Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use alloc::vec::Vec;
6use core::fmt::{self, Write};
7use core::ops::{self, Deref, Index};
8
9use crate::{
10 bindings,
11 error::{code::*, Error},
12};
13
14/// Byte string without UTF-8 validity guarantee.
15///
16/// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
17pub type BStr = [u8];
18
19/// Creates a new [`BStr`] from a string literal.
20///
21/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
22/// characters can be included.
23///
24/// # Examples
25///
26/// ```
27/// # use kernel::b_str;
28/// # use kernel::str::BStr;
29/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
30/// ```
31#[macro_export]
32macro_rules! b_str {
33 ($str:literal) => {{
34 const S: &'static str = $str;
35 const C: &'static $crate::str::BStr = S.as_bytes();
36 C
37 }};
38}
39
40/// Possible errors when using conversion functions in [`CStr`].
41#[derive(Debug, Clone, Copy)]
42pub enum CStrConvertError {
43 /// Supplied bytes contain an interior `NUL`.
44 InteriorNul,
45
46 /// Supplied bytes are not terminated by `NUL`.
47 NotNulTerminated,
48}
49
50impl From<CStrConvertError> for Error {
51 #[inline]
52 fn from(_: CStrConvertError) -> Error {
53 EINVAL
54 }
55}
56
57/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
58/// end.
59///
60/// Used for interoperability with kernel APIs that take C strings.
61#[repr(transparent)]
62pub struct CStr([u8]);
63
64impl CStr {
65 /// Returns the length of this string excluding `NUL`.
66 #[inline]
67 pub const fn len(&self) -> usize {
68 self.len_with_nul() - 1
69 }
70
71 /// Returns the length of this string with `NUL`.
72 #[inline]
73 pub const fn len_with_nul(&self) -> usize {
74 // SAFETY: This is one of the invariant of `CStr`.
75 // We add a `unreachable_unchecked` here to hint the optimizer that
76 // the value returned from this function is non-zero.
77 if self.0.is_empty() {
78 unsafe { core::hint::unreachable_unchecked() };
79 }
80 self.0.len()
81 }
82
83 /// Returns `true` if the string only includes `NUL`.
84 #[inline]
85 pub const fn is_empty(&self) -> bool {
86 self.len() == 0
87 }
88
89 /// Wraps a raw C string pointer.
90 ///
91 /// # Safety
92 ///
93 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
94 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
95 /// must not be mutated.
96 #[inline]
97 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
98 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
99 // to a `NUL`-terminated C string.
100 let len = unsafe { bindings::strlen(ptr) } + 1;
101 // SAFETY: Lifetime guaranteed by the safety precondition.
102 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
103 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
104 // As we have added 1 to `len`, the last byte is known to be `NUL`.
105 unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
106 }
107
108 /// Creates a [`CStr`] from a `[u8]`.
109 ///
110 /// The provided slice must be `NUL`-terminated, does not contain any
111 /// interior `NUL` bytes.
112 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
113 if bytes.is_empty() {
114 return Err(CStrConvertError::NotNulTerminated);
115 }
116 if bytes[bytes.len() - 1] != 0 {
117 return Err(CStrConvertError::NotNulTerminated);
118 }
119 let mut i = 0;
120 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
121 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
122 while i + 1 < bytes.len() {
123 if bytes[i] == 0 {
124 return Err(CStrConvertError::InteriorNul);
125 }
126 i += 1;
127 }
128 // SAFETY: We just checked that all properties hold.
129 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
130 }
131
132 /// Creates a [`CStr`] from a `[u8]` without performing any additional
133 /// checks.
134 ///
135 /// # Safety
136 ///
137 /// `bytes` *must* end with a `NUL` byte, and should only have a single
138 /// `NUL` byte (or the string will be truncated).
139 #[inline]
140 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
141 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
142 unsafe { core::mem::transmute(bytes) }
143 }
144
145 /// Returns a C pointer to the string.
146 #[inline]
147 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
148 self.0.as_ptr() as _
149 }
150
151 /// Convert the string to a byte slice without the trailing 0 byte.
152 #[inline]
153 pub fn as_bytes(&self) -> &[u8] {
154 &self.0[..self.len()]
155 }
156
157 /// Convert the string to a byte slice containing the trailing 0 byte.
158 #[inline]
159 pub const fn as_bytes_with_nul(&self) -> &[u8] {
160 &self.0
161 }
162
163 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
164 ///
165 /// If the contents of the [`CStr`] are valid UTF-8 data, this
166 /// function will return the corresponding [`&str`] slice. Otherwise,
167 /// it will return an error with details of where UTF-8 validation failed.
168 ///
169 /// # Examples
170 ///
171 /// ```
172 /// # use kernel::str::CStr;
173 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
174 /// assert_eq!(cstr.to_str(), Ok("foo"));
175 /// ```
176 #[inline]
177 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
178 core::str::from_utf8(self.as_bytes())
179 }
180
181 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
182 /// valid UTF-8.
