Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) "kcov: " fmt
   3
   4#define DISABLE_BRANCH_PROFILING
   5#include <linux/atomic.h>
   6#include <linux/compiler.h>
   7#include <linux/errno.h>
   8#include <linux/export.h>
   9#include <linux/types.h>
  10#include <linux/file.h>
  11#include <linux/fs.h>
  12#include <linux/hashtable.h>
  13#include <linux/init.h>
 
  14#include <linux/kmsan-checks.h>
  15#include <linux/mm.h>
  16#include <linux/preempt.h>
  17#include <linux/printk.h>
  18#include <linux/sched.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/vmalloc.h>
  22#include <linux/debugfs.h>
  23#include <linux/uaccess.h>
  24#include <linux/kcov.h>
  25#include <linux/refcount.h>
  26#include <linux/log2.h>
  27#include <asm/setup.h>
  28
  29#define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
  30
  31/* Number of 64-bit words written per one comparison: */
  32#define KCOV_WORDS_PER_CMP 4
  33
  34/*
  35 * kcov descriptor (one per opened debugfs file).
  36 * State transitions of the descriptor:
  37 *  - initial state after open()
  38 *  - then there must be a single ioctl(KCOV_INIT_TRACE) call
  39 *  - then, mmap() call (several calls are allowed but not useful)
  40 *  - then, ioctl(KCOV_ENABLE, arg), where arg is
  41 *	KCOV_TRACE_PC - to trace only the PCs
  42 *	or
  43 *	KCOV_TRACE_CMP - to trace only the comparison operands
  44 *  - then, ioctl(KCOV_DISABLE) to disable the task.
  45 * Enabling/disabling ioctls can be repeated (only one task a time allowed).
  46 */
  47struct kcov {
  48	/*
  49	 * Reference counter. We keep one for:
  50	 *  - opened file descriptor
  51	 *  - task with enabled coverage (we can't unwire it from another task)
  52	 *  - each code section for remote coverage collection
  53	 */
  54	refcount_t		refcount;
  55	/* The lock protects mode, size, area and t. */
  56	spinlock_t		lock;
  57	enum kcov_mode		mode;
  58	/* Size of arena (in long's). */
  59	unsigned int		size;
  60	/* Coverage buffer shared with user space. */
  61	void			*area;
  62	/* Task for which we collect coverage, or NULL. */
  63	struct task_struct	*t;
  64	/* Collecting coverage from remote (background) threads. */
  65	bool			remote;
  66	/* Size of remote area (in long's). */
  67	unsigned int		remote_size;
  68	/*
  69	 * Sequence is incremented each time kcov is reenabled, used by
  70	 * kcov_remote_stop(), see the comment there.
  71	 */
  72	int			sequence;
  73};
  74
  75struct kcov_remote_area {
  76	struct list_head	list;
  77	unsigned int		size;
  78};
  79
  80struct kcov_remote {
  81	u64			handle;
  82	struct kcov		*kcov;
  83	struct hlist_node	hnode;
  84};
  85
  86static DEFINE_SPINLOCK(kcov_remote_lock);
  87static DEFINE_HASHTABLE(kcov_remote_map, 4);
  88static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
  89
  90struct kcov_percpu_data {
  91	void			*irq_area;
  92	local_lock_t		lock;
  93
  94	unsigned int		saved_mode;
  95	unsigned int		saved_size;
  96	void			*saved_area;
  97	struct kcov		*saved_kcov;
  98	int			saved_sequence;
  99};
 100
 101static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
 102	.lock = INIT_LOCAL_LOCK(lock),
 103};
 104
 105/* Must be called with kcov_remote_lock locked. */
 106static struct kcov_remote *kcov_remote_find(u64 handle)
 107{
 108	struct kcov_remote *remote;
 109
 110	hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
 111		if (remote->handle == handle)
 112			return remote;
 113	}
 114	return NULL;
 115}
 116
 117/* Must be called with kcov_remote_lock locked. */
 118static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
 119{
 120	struct kcov_remote *remote;
 121
 122	if (kcov_remote_find(handle))
 123		return ERR_PTR(-EEXIST);
 124	remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
 125	if (!remote)
 126		return ERR_PTR(-ENOMEM);
 127	remote->handle = handle;
 128	remote->kcov = kcov;
 129	hash_add(kcov_remote_map, &remote->hnode, handle);
 130	return remote;
 131}
 132
 133/* Must be called with kcov_remote_lock locked. */
 134static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
 135{
 136	struct kcov_remote_area *area;
 137	struct list_head *pos;
 138
 139	list_for_each(pos, &kcov_remote_areas) {
 140		area = list_entry(pos, struct kcov_remote_area, list);
 141		if (area->size == size) {
 142			list_del(&area->list);
 143			return area;
 144		}
 145	}
 146	return NULL;
 147}
 148
 149/* Must be called with kcov_remote_lock locked. */
 150static void kcov_remote_area_put(struct kcov_remote_area *area,
 151					unsigned int size)
 152{
 153	INIT_LIST_HEAD(&area->list);
 154	area->size = size;
 155	list_add(&area->list, &kcov_remote_areas);
 156	/*
 157	 * KMSAN doesn't instrument this file, so it may not know area->list
 158	 * is initialized. Unpoison it explicitly to avoid reports in
 159	 * kcov_remote_area_get().
 160	 */
 161	kmsan_unpoison_memory(&area->list, sizeof(area->list));
 162}
 163
 
 
 
 
 
 
 
 
 
 164static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
 165{
 166	unsigned int mode;
 167
 168	/*
 169	 * We are interested in code coverage as a function of a syscall inputs,
 170	 * so we ignore code executed in interrupts, unless we are in a remote
 171	 * coverage collection section in a softirq.
 172	 */
 173	if (!in_task() && !(in_serving_softirq() && t->kcov_softirq))
 174		return false;
 175	mode = READ_ONCE(t->kcov_mode);
 176	/*
 177	 * There is some code that runs in interrupts but for which
 178	 * in_interrupt() returns false (e.g. preempt_schedule_irq()).
 179	 * READ_ONCE()/barrier() effectively provides load-acquire wrt
 180	 * interrupts, there are paired barrier()/WRITE_ONCE() in
 181	 * kcov_start().
 182	 */
 183	barrier();
 184	return mode == needed_mode;
 185}
 186
 187static notrace unsigned long canonicalize_ip(unsigned long ip)
 188{
 189#ifdef CONFIG_RANDOMIZE_BASE
 190	ip -= kaslr_offset();
 191#endif
 192	return ip;
 193}
 194
 195/*
 196 * Entry point from instrumented code.
 197 * This is called once per basic-block/edge.
 198 */
 199void notrace __sanitizer_cov_trace_pc(void)
 200{
 201	struct task_struct *t;
 202	unsigned long *area;
 203	unsigned long ip = canonicalize_ip(_RET_IP_);
 204	unsigned long pos;
 205
 206	t = current;
 207	if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
 208		return;
 209
 210	area = t->kcov_area;
 211	/* The first 64-bit word is the number of subsequent PCs. */
 212	pos = READ_ONCE(area[0]) + 1;
 213	if (likely(pos < t->kcov_size)) {
 214		/* Previously we write pc before updating pos. However, some
 215		 * early interrupt code could bypass check_kcov_mode() check
 216		 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is
 217		 * raised between writing pc and updating pos, the pc could be
 218		 * overitten by the recursive __sanitizer_cov_trace_pc().
 219		 * Update pos before writing pc to avoid such interleaving.
 220		 */
 221		WRITE_ONCE(area[0], pos);
 222		barrier();
 223		area[pos] = ip;
 224	}
 225}
 226EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
 227
 228#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
 229static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
 230{
 231	struct task_struct *t;
 232	u64 *area;
 233	u64 count, start_index, end_pos, max_pos;
 234
 235	t = current;
 236	if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
 237		return;
 238
 239	ip = canonicalize_ip(ip);
 240
 241	/*
 242	 * We write all comparison arguments and types as u64.
 243	 * The buffer was allocated for t->kcov_size unsigned longs.
