Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// soc-ops.c  --  Generic ASoC operations
   4//
   5// Copyright 2005 Wolfson Microelectronics PLC.
   6// Copyright 2005 Openedhand Ltd.
   7// Copyright (C) 2010 Slimlogic Ltd.
   8// Copyright (C) 2010 Texas Instruments Inc.
   9//
  10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
  11//         with code, comments and ideas from :-
  12//         Richard Purdie <richard@openedhand.com>
  13
 
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/init.h>
  17#include <linux/pm.h>
  18#include <linux/bitops.h>
  19#include <linux/ctype.h>
  20#include <linux/slab.h>
  21#include <sound/core.h>
  22#include <sound/jack.h>
  23#include <sound/pcm.h>
  24#include <sound/pcm_params.h>
  25#include <sound/soc.h>
  26#include <sound/soc-dpcm.h>
  27#include <sound/initval.h>
  28
  29/**
  30 * snd_soc_info_enum_double - enumerated double mixer info callback
  31 * @kcontrol: mixer control
  32 * @uinfo: control element information
  33 *
  34 * Callback to provide information about a double enumerated
  35 * mixer control.
  36 *
  37 * Returns 0 for success.
  38 */
  39int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
  40	struct snd_ctl_elem_info *uinfo)
  41{
  42	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  43
  44	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
  45				 e->items, e->texts);
  46}
  47EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
  48
  49/**
  50 * snd_soc_get_enum_double - enumerated double mixer get callback
  51 * @kcontrol: mixer control
  52 * @ucontrol: control element information
  53 *
  54 * Callback to get the value of a double enumerated mixer.
  55 *
  56 * Returns 0 for success.
  57 */
  58int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
  59	struct snd_ctl_elem_value *ucontrol)
  60{
  61	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  62	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  63	unsigned int val, item;
  64	unsigned int reg_val;
  65
  66	reg_val = snd_soc_component_read(component, e->reg);
  67	val = (reg_val >> e->shift_l) & e->mask;
  68	item = snd_soc_enum_val_to_item(e, val);
  69	ucontrol->value.enumerated.item[0] = item;
  70	if (e->shift_l != e->shift_r) {
  71		val = (reg_val >> e->shift_r) & e->mask;
  72		item = snd_soc_enum_val_to_item(e, val);
  73		ucontrol->value.enumerated.item[1] = item;
  74	}
  75
  76	return 0;
  77}
  78EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
  79
  80/**
  81 * snd_soc_put_enum_double - enumerated double mixer put callback
  82 * @kcontrol: mixer control
  83 * @ucontrol: control element information
  84 *
  85 * Callback to set the value of a double enumerated mixer.
  86 *
  87 * Returns 0 for success.
  88 */
  89int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
  90	struct snd_ctl_elem_value *ucontrol)
  91{
  92	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  93	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  94	unsigned int *item = ucontrol->value.enumerated.item;
  95	unsigned int val;
  96	unsigned int mask;
  97
  98	if (item[0] >= e->items)
  99		return -EINVAL;
 100	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
 101	mask = e->mask << e->shift_l;
 102	if (e->shift_l != e->shift_r) {
 103		if (item[1] >= e->items)
 104			return -EINVAL;
 105		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
 106		mask |= e->mask << e->shift_r;
 107	}
 108
 109	return snd_soc_component_update_bits(component, e->reg, mask, val);
 110}
 111EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
 112
 113/**
 114 * snd_soc_read_signed - Read a codec register and interpret as signed value
 115 * @component: component
 116 * @reg: Register to read
 117 * @mask: Mask to use after shifting the register value
 118 * @shift: Right shift of register value
 119 * @sign_bit: Bit that describes if a number is negative or not.
 120 * @signed_val: Pointer to where the read value should be stored
 121 *
 122 * This functions reads a codec register. The register value is shifted right
 123 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
 124 * the given registervalue into a signed integer if sign_bit is non-zero.
 125 *
 126 * Returns 0 on sucess, otherwise an error value
 127 */
 128static int snd_soc_read_signed(struct snd_soc_component *component,
 129	unsigned int reg, unsigned int mask, unsigned int shift,
 130	unsigned int sign_bit, int *signed_val)
 131{
 132	int ret;
 133	unsigned int val;
 134
 135	val = snd_soc_component_read(component, reg);
 136	val = (val >> shift) & mask;
 137
 138	if (!sign_bit) {
 139		*signed_val = val;
 140		return 0;
 141	}
 142
 143	/* non-negative number */
 144	if (!(val & BIT(sign_bit))) {
 145		*signed_val = val;
 146		return 0;
 147	}
 148
 149	ret = val;
 150
 151	/*
 152	 * The register most probably does not contain a full-sized int.
 153	 * Instead we have an arbitrary number of bits in a signed
 154	 * representation which has to be translated into a full-sized int.
 155	 * This is done by filling up all bits above the sign-bit.
 156	 */
 157	ret |= ~((int)(BIT(sign_bit) - 1));
 158
 159	*signed_val = ret;
 160
 161	return 0;
 162}
 163
 164/**
 165 * snd_soc_info_volsw - single mixer info callback
 166 * @kcontrol: mixer control
 167 * @uinfo: control element information
 168 *
 169 * Callback to provide information about a single mixer control, or a double
 170 * mixer control that spans 2 registers.
 171 *
 172 * Returns 0 for success.
 173 */
 174int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
 175	struct snd_ctl_elem_info *uinfo)
 176{
 177	struct soc_mixer_control *mc =
 178		(struct soc_mixer_control *)kcontrol->private_value;
 179	const char *vol_string = NULL;
 180	int max;
 181
 182	max = uinfo->value.integer.max = mc->max - mc->min;
 183	if (mc->platform_max && mc->platform_max < max)
 184		max = mc->platform_max;
 185
 186	if (max == 1) {
 187		/* Even two value controls ending in Volume should always be integer */
 188		vol_string = strstr(kcontrol->id.name, " Volume");
 189		if (vol_string && !strcmp(vol_string, " Volume"))
 190			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 191		else
 192			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 193	} else {
 194		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 195	}
 196
 197	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 198	uinfo->value.integer.min = 0;
 199	uinfo->value.integer.max = max;
 200
 201	return 0;
 202}
 203EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
 204
 205/**
 206 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
 207 * @kcontrol: mixer control
 208 * @uinfo: control element information
 209 *
 210 * Callback to provide information about a single mixer control, or a double
 211 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
 212 * have a range that represents both positive and negative values either side
 213 * of zero but without a sign bit. min is the minimum register value, max is
 214 * the number of steps.
 215 *
 216 * Returns 0 for success.
 217 */
 218int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
 219			  struct snd_ctl_elem_info *uinfo)
 220{
 221	struct soc_mixer_control *mc =
 222		(struct soc_mixer_control *)kcontrol->private_value;
 223	int max;
 224
 225	if (mc->platform_max)
 226		max = mc->platform_max;
 227	else
 228		max = mc->max;
 229
 230	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
 231		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 232	else
 233		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 234
 235	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 236	uinfo->value.integer.min = 0;
 237	uinfo->value.integer.max = max;
 238
 239	return 0;
 240}
 241EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
 242
 243/**
 244 * snd_soc_get_volsw - single mixer get callback
 245 * @kcontrol: mixer control
 246 * @ucontrol: control element information
 247 *
 248 * Callback to get the value of a single mixer control, or a double mixer
 249 * control that spans 2 registers.
 250 *
 251 * Returns 0 for success.
