Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#include "ubifs.h"
  24#include <linux/list_sort.h>
  25#include <crypto/hash.h>
  26#include <crypto/algapi.h>
  27
  28/**
  29 * struct replay_entry - replay list entry.
  30 * @lnum: logical eraseblock number of the node
  31 * @offs: node offset
  32 * @len: node length
 
  33 * @deletion: non-zero if this entry corresponds to a node deletion
  34 * @sqnum: node sequence number
  35 * @list: links the replay list
  36 * @key: node key
  37 * @nm: directory entry name
  38 * @old_size: truncation old size
  39 * @new_size: truncation new size
  40 *
  41 * The replay process first scans all buds and builds the replay list, then
  42 * sorts the replay list in nodes sequence number order, and then inserts all
  43 * the replay entries to the TNC.
  44 */
  45struct replay_entry {
  46	int lnum;
  47	int offs;
  48	int len;
  49	u8 hash[UBIFS_HASH_ARR_SZ];
  50	unsigned int deletion:1;
  51	unsigned long long sqnum;
  52	struct list_head list;
  53	union ubifs_key key;
  54	union {
  55		struct fscrypt_name nm;
  56		struct {
  57			loff_t old_size;
  58			loff_t new_size;
  59		};
  60	};
  61};
  62
  63/**
  64 * struct bud_entry - entry in the list of buds to replay.
  65 * @list: next bud in the list
  66 * @bud: bud description object
  67 * @sqnum: reference node sequence number
  68 * @free: free bytes in the bud
  69 * @dirty: dirty bytes in the bud
  70 */
  71struct bud_entry {
  72	struct list_head list;
  73	struct ubifs_bud *bud;
  74	unsigned long long sqnum;
  75	int free;
  76	int dirty;
  77};
  78
  79/**
  80 * set_bud_lprops - set free and dirty space used by a bud.
  81 * @c: UBIFS file-system description object
  82 * @b: bud entry which describes the bud
  83 *
  84 * This function makes sure the LEB properties of bud @b are set correctly
  85 * after the replay. Returns zero in case of success and a negative error code
  86 * in case of failure.
  87 */
  88static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  89{
  90	const struct ubifs_lprops *lp;
  91	int err = 0, dirty;
  92
  93	ubifs_get_lprops(c);
  94
  95	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  96	if (IS_ERR(lp)) {
  97		err = PTR_ERR(lp);
  98		goto out;
  99	}
 100
 101	dirty = lp->dirty;
 102	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 103		/*
 104		 * The LEB was added to the journal with a starting offset of
 105		 * zero which means the LEB must have been empty. The LEB
 106		 * property values should be @lp->free == @c->leb_size and
 107		 * @lp->dirty == 0, but that is not the case. The reason is that
 108		 * the LEB had been garbage collected before it became the bud,
 109		 * and there was no commit in between. The garbage collector
 110		 * resets the free and dirty space without recording it
 111		 * anywhere except lprops, so if there was no commit then
 112		 * lprops does not have that information.
 113		 *
 114		 * We do not need to adjust free space because the scan has told
 115		 * us the exact value which is recorded in the replay entry as
 116		 * @b->free.
 117		 *
 118		 * However we do need to subtract from the dirty space the
 119		 * amount of space that the garbage collector reclaimed, which
 120		 * is the whole LEB minus the amount of space that was free.
 121		 */
 122		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 123			lp->free, lp->dirty);
 124		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 125			lp->free, lp->dirty);
 126		dirty -= c->leb_size - lp->free;
 127		/*
 128		 * If the replay order was perfect the dirty space would now be
 129		 * zero. The order is not perfect because the journal heads
 130		 * race with each other. This is not a problem but is does mean
 131		 * that the dirty space may temporarily exceed c->leb_size
 132		 * during the replay.
 133		 */
 134		if (dirty != 0)
 135			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 136				b->bud->lnum, lp->free, lp->dirty, b->free,
 137				b->dirty);
 138	}
 139	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 140			     lp->flags | LPROPS_TAKEN, 0);
 141	if (IS_ERR(lp)) {
 142		err = PTR_ERR(lp);
 143		goto out;
 144	}
 145
 146	/* Make sure the journal head points to the latest bud */
 147	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 148				     b->bud->lnum, c->leb_size - b->free);
 149
 150out:
 151	ubifs_release_lprops(c);
 152	return err;
 153}
 154
 155/**
 156 * set_buds_lprops - set free and dirty space for all replayed buds.
 157 * @c: UBIFS file-system description object
 158 *
 159 * This function sets LEB properties for all replayed buds. Returns zero in
 160 * case of success and a negative error code in case of failure.
 161 */
 162static int set_buds_lprops(struct ubifs_info *c)
 163{
 164	struct bud_entry *b;
 165	int err;
 166
 167	list_for_each_entry(b, &c->replay_buds, list) {
 168		err = set_bud_lprops(c, b);
 169		if (err)
 170			return err;
 171	}
 172
 173	return 0;
 174}
 175
 176/**
 177 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 178 * @c: UBIFS file-system description object
 179 * @r: replay entry of truncation
 180 */
 181static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 182{
 183	unsigned min_blk, max_blk;
 184	union ubifs_key min_key, max_key;
 185	ino_t ino;
 186
 187	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 188	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 189		min_blk += 1;
 190
 191	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 192	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 193		max_blk -= 1;
 194
 195	ino = key_inum(c, &r->key);
 196
 197	data_key_init(c, &min_key, ino, min_blk);
 198	data_key_init(c, &max_key, ino, max_blk);
 199
 200	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 201}
 202
 203/**
 204 * inode_still_linked - check whether inode in question will be re-linked.