 244	 */
 245	area = (u64 *)t->kcov_area;
 246	max_pos = t->kcov_size * sizeof(unsigned long);
 247
 248	count = READ_ONCE(area[0]);
 249
 250	/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
 251	start_index = 1 + count * KCOV_WORDS_PER_CMP;
 252	end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
 253	if (likely(end_pos <= max_pos)) {
 254		/* See comment in __sanitizer_cov_trace_pc(). */
 255		WRITE_ONCE(area[0], count + 1);
 256		barrier();
 257		area[start_index] = type;
 258		area[start_index + 1] = arg1;
 259		area[start_index + 2] = arg2;
 260		area[start_index + 3] = ip;
 261	}
 262}
 263
 264void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
 265{
 266	write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
 267}
 268EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
 269
 270void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
 271{
 272	write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
 273}
 274EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
 275
 276void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
 277{
 278	write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
 279}
 280EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
 281
 282void notrace __sanitizer_cov_trace_cmp8(u64 arg1, u64 arg2)
 283{
 284	write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
 285}
 286EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
 287
 288void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
 289{
 290	write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
 291			_RET_IP_);
 292}
 293EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
 294
 295void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
 296{
 297	write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
 298			_RET_IP_);
 299}
 300EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
 301
 302void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
 303{
 304	write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
 305			_RET_IP_);
 306}
 307EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
 308
 309void notrace __sanitizer_cov_trace_const_cmp8(u64 arg1, u64 arg2)
 310{
 311	write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
 312			_RET_IP_);
 313}
 314EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
 315
 316void notrace __sanitizer_cov_trace_switch(u64 val, u64 *cases)
 317{
 318	u64 i;
 
 319	u64 count = cases[0];
 320	u64 size = cases[1];
 321	u64 type = KCOV_CMP_CONST;
 322
 323	switch (size) {
 324	case 8:
 325		type |= KCOV_CMP_SIZE(0);
 326		break;
 327	case 16:
 328		type |= KCOV_CMP_SIZE(1);
 329		break;
 330	case 32:
 331		type |= KCOV_CMP_SIZE(2);
 332		break;
 333	case 64:
 334		type |= KCOV_CMP_SIZE(3);
 335		break;
 336	default:
 337		return;
 338	}
 339	for (i = 0; i < count; i++)
 340		write_comp_data(type, cases[i + 2], val, _RET_IP_);
 341}
 342EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
 343#endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
 344
 345static void kcov_start(struct task_struct *t, struct kcov *kcov,
 346			unsigned int size, void *area, enum kcov_mode mode,
 347			int sequence)
 348{
 349	kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
 350	t->kcov = kcov;
 351	/* Cache in task struct for performance. */
 352	t->kcov_size = size;
 353	t->kcov_area = area;
 354	t->kcov_sequence = sequence;
 355	/* See comment in check_kcov_mode(). */
 356	barrier();
 357	WRITE_ONCE(t->kcov_mode, mode);
 358}
 359
 360static void kcov_stop(struct task_struct *t)
 361{
 362	WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
 363	barrier();
 364	t->kcov = NULL;
 365	t->kcov_size = 0;
 366	t->kcov_area = NULL;
 367}
 368
 369static void kcov_task_reset(struct task_struct *t)
 370{
 371	kcov_stop(t);
 372	t->kcov_sequence = 0;
 373	t->kcov_handle = 0;
 374}
 375
 376void kcov_task_init(struct task_struct *t)
 377{
 378	kcov_task_reset(t);
 379	t->kcov_handle = current->kcov_handle;
 380}
 381
 382static void kcov_reset(struct kcov *kcov)
 383{
 384	kcov->t = NULL;
 385	kcov->mode = KCOV_MODE_INIT;
 386	kcov->remote = false;
 387	kcov->remote_size = 0;
 388	kcov->sequence++;
 389}
 390
 391static void kcov_remote_reset(struct kcov *kcov)
 392{
 393	int bkt;
 394	struct kcov_remote *remote;
 395	struct hlist_node *tmp;
 396	unsigned long flags;
 397
 398	spin_lock_irqsave(&kcov_remote_lock, flags);
 399	hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
 400		if (remote->kcov != kcov)
 401			continue;
 402		hash_del(&remote->hnode);
 403		kfree(remote);
 404	}
 405	/* Do reset before unlock to prevent races with kcov_remote_start(). */
 406	kcov_reset(kcov);
 407	spin_unlock_irqrestore(&kcov_remote_lock, flags);
 408}
 409
 410static void kcov_disable(struct task_struct *t, struct kcov *kcov)
 411{
 412	kcov_task_reset(t);
 413	if (kcov->remote)
 414		kcov_remote_reset(kcov);
 415	else
 416		kcov_reset(kcov);
 417}
 418
 419static void kcov_get(struct kcov *kcov)
 420{
 421	refcount_inc(&kcov->refcount);
 422}
 423
 424static void kcov_put(struct kcov *kcov)
 425{
 426	if (refcount_dec_and_test(&kcov->refcount)) {
 427		kcov_remote_reset(kcov);
 428		vfree(kcov->area);
 429		kfree(kcov);
 430	}
 431}
 432
 433void kcov_task_exit(struct task_struct *t)
 434{
 435	struct kcov *kcov;
 436	unsigned long flags;
 437
 438	kcov = t->kcov;
 439	if (kcov == NULL)
 440		return;
 441
 442	spin_lock_irqsave(&kcov->lock, flags);
 443	kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
 444	/*
 445	 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
 446	 * which comes down to:
 447	 *        WARN_ON(!kcov->remote && kcov->t != t);
 448	 *
 449	 * For KCOV_REMOTE_ENABLE devices, the exiting task is either:
 450	 *
 451	 * 1. A remote task between kcov_remote_start() and kcov_remote_stop().
 452	 *    In this case we should print a warning right away, since a task
 453	 *    shouldn't be exiting when it's in a kcov coverage collection
 454	 *    section. Here t points to the task that is collecting remote
 455	 *    coverage, and t->kcov->t points to the thread that created the
 456	 *    kcov device. Which means that to detect this case we need to
 457	 *    check that t != t->kcov->t, and this gives us the following:
 458	 *        WARN_ON(kcov->remote && kcov->t != t);
 459	 *
 460	 * 2. The task that created kcov exiting without calling KCOV_DISABLE,
 461	 *    and then again we make sure that t->kcov->t == t:
 462	 *        WARN_ON(kcov->remote && kcov->t != t);
 463	 *
 464	 * By combining all three checks into one we get:
 465	 */
 466	if (WARN_ON(kcov->t != t)) {
 467		spin_unlock_irqrestore(&kcov->lock, flags);
 468		return;
 469	}
 470	/* Just to not leave dangling references behind. */
 471	kcov_disable(t, kcov);
 472	spin_unlock_irqrestore(&kcov->lock, flags);
 473	kcov_put(kcov);
 474}
 475
 476static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
 477{
 478	int res = 0;
 479	struct kcov *kcov = vma->vm_file->private_data;
 480	unsigned long size, off;
 481	struct page *page;
 482	unsigned long flags;
 483
 484	spin_lock_irqsave(&kcov->lock, flags);
 485	size = kcov->size * sizeof(unsigned long);
 486	if (kcov->area == NULL || vma->vm_pgoff != 0 ||
 487	    vma->vm_end - vma->vm_start != size) {
 488		res = -EINVAL;
 489		goto exit;
 490	}
 491	spin_unlock_irqrestore(&kcov->lock, flags);
 492	vma->vm_flags |= VM_DONTEXPAND;
 493	for (off = 0; off < size; off += PAGE_SIZE) {
 494		page = vmalloc_to_page(kcov->area + off);
 495		res = vm_insert_page(vma, vma->vm_start + off, page);
 496		if (res) {
 497			pr_warn_once("kcov: vm_insert_page() failed\n");
 498			return res;
 499		}
 500	}
 501	return 0;
 502exit:
 503	spin_unlock_irqrestore(&kcov->lock, flags);
 504	return res;
 505}
 506
 507static int kcov_open(struct inode *inode, struct file *filep)
 508{
 509	struct kcov *kcov;
 510
 511	kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
 512	if (!kcov)
 513		return -ENOMEM;
 514	kcov->mode = KCOV_MODE_DISABLED;
 515	kcov->sequence = 1;
 516	refcount_set(&kcov->refcount, 1);
 517	spin_lock_init(&kcov->lock);
 518	filep->private_data = kcov;
 519	return nonseekable_open(inode, filep);
 520}
 521
 522static int kcov_close(struct inode *inode, struct file *filep)
 523{
 524	kcov_put(filep->private_data);
 525	return 0;
 526}
 527
 528static int kcov_get_mode(unsigned long arg)
 529{
 530	if (arg == KCOV_TRACE_PC)
 531		return KCOV_MODE_TRACE_PC;
 532	else if (arg == KCOV_TRACE_CMP)
 533#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
 534		return KCOV_MODE_TRACE_CMP;
 535#else
 536		return -ENOTSUPP;
 537#endif
 538	else
 539		return -EINVAL;
 540}
 541
 542/*
 543 * Fault in a lazily-faulted vmalloc area before it can be used by
 544 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
 545 * vmalloc fault handling path is instrumented.
 546 */
 547static void kcov_fault_in_area(struct kcov *kcov)
 548{
 549	unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
 550	unsigned long *area = kcov->area;
 551	unsigned long offset;
 552
 553	for (offset = 0; offset < kcov->size; offset += stride)
 554		READ_ONCE(area[offset]);
 555}
 556
 557static inline bool kcov_check_handle(u64 handle, bool common_valid,
 558				bool uncommon_valid, bool zero_valid)
 559{
 560	if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
 561		return false;
 562	switch (handle & KCOV_SUBSYSTEM_MASK) {
 563	case KCOV_SUBSYSTEM_COMMON:
 564		return (handle & KCOV_INSTANCE_MASK) ?
 565			common_valid : zero_valid;
 566	case KCOV_SUBSYSTEM_USB:
 567		return uncommon_valid;
 568	default:
 569		return false;
 570	}
 571	return false;
 572}
 573
 574static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
 575			     unsigned long arg)
 576{
 577	struct task_struct *t;
 578	unsigned long flags, unused;
 579	int mode, i;
 580	struct kcov_remote_arg *remote_arg;
 581	struct kcov_remote *remote;
 582
 583	switch (cmd) {
 584	case KCOV_ENABLE:
 585		/*
 586		 * Enable coverage for the current task.
