Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * DAMON Primitives for Virtual Address Spaces
  4 *
  5 * Author: SeongJae Park <sjpark@amazon.de>
  6 */
  7
  8#define pr_fmt(fmt) "damon-va: " fmt
  9
 10#include <asm-generic/mman-common.h>
 11#include <linux/highmem.h>
 12#include <linux/hugetlb.h>
 
 13#include <linux/mmu_notifier.h>
 14#include <linux/page_idle.h>
 15#include <linux/pagewalk.h>
 16#include <linux/sched/mm.h>
 17
 18#include "ops-common.h"
 19
 20#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
 21#undef DAMON_MIN_REGION
 22#define DAMON_MIN_REGION 1
 23#endif
 24
 25/*
 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
 27 * count.  Caller must put the returned task, unless it is NULL.
 28 */
 29static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
 30{
 31	return get_pid_task(t->pid, PIDTYPE_PID);
 32}
 33
 34/*
 35 * Get the mm_struct of the given target
 36 *
 37 * Caller _must_ put the mm_struct after use, unless it is NULL.
 38 *
 39 * Returns the mm_struct of the target on success, NULL on failure
 40 */
 41static struct mm_struct *damon_get_mm(struct damon_target *t)
 42{
 43	struct task_struct *task;
 44	struct mm_struct *mm;
 45
 46	task = damon_get_task_struct(t);
 47	if (!task)
 48		return NULL;
 49
 50	mm = get_task_mm(task);
 51	put_task_struct(task);
 52	return mm;
 53}
 54
 55/*
 56 * Functions for the initial monitoring target regions construction
 57 */
 58
 59/*
 60 * Size-evenly split a region into 'nr_pieces' small regions
 61 *
 62 * Returns 0 on success, or negative error code otherwise.
 63 */
 64static int damon_va_evenly_split_region(struct damon_target *t,
 65		struct damon_region *r, unsigned int nr_pieces)
 66{
 67	unsigned long sz_orig, sz_piece, orig_end;
 68	struct damon_region *n = NULL, *next;
 69	unsigned long start;
 
 70
 71	if (!r || !nr_pieces)
 72		return -EINVAL;
 73
 
 
 
 74	orig_end = r->ar.end;
 75	sz_orig = damon_sz_region(r);
 76	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
 77
 78	if (!sz_piece)
 79		return -EINVAL;
 80
 81	r->ar.end = r->ar.start + sz_piece;
 82	next = damon_next_region(r);
 83	for (start = r->ar.end; start + sz_piece <= orig_end;
 84			start += sz_piece) {
 85		n = damon_new_region(start, start + sz_piece);
 86		if (!n)
 87			return -ENOMEM;
 88		damon_insert_region(n, r, next, t);
 89		r = n;
 90	}
 91	/* complement last region for possible rounding error */
 92	if (n)
 93		n->ar.end = orig_end;
 94
 95	return 0;
 96}
 97
 98static unsigned long sz_range(struct damon_addr_range *r)
 99{
100	return r->end - r->start;
101}
102
103/*
104 * Find three regions separated by two biggest unmapped regions
105 *
106 * vma		the head vma of the target address space
107 * regions	an array of three address ranges that results will be saved
108 *
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space.  Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
112 * necessary.
113 *
114 * Returns 0 if success, or negative error code otherwise.
115 */
116static int __damon_va_three_regions(struct mm_struct *mm,
117				       struct damon_addr_range regions[3])
118{
119	struct damon_addr_range first_gap = {0}, second_gap = {0};
120	VMA_ITERATOR(vmi, mm, 0);
121	struct vm_area_struct *vma, *prev = NULL;
122	unsigned long start;
123
124	/*
125	 * Find the two biggest gaps so that first_gap > second_gap > others.
126	 * If this is too slow, it can be optimised to examine the maple
127	 * tree gaps.
128	 */
 
129	for_each_vma(vmi, vma) {
130		unsigned long gap;
131
132		if (!prev) {
133			start = vma->vm_start;
134			goto next;
135		}
136		gap = vma->vm_start - prev->vm_end;
137
138		if (gap > sz_range(&first_gap)) {
139			second_gap = first_gap;
140			first_gap.start = prev->vm_end;
141			first_gap.end = vma->vm_start;
142		} else if (gap > sz_range(&second_gap)) {
143			second_gap.start = prev->vm_end;
144			second_gap.end = vma->vm_start;
145		}
146next:
147		prev = vma;
148	}
 