 205 * @c: UBIFS file-system description object
 206 * @rino: replay entry to test
 207 *
 208 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
 209 * This case needs special care, otherwise all references to the inode will
 210 * be removed upon the first replay entry of an inode with link count 0
 211 * is found.
 212 */
 213static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
 214{
 215	struct replay_entry *r;
 216
 217	ubifs_assert(c, rino->deletion);
 218	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
 219
 220	/*
 221	 * Find the most recent entry for the inode behind @rino and check
 222	 * whether it is a deletion.
 223	 */
 224	list_for_each_entry_reverse(r, &c->replay_list, list) {
 225		ubifs_assert(c, r->sqnum >= rino->sqnum);
 226		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
 227		    key_type(c, &r->key) == UBIFS_INO_KEY)
 228			return r->deletion == 0;
 229
 230	}
 231
 232	ubifs_assert(c, 0);
 233	return false;
 234}
 235
 236/**
 237 * apply_replay_entry - apply a replay entry to the TNC.
 238 * @c: UBIFS file-system description object
 239 * @r: replay entry to apply
 240 *
 241 * Apply a replay entry to the TNC.
 242 */
 243static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 244{
 245	int err;
 246
 247	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 248		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 249
 250	if (is_hash_key(c, &r->key)) {
 251		if (r->deletion)
 252			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 253		else
 254			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 255					       r->len, r->hash, &r->nm);
 256	} else {
 257		if (r->deletion)
 258			switch (key_type(c, &r->key)) {
 259			case UBIFS_INO_KEY:
 260			{
 261				ino_t inum = key_inum(c, &r->key);
 262
 263				if (inode_still_linked(c, r)) {
 264					err = 0;
 265					break;
 266				}
 267
 268				err = ubifs_tnc_remove_ino(c, inum);
 269				break;
 270			}
 271			case UBIFS_TRUN_KEY:
 272				err = trun_remove_range(c, r);
 273				break;
 274			default:
 275				err = ubifs_tnc_remove(c, &r->key);
 276				break;
 277			}
 278		else
 279			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 280					    r->len, r->hash);
 281		if (err)
 282			return err;
 283
 284		if (c->need_recovery)
 285			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 286						       r->new_size);
 287	}
 288
 289	return err;
 290}
 291
 292/**
 293 * replay_entries_cmp - compare 2 replay entries.
 294 * @priv: UBIFS file-system description object
 295 * @a: first replay entry
 296 * @b: second replay entry
 297 *
 298 * This is a comparios function for 'list_sort()' which compares 2 replay
 299 * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
 300 * greater sequence number and %-1 otherwise.
 301 */
 302static int replay_entries_cmp(void *priv, const struct list_head *a,
 303			      const struct list_head *b)
 304{
 305	struct ubifs_info *c = priv;
 306	struct replay_entry *ra, *rb;
 307
 308	cond_resched();
 309	if (a == b)
 310		return 0;
 311
 312	ra = list_entry(a, struct replay_entry, list);
 313	rb = list_entry(b, struct replay_entry, list);
 314	ubifs_assert(c, ra->sqnum != rb->sqnum);
 315	if (ra->sqnum > rb->sqnum)
 316		return 1;
 317	return -1;
 318}
 319
 320/**
 321 * apply_replay_list - apply the replay list to the TNC.
 322 * @c: UBIFS file-system description object
 323 *
 324 * Apply all entries in the replay list to the TNC. Returns zero in case of
 325 * success and a negative error code in case of failure.
 326 */
 327static int apply_replay_list(struct ubifs_info *c)
 328{
 329	struct replay_entry *r;
 330	int err;
 331
 332	list_sort(c, &c->replay_list, &replay_entries_cmp);
 333
 334	list_for_each_entry(r, &c->replay_list, list) {
 335		cond_resched();
 336
 337		err = apply_replay_entry(c, r);
 338		if (err)
 339			return err;
 340	}
 341
 342	return 0;
 343}
 344
 345/**
 346 * destroy_replay_list - destroy the replay.
 347 * @c: UBIFS file-system description object
 348 *
 349 * Destroy the replay list.
 350 */
 351static void destroy_replay_list(struct ubifs_info *c)
 352{
 353	struct replay_entry *r, *tmp;
 354
 355	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 356		if (is_hash_key(c, &r->key))
 357			kfree(fname_name(&r->nm));
 358		list_del(&r->list);
 359		kfree(r);
 360	}
 361}
 362
 363/**
 364 * insert_node - insert a node to the replay list
 365 * @c: UBIFS file-system description object
 366 * @lnum: node logical eraseblock number
 367 * @offs: node offset
 368 * @len: node length
 
 369 * @key: node key
 370 * @sqnum: sequence number
 371 * @deletion: non-zero if this is a deletion
 372 * @used: number of bytes in use in a LEB
 373 * @old_size: truncation old size
 374 * @new_size: truncation new size
 375 *
 376 * This function inserts a scanned non-direntry node to the replay list. The
 377 * replay list contains @struct replay_entry elements, and we sort this list in
 378 * sequence number order before applying it. The replay list is applied at the
 379 * very end of the replay process. Since the list is sorted in sequence number
 380 * order, the older modifications are applied first. This function returns zero
 381 * in case of success and a negative error code in case of failure.
