grid(0.5);
1485		svg_io_legenda();
1486
1487		draw_io_bars(tchart);
1488	} else {
1489		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491		svg_time_grid(0);
1492
1493		svg_legenda();
1494
1495		for (i = 0; i < tchart->numcpus; i++)
1496			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498		draw_cpu_usage(tchart);
1499		if (tchart->proc_num)
1500			draw_process_bars(tchart);
1501		if (!tchart->tasks_only)
1502			draw_c_p_states(tchart);
1503		if (tchart->proc_num)
1504			draw_wakeups(tchart);
1505	}
1506
1507	svg_close();
1508}
1509
1510static int process_header(struct perf_file_section *section __maybe_unused,
1511			  struct perf_header *ph,
1512			  int feat,
1513			  int fd __maybe_unused,
1514			  void *data)
1515{
1516	struct timechart *tchart = data;
1517
1518	switch (feat) {
1519	case HEADER_NRCPUS:
1520		tchart->numcpus = ph->env.nr_cpus_avail;
1521		break;
1522
1523	case HEADER_CPU_TOPOLOGY:
1524		if (!tchart->topology)
1525			break;
1526
1527		if (svg_build_topology_map(&ph->env))
1528			fprintf(stderr, "problem building topology\n");
1529		break;
1530
1531	default:
1532		break;
1533	}
1534
1535	return 0;
1536}
1537
1538static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539{
1540	const struct evsel_str_handler power_tracepoints[] = {
1541		{ "power:cpu_idle",		process_sample_cpu_idle },
1542		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1543		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1544		{ "sched:sched_switch",		process_sample_sched_switch },
1545#ifdef SUPPORT_OLD_POWER_EVENTS
1546		{ "power:power_start",		process_sample_power_start },
1547		{ "power:power_end",		process_sample_power_end },
1548		{ "power:power_frequency",	process_sample_power_frequency },
1549#endif
1550
1551		{ "syscalls:sys_enter_read",		process_enter_read },
1552		{ "syscalls:sys_enter_pread64",		process_enter_read },
1553		{ "syscalls:sys_enter_readv",		process_enter_read },
1554		{ "syscalls:sys_enter_preadv",		process_enter_read },
1555		{ "syscalls:sys_enter_write",		process_enter_write },
1556		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1557		{ "syscalls:sys_enter_writev",		process_enter_write },
1558		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1559		{ "syscalls:sys_enter_sync",		process_enter_sync },
1560		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1561		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1562		{ "syscalls:sys_enter_msync",		process_enter_sync },
1563		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1564		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1565		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1566		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1567		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1568		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1569		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1570		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1571		{ "syscalls:sys_enter_poll",		process_enter_poll },
1572		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1573		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1574		{ "syscalls:sys_enter_select",		process_enter_poll },
1575
1576		{ "syscalls:sys_exit_read",		process_exit_read },
1577		{ "syscalls:sys_exit_pread64",		process_exit_read },
1578		{ "syscalls:sys_exit_readv",		process_exit_read },
1579		{ "syscalls:sys_exit_preadv",		process_exit_read },
1580		{ "syscalls:sys_exit_write",		process_exit_write },
1581		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1582		{ "syscalls:sys_exit_writev",		process_exit_write },
1583		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1584		{ "syscalls:sys_exit_sync",		process_exit_sync },
1585		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1586		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1587		{ "syscalls:sys_exit_msync",		process_exit_sync },
1588		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1589		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1590		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1591		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1592		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1593		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1594		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1595		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1596		{ "syscalls:sys_exit_poll",		process_exit_poll },
1597		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1598		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1599		{ "syscalls:sys_exit_select",		process_exit_poll },
1600	};
1601	struct perf_data data = {
1602		.path  = input_name,
1603		.mode  = PERF_DATA_MODE_READ,
1604		.force = tchart->force,
1605	};
1606
1607	struct perf_session *session = perf_session__new(&data, &tchart->tool);
1608	int ret = -EINVAL;
1609
 
 
 
 
 
 
 
