Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * crash.c - kernel crash support code.
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
 
 
  7#include <linux/buildid.h>
  8#include <linux/crash_core.h>
  9#include <linux/init.h>
 10#include <linux/utsname.h>
 11#include <linux/vmalloc.h>
 12#include <linux/sizes.h>
 
 
 
 
 
 
 
 
 
 
 13
 14#include <asm/page.h>
 15#include <asm/sections.h>
 16
 17#include <crypto/sha1.h>
 18
 19#include "kallsyms_internal.h"
 
 20
 21/* vmcoreinfo stuff */
 22unsigned char *vmcoreinfo_data;
 23size_t vmcoreinfo_size;
 24u32 *vmcoreinfo_note;
 25
 26/* trusted vmcoreinfo, e.g. we can make a copy in the crash memory */
 27static unsigned char *vmcoreinfo_data_safecopy;
 28
 29/*
 30 * parsing the "crashkernel" commandline
 31 *
 32 * this code is intended to be called from architecture specific code
 33 */
 34
 35
 36/*
 37 * This function parses command lines in the format
 38 *
 39 *   crashkernel=ramsize-range:size[,...][@offset]
 40 *
 41 * The function returns 0 on success and -EINVAL on failure.
 42 */
 43static int __init parse_crashkernel_mem(char *cmdline,
 44					unsigned long long system_ram,
 45					unsigned long long *crash_size,
 46					unsigned long long *crash_base)
 47{
 48	char *cur = cmdline, *tmp;
 49	unsigned long long total_mem = system_ram;
 50
 51	/*
 52	 * Firmware sometimes reserves some memory regions for its own use,
 53	 * so the system memory size is less than the actual physical memory
 54	 * size. Work around this by rounding up the total size to 128M,
 55	 * which is enough for most test cases.
 56	 */
 57	total_mem = roundup(total_mem, SZ_128M);
 58
 59	/* for each entry of the comma-separated list */
 60	do {
 61		unsigned long long start, end = ULLONG_MAX, size;
 62
 63		/* get the start of the range */
 64		start = memparse(cur, &tmp);
 65		if (cur == tmp) {
 66			pr_warn("crashkernel: Memory value expected\n");
 67			return -EINVAL;
 68		}
 69		cur = tmp;
 70		if (*cur != '-') {
 71			pr_warn("crashkernel: '-' expected\n");
 72			return -EINVAL;
 73		}
 74		cur++;
 75
 76		/* if no ':' is here, than we read the end */
 77		if (*cur != ':') {
 78			end = memparse(cur, &tmp);
 79			if (cur == tmp) {
 80				pr_warn("crashkernel: Memory value expected\n");
 81				return -EINVAL;
 82			}
 83			cur = tmp;
 84			if (end <= start) {
 85				pr_warn("crashkernel: end <= start\n");
 86				return -EINVAL;
 87			}
 88		}
 89
 90		if (*cur != ':') {
 91			pr_warn("crashkernel: ':' expected\n");
 92			return -EINVAL;
 93		}
 94		cur++;
 95
 96		size = memparse(cur, &tmp);
 97		if (cur == tmp) {
 98			pr_warn("Memory value expected\n");
 99			return -EINVAL;
100		}
101		cur = tmp;
102		if (size >= total_mem) {
103			pr_warn("crashkernel: invalid size\n");
104			return -EINVAL;
105		}
106
107		/* match ? */
108		if (total_mem >= start && total_mem < end) {
109			*crash_size = size;
110			break;
111		}
112	} while (*cur++ == ',');
 
 
 
 
 
 
 
 
 
 
 
 
 