 252 */
 253int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
 254	struct snd_ctl_elem_value *ucontrol)
 255{
 256	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 257	struct soc_mixer_control *mc =
 258		(struct soc_mixer_control *)kcontrol->private_value;
 259	unsigned int reg = mc->reg;
 260	unsigned int reg2 = mc->rreg;
 261	unsigned int shift = mc->shift;
 262	unsigned int rshift = mc->rshift;
 263	int max = mc->max;
 264	int min = mc->min;
 265	int sign_bit = mc->sign_bit;
 266	unsigned int mask = (1 << fls(max)) - 1;
 267	unsigned int invert = mc->invert;
 268	int val;
 269	int ret;
 270
 271	if (sign_bit)
 272		mask = BIT(sign_bit + 1) - 1;
 273
 274	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
 275	if (ret)
 276		return ret;
 277
 278	ucontrol->value.integer.value[0] = val - min;
 279	if (invert)
 280		ucontrol->value.integer.value[0] =
 281			max - ucontrol->value.integer.value[0];
 282
 283	if (snd_soc_volsw_is_stereo(mc)) {
 284		if (reg == reg2)
 285			ret = snd_soc_read_signed(component, reg, mask, rshift,
 286				sign_bit, &val);
 287		else
 288			ret = snd_soc_read_signed(component, reg2, mask, shift,
 289				sign_bit, &val);
 290		if (ret)
 291			return ret;
 292
 293		ucontrol->value.integer.value[1] = val - min;
 294		if (invert)
 295			ucontrol->value.integer.value[1] =
 296				max - ucontrol->value.integer.value[1];
 297	}
 298
 299	return 0;
 300}
 301EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
 302
 303/**
 304 * snd_soc_put_volsw - single mixer put callback
 305 * @kcontrol: mixer control
 306 * @ucontrol: control element information
 307 *
 308 * Callback to set the value of a single mixer control, or a double mixer
 309 * control that spans 2 registers.
 310 *
 311 * Returns 0 for success.
 312 */
 313int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
 314	struct snd_ctl_elem_value *ucontrol)
 315{
 316	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 317	struct soc_mixer_control *mc =
 318		(struct soc_mixer_control *)kcontrol->private_value;
 319	unsigned int reg = mc->reg;
 320	unsigned int reg2 = mc->rreg;
 321	unsigned int shift = mc->shift;
 322	unsigned int rshift = mc->rshift;
 323	int max = mc->max;
 324	int min = mc->min;
 325	unsigned int sign_bit = mc->sign_bit;
 326	unsigned int mask = (1 << fls(max)) - 1;
 327	unsigned int invert = mc->invert;
 328	int err, ret;
 329	bool type_2r = false;
 330	unsigned int val2 = 0;
 331	unsigned int val, val_mask;
 332
 333	if (sign_bit)
 334		mask = BIT(sign_bit + 1) - 1;
 335
 336	if (ucontrol->value.integer.value[0] < 0)
 337		return -EINVAL;
 338	val = ucontrol->value.integer.value[0];
 339	if (mc->platform_max && ((int)val + min) > mc->platform_max)
 340		return -EINVAL;
 341	if (val > max - min)
 342		return -EINVAL;
 343	val = (val + min) & mask;
 344	if (invert)
 345		val = max - val;
 346	val_mask = mask << shift;
 347	val = val << shift;
 348	if (snd_soc_volsw_is_stereo(mc)) {
 349		if (ucontrol->value.integer.value[1] < 0)
 350			return -EINVAL;
 351		val2 = ucontrol->value.integer.value[1];
 352		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
 353			return -EINVAL;
 354		if (val2 > max - min)
 355			return -EINVAL;
 356		val2 = (val2 + min) & mask;
 357		if (invert)
 358			val2 = max - val2;
 359		if (reg == reg2) {
 360			val_mask |= mask << rshift;
 361			val |= val2 << rshift;
 362		} else {
 363			val2 = val2 << shift;
 364			type_2r = true;
 365		}
 366	}
 367	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 368	if (err < 0)
 369		return err;
 370	ret = err;
 371
 372	if (type_2r) {
 373		err = snd_soc_component_update_bits(component, reg2, val_mask,
 374						    val2);
 375		/* Don't discard any error code or drop change flag */
 376		if (ret == 0 || err < 0) {
 377			ret = err;
 378		}
 379	}
 380
 381	return ret;
 382}
 383EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
 384
 385/**
 386 * snd_soc_get_volsw_sx - single mixer get callback
 387 * @kcontrol: mixer control
 388 * @ucontrol: control element information
 389 *
 390 * Callback to get the value of a single mixer control, or a double mixer
 391 * control that spans 2 registers.
 392 *
 393 * Returns 0 for success.
 394 */
 395int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
 396		      struct snd_ctl_elem_value *ucontrol)
 397{
 398	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 399	struct soc_mixer_control *mc =
 400	    (struct soc_mixer_control *)kcontrol->private_value;
 401	unsigned int reg = mc->reg;
 402	unsigned int reg2 = mc->rreg;
 403	unsigned int shift = mc->shift;
 404	unsigned int rshift = mc->rshift;
 405	int max = mc->max;
 406	int min = mc->min;
 407	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 408	unsigned int val;
 409
 410	val = snd_soc_component_read(component, reg);
 411	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
 412
 413	if (snd_soc_volsw_is_stereo(mc)) {
 414		val = snd_soc_component_read(component, reg2);
 415		val = ((val >> rshift) - min) & mask;
 416		ucontrol->value.integer.value[1] = val;
 417	}
 418
 419	return 0;
 420}
 421EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
 422
 423/**
 424 * snd_soc_put_volsw_sx - double mixer set callback
 425 * @kcontrol: mixer control
 426 * @ucontrol: control element information
 427 *
 428 * Callback to set the value of a double mixer control that spans 2 registers.
 429 *
 430 * Returns 0 for success.
 431 */
 432int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
 433			 struct snd_ctl_elem_value *ucontrol)
 434{
 435	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 436	struct soc_mixer_control *mc =
 437	    (struct soc_mixer_control *)kcontrol->private_value;
 438
 439	unsigned int reg = mc->reg;
 440	unsigned int reg2 = mc->rreg;
 441	unsigned int shift = mc->shift;
 442	unsigned int rshift = mc->rshift;
 443	int max = mc->max;
 444	int min = mc->min;
 445	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 446	int err = 0;
 447	int ret;
 448	unsigned int val, val_mask;
 449
 450	if (ucontrol->value.integer.value[0] < 0)
 451		return -EINVAL;
 452	val = ucontrol->value.integer.value[0];
 453	if (mc->platform_max && val > mc->platform_max)
 454		return -EINVAL;
 455	if (val > max)
 456		return -EINVAL;
 457	val_mask = mask << shift;
 458	val = (val + min) & mask;
 459	val = val << shift;
 460
 461	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 462	if (err < 0)
 463		return err;
 464	ret = err;
 465
 466	if (snd_soc_volsw_is_stereo(mc)) {
 467		unsigned int val2 = ucontrol->value.integer.value[1];
 468
 469		if (mc->platform_max && val2 > mc->platform_max)
 470			return -EINVAL;
 471		if (val2 > max)
 472			return -EINVAL;
 473
 474		val_mask = mask << rshift;
 475		val2 = (val2 + min) & mask;
 476		val2 = val2 << rshift;
 477
 478		err = snd_soc_component_update_bits(component, reg2, val_mask,
 479			val2);
 480
 481		/* Don't discard any error code or drop change flag */
 482		if (ret == 0 || err < 0) {
 483			ret = err;
 484		}
 485	}
 486	return ret;
 487}
 488EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
 489
 490/**
 491 * snd_soc_info_volsw_range - single mixer info callback with range.
 492 * @kcontrol: mixer control
 493 * @uinfo: control element information
 494 *
 495 * Callback to provide information, within a range, about a single
 496 * mixer control.
 497 *
 498 * returns 0 for success.
