Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10#include <uapi/linux/sched/types.h>
11#include <linux/mm.h>
12#include <linux/mmu_context.h>
13#include <linux/sched.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/task.h>
16#include <linux/kthread.h>
17#include <linux/completion.h>
18#include <linux/err.h>
19#include <linux/cgroup.h>
20#include <linux/cpuset.h>
21#include <linux/unistd.h>
22#include <linux/file.h>
23#include <linux/export.h>
24#include <linux/mutex.h>
25#include <linux/slab.h>
26#include <linux/freezer.h>
27#include <linux/ptrace.h>
28#include <linux/uaccess.h>
29#include <linux/numa.h>
30#include <linux/sched/isolation.h>
31#include <trace/events/sched.h>
32
33
34static DEFINE_SPINLOCK(kthread_create_lock);
35static LIST_HEAD(kthread_create_list);
36struct task_struct *kthreadd_task;
37
38struct kthread_create_info
39{
40 /* Information passed to kthread() from kthreadd. */
41 int (*threadfn)(void *data);
42 void *data;
43 int node;
44
45 /* Result passed back to kthread_create() from kthreadd. */
46 struct task_struct *result;
47 struct completion *done;
48
49 struct list_head list;
50};
51
52struct kthread {
53 unsigned long flags;
54 unsigned int cpu;
55 int result;
56 int (*threadfn)(void *);
57 void *data;
58 struct completion parked;
59 struct completion exited;
60#ifdef CONFIG_BLK_CGROUP
61 struct cgroup_subsys_state *blkcg_css;
62#endif
63 /* To store the full name if task comm is truncated. */
64 char *full_name;
65};
66
67enum KTHREAD_BITS {
68 KTHREAD_IS_PER_CPU = 0,
69 KTHREAD_SHOULD_STOP,
70 KTHREAD_SHOULD_PARK,
71};
72
73static inline struct kthread *to_kthread(struct task_struct *k)
74{
75 WARN_ON(!(k->flags & PF_KTHREAD));
76 return k->worker_private;
77}
78
79/*
80 * Variant of to_kthread() that doesn't assume @p is a kthread.
81 *
82 * Per construction; when:
83 *
84 * (p->flags & PF_KTHREAD) && p->worker_private
85 *
86 * the task is both a kthread and struct kthread is persistent. However
87 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
88 * begin_new_exec()).
89 */
90static inline struct kthread *__to_kthread(struct task_struct *p)
91{
92 void *kthread = p->worker_private;
93 if (kthread && !(p->flags & PF_KTHREAD))
94 kthread = NULL;
95 return kthread;
96}
97
98void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
99{
100 struct kthread *kthread = to_kthread(tsk);
101
102 if (!kthread || !kthread->full_name) {
103 __get_task_comm(buf, buf_size, tsk);
104 return;
105 }
106
107 strscpy_pad(buf, kthread->full_name, buf_size);
108}
109
110bool set_kthread_struct(struct task_struct *p)
111{
112 struct kthread *kthread;
113
114 if (WARN_ON_ONCE(to_kthread(p)))
115 return false;
116
117 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
118 if (!kthread)
119 return false;
120
121 init_completion(&kthread->exited);
122 init_completion(&kthread->parked);
123 p->vfork_done = &kthread->exited;
124
125 p->worker_private = kthread;
126 return true;
127}
128
129void free_kthread_struct(struct task_struct *k)
130{
131 struct kthread *kthread;
132
133 /*
134 * Can be NULL if kmalloc() in set_kthread_struct() failed.
135 */
136 kthread = to_kthread(k);
137 if (!kthread)
138 return;
139
140#ifdef CONFIG_BLK_CGROUP
141 WARN_ON_ONCE(kthread->blkcg_css);
142#endif
143 k->worker_private = NULL;
144 kfree(kthread->full_name);
145 kfree(kthread);
146}
147
148/**
149 * kthread_should_stop - should this kthread return now?
150 *
151 * When someone calls kthread_stop() on your kthread, it will be woken
152 * and this will return true. You should then return, and your return
153 * value will be passed through to kthread_stop().
154 */
155bool kthread_should_stop(void)
156{
157 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
158}
159EXPORT_SYMBOL(kthread_should_stop);
160
161bool __kthread_should_park(struct task_struct *k)
162{
163 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
164}
165EXPORT_SYMBOL_GPL(__kthread_should_park);
166
167/**
168 * kthread_should_park - should this kthread park now?
169 *
170 * When someone calls kthread_park() on your kthread, it will be woken
171 * and this will return true. You should then do the necessary
172 * cleanup and call kthread_parkme()
173 *
174 * Similar to kthread_should_stop(), but this keeps the thread alive
175 * and in a park position. kthread_unpark() "restarts" the thread and
176 * calls the thread function again.
177 */
178bool kthread_should_park(void)
179{
180 return __kthread_should_park(current);
181}
182EXPORT_SYMBOL_GPL(kthread_should_park);
183
184/**
185 * kthread_freezable_should_stop - should this freezable kthread return now?
186 * @was_frozen: optional out parameter, indicates whether %current was frozen
187 *
188 * kthread_should_stop() for freezable kthreads, which will enter
189 * refrigerator if necessary. This function is safe from kthread_stop() /
190 * freezer deadlock and freezable kthreads should use this function instead
191 * of calling try_to_freeze() directly.
192 */
193bool kthread_freezable_should_stop(bool *was_frozen)
194{
195 bool frozen = false;
196
197 might_sleep();
198
199 if (unlikely(freezing(current)))
200 frozen = __refrigerator(true);
201
202 if (was_frozen)
203 *was_frozen = frozen;
204
205 return kthread_should_stop();
206}
207EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
208
209/**
210 * kthread_func - return the function specified on kthread creation
211 * @task: kthread task in question
212 *
213 * Returns NULL if the task is not a kthread.
214 */
215void *kthread_func(struct task_struct *task)
216{
217 struct kthread *kthread = __to_kthread(task);
218 if (kthread)
219 return kthread->threadfn;
220 return NULL;
221}
222EXPORT_SYMBOL_GPL(kthread_func);
223
224/**
225 * kthread_data - return data value specified on kthread creation
226 * @task: kthread task in question
227 *
228 * Return the data value specified when kthread @task was created.
229 * The caller is responsible for ensuring the validity of @task when
230 * calling this function.
231 */
232void *kthread_data(struct task_struct *task)
233{
234 return to_kthread(task)->data;
235}
236EXPORT_SYMBOL_GPL(kthread_data);
237
238/**
239 * kthread_probe_data - speculative version of kthread_data()
240 * @task: possible kthread task in question
241 *
242 * @task could be a kthread task. Return the data value specified when it
243 * was created if accessible. If @task isn't a kthread task or its data is
244 * inaccessible for any reason, %NULL is returned. This function requires
245 * that @task itself is safe to dereference.
246 */
247void *kthread_probe_data(struct task_struct *task)
248{
249 struct kthread *kthread = __to_kthread(task);
250 void *data = NULL;
251
252 if (kthread)
253 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
254 return data;
255}
256
257static void __kthread_parkme(struct kthread *self)
258{
259 for (;;) {
260 /*
261 * TASK_PARKED is a special state; we must serialize against
262 * possible pending wakeups to avoid store-store collisions on
263 * task->state.
264 *
265 * Such a collision might possibly result in the task state
266 * changin from TASK_PARKED and us failing the
267 * wait_task_inactive() in kthread_park().
268 */
269 set_special_state(TASK_PARKED);
270 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
271 break;
272
273 /*
274 * Thread is going to call schedule(), do not preempt it,
275 * or the caller of kthread_park() may spend more time in
276 * wait_task_inactive().
277 */
278 preempt_disable();
279 complete(&self->parked);
280 schedule_preempt_disabled();
281 preempt_enable();
282 }
283 __set_current_state(TASK_RUNNING);
284}
285
286void kthread_parkme(void)
287{
288 __kthread_parkme(to_kthread(current));
289}
290EXPORT_SYMBOL_GPL(kthread_parkme);
291
292/**
293 * kthread_exit - Cause the current kthread return @result to kthread_stop().
294 * @result: The integer value to return to kthread_stop().
295 *
296 * While kthread_exit can be called directly, it exists so that
297 * functions which do some additional work in non-modular code such as
298 * module_put_and_kthread_exit can be implemented.
299 *
300 * Does not return.
301 */
302void __noreturn kthread_exit(long result)
303{
304 struct kthread *kthread = to_kthread(current);
305 kthread->result = result;
306 do_exit(0);
307}
308
309/**
310 * kthread_complete_and_exit - Exit the current kthread.
311 * @comp: Completion to complete
312 * @code: The integer value to return to kthread_stop().
313 *
314 * If present complete @comp and the reuturn code to kthread_stop().
315 *
316 * A kernel thread whose module may be removed after the completion of
317 * @comp can use this function exit safely.
318 *
319 * Does not return.
320 */
321void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
322{
323 if (comp)
324 complete(comp);
325
326 kthread_exit(code);
327}
328EXPORT_SYMBOL(kthread_complete_and_exit);
329
330static int kthread(void *_create)
331{
332 static const struct sched_param param = { .sched_priority = 0 };
333 /* Copy data: it's on kthread's stack */
334 struct kthread_create_info *create = _create;
335 int (*threadfn)(void *data) = create->threadfn;
336 void *data = create->data;
337 struct completion *done;
338 struct kthread *self;
339 int ret;
340
341 self = to_kthread(current);
342
343 /* Release the structure when caller killed by a fatal signal. */
344 done = xchg(&create->done, NULL);
345 if (!done) {
346 kfree(create);
347 kthread_exit(-EINTR);
348 }
349
350 self->threadfn = threadfn;
351 self->data = data;
352
353 /*
354 * The new thread inherited kthreadd's priority and CPU mask. Reset
355 * back to default in case they have been changed.
356 */
357 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
358 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
359
360 /* OK, tell user we're spawned, wait for stop or wakeup */
361 __set_current_state(TASK_UNINTERRUPTIBLE);
362 create->result = current;
363 /*
364 * Thread is going to call schedule(), do not preempt it,
365 * or the creator may spend more time in wait_task_inactive().
366 */
367 preempt_disable();
368 complete(done);
369 schedule_preempt_disabled();
370 preempt_enable();
371
372 ret = -EINTR;
373 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
374 cgroup_kthread_ready();
375 __kthread_parkme(self);
376 ret = threadfn(data);
377 }
378 kthread_exit(ret);
379}
380
381/* called from kernel_clone() to get node information for about to be created task */
382int tsk_fork_get_node(struct task_struct *tsk)
383{
384#ifdef CONFIG_NUMA
385 if (tsk == kthreadd_task)
386 return tsk->pref_node_fork;
387#endif
388 return NUMA_NO_NODE;
389}
390
391static void create_kthread(struct kthread_create_info *create)
392{
393 int pid;
394
395#ifdef CONFIG_NUMA
396 current->pref_node_fork = create->node;
397#endif
398 /* We want our own signal handler (we take no signals by default). */
399 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
400 if (pid < 0) {
401 /* Release the structure when caller killed by a fatal signal. */
402 struct completion *done = xchg(&create->done, NULL);
403
404 if (!done) {
405 kfree(create);
406 return;
407 }
408 create->result = ERR_PTR(pid);
409 complete(done);
410 }
411}
412
413static __printf(4, 0)
414struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
415 void *data, int node,
416 const char namefmt[],
417 va_list args)
418{
419 DECLARE_COMPLETION_ONSTACK(done);
420 struct task_struct *task;
421 struct kthread_create_info *create = kmalloc(sizeof(*create),
422 GFP_KERNEL);
423
424 if (!create)
425 return ERR_PTR(-ENOMEM);
426 create->threadfn = threadfn;
427 create->data = data;
428 create->node = node;
429 create->done = &done;
430
431 spin_lock(&kthread_create_lock);
432 list_add_tail(&create->list, &kthread_create_list);
433 spin_unlock(&kthread_create_lock);
434
435 wake_up_process(kthreadd_task);
436 /*
437 * Wait for completion in killable state, for I might be chosen by
438 * the OOM killer while kthreadd is trying to allocate memory for
439 * new kernel thread.