113
114	if (*crash_size > 0) {
115		while (*cur && *cur != ' ' && *cur != '@')
116			cur++;
117		if (*cur == '@') {
118			cur++;
119			*crash_base = memparse(cur, &tmp);
120			if (cur == tmp) {
121				pr_warn("Memory value expected after '@'\n");
122				return -EINVAL;
123			}
124		}
125	} else
126		pr_info("crashkernel size resulted in zero bytes\n");
127
128	return 0;
129}
130
131/*
132 * That function parses "simple" (old) crashkernel command lines like
133 *
134 *	crashkernel=size[@offset]
135 *
136 * It returns 0 on success and -EINVAL on failure.
137 */
138static int __init parse_crashkernel_simple(char *cmdline,
139					   unsigned long long *crash_size,
140					   unsigned long long *crash_base)
141{
142	char *cur = cmdline;
143
144	*crash_size = memparse(cmdline, &cur);
145	if (cmdline == cur) {
146		pr_warn("crashkernel: memory value expected\n");
147		return -EINVAL;
148	}
149
150	if (*cur == '@')
151		*crash_base = memparse(cur+1, &cur);
152	else if (*cur != ' ' && *cur != '\0') {
153		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
154		return -EINVAL;
155	}
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157	return 0;
158}
159
160#define SUFFIX_HIGH 0
161#define SUFFIX_LOW  1
162#define SUFFIX_NULL 2
163static __initdata char *suffix_tbl[] = {
164	[SUFFIX_HIGH] = ",high",
165	[SUFFIX_LOW]  = ",low",
166	[SUFFIX_NULL] = NULL,
167};
168
169/*
170 * That function parses "suffix"  crashkernel command lines like
171 *
172 *	crashkernel=size,[high|low]
173 *
174 * It returns 0 on success and -EINVAL on failure.
175 */
176static int __init parse_crashkernel_suffix(char *cmdline,
177					   unsigned long long	*crash_size,
178					   const char *suffix)
179{
180	char *cur = cmdline;
181
182	*crash_size = memparse(cmdline, &cur);
183	if (cmdline == cur) {
184		pr_warn("crashkernel: memory value expected\n");
185		return -EINVAL;
186	}
187
188	/* check with suffix */
189	if (strncmp(cur, suffix, strlen(suffix))) {
190		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
191		return -EINVAL;
192	}
193	cur += strlen(suffix);
194	if (*cur != ' ' && *cur != '\0') {
195		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
196		return -EINVAL;
197	}
198
199	return 0;
200}
 
201
202static __init char *get_last_crashkernel(char *cmdline,
203			     const char *name,
204			     const char *suffix)
205{
206	char *p = cmdline, *ck_cmdline = NULL;
207
208	/* find crashkernel and use the last one if there are more */
209	p = strstr(p, name);
210	while (p) {
211		char *end_p = strchr(p, ' ');
212		char *q;
213
214		if (!end_p)
215			end_p = p + strlen(p);
216
217		if (!suffix) {
218			int i;
219
220			/* skip the one with any known suffix */
221			for (i = 0; suffix_tbl[i]; i++) {
222				q = end_p - strlen(suffix_tbl[i]);
223				if (!strncmp(q, suffix_tbl[i],
224					     strlen(suffix_tbl[i])))
225					goto next;
226			}
227			ck_cmdline = p;
228		} else {
229			q = end_p - strlen(suffix);
230			if (!strncmp(q, suffix, strlen(suffix)))
231				ck_cmdline = p;
232		}
233next:
234		p = strstr(p+1, name);
235	}
236
237	return ck_cmdline;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238}
239
240static int __init __parse_crashkernel(char *cmdline,
241			     unsigned long long system_ram,
242			     unsigned long long *crash_size,
243			     unsigned long long *crash_base,
244			     const char *name,
245			     const char *suffix)
246{
247	char	*first_colon, *first_space;
248	char	*ck_cmdline;
 
 
249
250	BUG_ON(!crash_size || !crash_base);
251	*crash_size = 0;
252	*crash_base = 0;
253
254	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
255	if (!ck_cmdline)
256		return -ENOENT;
 
 
 
 
 
 
 
257
258	ck_cmdline += strlen(name);
 
 
259
260	if (suffix)
261		return parse_crashkernel_suffix(ck_cmdline, crash_size,
262				suffix);
263	/*
264	 * if the commandline contains a ':', then that's the extended
265	 * syntax -- if not, it must be the classic syntax
 
 
 
266	 */
267	first_colon = strchr(ck_cmdline, ':');
268	first_space = strchr(ck_cmdline, ' ');
269	if (first_colon && (!first_space || first_colon < first_space))
270		return parse_crashkernel_mem(ck_cmdline, system_ram,
271				crash_size, crash_base);
272
273	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
274}
 
275
276/*
277 * That function is the entry point for command line parsing and should be
278 * called from the arch-specific code.
279 */
280int __init parse_crashkernel(char *cmdline,
281			     unsigned long long system_ram,
282			     unsigned long long *crash_size,
283			     unsigned long long *crash_base)
284{
285	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
286					"crashkernel=", NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287}
288
289int __init parse_crashkernel_high(char *cmdline,
290			     unsigned long long system_ram,
291			     unsigned long long *crash_size,
292			     unsigned long long *crash_base)
293{
294	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
295				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298int __init parse_crashkernel_low(char *cmdline,
299			     unsigned long long system_ram,
300			     unsigned long long *crash_size,
301			     unsigned long long *crash_base)
302{
303	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
304				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
 
 
 
 
 
 
 
 
305}
306
307/*
308 * Add a dummy early_param handler to mark crashkernel= as a known command line
309 * parameter and suppress incorrect warnings in init/main.c.
310 */
311static int __init parse_crashkernel_dummy(char *arg)
312{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313	return 0;
314}
315early_param("crashkernel", parse_crashkernel_dummy);
316
317Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type,
318			  void *data, size_t data_len)
319{
320	struct elf_note *note = (struct elf_note *)buf;
 