149
150	if (!sz_range(&second_gap) || !sz_range(&first_gap))
151		return -EINVAL;
152
153	/* Sort the two biggest gaps by address */
154	if (first_gap.start > second_gap.start)
155		swap(first_gap, second_gap);
156
157	/* Store the result */
158	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164
165	return 0;
166}
167
168/*
169 * Get the three regions in the given target (task)
170 *
171 * Returns 0 on success, negative error code otherwise.
172 */
173static int damon_va_three_regions(struct damon_target *t,
174				struct damon_addr_range regions[3])
175{
176	struct mm_struct *mm;
177	int rc;
178
179	mm = damon_get_mm(t);
180	if (!mm)
181		return -EINVAL;
182
183	mmap_read_lock(mm);
184	rc = __damon_va_three_regions(mm, regions);
185	mmap_read_unlock(mm);
186
187	mmput(mm);
188	return rc;
189}
190
191/*
192 * Initialize the monitoring target regions for the given target (task)
193 *
194 * t	the given target
195 *
196 * Because only a number of small portions of the entire address space
197 * is actually mapped to the memory and accessed, monitoring the unmapped
198 * regions is wasteful.  That said, because we can deal with small noises,
199 * tracking every mapping is not strictly required but could even incur a high
200 * overhead if the mapping frequently changes or the number of mappings is
201 * high.  The adaptive regions adjustment mechanism will further help to deal
202 * with the noise by simply identifying the unmapped areas as a region that
203 * has no access.  Moreover, applying the real mappings that would have many
204 * unmapped areas inside will make the adaptive mechanism quite complex.  That
205 * said, too huge unmapped areas inside the monitoring target should be removed
206 * to not take the time for the adaptive mechanism.
207 *
208 * For the reason, we convert the complex mappings to three distinct regions
209 * that cover every mapped area of the address space.  Also the two gaps
210 * between the three regions are the two biggest unmapped areas in the given
211 * address space.  In detail, this function first identifies the start and the
212 * end of the mappings and the two biggest unmapped areas of the address space.
213 * Then, it constructs the three regions as below:
214 *
215 *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
216 *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217 *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 *
219 * As usual memory map of processes is as below, the gap between the heap and
220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221 * region and the stack will be two biggest unmapped regions.  Because these
222 * gaps are exceptionally huge areas in usual address space, excluding these
223 * two biggest unmapped regions will be sufficient to make a trade-off.
224 *
225 *   <heap>
226 *   <BIG UNMAPPED REGION 1>
227 *   <uppermost mmap()-ed region>
228 *   (other mmap()-ed regions and small unmapped regions)
229 *   <lowermost mmap()-ed region>
230 *   <BIG UNMAPPED REGION 2>
231 *   <stack>
232 */
233static void __damon_va_init_regions(struct damon_ctx *ctx,
234				     struct damon_target *t)
235{
236	struct damon_target *ti;
237	struct damon_region *r;
238	struct damon_addr_range regions[3];
239	unsigned long sz = 0, nr_pieces;
240	int i, tidx = 0;
241
242	if (damon_va_three_regions(t, regions)) {
243		damon_for_each_target(ti, ctx) {
244			if (ti == t)
245				break;
246			tidx++;
247		}
248		pr_debug("Failed to get three regions of %dth target\n", tidx);
249		return;
250	}
251
252	for (i = 0; i < 3; i++)
253		sz += regions[i].end - regions[i].start;
254	if (ctx->attrs.min_nr_regions)
255		sz /= ctx->attrs.min_nr_regions;
256	if (sz < DAMON_MIN_REGION)
257		sz = DAMON_MIN_REGION;
258
259	/* Set the initial three regions of the target */
260	for (i = 0; i < 3; i++) {
261		r = damon_new_region(regions[i].start, regions[i].end);
262		if (!r) {
263			pr_err("%d'th init region creation failed\n", i);
264			return;
265		}
266		damon_add_region(r, t);
267
268		nr_pieces = (regions[i].end - regions[i].start) / sz;
269		damon_va_evenly_split_region(t, r, nr_pieces);
270	}
271}
272
273/* Initialize '->regions_list' of every target (task) */
274static void damon_va_init(struct damon_ctx *ctx)
275{
276	struct damon_target *t;
277
278	damon_for_each_target(t, ctx) {
279		/* the user may set the target regions as they want */
280		if (!damon_nr_regions(t))
281			__damon_va_init_regions(ctx, t);
282	}
283}
284
285/*
286 * Update regions for current memory mappings
287 */
288static void damon_va_update(struct damon_ctx *ctx)
289{
290	struct damon_addr_range three_regions[3];
291	struct damon_target *t;
292
293	damon_for_each_target(t, ctx) {
294		if (damon_va_three_regions(t, three_regions))
295			continue;
296		damon_set_regions(t, three_regions, 3);
297	}
298}
299
300static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301		unsigned long next, struct mm_walk *walk)
302{
303	pte_t *pte;
 
304	spinlock_t *ptl;
305
306	if (pmd_trans_huge(*pmd)) {
307		ptl = pmd_lock(walk->mm, pmd);
308		if (!pmd_present(*pmd)) {
 
 
309			spin_unlock(ptl);
310			return 0;
311		}
312
313		if (pmd_trans_huge(*pmd)) {
314			damon_pmdp_mkold(pmd, walk->mm, addr);
315			spin_unlock(ptl);
316			return 0;
317		}
318		spin_unlock(ptl);
319	}
320
321	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
322		return 0;
323	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
324	if (!pte_present(*pte))
 
 
 
 
325		goto out;
326	damon_ptep_mkold(pte, walk->mm, addr);
327out:
328	pte_unmap_unlock(pte, ptl);
329	return 0;
330}
331
332#ifdef CONFIG_HUGETLB_PAGE
333static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
334				struct vm_area_struct *vma, unsigned long addr)
335{
336	bool referenced = false;
337	pte_t entry = huge_ptep_get(pte);
338	struct page *page = pte_page(entry);
 