183 ///
184 /// # Safety
185 ///
186 /// The contents must be valid UTF-8.
187 ///
188 /// # Examples
189 ///
190 /// ```
191 /// # use kernel::c_str;
192 /// # use kernel::str::CStr;
193 /// // SAFETY: String literals are guaranteed to be valid UTF-8
194 /// // by the Rust compiler.
195 /// let bar = c_str!("ツ");
196 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
197 /// ```
198 #[inline]
199 pub unsafe fn as_str_unchecked(&self) -> &str {
200 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
201 }
202}
203
204impl fmt::Display for CStr {
205 /// Formats printable ASCII characters, escaping the rest.
206 ///
207 /// ```
208 /// # use kernel::c_str;
209 /// # use kernel::str::CStr;
210 /// # use kernel::str::CString;
211 /// let penguin = c_str!("🐧");
212 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
213 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
214 ///
215 /// let ascii = c_str!("so \"cool\"");
216 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
217 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
218 /// ```
219 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
220 for &c in self.as_bytes() {
221 if (0x20..0x7f).contains(&c) {
222 // Printable character.
223 f.write_char(c as char)?;
224 } else {
225 write!(f, "\\x{:02x}", c)?;
226 }
227 }
228 Ok(())
229 }
230}
231
232impl fmt::Debug for CStr {
233 /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
234 ///
235 /// ```
236 /// # use kernel::c_str;
237 /// # use kernel::str::CStr;
238 /// # use kernel::str::CString;
239 /// let penguin = c_str!("🐧");
240 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
241 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
242 ///
243 /// // Embedded double quotes are escaped.
244 /// let ascii = c_str!("so \"cool\"");
245 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
246 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
247 /// ```
248 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
249 f.write_str("\"")?;
250 for &c in self.as_bytes() {
251 match c {
252 // Printable characters.
253 b'\"' => f.write_str("\\\"")?,
254 0x20..=0x7e => f.write_char(c as char)?,
255 _ => write!(f, "\\x{:02x}", c)?,
256 }
257 }
258 f.write_str("\"")
259 }
260}
261
262impl AsRef<BStr> for CStr {
263 #[inline]
264 fn as_ref(&self) -> &BStr {
265 self.as_bytes()
266 }
267}
268
269impl Deref for CStr {
270 type Target = BStr;
271
272 #[inline]
273 fn deref(&self) -> &Self::Target {
274 self.as_bytes()
275 }
276}
277
278impl Index<ops::RangeFrom<usize>> for CStr {
279 type Output = CStr;
280
281 #[inline]
282 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
283 // Delegate bounds checking to slice.
284 // Assign to _ to mute clippy's unnecessary operation warning.
285 let _ = &self.as_bytes()[index.start..];
286 // SAFETY: We just checked the bounds.
287 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
288 }
289}
290
291impl Index<ops::RangeFull> for CStr {
292 type Output = CStr;
293
294 #[inline]
295 fn index(&self, _index: ops::RangeFull) -> &Self::Output {
296 self
297 }
298}
299
300mod private {
301 use core::ops;
302
303 // Marker trait for index types that can be forward to `BStr`.
304 pub trait CStrIndex {}
305
306 impl CStrIndex for usize {}
307 impl CStrIndex for ops::Range<usize> {}
308 impl CStrIndex for ops::RangeInclusive<usize> {}
309 impl CStrIndex for ops::RangeToInclusive<usize> {}
310}
311
312impl<Idx> Index<Idx> for CStr
313where
314 Idx: private::CStrIndex,
315 BStr: Index<Idx>,
316{
317 type Output = <BStr as Index<Idx>>::Output;
318
319 #[inline]
320 fn index(&self, index: Idx) -> &Self::Output {
321 &self.as_bytes()[index]
322 }
323}
324
325/// Creates a new [`CStr`] from a string literal.
326///
327/// The string literal should not contain any `NUL` bytes.
328///
329/// # Examples
330///
331/// ```
332/// # use kernel::c_str;
333/// # use kernel::str::CStr;
334/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
335/// ```
336#[macro_export]
337macro_rules! c_str {
338 ($str:expr) => {{
339 const S: &str = concat!($str, "\0");
340 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
341 Ok(v) => v,
342 Err(_) => panic!("string contains interior NUL"),
343 };
344 C
345 }};
346}
347
348#[cfg(test)]
349mod tests {
350 use super::*;
351
352 #[test]
353 fn test_cstr_to_str() {
354 let good_bytes = b"\xf0\x9f\xa6\x80\0";
355 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
356 let checked_str = checked_cstr.to_str().unwrap();
357 assert_eq!(checked_str, "🦀");
358 }
359
360 #[test]
361 #[should_panic]
362 fn test_cstr_to_str_panic() {
363 let bad_bytes = b"\xc3\x28\0";
364 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
365 checked_cstr.to_str().unwrap();
366 }
367
368 #[test]
369 fn test_cstr_as_str_unchecked() {
370 let good_bytes = b"\xf0\x9f\x90\xA7\0";
371 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
372 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
373 assert_eq!(unchecked_str, "🐧");
374 }
375}
376
377/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
378///
379/// It does not fail if callers write past the end of the buffer so that they can calculate the
380/// size required to fit everything.