440 */
441 if (unlikely(wait_for_completion_killable(&done))) {
442 /*
443 * If I was killed by a fatal signal before kthreadd (or new
444 * kernel thread) calls complete(), leave the cleanup of this
445 * structure to that thread.
446 */
447 if (xchg(&create->done, NULL))
448 return ERR_PTR(-EINTR);
449 /*
450 * kthreadd (or new kernel thread) will call complete()
451 * shortly.
452 */
453 wait_for_completion(&done);
454 }
455 task = create->result;
456 if (!IS_ERR(task)) {
457 char name[TASK_COMM_LEN];
458 va_list aq;
459 int len;
460
461 /*
462 * task is already visible to other tasks, so updating
463 * COMM must be protected.
464 */
465 va_copy(aq, args);
466 len = vsnprintf(name, sizeof(name), namefmt, aq);
467 va_end(aq);
468 if (len >= TASK_COMM_LEN) {
469 struct kthread *kthread = to_kthread(task);
470
471 /* leave it truncated when out of memory. */
472 kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
473 }
474 set_task_comm(task, name);
475 }
476 kfree(create);
477 return task;
478}
479
480/**
481 * kthread_create_on_node - create a kthread.
482 * @threadfn: the function to run until signal_pending(current).
483 * @data: data ptr for @threadfn.
484 * @node: task and thread structures for the thread are allocated on this node
485 * @namefmt: printf-style name for the thread.
486 *
487 * Description: This helper function creates and names a kernel
488 * thread. The thread will be stopped: use wake_up_process() to start
489 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
490 * is affine to all CPUs.
491 *
492 * If thread is going to be bound on a particular cpu, give its node
493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
494 * When woken, the thread will run @threadfn() with @data as its
495 * argument. @threadfn() can either return directly if it is a
496 * standalone thread for which no one will call kthread_stop(), or
497 * return when 'kthread_should_stop()' is true (which means
498 * kthread_stop() has been called). The return value should be zero
499 * or a negative error number; it will be passed to kthread_stop().
500 *
501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
502 */
503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
504 void *data, int node,
505 const char namefmt[],
506 ...)
507{
508 struct task_struct *task;
509 va_list args;
510
511 va_start(args, namefmt);
512 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
513 va_end(args);
514
515 return task;
516}
517EXPORT_SYMBOL(kthread_create_on_node);
518
519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
520{
521 unsigned long flags;
522
523 if (!wait_task_inactive(p, state)) {
524 WARN_ON(1);
525 return;
526 }
527
528 /* It's safe because the task is inactive. */
529 raw_spin_lock_irqsave(&p->pi_lock, flags);
530 do_set_cpus_allowed(p, mask);
531 p->flags |= PF_NO_SETAFFINITY;
532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
533}
534
535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
536{
537 __kthread_bind_mask(p, cpumask_of(cpu), state);
538}
539
540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
541{
542 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
543}
544
545/**
546 * kthread_bind - bind a just-created kthread to a cpu.
547 * @p: thread created by kthread_create().
548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
549 *
550 * Description: This function is equivalent to set_cpus_allowed(),
551 * except that @cpu doesn't need to be online, and the thread must be
552 * stopped (i.e., just returned from kthread_create()).
553 */
554void kthread_bind(struct task_struct *p, unsigned int cpu)
555{
556 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(kthread_bind);
559
560/**
561 * kthread_create_on_cpu - Create a cpu bound kthread
562 * @threadfn: the function to run until signal_pending(current).
563 * @data: data ptr for @threadfn.
564 * @cpu: The cpu on which the thread should be bound,
565 * @namefmt: printf-style name for the thread. Format is restricted
566 * to "name.*%u". Code fills in cpu number.
567 *
568 * Description: This helper function creates and names a kernel thread
569 */
570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
571 void *data, unsigned int cpu,
572 const char *namefmt)
573{
574 struct task_struct *p;
575
576 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
577 cpu);
578 if (IS_ERR(p))
579 return p;
580 kthread_bind(p, cpu);
581 /* CPU hotplug need to bind once again when unparking the thread. */
582 to_kthread(p)->cpu = cpu;
583 return p;
584}
585EXPORT_SYMBOL(kthread_create_on_cpu);
586
587void kthread_set_per_cpu(struct task_struct *k, int cpu)
588{
589 struct kthread *kthread = to_kthread(k);
590 if (!kthread)
591 return;
592
593 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
594
595 if (cpu < 0) {
596 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
597 return;
598 }
599
600 kthread->cpu = cpu;
601 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
602}
603
604bool kthread_is_per_cpu(struct task_struct *p)
605{
606 struct kthread *kthread = __to_kthread(p);
607 if (!kthread)
608 return false;
609
610 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
611}
612
613/**
614 * kthread_unpark - unpark a thread created by kthread_create().
615 * @k: thread created by kthread_create().
616 *
617 * Sets kthread_should_park() for @k to return false, wakes it, and
618 * waits for it to return. If the thread is marked percpu then its
619 * bound to the cpu again.
620 */
621void kthread_unpark(struct task_struct *k)
622{
623 struct kthread *kthread = to_kthread(k);
624
625 /*
626 * Newly created kthread was parked when the CPU was offline.
627 * The binding was lost and we need to set it again.
628 */
629 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
630 __kthread_bind(k, kthread->cpu, TASK_PARKED);
631
632 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
633 /*
634 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
635 */
636 wake_up_state(k, TASK_PARKED);
637}
638EXPORT_SYMBOL_GPL(kthread_unpark);
639
640/**
641 * kthread_park - park a thread created by kthread_create().
642 * @k: thread created by kthread_create().
643 *
644 * Sets kthread_should_park() for @k to return true, wakes it, and
645 * waits for it to return. This can also be called after kthread_create()
646 * instead of calling wake_up_process(): the thread will park without
647 * calling threadfn().
648 *
649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
650 * If called by the kthread itself just the park bit is set.
651 */
652int kthread_park(struct task_struct *k)
653{
654 struct kthread *kthread = to_kthread(k);
655
656 if (WARN_ON(k->flags & PF_EXITING))
657 return -ENOSYS;
658
659 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
660 return -EBUSY;
661
662 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
663 if (k != current) {
664 wake_up_process(k);
665 /*
666 * Wait for __kthread_parkme() to complete(), this means we
667 * _will_ have TASK_PARKED and are about to call schedule().
668 */
669 wait_for_completion(&kthread->parked);
670 /*
671 * Now wait for that schedule() to complete and the task to
672 * get scheduled out.
673 */
674 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
675 }
676
677 return 0;
678}
679EXPORT_SYMBOL_GPL(kthread_park);
680
681/**
682 * kthread_stop - stop a thread created by kthread_create().
683 * @k: thread created by kthread_create().
684 *
685 * Sets kthread_should_stop() for @k to return true, wakes it, and
686 * waits for it to exit. This can also be called after kthread_create()
687 * instead of calling wake_up_process(): the thread will exit without
688 * calling threadfn().
689 *
690 * If threadfn() may call kthread_exit() itself, the caller must ensure
691 * task_struct can't go away.
692 *
693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
694 * was never called.
695 */
696int kthread_stop(struct task_struct *k)
697{
698 struct kthread *kthread;
699 int ret;
700
701 trace_sched_kthread_stop(k);
702
703 get_task_struct(k);
704 kthread = to_kthread(k);
705 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
706 kthread_unpark(k);
707 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
708 wake_up_process(k);
709 wait_for_completion(&kthread->exited);
710 ret = kthread->result;
711 put_task_struct(k);
712
713 trace_sched_kthread_stop_ret(ret);
714 return ret;
715}
716EXPORT_SYMBOL(kthread_stop);
717
718int kthreadd(void *unused)
719{
720 struct task_struct *tsk = current;
721
722 /* Setup a clean context for our children to inherit. */
723 set_task_comm(tsk, "kthreadd");
724 ignore_signals(tsk);
725 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
726 set_mems_allowed(node_states[N_MEMORY]);
727
728 current->flags |= PF_NOFREEZE;
729 cgroup_init_kthreadd();
730
731 for (;;) {
732 set_current_state(TASK_INTERRUPTIBLE);
733 if (list_empty(&kthread_create_list))
734 schedule();
735 __set_current_state(TASK_RUNNING);
736
737 spin_lock(&kthread_create_lock);
738 while (!list_empty(&kthread_create_list)) {
739 struct kthread_create_info *create;
740
741 create = list_entry(kthread_create_list.next,
742 struct kthread_create_info, list);
743 list_del_init(&create->list);
744 spin_unlock(&kthread_create_lock);
745
746 create_kthread(create);
747
748 spin_lock(&kthread_create_lock);
749 }
750 spin_unlock(&kthread_create_lock);
751 }
752
753 return 0;
754}
755
756void __kthread_init_worker(struct kthread_worker *worker,
757 const char *name,
758 struct lock_class_key *key)
759{
760 memset(worker, 0, sizeof(struct kthread_worker));
761 raw_spin_lock_init(&worker->lock);
762 lockdep_set_class_and_name(&worker->lock, key, name);
763 INIT_LIST_HEAD(&worker->work_list);
764 INIT_LIST_HEAD(&worker->delayed_work_list);
765}
766EXPORT_SYMBOL_GPL(__kthread_init_worker);
767
768/**
769 * kthread_worker_fn - kthread function to process kthread_worker
770 * @worker_ptr: pointer to initialized kthread_worker
771 *
772 * This function implements the main cycle of kthread worker. It processes
773 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
774 * is empty.
775 *
776 * The works are not allowed to keep any locks, disable preemption or interrupts
777 * when they finish. There is defined a safe point for freezing when one work
778 * finishes and before a new one is started.
779 *
780 * Also the works must not be handled by more than one worker at the same time,
781 * see also kthread_queue_work().
782 */
783int kthread_worker_fn(void *worker_ptr)
784{
785 struct kthread_worker *worker = worker_ptr;
786 struct kthread_work *work;
787
788 /*
789 * FIXME: Update the check and remove the assignment when all kthread
790 * worker users are created using kthread_create_worker*() functions.
791 */
792 WARN_ON(worker->task && worker->task != current);
793 worker->task = current;
794
795 if (worker->flags & KTW_FREEZABLE)
796 set_freezable();
797
798repeat:
799 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
800
801 if (kthread_should_stop()) {
802 __set_current_state(TASK_RUNNING);
803 raw_spin_lock_irq(&worker->lock);
804 worker->task = NULL;
805 raw_spin_unlock_irq(&worker->lock);
806 return 0;
807 }
808
809 work = NULL;
810 raw_spin_lock_irq(&worker->lock);
811 if (!list_empty(&worker->work_list)) {
812 work = list_first_entry(&worker->work_list,
813 struct kthread_work, node);
814 list_del_init(&work->node);
815 }
816 worker->current_work = work;
817 raw_spin_unlock_irq(&worker->lock);
818
819 if (work) {
820 kthread_work_func_t func = work->func;
821 __set_current_state(TASK_RUNNING);
822 trace_sched_kthread_work_execute_start(work);
823 work->func(work);
824 /*
825 * Avoid dereferencing work after this point. The trace
826 * event only cares about the address.