 382 */
 383static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 384		       const u8 *hash, union ubifs_key *key,
 385		       unsigned long long sqnum, int deletion, int *used,
 386		       loff_t old_size, loff_t new_size)
 387{
 388	struct replay_entry *r;
 389
 390	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 391
 392	if (key_inum(c, key) >= c->highest_inum)
 393		c->highest_inum = key_inum(c, key);
 394
 395	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 396	if (!r)
 397		return -ENOMEM;
 398
 399	if (!deletion)
 400		*used += ALIGN(len, 8);
 401	r->lnum = lnum;
 402	r->offs = offs;
 403	r->len = len;
 404	ubifs_copy_hash(c, hash, r->hash);
 405	r->deletion = !!deletion;
 406	r->sqnum = sqnum;
 407	key_copy(c, key, &r->key);
 408	r->old_size = old_size;
 409	r->new_size = new_size;
 410
 411	list_add_tail(&r->list, &c->replay_list);
 412	return 0;
 413}
 414
 415/**
 416 * insert_dent - insert a directory entry node into the replay list.
 417 * @c: UBIFS file-system description object
 418 * @lnum: node logical eraseblock number
 419 * @offs: node offset
 420 * @len: node length
 
 421 * @key: node key
 422 * @name: directory entry name
 423 * @nlen: directory entry name length
 424 * @sqnum: sequence number
 425 * @deletion: non-zero if this is a deletion
 426 * @used: number of bytes in use in a LEB
 427 *
 428 * This function inserts a scanned directory entry node or an extended
 429 * attribute entry to the replay list. Returns zero in case of success and a
 430 * negative error code in case of failure.
 431 */
 432static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 433		       const u8 *hash, union ubifs_key *key,
 434		       const char *name, int nlen, unsigned long long sqnum,
 435		       int deletion, int *used)
 436{
 437	struct replay_entry *r;
 438	char *nbuf;
 439
 440	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 441	if (key_inum(c, key) >= c->highest_inum)
 442		c->highest_inum = key_inum(c, key);
 443
 444	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 445	if (!r)
 446		return -ENOMEM;
 447
 448	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 449	if (!nbuf) {
 450		kfree(r);
 451		return -ENOMEM;
 452	}
 453
 454	if (!deletion)
 455		*used += ALIGN(len, 8);
 456	r->lnum = lnum;
 457	r->offs = offs;
 458	r->len = len;
 459	ubifs_copy_hash(c, hash, r->hash);
 460	r->deletion = !!deletion;
 461	r->sqnum = sqnum;
 462	key_copy(c, key, &r->key);
 463	fname_len(&r->nm) = nlen;
 464	memcpy(nbuf, name, nlen);
 465	nbuf[nlen] = '\0';
 466	fname_name(&r->nm) = nbuf;
 467
 468	list_add_tail(&r->list, &c->replay_list);
 469	return 0;
 470}
 471
 472/**
 473 * ubifs_validate_entry - validate directory or extended attribute entry node.
 474 * @c: UBIFS file-system description object
 475 * @dent: the node to validate
 476 *
 477 * This function validates directory or extended attribute entry node @dent.
 478 * Returns zero if the node is all right and a %-EINVAL if not.
 479 */
 480int ubifs_validate_entry(struct ubifs_info *c,
 481			 const struct ubifs_dent_node *dent)
 482{
 483	int key_type = key_type_flash(c, dent->key);
 484	int nlen = le16_to_cpu(dent->nlen);
 485
 486	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 487	    dent->type >= UBIFS_ITYPES_CNT ||
 488	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 489	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 490	    le64_to_cpu(dent->inum) > MAX_INUM) {
 491		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 492			  "directory entry" : "extended attribute entry");
 493		return -EINVAL;
 494	}
 495
 496	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 497		ubifs_err(c, "bad key type %d", key_type);
 498		return -EINVAL;
 499	}
 500
 501	return 0;
 502}
 503
 504/**
 505 * is_last_bud - check if the bud is the last in the journal head.
 506 * @c: UBIFS file-system description object
 507 * @bud: bud description object
 508 *
 509 * This function checks if bud @bud is the last bud in its journal head. This
 510 * information is then used by 'replay_bud()' to decide whether the bud can
 511 * have corruptions or not. Indeed, only last buds can be corrupted by power
 512 * cuts. Returns %1 if this is the last bud, and %0 if not.
 513 */
 514static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 515{
 516	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 517	struct ubifs_bud *next;
 518	uint32_t data;
 519	int err;
 520
 521	if (list_is_last(&bud->list, &jh->buds_list))
 522		return 1;
 523
 524	/*
 525	 * The following is a quirk to make sure we work correctly with UBIFS
 526	 * images used with older UBIFS.
 527	 *
 528	 * Normally, the last bud will be the last in the journal head's list
 529	 * of bud. However, there is one exception if the UBIFS image belongs
 530	 * to older UBIFS. This is fairly unlikely: one would need to use old
 531	 * UBIFS, then have a power cut exactly at the right point, and then
 532	 * try to mount this image with new UBIFS.
 533	 *
 534	 * The exception is: it is possible to have 2 buds A and B, A goes
 535	 * before B, and B is the last, bud B is contains no data, and bud A is
 536	 * corrupted at the end. The reason is that in older versions when the
 537	 * journal code switched the next bud (from A to B), it first added a
 538	 * log reference node for the new bud (B), and only after this it
 539	 * synchronized the write-buffer of current bud (A). But later this was
 540	 * changed and UBIFS started to always synchronize the write-buffer of
 541	 * the bud (A) before writing the log reference for the new bud (B).
 542	 *
 543	 * But because older UBIFS always synchronized A's write-buffer before
 544	 * writing to B, we can recognize this exceptional situation but
 545	 * checking the contents of bud B - if it is empty, then A can be
 546	 * treated as the last and we can recover it.
 547	 *
 548	 * TODO: remove this piece of code in a couple of years (today it is
 549	 * 16.05.2011).