1610	if (IS_ERR(session))
1611		return PTR_ERR(session);
1612
1613	symbol__init(&session->header.env);
1614
1615	(void)perf_header__process_sections(&session->header,
1616					    perf_data__fd(session->data),
1617					    tchart,
1618					    process_header);
1619
1620	if (!perf_session__has_traces(session, "timechart record"))
1621		goto out_delete;
1622
1623	if (perf_session__set_tracepoints_handlers(session,
1624						   power_tracepoints)) {
1625		pr_err("Initializing session tracepoint handlers failed\n");
1626		goto out_delete;
1627	}
1628
1629	ret = perf_session__process_events(session);
1630	if (ret)
1631		goto out_delete;
1632
1633	end_sample_processing(tchart);
1634
1635	sort_pids(tchart);
1636
1637	write_svg_file(tchart, output_name);
1638
1639	pr_info("Written %2.1f seconds of trace to %s.\n",
1640		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1641out_delete:
1642	perf_session__delete(session);
1643	return ret;
1644}
1645
1646static int timechart__io_record(int argc, const char **argv)
1647{
1648	unsigned int rec_argc, i;
1649	const char **rec_argv;
1650	const char **p;
1651	char *filter = NULL;
1652
1653	const char * const common_args[] = {
1654		"record", "-a", "-R", "-c", "1",
1655	};
1656	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658	const char * const disk_events[] = {
1659		"syscalls:sys_enter_read",
1660		"syscalls:sys_enter_pread64",
1661		"syscalls:sys_enter_readv",
1662		"syscalls:sys_enter_preadv",
1663		"syscalls:sys_enter_write",
1664		"syscalls:sys_enter_pwrite64",
1665		"syscalls:sys_enter_writev",
1666		"syscalls:sys_enter_pwritev",
1667		"syscalls:sys_enter_sync",
1668		"syscalls:sys_enter_sync_file_range",
1669		"syscalls:sys_enter_fsync",
1670		"syscalls:sys_enter_msync",
1671
1672		"syscalls:sys_exit_read",
1673		"syscalls:sys_exit_pread64",
1674		"syscalls:sys_exit_readv",
1675		"syscalls:sys_exit_preadv",
1676		"syscalls:sys_exit_write",
1677		"syscalls:sys_exit_pwrite64",
1678		"syscalls:sys_exit_writev",
1679		"syscalls:sys_exit_pwritev",
1680		"syscalls:sys_exit_sync",
1681		"syscalls:sys_exit_sync_file_range",
1682		"syscalls:sys_exit_fsync",
1683		"syscalls:sys_exit_msync",
1684	};
1685	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687	const char * const net_events[] = {
1688		"syscalls:sys_enter_recvfrom",
1689		"syscalls:sys_enter_recvmmsg",
1690		"syscalls:sys_enter_recvmsg",
1691		"syscalls:sys_enter_sendto",
1692		"syscalls:sys_enter_sendmsg",
1693		"syscalls:sys_enter_sendmmsg",
1694
1695		"syscalls:sys_exit_recvfrom",
1696		"syscalls:sys_exit_recvmmsg",
1697		"syscalls:sys_exit_recvmsg",
1698		"syscalls:sys_exit_sendto",
1699		"syscalls:sys_exit_sendmsg",
1700		"syscalls:sys_exit_sendmmsg",
1701	};
1702	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704	const char * const poll_events[] = {
1705		"syscalls:sys_enter_epoll_pwait",
1706		"syscalls:sys_enter_epoll_wait",
1707		"syscalls:sys_enter_poll",
1708		"syscalls:sys_enter_ppoll",
1709		"syscalls:sys_enter_pselect6",
1710		"syscalls:sys_enter_select",
1711
1712		"syscalls:sys_exit_epoll_pwait",
1713		"syscalls:sys_exit_epoll_wait",
1714		"syscalls:sys_exit_poll",
1715		"syscalls:sys_exit_ppoll",
1716		"syscalls:sys_exit_pselect6",
1717		"syscalls:sys_exit_select",
1718	};
1719	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721	rec_argc = common_args_nr +
1722		disk_events_nr * 4 +
1723		net_events_nr * 4 +
1724		poll_events_nr * 4 +
1725		argc;
1726	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728	if (rec_argv == NULL)
1729		return -ENOMEM;
1730
1731	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1732		free(rec_argv);
1733		return -ENOMEM;
1734	}
1735
1736	p = rec_argv;
1737	for (i = 0; i < common_args_nr; i++)
1738		*p++ = strdup(common_args[i]);
1739
1740	for (i = 0; i < disk_events_nr; i++) {
1741		if (!is_valid_tracepoint(disk_events[i])) {
1742			rec_argc -= 4;
1743			continue;
1744		}
1745
1746		*p++ = "-e";
1747		*p++ = strdup(disk_events[i]);
1748		*p++ = "--filter";
1749		*p++ = filter;
1750	}
1751	for (i = 0; i < net_events_nr; i++) {
1752		if (!is_valid_tracepoint(net_events[i])) {
1753			rec_argc -= 4;
1754			continue;
1755		}
1756
1757		*p++ = "-e";
1758		*p++ = strdup(net_events[i]);
1759		*p++ = "--filter";
1760		*p++ = filter;
1761	}
1762	for (i = 0; i < poll_events_nr; i++) {
1763		if (!is_valid_tracepoint(poll_events[i])) {
1764			rec_argc -= 4;
1765			continue;
1766		}
1767
1768		*p++ = "-e";
1769		*p++ = strdup(poll_events[i]);
1770		*p++ = "--filter";
1771		*p++ = filter;
1772	}
1773
1774	for (i = 0; i < (unsigned int)argc; i++)
1775		*p++ = argv[i];
1776
1777	return cmd_record(rec_argc, rec_argv);
1778}
1779
1780
1781static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1782{
1783	unsigned int rec_argc, i, j;
1784	const char **rec_argv;
1785	const char **p;
1786	unsigned int record_elems;
1787
1788	const char * const common_args[] = {
1789		"record", "-a", "-R", "-c", "1",
1790	};
1791	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1792
1793	const char * const backtrace_args[] = {
1794		"-g",
1795	};
1796	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1797
1798	const char * const power_args[] = {
1799		"-e", "power:cpu_frequency",
1800		"-e", "power:cpu_idle",
1801	};
1802	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1803
1804	const char * const old_power_args[] = {
1805#ifdef SUPPORT_OLD_POWER_EVENTS
1806		"-e", "power:power_start",
1807		"-e", "power:power_end",
1808		"-e", "power:power_frequency",
1809#endif
1810	};
1811	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1812
1813	const char * const tasks_args[] = {
1814		"-e", "sched:sched_wakeup",
1815		"-e", "sched:sched_switch",
1816	};
1817	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1818
1819#ifdef SUPPORT_OLD_POWER_EVENTS
1820	if (!is_valid_tracepoint("power:cpu_idle") &&
1821	    is_valid_tracepoint("power:power_start")) {
1822		use_old_power_events = 1;
1823		power_args_nr = 0;
1824	} else {
1825		old_power_args_nr = 0;
1826	}
1827#endif
1828
1829	if (tchart->power_only)
1830		tasks_args_nr = 0;
1831
1832	if (tchart->tasks_only) {
1833		power_args_nr = 0;
1834		old_power_args_nr = 0;
1835	}
1836
1837	if (!tchart->with_backtrace)
1838		backtrace_args_no = 0;
1839
1840	record_elems = common_args_nr + tasks_args_nr +
1841		power_args_nr + old_power_args_nr + backtrace_args_no;
1842
1843	rec_argc = record_elems + argc;
1844	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1845
1846	if (rec_argv == NULL)
1847		return -ENOMEM;
1848
1849	p = rec_argv;
1850	for (i = 0; i < common_args_nr; i++)
1851		*p++ = strdup(common_args[i]);
1852
1853	for (i = 0; i < backtrace_args_no; i++)
1854		*p++ = strdup(backtrace_args[i]);
1855
1856	for (i = 0; i < tasks_args_nr; i++)
1857		*p++ = strdup(tasks_args[i]);
1858
1859	for (i = 0; i < power_args_nr; i++)
1860		*p++ = strdup(power_args[i]);
1861
1862	for (i = 0; i < old_power_args_nr; i++)
1863		*p++ = strdup(old_power_args[i]);
1864
1865	for (j = 0; j < (unsigned int)argc; j++)
1866		*p++ = argv[j];
1867
1868	return cmd_record(rec_argc, rec_argv);
1869}
1870
1871static int
1872parse_process(const struct option *opt __maybe_unused, const char *arg,
1873	      int __maybe_unused unset)
1874{
1875	if (arg)
1876		add_process_filter(arg);
1877	return 0;
1878}
1879
1880static int
1881parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1882		int __maybe_unused unset)
1883{
1884	unsigned long duration = strtoul(arg, NULL, 0);
1885
1886	if (svg_highlight || svg_highlight_name)
1887		return -1;
1888
1889	if (duration)
1890		svg_highlight = duration;
1891	else
1892		svg_highlight_name = strdup(arg);
1893
1894	return 0;
1895}
1896
1897static int
1898parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1899{
1900	char unit = 'n';
1901	u64 *value = opt->value;
1902
1903	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1904		switch (unit) {
1905		case 'm':
1906			*value *= NSEC_PER_MSEC;
1907			break;
1908		case 'u':
1909			*value *= NSEC_PER_USEC;
1910			break;
1911		case 'n':
1912			break;
1913		default:
1914			return -1;
1915		}
1916	}
1917
1918	return 0;
1919}
1920
1921int cmd_timechart(int argc, const char **argv)
1922{
1923	struct timechart tchart = {
1924		.tool = {
1925			.comm		 = process_comm_event,
1926			.fork		 = process_fork_event,
1927			.exit		 = process_exit_event,
1928			.sample		 = process_sample_event,
1929			.ordered_events	 = true,
1930		},
1931		.proc_num = 15,
1932		.min_time = NSEC_PER_MSEC,
1933		.merge_dist = 1000,
1934	};
1935	const char *output_name = "output.svg";
1936	const struct option timechart_common_options[] = {
1937	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1938	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1939	OPT_END()
1940	};
1941	const struct option timechart_options[] = {
1942	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1943	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1944	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1945	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1946		      "highlight tasks. Pass duration in ns or process name.",
1947		       parse_highlight),
1948	OPT_CALLBACK('p', "process", NULL, "process",
1949		      "process selector. Pass a pid or process name.",
1950		       parse_process),
1951	OPT_CALLBACK(0, "symfs", NULL, "directory",
1952		     "Look for files with symbols relative to this directory",
1953		     symbol__config_symfs),
1954	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1955		    "min. number of tasks to print"),
1956	OPT_BOOLEAN('t', "topology", &tchart.topology,
1957		    "sort CPUs according to topology"),
1958	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1959		    "skip EAGAIN errors"),
1960	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1961		     "all IO faster than min-time will visually appear longer",
1962		     parse_time),
1963	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1964		     "merge events that are merge-dist us apart",
1965		     parse_time),
1966	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1967	OPT_PARENT(timechart_common_options),
1968	};
1969	const char * const timechart_subcommands[] = { "record", NULL };
1970	const char *timechart_usage[] = {
1971		"perf timechart [<options>] {record}",
1972		NULL
1973	};
1974	const struct option timechart_record_options[] = {
1975	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976		    "record only IO data"),
1977	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978	OPT_PARENT(timechart_common_options),
1979	};
1980	const char * const timechart_record_usage[] = {
1981		"perf timechart record [<options>]",
1982		NULL
1983	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987	if (tchart.power_only && tchart.tasks_only) {
1988		pr_err("-P and -T options cannot be used at the same time.\n");
1989		return -1;
 
1990	}
1991
1992	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1993		argc = parse_options(argc, argv, timechart_record_options,
1994				     timechart_record_usage,
1995				     PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997		if (tchart.power_only && tchart.tasks_only) {
1998			pr_err("-P and -T options cannot be used at the same time.\n");
1999			return -1;
 
2000		}
2001
2002		if (tchart.io_only)
2003			return timechart__io_record(argc, argv);
2004		else
2005			return timechart__record(&tchart, argc, argv);
 
2006	} else if (argc)
2007		usage_with_options(timechart_usage, timechart_options);
2008
2009	setup_pager();
2010
2011	return __cmd_timechart(&tchart, output_name);
 
 
 
 
 
 
2012}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * builtin-timechart.c - make an svg timechart of system activity
   4 *
   5 * (C) Copyright 2009 Intel Corporation
   6 *
   7 * Authors:
   8 *     Arjan van de Ven <arjan@linux.intel.com>
   9 */
  10
  11#include <errno.h>
  12#include <inttypes.h>
  13
  14#include "builtin.h"
  15#include "util/color.h"
  16#include <linux/list.h>
  17#include "util/evlist.h" // for struct evsel_str_handler
  18#include "util/evsel.h"
  19#include <linux/kernel.h>
  20#include <linux/rbtree.h>
  21#include <linux/time64.h>
  22#include <linux/zalloc.h>
  23#include "util/symbol.h"
  24#include "util/thread.h"
  25#include "util/callchain.h"
  26
 