827 */
828 trace_sched_kthread_work_execute_end(work, func);
829 } else if (!freezing(current))
830 schedule();
831
832 try_to_freeze();
833 cond_resched();
834 goto repeat;
835}
836EXPORT_SYMBOL_GPL(kthread_worker_fn);
837
838static __printf(3, 0) struct kthread_worker *
839__kthread_create_worker(int cpu, unsigned int flags,
840 const char namefmt[], va_list args)
841{
842 struct kthread_worker *worker;
843 struct task_struct *task;
844 int node = NUMA_NO_NODE;
845
846 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
847 if (!worker)
848 return ERR_PTR(-ENOMEM);
849
850 kthread_init_worker(worker);
851
852 if (cpu >= 0)
853 node = cpu_to_node(cpu);
854
855 task = __kthread_create_on_node(kthread_worker_fn, worker,
856 node, namefmt, args);
857 if (IS_ERR(task))
858 goto fail_task;
859
860 if (cpu >= 0)
861 kthread_bind(task, cpu);
862
863 worker->flags = flags;
864 worker->task = task;
865 wake_up_process(task);
866 return worker;
867
868fail_task:
869 kfree(worker);
870 return ERR_CAST(task);
871}
872
873/**
874 * kthread_create_worker - create a kthread worker
875 * @flags: flags modifying the default behavior of the worker
876 * @namefmt: printf-style name for the kthread worker (task).
877 *
878 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
879 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
880 * when the caller was killed by a fatal signal.
881 */
882struct kthread_worker *
883kthread_create_worker(unsigned int flags, const char namefmt[], ...)
884{
885 struct kthread_worker *worker;
886 va_list args;
887
888 va_start(args, namefmt);
889 worker = __kthread_create_worker(-1, flags, namefmt, args);
890 va_end(args);
891
892 return worker;
893}
894EXPORT_SYMBOL(kthread_create_worker);
895
896/**
897 * kthread_create_worker_on_cpu - create a kthread worker and bind it
898 * to a given CPU and the associated NUMA node.
899 * @cpu: CPU number
900 * @flags: flags modifying the default behavior of the worker
901 * @namefmt: printf-style name for the kthread worker (task).
902 *
903 * Use a valid CPU number if you want to bind the kthread worker
904 * to the given CPU and the associated NUMA node.
905 *
906 * A good practice is to add the cpu number also into the worker name.
907 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
908 *
909 * CPU hotplug:
910 * The kthread worker API is simple and generic. It just provides a way
911 * to create, use, and destroy workers.
912 *
913 * It is up to the API user how to handle CPU hotplug. They have to decide
914 * how to handle pending work items, prevent queuing new ones, and
915 * restore the functionality when the CPU goes off and on. There are a
916 * few catches:
917 *
918 * - CPU affinity gets lost when it is scheduled on an offline CPU.
919 *
920 * - The worker might not exist when the CPU was off when the user
921 * created the workers.
922 *
923 * Good practice is to implement two CPU hotplug callbacks and to
924 * destroy/create the worker when the CPU goes down/up.
925 *
926 * Return:
927 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
928 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
929 * when the caller was killed by a fatal signal.
930 */
931struct kthread_worker *
932kthread_create_worker_on_cpu(int cpu, unsigned int flags,
933 const char namefmt[], ...)
934{
935 struct kthread_worker *worker;
936 va_list args;
937
938 va_start(args, namefmt);
939 worker = __kthread_create_worker(cpu, flags, namefmt, args);
940 va_end(args);
941
942 return worker;
943}
944EXPORT_SYMBOL(kthread_create_worker_on_cpu);
945
946/*
947 * Returns true when the work could not be queued at the moment.
948 * It happens when it is already pending in a worker list
949 * or when it is being cancelled.
950 */
951static inline bool queuing_blocked(struct kthread_worker *worker,
952 struct kthread_work *work)
953{
954 lockdep_assert_held(&worker->lock);
955
956 return !list_empty(&work->node) || work->canceling;
957}
958
959static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
960 struct kthread_work *work)
961{
962 lockdep_assert_held(&worker->lock);
963 WARN_ON_ONCE(!list_empty(&work->node));
964 /* Do not use a work with >1 worker, see kthread_queue_work() */
965 WARN_ON_ONCE(work->worker && work->worker != worker);
966}
967
968/* insert @work before @pos in @worker */
969static void kthread_insert_work(struct kthread_worker *worker,
970 struct kthread_work *work,
971 struct list_head *pos)
972{
973 kthread_insert_work_sanity_check(worker, work);
974
975 trace_sched_kthread_work_queue_work(worker, work);
976
977 list_add_tail(&work->node, pos);
978 work->worker = worker;
979 if (!worker->current_work && likely(worker->task))
980 wake_up_process(worker->task);
981}
982
983/**
984 * kthread_queue_work - queue a kthread_work
985 * @worker: target kthread_worker
986 * @work: kthread_work to queue
987 *
988 * Queue @work to work processor @task for async execution. @task
989 * must have been created with kthread_worker_create(). Returns %true
990 * if @work was successfully queued, %false if it was already pending.
991 *
992 * Reinitialize the work if it needs to be used by another worker.
993 * For example, when the worker was stopped and started again.
994 */
995bool kthread_queue_work(struct kthread_worker *worker,
996 struct kthread_work *work)
997{
998 bool ret = false;
999 unsigned long flags;
1000
1001 raw_spin_lock_irqsave(&worker->lock, flags);
1002 if (!queuing_blocked(worker, work)) {
1003 kthread_insert_work(worker, work, &worker->work_list);
1004 ret = true;
1005 }
1006 raw_spin_unlock_irqrestore(&worker->lock, flags);
1007 return ret;
1008}
1009EXPORT_SYMBOL_GPL(kthread_queue_work);
1010
1011/**
1012 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1013 * delayed work when the timer expires.
1014 * @t: pointer to the expired timer
1015 *
1016 * The format of the function is defined by struct timer_list.
1017 * It should have been called from irqsafe timer with irq already off.
1018 */
1019void kthread_delayed_work_timer_fn(struct timer_list *t)
1020{
1021 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1022 struct kthread_work *work = &dwork->work;
1023 struct kthread_worker *worker = work->worker;
1024 unsigned long flags;
1025
1026 /*
1027 * This might happen when a pending work is reinitialized.
1028 * It means that it is used a wrong way.
1029 */
1030 if (WARN_ON_ONCE(!worker))
1031 return;
1032
1033 raw_spin_lock_irqsave(&worker->lock, flags);
1034 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1035 WARN_ON_ONCE(work->worker != worker);
1036
1037 /* Move the work from worker->delayed_work_list. */
1038 WARN_ON_ONCE(list_empty(&work->node));
1039 list_del_init(&work->node);
1040 if (!work->canceling)
1041 kthread_insert_work(worker, work, &worker->work_list);
1042
1043 raw_spin_unlock_irqrestore(&worker->lock, flags);
1044}
1045EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1046
1047static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1048 struct kthread_delayed_work *dwork,
1049 unsigned long delay)
1050{
1051 struct timer_list *timer = &dwork->timer;
1052 struct kthread_work *work = &dwork->work;
1053
1054 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1055
1056 /*
1057 * If @delay is 0, queue @dwork->work immediately. This is for
1058 * both optimization and correctness. The earliest @timer can
1059 * expire is on the closest next tick and delayed_work users depend
1060 * on that there's no such delay when @delay is 0.
1061 */
1062 if (!delay) {
1063 kthread_insert_work(worker, work, &worker->work_list);
1064 return;
1065 }
1066
1067 /* Be paranoid and try to detect possible races already now. */
1068 kthread_insert_work_sanity_check(worker, work);
1069
1070 list_add(&work->node, &worker->delayed_work_list);
1071 work->worker = worker;
1072 timer->expires = jiffies + delay;
1073 add_timer(timer);
1074}
1075
1076/**
1077 * kthread_queue_delayed_work - queue the associated kthread work
1078 * after a delay.
1079 * @worker: target kthread_worker
1080 * @dwork: kthread_delayed_work to queue
1081 * @delay: number of jiffies to wait before queuing
1082 *
1083 * If the work has not been pending it starts a timer that will queue
1084 * the work after the given @delay. If @delay is zero, it queues the
1085 * work immediately.
1086 *
1087 * Return: %false if the @work has already been pending. It means that
1088 * either the timer was running or the work was queued. It returns %true
1089 * otherwise.
1090 */
1091bool kthread_queue_delayed_work(struct kthread_worker *worker,
1092 struct kthread_delayed_work *dwork,
1093 unsigned long delay)
1094{
1095 struct kthread_work *work = &dwork->work;
1096 unsigned long flags;
1097 bool ret = false;
1098
1099 raw_spin_lock_irqsave(&worker->lock, flags);
1100
1101 if (!queuing_blocked(worker, work)) {
1102 __kthread_queue_delayed_work(worker, dwork, delay);
1103 ret = true;
1104 }
1105
1106 raw_spin_unlock_irqrestore(&worker->lock, flags);
1107 return ret;
1108}
1109EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1110
1111struct kthread_flush_work {
1112 struct kthread_work work;
1113 struct completion done;
1114};
1115
1116static void kthread_flush_work_fn(struct kthread_work *work)
1117{
1118 struct kthread_flush_work *fwork =
1119 container_of(work, struct kthread_flush_work, work);
1120 complete(&fwork->done);
1121}
1122
1123/**
1124 * kthread_flush_work - flush a kthread_work
1125 * @work: work to flush
1126 *
1127 * If @work is queued or executing, wait for it to finish execution.
1128 */
1129void kthread_flush_work(struct kthread_work *work)
1130{
1131 struct kthread_flush_work fwork = {
1132 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1133 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1134 };
1135 struct kthread_worker *worker;
1136 bool noop = false;
1137
1138 worker = work->worker;
1139 if (!worker)
1140 return;
1141
1142 raw_spin_lock_irq(&worker->lock);
1143 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1144 WARN_ON_ONCE(work->worker != worker);
1145
1146 if (!list_empty(&work->node))
1147 kthread_insert_work(worker, &fwork.work, work->node.next);
1148 else if (worker->current_work == work)
1149 kthread_insert_work(worker, &fwork.work,
1150 worker->work_list.next);
1151 else
1152 noop = true;
1153
1154 raw_spin_unlock_irq(&worker->lock);
1155
1156 if (!noop)
1157 wait_for_completion(&fwork.done);
1158}
1159EXPORT_SYMBOL_GPL(kthread_flush_work);
1160
1161/*
1162 * Make sure that the timer is neither set nor running and could
1163 * not manipulate the work list_head any longer.
1164 *
1165 * The function is called under worker->lock. The lock is temporary
1166 * released but the timer can't be set again in the meantime.
1167 */
1168static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1169 unsigned long *flags)
1170{
1171 struct kthread_delayed_work *dwork =
1172 container_of(work, struct kthread_delayed_work, work);
1173 struct kthread_worker *worker = work->worker;
1174
1175 /*
1176 * del_timer_sync() must be called to make sure that the timer
1177 * callback is not running. The lock must be temporary released
1178 * to avoid a deadlock with the callback. In the meantime,
1179 * any queuing is blocked by setting the canceling counter.