 550	 */
 551	next = list_entry(bud->list.next, struct ubifs_bud, list);
 552	if (!list_is_last(&next->list, &jh->buds_list))
 553		return 0;
 554
 555	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 556	if (err)
 557		return 0;
 558
 559	return data == 0xFFFFFFFF;
 560}
 561
 562/* authenticate_sleb_hash is split out for stack usage */
 563static int noinline_for_stack
 564authenticate_sleb_hash(struct ubifs_info *c,
 565		       struct shash_desc *log_hash, u8 *hash)
 566{
 567	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
 568
 569	hash_desc->tfm = c->hash_tfm;
 570
 571	ubifs_shash_copy_state(c, log_hash, hash_desc);
 572	return crypto_shash_final(hash_desc, hash);
 573}
 574
 575/**
 576 * authenticate_sleb - authenticate one scan LEB
 577 * @c: UBIFS file-system description object
 578 * @sleb: the scan LEB to authenticate
 579 * @log_hash:
 580 * @is_last: if true, this is the last LEB
 581 *
 582 * This function iterates over the buds of a single LEB authenticating all buds
 583 * with the authentication nodes on this LEB. Authentication nodes are written
 584 * after some buds and contain a HMAC covering the authentication node itself
 585 * and the buds between the last authentication node and the current
 586 * authentication node. It can happen that the last buds cannot be authenticated
 587 * because a powercut happened when some nodes were written but not the
 588 * corresponding authentication node. This function returns the number of nodes
 589 * that could be authenticated or a negative error code.
 590 */
 591static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 592			     struct shash_desc *log_hash, int is_last)
 593{
 594	int n_not_auth = 0;
 595	struct ubifs_scan_node *snod;
 596	int n_nodes = 0;
 597	int err;
 598	u8 hash[UBIFS_HASH_ARR_SZ];
 599	u8 hmac[UBIFS_HMAC_ARR_SZ];
 600
 601	if (!ubifs_authenticated(c))
 602		return sleb->nodes_cnt;
 603
 604	list_for_each_entry(snod, &sleb->nodes, list) {
 605
 606		n_nodes++;
 607
 608		if (snod->type == UBIFS_AUTH_NODE) {
 609			struct ubifs_auth_node *auth = snod->node;
 610
 611			err = authenticate_sleb_hash(c, log_hash, hash);
 612			if (err)
 613				goto out;
 614
 615			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
 616						      c->hash_len, hmac);
 617			if (err)
 618				goto out;
 619
 620			err = ubifs_check_hmac(c, auth->hmac, hmac);
 621			if (err) {
 622				err = -EPERM;
 623				goto out;
 624			}
 625			n_not_auth = 0;
 626		} else {
 627			err = crypto_shash_update(log_hash, snod->node,
 628						  snod->len);
 629			if (err)
 630				goto out;
 631			n_not_auth++;
 632		}
 633	}
 634
 635	/*
 636	 * A powercut can happen when some nodes were written, but not yet
 637	 * the corresponding authentication node. This may only happen on
 638	 * the last bud though.
 639	 */
 640	if (n_not_auth) {
 641		if (is_last) {
 642			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
 643				n_not_auth, sleb->lnum);
 644			err = 0;
 645		} else {
 646			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
 647				n_not_auth, sleb->lnum);
 648			err = -EPERM;
 649		}
 650	} else {
 651		err = 0;
 652	}
 653out:
 654	return err ? err : n_nodes - n_not_auth;
 655}
 656
 657/**
 658 * replay_bud - replay a bud logical eraseblock.
 659 * @c: UBIFS file-system description object
 660 * @b: bud entry which describes the bud
 661 *
 662 * This function replays bud @bud, recovers it if needed, and adds all nodes
 663 * from this bud to the replay list. Returns zero in case of success and a
 664 * negative error code in case of failure.
 665 */
 666static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 667{
 668	int is_last = is_last_bud(c, b->bud);
 669	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 670	int n_nodes, n = 0;
 671	struct ubifs_scan_leb *sleb;
 672	struct ubifs_scan_node *snod;
 673
 674	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 675		lnum, b->bud->jhead, offs, is_last);
 676
 677	if (c->need_recovery && is_last)
 678		/*
 679		 * Recover only last LEBs in the journal heads, because power
 680		 * cuts may cause corruptions only in these LEBs, because only
 681		 * these LEBs could possibly be written to at the power cut
 682		 * time.
 683		 */
 684		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 685	else
 686		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 687	if (IS_ERR(sleb))
 688		return PTR_ERR(sleb);
 689
 690	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
 691	if (n_nodes < 0) {
 692		err = n_nodes;
 693		goto out;
 694	}
 695
 696	ubifs_shash_copy_state(c, b->bud->log_hash,
 697			       c->jheads[b->bud->jhead].log_hash);
 698
 699	/*
 700	 * The bud does not have to start from offset zero - the beginning of
 701	 * the 'lnum' LEB may contain previously committed data. One of the
 702	 * things we have to do in replay is to correctly update lprops with
 703	 * newer information about this LEB.
 704	 *
 705	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 706	 * bytes of free space because it only contain information about
 707	 * committed data.
 708	 *
 709	 * But we know that real amount of free space is 'c->leb_size -
 710	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 711	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 712	 * how much of these data are dirty and update lprops with this
 713	 * information.
 714	 *
 715	 * The dirt in that LEB region is comprised of padding nodes, deletion
 716	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 717	 * nodes in this LEB. So instead of calculating clean space, we
 718	 * calculate used space ('used' variable).