  27#include "util/header.h"
  28#include <subcmd/pager.h>
  29#include <subcmd/parse-options.h>
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
  34#include "util/tool.h"
  35#include "util/data.h"
  36#include "util/debug.h"
  37#include "util/string2.h"
  38#include "util/tracepoint.h"
  39#include "util/util.h"
  40#include <linux/err.h>
  41#include <event-parse.h>
  42
  43#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
  44FILE *open_memstream(char **ptr, size_t *sizeloc);
  45#endif
  46
  47#define SUPPORT_OLD_POWER_EVENTS 1
  48#define PWR_EVENT_EXIT -1
  49
  50struct per_pid;
  51struct power_event;
  52struct wake_event;
  53
  54struct timechart {
  55	struct perf_tool	tool;
  56	struct per_pid		*all_data;
  57	struct power_event	*power_events;
  58	struct wake_event	*wake_events;
  59	int			proc_num;
  60	unsigned int		numcpus;
  61	u64			min_freq,	/* Lowest CPU frequency seen */
  62				max_freq,	/* Highest CPU frequency seen */
  63				turbo_frequency,
  64				first_time, last_time;
  65	bool			power_only,
  66				tasks_only,
  67				with_backtrace,
  68				topology;
  69	bool			force;
  70	/* IO related settings */
  71	bool			io_only,
  72				skip_eagain;
  73	u64			io_events;
  74	u64			min_time,
  75				merge_dist;
  76};
  77
  78struct per_pidcomm;
  79struct cpu_sample;
  80struct io_sample;
  81
  82/*
  83 * Datastructure layout:
  84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  85 * Each "pid" entry, has a list of "comm"s.
  86 *	this is because we want to track different programs different, while
  87 *	exec will reuse the original pid (by design).
  88 * Each comm has a list of samples that will be used to draw
  89 * final graph.
  90 */
  91
  92struct per_pid {
  93	struct per_pid *next;
  94
  95	int		pid;
  96	int		ppid;
  97
  98	u64		start_time;
  99	u64		end_time;
 100	u64		total_time;
 101	u64		total_bytes;
 102	int		display;
 103
 104	struct per_pidcomm *all;
 105	struct per_pidcomm *current;
 106};
 107
 108
 109struct per_pidcomm {
 110	struct per_pidcomm *next;
 111
 112	u64		start_time;
 113	u64		end_time;
 114	u64		total_time;
 115	u64		max_bytes;
 116	u64		total_bytes;
 117
 118	int		Y;
 119	int		display;
 120
 121	long		state;
 122	u64		state_since;
 123
 124	char		*comm;
 125
 126	struct cpu_sample *samples;
 127	struct io_sample  *io_samples;
 128};
 129
 130struct sample_wrapper {
 131	struct sample_wrapper *next;
 132
 133	u64		timestamp;
 134	unsigned char	data[];
 135};
 136
 137#define TYPE_NONE	0
 138#define TYPE_RUNNING	1
 139#define TYPE_WAITING	2
 140#define TYPE_BLOCKED	3
 141
 142struct cpu_sample {
 143	struct cpu_sample *next;
 144
 145	u64 start_time;
 146	u64 end_time;
 147	int type;
 148	int cpu;
 149	const char *backtrace;
 150};
 151
 152enum {
 153	IOTYPE_READ,
 154	IOTYPE_WRITE,
 155	IOTYPE_SYNC,
 156	IOTYPE_TX,
 157	IOTYPE_RX,
 158	IOTYPE_POLL,
 159};
 160
 161struct io_sample {
 162	struct io_sample *next;
 163
 164	u64 start_time;
 165	u64 end_time;
 166	u64 bytes;
 167	int type;
 168	int fd;
 169	int err;
 170	int merges;
 171};
 172
 173#define CSTATE 1
 174#define PSTATE 2
 175
 176struct power_event {
 177	struct power_event *next;
 178	int type;
 179	int state;
 180	u64 start_time;
 181	u64 end_time;
 182	int cpu;
 183};
 184
 185struct wake_event {
 186	struct wake_event *next;
 187	int waker;
 188	int wakee;
 189	u64 time;
 190	const char *backtrace;
 191};
 192
 193struct process_filter {
 194	char			*name;
 195	int			pid;
 196	struct process_filter	*next;
 197};
 198
 199static struct process_filter *process_filter;
 200
 201
 202static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 203{
 204	struct per_pid *cursor = tchart->all_data;
 205
 206	while (cursor) {
 207		if (cursor->pid == pid)
 208			return cursor;
 209		cursor = cursor->next;
 210	}
 211	cursor = zalloc(sizeof(*cursor));
 212	assert(cursor != NULL);
 213	cursor->pid = pid;
 214	cursor->next = tchart->all_data;
 215	tchart->all_data = cursor;
 216	return cursor;
 217}
 218
 219static struct per_pidcomm *create_pidcomm(struct per_pid *p)
 220{
 221	struct per_pidcomm *c;
 222
 223	c = zalloc(sizeof(*c));
 224	if (!c)
 225		return NULL;
 226	p->current = c;
 227	c->next = p->all;
 228	p->all = c;
 229	return c;
 230}
 231
 232static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 233{
 234	struct per_pid *p;
 235	struct per_pidcomm *c;
 236	p = find_create_pid(tchart, pid);
 237	c = p->all;
 238	while (c) {
 239		if (c->comm && strcmp(c->comm, comm) == 0) {
 240			p->current = c;
 241			return;
 242		}
 243		if (!c->comm) {
 244			c->comm = strdup(comm);
 245			p->current = c;
 246			return;
 247		}
 248		c = c->next;
 249	}
 250	c = create_pidcomm(p);
 251	assert(c != NULL);
 252	c->comm = strdup(comm);
 253}
 254
 255static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 256{
 257	struct per_pid *p, *pp;
 258	p = find_create_pid(tchart, pid);
 259	pp = find_create_pid(tchart, ppid);
 260	p->ppid = ppid;
 261	if (pp->current && pp->current->comm && !p->current)
 262		pid_set_comm(tchart, pid, pp->current->comm);
 263
 264	p->start_time = timestamp;
 265	if (p->current && !p->current->start_time) {
 266		p->current->start_time = timestamp;
 267		p->current->state_since = timestamp;
 268	}
 269}
 270
 271static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 272{
 273	struct per_pid *p;
 274	p = find_create_pid(tchart, pid);
 275	p->end_time = timestamp;
 276	if (p->current)
 277		p->current->end_time = timestamp;
 278}
 279
 280static void pid_put_sample(struct timechart *tchart, int pid, int type,
 281			   unsigned int cpu, u64 start, u64 end,
 282			   const char *backtrace)
 283{
 284	struct per_pid *p;
 285	struct per_pidcomm *c;
 286	struct cpu_sample *sample;
 287
 288	p = find_create_pid(tchart, pid);
 289	c = p->current;
 290	if (!c) {
 291		c = create_pidcomm(p);
 292		assert(c != NULL);
 293	}
 294
 295	sample = zalloc(sizeof(*sample));
 296	assert(sample != NULL);
 297	sample->start_time = start;
 298	sample->end_time = end;
 299	sample->type = type;
 300	sample->next = c->samples;
 301	sample->cpu = cpu;
 302	sample->backtrace = backtrace;
 303	c->samples = sample;
 304
 305	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 306		c->total_time += (end-start);
 307		p->total_time += (end-start);
 308	}
 309
 310	if (c->start_time == 0 || c->start_time > start)
 311		c->start_time = start;
 312	if (p->start_time == 0 || p->start_time > start)
 313		p->start_time = start;
 314}
 315
 316#define MAX_CPUS 4096
 317
 318static u64 *cpus_cstate_start_times;
 319static int *cpus_cstate_state;
 320static u64 *cpus_pstate_start_times;
 321static u64 *cpus_pstate_state;
 322
 323static int process_comm_event(const struct perf_tool *tool,
 324			      union perf_event *event,
 325			      struct perf_sample *sample __maybe_unused,
 326			      struct machine *machine __maybe_unused)
 327{
 328	struct timechart *tchart = container_of(tool, struct timechart, tool);
 329	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 330	return 0;
 331}
 332
 333static int process_fork_event(const struct perf_tool *tool,
 334			      union perf_event *event,
 335			      struct perf_sample *sample __maybe_unused,
 336			      struct machine *machine __maybe_unused)
 337{
 338	struct timechart *tchart = container_of(tool, struct timechart, tool);
 339	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 340	return 0;
 341}
 342
 343static int process_exit_event(const struct perf_tool *tool,
 344			      union perf_event *event,
 345			      struct perf_sample *sample __maybe_unused,
 346			      struct machine *machine __maybe_unused)
 347{
 348	struct timechart *tchart = container_of(tool, struct timechart, tool);
 349	pid_exit(tchart, event->fork.pid, event->fork.time);
 350	return 0;
 351}
 352
 353#ifdef SUPPORT_OLD_POWER_EVENTS
 354static int use_old_power_events;
 355#endif
 356
 357static void c_state_start(int cpu, u64 timestamp, int state)
 358{
 359	cpus_cstate_start_times[cpu] = timestamp;
 360	cpus_cstate_state[cpu] = state;
 361}
 362
 363static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 364{
 365	struct power_event *pwr = zalloc(sizeof(*pwr));
 366
 367	if (!pwr)
 368		return;
 369
 370	pwr->state = cpus_cstate_state[cpu];
 371	pwr->start_time = cpus_cstate_start_times[cpu];
 372	pwr->end_time = timestamp;
 373	pwr->cpu = cpu;
 374	pwr->type = CSTATE;
 375	pwr->next = tchart->power_events;
 376
 377	tchart->power_events = pwr;
 378}
 379
 380static struct power_event *p_state_end(struct timechart *tchart, int cpu,
 381					u64 timestamp)
 382{
 383	struct power_event *pwr = zalloc(sizeof(*pwr));
 384
 385	if (!pwr)
 386		return NULL;
 387
 388	pwr->state = cpus_pstate_state[cpu];
 389	pwr->start_time = cpus_pstate_start_times[cpu];
 390	pwr->end_time = timestamp;
 391	pwr->cpu = cpu;
 392	pwr->type = PSTATE;
 393	pwr->next = tchart->power_events;
 394	if (!pwr->start_time)
 395		pwr->start_time = tchart->first_time;
 396
 397	tchart->power_events = pwr;
 398	return pwr;
 399}
 400
 401static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 402{
 403	struct power_event *pwr;
 404
 405	if (new_freq > 8000000) /* detect invalid data */
 406		return;
 407
 408	pwr = p_state_end(tchart, cpu, timestamp);
 409	if (!pwr)
 410		return;
 411
 412	cpus_pstate_state[cpu] = new_freq;
 413	cpus_pstate_start_times[cpu] = timestamp;
 414
 415	if ((u64)new_freq > tchart->max_freq)
 416		tchart->max_freq = new_freq;
 417
 418	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 419		tchart->min_freq = new_freq;
 420
 421	if (new_freq == tchart->max_freq - 1000)
 422		tchart->turbo_frequency = tchart->max_freq;
 423}
 424
 425static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 426			 int waker, int wakee, u8 flags, const char *backtrace)
 427{
 428	struct per_pid *p;
 429	struct wake_event *we = zalloc(sizeof(*we));
 430
 431	if (!we)
 432		return;
 433
 434	we->time = timestamp;
 435	we->waker = waker;
 436	we->backtrace = backtrace;
 437
 438	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 439		we->waker = -1;
 440
 441	we->wakee = wakee;
 442	we->next = tchart->wake_events;
 443	tchart->wake_events = we;
 444	p = find_create_pid(tchart, we->wakee);
 445
 446	if (p && p->current && p->current->state == TYPE_NONE) {
 447		p->current->state_since = timestamp;
 448		p->current->state = TYPE_WAITING;
 449	}
 450	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 451		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 452			       p->current->state_since, timestamp, NULL);
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456}
 457
 458static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 459			 int prev_pid, int next_pid, u64 prev_state,
 460			 const char *backtrace)
 461{
 462	struct per_pid *p = NULL, *prev_p;
 463
 464	prev_p = find_create_pid(tchart, prev_pid);
 465
 466	p = find_create_pid(tchart, next_pid);
 467
 468	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 470			       prev_p->current->state_since, timestamp,
 471			       backtrace);
 472	if (p && p->current) {
 473		if (p->current->state != TYPE_NONE)
 474			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 475				       p->current->state_since, timestamp,
 476				       backtrace);
 477
 478		p->current->state_since = timestamp;
 479		p->current->state = TYPE_RUNNING;
 480	}
 481
 482	if (prev_p->current) {
 483		prev_p->current->state = TYPE_NONE;
 484		prev_p->current->state_since = timestamp;
 485		if (prev_state & 2)
 486			prev_p->current->state = TYPE_BLOCKED;
 487		if (prev_state == 0)
 488			prev_p->current->state = TYPE_WAITING;
 489	}
 490}
 491
 492static const char *cat_backtrace(union perf_event *event,
 493				 struct perf_sample *sample,
 494				 struct machine *machine)
 495{
 496	struct addr_location al;
 497	unsigned int i;
 498	char *p = NULL;
 499	size_t p_len;
 500	u8 cpumode = PERF_RECORD_MISC_USER;
 