1180 */
1181 work->canceling++;
1182 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1183 del_timer_sync(&dwork->timer);
1184 raw_spin_lock_irqsave(&worker->lock, *flags);
1185 work->canceling--;
1186}
1187
1188/*
1189 * This function removes the work from the worker queue.
1190 *
1191 * It is called under worker->lock. The caller must make sure that
1192 * the timer used by delayed work is not running, e.g. by calling
1193 * kthread_cancel_delayed_work_timer().
1194 *
1195 * The work might still be in use when this function finishes. See the
1196 * current_work proceed by the worker.
1197 *
1198 * Return: %true if @work was pending and successfully canceled,
1199 * %false if @work was not pending
1200 */
1201static bool __kthread_cancel_work(struct kthread_work *work)
1202{
1203 /*
1204 * Try to remove the work from a worker list. It might either
1205 * be from worker->work_list or from worker->delayed_work_list.
1206 */
1207 if (!list_empty(&work->node)) {
1208 list_del_init(&work->node);
1209 return true;
1210 }
1211
1212 return false;
1213}
1214
1215/**
1216 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1217 * @worker: kthread worker to use
1218 * @dwork: kthread delayed work to queue
1219 * @delay: number of jiffies to wait before queuing
1220 *
1221 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1222 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1223 * @work is guaranteed to be queued immediately.
1224 *
1225 * Return: %false if @dwork was idle and queued, %true otherwise.
1226 *
1227 * A special case is when the work is being canceled in parallel.
1228 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1229 * or yet another kthread_mod_delayed_work() call. We let the other command
1230 * win and return %true here. The return value can be used for reference
1231 * counting and the number of queued works stays the same. Anyway, the caller
1232 * is supposed to synchronize these operations a reasonable way.
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1236 * for details.
1237 */
1238bool kthread_mod_delayed_work(struct kthread_worker *worker,
1239 struct kthread_delayed_work *dwork,
1240 unsigned long delay)
1241{
1242 struct kthread_work *work = &dwork->work;
1243 unsigned long flags;
1244 int ret;
1245
1246 raw_spin_lock_irqsave(&worker->lock, flags);
1247
1248 /* Do not bother with canceling when never queued. */
1249 if (!work->worker) {
1250 ret = false;
1251 goto fast_queue;
1252 }
1253
1254 /* Work must not be used with >1 worker, see kthread_queue_work() */
1255 WARN_ON_ONCE(work->worker != worker);
1256
1257 /*
1258 * Temporary cancel the work but do not fight with another command
1259 * that is canceling the work as well.
1260 *
1261 * It is a bit tricky because of possible races with another
1262 * mod_delayed_work() and cancel_delayed_work() callers.
1263 *
1264 * The timer must be canceled first because worker->lock is released
1265 * when doing so. But the work can be removed from the queue (list)
1266 * only when it can be queued again so that the return value can
1267 * be used for reference counting.
1268 */
1269 kthread_cancel_delayed_work_timer(work, &flags);
1270 if (work->canceling) {
1271 /* The number of works in the queue does not change. */
1272 ret = true;
1273 goto out;
1274 }
1275 ret = __kthread_cancel_work(work);
1276
1277fast_queue:
1278 __kthread_queue_delayed_work(worker, dwork, delay);
1279out:
1280 raw_spin_unlock_irqrestore(&worker->lock, flags);
1281 return ret;
1282}
1283EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1284
1285static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1286{
1287 struct kthread_worker *worker = work->worker;
1288 unsigned long flags;
1289 int ret = false;
1290
1291 if (!worker)
1292 goto out;
1293
1294 raw_spin_lock_irqsave(&worker->lock, flags);
1295 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1296 WARN_ON_ONCE(work->worker != worker);
1297
1298 if (is_dwork)
1299 kthread_cancel_delayed_work_timer(work, &flags);
1300
1301 ret = __kthread_cancel_work(work);
1302
1303 if (worker->current_work != work)
1304 goto out_fast;
1305
1306 /*
1307 * The work is in progress and we need to wait with the lock released.
1308 * In the meantime, block any queuing by setting the canceling counter.
1309 */
1310 work->canceling++;
1311 raw_spin_unlock_irqrestore(&worker->lock, flags);
1312 kthread_flush_work(work);
1313 raw_spin_lock_irqsave(&worker->lock, flags);
1314 work->canceling--;
1315
1316out_fast:
1317 raw_spin_unlock_irqrestore(&worker->lock, flags);
1318out:
1319 return ret;
1320}
1321
1322/**
1323 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1324 * @work: the kthread work to cancel
1325 *
1326 * Cancel @work and wait for its execution to finish. This function
1327 * can be used even if the work re-queues itself. On return from this
1328 * function, @work is guaranteed to be not pending or executing on any CPU.
1329 *
1330 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1331 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1332 *
1333 * The caller must ensure that the worker on which @work was last
1334 * queued can't be destroyed before this function returns.
1335 *
1336 * Return: %true if @work was pending, %false otherwise.
1337 */
1338bool kthread_cancel_work_sync(struct kthread_work *work)
1339{
1340 return __kthread_cancel_work_sync(work, false);
1341}
1342EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1343
1344/**
1345 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1346 * wait for it to finish.
1347 * @dwork: the kthread delayed work to cancel
1348 *
1349 * This is kthread_cancel_work_sync() for delayed works.
1350 *
1351 * Return: %true if @dwork was pending, %false otherwise.
1352 */
1353bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1354{
1355 return __kthread_cancel_work_sync(&dwork->work, true);
1356}
1357EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1358
1359/**
1360 * kthread_flush_worker - flush all current works on a kthread_worker
1361 * @worker: worker to flush
1362 *
1363 * Wait until all currently executing or pending works on @worker are
1364 * finished.
1365 */
1366void kthread_flush_worker(struct kthread_worker *worker)
1367{
1368 struct kthread_flush_work fwork = {
1369 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1370 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1371 };
1372
1373 kthread_queue_work(worker, &fwork.work);
1374 wait_for_completion(&fwork.done);
1375}
1376EXPORT_SYMBOL_GPL(kthread_flush_worker);
1377
1378/**
1379 * kthread_destroy_worker - destroy a kthread worker
1380 * @worker: worker to be destroyed
1381 *
1382 * Flush and destroy @worker. The simple flush is enough because the kthread
1383 * worker API is used only in trivial scenarios. There are no multi-step state
1384 * machines needed.
1385 */
1386void kthread_destroy_worker(struct kthread_worker *worker)
1387{
1388 struct task_struct *task;
1389
1390 task = worker->task;
1391 if (WARN_ON(!task))
1392 return;
1393
1394 kthread_flush_worker(worker);
1395 kthread_stop(task);
1396 WARN_ON(!list_empty(&worker->work_list));
1397 kfree(worker);
1398}
1399EXPORT_SYMBOL(kthread_destroy_worker);
1400
1401/**
1402 * kthread_use_mm - make the calling kthread operate on an address space
1403 * @mm: address space to operate on
1404 */
1405void kthread_use_mm(struct mm_struct *mm)
1406{
1407 struct mm_struct *active_mm;
1408 struct task_struct *tsk = current;
1409
1410 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1411 WARN_ON_ONCE(tsk->mm);
1412
1413 task_lock(tsk);
1414 /* Hold off tlb flush IPIs while switching mm's */
1415 local_irq_disable();
1416 active_mm = tsk->active_mm;
1417 if (active_mm != mm) {
1418 mmgrab(mm);
1419 tsk->active_mm = mm;
1420 }
1421 tsk->mm = mm;
1422 membarrier_update_current_mm(mm);
1423 switch_mm_irqs_off(active_mm, mm, tsk);
1424 local_irq_enable();
1425 task_unlock(tsk);
1426#ifdef finish_arch_post_lock_switch
1427 finish_arch_post_lock_switch();
1428#endif
1429
1430 /*
1431 * When a kthread starts operating on an address space, the loop
1432 * in membarrier_{private,global}_expedited() may not observe
1433 * that tsk->mm, and not issue an IPI. Membarrier requires a
1434 * memory barrier after storing to tsk->mm, before accessing
1435 * user-space memory. A full memory barrier for membarrier
1436 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1437 * mmdrop(), or explicitly with smp_mb().
1438 */
1439 if (active_mm != mm)
1440 mmdrop(active_mm);
1441 else
1442 smp_mb();
1443}
1444EXPORT_SYMBOL_GPL(kthread_use_mm);
1445
1446/**
1447 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1448 * @mm: address space to operate on
1449 */
1450void kthread_unuse_mm(struct mm_struct *mm)
1451{
1452 struct task_struct *tsk = current;
1453
1454 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1455 WARN_ON_ONCE(!tsk->mm);
1456
1457 task_lock(tsk);
1458 /*
1459 * When a kthread stops operating on an address space, the loop
1460 * in membarrier_{private,global}_expedited() may not observe
1461 * that tsk->mm, and not issue an IPI. Membarrier requires a
1462 * memory barrier after accessing user-space memory, before
1463 * clearing tsk->mm.
1464 */
1465 smp_mb__after_spinlock();
1466 sync_mm_rss(mm);
1467 local_irq_disable();
1468 tsk->mm = NULL;
1469 membarrier_update_current_mm(NULL);
1470 /* active_mm is still 'mm' */
1471 enter_lazy_tlb(mm, tsk);
1472 local_irq_enable();
1473 task_unlock(tsk);
1474}
1475EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1476
1477#ifdef CONFIG_BLK_CGROUP
1478/**
1479 * kthread_associate_blkcg - associate blkcg to current kthread
1480 * @css: the cgroup info
1481 *
1482 * Current thread must be a kthread. The thread is running jobs on behalf of
1483 * other threads. In some cases, we expect the jobs attach cgroup info of
1484 * original threads instead of that of current thread. This function stores
1485 * original thread's cgroup info in current kthread context for later
1486 * retrieval.
1487 */
1488void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1489{
1490 struct kthread *kthread;
1491
1492 if (!(current->flags & PF_KTHREAD))
1493 return;
1494 kthread = to_kthread(current);
1495 if (!kthread)
1496 return;
1497
1498 if (kthread->blkcg_css) {
1499 css_put(kthread->blkcg_css);
1500 kthread->blkcg_css = NULL;
1501 }
1502 if (css) {
1503 css_get(css);
1504 kthread->blkcg_css = css;
1505 }
1506}
1507EXPORT_SYMBOL(kthread_associate_blkcg);
1508
1509/**
1510 * kthread_blkcg - get associated blkcg css of current kthread
1511 *
1512 * Current thread must be a kthread.
