Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the hash table type.
  4 *
  5 * Author : Stephen Smalley, <sds@tycho.nsa.gov>
  6 */
 
  7#include <linux/kernel.h>
  8#include <linux/slab.h>
  9#include <linux/errno.h>
 10#include "hashtab.h"
 11#include "security.h"
 12
 13static struct kmem_cache *hashtab_node_cachep __ro_after_init;
 14
 15/*
 16 * Here we simply round the number of elements up to the nearest power of two.
 17 * I tried also other options like rounding down or rounding to the closest
 18 * power of two (up or down based on which is closer), but I was unable to
 19 * find any significant difference in lookup/insert performance that would
 20 * justify switching to a different (less intuitive) formula. It could be that
 21 * a different formula is actually more optimal, but any future changes here
 22 * should be supported with performance/memory usage data.
 23 *
 24 * The total memory used by the htable arrays (only) with Fedora policy loaded
 25 * is approximately 163 KB at the time of writing.
 26 */
 27static u32 hashtab_compute_size(u32 nel)
 28{
 29	return nel == 0 ? 0 : roundup_pow_of_two(nel);
 30}
 31
 32int hashtab_init(struct hashtab *h, u32 nel_hint)
 33{
 34	u32 size = hashtab_compute_size(nel_hint);
 35
 36	/* should already be zeroed, but better be safe */
 37	h->nel = 0;
 38	h->size = 0;
 39	h->htable = NULL;
 40
 41	if (size) {
 42		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
 43		if (!h->htable)
 44			return -ENOMEM;
 45		h->size = size;
 46	}
 47	return 0;
 48}
 49
 50int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
 51		     void *key, void *datum)
 52{
 53	struct hashtab_node *newnode;
 54
 55	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
 56	if (!newnode)
 57		return -ENOMEM;
 58	newnode->key = key;
 59	newnode->datum = datum;
 60	newnode->next = *dst;
 61	*dst = newnode;
 62
 63	h->nel++;
 64	return 0;
 65}
 66
 67void hashtab_destroy(struct hashtab *h)
 68{
 69	u32 i;
 70	struct hashtab_node *cur, *temp;
 71
 72	for (i = 0; i < h->size; i++) {
 73		cur = h->htable[i];
 74		while (cur) {
 75			temp = cur;
 76			cur = cur->next;
 77			kmem_cache_free(hashtab_node_cachep, temp);
 78		}
 79		h->htable[i] = NULL;
 80	}
 81
 82	kfree(h->htable);
 83	h->htable = NULL;
 84}
 85
 86int hashtab_map(struct hashtab *h,
 87		int (*apply)(void *k, void *d, void *args),
 88		void *args)
 89{
 90	u32 i;
 91	int ret;
 92	struct hashtab_node *cur;
 93
 94	for (i = 0; i < h->size; i++) {
 95		cur = h->htable[i];
 96		while (cur) {
 97			ret = apply(cur->key, cur->datum, args);
 98			if (ret)
 99				return ret;
100			cur = cur->next;
101		}
102	}
103	return 0;
104}
105
106
107void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
108{
109	u32 i, chain_len, slots_used, max_chain_len;
 
110	struct hashtab_node *cur;
111
112	slots_used = 0;
113	max_chain_len = 0;
 
114	for (i = 0; i < h->size; i++) {
115		cur = h->htable[i];
116		if (cur) {
117			slots_used++;
118			chain_len = 0;
119			while (cur) {
120				chain_len++;
121				cur = cur->next;
122			}
123
124			if (chain_len > max_chain_len)
125				max_chain_len = chain_len;
 
 
126		}
127	}
128
129	info->slots_used = slots_used;
130	info->max_chain_len = max_chain_len;
 
131}
 
132
133int hashtab_duplicate(struct hashtab *new, struct hashtab *orig,
134		int (*copy)(struct hashtab_node *new,
135			struct hashtab_node *orig, void *args),
136		int (*destroy)(void *k, void *d, void *args),
137		void *args)
138{
 
139	struct hashtab_node *cur, *tmp, *tail;
140	int i, rc;
 
141
142	memset(new, 0, sizeof(*new));
143
144	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
145	if (!new->htable)
146		return -ENOMEM;
147
148	new->size = orig->size;
149
150	for (i = 0; i < orig->size; i++) {
151		tail = NULL;
152		for (cur = orig->htable[i]; cur; cur = cur->next) {
 