 501	struct ip_callchain *chain = sample->callchain;
 502	FILE *f = open_memstream(&p, &p_len);
 503
 504	if (!f) {
 505		perror("open_memstream error");
 506		return NULL;
 507	}
 508
 509	addr_location__init(&al);
 510	if (!chain)
 511		goto exit;
 512
 513	if (machine__resolve(machine, &al, sample) < 0) {
 514		fprintf(stderr, "problem processing %d event, skipping it.\n",
 515			event->header.type);
 516		goto exit;
 517	}
 518
 519	for (i = 0; i < chain->nr; i++) {
 520		u64 ip;
 521		struct addr_location tal;
 522
 523		if (callchain_param.order == ORDER_CALLEE)
 524			ip = chain->ips[i];
 525		else
 526			ip = chain->ips[chain->nr - i - 1];
 527
 528		if (ip >= PERF_CONTEXT_MAX) {
 529			switch (ip) {
 530			case PERF_CONTEXT_HV:
 531				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 532				break;
 533			case PERF_CONTEXT_KERNEL:
 534				cpumode = PERF_RECORD_MISC_KERNEL;
 535				break;
 536			case PERF_CONTEXT_USER:
 537				cpumode = PERF_RECORD_MISC_USER;
 538				break;
 539			default:
 540				pr_debug("invalid callchain context: "
 541					 "%"PRId64"\n", (s64) ip);
 542
 543				/*
 544				 * It seems the callchain is corrupted.
 545				 * Discard all.
 546				 */
 547				zfree(&p);
 548				goto exit;
 549			}
 550			continue;
 551		}
 552
 553		addr_location__init(&tal);
 554		tal.filtered = 0;
 555		if (thread__find_symbol(al.thread, cpumode, ip, &tal))
 556			fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
 557		else
 558			fprintf(f, "..... %016" PRIx64 "\n", ip);
 559
 560		addr_location__exit(&tal);
 561	}
 