1513 */
1514struct cgroup_subsys_state *kthread_blkcg(void)
1515{
1516 struct kthread *kthread;
1517
1518 if (current->flags & PF_KTHREAD) {
1519 kthread = to_kthread(current);
1520 if (kthread)
1521 return kthread->blkcg_css;
1522 }
1523 return NULL;
1524}
1525#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10#include <uapi/linux/sched/types.h>
11#include <linux/mm.h>
12#include <linux/mmu_context.h>
13#include <linux/sched.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/task.h>
16#include <linux/kthread.h>
17#include <linux/completion.h>
18#include <linux/err.h>
19#include <linux/cgroup.h>
20#include <linux/cpuset.h>
21#include <linux/unistd.h>
22#include <linux/file.h>
23#include <linux/export.h>
24#include <linux/mutex.h>
25#include <linux/slab.h>
26#include <linux/freezer.h>
27#include <linux/ptrace.h>
28#include <linux/uaccess.h>
29#include <linux/numa.h>
30#include <linux/sched/isolation.h>
31#include <trace/events/sched.h>
32
33
34static DEFINE_SPINLOCK(kthread_create_lock);
35static LIST_HEAD(kthread_create_list);
36struct task_struct *kthreadd_task;
37
38struct kthread_create_info
39{
40 /* Information passed to kthread() from kthreadd. */
41 char *full_name;
42 int (*threadfn)(void *data);
43 void *data;
44 int node;
45
46 /* Result passed back to kthread_create() from kthreadd. */
47 struct task_struct *result;
48 struct completion *done;
49
50 struct list_head list;
51};
52
53struct kthread {
54 unsigned long flags;
55 unsigned int cpu;
56 int result;
57 int (*threadfn)(void *);
58 void *data;
59 struct completion parked;
60 struct completion exited;
61#ifdef CONFIG_BLK_CGROUP
62 struct cgroup_subsys_state *blkcg_css;
63#endif
64 /* To store the full name if task comm is truncated. */
65 char *full_name;
66};
67
68enum KTHREAD_BITS {
69 KTHREAD_IS_PER_CPU = 0,
70 KTHREAD_SHOULD_STOP,
71 KTHREAD_SHOULD_PARK,
72};
73
74static inline struct kthread *to_kthread(struct task_struct *k)
75{
76 WARN_ON(!(k->flags & PF_KTHREAD));
77 return k->worker_private;
78}
79
80/*
81 * Variant of to_kthread() that doesn't assume @p is a kthread.
82 *
83 * Per construction; when:
84 *
85 * (p->flags & PF_KTHREAD) && p->worker_private
86 *
87 * the task is both a kthread and struct kthread is persistent. However
88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
89 * begin_new_exec()).
90 */
91static inline struct kthread *__to_kthread(struct task_struct *p)
92{
93 void *kthread = p->worker_private;
94 if (kthread && !(p->flags & PF_KTHREAD))
95 kthread = NULL;
96 return kthread;
97}
98
99void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100{
101 struct kthread *kthread = to_kthread(tsk);
102
103 if (!kthread || !kthread->full_name) {
104 strscpy(buf, tsk->comm, buf_size);
105 return;
106 }
107
108 strscpy_pad(buf, kthread->full_name, buf_size);
109}
110
111bool set_kthread_struct(struct task_struct *p)
112{
113 struct kthread *kthread;
114
115 if (WARN_ON_ONCE(to_kthread(p)))
116 return false;
117
118 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119 if (!kthread)
120 return false;
121
122 init_completion(&kthread->exited);
123 init_completion(&kthread->parked);
124 p->vfork_done = &kthread->exited;
125
126 p->worker_private = kthread;
127 return true;
128}
129
130void free_kthread_struct(struct task_struct *k)
131{
132 struct kthread *kthread;
133
134 /*
135 * Can be NULL if kmalloc() in set_kthread_struct() failed.
136 */
137 kthread = to_kthread(k);
138 if (!kthread)
139 return;
140
141#ifdef CONFIG_BLK_CGROUP
142 WARN_ON_ONCE(kthread->blkcg_css);
143#endif
144 k->worker_private = NULL;
145 kfree(kthread->full_name);
146 kfree(kthread);
147}
148
149/**
150 * kthread_should_stop - should this kthread return now?
151 *
152 * When someone calls kthread_stop() on your kthread, it will be woken
153 * and this will return true. You should then return, and your return
154 * value will be passed through to kthread_stop().
155 */
156bool kthread_should_stop(void)
157{
158 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159}
160EXPORT_SYMBOL(kthread_should_stop);
161
162static bool __kthread_should_park(struct task_struct *k)
163{
164 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165}
166
167/**
168 * kthread_should_park - should this kthread park now?
169 *
170 * When someone calls kthread_park() on your kthread, it will be woken
171 * and this will return true. You should then do the necessary
172 * cleanup and call kthread_parkme()
173 *
174 * Similar to kthread_should_stop(), but this keeps the thread alive
175 * and in a park position. kthread_unpark() "restarts" the thread and
176 * calls the thread function again.
177 */
178bool kthread_should_park(void)
179{
180 return __kthread_should_park(current);
181}
182EXPORT_SYMBOL_GPL(kthread_should_park);
183
184bool kthread_should_stop_or_park(void)
185{
186 struct kthread *kthread = __to_kthread(current);
187
188 if (!kthread)
189 return false;
190
191 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192}
193
194/**
195 * kthread_freezable_should_stop - should this freezable kthread return now?
196 * @was_frozen: optional out parameter, indicates whether %current was frozen
197 *
198 * kthread_should_stop() for freezable kthreads, which will enter
199 * refrigerator if necessary. This function is safe from kthread_stop() /
200 * freezer deadlock and freezable kthreads should use this function instead
201 * of calling try_to_freeze() directly.
202 */
203bool kthread_freezable_should_stop(bool *was_frozen)
204{
205 bool frozen = false;
206
207 might_sleep();
208
209 if (unlikely(freezing(current)))
210 frozen = __refrigerator(true);
211
212 if (was_frozen)
213 *was_frozen = frozen;
214
215 return kthread_should_stop();
216}
217EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218
219/**
220 * kthread_func - return the function specified on kthread creation
221 * @task: kthread task in question
222 *
223 * Returns NULL if the task is not a kthread.
224 */
225void *kthread_func(struct task_struct *task)
226{
227 struct kthread *kthread = __to_kthread(task);
228 if (kthread)
229 return kthread->threadfn;
230 return NULL;
231}
232EXPORT_SYMBOL_GPL(kthread_func);
233
234/**
235 * kthread_data - return data value specified on kthread creation
236 * @task: kthread task in question
237 *
238 * Return the data value specified when kthread @task was created.
239 * The caller is responsible for ensuring the validity of @task when
240 * calling this function.
241 */
242void *kthread_data(struct task_struct *task)
243{
244 return to_kthread(task)->data;
245}
246EXPORT_SYMBOL_GPL(kthread_data);
247
248/**
249 * kthread_probe_data - speculative version of kthread_data()
250 * @task: possible kthread task in question
251 *
252 * @task could be a kthread task. Return the data value specified when it
253 * was created if accessible. If @task isn't a kthread task or its data is
254 * inaccessible for any reason, %NULL is returned. This function requires
255 * that @task itself is safe to dereference.
256 */
257void *kthread_probe_data(struct task_struct *task)
258{
259 struct kthread *kthread = __to_kthread(task);
260 void *data = NULL;
261
262 if (kthread)
263 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264 return data;
265}
266
267static void __kthread_parkme(struct kthread *self)
268{
269 for (;;) {
270 /*
271 * TASK_PARKED is a special state; we must serialize against
272 * possible pending wakeups to avoid store-store collisions on
273 * task->state.
274 *
275 * Such a collision might possibly result in the task state
276 * changin from TASK_PARKED and us failing the
277 * wait_task_inactive() in kthread_park().
278 */
279 set_special_state(TASK_PARKED);
280 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281 break;
282
283 /*
284 * Thread is going to call schedule(), do not preempt it,
285 * or the caller of kthread_park() may spend more time in
286 * wait_task_inactive().
287 */
288 preempt_disable();
289 complete(&self->parked);
290 schedule_preempt_disabled();
291 preempt_enable();
292 }
293 __set_current_state(TASK_RUNNING);
294}
295
296void kthread_parkme(void)
297{
298 __kthread_parkme(to_kthread(current));
299}
300EXPORT_SYMBOL_GPL(kthread_parkme);
301
302/**
303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
304 * @result: The integer value to return to kthread_stop().
305 *
306 * While kthread_exit can be called directly, it exists so that
307 * functions which do some additional work in non-modular code such as
308 * module_put_and_kthread_exit can be implemented.
309 *
310 * Does not return.
311 */
312void __noreturn kthread_exit(long result)
313{
314 struct kthread *kthread = to_kthread(current);
315 kthread->result = result;
316 do_exit(0);
317}
318EXPORT_SYMBOL(kthread_exit);
319
320/**
321 * kthread_complete_and_exit - Exit the current kthread.
322 * @comp: Completion to complete
323 * @code: The integer value to return to kthread_stop().
324 *
325 * If present, complete @comp and then return code to kthread_stop().
326 *
327 * A kernel thread whose module may be removed after the completion of
328 * @comp can use this function to exit safely.
329 *
330 * Does not return.
331 */
332void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
333{
334 if (comp)
335 complete(comp);
336
337 kthread_exit(code);
338}
339EXPORT_SYMBOL(kthread_complete_and_exit);
340
341static int kthread(void *_create)
342{
343 static const struct sched_param param = { .sched_priority = 0 };
344 /* Copy data: it's on kthread's stack */
345 struct kthread_create_info *create = _create;
346 int (*threadfn)(void *data) = create->threadfn;
347 void *data = create->data;
348 struct completion *done;
349 struct kthread *self;
350 int ret;
351
352 self = to_kthread(current);
353
354 /* Release the structure when caller killed by a fatal signal. */
355 done = xchg(&create->done, NULL);
356 if (!done) {
357 kfree(create->full_name);
358 kfree(create);
359 kthread_exit(-EINTR);
360 }
361
362 self->full_name = create->full_name;
363 self->threadfn = threadfn;
364 self->data = data;
365
366 /*
367 * The new thread inherited kthreadd's priority and CPU mask. Reset
368 * back to default in case they have been changed.
369 */
370 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
371 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
372
373 /* OK, tell user we're spawned, wait for stop or wakeup */
374 __set_current_state(TASK_UNINTERRUPTIBLE);
375 create->result = current;
376 /*
377 * Thread is going to call schedule(), do not preempt it,
378 * or the creator may spend more time in wait_task_inactive().
379 */
380 preempt_disable();
381 complete(done);
382 schedule_preempt_disabled();
383 preempt_enable();
384
385 ret = -EINTR;
386 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
387 cgroup_kthread_ready();
388 __kthread_parkme(self);
389 ret = threadfn(data);
390 }
391 kthread_exit(ret);
392}
393
394/* called from kernel_clone() to get node information for about to be created task */
395int tsk_fork_get_node(struct task_struct *tsk)
396{
397#ifdef CONFIG_NUMA
398 if (tsk == kthreadd_task)
399 return tsk->pref_node_fork;
400#endif
401 return NUMA_NO_NODE;
402}
403
404static void create_kthread(struct kthread_create_info *create)
405{
406 int pid;
407
408#ifdef CONFIG_NUMA
409 current->pref_node_fork = create->node;
410#endif
411 /* We want our own signal handler (we take no signals by default). */
412 pid = kernel_thread(kthread, create, create->full_name,
413 CLONE_FS | CLONE_FILES | SIGCHLD);
414 if (pid < 0) {
415 /* Release the structure when caller killed by a fatal signal. */
416 struct completion *done = xchg(&create->done, NULL);
417
418 kfree(create->full_name);
419 if (!done) {
420 kfree(create);
421 return;
422 }
423 create->result = ERR_PTR(pid);
424 complete(done);
425 }
426}
427
428static __printf(4, 0)
429struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
430 void *data, int node,
431 const char namefmt[],
432 va_list args)
433{
434 DECLARE_COMPLETION_ONSTACK(done);
435 struct task_struct *task;
436 struct kthread_create_info *create = kmalloc(sizeof(*create),
437 GFP_KERNEL);
438
439 if (!create)
440 return ERR_PTR(-ENOMEM);
441 create->threadfn = threadfn;
442 create->data = data;
443 create->node = node;
444 create->done = &done;
445 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
446 if (!create->full_name) {
447 task = ERR_PTR(-ENOMEM);
448 goto free_create;
449 }
450
451 spin_lock(&kthread_create_lock);
452 list_add_tail(&create->list, &kthread_create_list);
453 spin_unlock(&kthread_create_lock);
454
455 wake_up_process(kthreadd_task);
456 /*
457 * Wait for completion in killable state, for I might be chosen by
458 * the OOM killer while kthreadd is trying to allocate memory for
459 * new kernel thread.