381///
382/// # Invariants
383///
384/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
385/// is less than `end`.
386pub(crate) struct RawFormatter {
387 // Use `usize` to use `saturating_*` functions.
388 beg: usize,
389 pos: usize,
390 end: usize,
391}
392
393impl RawFormatter {
394 /// Creates a new instance of [`RawFormatter`] with an empty buffer.
395 fn new() -> Self {
396 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
397 Self {
398 beg: 0,
399 pos: 0,
400 end: 0,
401 }
402 }
403
404 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
405 ///
406 /// # Safety
407 ///
408 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
409 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
410 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
411 // INVARIANT: The safety requierments guarantee the type invariants.
412 Self {
413 beg: pos as _,
414 pos: pos as _,
415 end: end as _,
416 }
417 }
418
419 /// Creates a new instance of [`RawFormatter`] with the given buffer.
420 ///
421 /// # Safety
422 ///
423 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
424 /// for the lifetime of the returned [`RawFormatter`].
425 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
426 let pos = buf as usize;
427 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
428 // guarantees that the memory region is valid for writes.
429 Self {
430 pos,
431 beg: pos,
432 end: pos.saturating_add(len),
433 }
434 }
435
436 /// Returns the current insert position.
437 ///
438 /// N.B. It may point to invalid memory.
439 pub(crate) fn pos(&self) -> *mut u8 {
440 self.pos as _
441 }
442
443 /// Return the number of bytes written to the formatter.
444 pub(crate) fn bytes_written(&self) -> usize {
445 self.pos - self.beg
446 }
447}
448
449impl fmt::Write for RawFormatter {
450 fn write_str(&mut self, s: &str) -> fmt::Result {
451 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
452 // don't want it to wrap around to 0.
453 let pos_new = self.pos.saturating_add(s.len());
454
455 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
456 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
457
458 if len_to_copy > 0 {
459 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
460 // yet, so it is valid for write per the type invariants.
461 unsafe {
462 core::ptr::copy_nonoverlapping(
463 s.as_bytes().as_ptr(),
464 self.pos as *mut u8,
465 len_to_copy,
466 )
467 };
468 }
469
470 self.pos = pos_new;
471 Ok(())
472 }
473}
474
475/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
476///
477/// Fails if callers attempt to write more than will fit in the buffer.
478pub(crate) struct Formatter(RawFormatter);
479
480impl Formatter {
481 /// Creates a new instance of [`Formatter`] with the given buffer.
482 ///
483 /// # Safety
484 ///
485 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
486 /// for the lifetime of the returned [`Formatter`].
487 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
488 // SAFETY: The safety requirements of this function satisfy those of the callee.
489 Self(unsafe { RawFormatter::from_buffer(buf, len) })
490 }
491}
492
493impl Deref for Formatter {
494 type Target = RawFormatter;
495
496 fn deref(&self) -> &Self::Target {
497 &self.0
498 }
499}
500
501impl fmt::Write for Formatter {
502 fn write_str(&mut self, s: &str) -> fmt::Result {
503 self.0.write_str(s)?;
504
505 // Fail the request if we go past the end of the buffer.
506 if self.0.pos > self.0.end {
507 Err(fmt::Error)
508 } else {
509 Ok(())
510 }
511 }
512}
513
514/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
515///
516/// Used for interoperability with kernel APIs that take C strings.
517///
518/// # Invariants
519///
520/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
521///
522/// # Examples
523///
524/// ```
525/// use kernel::str::CString;
526///
527/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
528/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
529///
530/// let tmp = "testing";
531/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
532/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
533///
534/// // This fails because it has an embedded `NUL` byte.
535/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
536/// assert_eq!(s.is_ok(), false);
537/// ```
538pub struct CString {
539 buf: Vec<u8>,
540}
541
542impl CString {
543 /// Creates an instance of [`CString`] from the given formatted arguments.
544 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
545 // Calculate the size needed (formatted string plus `NUL` terminator).
546 let mut f = RawFormatter::new();
547 f.write_fmt(args)?;
548 f.write_str("\0")?;
549 let size = f.bytes_written();
550
551 // Allocate a vector with the required number of bytes, and write to it.