339
340	get_page(page);
341
342	if (pte_young(entry)) {
343		referenced = true;
344		entry = pte_mkold(entry);
345		set_huge_pte_at(mm, addr, pte, entry);
346	}
347
348#ifdef CONFIG_MMU_NOTIFIER
349	if (mmu_notifier_clear_young(mm, addr,
350				     addr + huge_page_size(hstate_vma(vma))))
351		referenced = true;
352#endif /* CONFIG_MMU_NOTIFIER */
353
354	if (referenced)
355		set_page_young(page);
356
357	set_page_idle(page);
358	put_page(page);
359}
360
361static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362				     unsigned long addr, unsigned long end,
363				     struct mm_walk *walk)
364{
365	struct hstate *h = hstate_vma(walk->vma);
366	spinlock_t *ptl;
367	pte_t entry;
368
369	ptl = huge_pte_lock(h, walk->mm, pte);
370	entry = huge_ptep_get(pte);
371	if (!pte_present(entry))
372		goto out;
373
374	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375
376out:
377	spin_unlock(ptl);
378	return 0;
379}
380#else
381#define damon_mkold_hugetlb_entry NULL
382#endif /* CONFIG_HUGETLB_PAGE */
383
384static const struct mm_walk_ops damon_mkold_ops = {
385	.pmd_entry = damon_mkold_pmd_entry,
386	.hugetlb_entry = damon_mkold_hugetlb_entry,
 
387};
388
389static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
390{
391	mmap_read_lock(mm);
392	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
393	mmap_read_unlock(mm);
394}
395
396/*
397 * Functions for the access checking of the regions
398 */
399
400static void __damon_va_prepare_access_check(struct mm_struct *mm,
401					struct damon_region *r)
402{
403	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
404
405	damon_va_mkold(mm, r->sampling_addr);
406}
407
408static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
409{
410	struct damon_target *t;
411	struct mm_struct *mm;
412	struct damon_region *r;
413
414	damon_for_each_target(t, ctx) {
415		mm = damon_get_mm(t);
416		if (!mm)
417			continue;
418		damon_for_each_region(r, t)
419			__damon_va_prepare_access_check(mm, r);
420		mmput(mm);
421	}
422}
423
424struct damon_young_walk_private {
425	unsigned long *page_sz;
 
426	bool young;
427};
428
429static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
430		unsigned long next, struct mm_walk *walk)
431{
432	pte_t *pte;
 
433	spinlock_t *ptl;
434	struct page *page;
435	struct damon_young_walk_private *priv = walk->private;
436
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438	if (pmd_trans_huge(*pmd)) {
 
 
439		ptl = pmd_lock(walk->mm, pmd);
440		if (!pmd_present(*pmd)) {
 
 
441			spin_unlock(ptl);
442			return 0;
443		}
444
445		if (!pmd_trans_huge(*pmd)) {
446			spin_unlock(ptl);
447			goto regular_page;
448		}
449		page = damon_get_page(pmd_pfn(*pmd));
450		if (!page)
451			goto huge_out;
452		if (pmd_young(*pmd) || !page_is_idle(page) ||
453					mmu_notifier_test_young(walk->mm,
454						addr)) {
455			*priv->page_sz = HPAGE_PMD_SIZE;
456			priv->young = true;
457		}
458		put_page(page);
459huge_out:
460		spin_unlock(ptl);
461		return 0;
462	}
463
464regular_page:
465#endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
466
467	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
468		return -EINVAL;
469	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
470	if (!pte_present(*pte))
 
 
 
 
 
471		goto out;
472	page = damon_get_page(pte_pfn(*pte));
473	if (!page)
474		goto out;
475	if (pte_young(*pte) || !page_is_idle(page) ||
476			mmu_notifier_test_young(walk->mm, addr)) {
477		*priv->page_sz = PAGE_SIZE;
478		priv->young = true;
479	}
480	put_page(page);
481out:
482	pte_unmap_unlock(pte, ptl);
483	return 0;
484}
485
486#ifdef CONFIG_HUGETLB_PAGE
487static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
488				     unsigned long addr, unsigned long end,
489				     struct mm_walk *walk)
490{
491	struct damon_young_walk_private *priv = walk->private;
492	struct hstate *h = hstate_vma(walk->vma);
493	struct page *page;
494	spinlock_t *ptl;
495	pte_t entry;
496
497	ptl = huge_pte_lock(h, walk->mm, pte);
498	entry = huge_ptep_get(pte);
499	if (!pte_present(entry))
500		goto out;
501
502	page = pte_page(entry);
503	get_page(page);
504
505	if (pte_young(entry) || !page_is_idle(page) ||
506	    mmu_notifier_test_young(walk->mm, addr)) {
507		*priv->page_sz = huge_page_size(h);
508		priv->young = true;
509	}
510
511	put_page(page);
512
513out:
514	spin_unlock(ptl);
515	return 0;
516}
517#else
518#define damon_young_hugetlb_entry NULL
519#endif /* CONFIG_HUGETLB_PAGE */
520
521static const struct mm_walk_ops damon_young_ops = {
522	.pmd_entry = damon_young_pmd_entry,
523	.hugetlb_entry = damon_young_hugetlb_entry,
 
524};
525
526static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
527		unsigned long *page_sz)
528{
529	struct damon_young_walk_private arg = {
530		.page_sz = page_sz,
531		.young = false,
532	};
533
534	mmap_read_lock(mm);
535	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
536	mmap_read_unlock(mm);
537	return arg.young;
538}
539
540/*
541 * Check whether the region was accessed after the last preparation
542 *
543 * mm	'mm_struct' for the given virtual address space
544 * r	the region to be checked
545 */
546static void __damon_va_check_access(struct mm_struct *mm,
547				struct damon_region *r, bool same_target)
 