 
 562exit:
 563	addr_location__exit(&al);
 564	fclose(f);
 565
 566	return p;
 567}
 568
 569typedef int (*tracepoint_handler)(struct timechart *tchart,
 570				  struct evsel *evsel,
 571				  struct perf_sample *sample,
 572				  const char *backtrace);
 573
 574static int process_sample_event(const struct perf_tool *tool,
 575				union perf_event *event,
 576				struct perf_sample *sample,
 577				struct evsel *evsel,
 578				struct machine *machine)
 579{
 580	struct timechart *tchart = container_of(tool, struct timechart, tool);
 581
 582	if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
 583		if (!tchart->first_time || tchart->first_time > sample->time)
 584			tchart->first_time = sample->time;
 585		if (tchart->last_time < sample->time)
 586			tchart->last_time = sample->time;
 587	}
 588
 589	if (evsel->handler != NULL) {
 590		tracepoint_handler f = evsel->handler;
 591		return f(tchart, evsel, sample,
 592			 cat_backtrace(event, sample, machine));
 593	}
 594
 595	return 0;
 596}
 597
 598static int
 599process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 600			struct evsel *evsel,
 601			struct perf_sample *sample,
 602			const char *backtrace __maybe_unused)
 603{
 604	u32 state  = evsel__intval(evsel, sample, "state");
 605	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 606
 607	if (state == (u32)PWR_EVENT_EXIT)
 608		c_state_end(tchart, cpu_id, sample->time);
 609	else
 610		c_state_start(cpu_id, sample->time, state);
 611	return 0;
 612}
 613
 614static int
 615process_sample_cpu_frequency(struct timechart *tchart,
 616			     struct evsel *evsel,
 617			     struct perf_sample *sample,
 618			     const char *backtrace __maybe_unused)
 619{
 620	u32 state  = evsel__intval(evsel, sample, "state");
 621	u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 622
 623	p_state_change(tchart, cpu_id, sample->time, state);
 624	return 0;
 625}
 626
 627static int
 628process_sample_sched_wakeup(struct timechart *tchart,
 629			    struct evsel *evsel,
 630			    struct perf_sample *sample,
 631			    const char *backtrace)
 632{
 633	u8 flags  = evsel__intval(evsel, sample, "common_flags");
 634	int waker = evsel__intval(evsel, sample, "common_pid");
 635	int wakee = evsel__intval(evsel, sample, "pid");
 636
 637	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 638	return 0;
 639}
 640
 641static int
 642process_sample_sched_switch(struct timechart *tchart,
 643			    struct evsel *evsel,
 644			    struct perf_sample *sample,
 645			    const char *backtrace)
 646{
 647	int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
 648	int next_pid   = evsel__intval(evsel, sample, "next_pid");
 649	u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 650
 651	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 652		     prev_state, backtrace);
 653	return 0;
 654}
 655
 656#ifdef SUPPORT_OLD_POWER_EVENTS
 657static int
 658process_sample_power_start(struct timechart *tchart __maybe_unused,
 659			   struct evsel *evsel,
 660			   struct perf_sample *sample,
 661			   const char *backtrace __maybe_unused)
 662{
 663	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 664	u64 value  = evsel__intval(evsel, sample, "value");
 665
 666	c_state_start(cpu_id, sample->time, value);
 667	return 0;
 668}
 669
 670static int
 671process_sample_power_end(struct timechart *tchart,
 672			 struct evsel *evsel __maybe_unused,
 673			 struct perf_sample *sample,
 674			 const char *backtrace __maybe_unused)
 675{
 676	c_state_end(tchart, sample->cpu, sample->time);
 677	return 0;
 678}
 679
 680static int
 681process_sample_power_frequency(struct timechart *tchart,
 682			       struct evsel *evsel,
 683			       struct perf_sample *sample,
 684			       const char *backtrace __maybe_unused)
 685{
 686	u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
 687	u64 value  = evsel__intval(evsel, sample, "value");
 688
 689	p_state_change(tchart, cpu_id, sample->time, value);
 690	return 0;
 691}
 692#endif /* SUPPORT_OLD_POWER_EVENTS */
 693
 694/*
 695 * After the last sample we need to wrap up the current C/P state
 696 * and close out each CPU for these.
 697 */
 698static void end_sample_processing(struct timechart *tchart)
 699{
 700	u64 cpu;
 701	struct power_event *pwr;
 702
 703	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 704		/* C state */
 705#if 0
 706		pwr = zalloc(sizeof(*pwr));
 707		if (!pwr)
 708			return;
 709
 710		pwr->state = cpus_cstate_state[cpu];
 711		pwr->start_time = cpus_cstate_start_times[cpu];
 712		pwr->end_time = tchart->last_time;
 713		pwr->cpu = cpu;
 714		pwr->type = CSTATE;
 715		pwr->next = tchart->power_events;
 716
 717		tchart->power_events = pwr;
 718#endif
 719		/* P state */
 720
 721		pwr = p_state_end(tchart, cpu, tchart->last_time);
 722		if (!pwr)
 723			return;
 724
 725		if (!pwr->state)
 726			pwr->state = tchart->min_freq;
 727	}
 728}
 729
 730static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
 731			       u64 start, int fd)
 732{
 733	struct per_pid *p = find_create_pid(tchart, pid);
 734	struct per_pidcomm *c = p->current;
 735	struct io_sample *sample;
 736	struct io_sample *prev;
 737
 738	if (!c) {
 739		c = create_pidcomm(p);
 740		if (!c)
 741			return -ENOMEM;
 742	}
 743
 744	prev = c->io_samples;
 745
 746	if (prev && prev->start_time && !prev->end_time) {
 747		pr_warning("Skip invalid start event: "
 748			   "previous event already started!\n");
 749
 750		/* remove previous event that has been started,
 751		 * we are not sure we will ever get an end for it */
 752		c->io_samples = prev->next;
 753		free(prev);
 754		return 0;
 755	}
 756
 757	sample = zalloc(sizeof(*sample));
 758	if (!sample)
 759		return -ENOMEM;
 760	sample->start_time = start;
 761	sample->type = type;
 762	sample->fd = fd;
 763	sample->next = c->io_samples;
 764	c->io_samples = sample;
 765
 766	if (c->start_time == 0 || c->start_time > start)
 767		c->start_time = start;
 768
 769	return 0;
 770}
 771
 772static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
 773			     u64 end, long ret)
 774{
 775	struct per_pid *p = find_create_pid(tchart, pid);
 776	struct per_pidcomm *c = p->current;
 777	struct io_sample *sample, *prev;
 778
 779	if (!c) {
 780		pr_warning("Invalid pidcomm!\n");
 781		return -1;
 782	}
 783
 784	sample = c->io_samples;
 785
 786	if (!sample) /* skip partially captured events */
 787		return 0;
 788
 789	if (sample->end_time) {
 790		pr_warning("Skip invalid end event: "
 791			   "previous event already ended!\n");
 792		return 0;
 793	}
 794
 795	if (sample->type != type) {
 796		pr_warning("Skip invalid end event: invalid event type!\n");
 797		return 0;
 798	}
 799
 800	sample->end_time = end;
 801	prev = sample->next;
 802
 803	/* we want to be able to see small and fast transfers, so make them
 804	 * at least min_time long, but don't overlap them */
 805	if (sample->end_time - sample->start_time < tchart->min_time)
 806		sample->end_time = sample->start_time + tchart->min_time;
 807	if (prev && sample->start_time < prev->end_time) {
 808		if (prev->err) /* try to make errors more visible */
 809			sample->start_time = prev->end_time;
 810		else
 811			prev->end_time = sample->start_time;
 812	}
 813
 814	if (ret < 0) {
 815		sample->err = ret;
 816	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
 817		   type == IOTYPE_TX || type == IOTYPE_RX) {
 818
 819		if ((u64)ret > c->max_bytes)
 820			c->max_bytes = ret;
 821
 822		c->total_bytes += ret;
 823		p->total_bytes += ret;
 824		sample->bytes = ret;
 825	}
 826
 827	/* merge two requests to make svg smaller and render-friendly */
 828	if (prev &&
 829	    prev->type == sample->type &&
 830	    prev->err == sample->err &&
 831	    prev->fd == sample->fd &&
 832	    prev->end_time + tchart->merge_dist >= sample->start_time) {
 833
 834		sample->bytes += prev->bytes;
 835		sample->merges += prev->merges + 1;
 836
 837		sample->start_time = prev->start_time;
 838		sample->next = prev->next;
 839		free(prev);
 840
 841		if (!sample->err && sample->bytes > c->max_bytes)
 842			c->max_bytes = sample->bytes;
 843	}
 844
 845	tchart->io_events++;
 846
 847	return 0;
 848}
 849
 850static int
 851process_enter_read(struct timechart *tchart,
 852		   struct evsel *evsel,
 853		   struct perf_sample *sample)
 854{
 855	long fd = evsel__intval(evsel, sample, "fd");
 856	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
 857				   sample->time, fd);
 858}
 859
 860static int
 861process_exit_read(struct timechart *tchart,
 862		  struct evsel *evsel,
 863		  struct perf_sample *sample)
 864{
 865	long ret = evsel__intval(evsel, sample, "ret");
 866	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
 867				 sample->time, ret);
 868}
 869
 870static int
 871process_enter_write(struct timechart *tchart,
 872		    struct evsel *evsel,
 873		    struct perf_sample *sample)
 874{
 875	long fd = evsel__intval(evsel, sample, "fd");
 876	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 877				   sample->time, fd);
 878}
 879
 880static int
 881process_exit_write(struct timechart *tchart,
 882		   struct evsel *evsel,
 883		   struct perf_sample *sample)
 884{
 885	long ret = evsel__intval(evsel, sample, "ret");
 886	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
 887				 sample->time, ret);
 888}
 889
 890static int
 891process_enter_sync(struct timechart *tchart,
 892		   struct evsel *evsel,
 893		   struct perf_sample *sample)
 894{
 895	long fd = evsel__intval(evsel, sample, "fd");
 896	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 897				   sample->time, fd);
 898}
 899
 900static int
 901process_exit_sync(struct timechart *tchart,
 902		  struct evsel *evsel,
 903		  struct perf_sample *sample)
 904{
 905	long ret = evsel__intval(evsel, sample, "ret");
 906	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
 907				 sample->time, ret);
 908}
 909
 910static int
 911process_enter_tx(struct timechart *tchart,
 912		 struct evsel *evsel,
 913		 struct perf_sample *sample)
 914{
 915	long fd = evsel__intval(evsel, sample, "fd");
 916	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
 917				   sample->time, fd);
 918}
 919
 920static int
 921process_exit_tx(struct timechart *tchart,
 922		struct evsel *evsel,
 923		struct perf_sample *sample)
 924{
 925	long ret = evsel__intval(evsel, sample, "ret");
 926	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
 927				 sample->time, ret);
 928}
 929
 930static int
 931process_enter_rx(struct timechart *tchart,
 932		 struct evsel *evsel,
 933		 struct perf_sample *sample)
 934{
 935	long fd = evsel__intval(evsel, sample, "fd");
 936	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
 937				   sample->time, fd);
 938}
 939
 940static int
 941process_exit_rx(struct timechart *tchart,
 942		struct evsel *evsel,
 943		struct perf_sample *sample)
 944{
 945	long ret = evsel__intval(evsel, sample, "ret");
 946	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
 947				 sample->time, ret);
 948}
 949
 950static int
 951process_enter_poll(struct timechart *tchart,
 952		   struct evsel *evsel,
 953		   struct perf_sample *sample)
 954{
 955	long fd = evsel__intval(evsel, sample, "fd");
 956	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
 957				   sample->time, fd);
 958}
 959
 960static int
 961process_exit_poll(struct timechart *tchart,
 962		  struct evsel *evsel,
 963		  struct perf_sample *sample)
 964{
 965	long ret = evsel__intval(evsel, sample, "ret");
 966	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
 967				 sample->time, ret);
 968}
 969
 970/*
 971 * Sort the pid datastructure
 972 */
 973static void sort_pids(struct timechart *tchart)
 974{
 975	struct per_pid *new_list, *p, *cursor, *prev;
 976	/* sort by ppid first, then by pid, lowest to highest */
 977
 978	new_list = NULL;
 979
 980	while (tchart->all_data) {
 981		p = tchart->all_data;
 982		tchart->all_data = p->next;
 983		p->next = NULL;
 984
 985		if (new_list == NULL) {
 986			new_list = p;
 987			p->next = NULL;
 988			continue;
 989		}
 990		prev = NULL;
 991		cursor = new_list;
 992		while (cursor) {
 993			if (cursor->ppid > p->ppid ||
 994				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 995				/* must insert before */
 996				if (prev) {
 997					p->next = prev->next;
 998					prev->next = p;
 999					cursor = NULL;
1000					continue;
1001				} else {
1002					p->next = new_list;
1003					new_list = p;
1004					cursor = NULL;
1005					continue;
1006				}
1007			}
1008
1009			prev = cursor;
1010			cursor = cursor->next;
1011			if (!cursor)
1012				prev->next = p;
1013		}
1014	}
1015	tchart->all_data = new_list;
1016}
1017
1018
1019static void draw_c_p_states(struct timechart *tchart)
1020{
1021	struct power_event *pwr;
1022	pwr = tchart->power_events;
1023
1024	/*
1025	 * two pass drawing so that the P state bars are on top of the C state blocks
1026	 */
1027	while (pwr) {
1028		if (pwr->type == CSTATE)
1029			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030		pwr = pwr->next;
1031	}
1032
1033	pwr = tchart->power_events;
1034	while (pwr) {
1035		if (pwr->type == PSTATE) {
1036			if (!pwr->state)
1037				pwr->state = tchart->min_freq;
1038			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1039		}
1040		pwr = pwr->next;
1041	}
1042}
1043
1044static void draw_wakeups(struct timechart *tchart)
1045{
1046	struct wake_event *we;
1047	struct per_pid *p;
1048	struct per_pidcomm *c;
1049
1050	we = tchart->wake_events;
1051	while (we) {
1052		int from = 0, to = 0;
1053		char *task_from = NULL, *task_to = NULL;
1054
1055		/* locate the column of the waker and wakee */
1056		p = tchart->all_data;
1057		while (p) {
1058			if (p->pid == we->waker || p->pid == we->wakee) {
1059				c = p->all;
1060				while (c) {
1061					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062						if (p->pid == we->waker && !from) {
1063							from = c->Y;
1064							task_from = strdup(c->comm);
1065						}
1066						if (p->pid == we->wakee && !to) {
1067							to = c->Y;
1068							task_to = strdup(c->comm);
1069						}
1070					}
1071					c = c->next;
1072				}
1073				c = p->all;
1074				while (c) {
1075					if (p->pid == we->waker && !from) {
1076						from = c->Y;
1077						task_from = strdup(c->comm);
1078					}
1079					if (p->pid == we->wakee && !to) {
1080						to = c->Y;
1081						task_to = strdup(c->comm);
1082					}
1083					c = c->next;
1084				}
1085			}
1086			p = p->next;
1087		}
1088
1089		if (!task_from) {
1090			task_from = malloc(40);
1091			sprintf(task_from, "[%i]", we->waker);
1092		}
1093		if (!task_to) {
1094			task_to = malloc(40);
1095			sprintf(task_to, "[%i]", we->wakee);
1096		}
1097
1098		if (we->waker == -1)
1099			svg_interrupt(we->time, to, we->backtrace);
1100		else if (from && to && abs(from - to) == 1)
1101			svg_wakeline(we->time, from, to, we->backtrace);
1102		else
1103			svg_partial_wakeline(we->time, from, task_from, to,
1104					     task_to, we->backtrace);
1105		we = we->next;
1106
1107		free(task_from);
1108		free(task_to);
1109	}
1110}
1111
1112static void draw_cpu_usage(struct timechart *tchart)
1113{
1114	struct per_pid *p;
1115	struct per_pidcomm *c;
1116	struct cpu_sample *sample;
1117	p = tchart->all_data;
1118	while (p) {
1119		c = p->all;
1120		while (c) {
1121			sample = c->samples;
1122			while (sample) {
1123				if (sample->type == TYPE_RUNNING) {
1124					svg_process(sample->cpu,
1125						    sample->start_time,
1126						    sample->end_time,
1127						    p->pid,
1128						    c->comm,
1129						    sample->backtrace);
1130				}
1131
1132				sample = sample->next;
1133			}
1134			c = c->next;
1135		}
1136		p = p->next;
1137	}
1138}
1139
1140static void draw_io_bars(struct timechart *tchart)
1141{
1142	const char *suf;
1143	double bytes;
1144	char comm[256];
1145	struct per_pid *p;
1146	struct per_pidcomm *c;
1147	struct io_sample *sample;
1148	int Y = 1;
1149
1150	p = tchart->all_data;
1151	while (p) {
1152		c = p->all;
1153		while (c) {
1154			if (!c->display) {
1155				c->Y = 0;
1156				c = c->next;
1157				continue;
1158			}
1159
1160			svg_box(Y, c->start_time, c->end_time, "process3");
 