460 */
461 if (unlikely(wait_for_completion_killable(&done))) {
462 /*
463 * If I was killed by a fatal signal before kthreadd (or new
464 * kernel thread) calls complete(), leave the cleanup of this
465 * structure to that thread.
466 */
467 if (xchg(&create->done, NULL))
468 return ERR_PTR(-EINTR);
469 /*
470 * kthreadd (or new kernel thread) will call complete()
471 * shortly.
472 */
473 wait_for_completion(&done);
474 }
475 task = create->result;
476free_create:
477 kfree(create);
478 return task;
479}
480
481/**
482 * kthread_create_on_node - create a kthread.
483 * @threadfn: the function to run until signal_pending(current).
484 * @data: data ptr for @threadfn.
485 * @node: task and thread structures for the thread are allocated on this node
486 * @namefmt: printf-style name for the thread.
487 *
488 * Description: This helper function creates and names a kernel
489 * thread. The thread will be stopped: use wake_up_process() to start
490 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
491 * is affine to all CPUs.
492 *
493 * If thread is going to be bound on a particular cpu, give its node
494 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
495 * When woken, the thread will run @threadfn() with @data as its
496 * argument. @threadfn() can either return directly if it is a
497 * standalone thread for which no one will call kthread_stop(), or
498 * return when 'kthread_should_stop()' is true (which means
499 * kthread_stop() has been called). The return value should be zero
500 * or a negative error number; it will be passed to kthread_stop().
501 *
502 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
503 */
504struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
505 void *data, int node,
506 const char namefmt[],
507 ...)
508{
509 struct task_struct *task;
510 va_list args;
511
512 va_start(args, namefmt);
513 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
514 va_end(args);
515
516 return task;
517}
518EXPORT_SYMBOL(kthread_create_on_node);
519
520static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
521{
522 unsigned long flags;
523
524 if (!wait_task_inactive(p, state)) {
525 WARN_ON(1);
526 return;
527 }
528
529 /* It's safe because the task is inactive. */
530 raw_spin_lock_irqsave(&p->pi_lock, flags);
531 do_set_cpus_allowed(p, mask);
532 p->flags |= PF_NO_SETAFFINITY;
533 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
534}
535
536static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
537{
538 __kthread_bind_mask(p, cpumask_of(cpu), state);
539}
540
541void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
542{
543 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
544}
545
546/**
547 * kthread_bind - bind a just-created kthread to a cpu.
548 * @p: thread created by kthread_create().
549 * @cpu: cpu (might not be online, must be possible) for @k to run on.
550 *
551 * Description: This function is equivalent to set_cpus_allowed(),
552 * except that @cpu doesn't need to be online, and the thread must be
553 * stopped (i.e., just returned from kthread_create()).
554 */
555void kthread_bind(struct task_struct *p, unsigned int cpu)
556{
557 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
558}
559EXPORT_SYMBOL(kthread_bind);
560
561/**
562 * kthread_create_on_cpu - Create a cpu bound kthread
563 * @threadfn: the function to run until signal_pending(current).
564 * @data: data ptr for @threadfn.
565 * @cpu: The cpu on which the thread should be bound,
566 * @namefmt: printf-style name for the thread. Format is restricted
567 * to "name.*%u". Code fills in cpu number.
568 *
569 * Description: This helper function creates and names a kernel thread
570 */
571struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
572 void *data, unsigned int cpu,
573 const char *namefmt)
574{
575 struct task_struct *p;
576
577 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
578 cpu);
579 if (IS_ERR(p))
580 return p;
581 kthread_bind(p, cpu);
582 /* CPU hotplug need to bind once again when unparking the thread. */
583 to_kthread(p)->cpu = cpu;
584 return p;
585}
586EXPORT_SYMBOL(kthread_create_on_cpu);
587
588void kthread_set_per_cpu(struct task_struct *k, int cpu)
589{
590 struct kthread *kthread = to_kthread(k);
591 if (!kthread)
592 return;
593
594 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
595
596 if (cpu < 0) {
597 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
598 return;
599 }
600
601 kthread->cpu = cpu;
602 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
603}
604
605bool kthread_is_per_cpu(struct task_struct *p)
606{
607 struct kthread *kthread = __to_kthread(p);
608 if (!kthread)
609 return false;
610
611 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
612}
613
614/**
615 * kthread_unpark - unpark a thread created by kthread_create().
616 * @k: thread created by kthread_create().
617 *
618 * Sets kthread_should_park() for @k to return false, wakes it, and
619 * waits for it to return. If the thread is marked percpu then its
620 * bound to the cpu again.
621 */
622void kthread_unpark(struct task_struct *k)
623{
624 struct kthread *kthread = to_kthread(k);
625
626 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
627 return;
628 /*
629 * Newly created kthread was parked when the CPU was offline.
630 * The binding was lost and we need to set it again.
631 */
632 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
633 __kthread_bind(k, kthread->cpu, TASK_PARKED);
634
635 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
636 /*
637 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
638 */
639 wake_up_state(k, TASK_PARKED);
640}
641EXPORT_SYMBOL_GPL(kthread_unpark);
642
643/**
644 * kthread_park - park a thread created by kthread_create().
645 * @k: thread created by kthread_create().
646 *
647 * Sets kthread_should_park() for @k to return true, wakes it, and
648 * waits for it to return. This can also be called after kthread_create()
649 * instead of calling wake_up_process(): the thread will park without
650 * calling threadfn().
651 *
652 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
653 * If called by the kthread itself just the park bit is set.
654 */
655int kthread_park(struct task_struct *k)
656{
657 struct kthread *kthread = to_kthread(k);
658
659 if (WARN_ON(k->flags & PF_EXITING))
660 return -ENOSYS;
661
662 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
663 return -EBUSY;
664
665 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
666 if (k != current) {
667 wake_up_process(k);
668 /*
669 * Wait for __kthread_parkme() to complete(), this means we
670 * _will_ have TASK_PARKED and are about to call schedule().
671 */
672 wait_for_completion(&kthread->parked);
673 /*
674 * Now wait for that schedule() to complete and the task to
675 * get scheduled out.
676 */
677 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
678 }
679
680 return 0;
681}
682EXPORT_SYMBOL_GPL(kthread_park);
683
684/**
685 * kthread_stop - stop a thread created by kthread_create().
686 * @k: thread created by kthread_create().
687 *
688 * Sets kthread_should_stop() for @k to return true, wakes it, and
689 * waits for it to exit. This can also be called after kthread_create()
690 * instead of calling wake_up_process(): the thread will exit without
691 * calling threadfn().
692 *
693 * If threadfn() may call kthread_exit() itself, the caller must ensure
694 * task_struct can't go away.
695 *
696 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
697 * was never called.
698 */
699int kthread_stop(struct task_struct *k)
700{
701 struct kthread *kthread;
702 int ret;
703
704 trace_sched_kthread_stop(k);
705
706 get_task_struct(k);
707 kthread = to_kthread(k);
708 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
709 kthread_unpark(k);
710 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
711 wake_up_process(k);
712 wait_for_completion(&kthread->exited);
713 ret = kthread->result;
714 put_task_struct(k);
715
716 trace_sched_kthread_stop_ret(ret);
717 return ret;
718}
719EXPORT_SYMBOL(kthread_stop);
720
721/**
722 * kthread_stop_put - stop a thread and put its task struct
723 * @k: thread created by kthread_create().
724 *
725 * Stops a thread created by kthread_create() and put its task_struct.
726 * Only use when holding an extra task struct reference obtained by
727 * calling get_task_struct().
728 */
729int kthread_stop_put(struct task_struct *k)
730{
731 int ret;
732
733 ret = kthread_stop(k);
734 put_task_struct(k);
735 return ret;
736}
737EXPORT_SYMBOL(kthread_stop_put);
738
739int kthreadd(void *unused)
740{
741 struct task_struct *tsk = current;
742
743 /* Setup a clean context for our children to inherit. */
744 set_task_comm(tsk, "kthreadd");
745 ignore_signals(tsk);
746 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
747 set_mems_allowed(node_states[N_MEMORY]);
748
749 current->flags |= PF_NOFREEZE;
750 cgroup_init_kthreadd();
751
752 for (;;) {
753 set_current_state(TASK_INTERRUPTIBLE);
754 if (list_empty(&kthread_create_list))
755 schedule();
756 __set_current_state(TASK_RUNNING);
757
758 spin_lock(&kthread_create_lock);
759 while (!list_empty(&kthread_create_list)) {
760 struct kthread_create_info *create;
761
762 create = list_entry(kthread_create_list.next,
763 struct kthread_create_info, list);
764 list_del_init(&create->list);
765 spin_unlock(&kthread_create_lock);
766
767 create_kthread(create);
768
769 spin_lock(&kthread_create_lock);
770 }
771 spin_unlock(&kthread_create_lock);
772 }
773
774 return 0;
775}
776
777void __kthread_init_worker(struct kthread_worker *worker,
778 const char *name,
779 struct lock_class_key *key)
780{
781 memset(worker, 0, sizeof(struct kthread_worker));
782 raw_spin_lock_init(&worker->lock);
783 lockdep_set_class_and_name(&worker->lock, key, name);
784 INIT_LIST_HEAD(&worker->work_list);
785 INIT_LIST_HEAD(&worker->delayed_work_list);
786}
787EXPORT_SYMBOL_GPL(__kthread_init_worker);
788
789/**
790 * kthread_worker_fn - kthread function to process kthread_worker
791 * @worker_ptr: pointer to initialized kthread_worker
792 *
793 * This function implements the main cycle of kthread worker. It processes
794 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
795 * is empty.
796 *
797 * The works are not allowed to keep any locks, disable preemption or interrupts
798 * when they finish. There is defined a safe point for freezing when one work
799 * finishes and before a new one is started.
800 *
801 * Also the works must not be handled by more than one worker at the same time,
802 * see also kthread_queue_work().
803 */
804int kthread_worker_fn(void *worker_ptr)
805{
806 struct kthread_worker *worker = worker_ptr;
807 struct kthread_work *work;
808
809 /*
810 * FIXME: Update the check and remove the assignment when all kthread
811 * worker users are created using kthread_create_worker*() functions.
812 */
813 WARN_ON(worker->task && worker->task != current);
814 worker->task = current;
815
816 if (worker->flags & KTW_FREEZABLE)
817 set_freezable();
818
819repeat:
820 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
821
822 if (kthread_should_stop()) {
823 __set_current_state(TASK_RUNNING);
824 raw_spin_lock_irq(&worker->lock);
825 worker->task = NULL;
826 raw_spin_unlock_irq(&worker->lock);
827 return 0;
828 }
829
830 work = NULL;
831 raw_spin_lock_irq(&worker->lock);
832 if (!list_empty(&worker->work_list)) {
833 work = list_first_entry(&worker->work_list,
834 struct kthread_work, node);
835 list_del_init(&work->node);
836 }
837 worker->current_work = work;
838 raw_spin_unlock_irq(&worker->lock);
839
840 if (work) {
841 kthread_work_func_t func = work->func;
842 __set_current_state(TASK_RUNNING);
843 trace_sched_kthread_work_execute_start(work);
844 work->func(work);
845 /*
846 * Avoid dereferencing work after this point. The trace
847 * event only cares about the address.