548{
549	static unsigned long last_addr;
550	static unsigned long last_page_sz = PAGE_SIZE;
551	static bool last_accessed;
552
 
 
 
 
 
553	/* If the region is in the last checked page, reuse the result */
554	if (same_target && (ALIGN_DOWN(last_addr, last_page_sz) ==
555				ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
556		if (last_accessed)
557			r->nr_accesses++;
558		return;
559	}
560
561	last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
562	if (last_accessed)
563		r->nr_accesses++;
564
565	last_addr = r->sampling_addr;
566}
567
568static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
569{
570	struct damon_target *t;
571	struct mm_struct *mm;
572	struct damon_region *r;
573	unsigned int max_nr_accesses = 0;
574	bool same_target;
575
576	damon_for_each_target(t, ctx) {
577		mm = damon_get_mm(t);
578		if (!mm)
579			continue;
580		same_target = false;
581		damon_for_each_region(r, t) {
582			__damon_va_check_access(mm, r, same_target);
 
583			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
584			same_target = true;
585		}
586		mmput(mm);
 
587	}
588
589	return max_nr_accesses;
590}
591
592/*
593 * Functions for the target validity check and cleanup
594 */
595
596static bool damon_va_target_valid(struct damon_target *t)
597{
598	struct task_struct *task;
599
600	task = damon_get_task_struct(t);
601	if (task) {
602		put_task_struct(task);
603		return true;
604	}
605
606	return false;
607}
608
609#ifndef CONFIG_ADVISE_SYSCALLS
610static unsigned long damos_madvise(struct damon_target *target,
611		struct damon_region *r, int behavior)
612{
613	return 0;
614}
615#else
616static unsigned long damos_madvise(struct damon_target *target,
617		struct damon_region *r, int behavior)
618{
619	struct mm_struct *mm;
620	unsigned long start = PAGE_ALIGN(r->ar.start);
621	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
622	unsigned long applied;
623
624	mm = damon_get_mm(target);
625	if (!mm)
626		return 0;
627
628	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
629	mmput(mm);
630
631	return applied;
632}
633#endif	/* CONFIG_ADVISE_SYSCALLS */
634
635static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
636		struct damon_target *t, struct damon_region *r,
637		struct damos *scheme)
638{
639	int madv_action;
640
641	switch (scheme->action) {
642	case DAMOS_WILLNEED:
643		madv_action = MADV_WILLNEED;
644		break;
645	case DAMOS_COLD:
646		madv_action = MADV_COLD;
647		break;
648	case DAMOS_PAGEOUT:
649		madv_action = MADV_PAGEOUT;
650		break;
651	case DAMOS_HUGEPAGE:
652		madv_action = MADV_HUGEPAGE;
653		break;
654	case DAMOS_NOHUGEPAGE:
655		madv_action = MADV_NOHUGEPAGE;
656		break;
657	case DAMOS_STAT:
658		return 0;
659	default:
660		/*
661		 * DAMOS actions that are not yet supported by 'vaddr'.
662		 */
663		return 0;
664	}
665
666	return damos_madvise(t, r, madv_action);
667}
668
669static int damon_va_scheme_score(struct damon_ctx *context,
670		struct damon_target *t, struct damon_region *r,
671		struct damos *scheme)
672{
673
674	switch (scheme->action) {
675	case DAMOS_PAGEOUT:
676		return damon_cold_score(context, r, scheme);
677	default:
678		break;
679	}
680
681	return DAMOS_MAX_SCORE;
682}
683
684static int __init damon_va_initcall(void)
685{
686	struct damon_operations ops = {
687		.id = DAMON_OPS_VADDR,
688		.init = damon_va_init,
689		.update = damon_va_update,
690		.prepare_access_checks = damon_va_prepare_access_checks,
691		.check_accesses = damon_va_check_accesses,
692		.reset_aggregated = NULL,
693		.target_valid = damon_va_target_valid,
694		.cleanup = NULL,
695		.apply_scheme = damon_va_apply_scheme,
696		.get_scheme_score = damon_va_scheme_score,
697	};
698	/* ops for fixed virtual address ranges */
699	struct damon_operations ops_fvaddr = ops;
700	int err;
701
702	/* Don't set the monitoring target regions for the entire mapping */
703	ops_fvaddr.id = DAMON_OPS_FVADDR;
704	ops_fvaddr.init = NULL;
705	ops_fvaddr.update = NULL;
706
707	err = damon_register_ops(&ops);
708	if (err)
709		return err;
710	return damon_register_ops(&ops_fvaddr);
711};
712
713subsys_initcall(damon_va_initcall);
714
715#include "vaddr-test.h"
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * DAMON Primitives for Virtual Address Spaces
  4 *
  5 * Author: SeongJae Park <sj@kernel.org>
  6 */
  7
  8#define pr_fmt(fmt) "damon-va: " fmt
  9
 