1161			for (sample = c->io_samples; sample; sample = sample->next) {
1162				double h = (double)sample->bytes / c->max_bytes;
1163
1164				if (tchart->skip_eagain &&
1165				    sample->err == -EAGAIN)
1166					continue;
1167
1168				if (sample->err)
1169					h = 1;
1170
1171				if (sample->type == IOTYPE_SYNC)
1172					svg_fbox(Y,
1173						sample->start_time,
1174						sample->end_time,
1175						1,
1176						sample->err ? "error" : "sync",
1177						sample->fd,
1178						sample->err,
1179						sample->merges);
1180				else if (sample->type == IOTYPE_POLL)
1181					svg_fbox(Y,
1182						sample->start_time,
1183						sample->end_time,
1184						1,
1185						sample->err ? "error" : "poll",
1186						sample->fd,
1187						sample->err,
1188						sample->merges);
1189				else if (sample->type == IOTYPE_READ)
1190					svg_ubox(Y,
1191						sample->start_time,
1192						sample->end_time,
1193						h,
1194						sample->err ? "error" : "disk",
1195						sample->fd,
1196						sample->err,
1197						sample->merges);
1198				else if (sample->type == IOTYPE_WRITE)
1199					svg_lbox(Y,
1200						sample->start_time,
1201						sample->end_time,
1202						h,
1203						sample->err ? "error" : "disk",
1204						sample->fd,
1205						sample->err,
1206						sample->merges);
1207				else if (sample->type == IOTYPE_RX)
1208					svg_ubox(Y,
1209						sample->start_time,
1210						sample->end_time,
1211						h,
1212						sample->err ? "error" : "net",
1213						sample->fd,
1214						sample->err,
1215						sample->merges);
1216				else if (sample->type == IOTYPE_TX)
1217					svg_lbox(Y,
1218						sample->start_time,
1219						sample->end_time,
1220						h,
1221						sample->err ? "error" : "net",
1222						sample->fd,
1223						sample->err,
1224						sample->merges);
1225			}
1226
1227			suf = "";
1228			bytes = c->total_bytes;
1229			if (bytes > 1024) {
1230				bytes = bytes / 1024;
1231				suf = "K";
1232			}
1233			if (bytes > 1024) {
1234				bytes = bytes / 1024;
1235				suf = "M";
1236			}
1237			if (bytes > 1024) {
1238				bytes = bytes / 1024;
1239				suf = "G";
1240			}
1241
1242
1243			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1244			svg_text(Y, c->start_time, comm);
1245
1246			c->Y = Y;
1247			Y++;
1248			c = c->next;
1249		}
1250		p = p->next;
1251	}
1252}
1253
1254static void draw_process_bars(struct timechart *tchart)
1255{
1256	struct per_pid *p;
1257	struct per_pidcomm *c;
1258	struct cpu_sample *sample;
1259	int Y = 0;
1260
1261	Y = 2 * tchart->numcpus + 2;
1262
1263	p = tchart->all_data;
1264	while (p) {
1265		c = p->all;
1266		while (c) {
1267			if (!c->display) {
1268				c->Y = 0;
1269				c = c->next;
1270				continue;
1271			}
1272
1273			svg_box(Y, c->start_time, c->end_time, "process");
1274			sample = c->samples;
1275			while (sample) {
1276				if (sample->type == TYPE_RUNNING)
1277					svg_running(Y, sample->cpu,
1278						    sample->start_time,
1279						    sample->end_time,
1280						    sample->backtrace);
1281				if (sample->type == TYPE_BLOCKED)
1282					svg_blocked(Y, sample->cpu,
1283						    sample->start_time,
1284						    sample->end_time,
1285						    sample->backtrace);
1286				if (sample->type == TYPE_WAITING)
1287					svg_waiting(Y, sample->cpu,
1288						    sample->start_time,
1289						    sample->end_time,
1290						    sample->backtrace);
1291				sample = sample->next;
1292			}
1293
1294			if (c->comm) {
1295				char comm[256];
1296				if (c->total_time > 5000000000) /* 5 seconds */
1297					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1298				else
1299					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1300
1301				svg_text(Y, c->start_time, comm);
1302			}
1303			c->Y = Y;
1304			Y++;
1305			c = c->next;
1306		}
1307		p = p->next;
1308	}
1309}
1310
1311static void add_process_filter(const char *string)
1312{
1313	int pid = strtoull(string, NULL, 10);
1314	struct process_filter *filt = malloc(sizeof(*filt));
1315
1316	if (!filt)
1317		return;
1318
1319	filt->name = strdup(string);
1320	filt->pid  = pid;
1321	filt->next = process_filter;
1322
1323	process_filter = filt;
1324}
1325
1326static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1327{
1328	struct process_filter *filt;
1329	if (!process_filter)
1330		return 1;
1331
1332	filt = process_filter;
1333	while (filt) {
1334		if (filt->pid && p->pid == filt->pid)
1335			return 1;
1336		if (strcmp(filt->name, c->comm) == 0)
1337			return 1;
1338		filt = filt->next;
1339	}
1340	return 0;
1341}
1342
1343static int determine_display_tasks_filtered(struct timechart *tchart)
1344{
1345	struct per_pid *p;
1346	struct per_pidcomm *c;
1347	int count = 0;
1348
1349	p = tchart->all_data;
1350	while (p) {
1351		p->display = 0;
1352		if (p->start_time == 1)
1353			p->start_time = tchart->first_time;
1354
1355		/* no exit marker, task kept running to the end */
1356		if (p->end_time == 0)
1357			p->end_time = tchart->last_time;
1358
1359		c = p->all;
1360
1361		while (c) {
1362			c->display = 0;
1363
1364			if (c->start_time == 1)
1365				c->start_time = tchart->first_time;
1366
1367			if (passes_filter(p, c)) {
1368				c->display = 1;
1369				p->display = 1;
1370				count++;
1371			}
1372
1373			if (c->end_time == 0)
1374				c->end_time = tchart->last_time;
1375
1376			c = c->next;
1377		}
1378		p = p->next;
1379	}
1380	return count;
1381}
1382
1383static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1384{
1385	struct per_pid *p;
1386	struct per_pidcomm *c;
1387	int count = 0;
1388
1389	p = tchart->all_data;
1390	while (p) {
1391		p->display = 0;
1392		if (p->start_time == 1)
1393			p->start_time = tchart->first_time;
1394
1395		/* no exit marker, task kept running to the end */
1396		if (p->end_time == 0)
1397			p->end_time = tchart->last_time;
1398		if (p->total_time >= threshold)
1399			p->display = 1;
1400
1401		c = p->all;
1402
1403		while (c) {
1404			c->display = 0;
1405
1406			if (c->start_time == 1)
1407				c->start_time = tchart->first_time;
1408
1409			if (c->total_time >= threshold) {
1410				c->display = 1;
1411				count++;
1412			}
1413
1414			if (c->end_time == 0)
1415				c->end_time = tchart->last_time;
1416
1417			c = c->next;
1418		}
1419		p = p->next;
1420	}
1421	return count;
1422}
1423
1424static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1425{
1426	struct per_pid *p;
1427	struct per_pidcomm *c;
1428	int count = 0;
1429
1430	p = timechart->all_data;
1431	while (p) {
1432		/* no exit marker, task kept running to the end */
1433		if (p->end_time == 0)
1434			p->end_time = timechart->last_time;
1435
1436		c = p->all;
1437
1438		while (c) {
1439			c->display = 0;
1440
1441			if (c->total_bytes >= threshold) {
1442				c->display = 1;
1443				count++;
1444			}
1445
1446			if (c->end_time == 0)
1447				c->end_time = timechart->last_time;
1448
1449			c = c->next;
1450		}
1451		p = p->next;
1452	}
1453	return count;
1454}
1455
1456#define BYTES_THRESH (1 * 1024 * 1024)
1457#define TIME_THRESH 10000000
1458
1459static void write_svg_file(struct timechart *tchart, const char *filename)
1460{
1461	u64 i;
1462	int count;
1463	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1464
1465	if (tchart->power_only)
1466		tchart->proc_num = 0;
1467
1468	/* We'd like to show at least proc_num tasks;
1469	 * be less picky if we have fewer */
1470	do {
1471		if (process_filter)
1472			count = determine_display_tasks_filtered(tchart);
1473		else if (tchart->io_events)
1474			count = determine_display_io_tasks(tchart, thresh);
1475		else
1476			count = determine_display_tasks(tchart, thresh);
1477		thresh /= 10;
1478	} while (!process_filter && thresh && count < tchart->proc_num);
1479
1480	if (!tchart->proc_num)
1481		count = 0;
1482
1483	if (tchart->io_events) {
1484		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1485
1486		svg_time_grid(0.5);
1487		svg_io_legenda();
1488
1489		draw_io_bars(tchart);
1490	} else {
1491		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1492
1493		svg_time_grid(0);
1494
1495		svg_legenda();
1496
1497		for (i = 0; i < tchart->numcpus; i++)
1498			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1499
1500		draw_cpu_usage(tchart);
1501		if (tchart->proc_num)
1502			draw_process_bars(tchart);
1503		if (!tchart->tasks_only)
1504			draw_c_p_states(tchart);
1505		if (tchart->proc_num)
1506			draw_wakeups(tchart);
1507	}
1508
1509	svg_close();
1510}
1511
1512static int process_header(struct perf_file_section *section __maybe_unused,
1513			  struct perf_header *ph,
1514			  int feat,
1515			  int fd __maybe_unused,
1516			  void *data)
1517{
1518	struct timechart *tchart = data;
1519
1520	switch (feat) {
1521	case HEADER_NRCPUS:
1522		tchart->numcpus = ph->env.nr_cpus_avail;
1523		break;
1524
1525	case HEADER_CPU_TOPOLOGY:
1526		if (!tchart->topology)
1527			break;
1528
1529		if (svg_build_topology_map(&ph->env))
1530			fprintf(stderr, "problem building topology\n");
1531		break;
1532
1533	default:
1534		break;
1535	}
1536
1537	return 0;
1538}
1539
1540static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1541{
1542	const struct evsel_str_handler power_tracepoints[] = {
1543		{ "power:cpu_idle",		process_sample_cpu_idle },
1544		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1545		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1546		{ "sched:sched_switch",		process_sample_sched_switch },
1547#ifdef SUPPORT_OLD_POWER_EVENTS
1548		{ "power:power_start",		process_sample_power_start },
1549		{ "power:power_end",		process_sample_power_end },
1550		{ "power:power_frequency",	process_sample_power_frequency },
1551#endif
1552
1553		{ "syscalls:sys_enter_read",		process_enter_read },
1554		{ "syscalls:sys_enter_pread64",		process_enter_read },
1555		{ "syscalls:sys_enter_readv",		process_enter_read },
1556		{ "syscalls:sys_enter_preadv",		process_enter_read },
1557		{ "syscalls:sys_enter_write",		process_enter_write },
1558		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1559		{ "syscalls:sys_enter_writev",		process_enter_write },
1560		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1561		{ "syscalls:sys_enter_sync",		process_enter_sync },
1562		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1563		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1564		{ "syscalls:sys_enter_msync",		process_enter_sync },
1565		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1566		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1567		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1568		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1569		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1570		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1571		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1572		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1573		{ "syscalls:sys_enter_poll",		process_enter_poll },
1574		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1575		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1576		{ "syscalls:sys_enter_select",		process_enter_poll },
1577
1578		{ "syscalls:sys_exit_read",		process_exit_read },
1579		{ "syscalls:sys_exit_pread64",		process_exit_read },
1580		{ "syscalls:sys_exit_readv",		process_exit_read },
1581		{ "syscalls:sys_exit_preadv",		process_exit_read },
1582		{ "syscalls:sys_exit_write",		process_exit_write },
1583		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1584		{ "syscalls:sys_exit_writev",		process_exit_write },
1585		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1586		{ "syscalls:sys_exit_sync",		process_exit_sync },
1587		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1588		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1589		{ "syscalls:sys_exit_msync",		process_exit_sync },
1590		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1591		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1592		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1593		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1594		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1595		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1596		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1597		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1598		{ "syscalls:sys_exit_poll",		process_exit_poll },
1599		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1600		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1601		{ "syscalls:sys_exit_select",		process_exit_poll },
1602	};
1603	struct perf_data data = {
1604		.path  = input_name,
1605		.mode  = PERF_DATA_MODE_READ,
1606		.force = tchart->force,
1607	};
1608	struct perf_session *session;
 