 719	 */
 720
 721	list_for_each_entry(snod, &sleb->nodes, list) {
 722		u8 hash[UBIFS_HASH_ARR_SZ];
 723		int deletion = 0;
 724
 725		cond_resched();
 726
 727		if (snod->sqnum >= SQNUM_WATERMARK) {
 728			ubifs_err(c, "file system's life ended");
 729			goto out_dump;
 730		}
 731
 732		ubifs_node_calc_hash(c, snod->node, hash);
 733
 734		if (snod->sqnum > c->max_sqnum)
 735			c->max_sqnum = snod->sqnum;
 736
 737		switch (snod->type) {
 738		case UBIFS_INO_NODE:
 739		{
 740			struct ubifs_ino_node *ino = snod->node;
 741			loff_t new_size = le64_to_cpu(ino->size);
 742
 743			if (le32_to_cpu(ino->nlink) == 0)
 744				deletion = 1;
 745			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 746					  &snod->key, snod->sqnum, deletion,
 747					  &used, 0, new_size);
 748			break;
 749		}
 750		case UBIFS_DATA_NODE:
 751		{
 752			struct ubifs_data_node *dn = snod->node;
 753			loff_t new_size = le32_to_cpu(dn->size) +
 754					  key_block(c, &snod->key) *
 755					  UBIFS_BLOCK_SIZE;
 756
 757			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 758					  &snod->key, snod->sqnum, deletion,
 759					  &used, 0, new_size);
 760			break;
 761		}
 762		case UBIFS_DENT_NODE:
 763		case UBIFS_XENT_NODE:
 764		{
 765			struct ubifs_dent_node *dent = snod->node;
 766
 767			err = ubifs_validate_entry(c, dent);
 768			if (err)
 769				goto out_dump;
 770
 771			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
 772					  &snod->key, dent->name,
 773					  le16_to_cpu(dent->nlen), snod->sqnum,
 774					  !le64_to_cpu(dent->inum), &used);
 775			break;
 776		}
 777		case UBIFS_TRUN_NODE:
 778		{
 779			struct ubifs_trun_node *trun = snod->node;
 780			loff_t old_size = le64_to_cpu(trun->old_size);
 781			loff_t new_size = le64_to_cpu(trun->new_size);
 782			union ubifs_key key;
 783
 784			/* Validate truncation node */
 785			if (old_size < 0 || old_size > c->max_inode_sz ||
 786			    new_size < 0 || new_size > c->max_inode_sz ||
 787			    old_size <= new_size) {
 788				ubifs_err(c, "bad truncation node");
 789				goto out_dump;
 790			}
 791
 792			/*
 793			 * Create a fake truncation key just to use the same
 794			 * functions which expect nodes to have keys.
 795			 */
 796			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 797			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 798					  &key, snod->sqnum, 1, &used,
 799					  old_size, new_size);
 800			break;
 801		}
 802		case UBIFS_AUTH_NODE:
 803			break;
 804		default:
 805			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 806				  snod->type, lnum, snod->offs);
 807			err = -EINVAL;
 808			goto out_dump;
 809		}
 810		if (err)
 811			goto out;
 812
 813		n++;
 814		if (n == n_nodes)
 815			break;
 816	}
 817
 818	ubifs_assert(c, ubifs_search_bud(c, lnum));
 819	ubifs_assert(c, sleb->endpt - offs >= used);
 820	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
 821
 822	b->dirty = sleb->endpt - offs - used;
 823	b->free = c->leb_size - sleb->endpt;
 824	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 825		lnum, b->dirty, b->free);
 826
 827out:
 828	ubifs_scan_destroy(sleb);
 829	return err;
 830
 831out_dump:
 832	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 833	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 834	ubifs_scan_destroy(sleb);
 835	return -EINVAL;
 836}
 837
 838/**
 839 * replay_buds - replay all buds.
 840 * @c: UBIFS file-system description object
 841 *
 842 * This function returns zero in case of success and a negative error code in
 843 * case of failure.
 844 */
 845static int replay_buds(struct ubifs_info *c)
 846{
 847	struct bud_entry *b;
 848	int err;
 849	unsigned long long prev_sqnum = 0;
 850
 851	list_for_each_entry(b, &c->replay_buds, list) {
 852		err = replay_bud(c, b);
 853		if (err)
 854			return err;
 855
 856		ubifs_assert(c, b->sqnum > prev_sqnum);
 857		prev_sqnum = b->sqnum;
 858	}
 859
 860	return 0;
 861}
 862
 863/**
 864 * destroy_bud_list - destroy the list of buds to replay.
 865 * @c: UBIFS file-system description object
 866 */
 867static void destroy_bud_list(struct ubifs_info *c)
 868{
 869	struct bud_entry *b;
 870
 871	while (!list_empty(&c->replay_buds)) {
 872		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 873		list_del(&b->list);
 874		kfree(b);
 875	}
 876}
 877
 878/**
 879 * add_replay_bud - add a bud to the list of buds to replay.
 880 * @c: UBIFS file-system description object
 881 * @lnum: bud logical eraseblock number to replay
 882 * @offs: bud start offset
 883 * @jhead: journal head to which this bud belongs
 884 * @sqnum: reference node sequence number
 885 *
 886 * This function returns zero in case of success and a negative error code in
 887 * case of failure.