 10#include <linux/highmem.h>
 11#include <linux/hugetlb.h>
 12#include <linux/mman.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/page_idle.h>
 15#include <linux/pagewalk.h>
 16#include <linux/sched/mm.h>
 17
 18#include "ops-common.h"
 19
 20#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
 21#undef DAMON_MIN_REGION
 22#define DAMON_MIN_REGION 1
 23#endif
 24
 25/*
 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
 27 * count.  Caller must put the returned task, unless it is NULL.
 28 */
 29static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
 30{
 31	return get_pid_task(t->pid, PIDTYPE_PID);
 32}
 33
 34/*
 35 * Get the mm_struct of the given target
 36 *
 37 * Caller _must_ put the mm_struct after use, unless it is NULL.
 38 *
 39 * Returns the mm_struct of the target on success, NULL on failure
 40 */
 41static struct mm_struct *damon_get_mm(struct damon_target *t)
 42{
 43	struct task_struct *task;
 44	struct mm_struct *mm;
 45
 46	task = damon_get_task_struct(t);
 47	if (!task)
 48		return NULL;
 49
 50	mm = get_task_mm(task);
 51	put_task_struct(task);
 52	return mm;
 53}
 54
 55/*
 56 * Functions for the initial monitoring target regions construction
 57 */
 58
 59/*
 60 * Size-evenly split a region into 'nr_pieces' small regions
 61 *
 62 * Returns 0 on success, or negative error code otherwise.
 63 */
 64static int damon_va_evenly_split_region(struct damon_target *t,
 65		struct damon_region *r, unsigned int nr_pieces)
 66{
 67	unsigned long sz_orig, sz_piece, orig_end;
 68	struct damon_region *n = NULL, *next;
 69	unsigned long start;
 70	unsigned int i;
 71
 72	if (!r || !nr_pieces)
 73		return -EINVAL;
 74
 75	if (nr_pieces == 1)
 76		return 0;
 77
 78	orig_end = r->ar.end;
 79	sz_orig = damon_sz_region(r);
 80	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
 81
 82	if (!sz_piece)
 83		return -EINVAL;
 84
 85	r->ar.end = r->ar.start + sz_piece;
 86	next = damon_next_region(r);
 87	for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
 