552 let mut buf = Vec::try_with_capacity(size)?;
553 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
554 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
555 f.write_fmt(args)?;
556 f.write_str("\0")?;
557
558 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
559 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
560 unsafe { buf.set_len(f.bytes_written()) };
561
562 // Check that there are no `NUL` bytes before the end.
563 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
564 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
565 // so `f.bytes_written() - 1` doesn't underflow.
566 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
567 if !ptr.is_null() {
568 return Err(EINVAL);
569 }
570
571 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
572 // exist in the buffer.
573 Ok(Self { buf })
574 }
575}
576
577impl Deref for CString {
578 type Target = CStr;
579
580 fn deref(&self) -> &Self::Target {
581 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
582 // other `NUL` bytes exist.
583 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
584 }
585}
586
587/// A convenience alias for [`core::format_args`].
588#[macro_export]
589macro_rules! fmt {
590 ($($f:tt)*) => ( core::format_args!($($f)*) )
591}
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::alloc::{flags::*, AllocError, KVec};
6use core::fmt::{self, Write};
7use core::ops::{self, Deref, DerefMut, Index};
8
9use crate::error::{code::*, Error};
10
11/// Byte string without UTF-8 validity guarantee.
12#[repr(transparent)]
13pub struct BStr([u8]);
14
15impl BStr {
16 /// Returns the length of this string.
17 #[inline]
18 pub const fn len(&self) -> usize {
19 self.0.len()
20 }
21
22 /// Returns `true` if the string is empty.
23 #[inline]
24 pub const fn is_empty(&self) -> bool {
25 self.len() == 0
26 }
27
28 /// Creates a [`BStr`] from a `[u8]`.
29 #[inline]
30 pub const fn from_bytes(bytes: &[u8]) -> &Self {
31 // SAFETY: `BStr` is transparent to `[u8]`.
32 unsafe { &*(bytes as *const [u8] as *const BStr) }
33 }
34}
35
36impl fmt::Display for BStr {
37 /// Formats printable ASCII characters, escaping the rest.
38 ///
39 /// ```
40 /// # use kernel::{fmt, b_str, str::{BStr, CString}};
41 /// let ascii = b_str!("Hello, BStr!");
42 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
43 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
44 ///
45 /// let non_ascii = b_str!("🦀");
46 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap();
47 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
48 /// ```
49 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
50 for &b in &self.0 {
51 match b {
52 // Common escape codes.
53 b'\t' => f.write_str("\\t")?,
54 b'\n' => f.write_str("\\n")?,
55 b'\r' => f.write_str("\\r")?,
56 // Printable characters.
57 0x20..=0x7e => f.write_char(b as char)?,
58 _ => write!(f, "\\x{:02x}", b)?,
59 }
60 }
61 Ok(())
62 }
63}
64
65impl fmt::Debug for BStr {
66 /// Formats printable ASCII characters with a double quote on either end,
67 /// escaping the rest.
68 ///
69 /// ```
70 /// # use kernel::{fmt, b_str, str::{BStr, CString}};
71 /// // Embedded double quotes are escaped.
72 /// let ascii = b_str!("Hello, \"BStr\"!");
73 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
74 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
75 ///
76 /// let non_ascii = b_str!("😺");
77 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap();
78 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
79 /// ```
80 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
81 f.write_char('"')?;
82 for &b in &self.0 {
83 match b {
84 // Common escape codes.
85 b'\t' => f.write_str("\\t")?,
86 b'\n' => f.write_str("\\n")?,
87 b'\r' => f.write_str("\\r")?,
88 // String escape characters.
89 b'\"' => f.write_str("\\\"")?,
90 b'\\' => f.write_str("\\\\")?,
91 // Printable characters.
92 0x20..=0x7e => f.write_char(b as char)?,
93 _ => write!(f, "\\x{:02x}", b)?,
94 }
95 }
96 f.write_char('"')
97 }
98}
99
100impl Deref for BStr {
101 type Target = [u8];
102
103 #[inline]
104 fn deref(&self) -> &Self::Target {
105 &self.0
106 }
107}
108
109/// Creates a new [`BStr`] from a string literal.
110///
111/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
112/// characters can be included.
113///
114/// # Examples
115///
116/// ```
117/// # use kernel::b_str;
118/// # use kernel::str::BStr;
119/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
120/// ```
121#[macro_export]
122macro_rules! b_str {
123 ($str:literal) => {{
124 const S: &'static str = $str;
125 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
126 C
127 }};
128}
129
130/// Possible errors when using conversion functions in [`CStr`].
131#[derive(Debug, Clone, Copy)]
132pub enum CStrConvertError {
133 /// Supplied bytes contain an interior `NUL`.
134 InteriorNul,
135
136 /// Supplied bytes are not terminated by `NUL`.