1609	int ret = -EINVAL;
1610
1611	perf_tool__init(&tchart->tool, /*ordered_events=*/true);
1612	tchart->tool.comm		 = process_comm_event;
1613	tchart->tool.fork		 = process_fork_event;
1614	tchart->tool.exit		 = process_exit_event;
1615	tchart->tool.sample		 = process_sample_event;
1616
1617	session = perf_session__new(&data, &tchart->tool);
1618	if (IS_ERR(session))
1619		return PTR_ERR(session);
1620
1621	symbol__init(&session->header.env);
1622
1623	(void)perf_header__process_sections(&session->header,
1624					    perf_data__fd(session->data),
1625					    tchart,
1626					    process_header);
1627
1628	if (!perf_session__has_traces(session, "timechart record"))
1629		goto out_delete;
1630
1631	if (perf_session__set_tracepoints_handlers(session,
1632						   power_tracepoints)) {
1633		pr_err("Initializing session tracepoint handlers failed\n");
1634		goto out_delete;
1635	}
1636
1637	ret = perf_session__process_events(session);
1638	if (ret)
1639		goto out_delete;
1640
1641	end_sample_processing(tchart);
1642
1643	sort_pids(tchart);
1644
1645	write_svg_file(tchart, output_name);
1646
1647	pr_info("Written %2.1f seconds of trace to %s.\n",
1648		(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1649out_delete:
1650	perf_session__delete(session);
1651	return ret;
1652}
1653
1654static int timechart__io_record(int argc, const char **argv)
1655{
1656	unsigned int rec_argc, i;
1657	const char **rec_argv;
1658	const char **p;
1659	char *filter = NULL;
1660
1661	const char * const common_args[] = {
1662		"record", "-a", "-R", "-c", "1",
1663	};
1664	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1665
1666	const char * const disk_events[] = {
1667		"syscalls:sys_enter_read",
1668		"syscalls:sys_enter_pread64",
1669		"syscalls:sys_enter_readv",
1670		"syscalls:sys_enter_preadv",
1671		"syscalls:sys_enter_write",
1672		"syscalls:sys_enter_pwrite64",
1673		"syscalls:sys_enter_writev",
1674		"syscalls:sys_enter_pwritev",
1675		"syscalls:sys_enter_sync",
1676		"syscalls:sys_enter_sync_file_range",
1677		"syscalls:sys_enter_fsync",
1678		"syscalls:sys_enter_msync",
1679
1680		"syscalls:sys_exit_read",
1681		"syscalls:sys_exit_pread64",
1682		"syscalls:sys_exit_readv",
1683		"syscalls:sys_exit_preadv",
1684		"syscalls:sys_exit_write",
1685		"syscalls:sys_exit_pwrite64",
1686		"syscalls:sys_exit_writev",
1687		"syscalls:sys_exit_pwritev",
1688		"syscalls:sys_exit_sync",
1689		"syscalls:sys_exit_sync_file_range",
1690		"syscalls:sys_exit_fsync",
1691		"syscalls:sys_exit_msync",
1692	};
1693	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1694
1695	const char * const net_events[] = {
1696		"syscalls:sys_enter_recvfrom",
1697		"syscalls:sys_enter_recvmmsg",
1698		"syscalls:sys_enter_recvmsg",
1699		"syscalls:sys_enter_sendto",
1700		"syscalls:sys_enter_sendmsg",
1701		"syscalls:sys_enter_sendmmsg",
1702
1703		"syscalls:sys_exit_recvfrom",
1704		"syscalls:sys_exit_recvmmsg",
1705		"syscalls:sys_exit_recvmsg",
1706		"syscalls:sys_exit_sendto",
1707		"syscalls:sys_exit_sendmsg",
1708		"syscalls:sys_exit_sendmmsg",
1709	};
1710	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1711
1712	const char * const poll_events[] = {
1713		"syscalls:sys_enter_epoll_pwait",
1714		"syscalls:sys_enter_epoll_wait",
1715		"syscalls:sys_enter_poll",
1716		"syscalls:sys_enter_ppoll",
1717		"syscalls:sys_enter_pselect6",
1718		"syscalls:sys_enter_select",
1719
1720		"syscalls:sys_exit_epoll_pwait",
1721		"syscalls:sys_exit_epoll_wait",
1722		"syscalls:sys_exit_poll",
1723		"syscalls:sys_exit_ppoll",
1724		"syscalls:sys_exit_pselect6",
1725		"syscalls:sys_exit_select",
1726	};
1727	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1728
1729	rec_argc = common_args_nr +
1730		disk_events_nr * 4 +
1731		net_events_nr * 4 +
1732		poll_events_nr * 4 +
1733		argc;
1734	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1735
1736	if (rec_argv == NULL)
1737		return -ENOMEM;
1738
1739	if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1740		free(rec_argv);
1741		return -ENOMEM;
1742	}
1743
1744	p = rec_argv;
1745	for (i = 0; i < common_args_nr; i++)
1746		*p++ = strdup(common_args[i]);
1747
1748	for (i = 0; i < disk_events_nr; i++) {
1749		if (!is_valid_tracepoint(disk_events[i])) {
1750			rec_argc -= 4;
1751			continue;
1752		}
1753
1754		*p++ = "-e";
1755		*p++ = strdup(disk_events[i]);
1756		*p++ = "--filter";
1757		*p++ = filter;
1758	}
1759	for (i = 0; i < net_events_nr; i++) {
1760		if (!is_valid_tracepoint(net_events[i])) {
1761			rec_argc -= 4;
1762			continue;
1763		}
1764
1765		*p++ = "-e";
1766		*p++ = strdup(net_events[i]);
1767		*p++ = "--filter";
1768		*p++ = filter;
1769	}
1770	for (i = 0; i < poll_events_nr; i++) {
1771		if (!is_valid_tracepoint(poll_events[i])) {
1772			rec_argc -= 4;
1773			continue;
1774		}
1775
1776		*p++ = "-e";
1777		*p++ = strdup(poll_events[i]);
1778		*p++ = "--filter";
1779		*p++ = filter;
1780	}
1781
1782	for (i = 0; i < (unsigned int)argc; i++)
1783		*p++ = argv[i];
1784
1785	return cmd_record(rec_argc, rec_argv);
1786}
1787
1788
1789static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1790{
1791	unsigned int rec_argc, i, j;
1792	const char **rec_argv;
1793	const char **p;
1794	unsigned int record_elems;
1795
1796	const char * const common_args[] = {
1797		"record", "-a", "-R", "-c", "1",
1798	};
1799	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1800
1801	const char * const backtrace_args[] = {
1802		"-g",
1803	};
1804	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1805
1806	const char * const power_args[] = {
1807		"-e", "power:cpu_frequency",
1808		"-e", "power:cpu_idle",
1809	};
1810	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1811
1812	const char * const old_power_args[] = {
1813#ifdef SUPPORT_OLD_POWER_EVENTS
1814		"-e", "power:power_start",
1815		"-e", "power:power_end",
1816		"-e", "power:power_frequency",
1817#endif
1818	};
1819	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1820
1821	const char * const tasks_args[] = {
1822		"-e", "sched:sched_wakeup",
1823		"-e", "sched:sched_switch",
1824	};
1825	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1826
1827#ifdef SUPPORT_OLD_POWER_EVENTS
1828	if (!is_valid_tracepoint("power:cpu_idle") &&
1829	    is_valid_tracepoint("power:power_start")) {
1830		use_old_power_events = 1;
1831		power_args_nr = 0;
1832	} else {
1833		old_power_args_nr = 0;
1834	}
1835#endif
1836
1837	if (tchart->power_only)
1838		tasks_args_nr = 0;
1839
1840	if (tchart->tasks_only) {
1841		power_args_nr = 0;
1842		old_power_args_nr = 0;
1843	}
1844
1845	if (!tchart->with_backtrace)
1846		backtrace_args_no = 0;
1847
1848	record_elems = common_args_nr + tasks_args_nr +
1849		power_args_nr + old_power_args_nr + backtrace_args_no;
1850
1851	rec_argc = record_elems + argc;
1852	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1853
1854	if (rec_argv == NULL)
1855		return -ENOMEM;
1856
1857	p = rec_argv;
1858	for (i = 0; i < common_args_nr; i++)
1859		*p++ = strdup(common_args[i]);
1860
1861	for (i = 0; i < backtrace_args_no; i++)
1862		*p++ = strdup(backtrace_args[i]);
1863
1864	for (i = 0; i < tasks_args_nr; i++)
1865		*p++ = strdup(tasks_args[i]);
1866
1867	for (i = 0; i < power_args_nr; i++)
1868		*p++ = strdup(power_args[i]);
1869
1870	for (i = 0; i < old_power_args_nr; i++)
1871		*p++ = strdup(old_power_args[i]);
1872
1873	for (j = 0; j < (unsigned int)argc; j++)
1874		*p++ = argv[j];
1875
1876	return cmd_record(rec_argc, rec_argv);
1877}
1878
1879static int
1880parse_process(const struct option *opt __maybe_unused, const char *arg,
1881	      int __maybe_unused unset)
1882{
1883	if (arg)
1884		add_process_filter(arg);
1885	return 0;
1886}
1887
1888static int
1889parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1890		int __maybe_unused unset)
1891{
1892	unsigned long duration = strtoul(arg, NULL, 0);
1893
1894	if (svg_highlight || svg_highlight_name)
1895		return -1;
1896
1897	if (duration)
1898		svg_highlight = duration;
1899	else
1900		svg_highlight_name = strdup(arg);
1901
1902	return 0;
1903}
1904
1905static int
1906parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1907{
1908	char unit = 'n';
1909	u64 *value = opt->value;
1910
1911	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1912		switch (unit) {
1913		case 'm':
1914			*value *= NSEC_PER_MSEC;
1915			break;
1916		case 'u':
1917			*value *= NSEC_PER_USEC;
1918			break;
1919		case 'n':
1920			break;
1921		default:
1922			return -1;
1923		}
1924	}
1925
1926	return 0;
1927}
1928
1929int cmd_timechart(int argc, const char **argv)
1930{
1931	struct timechart tchart = {
 