321
322	note->n_namesz = strlen(name) + 1;
323	note->n_descsz = data_len;
324	note->n_type   = type;
325	buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word));
326	memcpy(buf, name, note->n_namesz);
327	buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word));
328	memcpy(buf, data, data_len);
329	buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
330
331	return buf;
332}
 
 
333
334void final_note(Elf_Word *buf)
335{
336	memset(buf, 0, sizeof(struct elf_note));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337}
338
339static void update_vmcoreinfo_note(void)
340{
341	u32 *buf = vmcoreinfo_note;
 
 
 
 
342
343	if (!vmcoreinfo_size)
 
 
 
 
 
 
 
 
344		return;
345	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
346			      vmcoreinfo_size);
 
 
 
347	final_note(buf);
348}
349
350void crash_update_vmcoreinfo_safecopy(void *ptr)
351{
352	if (ptr)
353		memcpy(ptr, vmcoreinfo_data, vmcoreinfo_size);
354
355	vmcoreinfo_data_safecopy = ptr;
356}
357
358void crash_save_vmcoreinfo(void)
359{
360	if (!vmcoreinfo_note)
361		return;
362
363	/* Use the safe copy to generate vmcoreinfo note if have */
364	if (vmcoreinfo_data_safecopy)
365		vmcoreinfo_data = vmcoreinfo_data_safecopy;
 
 
 
 
 
 
 
 
 
366
367	vmcoreinfo_append_str("CRASHTIME=%lld\n", ktime_get_real_seconds());
368	update_vmcoreinfo_note();
 
 
 
 
 
 
 
 
 
 
369}
 
370
371void vmcoreinfo_append_str(const char *fmt, ...)
372{
373	va_list args;
374	char buf[0x50];
375	size_t r;
376
377	va_start(args, fmt);
378	r = vscnprintf(buf, sizeof(buf), fmt, args);
379	va_end(args);
380
381	r = min(r, (size_t)VMCOREINFO_BYTES - vmcoreinfo_size);
 
 
 
 
 
 
 
 
 
382
383	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
 
 
 
 
 
 
 
384
385	vmcoreinfo_size += r;
 
 
 
 
 
 
 
 
 
 
 
 
 
386
387	WARN_ONCE(vmcoreinfo_size == VMCOREINFO_BYTES,
388		  "vmcoreinfo data exceeds allocated size, truncating");
389}
390
391/*
392 * provide an empty default implementation here -- architecture
393 * code may override this
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394 */
395void __weak arch_crash_save_vmcoreinfo(void)
396{}
397
398phys_addr_t __weak paddr_vmcoreinfo_note(void)
399{
400	return __pa(vmcoreinfo_note);
401}
402EXPORT_SYMBOL(paddr_vmcoreinfo_note);
403
404static int __init crash_save_vmcoreinfo_init(void)
405{
406	vmcoreinfo_data = (unsigned char *)get_zeroed_page(GFP_KERNEL);
407	if (!vmcoreinfo_data) {
408		pr_warn("Memory allocation for vmcoreinfo_data failed\n");
409		return -ENOMEM;
 