 88		n = damon_new_region(start, start + sz_piece);
 89		if (!n)
 90			return -ENOMEM;
 91		damon_insert_region(n, r, next, t);
 92		r = n;
 93	}
 94	/* complement last region for possible rounding error */
 95	if (n)
 96		n->ar.end = orig_end;
 97
 98	return 0;
 99}
100
101static unsigned long sz_range(struct damon_addr_range *r)
102{
103	return r->end - r->start;
104}
105
106/*
107 * Find three regions separated by two biggest unmapped regions
108 *
109 * vma		the head vma of the target address space
110 * regions	an array of three address ranges that results will be saved
111 *
112 * This function receives an address space and finds three regions in it which
113 * separated by the two biggest unmapped regions in the space.  Please refer to
114 * below comments of '__damon_va_init_regions()' function to know why this is
115 * necessary.
116 *
117 * Returns 0 if success, or negative error code otherwise.
118 */
119static int __damon_va_three_regions(struct mm_struct *mm,
120				       struct damon_addr_range regions[3])
121{
122	struct damon_addr_range first_gap = {0}, second_gap = {0};
123	VMA_ITERATOR(vmi, mm, 0);
124	struct vm_area_struct *vma, *prev = NULL;
125	unsigned long start;
126
127	/*
128	 * Find the two biggest gaps so that first_gap > second_gap > others.
129	 * If this is too slow, it can be optimised to examine the maple
130	 * tree gaps.
131	 */
132	rcu_read_lock();
133	for_each_vma(vmi, vma) {
134		unsigned long gap;
135
136		if (!prev) {
137			start = vma->vm_start;
138			goto next;
139		}
140		gap = vma->vm_start - prev->vm_end;
141
142		if (gap > sz_range(&first_gap)) {
143			second_gap = first_gap;
144			first_gap.start = prev->vm_end;
145			first_gap.end = vma->vm_start;
146		} else if (gap > sz_range(&second_gap)) {
147			second_gap.start = prev->vm_end;
148			second_gap.end = vma->vm_start;
149		}
150next:
151		prev = vma;
152	}
153	rcu_read_unlock();
154
155	if (!sz_range(&second_gap) || !sz_range(&first_gap))
156		return -EINVAL;
157
158	/* Sort the two biggest gaps by address */
159	if (first_gap.start > second_gap.start)
160		swap(first_gap, second_gap);
161
162	/* Store the result */
163	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
164	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
165	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
166	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
167	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
168	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
169
170	return 0;
171}
172
173/*
174 * Get the three regions in the given target (task)
175 *
176 * Returns 0 on success, negative error code otherwise.
177 */
178static int damon_va_three_regions(struct damon_target *t,
179				struct damon_addr_range regions[3])
180{
181	struct mm_struct *mm;
182	int rc;
183
184	mm = damon_get_mm(t);
185	if (!mm)
186		return -EINVAL;
187
188	mmap_read_lock(mm);
189	rc = __damon_va_three_regions(mm, regions);
190	mmap_read_unlock(mm);
191
192	mmput(mm);
193	return rc;
194}
195
196/*
197 * Initialize the monitoring target regions for the given target (task)
198 *
199 * t	the given target
200 *
201 * Because only a number of small portions of the entire address space
202 * is actually mapped to the memory and accessed, monitoring the unmapped
203 * regions is wasteful.  That said, because we can deal with small noises,
204 * tracking every mapping is not strictly required but could even incur a high
205 * overhead if the mapping frequently changes or the number of mappings is
206 * high.  The adaptive regions adjustment mechanism will further help to deal
207 * with the noise by simply identifying the unmapped areas as a region that
208 * has no access.  Moreover, applying the real mappings that would have many
209 * unmapped areas inside will make the adaptive mechanism quite complex.  That
210 * said, too huge unmapped areas inside the monitoring target should be removed
211 * to not take the time for the adaptive mechanism.
212 *
213 * For the reason, we convert the complex mappings to three distinct regions
214 * that cover every mapped area of the address space.  Also the two gaps
215 * between the three regions are the two biggest unmapped areas in the given
216 * address space.  In detail, this function first identifies the start and the
217 * end of the mappings and the two biggest unmapped areas of the address space.
218 * Then, it constructs the three regions as below:
219 *
220 *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
221 *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
222 *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
223 *
224 * As usual memory map of processes is as below, the gap between the heap and
225 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
226 * region and the stack will be two biggest unmapped regions.  Because these
227 * gaps are exceptionally huge areas in usual address space, excluding these
228 * two biggest unmapped regions will be sufficient to make a trade-off.
229 *
230 *   <heap>
231 *   <BIG UNMAPPED REGION 1>
232 *   <uppermost mmap()-ed region>
233 *   (other mmap()-ed regions and small unmapped regions)
234 *   <lowermost mmap()-ed region>
235 *   <BIG UNMAPPED REGION 2>
236 *   <stack>
237 */
238static void __damon_va_init_regions(struct damon_ctx *ctx,
239				     struct damon_target *t)
240{
241	struct damon_target *ti;
242	struct damon_region *r;
243	struct damon_addr_range regions[3];
244	unsigned long sz = 0, nr_pieces;
245	int i, tidx = 0;
246
247	if (damon_va_three_regions(t, regions)) {
248		damon_for_each_target(ti, ctx) {
249			if (ti == t)
250				break;
251			tidx++;
252		}
253		pr_debug("Failed to get three regions of %dth target\n", tidx);
254		return;
255	}
256
257	for (i = 0; i < 3; i++)
258		sz += regions[i].end - regions[i].start;
259	if (ctx->attrs.min_nr_regions)
260		sz /= ctx->attrs.min_nr_regions;
261	if (sz < DAMON_MIN_REGION)
262		sz = DAMON_MIN_REGION;
263
264	/* Set the initial three regions of the target */
265	for (i = 0; i < 3; i++) {
266		r = damon_new_region(regions[i].start, regions[i].end);
267		if (!r) {
268			pr_err("%d'th init region creation failed\n", i);
269			return;
270		}
271		damon_add_region(r, t);
272
273		nr_pieces = (regions[i].end - regions[i].start) / sz;
274		damon_va_evenly_split_region(t, r, nr_pieces);
275	}
276}
277
278/* Initialize '->regions_list' of every target (task) */
279static void damon_va_init(struct damon_ctx *ctx)
280{
281	struct damon_target *t;
282
283	damon_for_each_target(t, ctx) {
284		/* the user may set the target regions as they want */
285		if (!damon_nr_regions(t))
286			__damon_va_init_regions(ctx, t);
287	}
288}
289
290/*
291 * Update regions for current memory mappings
292 */
293static void damon_va_update(struct damon_ctx *ctx)
294{
295	struct damon_addr_range three_regions[3];
296	struct damon_target *t;
297
298	damon_for_each_target(t, ctx) {
299		if (damon_va_three_regions(t, three_regions))
300			continue;
301		damon_set_regions(t, three_regions, 3);
302	}
303}
304
305static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
306		unsigned long next, struct mm_walk *walk)
307{
308	pte_t *pte;
309	pmd_t pmde;
310	spinlock_t *ptl;
311
312	if (pmd_trans_huge(pmdp_get(pmd))) {
313		ptl = pmd_lock(walk->mm, pmd);
314		pmde = pmdp_get(pmd);
315
316		if (!pmd_present(pmde)) {
317			spin_unlock(ptl);
318			return 0;
319		}
320
321		if (pmd_trans_huge(pmde)) {
322			damon_pmdp_mkold(pmd, walk->vma, addr);
323			spin_unlock(ptl);
324			return 0;
325		}
326		spin_unlock(ptl);
327	}
328
 
 
329	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
330	if (!pte) {
331		walk->action = ACTION_AGAIN;
332		return 0;
333	}
334	if (!pte_present(ptep_get(pte)))
335		goto out;
336	damon_ptep_mkold(pte, walk->vma, addr);
337out:
338	pte_unmap_unlock(pte, ptl);
339	return 0;
340}
341
342#ifdef CONFIG_HUGETLB_PAGE
343static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
344				struct vm_area_struct *vma, unsigned long addr)
345{
346	bool referenced = false;
347	pte_t entry = huge_ptep_get(mm, addr, pte);
348	struct folio *folio = pfn_folio(pte_pfn(entry));
349	unsigned long psize = huge_page_size(hstate_vma(vma));
350
351	folio_get(folio);
352
353	if (pte_young(entry)) {
354		referenced = true;
355		entry = pte_mkold(entry);
356		set_huge_pte_at(mm, addr, pte, entry, psize);
357	}
358
 