 499 */
 500int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
 501	struct snd_ctl_elem_info *uinfo)
 502{
 503	struct soc_mixer_control *mc =
 504		(struct soc_mixer_control *)kcontrol->private_value;
 505	int platform_max;
 506	int min = mc->min;
 507
 508	if (!mc->platform_max)
 509		mc->platform_max = mc->max;
 510	platform_max = mc->platform_max;
 511
 512	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 513	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 514	uinfo->value.integer.min = 0;
 515	uinfo->value.integer.max = platform_max - min;
 516
 517	return 0;
 518}
 519EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
 520
 521/**
 522 * snd_soc_put_volsw_range - single mixer put value callback with range.
 523 * @kcontrol: mixer control
 524 * @ucontrol: control element information
 525 *
 526 * Callback to set the value, within a range, for a single mixer control.
 527 *
 528 * Returns 0 for success.
 529 */
 530int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
 531	struct snd_ctl_elem_value *ucontrol)
 532{
 533	struct soc_mixer_control *mc =
 534		(struct soc_mixer_control *)kcontrol->private_value;
 535	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 536	unsigned int reg = mc->reg;
 537	unsigned int rreg = mc->rreg;
 538	unsigned int shift = mc->shift;
 539	int min = mc->min;
 540	int max = mc->max;
 541	unsigned int mask = (1 << fls(max)) - 1;
 542	unsigned int invert = mc->invert;
 543	unsigned int val, val_mask;
 544	int err, ret, tmp;
 545
 546	tmp = ucontrol->value.integer.value[0];
 547	if (tmp < 0)
 548		return -EINVAL;
 549	if (mc->platform_max && tmp > mc->platform_max)
 550		return -EINVAL;
 551	if (tmp > mc->max - mc->min)
 552		return -EINVAL;
 553
 554	if (invert)
 555		val = (max - ucontrol->value.integer.value[0]) & mask;
 556	else
 557		val = ((ucontrol->value.integer.value[0] + min) & mask);
 558	val_mask = mask << shift;
 559	val = val << shift;
 560
 561	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 562	if (err < 0)
 563		return err;
 564	ret = err;
 565
 566	if (snd_soc_volsw_is_stereo(mc)) {
 567		tmp = ucontrol->value.integer.value[1];
 568		if (tmp < 0)
 569			return -EINVAL;
 570		if (mc->platform_max && tmp > mc->platform_max)
 571			return -EINVAL;
 572		if (tmp > mc->max - mc->min)
 573			return -EINVAL;
 574
 575		if (invert)
 576			val = (max - ucontrol->value.integer.value[1]) & mask;
 577		else
 578			val = ((ucontrol->value.integer.value[1] + min) & mask);
 579		val_mask = mask << shift;
 580		val = val << shift;
 581
 582		err = snd_soc_component_update_bits(component, rreg, val_mask,
 583			val);
 584		/* Don't discard any error code or drop change flag */
 585		if (ret == 0 || err < 0) {
 586			ret = err;
 587		}
 588	}
 589
 590	return ret;
 591}
 592EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
 593
 594/**
 595 * snd_soc_get_volsw_range - single mixer get callback with range
 596 * @kcontrol: mixer control
 597 * @ucontrol: control element information
 598 *
 599 * Callback to get the value, within a range, of a single mixer control.
 600 *
 601 * Returns 0 for success.
 602 */
 603int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
 604	struct snd_ctl_elem_value *ucontrol)
 605{
 606	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 607	struct soc_mixer_control *mc =
 608		(struct soc_mixer_control *)kcontrol->private_value;
 609	unsigned int reg = mc->reg;
 610	unsigned int rreg = mc->rreg;
 611	unsigned int shift = mc->shift;
 612	int min = mc->min;
 613	int max = mc->max;
 614	unsigned int mask = (1 << fls(max)) - 1;
 615	unsigned int invert = mc->invert;
 616	unsigned int val;
 617
 618	val = snd_soc_component_read(component, reg);
 619	ucontrol->value.integer.value[0] = (val >> shift) & mask;
 620	if (invert)
 621		ucontrol->value.integer.value[0] =
 622			max - ucontrol->value.integer.value[0];
 623	else
 624		ucontrol->value.integer.value[0] =
 625			ucontrol->value.integer.value[0] - min;
 626
 627	if (snd_soc_volsw_is_stereo(mc)) {
 628		val = snd_soc_component_read(component, rreg);
 629		ucontrol->value.integer.value[1] = (val >> shift) & mask;
 630		if (invert)
 631			ucontrol->value.integer.value[1] =
 632				max - ucontrol->value.integer.value[1];
 633		else
 634			ucontrol->value.integer.value[1] =
 635				ucontrol->value.integer.value[1] - min;
 636	}
 637
 638	return 0;
 639}
 640EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
 641
 642/**
 643 * snd_soc_limit_volume - Set new limit to an existing volume control.
 644 *
 645 * @card: where to look for the control
 646 * @name: Name of the control
 647 * @max: new maximum limit
 648 *
 649 * Return 0 for success, else error.
 650 */
 651int snd_soc_limit_volume(struct snd_soc_card *card,
 652	const char *name, int max)
 653{
 654	struct snd_kcontrol *kctl;
 655	int ret = -EINVAL;
 656
 657	/* Sanity check for name and max */
 658	if (unlikely(!name || max <= 0))
 659		return -EINVAL;
 660
 661	kctl = snd_soc_card_get_kcontrol(card, name);
 662	if (kctl) {
 663		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
 664		if (max <= mc->max) {
 665			mc->platform_max = max;
 666			ret = 0;
 667		}
 668	}
 669	return ret;
 670}
 671EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
 672
 673int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
 674		       struct snd_ctl_elem_info *uinfo)
 675{
 676	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 677	struct soc_bytes *params = (void *)kcontrol->private_value;
 678
 679	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 680	uinfo->count = params->num_regs * component->val_bytes;
 681
 682	return 0;
 683}
 684EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
 685
 686int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
 687		      struct snd_ctl_elem_value *ucontrol)
 688{
 689	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 690	struct soc_bytes *params = (void *)kcontrol->private_value;
 691	int ret;
 692
 693	if (component->regmap)
 694		ret = regmap_raw_read(component->regmap, params->base,
 695				      ucontrol->value.bytes.data,
 696				      params->num_regs * component->val_bytes);
 697	else
 698		ret = -EINVAL;
 699
 700	/* Hide any masked bytes to ensure consistent data reporting */
 701	if (ret == 0 && params->mask) {
 702		switch (component->val_bytes) {
 703		case 1:
 704			ucontrol->value.bytes.data[0] &= ~params->mask;
 705			break;
 706		case 2:
 707			((u16 *)(&ucontrol->value.bytes.data))[0]
 708				&= cpu_to_be16(~params->mask);
 709			break;
 710		case 4:
 711			((u32 *)(&ucontrol->value.bytes.data))[0]
 712				&= cpu_to_be32(~params->mask);
 713			break;
 714		default:
 715			return -EINVAL;
 716		}
 717	}
 718
 719	return ret;
 720}
 721EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
 722
 723int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
 724		      struct snd_ctl_elem_value *ucontrol)
 725{
 726	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 727	struct soc_bytes *params = (void *)kcontrol->private_value;
 728	int ret, len;
 729	unsigned int val, mask;
 730	void *data;
 731
 732	if (!component->regmap || !params->num_regs)
 733		return -EINVAL;
 734
 735	len = params->num_regs * component->val_bytes;
 736
 737	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
 
 738	if (!data)
 739		return -ENOMEM;
 740
 741	/*
 742	 * If we've got a mask then we need to preserve the register
 743	 * bits.  We shouldn't modify the incoming data so take a
 744	 * copy.