 888 */
 889static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 890			  unsigned long long sqnum)
 891{
 892	struct ubifs_bud *bud;
 893	struct bud_entry *b;
 894	int err;
 895
 896	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 897
 898	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 899	if (!bud)
 900		return -ENOMEM;
 901
 902	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 903	if (!b) {
 904		err = -ENOMEM;
 905		goto out;
 906	}
 907
 908	bud->lnum = lnum;
 909	bud->start = offs;
 910	bud->jhead = jhead;
 911	bud->log_hash = ubifs_hash_get_desc(c);
 912	if (IS_ERR(bud->log_hash)) {
 913		err = PTR_ERR(bud->log_hash);
 914		goto out;
 915	}
 916
 917	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
 918
 919	ubifs_add_bud(c, bud);
 920
 921	b->bud = bud;
 922	b->sqnum = sqnum;
 923	list_add_tail(&b->list, &c->replay_buds);
 924
 925	return 0;
 926out:
 927	kfree(bud);
 928	kfree(b);
 929
 930	return err;
 931}
 932
 933/**
 934 * validate_ref - validate a reference node.
 935 * @c: UBIFS file-system description object
 936 * @ref: the reference node to validate
 937 *
 938 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 939 * returned if the reference node is new, otherwise %-EINVAL is returned if
 940 * validation failed.
 941 */
 942static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 943{
 944	struct ubifs_bud *bud;
 945	int lnum = le32_to_cpu(ref->lnum);
 946	unsigned int offs = le32_to_cpu(ref->offs);
 947	unsigned int jhead = le32_to_cpu(ref->jhead);
 948
 949	/*
 950	 * ref->offs may point to the end of LEB when the journal head points
 951	 * to the end of LEB and we write reference node for it during commit.
 952	 * So this is why we require 'offs > c->leb_size'.
 953	 */
 954	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 955	    lnum < c->main_first || offs > c->leb_size ||
 956	    offs & (c->min_io_size - 1))
 957		return -EINVAL;
 958
 959	/* Make sure we have not already looked at this bud */
 960	bud = ubifs_search_bud(c, lnum);
 961	if (bud) {
 962		if (bud->jhead == jhead && bud->start <= offs)
 963			return 1;
 964		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 965		return -EINVAL;
 966	}
 967
 968	return 0;
 969}
 970
 971/**
 972 * replay_log_leb - replay a log logical eraseblock.
 973 * @c: UBIFS file-system description object
 974 * @lnum: log logical eraseblock to replay
 975 * @offs: offset to start replaying from
 976 * @sbuf: scan buffer
 977 *
 978 * This function replays a log LEB and returns zero in case of success, %1 if
 979 * this is the last LEB in the log, and a negative error code in case of
 980 * failure.
 981 */
 982static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 983{
 984	int err;
 985	struct ubifs_scan_leb *sleb;
 986	struct ubifs_scan_node *snod;
 987	const struct ubifs_cs_node *node;
 988
 989	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 990	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 991	if (IS_ERR(sleb)) {
 992		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 993			return PTR_ERR(sleb);
 994		/*
 995		 * Note, the below function will recover this log LEB only if
 996		 * it is the last, because unclean reboots can possibly corrupt
 997		 * only the tail of the log.
 998		 */
 999		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1000		if (IS_ERR(sleb))
1001			return PTR_ERR(sleb);
1002	}
1003
1004	if (sleb->nodes_cnt == 0) {
1005		err = 1;
1006		goto out;
1007	}
1008
1009	node = sleb->buf;
1010	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1011	if (c->cs_sqnum == 0) {
1012		/*
1013		 * This is the first log LEB we are looking at, make sure that
1014		 * the first node is a commit start node. Also record its
1015		 * sequence number so that UBIFS can determine where the log
1016		 * ends, because all nodes which were have higher sequence
1017		 * numbers.
1018		 */
1019		if (snod->type != UBIFS_CS_NODE) {
1020			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1021				  lnum, offs);
1022			goto out_dump;
1023		}
1024		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1025			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1026				  lnum, offs,
1027				  (unsigned long long)le64_to_cpu(node->cmt_no),
1028				  c->cmt_no);
1029			goto out_dump;
1030		}
1031
1032		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1033		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1034
1035		err = ubifs_shash_init(c, c->log_hash);
1036		if (err)
1037			goto out;
1038
1039		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1040		if (err < 0)
1041			goto out;
1042	}
1043
1044	if (snod->sqnum < c->cs_sqnum) {
1045		/*
1046		 * This means that we reached end of log and now
1047		 * look to the older log data, which was already
1048		 * committed but the eraseblock was not erased (UBIFS
1049		 * only un-maps it). So this basically means we have to
1050		 * exit with "end of log" code.
1051		 */
1052		err = 1;
1053		goto out;
1054	}
1055
1056	/* Make sure the first node sits at offset zero of the LEB */
1057	if (snod->offs != 0) {
1058		ubifs_err(c, "first node is not at zero offset");
1059		goto out_dump;
1060	}
1061
1062	list_for_each_entry(snod, &sleb->nodes, list) {
1063		cond_resched();
1064
1065		if (snod->sqnum >= SQNUM_WATERMARK) {
1066			ubifs_err(c, "file system's life ended");
1067			goto out_dump;
1068		}
1069
1070		if (snod->sqnum < c->cs_sqnum) {
1071			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1072				  snod->sqnum, c->cs_sqnum);
1073			goto out_dump;
1074		}
1075
1076		if (snod->sqnum > c->max_sqnum)
1077			c->max_sqnum = snod->sqnum;
1078
1079		switch (snod->type) {
1080		case UBIFS_REF_NODE: {
1081			const struct ubifs_ref_node *ref = snod->node;
1082
1083			err = validate_ref(c, ref);
1084			if (err == 1)
1085				break; /* Already have this bud */
1086			if (err)
1087				goto out_dump;
1088
1089			err = ubifs_shash_update(c, c->log_hash, ref,
1090						 UBIFS_REF_NODE_SZ);
1091			if (err)
1092				goto out;
1093
1094			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1095					     le32_to_cpu(ref->offs),
1096					     le32_to_cpu(ref->jhead),
1097					     snod->sqnum);
1098			if (err)
1099				goto out;
1100
1101			break;
1102		}
1103		case UBIFS_CS_NODE:
1104			/* Make sure it sits at the beginning of LEB */
1105			if (snod->offs != 0) {
1106				ubifs_err(c, "unexpected node in log");
1107				goto out_dump;
1108			}
1109			break;
1110		default:
1111			ubifs_err(c, "unexpected node in log");
1112			goto out_dump;
1113		}
1114	}
1115
1116	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1117		c->lhead_lnum = lnum;
1118		c->lhead_offs = sleb->endpt;
1119	}
1120
1121	err = !sleb->endpt;
1122out:
1123	ubifs_scan_destroy(sleb);
1124	return err;
1125
1126out_dump:
1127	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1128		  lnum, offs + snod->offs);
1129	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1130	ubifs_scan_destroy(sleb);
1131	return -EINVAL;
1132}
1133
1134/**
1135 * take_ihead - update the status of the index head in lprops to 'taken'.