 587		 * At this point user must have been enabled trace mode,
 588		 * and mmapped the file. Coverage collection is disabled only
 589		 * at task exit or voluntary by KCOV_DISABLE. After that it can
 590		 * be enabled for another task.
 591		 */
 592		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
 593			return -EINVAL;
 594		t = current;
 595		if (kcov->t != NULL || t->kcov != NULL)
 596			return -EBUSY;
 597		mode = kcov_get_mode(arg);
 598		if (mode < 0)
 599			return mode;
 600		kcov_fault_in_area(kcov);
 601		kcov->mode = mode;
 602		kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
 603				kcov->sequence);
 604		kcov->t = t;
 605		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
 606		kcov_get(kcov);
 607		return 0;
 608	case KCOV_DISABLE:
 609		/* Disable coverage for the current task. */
 610		unused = arg;
 611		if (unused != 0 || current->kcov != kcov)
 612			return -EINVAL;
 613		t = current;
 614		if (WARN_ON(kcov->t != t))
 615			return -EINVAL;
 616		kcov_disable(t, kcov);
 617		kcov_put(kcov);
 618		return 0;
 619	case KCOV_REMOTE_ENABLE:
 620		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
 621			return -EINVAL;
 622		t = current;
 623		if (kcov->t != NULL || t->kcov != NULL)
 624			return -EBUSY;
 625		remote_arg = (struct kcov_remote_arg *)arg;
 626		mode = kcov_get_mode(remote_arg->trace_mode);
 627		if (mode < 0)
 628			return mode;
 629		if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long))
 
 630			return -EINVAL;
 631		kcov->mode = mode;
 632		t->kcov = kcov;
 
 633		kcov->t = t;
 634		kcov->remote = true;
 635		kcov->remote_size = remote_arg->area_size;
 636		spin_lock_irqsave(&kcov_remote_lock, flags);
 637		for (i = 0; i < remote_arg->num_handles; i++) {
 638			if (!kcov_check_handle(remote_arg->handles[i],
 639						false, true, false)) {
 640				spin_unlock_irqrestore(&kcov_remote_lock,
 641							flags);
 642				kcov_disable(t, kcov);
 643				return -EINVAL;
 644			}
 645			remote = kcov_remote_add(kcov, remote_arg->handles[i]);
 646			if (IS_ERR(remote)) {
 647				spin_unlock_irqrestore(&kcov_remote_lock,
 648							flags);
 649				kcov_disable(t, kcov);
 650				return PTR_ERR(remote);
 651			}
 652		}
 653		if (remote_arg->common_handle) {
 654			if (!kcov_check_handle(remote_arg->common_handle,
 655						true, false, false)) {
 656				spin_unlock_irqrestore(&kcov_remote_lock,
 657							flags);
 658				kcov_disable(t, kcov);
 659				return -EINVAL;
 660			}
 661			remote = kcov_remote_add(kcov,
 662					remote_arg->common_handle);
 663			if (IS_ERR(remote)) {
 664				spin_unlock_irqrestore(&kcov_remote_lock,
 665							flags);
 666				kcov_disable(t, kcov);
 667				return PTR_ERR(remote);
 668			}
 669			t->kcov_handle = remote_arg->common_handle;
 670		}
 671		spin_unlock_irqrestore(&kcov_remote_lock, flags);
 672		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
 673		kcov_get(kcov);
 674		return 0;
 675	default:
 676		return -ENOTTY;
 677	}
 678}
 679
 680static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
 681{
 682	struct kcov *kcov;
 683	int res;
 684	struct kcov_remote_arg *remote_arg = NULL;
 685	unsigned int remote_num_handles;
 686	unsigned long remote_arg_size;
 687	unsigned long size, flags;
 688	void *area;
 689
 690	kcov = filep->private_data;
 691	switch (cmd) {
 692	case KCOV_INIT_TRACE:
 693		/*
 694		 * Enable kcov in trace mode and setup buffer size.
 695		 * Must happen before anything else.
 696		 *
 697		 * First check the size argument - it must be at least 2
 698		 * to hold the current position and one PC.
 699		 */
 700		size = arg;
 701		if (size < 2 || size > INT_MAX / sizeof(unsigned long))
 702			return -EINVAL;
 703		area = vmalloc_user(size * sizeof(unsigned long));
 704		if (area == NULL)
 705			return -ENOMEM;
 706		spin_lock_irqsave(&kcov->lock, flags);
 707		if (kcov->mode != KCOV_MODE_DISABLED) {
 708			spin_unlock_irqrestore(&kcov->lock, flags);
 709			vfree(area);
 710			return -EBUSY;
 711		}
 712		kcov->area = area;
 713		kcov->size = size;
 714		kcov->mode = KCOV_MODE_INIT;
 715		spin_unlock_irqrestore(&kcov->lock, flags);
 716		return 0;
 717	case KCOV_REMOTE_ENABLE:
 718		if (get_user(remote_num_handles, (unsigned __user *)(arg +
 719				offsetof(struct kcov_remote_arg, num_handles))))
 720			return -EFAULT;
 721		if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
 722			return -EINVAL;
 723		remote_arg_size = struct_size(remote_arg, handles,
 724					remote_num_handles);
 725		remote_arg = memdup_user((void __user *)arg, remote_arg_size);
 726		if (IS_ERR(remote_arg))
 727			return PTR_ERR(remote_arg);
 728		if (remote_arg->num_handles != remote_num_handles) {
 729			kfree(remote_arg);
 730			return -EINVAL;
 731		}
 732		arg = (unsigned long)remote_arg;
 733		fallthrough;
 734	default:
 735		/*
 736		 * All other commands can be normally executed under a spin lock, so we
 737		 * obtain and release it here in order to simplify kcov_ioctl_locked().
 738		 */
 739		spin_lock_irqsave(&kcov->lock, flags);
 740		res = kcov_ioctl_locked(kcov, cmd, arg);
 741		spin_unlock_irqrestore(&kcov->lock, flags);
 742		kfree(remote_arg);
 743		return res;
 744	}
 745}
 746
 747static const struct file_operations kcov_fops = {
 748	.open		= kcov_open,
 749	.unlocked_ioctl	= kcov_ioctl,
 750	.compat_ioctl	= kcov_ioctl,
 751	.mmap		= kcov_mmap,
 752	.release        = kcov_close,
 753};
 754
 755/*
 756 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
 757 * of code in a kernel background thread or in a softirq to allow kcov to be
 758 * used to collect coverage from that part of code.
 759 *
 760 * The handle argument of kcov_remote_start() identifies a code section that is
 761 * used for coverage collection. A userspace process passes this handle to
 762 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
 763 * coverage for the code section identified by this handle.
 764 *
 765 * The usage of these annotations in the kernel code is different depending on
 766 * the type of the kernel thread whose code is being annotated.
 767 *
 768 * For global kernel threads that are spawned in a limited number of instances
 769 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
 770 * softirqs, each instance must be assigned a unique 4-byte instance id. The
 771 * instance id is then combined with a 1-byte subsystem id to get a handle via
 772 * kcov_remote_handle(subsystem_id, instance_id).
 773 *
 774 * For local kernel threads that are spawned from system calls handler when a
 775 * user interacts with some kernel interface (e.g. vhost workers), a handle is
 776 * passed from a userspace process as the common_handle field of the
 777 * kcov_remote_arg struct (note, that the user must generate a handle by using
 778 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
 779 * arbitrary 4-byte non-zero number as the instance id). This common handle
 780 * then gets saved into the task_struct of the process that issued the
 781 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
 782 * kernel threads, the common handle must be retrieved via kcov_common_handle()
 783 * and passed to the spawned threads via custom annotations. Those kernel
 784 * threads must in turn be annotated with kcov_remote_start(common_handle) and
 785 * kcov_remote_stop(). All of the threads that are spawned by the same process
 786 * obtain the same handle, hence the name "common".
 787 *
 788 * See Documentation/dev-tools/kcov.rst for more details.
 789 *
 790 * Internally, kcov_remote_start() looks up the kcov device associated with the
 791 * provided handle, allocates an area for coverage collection, and saves the
 792 * pointers to kcov and area into the current task_struct to allow coverage to
 793 * be collected via __sanitizer_cov_trace_pc().
 794 * In turns kcov_remote_stop() clears those pointers from task_struct to stop
 795 * collecting coverage and copies all collected coverage into the kcov area.