 745	 */
 746	if (params->mask) {
 747		ret = regmap_read(component->regmap, params->base, &val);
 748		if (ret != 0)
 749			goto out;
 750
 751		val &= params->mask;
 752
 753		switch (component->val_bytes) {
 754		case 1:
 755			((u8 *)data)[0] &= ~params->mask;
 756			((u8 *)data)[0] |= val;
 757			break;
 758		case 2:
 759			mask = ~params->mask;
 760			ret = regmap_parse_val(component->regmap,
 761							&mask, &mask);
 762			if (ret != 0)
 763				goto out;
 764
 765			((u16 *)data)[0] &= mask;
 766
 767			ret = regmap_parse_val(component->regmap,
 768							&val, &val);
 769			if (ret != 0)
 770				goto out;
 771
 772			((u16 *)data)[0] |= val;
 773			break;
 774		case 4:
 775			mask = ~params->mask;
 776			ret = regmap_parse_val(component->regmap,
 777							&mask, &mask);
 778			if (ret != 0)
 779				goto out;
 780
 781			((u32 *)data)[0] &= mask;
 782
 783			ret = regmap_parse_val(component->regmap,
 784							&val, &val);
 785			if (ret != 0)
 786				goto out;
 787
 788			((u32 *)data)[0] |= val;
 789			break;
 790		default:
 791			ret = -EINVAL;
 792			goto out;
 793		}
 794	}
 795
 796	ret = regmap_raw_write(component->regmap, params->base,
 797			       data, len);
 798
 799out:
 800	kfree(data);
 801
 802	return ret;
 803}
 804EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
 805
 806int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
 807			struct snd_ctl_elem_info *ucontrol)
 808{
 809	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 810
 811	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 812	ucontrol->count = params->max;
 813
 814	return 0;
 815}
 816EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
 817
 818int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
 819				unsigned int size, unsigned int __user *tlv)
 820{
 821	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 822	unsigned int count = size < params->max ? size : params->max;
 823	int ret = -ENXIO;
 824
 825	switch (op_flag) {
 826	case SNDRV_CTL_TLV_OP_READ:
 827		if (params->get)
 828			ret = params->get(kcontrol, tlv, count);
 829		break;
 830	case SNDRV_CTL_TLV_OP_WRITE:
 831		if (params->put)
 832			ret = params->put(kcontrol, tlv, count);
 833		break;
 834	}
 835	return ret;
 836}
 837EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
 838
 839/**
 840 * snd_soc_info_xr_sx - signed multi register info callback
 841 * @kcontrol: mreg control
 842 * @uinfo: control element information
 843 *
 844 * Callback to provide information of a control that can
 845 * span multiple codec registers which together
 846 * forms a single signed value in a MSB/LSB manner.
 847 *
 848 * Returns 0 for success.
 849 */
 850int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
 851	struct snd_ctl_elem_info *uinfo)
 852{
 853	struct soc_mreg_control *mc =
 854		(struct soc_mreg_control *)kcontrol->private_value;
 855	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 856	uinfo->count = 1;
 857	uinfo->value.integer.min = mc->min;
 858	uinfo->value.integer.max = mc->max;
 859
 860	return 0;
 861}
 862EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
 863
 864/**
 865 * snd_soc_get_xr_sx - signed multi register get callback
 866 * @kcontrol: mreg control
 867 * @ucontrol: control element information
 868 *
 869 * Callback to get the value of a control that can span
 870 * multiple codec registers which together forms a single
 871 * signed value in a MSB/LSB manner. The control supports
 872 * specifying total no of bits used to allow for bitfields
 873 * across the multiple codec registers.
 874 *
 875 * Returns 0 for success.
 876 */
 877int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
 878	struct snd_ctl_elem_value *ucontrol)
 879{
 880	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 881	struct soc_mreg_control *mc =
 882		(struct soc_mreg_control *)kcontrol->private_value;
 883	unsigned int regbase = mc->regbase;
 884	unsigned int regcount = mc->regcount;
 885	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 886	unsigned int regwmask = (1UL<<regwshift)-1;
 887	unsigned int invert = mc->invert;
 888	unsigned long mask = (1UL<<mc->nbits)-1;
 889	long min = mc->min;
 890	long max = mc->max;
 891	long val = 0;
 892	unsigned int i;
 893
 894	for (i = 0; i < regcount; i++) {
 895		unsigned int regval = snd_soc_component_read(component, regbase+i);
 896		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
 897	}
 898	val &= mask;
 899	if (min < 0 && val > max)
 900		val |= ~mask;
 901	if (invert)
 902		val = max - val;
 903	ucontrol->value.integer.value[0] = val;
 904
 905	return 0;
 906}
 907EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
 908
 909/**
 910 * snd_soc_put_xr_sx - signed multi register get callback
 911 * @kcontrol: mreg control
 912 * @ucontrol: control element information
 913 *
 914 * Callback to set the value of a control that can span
 915 * multiple codec registers which together forms a single
 916 * signed value in a MSB/LSB manner. The control supports
 917 * specifying total no of bits used to allow for bitfields
 918 * across the multiple codec registers.
 919 *
 920 * Returns 0 for success.
 921 */
 922int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
 923	struct snd_ctl_elem_value *ucontrol)
 924{
 925	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 926	struct soc_mreg_control *mc =
 927		(struct soc_mreg_control *)kcontrol->private_value;
 928	unsigned int regbase = mc->regbase;
 929	unsigned int regcount = mc->regcount;
 930	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 931	unsigned int regwmask = (1UL<<regwshift)-1;
 932	unsigned int invert = mc->invert;
 933	unsigned long mask = (1UL<<mc->nbits)-1;
 934	long max = mc->max;
 935	long val = ucontrol->value.integer.value[0];
 936	int ret = 0;
 937	unsigned int i;
 938
 939	if (val < mc->min || val > mc->max)
 940		return -EINVAL;
 941	if (invert)
 942		val = max - val;
 943	val &= mask;
 944	for (i = 0; i < regcount; i++) {
 945		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
 946		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
 947		int err = snd_soc_component_update_bits(component, regbase+i,
 948							regmask, regval);
 949		if (err < 0)
 950			return err;
 951		if (err > 0)
 952			ret = err;
 953	}
 954
 955	return ret;
 956}
 957EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
 958
 959/**
 960 * snd_soc_get_strobe - strobe get callback
 961 * @kcontrol: mixer control
 962 * @ucontrol: control element information
 963 *
 964 * Callback get the value of a strobe mixer control.
 965 *
 966 * Returns 0 for success.
 967 */
 968int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
 969	struct snd_ctl_elem_value *ucontrol)
 970{
 971	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 972	struct soc_mixer_control *mc =
 973		(struct soc_mixer_control *)kcontrol->private_value;
 974	unsigned int reg = mc->reg;
 975	unsigned int shift = mc->shift;
 976	unsigned int mask = 1 << shift;
 977	unsigned int invert = mc->invert != 0;
 978	unsigned int val;
 979
 980	val = snd_soc_component_read(component, reg);
 981	val &= mask;
 982
 983	if (shift != 0 && val != 0)
 984		val = val >> shift;
 985	ucontrol->value.enumerated.item[0] = val ^ invert;
 986
 987	return 0;
 988}
 989EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
 990
 991/**
 992 * snd_soc_put_strobe - strobe put callback
 993 * @kcontrol: mixer control
 994 * @ucontrol: control element information
 995 *
 996 * Callback strobe a register bit to high then low (or the inverse)
 997 * in one pass of a single mixer enum control.
 998 *
 999 * Returns 1 for success.
1000 */
1001int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1002	struct snd_ctl_elem_value *ucontrol)
1003{
1004	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1005	struct soc_mixer_control *mc =
1006		(struct soc_mixer_control *)kcontrol->private_value;
1007	unsigned int reg = mc->reg;
1008	unsigned int shift = mc->shift;
1009	unsigned int mask = 1 << shift;
1010	unsigned int invert = mc->invert != 0;
1011	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1012	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1013	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1014	int err;
1015
1016	err = snd_soc_component_update_bits(component, reg, mask, val1);
1017	if (err < 0)
1018		return err;
1019
1020	return snd_soc_component_update_bits(component, reg, mask, val2);
1021}
1022EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// soc-ops.c  --  Generic ASoC operations
   4//
   5// Copyright 2005 Wolfson Microelectronics PLC.