137 NotNulTerminated,
138}
139
140impl From<CStrConvertError> for Error {
141 #[inline]
142 fn from(_: CStrConvertError) -> Error {
143 EINVAL
144 }
145}
146
147/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
148/// end.
149///
150/// Used for interoperability with kernel APIs that take C strings.
151#[repr(transparent)]
152pub struct CStr([u8]);
153
154impl CStr {
155 /// Returns the length of this string excluding `NUL`.
156 #[inline]
157 pub const fn len(&self) -> usize {
158 self.len_with_nul() - 1
159 }
160
161 /// Returns the length of this string with `NUL`.
162 #[inline]
163 pub const fn len_with_nul(&self) -> usize {
164 if self.0.is_empty() {
165 // SAFETY: This is one of the invariant of `CStr`.
166 // We add a `unreachable_unchecked` here to hint the optimizer that
167 // the value returned from this function is non-zero.
168 unsafe { core::hint::unreachable_unchecked() };
169 }
170 self.0.len()
171 }
172
173 /// Returns `true` if the string only includes `NUL`.
174 #[inline]
175 pub const fn is_empty(&self) -> bool {
176 self.len() == 0
177 }
178
179 /// Wraps a raw C string pointer.
180 ///
181 /// # Safety
182 ///
183 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
184 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
185 /// must not be mutated.
186 #[inline]
187 pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
188 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
189 // to a `NUL`-terminated C string.
190 let len = unsafe { bindings::strlen(ptr) } + 1;
191 // SAFETY: Lifetime guaranteed by the safety precondition.
192 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) };
193 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
194 // As we have added 1 to `len`, the last byte is known to be `NUL`.
195 unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
196 }
197
198 /// Creates a [`CStr`] from a `[u8]`.
199 ///
200 /// The provided slice must be `NUL`-terminated, does not contain any
201 /// interior `NUL` bytes.
202 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
203 if bytes.is_empty() {
204 return Err(CStrConvertError::NotNulTerminated);
205 }
206 if bytes[bytes.len() - 1] != 0 {
207 return Err(CStrConvertError::NotNulTerminated);
208 }
209 let mut i = 0;
210 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
211 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
212 while i + 1 < bytes.len() {
213 if bytes[i] == 0 {
214 return Err(CStrConvertError::InteriorNul);
215 }
216 i += 1;
217 }
218 // SAFETY: We just checked that all properties hold.
219 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
220 }
221
222 /// Creates a [`CStr`] from a `[u8]` without performing any additional
223 /// checks.
224 ///
225 /// # Safety
226 ///
227 /// `bytes` *must* end with a `NUL` byte, and should only have a single
228 /// `NUL` byte (or the string will be truncated).
229 #[inline]
230 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
231 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
232 unsafe { core::mem::transmute(bytes) }
233 }
234
235 /// Creates a mutable [`CStr`] from a `[u8]` without performing any
236 /// additional checks.
237 ///
238 /// # Safety
239 ///
240 /// `bytes` *must* end with a `NUL` byte, and should only have a single
241 /// `NUL` byte (or the string will be truncated).
242 #[inline]
243 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
244 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
245 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
246 }
247
248 /// Returns a C pointer to the string.
249 #[inline]
250 pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
251 self.0.as_ptr()
252 }
253
254 /// Convert the string to a byte slice without the trailing `NUL` byte.
255 #[inline]
256 pub fn as_bytes(&self) -> &[u8] {
257 &self.0[..self.len()]
258 }
259
260 /// Convert the string to a byte slice containing the trailing `NUL` byte.
261 #[inline]
262 pub const fn as_bytes_with_nul(&self) -> &[u8] {
263 &self.0
264 }
265
266 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
267 ///
268 /// If the contents of the [`CStr`] are valid UTF-8 data, this
269 /// function will return the corresponding [`&str`] slice. Otherwise,
270 /// it will return an error with details of where UTF-8 validation failed.
271 ///
272 /// # Examples
273 ///
274 /// ```
275 /// # use kernel::str::CStr;
276 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
277 /// assert_eq!(cstr.to_str(), Ok("foo"));
278 /// ```
279 #[inline]
280 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
281 core::str::from_utf8(self.as_bytes())
282 }
283
284 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
285 /// valid UTF-8.
286 ///
287 /// # Safety
288 ///
289 /// The contents must be valid UTF-8.
290 ///
291 /// # Examples
292 ///
293 /// ```
294 /// # use kernel::c_str;
295 /// # use kernel::str::CStr;
296 /// let bar = c_str!("ツ");
297 /// // SAFETY: String literals are guaranteed to be valid UTF-8
298 /// // by the Rust compiler.
299 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
300 /// ```
301 #[inline]
302 pub unsafe fn as_str_unchecked(&self) -> &str {
303 // SAFETY: TODO.
304 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
305 }
306
307 /// Convert this [`CStr`] into a [`CString`] by allocating memory and
308 /// copying over the string data.