 796 */
 797
 798static inline bool kcov_mode_enabled(unsigned int mode)
 799{
 800	return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
 801}
 802
 803static void kcov_remote_softirq_start(struct task_struct *t)
 804{
 805	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
 806	unsigned int mode;
 807
 808	mode = READ_ONCE(t->kcov_mode);
 809	barrier();
 810	if (kcov_mode_enabled(mode)) {
 811		data->saved_mode = mode;
 812		data->saved_size = t->kcov_size;
 813		data->saved_area = t->kcov_area;
 814		data->saved_sequence = t->kcov_sequence;
 815		data->saved_kcov = t->kcov;
 816		kcov_stop(t);
 817	}
 818}
 819
 820static void kcov_remote_softirq_stop(struct task_struct *t)
 821{
 822	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
 823
 824	if (data->saved_kcov) {
 825		kcov_start(t, data->saved_kcov, data->saved_size,
 826				data->saved_area, data->saved_mode,
 827				data->saved_sequence);
 828		data->saved_mode = 0;
 829		data->saved_size = 0;
 830		data->saved_area = NULL;
 831		data->saved_sequence = 0;
 832		data->saved_kcov = NULL;
 833	}
 834}
 835
 836void kcov_remote_start(u64 handle)
 837{
 838	struct task_struct *t = current;
 839	struct kcov_remote *remote;
 840	struct kcov *kcov;
 841	unsigned int mode;
 842	void *area;
 843	unsigned int size;
 844	int sequence;
 845	unsigned long flags;
 846
 847	if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
 848		return;
 849	if (!in_task() && !in_serving_softirq())
 850		return;
 851
 852	local_lock_irqsave(&kcov_percpu_data.lock, flags);
 853
 854	/*
 855	 * Check that kcov_remote_start() is not called twice in background
 856	 * threads nor called by user tasks (with enabled kcov).
 857	 */
 858	mode = READ_ONCE(t->kcov_mode);
 859	if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
 860		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 861		return;
 862	}
 863	/*
 864	 * Check that kcov_remote_start() is not called twice in softirqs.
 865	 * Note, that kcov_remote_start() can be called from a softirq that
 866	 * happened while collecting coverage from a background thread.
 867	 */
 868	if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
 869		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 870		return;
 871	}
 872
 873	spin_lock(&kcov_remote_lock);
 874	remote = kcov_remote_find(handle);
 875	if (!remote) {
 876		spin_unlock(&kcov_remote_lock);
 877		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 878		return;
 879	}
 880	kcov_debug("handle = %llx, context: %s\n", handle,
 881			in_task() ? "task" : "softirq");
 882	kcov = remote->kcov;
 883	/* Put in kcov_remote_stop(). */
 884	kcov_get(kcov);
 885	/*
 886	 * Read kcov fields before unlock to prevent races with
 887	 * KCOV_DISABLE / kcov_remote_reset().
 888	 */
 889	mode = kcov->mode;
 890	sequence = kcov->sequence;
 891	if (in_task()) {
 892		size = kcov->remote_size;
 893		area = kcov_remote_area_get(size);
 894	} else {
 895		size = CONFIG_KCOV_IRQ_AREA_SIZE;
 896		area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
 897	}
 898	spin_unlock(&kcov_remote_lock);
 899
 900	/* Can only happen when in_task(). */
 901	if (!area) {
 902		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 903		area = vmalloc(size * sizeof(unsigned long));
 904		if (!area) {
 905			kcov_put(kcov);
 906			return;
 907		}
 908		local_lock_irqsave(&kcov_percpu_data.lock, flags);
 909	}
 910
 911	/* Reset coverage size. */
 912	*(u64 *)area = 0;
 913
 914	if (in_serving_softirq()) {
 915		kcov_remote_softirq_start(t);
 916		t->kcov_softirq = 1;
 917	}
 918	kcov_start(t, kcov, size, area, mode, sequence);
 919
 920	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 921
 922}
 923EXPORT_SYMBOL(kcov_remote_start);
 924
 925static void kcov_move_area(enum kcov_mode mode, void *dst_area,
 926				unsigned int dst_area_size, void *src_area)
 927{
 928	u64 word_size = sizeof(unsigned long);
 929	u64 count_size, entry_size_log;
 930	u64 dst_len, src_len;
 931	void *dst_entries, *src_entries;
 932	u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
 933
 934	kcov_debug("%px %u <= %px %lu\n",
 935		dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
 936
 937	switch (mode) {
 938	case KCOV_MODE_TRACE_PC:
 939		dst_len = READ_ONCE(*(unsigned long *)dst_area);
 940		src_len = *(unsigned long *)src_area;
 941		count_size = sizeof(unsigned long);
 942		entry_size_log = __ilog2_u64(sizeof(unsigned long));
 943		break;
 944	case KCOV_MODE_TRACE_CMP:
 945		dst_len = READ_ONCE(*(u64 *)dst_area);
 946		src_len = *(u64 *)src_area;
 947		count_size = sizeof(u64);
 948		BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
 949		entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
 950		break;
 951	default:
 952		WARN_ON(1);
 953		return;
 954	}
 955
 956	/* As arm can't divide u64 integers use log of entry size. */
 957	if (dst_len > ((dst_area_size * word_size - count_size) >>
 958				entry_size_log))
 959		return;
 960	dst_occupied = count_size + (dst_len << entry_size_log);
 961	dst_free = dst_area_size * word_size - dst_occupied;
 962	bytes_to_move = min(dst_free, src_len << entry_size_log);
 963	dst_entries = dst_area + dst_occupied;
 964	src_entries = src_area + count_size;
 965	memcpy(dst_entries, src_entries, bytes_to_move);
 966	entries_moved = bytes_to_move >> entry_size_log;
 967
 968	switch (mode) {
 969	case KCOV_MODE_TRACE_PC:
 970		WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
 971		break;
 972	case KCOV_MODE_TRACE_CMP:
 973		WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
 974		break;
 975	default:
 976		break;
 977	}
 978}
 979
 980/* See the comment before kcov_remote_start() for usage details. */
 981void kcov_remote_stop(void)
 982{
 983	struct task_struct *t = current;
 984	struct kcov *kcov;
 985	unsigned int mode;
 986	void *area;
 987	unsigned int size;
 988	int sequence;
 989	unsigned long flags;
 990
 991	if (!in_task() && !in_serving_softirq())
 992		return;
 993
 994	local_lock_irqsave(&kcov_percpu_data.lock, flags);
 995
 996	mode = READ_ONCE(t->kcov_mode);
 997	barrier();
 998	if (!kcov_mode_enabled(mode)) {
 999		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1000		return;
1001	}
1002	/*
1003	 * When in softirq, check if the corresponding kcov_remote_start()
1004	 * actually found the remote handle and started collecting coverage.
1005	 */
1006	if (in_serving_softirq() && !t->kcov_softirq) {
1007		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1008		return;
1009	}
1010	/* Make sure that kcov_softirq is only set when in softirq. */
1011	if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
1012		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1013		return;
1014	}
1015
1016	kcov = t->kcov;
1017	area = t->kcov_area;
1018	size = t->kcov_size;
1019	sequence = t->kcov_sequence;
1020
1021	kcov_stop(t);
1022	if (in_serving_softirq()) {
1023		t->kcov_softirq = 0;
1024		kcov_remote_softirq_stop(t);
1025	}
1026
1027	spin_lock(&kcov->lock);
1028	/*
1029	 * KCOV_DISABLE could have been called between kcov_remote_start()
1030	 * and kcov_remote_stop(), hence the sequence check.
1031	 */
1032	if (sequence == kcov->sequence && kcov->remote)
1033		kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
1034	spin_unlock(&kcov->lock);
1035
1036	if (in_task()) {
1037		spin_lock(&kcov_remote_lock);
1038		kcov_remote_area_put(area, size);
1039		spin_unlock(&kcov_remote_lock);
1040	}
1041
1042	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1043
1044	/* Get in kcov_remote_start(). */
1045	kcov_put(kcov);
1046}
1047EXPORT_SYMBOL(kcov_remote_stop);
1048
1049/* See the comment before kcov_remote_start() for usage details. */
1050u64 kcov_common_handle(void)
1051{
1052	if (!in_task())
1053		return 0;
1054	return current->kcov_handle;
1055}
1056EXPORT_SYMBOL(kcov_common_handle);
1057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058static int __init kcov_init(void)
1059{
1060	int cpu;
1061
1062	for_each_possible_cpu(cpu) {
1063		void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
1064				sizeof(unsigned long), cpu_to_node(cpu));
1065		if (!area)
1066			return -ENOMEM;
1067		per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
1068	}
1069
1070	/*
1071	 * The kcov debugfs file won't ever get removed and thus,
1072	 * there is no need to protect it against removal races. The
1073	 * use of debugfs_create_file_unsafe() is actually safe here.
1074	 */
1075	debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
 
 
 
 
1076
1077	return 0;
1078}
1079
1080device_initcall(kcov_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) "kcov: " fmt
   3
   4#define DISABLE_BRANCH_PROFILING
   5#include <linux/atomic.h>
   6#include <linux/compiler.h>
   7#include <linux/errno.h>
   8#include <linux/export.h>
   9#include <linux/types.h>
  10#include <linux/file.h>
  11#include <linux/fs.h>
  12#include <linux/hashtable.h>
  13#include <linux/init.h>
  14#include <linux/jiffies.h>
  15#include <linux/kmsan-checks.h>
  16#include <linux/mm.h>
  17#include <linux/preempt.h>
  18#include <linux/printk.h>
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/spinlock.h>
  22#include <linux/vmalloc.h>
  23#include <linux/debugfs.h>
  24#include <linux/uaccess.h>
  25#include <linux/kcov.h>
  26#include <linux/refcount.h>
  27#include <linux/log2.h>
  28#include <asm/setup.h>
  29
  30#define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
  31
  32/* Number of 64-bit words written per one comparison: */
  33#define KCOV_WORDS_PER_CMP 4
  34
  35/*
  36 * kcov descriptor (one per opened debugfs file).