 
 
 
 
 
 
1932		.proc_num = 15,
1933		.min_time = NSEC_PER_MSEC,
1934		.merge_dist = 1000,
1935	};
1936	const char *output_name = "output.svg";
1937	const struct option timechart_common_options[] = {
1938	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1939	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1940	OPT_END()
1941	};
1942	const struct option timechart_options[] = {
1943	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1944	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1945	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1946	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1947		      "highlight tasks. Pass duration in ns or process name.",
1948		       parse_highlight),
1949	OPT_CALLBACK('p', "process", NULL, "process",
1950		      "process selector. Pass a pid or process name.",
1951		       parse_process),
1952	OPT_CALLBACK(0, "symfs", NULL, "directory",
1953		     "Look for files with symbols relative to this directory",
1954		     symbol__config_symfs),
1955	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1956		    "min. number of tasks to print"),
1957	OPT_BOOLEAN('t', "topology", &tchart.topology,
1958		    "sort CPUs according to topology"),
1959	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1960		    "skip EAGAIN errors"),
1961	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1962		     "all IO faster than min-time will visually appear longer",
1963		     parse_time),
1964	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1965		     "merge events that are merge-dist us apart",
1966		     parse_time),
1967	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1968	OPT_PARENT(timechart_common_options),
1969	};
1970	const char * const timechart_subcommands[] = { "record", NULL };
1971	const char *timechart_usage[] = {
1972		"perf timechart [<options>] {record}",
1973		NULL
1974	};
1975	const struct option timechart_record_options[] = {
1976	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1977		    "record only IO data"),
1978	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1979	OPT_PARENT(timechart_common_options),
1980	};
1981	const char * const timechart_record_usage[] = {
1982		"perf timechart record [<options>]",
1983		NULL
1984	};
1985	int ret;
1986
1987	cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1988	if (!cpus_cstate_start_times)
1989		return -ENOMEM;
1990	cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1991	if (!cpus_cstate_state) {
1992		ret = -ENOMEM;
1993		goto out;
1994	}
1995	cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1996	if (!cpus_pstate_start_times) {
1997		ret = -ENOMEM;
1998		goto out;
1999	}
2000	cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2001	if (!cpus_pstate_state) {
2002		ret = -ENOMEM;
2003		goto out;
2004	}
2005
2006	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2007			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2008
2009	if (tchart.power_only && tchart.tasks_only) {
2010		pr_err("-P and -T options cannot be used at the same time.\n");
2011		ret = -1;
2012		goto out;
2013	}
2014
2015	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2016		argc = parse_options(argc, argv, timechart_record_options,
2017				     timechart_record_usage,
2018				     PARSE_OPT_STOP_AT_NON_OPTION);
2019
2020		if (tchart.power_only && tchart.tasks_only) {
2021			pr_err("-P and -T options cannot be used at the same time.\n");
2022			ret = -1;
2023			goto out;
2024		}
2025
2026		if (tchart.io_only)
2027			ret = timechart__io_record(argc, argv);
2028		else
2029			ret = timechart__record(&tchart, argc, argv);
2030		goto out;
2031	} else if (argc)
2032		usage_with_options(timechart_usage, timechart_options);
2033
2034	setup_pager();
2035
2036	ret = __cmd_timechart(&tchart, output_name);
2037out:
2038	zfree(&cpus_cstate_start_times);
2039	zfree(&cpus_cstate_state);
2040	zfree(&cpus_pstate_start_times);
2041	zfree(&cpus_pstate_state);
2042	return ret;
2043}