848 */
849 trace_sched_kthread_work_execute_end(work, func);
850 } else if (!freezing(current)) {
851 schedule();
852 } else {
853 /*
854 * Handle the case where the current remains
855 * TASK_INTERRUPTIBLE. try_to_freeze() expects
856 * the current to be TASK_RUNNING.
857 */
858 __set_current_state(TASK_RUNNING);
859 }
860
861 try_to_freeze();
862 cond_resched();
863 goto repeat;
864}
865EXPORT_SYMBOL_GPL(kthread_worker_fn);
866
867static __printf(3, 0) struct kthread_worker *
868__kthread_create_worker(int cpu, unsigned int flags,
869 const char namefmt[], va_list args)
870{
871 struct kthread_worker *worker;
872 struct task_struct *task;
873 int node = NUMA_NO_NODE;
874
875 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
876 if (!worker)
877 return ERR_PTR(-ENOMEM);
878
879 kthread_init_worker(worker);
880
881 if (cpu >= 0)
882 node = cpu_to_node(cpu);
883
884 task = __kthread_create_on_node(kthread_worker_fn, worker,
885 node, namefmt, args);
886 if (IS_ERR(task))
887 goto fail_task;
888
889 if (cpu >= 0)
890 kthread_bind(task, cpu);
891
892 worker->flags = flags;
893 worker->task = task;
894 wake_up_process(task);
895 return worker;
896
897fail_task:
898 kfree(worker);
899 return ERR_CAST(task);
900}
901
902/**
903 * kthread_create_worker - create a kthread worker
904 * @flags: flags modifying the default behavior of the worker
905 * @namefmt: printf-style name for the kthread worker (task).
906 *
907 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
908 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
909 * when the caller was killed by a fatal signal.
910 */
911struct kthread_worker *
912kthread_create_worker(unsigned int flags, const char namefmt[], ...)
913{
914 struct kthread_worker *worker;
915 va_list args;
916
917 va_start(args, namefmt);
918 worker = __kthread_create_worker(-1, flags, namefmt, args);
919 va_end(args);
920
921 return worker;
922}
923EXPORT_SYMBOL(kthread_create_worker);
924
925/**
926 * kthread_create_worker_on_cpu - create a kthread worker and bind it
927 * to a given CPU and the associated NUMA node.
928 * @cpu: CPU number
929 * @flags: flags modifying the default behavior of the worker
930 * @namefmt: printf-style name for the kthread worker (task).
931 *
932 * Use a valid CPU number if you want to bind the kthread worker
933 * to the given CPU and the associated NUMA node.
934 *
935 * A good practice is to add the cpu number also into the worker name.
936 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
937 *
938 * CPU hotplug:
939 * The kthread worker API is simple and generic. It just provides a way
940 * to create, use, and destroy workers.
941 *
942 * It is up to the API user how to handle CPU hotplug. They have to decide
943 * how to handle pending work items, prevent queuing new ones, and
944 * restore the functionality when the CPU goes off and on. There are a
945 * few catches:
946 *
947 * - CPU affinity gets lost when it is scheduled on an offline CPU.
948 *
949 * - The worker might not exist when the CPU was off when the user
950 * created the workers.
951 *
952 * Good practice is to implement two CPU hotplug callbacks and to
953 * destroy/create the worker when the CPU goes down/up.
954 *
955 * Return:
956 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
957 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
958 * when the caller was killed by a fatal signal.
959 */
960struct kthread_worker *
961kthread_create_worker_on_cpu(int cpu, unsigned int flags,
962 const char namefmt[], ...)
963{
964 struct kthread_worker *worker;
965 va_list args;
966
967 va_start(args, namefmt);
968 worker = __kthread_create_worker(cpu, flags, namefmt, args);
969 va_end(args);
970
971 return worker;
972}
973EXPORT_SYMBOL(kthread_create_worker_on_cpu);
974
975/*
976 * Returns true when the work could not be queued at the moment.
977 * It happens when it is already pending in a worker list
978 * or when it is being cancelled.
979 */
980static inline bool queuing_blocked(struct kthread_worker *worker,
981 struct kthread_work *work)
982{
983 lockdep_assert_held(&worker->lock);
984
985 return !list_empty(&work->node) || work->canceling;
986}
987
988static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
989 struct kthread_work *work)
990{
991 lockdep_assert_held(&worker->lock);
992 WARN_ON_ONCE(!list_empty(&work->node));
993 /* Do not use a work with >1 worker, see kthread_queue_work() */
994 WARN_ON_ONCE(work->worker && work->worker != worker);
995}
996
997/* insert @work before @pos in @worker */
998static void kthread_insert_work(struct kthread_worker *worker,
999 struct kthread_work *work,
1000 struct list_head *pos)
1001{
1002 kthread_insert_work_sanity_check(worker, work);
1003
1004 trace_sched_kthread_work_queue_work(worker, work);
1005
1006 list_add_tail(&work->node, pos);
1007 work->worker = worker;
1008 if (!worker->current_work && likely(worker->task))
1009 wake_up_process(worker->task);
1010}
1011
1012/**
1013 * kthread_queue_work - queue a kthread_work
1014 * @worker: target kthread_worker
1015 * @work: kthread_work to queue
1016 *
1017 * Queue @work to work processor @task for async execution. @task
1018 * must have been created with kthread_worker_create(). Returns %true
1019 * if @work was successfully queued, %false if it was already pending.
1020 *
1021 * Reinitialize the work if it needs to be used by another worker.
1022 * For example, when the worker was stopped and started again.
1023 */
1024bool kthread_queue_work(struct kthread_worker *worker,
1025 struct kthread_work *work)
1026{
1027 bool ret = false;
1028 unsigned long flags;
1029
1030 raw_spin_lock_irqsave(&worker->lock, flags);
1031 if (!queuing_blocked(worker, work)) {
1032 kthread_insert_work(worker, work, &worker->work_list);
1033 ret = true;
1034 }
1035 raw_spin_unlock_irqrestore(&worker->lock, flags);
1036 return ret;
1037}
1038EXPORT_SYMBOL_GPL(kthread_queue_work);
1039
1040/**
1041 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1042 * delayed work when the timer expires.
1043 * @t: pointer to the expired timer
1044 *
1045 * The format of the function is defined by struct timer_list.
1046 * It should have been called from irqsafe timer with irq already off.
1047 */
1048void kthread_delayed_work_timer_fn(struct timer_list *t)
1049{
1050 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1051 struct kthread_work *work = &dwork->work;
1052 struct kthread_worker *worker = work->worker;
1053 unsigned long flags;
1054
1055 /*
1056 * This might happen when a pending work is reinitialized.
1057 * It means that it is used a wrong way.
1058 */
1059 if (WARN_ON_ONCE(!worker))
1060 return;
1061
1062 raw_spin_lock_irqsave(&worker->lock, flags);
1063 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1064 WARN_ON_ONCE(work->worker != worker);
1065
1066 /* Move the work from worker->delayed_work_list. */
1067 WARN_ON_ONCE(list_empty(&work->node));
1068 list_del_init(&work->node);
1069 if (!work->canceling)
1070 kthread_insert_work(worker, work, &worker->work_list);
1071
1072 raw_spin_unlock_irqrestore(&worker->lock, flags);
1073}
1074EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1075
1076static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1077 struct kthread_delayed_work *dwork,
1078 unsigned long delay)
1079{
1080 struct timer_list *timer = &dwork->timer;
1081 struct kthread_work *work = &dwork->work;
1082
1083 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1084
1085 /*
1086 * If @delay is 0, queue @dwork->work immediately. This is for
1087 * both optimization and correctness. The earliest @timer can
1088 * expire is on the closest next tick and delayed_work users depend
1089 * on that there's no such delay when @delay is 0.
1090 */
1091 if (!delay) {
1092 kthread_insert_work(worker, work, &worker->work_list);
1093 return;
1094 }
1095
1096 /* Be paranoid and try to detect possible races already now. */
1097 kthread_insert_work_sanity_check(worker, work);
1098
1099 list_add(&work->node, &worker->delayed_work_list);
1100 work->worker = worker;
1101 timer->expires = jiffies + delay;
1102 add_timer(timer);
1103}
1104
1105/**
1106 * kthread_queue_delayed_work - queue the associated kthread work
1107 * after a delay.
1108 * @worker: target kthread_worker
1109 * @dwork: kthread_delayed_work to queue
1110 * @delay: number of jiffies to wait before queuing
1111 *
1112 * If the work has not been pending it starts a timer that will queue
1113 * the work after the given @delay. If @delay is zero, it queues the
1114 * work immediately.
1115 *
1116 * Return: %false if the @work has already been pending. It means that
1117 * either the timer was running or the work was queued. It returns %true
1118 * otherwise.
1119 */
1120bool kthread_queue_delayed_work(struct kthread_worker *worker,
1121 struct kthread_delayed_work *dwork,
1122 unsigned long delay)
1123{
1124 struct kthread_work *work = &dwork->work;
1125 unsigned long flags;
1126 bool ret = false;
1127
1128 raw_spin_lock_irqsave(&worker->lock, flags);
1129
1130 if (!queuing_blocked(worker, work)) {
1131 __kthread_queue_delayed_work(worker, dwork, delay);
1132 ret = true;
1133 }
1134
1135 raw_spin_unlock_irqrestore(&worker->lock, flags);
1136 return ret;
1137}
1138EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1139
1140struct kthread_flush_work {
1141 struct kthread_work work;
1142 struct completion done;
1143};
1144
1145static void kthread_flush_work_fn(struct kthread_work *work)
1146{
1147 struct kthread_flush_work *fwork =
1148 container_of(work, struct kthread_flush_work, work);
1149 complete(&fwork->done);
1150}
1151
1152/**
1153 * kthread_flush_work - flush a kthread_work
1154 * @work: work to flush
1155 *
1156 * If @work is queued or executing, wait for it to finish execution.
1157 */
1158void kthread_flush_work(struct kthread_work *work)
1159{
1160 struct kthread_flush_work fwork = {
1161 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1162 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1163 };
1164 struct kthread_worker *worker;
1165 bool noop = false;
1166
1167 worker = work->worker;
1168 if (!worker)
1169 return;
1170
1171 raw_spin_lock_irq(&worker->lock);
1172 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1173 WARN_ON_ONCE(work->worker != worker);
1174
1175 if (!list_empty(&work->node))
1176 kthread_insert_work(worker, &fwork.work, work->node.next);
1177 else if (worker->current_work == work)
1178 kthread_insert_work(worker, &fwork.work,
1179 worker->work_list.next);
1180 else
1181 noop = true;
1182
1183 raw_spin_unlock_irq(&worker->lock);
1184
1185 if (!noop)
1186 wait_for_completion(&fwork.done);
1187}
1188EXPORT_SYMBOL_GPL(kthread_flush_work);
1189
1190/*
1191 * Make sure that the timer is neither set nor running and could
1192 * not manipulate the work list_head any longer.
1193 *
1194 * The function is called under worker->lock. The lock is temporary
1195 * released but the timer can't be set again in the meantime.