410	}
411
412	vmcoreinfo_note = alloc_pages_exact(VMCOREINFO_NOTE_SIZE,
413						GFP_KERNEL | __GFP_ZERO);
414	if (!vmcoreinfo_note) {
415		free_page((unsigned long)vmcoreinfo_data);
416		vmcoreinfo_data = NULL;
417		pr_warn("Memory allocation for vmcoreinfo_note failed\n");
418		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419	}
420
421	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
422	VMCOREINFO_BUILD_ID();
423	VMCOREINFO_PAGESIZE(PAGE_SIZE);
424
425	VMCOREINFO_SYMBOL(init_uts_ns);
426	VMCOREINFO_OFFSET(uts_namespace, name);
427	VMCOREINFO_SYMBOL(node_online_map);
428#ifdef CONFIG_MMU
429	VMCOREINFO_SYMBOL_ARRAY(swapper_pg_dir);
430#endif
431	VMCOREINFO_SYMBOL(_stext);
432	VMCOREINFO_SYMBOL(vmap_area_list);
433
434#ifndef CONFIG_NUMA
435	VMCOREINFO_SYMBOL(mem_map);
436	VMCOREINFO_SYMBOL(contig_page_data);
437#endif
438#ifdef CONFIG_SPARSEMEM
439	VMCOREINFO_SYMBOL_ARRAY(mem_section);
440	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
441	VMCOREINFO_STRUCT_SIZE(mem_section);
442	VMCOREINFO_OFFSET(mem_section, section_mem_map);
443	VMCOREINFO_NUMBER(SECTION_SIZE_BITS);
444	VMCOREINFO_NUMBER(MAX_PHYSMEM_BITS);
445#endif
446	VMCOREINFO_STRUCT_SIZE(page);
447	VMCOREINFO_STRUCT_SIZE(pglist_data);
448	VMCOREINFO_STRUCT_SIZE(zone);
449	VMCOREINFO_STRUCT_SIZE(free_area);
450	VMCOREINFO_STRUCT_SIZE(list_head);
451	VMCOREINFO_SIZE(nodemask_t);
452	VMCOREINFO_OFFSET(page, flags);
453	VMCOREINFO_OFFSET(page, _refcount);
454	VMCOREINFO_OFFSET(page, mapping);
455	VMCOREINFO_OFFSET(page, lru);
456	VMCOREINFO_OFFSET(page, _mapcount);
457	VMCOREINFO_OFFSET(page, private);
458	VMCOREINFO_OFFSET(page, compound_dtor);
459	VMCOREINFO_OFFSET(page, compound_order);
460	VMCOREINFO_OFFSET(page, compound_head);
461	VMCOREINFO_OFFSET(pglist_data, node_zones);
462	VMCOREINFO_OFFSET(pglist_data, nr_zones);
463#ifdef CONFIG_FLATMEM
464	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
465#endif
466	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
467	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
468	VMCOREINFO_OFFSET(pglist_data, node_id);
469	VMCOREINFO_OFFSET(zone, free_area);
470	VMCOREINFO_OFFSET(zone, vm_stat);
471	VMCOREINFO_OFFSET(zone, spanned_pages);
472	VMCOREINFO_OFFSET(free_area, free_list);
473	VMCOREINFO_OFFSET(list_head, next);
474	VMCOREINFO_OFFSET(list_head, prev);
475	VMCOREINFO_OFFSET(vmap_area, va_start);
476	VMCOREINFO_OFFSET(vmap_area, list);
477	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
478	log_buf_vmcoreinfo_setup();
479	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
480	VMCOREINFO_NUMBER(NR_FREE_PAGES);
481	VMCOREINFO_NUMBER(PG_lru);
482	VMCOREINFO_NUMBER(PG_private);
483	VMCOREINFO_NUMBER(PG_swapcache);
484	VMCOREINFO_NUMBER(PG_swapbacked);
485	VMCOREINFO_NUMBER(PG_slab);
486#ifdef CONFIG_MEMORY_FAILURE
487	VMCOREINFO_NUMBER(PG_hwpoison);
488#endif
489	VMCOREINFO_NUMBER(PG_head_mask);
490#define PAGE_BUDDY_MAPCOUNT_VALUE	(~PG_buddy)
491	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
492#ifdef CONFIG_HUGETLB_PAGE
493	VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
494#define PAGE_OFFLINE_MAPCOUNT_VALUE	(~PG_offline)
495	VMCOREINFO_NUMBER(PAGE_OFFLINE_MAPCOUNT_VALUE);
496#endif
497
498#ifdef CONFIG_KALLSYMS
499	VMCOREINFO_SYMBOL(kallsyms_names);
500	VMCOREINFO_SYMBOL(kallsyms_num_syms);
501	VMCOREINFO_SYMBOL(kallsyms_token_table);
502	VMCOREINFO_SYMBOL(kallsyms_token_index);
503#ifdef CONFIG_KALLSYMS_BASE_RELATIVE
504	VMCOREINFO_SYMBOL(kallsyms_offsets);
505	VMCOREINFO_SYMBOL(kallsyms_relative_base);
506#else
507	VMCOREINFO_SYMBOL(kallsyms_addresses);
508#endif /* CONFIG_KALLSYMS_BASE_RELATIVE */
509#endif /* CONFIG_KALLSYMS */
510
511	arch_crash_save_vmcoreinfo();
512	update_vmcoreinfo_note();
513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514	return 0;
515}
516
517subsys_initcall(crash_save_vmcoreinfo_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * crash.c - kernel crash support code.
  4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8
  9#include <linux/buildid.h>
 
 10#include <linux/init.h>
 11#include <linux/utsname.h>
 12#include <linux/vmalloc.h>
 13#include <linux/sizes.h>
 14#include <linux/kexec.h>
 15#include <linux/memory.h>
 16#include <linux/mm.h>
 17#include <linux/cpuhotplug.h>
 18#include <linux/memblock.h>
 19#include <linux/kmemleak.h>
 20#include <linux/crash_core.h>
 21#include <linux/reboot.h>
 22#include <linux/btf.h>
 23#include <linux/objtool.h>
 24
 25#include <asm/page.h>
 26#include <asm/sections.h>
 27
 28#include <crypto/sha1.h>
 29
 30#include "kallsyms_internal.h"
 31#include "kexec_internal.h"
 32
 33/* Per cpu memory for storing cpu states in case of system crash. */
 34note_buf_t __percpu *crash_notes;
 