  37 * State transitions of the descriptor:
  38 *  - initial state after open()
  39 *  - then there must be a single ioctl(KCOV_INIT_TRACE) call
  40 *  - then, mmap() call (several calls are allowed but not useful)
  41 *  - then, ioctl(KCOV_ENABLE, arg), where arg is
  42 *	KCOV_TRACE_PC - to trace only the PCs
  43 *	or
  44 *	KCOV_TRACE_CMP - to trace only the comparison operands
  45 *  - then, ioctl(KCOV_DISABLE) to disable the task.
  46 * Enabling/disabling ioctls can be repeated (only one task a time allowed).
  47 */
  48struct kcov {
  49	/*
  50	 * Reference counter. We keep one for:
  51	 *  - opened file descriptor
  52	 *  - task with enabled coverage (we can't unwire it from another task)
  53	 *  - each code section for remote coverage collection
  54	 */
  55	refcount_t		refcount;
  56	/* The lock protects mode, size, area and t. */
  57	spinlock_t		lock;
  58	enum kcov_mode		mode;
  59	/* Size of arena (in long's). */
  60	unsigned int		size;
  61	/* Coverage buffer shared with user space. */
  62	void			*area;
  63	/* Task for which we collect coverage, or NULL. */
  64	struct task_struct	*t;
  65	/* Collecting coverage from remote (background) threads. */
  66	bool			remote;
  67	/* Size of remote area (in long's). */
  68	unsigned int		remote_size;
  69	/*
  70	 * Sequence is incremented each time kcov is reenabled, used by
  71	 * kcov_remote_stop(), see the comment there.
  72	 */
  73	int			sequence;
  74};
  75
  76struct kcov_remote_area {
  77	struct list_head	list;
  78	unsigned int		size;
  79};
  80
  81struct kcov_remote {
  82	u64			handle;
  83	struct kcov		*kcov;
  84	struct hlist_node	hnode;
  85};
  86
  87static DEFINE_SPINLOCK(kcov_remote_lock);
  88static DEFINE_HASHTABLE(kcov_remote_map, 4);
  89static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
  90
  91struct kcov_percpu_data {
  92	void			*irq_area;
  93	local_lock_t		lock;
  94
  95	unsigned int		saved_mode;
  96	unsigned int		saved_size;
  97	void			*saved_area;
  98	struct kcov		*saved_kcov;
  99	int			saved_sequence;
 100};
 101
 102static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
 103	.lock = INIT_LOCAL_LOCK(lock),
 104};
 105
 106/* Must be called with kcov_remote_lock locked. */
 107static struct kcov_remote *kcov_remote_find(u64 handle)
 108{
 109	struct kcov_remote *remote;
 110
 111	hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
 112		if (remote->handle == handle)
 113			return remote;
 114	}
 115	return NULL;
 116}
 117
 118/* Must be called with kcov_remote_lock locked. */
 119static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
 120{
 121	struct kcov_remote *remote;
 122
 123	if (kcov_remote_find(handle))
 124		return ERR_PTR(-EEXIST);
 125	remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
 126	if (!remote)
 127		return ERR_PTR(-ENOMEM);
 128	remote->handle = handle;
 129	remote->kcov = kcov;
 130	hash_add(kcov_remote_map, &remote->hnode, handle);
 131	return remote;
 132}
 133
 134/* Must be called with kcov_remote_lock locked. */
 135static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
 136{
 137	struct kcov_remote_area *area;
 138	struct list_head *pos;
 139
 140	list_for_each(pos, &kcov_remote_areas) {
 141		area = list_entry(pos, struct kcov_remote_area, list);
 142		if (area->size == size) {
 143			list_del(&area->list);
 144			return area;
 145		}
 146	}
 147	return NULL;
 148}
 149
 150/* Must be called with kcov_remote_lock locked. */
 151static void kcov_remote_area_put(struct kcov_remote_area *area,
 152					unsigned int size)
 153{
 154	INIT_LIST_HEAD(&area->list);
 155	area->size = size;
 156	list_add(&area->list, &kcov_remote_areas);
 157	/*
 158	 * KMSAN doesn't instrument this file, so it may not know area->list
 159	 * is initialized. Unpoison it explicitly to avoid reports in
 160	 * kcov_remote_area_get().
 161	 */
 162	kmsan_unpoison_memory(&area->list, sizeof(area->list));
 163}
 164
 165/*
 166 * Unlike in_serving_softirq(), this function returns false when called during
 167 * a hardirq or an NMI that happened in the softirq context.
 168 */
 169static __always_inline bool in_softirq_really(void)
 170{
 171	return in_serving_softirq() && !in_hardirq() && !in_nmi();
 172}
 173
 174static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
 175{
 176	unsigned int mode;
 177
 178	/*
 179	 * We are interested in code coverage as a function of a syscall inputs,
 180	 * so we ignore code executed in interrupts, unless we are in a remote
 181	 * coverage collection section in a softirq.
 182	 */
 183	if (!in_task() && !(in_softirq_really() && t->kcov_softirq))
 184		return false;
 185	mode = READ_ONCE(t->kcov_mode);
 186	/*
 187	 * There is some code that runs in interrupts but for which
 188	 * in_interrupt() returns false (e.g. preempt_schedule_irq()).
 189	 * READ_ONCE()/barrier() effectively provides load-acquire wrt
 190	 * interrupts, there are paired barrier()/WRITE_ONCE() in
 191	 * kcov_start().
 192	 */
 193	barrier();
 194	return mode == needed_mode;
 195}
 196
 197static notrace unsigned long canonicalize_ip(unsigned long ip)
 198{
 199#ifdef CONFIG_RANDOMIZE_BASE
 200	ip -= kaslr_offset();
 201#endif
 202	return ip;
 203}
 204
 205/*
 206 * Entry point from instrumented code.
 207 * This is called once per basic-block/edge.
 208 */
 209void notrace __sanitizer_cov_trace_pc(void)
 210{
 211	struct task_struct *t;
 212	unsigned long *area;
 213	unsigned long ip = canonicalize_ip(_RET_IP_);
 214	unsigned long pos;
 215
 216	t = current;
 217	if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
 218		return;
 219
 220	area = t->kcov_area;
 221	/* The first 64-bit word is the number of subsequent PCs. */
 222	pos = READ_ONCE(area[0]) + 1;
 223	if (likely(pos < t->kcov_size)) {
 224		/* Previously we write pc before updating pos. However, some
 225		 * early interrupt code could bypass check_kcov_mode() check
 226		 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is
 227		 * raised between writing pc and updating pos, the pc could be
 228		 * overitten by the recursive __sanitizer_cov_trace_pc().
 229		 * Update pos before writing pc to avoid such interleaving.
 230		 */
 231		WRITE_ONCE(area[0], pos);
 232		barrier();
 233		area[pos] = ip;
 234	}
 235}
 236EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
 237
 238#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
 239static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
 240{
 241	struct task_struct *t;
 242	u64 *area;
 243	u64 count, start_index, end_pos, max_pos;
 244
 245	t = current;
 246	if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
 247		return;
 248
 249	ip = canonicalize_ip(ip);
 250
 251	/*
 252	 * We write all comparison arguments and types as u64.
 253	 * The buffer was allocated for t->kcov_size unsigned longs.