   6// Copyright 2005 Openedhand Ltd.
   7// Copyright (C) 2010 Slimlogic Ltd.
   8// Copyright (C) 2010 Texas Instruments Inc.
   9//
  10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
  11//         with code, comments and ideas from :-
  12//         Richard Purdie <richard@openedhand.com>
  13
  14#include <linux/cleanup.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/init.h>
  18#include <linux/pm.h>
  19#include <linux/bitops.h>
  20#include <linux/ctype.h>
  21#include <linux/slab.h>
  22#include <sound/core.h>
  23#include <sound/jack.h>
  24#include <sound/pcm.h>
  25#include <sound/pcm_params.h>
  26#include <sound/soc.h>
  27#include <sound/soc-dpcm.h>
  28#include <sound/initval.h>
  29
  30/**
  31 * snd_soc_info_enum_double - enumerated double mixer info callback
  32 * @kcontrol: mixer control
  33 * @uinfo: control element information
  34 *
  35 * Callback to provide information about a double enumerated
  36 * mixer control.
  37 *
  38 * Returns 0 for success.
  39 */
  40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
  41	struct snd_ctl_elem_info *uinfo)
  42{
  43	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  44
  45	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
  46				 e->items, e->texts);
  47}
  48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
  49
  50/**
  51 * snd_soc_get_enum_double - enumerated double mixer get callback
  52 * @kcontrol: mixer control
  53 * @ucontrol: control element information
  54 *
  55 * Callback to get the value of a double enumerated mixer.
  56 *
  57 * Returns 0 for success.
  58 */
  59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
  60	struct snd_ctl_elem_value *ucontrol)
  61{
  62	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  63	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  64	unsigned int val, item;
  65	unsigned int reg_val;
  66
  67	reg_val = snd_soc_component_read(component, e->reg);
  68	val = (reg_val >> e->shift_l) & e->mask;
  69	item = snd_soc_enum_val_to_item(e, val);
  70	ucontrol->value.enumerated.item[0] = item;
  71	if (e->shift_l != e->shift_r) {
  72		val = (reg_val >> e->shift_r) & e->mask;
  73		item = snd_soc_enum_val_to_item(e, val);
  74		ucontrol->value.enumerated.item[1] = item;
  75	}
  76
  77	return 0;
  78}
  79EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
  80
  81/**
  82 * snd_soc_put_enum_double - enumerated double mixer put callback
  83 * @kcontrol: mixer control
  84 * @ucontrol: control element information
  85 *
  86 * Callback to set the value of a double enumerated mixer.
  87 *
  88 * Returns 0 for success.
  89 */
  90int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
  91	struct snd_ctl_elem_value *ucontrol)
  92{
  93	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  94	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  95	unsigned int *item = ucontrol->value.enumerated.item;
  96	unsigned int val;
  97	unsigned int mask;
  98
  99	if (item[0] >= e->items)
 100		return -EINVAL;
 101	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
 102	mask = e->mask << e->shift_l;
 103	if (e->shift_l != e->shift_r) {
 104		if (item[1] >= e->items)
 105			return -EINVAL;
 106		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
 107		mask |= e->mask << e->shift_r;
 108	}
 109
 110	return snd_soc_component_update_bits(component, e->reg, mask, val);
 111}
 112EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
 113
 114/**
 115 * snd_soc_read_signed - Read a codec register and interpret as signed value
 116 * @component: component
 117 * @reg: Register to read
 118 * @mask: Mask to use after shifting the register value
 119 * @shift: Right shift of register value
 120 * @sign_bit: Bit that describes if a number is negative or not.
 121 * @signed_val: Pointer to where the read value should be stored
 122 *
 123 * This functions reads a codec register. The register value is shifted right
 124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
 125 * the given registervalue into a signed integer if sign_bit is non-zero.
 126 *
 127 * Returns 0 on sucess, otherwise an error value
 128 */
 129static int snd_soc_read_signed(struct snd_soc_component *component,
 130	unsigned int reg, unsigned int mask, unsigned int shift,
 131	unsigned int sign_bit, int *signed_val)
 132{
 133	int ret;
 134	unsigned int val;
 135
 136	val = snd_soc_component_read(component, reg);
 137	val = (val >> shift) & mask;
 138
 139	if (!sign_bit) {
 140		*signed_val = val;
 141		return 0;
 142	}
 143
 144	/* non-negative number */
 145	if (!(val & BIT(sign_bit))) {
 146		*signed_val = val;
 147		return 0;
 148	}
 149
 150	ret = val;
 151
 152	/*
 153	 * The register most probably does not contain a full-sized int.
 154	 * Instead we have an arbitrary number of bits in a signed
 155	 * representation which has to be translated into a full-sized int.
 156	 * This is done by filling up all bits above the sign-bit.
 157	 */
 158	ret |= ~((int)(BIT(sign_bit) - 1));
 159
 160	*signed_val = ret;
 161
 162	return 0;
 163}
 164
 165/**
 166 * snd_soc_info_volsw - single mixer info callback
 167 * @kcontrol: mixer control
 168 * @uinfo: control element information
 169 *
 170 * Callback to provide information about a single mixer control, or a double
 171 * mixer control that spans 2 registers.
 172 *
 173 * Returns 0 for success.
 174 */
 175int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
 176	struct snd_ctl_elem_info *uinfo)
 177{
 178	struct soc_mixer_control *mc =
 179		(struct soc_mixer_control *)kcontrol->private_value;
 180	const char *vol_string = NULL;
 181	int max;
 182
 183	max = uinfo->value.integer.max = mc->max - mc->min;
 184	if (mc->platform_max && mc->platform_max < max)
 185		max = mc->platform_max;
 186
 187	if (max == 1) {
 188		/* Even two value controls ending in Volume should always be integer */
 189		vol_string = strstr(kcontrol->id.name, " Volume");
 190		if (vol_string && !strcmp(vol_string, " Volume"))
 191			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 192		else
 193			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 194	} else {
 195		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 196	}
 197
 198	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 199	uinfo->value.integer.min = 0;
 200	uinfo->value.integer.max = max;
 201
 202	return 0;
 203}
 204EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
 205
 206/**
 207 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
 208 * @kcontrol: mixer control
 209 * @uinfo: control element information
 210 *
 211 * Callback to provide information about a single mixer control, or a double
 212 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
 213 * have a range that represents both positive and negative values either side
 214 * of zero but without a sign bit. min is the minimum register value, max is
 215 * the number of steps.
 216 *
 217 * Returns 0 for success.
 218 */
 219int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
 220			  struct snd_ctl_elem_info *uinfo)
 221{
 222	struct soc_mixer_control *mc =
 223		(struct soc_mixer_control *)kcontrol->private_value;
 224	int max;
 225
 226	if (mc->platform_max)
 227		max = mc->platform_max;
 228	else
 229		max = mc->max;
 230
 231	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
 232		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 233	else
 234		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 235
 236	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 237	uinfo->value.integer.min = 0;
 238	uinfo->value.integer.max = max;
 239
 240	return 0;
 241}
 242EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
 243
 244/**
 245 * snd_soc_get_volsw - single mixer get callback
 246 * @kcontrol: mixer control
 247 * @ucontrol: control element information
 248 *
 249 * Callback to get the value of a single mixer control, or a double mixer
 250 * control that spans 2 registers.
 251 *
 252 * Returns 0 for success.