 
 35
 36#ifdef CONFIG_CRASH_DUMP
 
 37
 38int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39{
 40	struct page *vmcoreinfo_page;
 41	void *safecopy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42
 43	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 44		return 0;
 45	if (image->type != KEXEC_TYPE_CRASH)
 46		return 0;
 
 
 
 
 
 
 47
 48	/*
 49	 * For kdump, allocate one vmcoreinfo safe copy from the
 50	 * crash memory. as we have arch_kexec_protect_crashkres()
 51	 * after kexec syscall, we naturally protect it from write
 52	 * (even read) access under kernel direct mapping. But on
 53	 * the other hand, we still need to operate it when crash
 54	 * happens to generate vmcoreinfo note, hereby we rely on
 55	 * vmap for this purpose.
 56	 */
 57	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 58	if (!vmcoreinfo_page) {
 59		pr_warn("Could not allocate vmcoreinfo buffer\n");
 60		return -ENOMEM;
 61	}
 62	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 63	if (!safecopy) {
 64		pr_warn("Could not vmap vmcoreinfo buffer\n");
 65		return -ENOMEM;
 66	}
 67
 68	image->vmcoreinfo_data_copy = safecopy;
 69	crash_update_vmcoreinfo_safecopy(safecopy);
 
 
 
 
 
 
 
 
 
 
 
 70
 71	return 0;
 72}
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75
 76int kexec_should_crash(struct task_struct *p)
 77{
 78	/*
 79	 * If crash_kexec_post_notifiers is enabled, don't run
 80	 * crash_kexec() here yet, which must be run after panic
 81	 * notifiers in panic().
 82	 */
 83	if (crash_kexec_post_notifiers)
 84		return 0;
 85	/*
 86	 * There are 4 panic() calls in make_task_dead() path, each of which
 87	 * corresponds to each of these 4 conditions.
 88	 */
 89	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 90		return 1;
 91	return 0;
 92}
 93
 94int kexec_crash_loaded(void)
 95{
 96	return !!kexec_crash_image;
 97}
 98EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 
 
 
 99
100/*
101 * No panic_cpu check version of crash_kexec().  This function is called
102 * only when panic_cpu holds the current CPU number; this is the only CPU
103 * which processes crash_kexec routines.
 
 
104 */
105void __noclone __crash_kexec(struct pt_regs *regs)
106{
107	/* Take the kexec_lock here to prevent sys_kexec_load
108	 * running on one cpu from replacing the crash kernel
109	 * we are using after a panic on a different cpu.
110	 *
111	 * If the crash kernel was not located in a fixed area
112	 * of memory the xchg(&kexec_crash_image) would be
113	 * sufficient.  But since I reuse the memory...
114	 */
115	if (kexec_trylock()) {
116		if (kexec_crash_image) {
117			struct pt_regs fixed_regs;
118
119			crash_setup_regs(&fixed_regs, regs);
120			crash_save_vmcoreinfo();
121			machine_crash_shutdown(&fixed_regs);
122			machine_kexec(kexec_crash_image);
123		}
124		kexec_unlock();
 
125	}
 
 
126}
127STACK_FRAME_NON_STANDARD(__crash_kexec);
128
129__bpf_kfunc void crash_kexec(struct pt_regs *regs)
130{
131	int old_cpu, this_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
133	/*
134	 * Only one CPU is allowed to execute the crash_kexec() code as with
135	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
136	 * may stop each other.  To exclude them, we use panic_cpu here too.
137	 */
138	old_cpu = PANIC_CPU_INVALID;
139	this_cpu = raw_smp_processor_id();
140
141	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
142		/* This is the 1st CPU which comes here, so go ahead. */
143		__crash_kexec(regs);
144
145		/*
146		 * Reset panic_cpu to allow another panic()/crash_kexec()
147		 * call.
148		 */
149		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
150	}
151}
152
153static inline resource_size_t crash_resource_size(const struct resource *res)
 
 
 
 
 
154{
155	return !res->end ? 0 : resource_size(res);
156}
157
158
159
 
 
 
160
161int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
162			  void **addr, unsigned long *sz)
163{
164	Elf64_Ehdr *ehdr;
165	Elf64_Phdr *phdr;
166	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
167	unsigned char *buf;
168	unsigned int cpu, i;
169	unsigned long long notes_addr;
170	unsigned long mstart, mend;
171
172	/* extra phdr for vmcoreinfo ELF note */
173	nr_phdr = nr_cpus + 1;
174	nr_phdr += mem->nr_ranges;
175
 
 
 
176	/*
177	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179	 * I think this is required by tools like gdb. So same physical
180	 * memory will be mapped in two ELF headers. One will contain kernel
181	 * text virtual addresses and other will have __va(physical) addresses.
182	 */
 
 
 
 
 