309 pub fn to_cstring(&self) -> Result<CString, AllocError> {
310 CString::try_from(self)
311 }
312
313 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
314 ///
315 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
316 /// but non-ASCII letters are unchanged.
317 ///
318 /// To return a new lowercased value without modifying the existing one, use
319 /// [`to_ascii_lowercase()`].
320 ///
321 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
322 pub fn make_ascii_lowercase(&mut self) {
323 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
324 // string.
325 self.0.make_ascii_lowercase();
326 }
327
328 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
329 ///
330 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
331 /// but non-ASCII letters are unchanged.
332 ///
333 /// To return a new uppercased value without modifying the existing one, use
334 /// [`to_ascii_uppercase()`].
335 ///
336 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
337 pub fn make_ascii_uppercase(&mut self) {
338 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
339 // string.
340 self.0.make_ascii_uppercase();
341 }
342
343 /// Returns a copy of this [`CString`] where each character is mapped to its
344 /// ASCII lower case equivalent.
345 ///
346 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
347 /// but non-ASCII letters are unchanged.
348 ///
349 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
350 ///
351 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
352 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
353 let mut s = self.to_cstring()?;
354
355 s.make_ascii_lowercase();
356
357 Ok(s)
358 }
359
360 /// Returns a copy of this [`CString`] where each character is mapped to its
361 /// ASCII upper case equivalent.
362 ///
363 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
364 /// but non-ASCII letters are unchanged.
365 ///
366 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
367 ///
368 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
369 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
370 let mut s = self.to_cstring()?;
371
372 s.make_ascii_uppercase();
373
374 Ok(s)
375 }
376}
377
378impl fmt::Display for CStr {
379 /// Formats printable ASCII characters, escaping the rest.
380 ///
381 /// ```
382 /// # use kernel::c_str;
383 /// # use kernel::fmt;
384 /// # use kernel::str::CStr;
385 /// # use kernel::str::CString;
386 /// let penguin = c_str!("🐧");
387 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
388 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
389 ///
390 /// let ascii = c_str!("so \"cool\"");
391 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
392 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
393 /// ```
394 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
395 for &c in self.as_bytes() {
396 if (0x20..0x7f).contains(&c) {
397 // Printable character.
398 f.write_char(c as char)?;
399 } else {
400 write!(f, "\\x{:02x}", c)?;
401 }
402 }
403 Ok(())
404 }
405}
406
407impl fmt::Debug for CStr {
408 /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
409 ///
410 /// ```
411 /// # use kernel::c_str;
412 /// # use kernel::fmt;
413 /// # use kernel::str::CStr;
414 /// # use kernel::str::CString;
415 /// let penguin = c_str!("🐧");
416 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
417 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
418 ///
419 /// // Embedded double quotes are escaped.
420 /// let ascii = c_str!("so \"cool\"");
421 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
422 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
423 /// ```
424 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
425 f.write_str("\"")?;
426 for &c in self.as_bytes() {
427 match c {
428 // Printable characters.
429 b'\"' => f.write_str("\\\"")?,
430 0x20..=0x7e => f.write_char(c as char)?,
431 _ => write!(f, "\\x{:02x}", c)?,
432 }
433 }
434 f.write_str("\"")
435 }
436}
437
438impl AsRef<BStr> for CStr {
439 #[inline]
440 fn as_ref(&self) -> &BStr {
441 BStr::from_bytes(self.as_bytes())
442 }
443}
444
445impl Deref for CStr {
446 type Target = BStr;
447
448 #[inline]
449 fn deref(&self) -> &Self::Target {
450 self.as_ref()
451 }
452}
453
454impl Index<ops::RangeFrom<usize>> for CStr {
455 type Output = CStr;
456
457 #[inline]
458 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
459 // Delegate bounds checking to slice.
460 // Assign to _ to mute clippy's unnecessary operation warning.
461 let _ = &self.as_bytes()[index.start..];
462 // SAFETY: We just checked the bounds.
463 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
464 }
465}
466
467impl Index<ops::RangeFull> for CStr {
468 type Output = CStr;
469
470 #[inline]
471 fn index(&self, _index: ops::RangeFull) -> &Self::Output {
472 self
473 }
474}
475
476mod private {
477 use core::ops;
478
479 // Marker trait for index types that can be forward to `BStr`.
480 pub trait CStrIndex {}
481
482 impl CStrIndex for usize {}
483 impl CStrIndex for ops::Range<usize> {}
484 impl CStrIndex for ops::RangeInclusive<usize> {}
485 impl CStrIndex for ops::RangeToInclusive<usize> {}
486}
487
488impl<Idx> Index<Idx> for CStr
489where
490 Idx: private::CStrIndex,
491 BStr: Index<Idx>,
492{
493 type Output = <BStr as Index<Idx>>::Output;
494
495 #[inline]
496 fn index(&self, index: Idx) -> &Self::Output {
497 &self.as_ref()[index]
498 }
499}
500
501/// Creates a new [`CStr`] from a string literal.