 253 */
 254int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
 255	struct snd_ctl_elem_value *ucontrol)
 256{
 257	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 258	struct soc_mixer_control *mc =
 259		(struct soc_mixer_control *)kcontrol->private_value;
 260	unsigned int reg = mc->reg;
 261	unsigned int reg2 = mc->rreg;
 262	unsigned int shift = mc->shift;
 263	unsigned int rshift = mc->rshift;
 264	int max = mc->max;
 265	int min = mc->min;
 266	int sign_bit = mc->sign_bit;
 267	unsigned int mask = (1ULL << fls(max)) - 1;
 268	unsigned int invert = mc->invert;
 269	int val;
 270	int ret;
 271
 272	if (sign_bit)
 273		mask = BIT(sign_bit + 1) - 1;
 274
 275	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
 276	if (ret)
 277		return ret;
 278
 279	ucontrol->value.integer.value[0] = val - min;
 280	if (invert)
 281		ucontrol->value.integer.value[0] =
 282			max - ucontrol->value.integer.value[0];
 283
 284	if (snd_soc_volsw_is_stereo(mc)) {
 285		if (reg == reg2)
 286			ret = snd_soc_read_signed(component, reg, mask, rshift,
 287				sign_bit, &val);
 288		else
 289			ret = snd_soc_read_signed(component, reg2, mask, shift,
 290				sign_bit, &val);
 291		if (ret)
 292			return ret;
 293
 294		ucontrol->value.integer.value[1] = val - min;
 295		if (invert)
 296			ucontrol->value.integer.value[1] =
 297				max - ucontrol->value.integer.value[1];
 298	}
 299
 300	return 0;
 301}
 302EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
 303
 304/**
 305 * snd_soc_put_volsw - single mixer put callback
 306 * @kcontrol: mixer control
 307 * @ucontrol: control element information
 308 *
 309 * Callback to set the value of a single mixer control, or a double mixer
 310 * control that spans 2 registers.
 311 *
 312 * Returns 0 for success.
 313 */
 314int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
 315	struct snd_ctl_elem_value *ucontrol)
 316{
 317	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 318	struct soc_mixer_control *mc =
 319		(struct soc_mixer_control *)kcontrol->private_value;
 320	unsigned int reg = mc->reg;
 321	unsigned int reg2 = mc->rreg;
 322	unsigned int shift = mc->shift;
 323	unsigned int rshift = mc->rshift;
 324	int max = mc->max;
 325	int min = mc->min;
 326	unsigned int sign_bit = mc->sign_bit;
 327	unsigned int mask = (1 << fls(max)) - 1;
 328	unsigned int invert = mc->invert;
 329	int err, ret;
 330	bool type_2r = false;
 331	unsigned int val2 = 0;
 332	unsigned int val, val_mask;
 333
 334	if (sign_bit)
 335		mask = BIT(sign_bit + 1) - 1;
 336
 337	if (ucontrol->value.integer.value[0] < 0)
 338		return -EINVAL;
 339	val = ucontrol->value.integer.value[0];
 340	if (mc->platform_max && ((int)val + min) > mc->platform_max)
 341		return -EINVAL;
 342	if (val > max - min)
 343		return -EINVAL;
 344	val = (val + min) & mask;
 345	if (invert)
 346		val = max - val;
 347	val_mask = mask << shift;
 348	val = val << shift;
 349	if (snd_soc_volsw_is_stereo(mc)) {
 350		if (ucontrol->value.integer.value[1] < 0)
 351			return -EINVAL;
 352		val2 = ucontrol->value.integer.value[1];
 353		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
 354			return -EINVAL;
 355		if (val2 > max - min)
 356			return -EINVAL;
 357		val2 = (val2 + min) & mask;
 358		if (invert)
 359			val2 = max - val2;
 360		if (reg == reg2) {
 361			val_mask |= mask << rshift;
 362			val |= val2 << rshift;
 363		} else {
 364			val2 = val2 << shift;
 365			type_2r = true;
 366		}
 367	}
 368	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 369	if (err < 0)
 370		return err;
 371	ret = err;
 372
 373	if (type_2r) {
 374		err = snd_soc_component_update_bits(component, reg2, val_mask,
 375						    val2);
 376		/* Don't discard any error code or drop change flag */
 377		if (ret == 0 || err < 0) {
 378			ret = err;
 379		}
 380	}
 381
 382	return ret;
 383}
 384EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
 385
 386/**
 387 * snd_soc_get_volsw_sx - single mixer get callback
 388 * @kcontrol: mixer control
 389 * @ucontrol: control element information
 390 *
 391 * Callback to get the value of a single mixer control, or a double mixer
 392 * control that spans 2 registers.
 393 *
 394 * Returns 0 for success.
 395 */
 396int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
 397		      struct snd_ctl_elem_value *ucontrol)
 398{
 399	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 400	struct soc_mixer_control *mc =
 401	    (struct soc_mixer_control *)kcontrol->private_value;
 402	unsigned int reg = mc->reg;
 403	unsigned int reg2 = mc->rreg;
 404	unsigned int shift = mc->shift;
 405	unsigned int rshift = mc->rshift;
 406	int max = mc->max;
 407	int min = mc->min;
 408	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 409	unsigned int val;
 410
 411	val = snd_soc_component_read(component, reg);
 412	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
 413
 414	if (snd_soc_volsw_is_stereo(mc)) {
 415		val = snd_soc_component_read(component, reg2);
 416		val = ((val >> rshift) - min) & mask;
 417		ucontrol->value.integer.value[1] = val;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
 423
 424/**
 425 * snd_soc_put_volsw_sx - double mixer set callback
 426 * @kcontrol: mixer control
 427 * @ucontrol: control element information
 428 *
 429 * Callback to set the value of a double mixer control that spans 2 registers.
 430 *
 431 * Returns 0 for success.
 432 */
 433int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
 434			 struct snd_ctl_elem_value *ucontrol)
 435{
 436	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 437	struct soc_mixer_control *mc =
 438	    (struct soc_mixer_control *)kcontrol->private_value;
 439
 440	unsigned int reg = mc->reg;
 441	unsigned int reg2 = mc->rreg;
 442	unsigned int shift = mc->shift;
 443	unsigned int rshift = mc->rshift;
 444	int max = mc->max;
 445	int min = mc->min;
 446	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 447	int err = 0;
 448	int ret;
 449	unsigned int val, val_mask;
 450
 451	if (ucontrol->value.integer.value[0] < 0)
 452		return -EINVAL;
 453	val = ucontrol->value.integer.value[0];
 454	if (mc->platform_max && val > mc->platform_max)
 455		return -EINVAL;
 456	if (val > max)
 457		return -EINVAL;
 458	val_mask = mask << shift;
 459	val = (val + min) & mask;
 460	val = val << shift;
 461
 462	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 463	if (err < 0)
 464		return err;
 465	ret = err;
 466
 467	if (snd_soc_volsw_is_stereo(mc)) {
 468		unsigned int val2 = ucontrol->value.integer.value[1];
 469
 470		if (mc->platform_max && val2 > mc->platform_max)
 471			return -EINVAL;
 472		if (val2 > max)
 473			return -EINVAL;
 474
 475		val_mask = mask << rshift;
 476		val2 = (val2 + min) & mask;
 477		val2 = val2 << rshift;
 478
 479		err = snd_soc_component_update_bits(component, reg2, val_mask,
 480			val2);
 481
 482		/* Don't discard any error code or drop change flag */
 483		if (ret == 0 || err < 0) {
 484			ret = err;
 485		}
 486	}
 487	return ret;
 488}
 489EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
 490
 491/**
 492 * snd_soc_info_volsw_range - single mixer info callback with range.
 493 * @kcontrol: mixer control
 494 * @uinfo: control element information
 495 *
 496 * Callback to provide information, within a range, about a single
 497 * mixer control.
 498 *
 499 * returns 0 for success.