183
184	nr_phdr++;
185	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
186	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
187
188	buf = vzalloc(elf_sz);
189	if (!buf)
190		return -ENOMEM;
191
192	ehdr = (Elf64_Ehdr *)buf;
193	phdr = (Elf64_Phdr *)(ehdr + 1);
194	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
195	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
196	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
197	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
198	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
199	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
200	ehdr->e_type = ET_CORE;
201	ehdr->e_machine = ELF_ARCH;
202	ehdr->e_version = EV_CURRENT;
203	ehdr->e_phoff = sizeof(Elf64_Ehdr);
204	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
205	ehdr->e_phentsize = sizeof(Elf64_Phdr);
206
207	/* Prepare one phdr of type PT_NOTE for each possible CPU */
208	for_each_possible_cpu(cpu) {
209		phdr->p_type = PT_NOTE;
210		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
211		phdr->p_offset = phdr->p_paddr = notes_addr;
212		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
213		(ehdr->e_phnum)++;
214		phdr++;
215	}
216
217	/* Prepare one PT_NOTE header for vmcoreinfo */
218	phdr->p_type = PT_NOTE;
219	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
220	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
221	(ehdr->e_phnum)++;
222	phdr++;
223
224	/* Prepare PT_LOAD type program header for kernel text region */
225	if (need_kernel_map) {
226		phdr->p_type = PT_LOAD;
227		phdr->p_flags = PF_R|PF_W|PF_X;
228		phdr->p_vaddr = (unsigned long) _text;
229		phdr->p_filesz = phdr->p_memsz = _end - _text;
230		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
231		ehdr->e_phnum++;
232		phdr++;
233	}
234
235	/* Go through all the ranges in mem->ranges[] and prepare phdr */
236	for (i = 0; i < mem->nr_ranges; i++) {
237		mstart = mem->ranges[i].start;
238		mend = mem->ranges[i].end;
239
240		phdr->p_type = PT_LOAD;
241		phdr->p_flags = PF_R|PF_W|PF_X;
242		phdr->p_offset  = mstart;
243
244		phdr->p_paddr = mstart;
245		phdr->p_vaddr = (unsigned long) __va(mstart);
246		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
247		phdr->p_align = 0;
248		ehdr->e_phnum++;
249#ifdef CONFIG_KEXEC_FILE
250		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
252			      ehdr->e_phnum, phdr->p_offset);
253#endif
254		phdr++;
255	}
256
257	*addr = buf;
258	*sz = elf_sz;
259	return 0;
260}
261
262int crash_exclude_mem_range(struct crash_mem *mem,
263			    unsigned long long mstart, unsigned long long mend)
 
 
264{
265	int i;
266	unsigned long long start, end, p_start, p_end;
267
268	for (i = 0; i < mem->nr_ranges; i++) {
269		start = mem->ranges[i].start;
270		end = mem->ranges[i].end;
271		p_start = mstart;
272		p_end = mend;
273
274		if (p_start > end)
275			continue;
276
277		/*
278		 * Because the memory ranges in mem->ranges are stored in
279		 * ascending order, when we detect `p_end < start`, we can
280		 * immediately exit the for loop, as the subsequent memory
281		 * ranges will definitely be outside the range we are looking
282		 * for.
283		 */
284		if (p_end < start)
285			break;
286
287		/* Truncate any area outside of range */
288		if (p_start < start)
289			p_start = start;
290		if (p_end > end)
291			p_end = end;
292
293		/* Found completely overlapping range */
294		if (p_start == start && p_end == end) {
295			memmove(&mem->ranges[i], &mem->ranges[i + 1],
296				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
297			i--;
298			mem->nr_ranges--;
299		} else if (p_start > start && p_end < end) {
300			/* Split original range */
301			if (mem->nr_ranges >= mem->max_nr_ranges)
302				return -ENOMEM;
303
304			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
305				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
306
307			mem->ranges[i].end = p_start - 1;
308			mem->ranges[i + 1].start = p_end + 1;
309			mem->ranges[i + 1].end = end;
310
311			i++;
312			mem->nr_ranges++;
313		} else if (p_start != start)
314			mem->ranges[i].end = p_start - 1;
315		else
316			mem->ranges[i].start = p_end + 1;
317	}
318
319	return 0;
320}
321
322ssize_t crash_get_memory_size(void)
 
 
 
323{
324	ssize_t size = 0;
325
326	if (!kexec_trylock())
327		return -EBUSY;
328
329	size += crash_resource_size(&crashk_res);
330	size += crash_resource_size(&crashk_low_res);
331
332	kexec_unlock();
333	return size;
334}
335
336static int __crash_shrink_memory(struct resource *old_res,
337				 unsigned long new_size)
 
 
 