502///
503/// The string literal should not contain any `NUL` bytes.
504///
505/// # Examples
506///
507/// ```
508/// # use kernel::c_str;
509/// # use kernel::str::CStr;
510/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
511/// ```
512#[macro_export]
513macro_rules! c_str {
514 ($str:expr) => {{
515 const S: &str = concat!($str, "\0");
516 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
517 Ok(v) => v,
518 Err(_) => panic!("string contains interior NUL"),
519 };
520 C
521 }};
522}
523
524#[cfg(test)]
525mod tests {
526 use super::*;
527
528 struct String(CString);
529
530 impl String {
531 fn from_fmt(args: fmt::Arguments<'_>) -> Self {
532 String(CString::try_from_fmt(args).unwrap())
533 }
534 }
535
536 impl Deref for String {
537 type Target = str;
538
539 fn deref(&self) -> &str {
540 self.0.to_str().unwrap()
541 }
542 }
543
544 macro_rules! format {
545 ($($f:tt)*) => ({
546 &*String::from_fmt(kernel::fmt!($($f)*))
547 })
548 }
549
550 const ALL_ASCII_CHARS: &'static str =
551 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
552 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
553 !\"#$%&'()*+,-./0123456789:;<=>?@\
554 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
555 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
556 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
557 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
558 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
559 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
560 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
561 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
562 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
563
564 #[test]
565 fn test_cstr_to_str() {
566 let good_bytes = b"\xf0\x9f\xa6\x80\0";
567 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
568 let checked_str = checked_cstr.to_str().unwrap();
569 assert_eq!(checked_str, "🦀");
570 }
571
572 #[test]
573 #[should_panic]
574 fn test_cstr_to_str_panic() {
575 let bad_bytes = b"\xc3\x28\0";
576 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
577 checked_cstr.to_str().unwrap();
578 }
579
580 #[test]
581 fn test_cstr_as_str_unchecked() {
582 let good_bytes = b"\xf0\x9f\x90\xA7\0";
583 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
584 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
585 assert_eq!(unchecked_str, "🐧");
586 }
587
588 #[test]
589 fn test_cstr_display() {
590 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
591 assert_eq!(format!("{}", hello_world), "hello, world!");
592 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
593 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
594 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
595 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
596 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
597 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
598 }
599
600 #[test]
601 fn test_cstr_display_all_bytes() {
602 let mut bytes: [u8; 256] = [0; 256];
603 // fill `bytes` with [1..=255] + [0]
604 for i in u8::MIN..=u8::MAX {
605 bytes[i as usize] = i.wrapping_add(1);
606 }
607 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
608 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
609 }
610
611 #[test]
612 fn test_cstr_debug() {
613 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
614 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
615 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
616 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
617 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
618 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
619 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
620 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
621 }
622
623 #[test]
624 fn test_bstr_display() {
625 let hello_world = BStr::from_bytes(b"hello, world!");
626 assert_eq!(format!("{}", hello_world), "hello, world!");
627 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
628 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
629 let others = BStr::from_bytes(b"\x01");
630 assert_eq!(format!("{}", others), "\\x01");
631 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
632 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
633 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
634 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
635 }
636
637 #[test]
638 fn test_bstr_debug() {
639 let hello_world = BStr::from_bytes(b"hello, world!");
640 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
641 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
642 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
643 let others = BStr::from_bytes(b"\x01");
644 assert_eq!(format!("{:?}", others), "\"\\x01\"");
645 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
646 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
647 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
648 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
649 }
650}
651
652/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
653///
654/// It does not fail if callers write past the end of the buffer so that they can calculate the
655/// size required to fit everything.
656///
657/// # Invariants
658///
659/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
660/// is less than `end`.
661pub(crate) struct RawFormatter {
662 // Use `usize` to use `saturating_*` functions.
663 beg: usize,
664 pos: usize,
665 end: usize,
666}
667
668impl RawFormatter {
669 /// Creates a new instance of [`RawFormatter`] with an empty buffer.
670 fn new() -> Self {
671 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
672 Self {
673 beg: 0,
674 pos: 0,
675 end: 0,
676 }
677 }
678
679 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
680 ///
681 /// # Safety
682 ///
683 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
684 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
685 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
686 // INVARIANT: The safety requirements guarantee the type invariants.
687 Self {
688 beg: pos as _,
689 pos: pos as _,
690 end: end as _,
691 }
692 }
693
694 /// Creates a new instance of [`RawFormatter`] with the given buffer.
695 ///
696 /// # Safety
697 ///
698 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
699 /// for the lifetime of the returned [`RawFormatter`].