 500 */
 501int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
 502	struct snd_ctl_elem_info *uinfo)
 503{
 504	struct soc_mixer_control *mc =
 505		(struct soc_mixer_control *)kcontrol->private_value;
 506	int platform_max;
 507	int min = mc->min;
 508
 509	if (!mc->platform_max)
 510		mc->platform_max = mc->max;
 511	platform_max = mc->platform_max;
 512
 513	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 514	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 515	uinfo->value.integer.min = 0;
 516	uinfo->value.integer.max = platform_max - min;
 517
 518	return 0;
 519}
 520EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
 521
 522/**
 523 * snd_soc_put_volsw_range - single mixer put value callback with range.
 524 * @kcontrol: mixer control
 525 * @ucontrol: control element information
 526 *
 527 * Callback to set the value, within a range, for a single mixer control.
 528 *
 529 * Returns 0 for success.
 530 */
 531int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
 532	struct snd_ctl_elem_value *ucontrol)
 533{
 534	struct soc_mixer_control *mc =
 535		(struct soc_mixer_control *)kcontrol->private_value;
 536	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 537	unsigned int reg = mc->reg;
 538	unsigned int rreg = mc->rreg;
 539	unsigned int shift = mc->shift;
 540	int min = mc->min;
 541	int max = mc->max;
 542	unsigned int mask = (1 << fls(max)) - 1;
 543	unsigned int invert = mc->invert;
 544	unsigned int val, val_mask;
 545	int err, ret, tmp;
 546
 547	tmp = ucontrol->value.integer.value[0];
 548	if (tmp < 0)
 549		return -EINVAL;
 550	if (mc->platform_max && tmp > mc->platform_max)
 551		return -EINVAL;
 552	if (tmp > mc->max - mc->min)
 553		return -EINVAL;
 554
 555	if (invert)
 556		val = (max - ucontrol->value.integer.value[0]) & mask;
 557	else
 558		val = ((ucontrol->value.integer.value[0] + min) & mask);
 559	val_mask = mask << shift;
 560	val = val << shift;
 561
 562	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 563	if (err < 0)
 564		return err;
 565	ret = err;
 566
 567	if (snd_soc_volsw_is_stereo(mc)) {
 568		tmp = ucontrol->value.integer.value[1];
 569		if (tmp < 0)
 570			return -EINVAL;
 571		if (mc->platform_max && tmp > mc->platform_max)
 572			return -EINVAL;
 573		if (tmp > mc->max - mc->min)
 574			return -EINVAL;
 575
 576		if (invert)
 577			val = (max - ucontrol->value.integer.value[1]) & mask;
 578		else
 579			val = ((ucontrol->value.integer.value[1] + min) & mask);
 580		val_mask = mask << shift;
 581		val = val << shift;
 582
 583		err = snd_soc_component_update_bits(component, rreg, val_mask,
 584			val);
 585		/* Don't discard any error code or drop change flag */
 586		if (ret == 0 || err < 0) {
 587			ret = err;
 588		}
 589	}
 590
 591	return ret;
 592}
 593EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
 594
 595/**
 596 * snd_soc_get_volsw_range - single mixer get callback with range
 597 * @kcontrol: mixer control
 598 * @ucontrol: control element information
 599 *
 600 * Callback to get the value, within a range, of a single mixer control.
 601 *
 602 * Returns 0 for success.
 603 */
 604int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
 605	struct snd_ctl_elem_value *ucontrol)
 606{
 607	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 608	struct soc_mixer_control *mc =
 609		(struct soc_mixer_control *)kcontrol->private_value;
 610	unsigned int reg = mc->reg;
 611	unsigned int rreg = mc->rreg;
 612	unsigned int shift = mc->shift;
 613	int min = mc->min;
 614	int max = mc->max;
 615	unsigned int mask = (1 << fls(max)) - 1;
 616	unsigned int invert = mc->invert;
 617	unsigned int val;
 618
 619	val = snd_soc_component_read(component, reg);
 620	ucontrol->value.integer.value[0] = (val >> shift) & mask;
 621	if (invert)
 622		ucontrol->value.integer.value[0] =
 623			max - ucontrol->value.integer.value[0];
 624	else
 625		ucontrol->value.integer.value[0] =
 626			ucontrol->value.integer.value[0] - min;
 627
 628	if (snd_soc_volsw_is_stereo(mc)) {
 629		val = snd_soc_component_read(component, rreg);
 630		ucontrol->value.integer.value[1] = (val >> shift) & mask;
 631		if (invert)
 632			ucontrol->value.integer.value[1] =
 633				max - ucontrol->value.integer.value[1];
 634		else
 635			ucontrol->value.integer.value[1] =
 636				ucontrol->value.integer.value[1] - min;
 637	}
 638
 639	return 0;
 640}
 641EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
 642
 643/**
 644 * snd_soc_limit_volume - Set new limit to an existing volume control.
 645 *
 646 * @card: where to look for the control
 647 * @name: Name of the control
 648 * @max: new maximum limit
 649 *
 650 * Return 0 for success, else error.
 651 */
 652int snd_soc_limit_volume(struct snd_soc_card *card,
 653	const char *name, int max)
 654{
 655	struct snd_kcontrol *kctl;
 656	int ret = -EINVAL;
 657
 658	/* Sanity check for name and max */
 659	if (unlikely(!name || max <= 0))
 660		return -EINVAL;
 661
 662	kctl = snd_soc_card_get_kcontrol(card, name);
 663	if (kctl) {
 664		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
 665		if (max <= mc->max - mc->min) {
 666			mc->platform_max = max;
 667			ret = 0;
 668		}
 669	}
 670	return ret;
 671}
 672EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
 673
 674int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
 675		       struct snd_ctl_elem_info *uinfo)
 676{
 677	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 678	struct soc_bytes *params = (void *)kcontrol->private_value;
 679
 680	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 681	uinfo->count = params->num_regs * component->val_bytes;
 682
 683	return 0;
 684}
 685EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
 686
 687int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
 688		      struct snd_ctl_elem_value *ucontrol)
 689{
 690	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 691	struct soc_bytes *params = (void *)kcontrol->private_value;
 692	int ret;
 693
 694	if (component->regmap)
 695		ret = regmap_raw_read(component->regmap, params->base,
 696				      ucontrol->value.bytes.data,
 697				      params->num_regs * component->val_bytes);
 698	else
 699		ret = -EINVAL;
 700
 701	/* Hide any masked bytes to ensure consistent data reporting */
 702	if (ret == 0 && params->mask) {
 703		switch (component->val_bytes) {
 704		case 1:
 705			ucontrol->value.bytes.data[0] &= ~params->mask;
 706			break;
 707		case 2:
 708			((u16 *)(&ucontrol->value.bytes.data))[0]
 709				&= cpu_to_be16(~params->mask);
 710			break;
 711		case 4:
 712			((u32 *)(&ucontrol->value.bytes.data))[0]
 713				&= cpu_to_be32(~params->mask);
 714			break;
 715		default:
 716			return -EINVAL;
 717		}
 718	}
 719
 720	return ret;
 721}
 722EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
 723
 724int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
 725		      struct snd_ctl_elem_value *ucontrol)
 726{
 727	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 728	struct soc_bytes *params = (void *)kcontrol->private_value;
 729	int ret, len;
 730	unsigned int val, mask;
 
 731
 732	if (!component->regmap || !params->num_regs)
 733		return -EINVAL;
 734
 735	len = params->num_regs * component->val_bytes;
 736
 737	void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
 738					   GFP_KERNEL | GFP_DMA);
 739	if (!data)
 740		return -ENOMEM;
 741
 742	/*
 743	 * If we've got a mask then we need to preserve the register
 744	 * bits.  We shouldn't modify the incoming data so take a
 745	 * copy.