359	if (mmu_notifier_clear_young(mm, addr,
360				     addr + huge_page_size(hstate_vma(vma))))
361		referenced = true;
 
362
363	if (referenced)
364		folio_set_young(folio);
365
366	folio_set_idle(folio);
367	folio_put(folio);
368}
369
370static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
371				     unsigned long addr, unsigned long end,
372				     struct mm_walk *walk)
373{
374	struct hstate *h = hstate_vma(walk->vma);
375	spinlock_t *ptl;
376	pte_t entry;
377
378	ptl = huge_pte_lock(h, walk->mm, pte);
379	entry = huge_ptep_get(walk->mm, addr, pte);
380	if (!pte_present(entry))
381		goto out;
382
383	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
384
385out:
386	spin_unlock(ptl);
387	return 0;
388}
389#else
390#define damon_mkold_hugetlb_entry NULL
391#endif /* CONFIG_HUGETLB_PAGE */
392
393static const struct mm_walk_ops damon_mkold_ops = {
394	.pmd_entry = damon_mkold_pmd_entry,
395	.hugetlb_entry = damon_mkold_hugetlb_entry,
396	.walk_lock = PGWALK_RDLOCK,
397};
398
399static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
400{
401	mmap_read_lock(mm);
402	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
403	mmap_read_unlock(mm);
404}
405
406/*
407 * Functions for the access checking of the regions
408 */
409
410static void __damon_va_prepare_access_check(struct mm_struct *mm,
411					struct damon_region *r)
412{
413	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
414
415	damon_va_mkold(mm, r->sampling_addr);
416}
417
418static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
419{
420	struct damon_target *t;
421	struct mm_struct *mm;
422	struct damon_region *r;
423
424	damon_for_each_target(t, ctx) {
425		mm = damon_get_mm(t);
426		if (!mm)
427			continue;
428		damon_for_each_region(r, t)
429			__damon_va_prepare_access_check(mm, r);
430		mmput(mm);
431	}
432}
433
434struct damon_young_walk_private {
435	/* size of the folio for the access checked virtual memory address */
436	unsigned long *folio_sz;
437	bool young;
438};
439
440static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
441		unsigned long next, struct mm_walk *walk)
442{
443	pte_t *pte;
444	pte_t ptent;
445	spinlock_t *ptl;
446	struct folio *folio;
447	struct damon_young_walk_private *priv = walk->private;
448
449#ifdef CONFIG_TRANSPARENT_HUGEPAGE
450	if (pmd_trans_huge(pmdp_get(pmd))) {
451		pmd_t pmde;
452
453		ptl = pmd_lock(walk->mm, pmd);
454		pmde = pmdp_get(pmd);
455
456		if (!pmd_present(pmde)) {
457			spin_unlock(ptl);
458			return 0;
459		}
460
461		if (!pmd_trans_huge(pmde)) {
462			spin_unlock(ptl);
463			goto regular_page;
464		}
465		folio = damon_get_folio(pmd_pfn(pmde));
466		if (!folio)
467			goto huge_out;
468		if (pmd_young(pmde) || !folio_test_idle(folio) ||
469					mmu_notifier_test_young(walk->mm,
470						addr))
 
471			priv->young = true;
472		*priv->folio_sz = HPAGE_PMD_SIZE;
473		folio_put(folio);
474huge_out:
475		spin_unlock(ptl);
476		return 0;
477	}
478
479regular_page:
480#endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
481
 
 
482	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
483	if (!pte) {
484		walk->action = ACTION_AGAIN;
485		return 0;
486	}
487	ptent = ptep_get(pte);
488	if (!pte_present(ptent))
489		goto out;
490	folio = damon_get_folio(pte_pfn(ptent));
491	if (!folio)
492		goto out;
493	if (pte_young(ptent) || !folio_test_idle(folio) ||
494			mmu_notifier_test_young(walk->mm, addr))
 
495		priv->young = true;
496	*priv->folio_sz = folio_size(folio);
497	folio_put(folio);
498out:
499	pte_unmap_unlock(pte, ptl);
500	return 0;
501}
502
503#ifdef CONFIG_HUGETLB_PAGE
504static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
505				     unsigned long addr, unsigned long end,
506				     struct mm_walk *walk)
507{
508	struct damon_young_walk_private *priv = walk->private;
509	struct hstate *h = hstate_vma(walk->vma);
510	struct folio *folio;
511	spinlock_t *ptl;
512	pte_t entry;
513
514	ptl = huge_pte_lock(h, walk->mm, pte);
515	entry = huge_ptep_get(walk->mm, addr, pte);
516	if (!pte_present(entry))
517		goto out;
518
519	folio = pfn_folio(pte_pfn(entry));
520	folio_get(folio);
521
522	if (pte_young(entry) || !folio_test_idle(folio) ||
523	    mmu_notifier_test_young(walk->mm, addr))
 