 254	 */
 255	area = (u64 *)t->kcov_area;
 256	max_pos = t->kcov_size * sizeof(unsigned long);
 257
 258	count = READ_ONCE(area[0]);
 259
 260	/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
 261	start_index = 1 + count * KCOV_WORDS_PER_CMP;
 262	end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
 263	if (likely(end_pos <= max_pos)) {
 264		/* See comment in __sanitizer_cov_trace_pc(). */
 265		WRITE_ONCE(area[0], count + 1);
 266		barrier();
 267		area[start_index] = type;
 268		area[start_index + 1] = arg1;
 269		area[start_index + 2] = arg2;
 270		area[start_index + 3] = ip;
 271	}
 272}
 273
 274void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
 275{
 276	write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
 277}
 278EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
 279
 280void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
 281{
 282	write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
 283}
 284EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
 285
 286void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
 287{
 288	write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
 289}
 290EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
 291
 292void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2)
 293{
 294	write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
 295}
 296EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
 297
 298void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
 299{
 300	write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
 301			_RET_IP_);
 302}
 303EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
 304
 305void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
 306{
 307	write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
 308			_RET_IP_);
 309}
 310EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
 311
 312void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
 313{
 314	write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
 315			_RET_IP_);
 316}
 317EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
 318
 319void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2)
 320{
 321	write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
 322			_RET_IP_);
 323}
 324EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
 325
 326void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg)
 327{
 328	u64 i;
 329	u64 *cases = arg;
 330	u64 count = cases[0];
 331	u64 size = cases[1];
 332	u64 type = KCOV_CMP_CONST;
 333
 334	switch (size) {
 335	case 8:
 336		type |= KCOV_CMP_SIZE(0);
 337		break;
 338	case 16:
 339		type |= KCOV_CMP_SIZE(1);
 340		break;
 341	case 32:
 342		type |= KCOV_CMP_SIZE(2);
 343		break;
 344	case 64:
 345		type |= KCOV_CMP_SIZE(3);
 346		break;
 347	default:
 348		return;
 349	}
 350	for (i = 0; i < count; i++)
 351		write_comp_data(type, cases[i + 2], val, _RET_IP_);
 352}
 353EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
 354#endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
 355
 356static void kcov_start(struct task_struct *t, struct kcov *kcov,
 357			unsigned int size, void *area, enum kcov_mode mode,
 358			int sequence)
 359{
 360	kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
 361	t->kcov = kcov;
 362	/* Cache in task struct for performance. */
 363	t->kcov_size = size;
 364	t->kcov_area = area;
 365	t->kcov_sequence = sequence;
 366	/* See comment in check_kcov_mode(). */
 367	barrier();
 368	WRITE_ONCE(t->kcov_mode, mode);
 369}
 370
 371static void kcov_stop(struct task_struct *t)
 372{
 373	WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
 374	barrier();
 375	t->kcov = NULL;
 376	t->kcov_size = 0;
 377	t->kcov_area = NULL;
 378}
 379
 380static void kcov_task_reset(struct task_struct *t)
 381{
 382	kcov_stop(t);
 383	t->kcov_sequence = 0;
 384	t->kcov_handle = 0;
 385}
 386
 387void kcov_task_init(struct task_struct *t)
 388{
 389	kcov_task_reset(t);
 390	t->kcov_handle = current->kcov_handle;
 391}
 392
 393static void kcov_reset(struct kcov *kcov)
 394{
 395	kcov->t = NULL;
 396	kcov->mode = KCOV_MODE_INIT;
 397	kcov->remote = false;
 398	kcov->remote_size = 0;
 399	kcov->sequence++;
 400}
 401
 402static void kcov_remote_reset(struct kcov *kcov)
 403{
 404	int bkt;
 405	struct kcov_remote *remote;
 406	struct hlist_node *tmp;
 407	unsigned long flags;
 408
 409	spin_lock_irqsave(&kcov_remote_lock, flags);
 410	hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
 411		if (remote->kcov != kcov)
 412			continue;
 413		hash_del(&remote->hnode);
 414		kfree(remote);
 415	}
 416	/* Do reset before unlock to prevent races with kcov_remote_start(). */
 417	kcov_reset(kcov);
 418	spin_unlock_irqrestore(&kcov_remote_lock, flags);
 419}
 420
 421static void kcov_disable(struct task_struct *t, struct kcov *kcov)
 422{
 423	kcov_task_reset(t);
 424	if (kcov->remote)
 425		kcov_remote_reset(kcov);
 426	else
 427		kcov_reset(kcov);
 428}
 429
 430static void kcov_get(struct kcov *kcov)
 431{
 432	refcount_inc(&kcov->refcount);
 433}
 434
 435static void kcov_put(struct kcov *kcov)
 436{
 437	if (refcount_dec_and_test(&kcov->refcount)) {
 438		kcov_remote_reset(kcov);
 439		vfree(kcov->area);
 440		kfree(kcov);
 441	}
 442}
 443
 444void kcov_task_exit(struct task_struct *t)
 445{
 446	struct kcov *kcov;
 447	unsigned long flags;
 448
 449	kcov = t->kcov;
 450	if (kcov == NULL)
 451		return;
 452
 453	spin_lock_irqsave(&kcov->lock, flags);
 454	kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
 455	/*
 456	 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
 457	 * which comes down to:
 458	 *        WARN_ON(!kcov->remote && kcov->t != t);
 459	 *
 460	 * For KCOV_REMOTE_ENABLE devices, the exiting task is either:
 461	 *
 462	 * 1. A remote task between kcov_remote_start() and kcov_remote_stop().
 463	 *    In this case we should print a warning right away, since a task
 464	 *    shouldn't be exiting when it's in a kcov coverage collection
 465	 *    section. Here t points to the task that is collecting remote
 466	 *    coverage, and t->kcov->t points to the thread that created the
 467	 *    kcov device. Which means that to detect this case we need to
 468	 *    check that t != t->kcov->t, and this gives us the following:
 469	 *        WARN_ON(kcov->remote && kcov->t != t);
 470	 *
 471	 * 2. The task that created kcov exiting without calling KCOV_DISABLE,
 472	 *    and then again we make sure that t->kcov->t == t:
 473	 *        WARN_ON(kcov->remote && kcov->t != t);
 474	 *
 475	 * By combining all three checks into one we get:
 476	 */
 477	if (WARN_ON(kcov->t != t)) {
 478		spin_unlock_irqrestore(&kcov->lock, flags);
 479		return;
 480	}
 481	/* Just to not leave dangling references behind. */
 482	kcov_disable(t, kcov);
 483	spin_unlock_irqrestore(&kcov->lock, flags);
 484	kcov_put(kcov);
 485}
 486
 487static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
 488{
 489	int res = 0;
 490	struct kcov *kcov = vma->vm_file->private_data;
 491	unsigned long size, off;
 492	struct page *page;
 493	unsigned long flags;
 494
 495	spin_lock_irqsave(&kcov->lock, flags);
 496	size = kcov->size * sizeof(unsigned long);
 497	if (kcov->area == NULL || vma->vm_pgoff != 0 ||
 498	    vma->vm_end - vma->vm_start != size) {
 499		res = -EINVAL;
 500		goto exit;
 501	}
 502	spin_unlock_irqrestore(&kcov->lock, flags);
 503	vm_flags_set(vma, VM_DONTEXPAND);
 504	for (off = 0; off < size; off += PAGE_SIZE) {
 505		page = vmalloc_to_page(kcov->area + off);
 506		res = vm_insert_page(vma, vma->vm_start + off, page);
 507		if (res) {
 508			pr_warn_once("kcov: vm_insert_page() failed\n");
 509			return res;
 510		}
 511	}
 512	return 0;
 513exit:
 514	spin_unlock_irqrestore(&kcov->lock, flags);
 515	return res;
 516}
 517
 518static int kcov_open(struct inode *inode, struct file *filep)
 519{
 520	struct kcov *kcov;
 521
 522	kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
 523	if (!kcov)
 524		return -ENOMEM;
 525	kcov->mode = KCOV_MODE_DISABLED;
 526	kcov->sequence = 1;
 527	refcount_set(&kcov->refcount, 1);
 528	spin_lock_init(&kcov->lock);
 529	filep->private_data = kcov;
 530	return nonseekable_open(inode, filep);
 531}
 532
 533static int kcov_close(struct inode *inode, struct file *filep)
 534{
 535	kcov_put(filep->private_data);
 536	return 0;
 537}
 538
 539static int kcov_get_mode(unsigned long arg)
 540{
 541	if (arg == KCOV_TRACE_PC)
 542		return KCOV_MODE_TRACE_PC;
 543	else if (arg == KCOV_TRACE_CMP)
 544#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
 545		return KCOV_MODE_TRACE_CMP;
 546#else
 547		return -ENOTSUPP;
 548#endif
 549	else
 550		return -EINVAL;
 551}
 552
 553/*
 554 * Fault in a lazily-faulted vmalloc area before it can be used by
 555 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
 556 * vmalloc fault handling path is instrumented.
 557 */
 558static void kcov_fault_in_area(struct kcov *kcov)
 559{
 560	unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
 561	unsigned long *area = kcov->area;
 562	unsigned long offset;
 563
 564	for (offset = 0; offset < kcov->size; offset += stride)
 565		READ_ONCE(area[offset]);
 566}
 567
 568static inline bool kcov_check_handle(u64 handle, bool common_valid,
 569				bool uncommon_valid, bool zero_valid)
 570{
 571	if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
 572		return false;
 573	switch (handle & KCOV_SUBSYSTEM_MASK) {
 574	case KCOV_SUBSYSTEM_COMMON:
 575		return (handle & KCOV_INSTANCE_MASK) ?
 576			common_valid : zero_valid;
 577	case KCOV_SUBSYSTEM_USB:
 578		return uncommon_valid;
 579	default:
 580		return false;
 581	}
 582	return false;
 583}
 584
 585static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
 586			     unsigned long arg)
 587{
 588	struct task_struct *t;
 589	unsigned long flags, unused;
 590	int mode, i;
 591	struct kcov_remote_arg *remote_arg;
 592	struct kcov_remote *remote;
 593
 594	switch (cmd) {
 595	case KCOV_ENABLE:
 596		/*
 597		 * Enable coverage for the current task.
 598		 * At this point user must have been enabled trace mode,
 599		 * and mmapped the file. Coverage collection is disabled only
 600		 * at task exit or voluntary by KCOV_DISABLE. After that it can
 601		 * be enabled for another task.