338{
339	struct resource *ram_res;
340
341	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
342	if (!ram_res)
343		return -ENOMEM;
344
345	ram_res->start = old_res->start + new_size;
346	ram_res->end   = old_res->end;
347	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
348	ram_res->name  = "System RAM";
349
350	if (!new_size) {
351		release_resource(old_res);
352		old_res->start = 0;
353		old_res->end   = 0;
354	} else {
355		crashk_res.end = ram_res->start - 1;
356	}
357
358	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
359	insert_resource(&iomem_resource, ram_res);
360
361	return 0;
362}
 
363
364int crash_shrink_memory(unsigned long new_size)
 
365{
366	int ret = 0;
367	unsigned long old_size, low_size;
368
369	if (!kexec_trylock())
370		return -EBUSY;
 
 
 
 
 
 
371
372	if (kexec_crash_image) {
373		ret = -ENOENT;
374		goto unlock;
375	}
376
377	low_size = crash_resource_size(&crashk_low_res);
378	old_size = crash_resource_size(&crashk_res) + low_size;
379	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
380	if (new_size >= old_size) {
381		ret = (new_size == old_size) ? 0 : -EINVAL;
382		goto unlock;
383	}
384
385	/*
386	 * (low_size > new_size) implies that low_size is greater than zero.
387	 * This also means that if low_size is zero, the else branch is taken.
388	 *
389	 * If low_size is greater than 0, (low_size > new_size) indicates that
390	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391	 * needs to be shrunken.
392	 */
393	if (low_size > new_size) {
394		ret = __crash_shrink_memory(&crashk_res, 0);
395		if (ret)
396			goto unlock;
397
398		ret = __crash_shrink_memory(&crashk_low_res, new_size);
399	} else {
400		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
401	}
402
403	/* Swap crashk_res and crashk_low_res if needed */
404	if (!crashk_res.end && crashk_low_res.end) {
405		crashk_res.start = crashk_low_res.start;
406		crashk_res.end   = crashk_low_res.end;
407		release_resource(&crashk_low_res);
408		crashk_low_res.start = 0;
409		crashk_low_res.end   = 0;
410		insert_resource(&iomem_resource, &crashk_res);
411	}
412
413unlock:
414	kexec_unlock();
415	return ret;
416}
417
418void crash_save_cpu(struct pt_regs *regs, int cpu)
419{
420	struct elf_prstatus prstatus;
421	u32 *buf;
422
423	if ((cpu < 0) || (cpu >= nr_cpu_ids))
424		return;
425
426	/* Using ELF notes here is opportunistic.
427	 * I need a well defined structure format
428	 * for the data I pass, and I need tags
429	 * on the data to indicate what information I have
430	 * squirrelled away.  ELF notes happen to provide
431	 * all of that, so there is no need to invent something new.
432	 */
433	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
434	if (!buf)
435		return;
436	memset(&prstatus, 0, sizeof(prstatus));
437	prstatus.common.pr_pid = current->pid;
438	elf_core_copy_regs(&prstatus.pr_reg, regs);
439	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
440			      &prstatus, sizeof(prstatus));
441	final_note(buf);
442}
443
 
 
 
 
444
 
 
445
446static int __init crash_notes_memory_init(void)
447{
448	/* Allocate memory for saving cpu registers. */
449	size_t size, align;
450
451	/*
452	 * crash_notes could be allocated across 2 vmalloc pages when percpu
453	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454	 * pages are also on 2 continuous physical pages. In this case the
455	 * 2nd part of crash_notes in 2nd page could be lost since only the
456	 * starting address and size of crash_notes are exported through sysfs.
457	 * Here round up the size of crash_notes to the nearest power of two
458	 * and pass it to __alloc_percpu as align value. This can make sure
459	 * crash_notes is allocated inside one physical page.
460	 */
461	size = sizeof(note_buf_t);
462	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
463
464	/*
465	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
466	 * definitely will be in 2 pages with that.
467	 */
468	BUILD_BUG_ON(size > PAGE_SIZE);
469
470	crash_notes = __alloc_percpu(size, align);
471	if (!crash_notes) {
472		pr_warn("Memory allocation for saving cpu register states failed\n");
473		return -ENOMEM;
474	}
475	return 0;
476}
477subsys_initcall(crash_notes_memory_init);
478
479#endif /*CONFIG_CRASH_DUMP*/
 
 
 
 
480
481#ifdef CONFIG_CRASH_HOTPLUG
482#undef pr_fmt
483#define pr_fmt(fmt) "crash hp: " fmt
484
485/*
486 * Different than kexec/kdump loading/unloading/jumping/shrinking which
487 * usually rarely happen, there will be many crash hotplug events notified
488 * during one short period, e.g one memory board is hot added and memory
489 * regions are online. So mutex lock  __crash_hotplug_lock is used to
490 * serialize the crash hotplug handling specifically.
491 */
492static DEFINE_MUTEX(__crash_hotplug_lock);
493#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
495
496/*
497 * This routine utilized when the crash_hotplug sysfs node is read.
498 * It reflects the kernel's ability/permission to update the kdump
499 * image directly.
500 */
501int crash_check_hotplug_support(void)
502{
503	int rc = 0;
504
505	crash_hotplug_lock();
506	/* Obtain lock while reading crash information */
507	if (!kexec_trylock()) {
508		if (!kexec_in_progress)
509			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
510		crash_hotplug_unlock();
511		return 0;
512	}
513	if (kexec_crash_image) {
514		rc = kexec_crash_image->hotplug_support;
515	}
516	/* Release lock now that update complete */
517	kexec_unlock();
518	crash_hotplug_unlock();
519
520	return rc;
 