1136 * @c: UBIFS file-system description object
1137 *
1138 * This function returns the amount of free space in the index head LEB or a
1139 * negative error code.
1140 */
1141static int take_ihead(struct ubifs_info *c)
1142{
1143	const struct ubifs_lprops *lp;
1144	int err, free;
1145
1146	ubifs_get_lprops(c);
1147
1148	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1149	if (IS_ERR(lp)) {
1150		err = PTR_ERR(lp);
1151		goto out;
1152	}
1153
1154	free = lp->free;
1155
1156	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1157			     lp->flags | LPROPS_TAKEN, 0);
1158	if (IS_ERR(lp)) {
1159		err = PTR_ERR(lp);
1160		goto out;
1161	}
1162
1163	err = free;
1164out:
1165	ubifs_release_lprops(c);
1166	return err;
1167}
1168
1169/**
1170 * ubifs_replay_journal - replay journal.
1171 * @c: UBIFS file-system description object
1172 *
1173 * This function scans the journal, replays and cleans it up. It makes sure all
1174 * memory data structures related to uncommitted journal are built (dirty TNC
1175 * tree, tree of buds, modified lprops, etc).
1176 */
1177int ubifs_replay_journal(struct ubifs_info *c)
1178{
1179	int err, lnum, free;
1180
1181	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1182
1183	/* Update the status of the index head in lprops to 'taken' */
1184	free = take_ihead(c);
1185	if (free < 0)
1186		return free; /* Error code */
1187
1188	if (c->ihead_offs != c->leb_size - free) {
1189		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1190			  c->ihead_offs);
1191		return -EINVAL;
1192	}
1193
1194	dbg_mnt("start replaying the journal");
1195	c->replaying = 1;
1196	lnum = c->ltail_lnum = c->lhead_lnum;
1197
1198	do {
1199		err = replay_log_leb(c, lnum, 0, c->sbuf);
1200		if (err == 1) {
1201			if (lnum != c->lhead_lnum)
1202				/* We hit the end of the log */
1203				break;
1204
1205			/*
1206			 * The head of the log must always start with the
1207			 * "commit start" node on a properly formatted UBIFS.
1208			 * But we found no nodes at all, which means that
1209			 * something went wrong and we cannot proceed mounting
1210			 * the file-system.
1211			 */
1212			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1213				  lnum, 0);
1214			err = -EINVAL;
1215		}
1216		if (err)
1217			goto out;
1218		lnum = ubifs_next_log_lnum(c, lnum);
1219	} while (lnum != c->ltail_lnum);
1220
1221	err = replay_buds(c);
1222	if (err)
1223		goto out;
1224
1225	err = apply_replay_list(c);
1226	if (err)
1227		goto out;
1228
1229	err = set_buds_lprops(c);
1230	if (err)
1231		goto out;
1232
1233	/*
1234	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1235	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1236	 * depend on it. This means we have to initialize it to make sure
1237	 * budgeting works properly.
1238	 */
1239	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1240	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1241
1242	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1243	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1244		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1245		(unsigned long)c->highest_inum);
1246out:
1247	destroy_replay_list(c);
1248	destroy_bud_list(c);
1249	c->replaying = 0;
1250	return err;
1251}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#include "ubifs.h"
  24#include <linux/list_sort.h>
  25#include <crypto/hash.h>
 
  26
  27/**
  28 * struct replay_entry - replay list entry.
  29 * @lnum: logical eraseblock number of the node
  30 * @offs: node offset
  31 * @len: node length
  32 * @hash: node hash
  33 * @deletion: non-zero if this entry corresponds to a node deletion
  34 * @sqnum: node sequence number
  35 * @list: links the replay list
  36 * @key: node key
  37 * @nm: directory entry name
  38 * @old_size: truncation old size
  39 * @new_size: truncation new size
  40 *
  41 * The replay process first scans all buds and builds the replay list, then
  42 * sorts the replay list in nodes sequence number order, and then inserts all
  43 * the replay entries to the TNC.
  44 */
  45struct replay_entry {
  46	int lnum;
  47	int offs;
  48	int len;
  49	u8 hash[UBIFS_HASH_ARR_SZ];
  50	unsigned int deletion:1;
  51	unsigned long long sqnum;
  52	struct list_head list;
  53	union ubifs_key key;
  54	union {
  55		struct fscrypt_name nm;
  56		struct {
  57			loff_t old_size;
  58			loff_t new_size;
  59		};
  60	};
  61};
  62
  63/**
  64 * struct bud_entry - entry in the list of buds to replay.