 602		 */
 603		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
 604			return -EINVAL;
 605		t = current;
 606		if (kcov->t != NULL || t->kcov != NULL)
 607			return -EBUSY;
 608		mode = kcov_get_mode(arg);
 609		if (mode < 0)
 610			return mode;
 611		kcov_fault_in_area(kcov);
 612		kcov->mode = mode;
 613		kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
 614				kcov->sequence);
 615		kcov->t = t;
 616		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
 617		kcov_get(kcov);
 618		return 0;
 619	case KCOV_DISABLE:
 620		/* Disable coverage for the current task. */
 621		unused = arg;
 622		if (unused != 0 || current->kcov != kcov)
 623			return -EINVAL;
 624		t = current;
 625		if (WARN_ON(kcov->t != t))
 626			return -EINVAL;
 627		kcov_disable(t, kcov);
 628		kcov_put(kcov);
 629		return 0;
 630	case KCOV_REMOTE_ENABLE:
 631		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
 632			return -EINVAL;
 633		t = current;
 634		if (kcov->t != NULL || t->kcov != NULL)
 635			return -EBUSY;
 636		remote_arg = (struct kcov_remote_arg *)arg;
 637		mode = kcov_get_mode(remote_arg->trace_mode);
 638		if (mode < 0)
 639			return mode;
 640		if ((unsigned long)remote_arg->area_size >
 641		    LONG_MAX / sizeof(unsigned long))
 642			return -EINVAL;
 643		kcov->mode = mode;
 644		t->kcov = kcov;
 645	        t->kcov_mode = KCOV_MODE_REMOTE;
 646		kcov->t = t;
 647		kcov->remote = true;
 648		kcov->remote_size = remote_arg->area_size;
 649		spin_lock_irqsave(&kcov_remote_lock, flags);
 650		for (i = 0; i < remote_arg->num_handles; i++) {
 651			if (!kcov_check_handle(remote_arg->handles[i],
 652						false, true, false)) {
 653				spin_unlock_irqrestore(&kcov_remote_lock,
 654							flags);
 655				kcov_disable(t, kcov);
 656				return -EINVAL;
 657			}
 658			remote = kcov_remote_add(kcov, remote_arg->handles[i]);
 659			if (IS_ERR(remote)) {
 660				spin_unlock_irqrestore(&kcov_remote_lock,
 661							flags);
 662				kcov_disable(t, kcov);
 663				return PTR_ERR(remote);
 664			}
 665		}
 666		if (remote_arg->common_handle) {
 667			if (!kcov_check_handle(remote_arg->common_handle,
 668						true, false, false)) {
 669				spin_unlock_irqrestore(&kcov_remote_lock,
 670							flags);
 671				kcov_disable(t, kcov);
 672				return -EINVAL;
 673			}
 674			remote = kcov_remote_add(kcov,
 675					remote_arg->common_handle);
 676			if (IS_ERR(remote)) {
 677				spin_unlock_irqrestore(&kcov_remote_lock,
 678							flags);
 679				kcov_disable(t, kcov);
 680				return PTR_ERR(remote);
 681			}
 682			t->kcov_handle = remote_arg->common_handle;
 683		}
 684		spin_unlock_irqrestore(&kcov_remote_lock, flags);
 685		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
 686		kcov_get(kcov);
 687		return 0;
 688	default:
 689		return -ENOTTY;
 690	}
 691}
 692
 693static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
 694{
 695	struct kcov *kcov;
 696	int res;
 697	struct kcov_remote_arg *remote_arg = NULL;
 698	unsigned int remote_num_handles;
 699	unsigned long remote_arg_size;
 700	unsigned long size, flags;
 701	void *area;
 702
 703	kcov = filep->private_data;
 704	switch (cmd) {
 705	case KCOV_INIT_TRACE:
 706		/*
 707		 * Enable kcov in trace mode and setup buffer size.
 708		 * Must happen before anything else.
 709		 *
 710		 * First check the size argument - it must be at least 2
 711		 * to hold the current position and one PC.
 712		 */
 713		size = arg;
 714		if (size < 2 || size > INT_MAX / sizeof(unsigned long))
 715			return -EINVAL;
 716		area = vmalloc_user(size * sizeof(unsigned long));
 717		if (area == NULL)
 718			return -ENOMEM;
 719		spin_lock_irqsave(&kcov->lock, flags);
 720		if (kcov->mode != KCOV_MODE_DISABLED) {
 721			spin_unlock_irqrestore(&kcov->lock, flags);
 722			vfree(area);
 723			return -EBUSY;
 724		}
 725		kcov->area = area;
 726		kcov->size = size;
 727		kcov->mode = KCOV_MODE_INIT;
 728		spin_unlock_irqrestore(&kcov->lock, flags);
 729		return 0;
 730	case KCOV_REMOTE_ENABLE:
 731		if (get_user(remote_num_handles, (unsigned __user *)(arg +
 732				offsetof(struct kcov_remote_arg, num_handles))))
 733			return -EFAULT;
 734		if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
 735			return -EINVAL;
 736		remote_arg_size = struct_size(remote_arg, handles,
 737					remote_num_handles);
 738		remote_arg = memdup_user((void __user *)arg, remote_arg_size);
 739		if (IS_ERR(remote_arg))
 740			return PTR_ERR(remote_arg);
 741		if (remote_arg->num_handles != remote_num_handles) {
 742			kfree(remote_arg);
 743			return -EINVAL;
 744		}
 745		arg = (unsigned long)remote_arg;
 746		fallthrough;
 747	default:
 748		/*
 749		 * All other commands can be normally executed under a spin lock, so we
 750		 * obtain and release it here in order to simplify kcov_ioctl_locked().
 751		 */
 752		spin_lock_irqsave(&kcov->lock, flags);
 753		res = kcov_ioctl_locked(kcov, cmd, arg);
 754		spin_unlock_irqrestore(&kcov->lock, flags);
 755		kfree(remote_arg);
 756		return res;
 757	}
 758}
 759
 760static const struct file_operations kcov_fops = {
 761	.open		= kcov_open,
 762	.unlocked_ioctl	= kcov_ioctl,
 763	.compat_ioctl	= kcov_ioctl,
 764	.mmap		= kcov_mmap,
 765	.release        = kcov_close,
 766};
 767
 768/*
 769 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
 770 * of code in a kernel background thread or in a softirq to allow kcov to be
 771 * used to collect coverage from that part of code.
 772 *
 773 * The handle argument of kcov_remote_start() identifies a code section that is
 774 * used for coverage collection. A userspace process passes this handle to
 775 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
 776 * coverage for the code section identified by this handle.
 777 *
 778 * The usage of these annotations in the kernel code is different depending on
 779 * the type of the kernel thread whose code is being annotated.
 780 *
 781 * For global kernel threads that are spawned in a limited number of instances
 782 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
 783 * softirqs, each instance must be assigned a unique 4-byte instance id. The
 784 * instance id is then combined with a 1-byte subsystem id to get a handle via
 785 * kcov_remote_handle(subsystem_id, instance_id).
 786 *
 787 * For local kernel threads that are spawned from system calls handler when a
 788 * user interacts with some kernel interface (e.g. vhost workers), a handle is
 789 * passed from a userspace process as the common_handle field of the
 790 * kcov_remote_arg struct (note, that the user must generate a handle by using
 791 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
 792 * arbitrary 4-byte non-zero number as the instance id). This common handle
 793 * then gets saved into the task_struct of the process that issued the
 794 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
 795 * kernel threads, the common handle must be retrieved via kcov_common_handle()
 796 * and passed to the spawned threads via custom annotations. Those kernel
 797 * threads must in turn be annotated with kcov_remote_start(common_handle) and
 798 * kcov_remote_stop(). All of the threads that are spawned by the same process
 799 * obtain the same handle, hence the name "common".
 800 *
 801 * See Documentation/dev-tools/kcov.rst for more details.
 802 *
 803 * Internally, kcov_remote_start() looks up the kcov device associated with the
 804 * provided handle, allocates an area for coverage collection, and saves the
 805 * pointers to kcov and area into the current task_struct to allow coverage to
 806 * be collected via __sanitizer_cov_trace_pc().
 807 * In turns kcov_remote_stop() clears those pointers from task_struct to stop
 808 * collecting coverage and copies all collected coverage into the kcov area.
 809 */
 810
 811static inline bool kcov_mode_enabled(unsigned int mode)
 812{
 813	return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
 814}
 815
 816static void kcov_remote_softirq_start(struct task_struct *t)
 817{
 818	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
 819	unsigned int mode;
 820
 821	mode = READ_ONCE(t->kcov_mode);
 822	barrier();
 823	if (kcov_mode_enabled(mode)) {
 824		data->saved_mode = mode;
 825		data->saved_size = t->kcov_size;
 826		data->saved_area = t->kcov_area;
 827		data->saved_sequence = t->kcov_sequence;
 828		data->saved_kcov = t->kcov;
 829		kcov_stop(t);
 830	}
 831}
 832
 833static void kcov_remote_softirq_stop(struct task_struct *t)
 834{
 835	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
 836
 837	if (data->saved_kcov) {
 838		kcov_start(t, data->saved_kcov, data->saved_size,
 839				data->saved_area, data->saved_mode,
 840				data->saved_sequence);
 841		data->saved_mode = 0;
 842		data->saved_size = 0;
 843		data->saved_area = NULL;
 844		data->saved_sequence = 0;
 845		data->saved_kcov = NULL;
 846	}
 847}
 848
 849void kcov_remote_start(u64 handle)
 850{
 851	struct task_struct *t = current;
 852	struct kcov_remote *remote;
 853	struct kcov *kcov;
 854	unsigned int mode;
 855	void *area;
 856	unsigned int size;
 857	int sequence;
 858	unsigned long flags;
 859
 860	if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
 861		return;
 862	if (!in_task() && !in_softirq_really())
 863		return;
 864
 865	local_lock_irqsave(&kcov_percpu_data.lock, flags);
 866
 867	/*
 868	 * Check that kcov_remote_start() is not called twice in background
 869	 * threads nor called by user tasks (with enabled kcov).