524		priv->young = true;
525	*priv->folio_sz = huge_page_size(h);
526
527	folio_put(folio);
528
529out:
530	spin_unlock(ptl);
531	return 0;
532}
533#else
534#define damon_young_hugetlb_entry NULL
535#endif /* CONFIG_HUGETLB_PAGE */
536
537static const struct mm_walk_ops damon_young_ops = {
538	.pmd_entry = damon_young_pmd_entry,
539	.hugetlb_entry = damon_young_hugetlb_entry,
540	.walk_lock = PGWALK_RDLOCK,
541};
542
543static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
544		unsigned long *folio_sz)
545{
546	struct damon_young_walk_private arg = {
547		.folio_sz = folio_sz,
548		.young = false,
549	};
550
551	mmap_read_lock(mm);
552	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
553	mmap_read_unlock(mm);
554	return arg.young;
555}
556
557/*
558 * Check whether the region was accessed after the last preparation
559 *
560 * mm	'mm_struct' for the given virtual address space
561 * r	the region to be checked
562 */
563static void __damon_va_check_access(struct mm_struct *mm,
564				struct damon_region *r, bool same_target,
565				struct damon_attrs *attrs)
566{
567	static unsigned long last_addr;
568	static unsigned long last_folio_sz = PAGE_SIZE;
569	static bool last_accessed;
570
571	if (!mm) {
572		damon_update_region_access_rate(r, false, attrs);
573		return;
574	}
575
576	/* If the region is in the last checked page, reuse the result */
577	if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
578				ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
579		damon_update_region_access_rate(r, last_accessed, attrs);
 
580		return;
581	}
582
583	last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
584	damon_update_region_access_rate(r, last_accessed, attrs);
 
585
586	last_addr = r->sampling_addr;
587}
588
589static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
590{
591	struct damon_target *t;
592	struct mm_struct *mm;
593	struct damon_region *r;
594	unsigned int max_nr_accesses = 0;
595	bool same_target;
596
597	damon_for_each_target(t, ctx) {
598		mm = damon_get_mm(t);
 
 
599		same_target = false;
600		damon_for_each_region(r, t) {
601			__damon_va_check_access(mm, r, same_target,
602					&ctx->attrs);
603			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
604			same_target = true;
605		}
606		if (mm)
607			mmput(mm);
608	}
609
610	return max_nr_accesses;
611}
612
613/*
614 * Functions for the target validity check and cleanup
615 */
616
617static bool damon_va_target_valid(struct damon_target *t)
618{
619	struct task_struct *task;
620
621	task = damon_get_task_struct(t);
622	if (task) {
623		put_task_struct(task);
624		return true;
625	}
626
627	return false;
628}
629
630#ifndef CONFIG_ADVISE_SYSCALLS
631static unsigned long damos_madvise(struct damon_target *target,
632		struct damon_region *r, int behavior)
633{
634	return 0;
635}
636#else
637static unsigned long damos_madvise(struct damon_target *target,
638		struct damon_region *r, int behavior)
639{
640	struct mm_struct *mm;
641	unsigned long start = PAGE_ALIGN(r->ar.start);
642	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
643	unsigned long applied;
644
645	mm = damon_get_mm(target);
646	if (!mm)
647		return 0;
648
649	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
650	mmput(mm);
651
652	return applied;
653}
654#endif	/* CONFIG_ADVISE_SYSCALLS */
655
656static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
657		struct damon_target *t, struct damon_region *r,
658		struct damos *scheme)
659{
660	int madv_action;
661
662	switch (scheme->action) {
663	case DAMOS_WILLNEED:
664		madv_action = MADV_WILLNEED;
665		break;
666	case DAMOS_COLD:
667		madv_action = MADV_COLD;
668		break;
669	case DAMOS_PAGEOUT:
670		madv_action = MADV_PAGEOUT;
671		break;
672	case DAMOS_HUGEPAGE:
673		madv_action = MADV_HUGEPAGE;
674		break;
675	case DAMOS_NOHUGEPAGE:
676		madv_action = MADV_NOHUGEPAGE;
677		break;
678	case DAMOS_STAT:
679		return 0;
680	default:
681		/*
682		 * DAMOS actions that are not yet supported by 'vaddr'.
683		 */
684		return 0;
685	}
686
687	return damos_madvise(t, r, madv_action);
688}
689
690static int damon_va_scheme_score(struct damon_ctx *context,
691		struct damon_target *t, struct damon_region *r,
692		struct damos *scheme)
693{
694
695	switch (scheme->action) {
696	case DAMOS_PAGEOUT:
697		return damon_cold_score(context, r, scheme);
698	default:
699		break;
700	}
701
702	return DAMOS_MAX_SCORE;
703}
704
705static int __init damon_va_initcall(void)
706{
707	struct damon_operations ops = {
708		.id = DAMON_OPS_VADDR,
709		.init = damon_va_init,
710		.update = damon_va_update,
711		.prepare_access_checks = damon_va_prepare_access_checks,
712		.check_accesses = damon_va_check_accesses,
713		.reset_aggregated = NULL,
714		.target_valid = damon_va_target_valid,
715		.cleanup = NULL,
716		.apply_scheme = damon_va_apply_scheme,
717		.get_scheme_score = damon_va_scheme_score,
718	};
719	/* ops for fixed virtual address ranges */
720	struct damon_operations ops_fvaddr = ops;
721	int err;
722
723	/* Don't set the monitoring target regions for the entire mapping */
724	ops_fvaddr.id = DAMON_OPS_FVADDR;
725	ops_fvaddr.init = NULL;
726	ops_fvaddr.update = NULL;
727
728	err = damon_register_ops(&ops);
729	if (err)
730		return err;
731	return damon_register_ops(&ops_fvaddr);
732};
733
734subsys_initcall(damon_va_initcall);
735
736#include "tests/vaddr-kunit.h"