700 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
701 let pos = buf as usize;
702 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
703 // guarantees that the memory region is valid for writes.
704 Self {
705 pos,
706 beg: pos,
707 end: pos.saturating_add(len),
708 }
709 }
710
711 /// Returns the current insert position.
712 ///
713 /// N.B. It may point to invalid memory.
714 pub(crate) fn pos(&self) -> *mut u8 {
715 self.pos as _
716 }
717
718 /// Returns the number of bytes written to the formatter.
719 pub(crate) fn bytes_written(&self) -> usize {
720 self.pos - self.beg
721 }
722}
723
724impl fmt::Write for RawFormatter {
725 fn write_str(&mut self, s: &str) -> fmt::Result {
726 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
727 // don't want it to wrap around to 0.
728 let pos_new = self.pos.saturating_add(s.len());
729
730 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
731 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
732
733 if len_to_copy > 0 {
734 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
735 // yet, so it is valid for write per the type invariants.
736 unsafe {
737 core::ptr::copy_nonoverlapping(
738 s.as_bytes().as_ptr(),
739 self.pos as *mut u8,
740 len_to_copy,
741 )
742 };
743 }
744
745 self.pos = pos_new;
746 Ok(())
747 }
748}
749
750/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
751///
752/// Fails if callers attempt to write more than will fit in the buffer.
753pub(crate) struct Formatter(RawFormatter);
754
755impl Formatter {
756 /// Creates a new instance of [`Formatter`] with the given buffer.
757 ///
758 /// # Safety
759 ///
760 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
761 /// for the lifetime of the returned [`Formatter`].
762 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
763 // SAFETY: The safety requirements of this function satisfy those of the callee.
764 Self(unsafe { RawFormatter::from_buffer(buf, len) })
765 }
766}
767
768impl Deref for Formatter {
769 type Target = RawFormatter;
770
771 fn deref(&self) -> &Self::Target {
772 &self.0
773 }
774}
775
776impl fmt::Write for Formatter {
777 fn write_str(&mut self, s: &str) -> fmt::Result {
778 self.0.write_str(s)?;
779
780 // Fail the request if we go past the end of the buffer.
781 if self.0.pos > self.0.end {
782 Err(fmt::Error)
783 } else {
784 Ok(())
785 }
786 }
787}
788
789/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
790///
791/// Used for interoperability with kernel APIs that take C strings.
792///
793/// # Invariants
794///
795/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
796///
797/// # Examples
798///
799/// ```
800/// use kernel::{str::CString, fmt};
801///
802/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
803/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
804///
805/// let tmp = "testing";
806/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
807/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
808///
809/// // This fails because it has an embedded `NUL` byte.
810/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
811/// assert_eq!(s.is_ok(), false);
812/// ```
813pub struct CString {
814 buf: KVec<u8>,
815}
816
817impl CString {
818 /// Creates an instance of [`CString`] from the given formatted arguments.
819 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
820 // Calculate the size needed (formatted string plus `NUL` terminator).
821 let mut f = RawFormatter::new();
822 f.write_fmt(args)?;
823 f.write_str("\0")?;
824 let size = f.bytes_written();
825
826 // Allocate a vector with the required number of bytes, and write to it.
827 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
828 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
829 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
830 f.write_fmt(args)?;
831 f.write_str("\0")?;
832
833 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
834 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
835 unsafe { buf.set_len(f.bytes_written()) };
836
837 // Check that there are no `NUL` bytes before the end.
838 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
839 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
840 // so `f.bytes_written() - 1` doesn't underflow.
841 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
842 if !ptr.is_null() {
843 return Err(EINVAL);
844 }
845
846 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
847 // exist in the buffer.
848 Ok(Self { buf })
849 }
850}
851
852impl Deref for CString {
853 type Target = CStr;
854
855 fn deref(&self) -> &Self::Target {
856 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
857 // other `NUL` bytes exist.
858 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
859 }
860}
861
862impl DerefMut for CString {
863 fn deref_mut(&mut self) -> &mut Self::Target {
864 // SAFETY: A `CString` is always NUL-terminated and contains no other
865 // NUL bytes.
866 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
867 }
868}
869
870impl<'a> TryFrom<&'a CStr> for CString {
871 type Error = AllocError;
872
873 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
874 let mut buf = KVec::new();
875
876 buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
877
878 // INVARIANT: The `CStr` and `CString` types have the same invariants for
879 // the string data, and we copied it over without changes.
880 Ok(CString { buf })
881 }
882}
883
884impl fmt::Debug for CString {
885 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
886 fmt::Debug::fmt(&**self, f)
887 }
888}
889
890/// A convenience alias for [`core::format_args`].
891#[macro_export]
892macro_rules! fmt {
893 ($($f:tt)*) => ( core::format_args!($($f)*) )
894}