521}
522
523/*
524 * To accurately reflect hot un/plug changes of CPU and Memory resources
525 * (including onling and offlining of those resources), the relevant
526 * kexec segments must be updated with latest CPU and Memory resources.
527 *
528 * Architectures must ensure two things for all segments that need
529 * updating during hotplug events:
530 *
531 * 1. Segments must be large enough to accommodate a growing number of
532 *    resources.
533 * 2. Exclude the segments from SHA verification.
534 *
535 * For example, on most architectures, the elfcorehdr (which is passed
536 * to the crash kernel via the elfcorehdr= parameter) must include the
537 * new list of CPUs and memory. To make changes to the elfcorehdr, it
538 * should be large enough to permit a growing number of CPU and Memory
539 * resources. One can estimate the elfcorehdr memory size based on
540 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
541 * excluded from SHA verification by default if the architecture
542 * supports crash hotplug.
543 */
544static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
 
 
 
545{
546	struct kimage *image;
 
 
547
548	crash_hotplug_lock();
549	/* Obtain lock while changing crash information */
550	if (!kexec_trylock()) {
551		if (!kexec_in_progress)
552			pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
553		crash_hotplug_unlock();
554		return;
555	}
556
557	/* Check kdump is not loaded */
558	if (!kexec_crash_image)
559		goto out;
560
561	image = kexec_crash_image;
562
563	/* Check that kexec segments update is permitted */
564	if (!image->hotplug_support)
565		goto out;
566
567	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
568		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
569		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
570	else
571		pr_debug("hp_action %u\n", hp_action);
572
573	/*
574	 * The elfcorehdr_index is set to -1 when the struct kimage
575	 * is allocated. Find the segment containing the elfcorehdr,
576	 * if not already found.
577	 */
578	if (image->elfcorehdr_index < 0) {
579		unsigned long mem;
580		unsigned char *ptr;
581		unsigned int n;
582
583		for (n = 0; n < image->nr_segments; n++) {
584			mem = image->segment[n].mem;
585			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
586			if (ptr) {
587				/* The segment containing elfcorehdr */
588				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
589					image->elfcorehdr_index = (int)n;
590				kunmap_local(ptr);
591			}
592		}
593	}
594
595	if (image->elfcorehdr_index < 0) {
596		pr_err("unable to locate elfcorehdr segment");
597		goto out;
598	}
 
 
 
 
 
 
 
 
599
600	/* Needed in order for the segments to be updated */
601	arch_kexec_unprotect_crashkres();
602
603	/* Differentiate between normal load and hotplug update */
604	image->hp_action = hp_action;
605
606	/* Now invoke arch-specific update handler */
607	arch_crash_handle_hotplug_event(image, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608
609	/* No longer handling a hotplug event */
610	image->hp_action = KEXEC_CRASH_HP_NONE;
611	image->elfcorehdr_updated = true;
 
 
 
 
 
 
 
 
 
612
613	/* Change back to read-only */
614	arch_kexec_protect_crashkres();
615
616	/* Errors in the callback is not a reason to rollback state */
617out:
618	/* Release lock now that update complete */
619	kexec_unlock();
620	crash_hotplug_unlock();
621}
622
623static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
624{
625	switch (val) {
626	case MEM_ONLINE:
627		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
628			KEXEC_CRASH_HP_INVALID_CPU, arg);
629		break;
630
631	case MEM_OFFLINE:
632		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
633			KEXEC_CRASH_HP_INVALID_CPU, arg);
634		break;
635	}
636	return NOTIFY_OK;
637}
638
639static struct notifier_block crash_memhp_nb = {
640	.notifier_call = crash_memhp_notifier,
641	.priority = 0
642};
643
644static int crash_cpuhp_online(unsigned int cpu)
645{
646	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
647	return 0;
648}
649
650static int crash_cpuhp_offline(unsigned int cpu)
651{
652	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
653	return 0;
654}
655
656static int __init crash_hotplug_init(void)
657{
658	int result = 0;
659
660	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
661		register_memory_notifier(&crash_memhp_nb);
662
663	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
664		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
665			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
666	}
667
668	return result;
669}
670
671subsys_initcall(crash_hotplug_init);
672#endif