153			tmp = kmem_cache_zalloc(hashtab_node_cachep,
154						GFP_KERNEL);
155			if (!tmp)
156				goto error;
157			rc = copy(tmp, cur, args);
158			if (rc) {
159				kmem_cache_free(hashtab_node_cachep, tmp);
160				goto error;
161			}
162			tmp->next = NULL;
163			if (!tail)
164				new->htable[i] = tmp;
165			else
166				tail->next = tmp;
167			tail = tmp;
168			new->nel++;
169		}
170	}
171
172	return 0;
173
174 error:
175	for (i = 0; i < new->size; i++) {
176		for (cur = new->htable[i]; cur; cur = tmp) {
177			tmp = cur->next;
178			destroy(cur->key, cur->datum, args);
179			kmem_cache_free(hashtab_node_cachep, cur);
180		}
181	}
182	kfree(new->htable);
183	memset(new, 0, sizeof(*new));
184	return -ENOMEM;
185}
186
187void __init hashtab_cache_init(void)
188{
189		hashtab_node_cachep = kmem_cache_create("hashtab_node",
190			sizeof(struct hashtab_node),
191			0, SLAB_PANIC, NULL);
192}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the hash table type.
  4 *
  5 * Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/slab.h>
 10#include <linux/errno.h>
 11#include "hashtab.h"
 12#include "security.h"
 13
 14static struct kmem_cache *hashtab_node_cachep __ro_after_init;
 15
 16/*
 17 * Here we simply round the number of elements up to the nearest power of two.
 18 * I tried also other options like rounding down or rounding to the closest
 19 * power of two (up or down based on which is closer), but I was unable to
 20 * find any significant difference in lookup/insert performance that would
 21 * justify switching to a different (less intuitive) formula. It could be that
 22 * a different formula is actually more optimal, but any future changes here
 23 * should be supported with performance/memory usage data.
 24 *
 25 * The total memory used by the htable arrays (only) with Fedora policy loaded
 26 * is approximately 163 KB at the time of writing.
 27 */
 28static u32 hashtab_compute_size(u32 nel)
 29{
 30	return nel == 0 ? 0 : roundup_pow_of_two(nel);
 31}
 32
 33int hashtab_init(struct hashtab *h, u32 nel_hint)
 34{
 35	u32 size = hashtab_compute_size(nel_hint);
 36
 37	/* should already be zeroed, but better be safe */
 38	h->nel = 0;
 39	h->size = 0;
 40	h->htable = NULL;
 41
 42	if (size) {
 43		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
 44		if (!h->htable)
 45			return -ENOMEM;
 46		h->size = size;
 47	}
 48	return 0;
 49}
 50
 51int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key,
 52		     void *datum)
 53{
 54	struct hashtab_node *newnode;
 55
 56	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
 57	if (!newnode)
 58		return -ENOMEM;
 59	newnode->key = key;
 60	newnode->datum = datum;
 61	newnode->next = *dst;
 62	*dst = newnode;
 63
 64	h->nel++;
 65	return 0;
 66}
 67
 68void hashtab_destroy(struct hashtab *h)
 69{
 70	u32 i;
 71	struct hashtab_node *cur, *temp;
 72
 73	for (i = 0; i < h->size; i++) {
 74		cur = h->htable[i];
 75		while (cur) {
 76			temp = cur;
 77			cur = cur->next;
 78			kmem_cache_free(hashtab_node_cachep, temp);
 79		}
 80		h->htable[i] = NULL;
 81	}
 82
 83	kfree(h->htable);
 84	h->htable = NULL;
 85}
 86
 87int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args),
 
 88		void *args)
 89{
 90	u32 i;
 91	int ret;
 92	struct hashtab_node *cur;
 93
 94	for (i = 0; i < h->size; i++) {
 95		cur = h->htable[i];
 96		while (cur) {
 97			ret = apply(cur->key, cur->datum, args);
 98			if (ret)
 99				return ret;
100			cur = cur->next;
101		}
102	}
103	return 0;
104}
105
106#ifdef CONFIG_SECURITY_SELINUX_DEBUG
107void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
108{
109	u32 i, chain_len, slots_used, max_chain_len;
110	u64 chain2_len_sum;
111	struct hashtab_node *cur;
112
113	slots_used = 0;
114	max_chain_len = 0;
115	chain2_len_sum = 0;
116	for (i = 0; i < h->size; i++) {
117		cur = h->htable[i];
118		if (cur) {
119			slots_used++;
120			chain_len = 0;
121			while (cur) {
122				chain_len++;
123				cur = cur->next;
124			}
125
126			if (chain_len > max_chain_len)
127				max_chain_len = chain_len;
128
129			chain2_len_sum += (u64)chain_len * chain_len;
130		}
131	}
132
133	info->slots_used = slots_used;
134	info->max_chain_len = max_chain_len;
135	info->chain2_len_sum = chain2_len_sum;
136}
137#endif /* CONFIG_SECURITY_SELINUX_DEBUG */
138
139int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig,
140		      int (*copy)(struct hashtab_node *new,
141				  const struct hashtab_node *orig, void *args),
142		      int (*destroy)(void *k, void *d, void *args), void *args)
 
143{
144	const struct hashtab_node *orig_cur;
145	struct hashtab_node *cur, *tmp, *tail;
146	u32 i;
147	int rc;
148
149	memset(new, 0, sizeof(*new));
150
151	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
152	if (!new->htable)
153		return -ENOMEM;
154
155	new->size = orig->size;
156
157	for (i = 0; i < orig->size; i++) {
158		tail = NULL;
159		for (orig_cur = orig->htable[i]; orig_cur;
160		     orig_cur = orig_cur->next) {
161			tmp = kmem_cache_zalloc(hashtab_node_cachep,
162						GFP_KERNEL);
163			if (!tmp)
164				goto error;
165			rc = copy(tmp, orig_cur, args);
166			if (rc) {
167				kmem_cache_free(hashtab_node_cachep, tmp);
168				goto error;
169			}
170			tmp->next = NULL;
171			if (!tail)
172				new->htable[i] = tmp;
173			else
174				tail->next = tmp;
175			tail = tmp;
176			new->nel++;
177		}
178	}
179
180	return 0;
181
182error:
183	for (i = 0; i < new->size; i++) {
184		for (cur = new->htable[i]; cur; cur = tmp) {
185			tmp = cur->next;
186			destroy(cur->key, cur->datum, args);
187			kmem_cache_free(hashtab_node_cachep, cur);
188		}
189	}
190	kfree(new->htable);
191	memset(new, 0, sizeof(*new));
192	return -ENOMEM;
193}
194
195void __init hashtab_cache_init(void)
196{
197	hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC);
 
 
198}