 746	 */
 747	if (params->mask) {
 748		ret = regmap_read(component->regmap, params->base, &val);
 749		if (ret != 0)
 750			return ret;
 751
 752		val &= params->mask;
 753
 754		switch (component->val_bytes) {
 755		case 1:
 756			((u8 *)data)[0] &= ~params->mask;
 757			((u8 *)data)[0] |= val;
 758			break;
 759		case 2:
 760			mask = ~params->mask;
 761			ret = regmap_parse_val(component->regmap,
 762							&mask, &mask);
 763			if (ret != 0)
 764				return ret;
 765
 766			((u16 *)data)[0] &= mask;
 767
 768			ret = regmap_parse_val(component->regmap,
 769							&val, &val);
 770			if (ret != 0)
 771				return ret;
 772
 773			((u16 *)data)[0] |= val;
 774			break;
 775		case 4:
 776			mask = ~params->mask;
 777			ret = regmap_parse_val(component->regmap,
 778							&mask, &mask);
 779			if (ret != 0)
 780				return ret;
 781
 782			((u32 *)data)[0] &= mask;
 783
 784			ret = regmap_parse_val(component->regmap,
 785							&val, &val);
 786			if (ret != 0)
 787				return ret;
 788
 789			((u32 *)data)[0] |= val;
 790			break;
 791		default:
 792			return -EINVAL;
 
 793		}
 794	}
 795
 796	return regmap_raw_write(component->regmap, params->base, data, len);
 
 
 
 
 
 
 797}
 798EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
 799
 800int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
 801			struct snd_ctl_elem_info *ucontrol)
 802{
 803	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 804
 805	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 806	ucontrol->count = params->max;
 807
 808	return 0;
 809}
 810EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
 811
 812int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
 813				unsigned int size, unsigned int __user *tlv)
 814{
 815	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 816	unsigned int count = size < params->max ? size : params->max;
 817	int ret = -ENXIO;
 818
 819	switch (op_flag) {
 820	case SNDRV_CTL_TLV_OP_READ:
 821		if (params->get)
 822			ret = params->get(kcontrol, tlv, count);
 823		break;
 824	case SNDRV_CTL_TLV_OP_WRITE:
 825		if (params->put)
 826			ret = params->put(kcontrol, tlv, count);
 827		break;
 828	}
 829	return ret;
 830}
 831EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
 832
 833/**
 834 * snd_soc_info_xr_sx - signed multi register info callback
 835 * @kcontrol: mreg control
 836 * @uinfo: control element information
 837 *
 838 * Callback to provide information of a control that can
 839 * span multiple codec registers which together
 840 * forms a single signed value in a MSB/LSB manner.
 841 *
 842 * Returns 0 for success.
 843 */
 844int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
 845	struct snd_ctl_elem_info *uinfo)
 846{
 847	struct soc_mreg_control *mc =
 848		(struct soc_mreg_control *)kcontrol->private_value;
 849	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 850	uinfo->count = 1;
 851	uinfo->value.integer.min = mc->min;
 852	uinfo->value.integer.max = mc->max;
 853
 854	return 0;
 855}
 856EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
 857
 858/**
 859 * snd_soc_get_xr_sx - signed multi register get callback
 860 * @kcontrol: mreg control
 861 * @ucontrol: control element information
 862 *
 863 * Callback to get the value of a control that can span
 864 * multiple codec registers which together forms a single
 865 * signed value in a MSB/LSB manner. The control supports
 866 * specifying total no of bits used to allow for bitfields
 867 * across the multiple codec registers.
 868 *
 869 * Returns 0 for success.
 870 */
 871int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
 872	struct snd_ctl_elem_value *ucontrol)
 873{
 874	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 875	struct soc_mreg_control *mc =
 876		(struct soc_mreg_control *)kcontrol->private_value;
 877	unsigned int regbase = mc->regbase;
 878	unsigned int regcount = mc->regcount;
 879	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 880	unsigned int regwmask = (1UL<<regwshift)-1;
 881	unsigned int invert = mc->invert;
 882	unsigned long mask = (1UL<<mc->nbits)-1;
 883	long min = mc->min;
 884	long max = mc->max;
 885	long val = 0;
 886	unsigned int i;
 887
 888	for (i = 0; i < regcount; i++) {
 889		unsigned int regval = snd_soc_component_read(component, regbase+i);
 890		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
 891	}
 892	val &= mask;
 893	if (min < 0 && val > max)
 894		val |= ~mask;
 895	if (invert)
 896		val = max - val;
 897	ucontrol->value.integer.value[0] = val;
 898
 899	return 0;
 900}
 901EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
 902
 903/**
 904 * snd_soc_put_xr_sx - signed multi register get callback
 905 * @kcontrol: mreg control
 906 * @ucontrol: control element information
 907 *
 908 * Callback to set the value of a control that can span
 909 * multiple codec registers which together forms a single
 910 * signed value in a MSB/LSB manner. The control supports
 911 * specifying total no of bits used to allow for bitfields
 912 * across the multiple codec registers.
 913 *
 914 * Returns 0 for success.
 915 */
 916int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
 917	struct snd_ctl_elem_value *ucontrol)
 918{
 919	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 920	struct soc_mreg_control *mc =
 921		(struct soc_mreg_control *)kcontrol->private_value;
 922	unsigned int regbase = mc->regbase;
 923	unsigned int regcount = mc->regcount;
 924	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 925	unsigned int regwmask = (1UL<<regwshift)-1;
 926	unsigned int invert = mc->invert;
 927	unsigned long mask = (1UL<<mc->nbits)-1;
 928	long max = mc->max;
 929	long val = ucontrol->value.integer.value[0];
 930	int ret = 0;
 931	unsigned int i;
 932
 933	if (val < mc->min || val > mc->max)
 934		return -EINVAL;
 935	if (invert)
 936		val = max - val;
 937	val &= mask;
 938	for (i = 0; i < regcount; i++) {
 939		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
 940		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
 941		int err = snd_soc_component_update_bits(component, regbase+i,
 942							regmask, regval);
 943		if (err < 0)
 944			return err;
 945		if (err > 0)
 946			ret = err;
 947	}
 948
 949	return ret;
 950}
 951EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
 952
 953/**
 954 * snd_soc_get_strobe - strobe get callback
 955 * @kcontrol: mixer control
 956 * @ucontrol: control element information
 957 *
 958 * Callback get the value of a strobe mixer control.
 959 *
 960 * Returns 0 for success.
 961 */
 962int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
 963	struct snd_ctl_elem_value *ucontrol)
 964{
 965	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 966	struct soc_mixer_control *mc =
 967		(struct soc_mixer_control *)kcontrol->private_value;
 968	unsigned int reg = mc->reg;
 969	unsigned int shift = mc->shift;
 970	unsigned int mask = 1 << shift;
 971	unsigned int invert = mc->invert != 0;
 972	unsigned int val;
 973
 974	val = snd_soc_component_read(component, reg);
 975	val &= mask;
 976
 977	if (shift != 0 && val != 0)
 978		val = val >> shift;
 979	ucontrol->value.enumerated.item[0] = val ^ invert;
 980
 981	return 0;
 982}
 983EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
 984
 985/**
 986 * snd_soc_put_strobe - strobe put callback
 987 * @kcontrol: mixer control
 988 * @ucontrol: control element information
 989 *
 990 * Callback strobe a register bit to high then low (or the inverse)
 991 * in one pass of a single mixer enum control.
 992 *
 993 * Returns 1 for success.
 994 */
 995int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
 996	struct snd_ctl_elem_value *ucontrol)
 997{
 998	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 999	struct soc_mixer_control *mc =
1000		(struct soc_mixer_control *)kcontrol->private_value;
1001	unsigned int reg = mc->reg;
1002	unsigned int shift = mc->shift;
1003	unsigned int mask = 1 << shift;
1004	unsigned int invert = mc->invert != 0;
1005	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1006	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1007	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1008	int err;
1009
1010	err = snd_soc_component_update_bits(component, reg, mask, val1);
1011	if (err < 0)
1012		return err;
1013
1014	return snd_soc_component_update_bits(component, reg, mask, val2);
1015}
1016EXPORT_SYMBOL_GPL(snd_soc_put_strobe);