 870	 */
 871	mode = READ_ONCE(t->kcov_mode);
 872	if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
 873		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 874		return;
 875	}
 876	/*
 877	 * Check that kcov_remote_start() is not called twice in softirqs.
 878	 * Note, that kcov_remote_start() can be called from a softirq that
 879	 * happened while collecting coverage from a background thread.
 880	 */
 881	if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
 882		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 883		return;
 884	}
 885
 886	spin_lock(&kcov_remote_lock);
 887	remote = kcov_remote_find(handle);
 888	if (!remote) {
 889		spin_unlock(&kcov_remote_lock);
 890		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 891		return;
 892	}
 893	kcov_debug("handle = %llx, context: %s\n", handle,
 894			in_task() ? "task" : "softirq");
 895	kcov = remote->kcov;
 896	/* Put in kcov_remote_stop(). */
 897	kcov_get(kcov);
 898	/*
 899	 * Read kcov fields before unlock to prevent races with
 900	 * KCOV_DISABLE / kcov_remote_reset().
 901	 */
 902	mode = kcov->mode;
 903	sequence = kcov->sequence;
 904	if (in_task()) {
 905		size = kcov->remote_size;
 906		area = kcov_remote_area_get(size);
 907	} else {
 908		size = CONFIG_KCOV_IRQ_AREA_SIZE;
 909		area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
 910	}
 911	spin_unlock(&kcov_remote_lock);
 912
 913	/* Can only happen when in_task(). */
 914	if (!area) {
 915		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 916		area = vmalloc(size * sizeof(unsigned long));
 917		if (!area) {
 918			kcov_put(kcov);
 919			return;
 920		}
 921		local_lock_irqsave(&kcov_percpu_data.lock, flags);
 922	}
 923
 924	/* Reset coverage size. */
 925	*(u64 *)area = 0;
 926
 927	if (in_serving_softirq()) {
 928		kcov_remote_softirq_start(t);
 929		t->kcov_softirq = 1;
 930	}
 931	kcov_start(t, kcov, size, area, mode, sequence);
 932
 933	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
 934
 935}
 936EXPORT_SYMBOL(kcov_remote_start);
 937
 938static void kcov_move_area(enum kcov_mode mode, void *dst_area,
 939				unsigned int dst_area_size, void *src_area)
 940{
 941	u64 word_size = sizeof(unsigned long);
 942	u64 count_size, entry_size_log;
 943	u64 dst_len, src_len;
 944	void *dst_entries, *src_entries;
 945	u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
 946
 947	kcov_debug("%px %u <= %px %lu\n",
 948		dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
 949
 950	switch (mode) {
 951	case KCOV_MODE_TRACE_PC:
 952		dst_len = READ_ONCE(*(unsigned long *)dst_area);
 953		src_len = *(unsigned long *)src_area;
 954		count_size = sizeof(unsigned long);
 955		entry_size_log = __ilog2_u64(sizeof(unsigned long));
 956		break;
 957	case KCOV_MODE_TRACE_CMP:
 958		dst_len = READ_ONCE(*(u64 *)dst_area);
 959		src_len = *(u64 *)src_area;
 960		count_size = sizeof(u64);
 961		BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
 962		entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
 963		break;
 964	default:
 965		WARN_ON(1);
 966		return;
 967	}
 968
 969	/* As arm can't divide u64 integers use log of entry size. */
 970	if (dst_len > ((dst_area_size * word_size - count_size) >>
 971				entry_size_log))
 972		return;
 973	dst_occupied = count_size + (dst_len << entry_size_log);
 974	dst_free = dst_area_size * word_size - dst_occupied;
 975	bytes_to_move = min(dst_free, src_len << entry_size_log);
 976	dst_entries = dst_area + dst_occupied;
 977	src_entries = src_area + count_size;
 978	memcpy(dst_entries, src_entries, bytes_to_move);
 979	entries_moved = bytes_to_move >> entry_size_log;
 980
 981	switch (mode) {
 982	case KCOV_MODE_TRACE_PC:
 983		WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
 984		break;
 985	case KCOV_MODE_TRACE_CMP:
 986		WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
 987		break;
 988	default:
 989		break;
 990	}
 991}
 992
 993/* See the comment before kcov_remote_start() for usage details. */
 994void kcov_remote_stop(void)
 995{
 996	struct task_struct *t = current;
 997	struct kcov *kcov;
 998	unsigned int mode;
 999	void *area;
1000	unsigned int size;
1001	int sequence;
1002	unsigned long flags;
1003
1004	if (!in_task() && !in_softirq_really())
1005		return;
1006
1007	local_lock_irqsave(&kcov_percpu_data.lock, flags);
1008
1009	mode = READ_ONCE(t->kcov_mode);
1010	barrier();
1011	if (!kcov_mode_enabled(mode)) {
1012		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1013		return;
1014	}
1015	/*
1016	 * When in softirq, check if the corresponding kcov_remote_start()
1017	 * actually found the remote handle and started collecting coverage.
1018	 */
1019	if (in_serving_softirq() && !t->kcov_softirq) {
1020		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1021		return;
1022	}
1023	/* Make sure that kcov_softirq is only set when in softirq. */
1024	if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
1025		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1026		return;
1027	}
1028
1029	kcov = t->kcov;
1030	area = t->kcov_area;
1031	size = t->kcov_size;
1032	sequence = t->kcov_sequence;
1033
1034	kcov_stop(t);
1035	if (in_serving_softirq()) {
1036		t->kcov_softirq = 0;
1037		kcov_remote_softirq_stop(t);
1038	}
1039
1040	spin_lock(&kcov->lock);
1041	/*
1042	 * KCOV_DISABLE could have been called between kcov_remote_start()
1043	 * and kcov_remote_stop(), hence the sequence check.
1044	 */
1045	if (sequence == kcov->sequence && kcov->remote)
1046		kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
1047	spin_unlock(&kcov->lock);
1048
1049	if (in_task()) {
1050		spin_lock(&kcov_remote_lock);
1051		kcov_remote_area_put(area, size);
1052		spin_unlock(&kcov_remote_lock);
1053	}
1054
1055	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1056
1057	/* Get in kcov_remote_start(). */
1058	kcov_put(kcov);
1059}
1060EXPORT_SYMBOL(kcov_remote_stop);
1061
1062/* See the comment before kcov_remote_start() for usage details. */
1063u64 kcov_common_handle(void)
1064{
1065	if (!in_task())
1066		return 0;
1067	return current->kcov_handle;
1068}
1069EXPORT_SYMBOL(kcov_common_handle);
1070
1071#ifdef CONFIG_KCOV_SELFTEST
1072static void __init selftest(void)
1073{
1074	unsigned long start;
1075
1076	pr_err("running self test\n");
1077	/*
1078	 * Test that interrupts don't produce spurious coverage.
1079	 * The coverage callback filters out interrupt code, but only
1080	 * after the handler updates preempt count. Some code periodically
1081	 * leaks out of that section and leads to spurious coverage.
1082	 * It's hard to call the actual interrupt handler directly,
1083	 * so we just loop here for a bit waiting for a timer interrupt.
1084	 * We set kcov_mode to enable tracing, but don't setup the area,
1085	 * so any attempt to trace will crash. Note: we must not call any
1086	 * potentially traced functions in this region.
1087	 */
1088	start = jiffies;
1089	current->kcov_mode = KCOV_MODE_TRACE_PC;
1090	while ((jiffies - start) * MSEC_PER_SEC / HZ < 300)
1091		;
1092	current->kcov_mode = 0;
1093	pr_err("done running self test\n");
1094}
1095#endif
1096
1097static int __init kcov_init(void)
1098{
1099	int cpu;
1100
1101	for_each_possible_cpu(cpu) {
1102		void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
1103				sizeof(unsigned long), cpu_to_node(cpu));
1104		if (!area)
1105			return -ENOMEM;
1106		per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
1107	}
1108
1109	/*
1110	 * The kcov debugfs file won't ever get removed and thus,
1111	 * there is no need to protect it against removal races. The
1112	 * use of debugfs_create_file_unsafe() is actually safe here.
1113	 */
1114	debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
1115
1116#ifdef CONFIG_KCOV_SELFTEST
1117	selftest();
1118#endif
1119
1120	return 0;
1121}
1122
1123device_initcall(kcov_init);