1196 */
1197static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1198 unsigned long *flags)
1199{
1200 struct kthread_delayed_work *dwork =
1201 container_of(work, struct kthread_delayed_work, work);
1202 struct kthread_worker *worker = work->worker;
1203
1204 /*
1205 * del_timer_sync() must be called to make sure that the timer
1206 * callback is not running. The lock must be temporary released
1207 * to avoid a deadlock with the callback. In the meantime,
1208 * any queuing is blocked by setting the canceling counter.
1209 */
1210 work->canceling++;
1211 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1212 del_timer_sync(&dwork->timer);
1213 raw_spin_lock_irqsave(&worker->lock, *flags);
1214 work->canceling--;
1215}
1216
1217/*
1218 * This function removes the work from the worker queue.
1219 *
1220 * It is called under worker->lock. The caller must make sure that
1221 * the timer used by delayed work is not running, e.g. by calling
1222 * kthread_cancel_delayed_work_timer().
1223 *
1224 * The work might still be in use when this function finishes. See the
1225 * current_work proceed by the worker.
1226 *
1227 * Return: %true if @work was pending and successfully canceled,
1228 * %false if @work was not pending
1229 */
1230static bool __kthread_cancel_work(struct kthread_work *work)
1231{
1232 /*
1233 * Try to remove the work from a worker list. It might either
1234 * be from worker->work_list or from worker->delayed_work_list.
1235 */
1236 if (!list_empty(&work->node)) {
1237 list_del_init(&work->node);
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
1244/**
1245 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1246 * @worker: kthread worker to use
1247 * @dwork: kthread delayed work to queue
1248 * @delay: number of jiffies to wait before queuing
1249 *
1250 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1251 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1252 * @work is guaranteed to be queued immediately.
1253 *
1254 * Return: %false if @dwork was idle and queued, %true otherwise.
1255 *
1256 * A special case is when the work is being canceled in parallel.
1257 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1258 * or yet another kthread_mod_delayed_work() call. We let the other command
1259 * win and return %true here. The return value can be used for reference
1260 * counting and the number of queued works stays the same. Anyway, the caller
1261 * is supposed to synchronize these operations a reasonable way.
1262 *
1263 * This function is safe to call from any context including IRQ handler.
1264 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1265 * for details.
1266 */
1267bool kthread_mod_delayed_work(struct kthread_worker *worker,
1268 struct kthread_delayed_work *dwork,
1269 unsigned long delay)
1270{
1271 struct kthread_work *work = &dwork->work;
1272 unsigned long flags;
1273 int ret;
1274
1275 raw_spin_lock_irqsave(&worker->lock, flags);
1276
1277 /* Do not bother with canceling when never queued. */
1278 if (!work->worker) {
1279 ret = false;
1280 goto fast_queue;
1281 }
1282
1283 /* Work must not be used with >1 worker, see kthread_queue_work() */
1284 WARN_ON_ONCE(work->worker != worker);
1285
1286 /*
1287 * Temporary cancel the work but do not fight with another command
1288 * that is canceling the work as well.
1289 *
1290 * It is a bit tricky because of possible races with another
1291 * mod_delayed_work() and cancel_delayed_work() callers.
1292 *
1293 * The timer must be canceled first because worker->lock is released
1294 * when doing so. But the work can be removed from the queue (list)
1295 * only when it can be queued again so that the return value can
1296 * be used for reference counting.
1297 */
1298 kthread_cancel_delayed_work_timer(work, &flags);
1299 if (work->canceling) {
1300 /* The number of works in the queue does not change. */
1301 ret = true;
1302 goto out;
1303 }
1304 ret = __kthread_cancel_work(work);
1305
1306fast_queue:
1307 __kthread_queue_delayed_work(worker, dwork, delay);
1308out:
1309 raw_spin_unlock_irqrestore(&worker->lock, flags);
1310 return ret;
1311}
1312EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1313
1314static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1315{
1316 struct kthread_worker *worker = work->worker;
1317 unsigned long flags;
1318 int ret = false;
1319
1320 if (!worker)
1321 goto out;
1322
1323 raw_spin_lock_irqsave(&worker->lock, flags);
1324 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1325 WARN_ON_ONCE(work->worker != worker);
1326
1327 if (is_dwork)
1328 kthread_cancel_delayed_work_timer(work, &flags);
1329
1330 ret = __kthread_cancel_work(work);
1331
1332 if (worker->current_work != work)
1333 goto out_fast;
1334
1335 /*
1336 * The work is in progress and we need to wait with the lock released.
1337 * In the meantime, block any queuing by setting the canceling counter.
1338 */
1339 work->canceling++;
1340 raw_spin_unlock_irqrestore(&worker->lock, flags);
1341 kthread_flush_work(work);
1342 raw_spin_lock_irqsave(&worker->lock, flags);
1343 work->canceling--;
1344
1345out_fast:
1346 raw_spin_unlock_irqrestore(&worker->lock, flags);
1347out:
1348 return ret;
1349}
1350
1351/**
1352 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1353 * @work: the kthread work to cancel
1354 *
1355 * Cancel @work and wait for its execution to finish. This function
1356 * can be used even if the work re-queues itself. On return from this
1357 * function, @work is guaranteed to be not pending or executing on any CPU.
1358 *
1359 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1360 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1361 *
1362 * The caller must ensure that the worker on which @work was last
1363 * queued can't be destroyed before this function returns.
1364 *
1365 * Return: %true if @work was pending, %false otherwise.
1366 */
1367bool kthread_cancel_work_sync(struct kthread_work *work)
1368{
1369 return __kthread_cancel_work_sync(work, false);
1370}
1371EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1372
1373/**
1374 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1375 * wait for it to finish.
1376 * @dwork: the kthread delayed work to cancel
1377 *
1378 * This is kthread_cancel_work_sync() for delayed works.
1379 *
1380 * Return: %true if @dwork was pending, %false otherwise.
1381 */
1382bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1383{
1384 return __kthread_cancel_work_sync(&dwork->work, true);
1385}
1386EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1387
1388/**
1389 * kthread_flush_worker - flush all current works on a kthread_worker
1390 * @worker: worker to flush
1391 *
1392 * Wait until all currently executing or pending works on @worker are
1393 * finished.
1394 */
1395void kthread_flush_worker(struct kthread_worker *worker)
1396{
1397 struct kthread_flush_work fwork = {
1398 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1399 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1400 };
1401
1402 kthread_queue_work(worker, &fwork.work);
1403 wait_for_completion(&fwork.done);
1404}
1405EXPORT_SYMBOL_GPL(kthread_flush_worker);
1406
1407/**
1408 * kthread_destroy_worker - destroy a kthread worker
1409 * @worker: worker to be destroyed
1410 *
1411 * Flush and destroy @worker. The simple flush is enough because the kthread
1412 * worker API is used only in trivial scenarios. There are no multi-step state
1413 * machines needed.
1414 *
1415 * Note that this function is not responsible for handling delayed work, so
1416 * caller should be responsible for queuing or canceling all delayed work items
1417 * before invoke this function.
1418 */
1419void kthread_destroy_worker(struct kthread_worker *worker)
1420{
1421 struct task_struct *task;
1422
1423 task = worker->task;
1424 if (WARN_ON(!task))
1425 return;
1426
1427 kthread_flush_worker(worker);
1428 kthread_stop(task);
1429 WARN_ON(!list_empty(&worker->delayed_work_list));
1430 WARN_ON(!list_empty(&worker->work_list));
1431 kfree(worker);
1432}
1433EXPORT_SYMBOL(kthread_destroy_worker);
1434
1435/**
1436 * kthread_use_mm - make the calling kthread operate on an address space
1437 * @mm: address space to operate on
1438 */
1439void kthread_use_mm(struct mm_struct *mm)
1440{
1441 struct mm_struct *active_mm;
1442 struct task_struct *tsk = current;
1443
1444 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1445 WARN_ON_ONCE(tsk->mm);
1446
1447 /*
1448 * It is possible for mm to be the same as tsk->active_mm, but
1449 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1450 * because these references are not equivalent.
1451 */
1452 mmgrab(mm);
1453
1454 task_lock(tsk);
1455 /* Hold off tlb flush IPIs while switching mm's */
1456 local_irq_disable();
1457 active_mm = tsk->active_mm;
1458 tsk->active_mm = mm;
1459 tsk->mm = mm;
1460 membarrier_update_current_mm(mm);
1461 switch_mm_irqs_off(active_mm, mm, tsk);
1462 local_irq_enable();
1463 task_unlock(tsk);
1464#ifdef finish_arch_post_lock_switch
1465 finish_arch_post_lock_switch();
1466#endif
1467
1468 /*
1469 * When a kthread starts operating on an address space, the loop
1470 * in membarrier_{private,global}_expedited() may not observe
1471 * that tsk->mm, and not issue an IPI. Membarrier requires a
1472 * memory barrier after storing to tsk->mm, before accessing
1473 * user-space memory. A full memory barrier for membarrier
1474 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1475 * mmdrop_lazy_tlb().
1476 */
1477 mmdrop_lazy_tlb(active_mm);
1478}
1479EXPORT_SYMBOL_GPL(kthread_use_mm);
1480
1481/**
1482 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1483 * @mm: address space to operate on
1484 */
1485void kthread_unuse_mm(struct mm_struct *mm)
1486{
1487 struct task_struct *tsk = current;
1488
1489 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1490 WARN_ON_ONCE(!tsk->mm);
1491
1492 task_lock(tsk);
1493 /*
1494 * When a kthread stops operating on an address space, the loop
1495 * in membarrier_{private,global}_expedited() may not observe
1496 * that tsk->mm, and not issue an IPI. Membarrier requires a
1497 * memory barrier after accessing user-space memory, before
1498 * clearing tsk->mm.
1499 */
1500 smp_mb__after_spinlock();
1501 local_irq_disable();
1502 tsk->mm = NULL;
1503 membarrier_update_current_mm(NULL);
1504 mmgrab_lazy_tlb(mm);
1505 /* active_mm is still 'mm' */
1506 enter_lazy_tlb(mm, tsk);
1507 local_irq_enable();
1508 task_unlock(tsk);
1509
1510 mmdrop(mm);
1511}
1512EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1513
1514#ifdef CONFIG_BLK_CGROUP
1515/**
1516 * kthread_associate_blkcg - associate blkcg to current kthread
1517 * @css: the cgroup info
1518 *
1519 * Current thread must be a kthread. The thread is running jobs on behalf of
1520 * other threads. In some cases, we expect the jobs attach cgroup info of
1521 * original threads instead of that of current thread. This function stores
1522 * original thread's cgroup info in current kthread context for later
1523 * retrieval.
1524 */
1525void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1526{
1527 struct kthread *kthread;
1528
1529 if (!(current->flags & PF_KTHREAD))
1530 return;
1531 kthread = to_kthread(current);
1532 if (!kthread)
1533 return;
1534
1535 if (kthread->blkcg_css) {
1536 css_put(kthread->blkcg_css);
1537 kthread->blkcg_css = NULL;
1538 }
1539 if (css) {
1540 css_get(css);
1541 kthread->blkcg_css = css;
1542 }
1543}
1544EXPORT_SYMBOL(kthread_associate_blkcg);
1545
1546/**
1547 * kthread_blkcg - get associated blkcg css of current kthread
1548 *
1549 * Current thread must be a kthread.
1550 */
1551struct cgroup_subsys_state *kthread_blkcg(void)
1552{
1553 struct kthread *kthread;
1554
1555 if (current->flags & PF_KTHREAD) {
1556 kthread = to_kthread(current);
1557 if (kthread)
1558 return kthread->blkcg_css;
1559 }
1560 return NULL;
1561}
1562#endif