  65 * @list: next bud in the list
  66 * @bud: bud description object
  67 * @sqnum: reference node sequence number
  68 * @free: free bytes in the bud
  69 * @dirty: dirty bytes in the bud
  70 */
  71struct bud_entry {
  72	struct list_head list;
  73	struct ubifs_bud *bud;
  74	unsigned long long sqnum;
  75	int free;
  76	int dirty;
  77};
  78
  79/**
  80 * set_bud_lprops - set free and dirty space used by a bud.
  81 * @c: UBIFS file-system description object
  82 * @b: bud entry which describes the bud
  83 *
  84 * This function makes sure the LEB properties of bud @b are set correctly
  85 * after the replay. Returns zero in case of success and a negative error code
  86 * in case of failure.
  87 */
  88static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  89{
  90	const struct ubifs_lprops *lp;
  91	int err = 0, dirty;
  92
  93	ubifs_get_lprops(c);
  94
  95	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  96	if (IS_ERR(lp)) {
  97		err = PTR_ERR(lp);
  98		goto out;
  99	}
 100
 101	dirty = lp->dirty;
 102	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 103		/*
 104		 * The LEB was added to the journal with a starting offset of
 105		 * zero which means the LEB must have been empty. The LEB
 106		 * property values should be @lp->free == @c->leb_size and
 107		 * @lp->dirty == 0, but that is not the case. The reason is that
 108		 * the LEB had been garbage collected before it became the bud,
 109		 * and there was no commit in between. The garbage collector
 110		 * resets the free and dirty space without recording it
 111		 * anywhere except lprops, so if there was no commit then
 112		 * lprops does not have that information.
 113		 *
 114		 * We do not need to adjust free space because the scan has told
 115		 * us the exact value which is recorded in the replay entry as
 116		 * @b->free.
 117		 *
 118		 * However we do need to subtract from the dirty space the
 119		 * amount of space that the garbage collector reclaimed, which
 120		 * is the whole LEB minus the amount of space that was free.
 121		 */
 122		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 123			lp->free, lp->dirty);
 124		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 125			lp->free, lp->dirty);
 126		dirty -= c->leb_size - lp->free;
 127		/*
 128		 * If the replay order was perfect the dirty space would now be
 129		 * zero. The order is not perfect because the journal heads
 130		 * race with each other. This is not a problem but is does mean
 131		 * that the dirty space may temporarily exceed c->leb_size
 132		 * during the replay.
 133		 */
 134		if (dirty != 0)
 135			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 136				b->bud->lnum, lp->free, lp->dirty, b->free,
 137				b->dirty);
 138	}
 139	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 140			     lp->flags | LPROPS_TAKEN, 0);
 141	if (IS_ERR(lp)) {
 142		err = PTR_ERR(lp);
 143		goto out;
 144	}
 145
 146	/* Make sure the journal head points to the latest bud */
 147	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 148				     b->bud->lnum, c->leb_size - b->free);
 149
 150out:
 151	ubifs_release_lprops(c);
 152	return err;
 153}
 154
 155/**
 156 * set_buds_lprops - set free and dirty space for all replayed buds.
 157 * @c: UBIFS file-system description object
 158 *
 159 * This function sets LEB properties for all replayed buds. Returns zero in
 160 * case of success and a negative error code in case of failure.
 161 */
 162static int set_buds_lprops(struct ubifs_info *c)
 163{
 164	struct bud_entry *b;
 165	int err;
 166
 167	list_for_each_entry(b, &c->replay_buds, list) {
 168		err = set_bud_lprops(c, b);
 169		if (err)
 170			return err;
 171	}
 172
 173	return 0;
 174}
 175
 176/**
 177 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 178 * @c: UBIFS file-system description object
 179 * @r: replay entry of truncation
 180 */
 181static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 182{
 183	unsigned min_blk, max_blk;
 184	union ubifs_key min_key, max_key;
 185	ino_t ino;
 186
 187	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 188	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 189		min_blk += 1;
 190
 191	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 192	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 193		max_blk -= 1;
 194
 195	ino = key_inum(c, &r->key);
 196
 197	data_key_init(c, &min_key, ino, min_blk);
 198	data_key_init(c, &max_key, ino, max_blk);
 199
 200	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 201}
 202
 203/**
 204 * inode_still_linked - check whether inode in question will be re-linked.
 205 * @c: UBIFS file-system description object
 206 * @rino: replay entry to test
 207 *
 208 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
 209 * This case needs special care, otherwise all references to the inode will
 210 * be removed upon the first replay entry of an inode with link count 0
 211 * is found.
 212 */
 213static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
 214{
 215	struct replay_entry *r;
 216
 217	ubifs_assert(c, rino->deletion);
 218	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
 219
 220	/*
 221	 * Find the most recent entry for the inode behind @rino and check
 222	 * whether it is a deletion.
 223	 */
 224	list_for_each_entry_reverse(r, &c->replay_list, list) {
 225		ubifs_assert(c, r->sqnum >= rino->sqnum);
 226		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
 227		    key_type(c, &r->key) == UBIFS_INO_KEY)
 228			return r->deletion == 0;
 229
 230	}
 231
 232	ubifs_assert(c, 0);
 233	return false;
 234}
 235
 236/**
 237 * apply_replay_entry - apply a replay entry to the TNC.
 238 * @c: UBIFS file-system description object
 239 * @r: replay entry to apply
 240 *
 241 * Apply a replay entry to the TNC.
 242 */
 243static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 244{
 245	int err;
 246
 247	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 248		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 249
 250	if (is_hash_key(c, &r->key)) {
 251		if (r->deletion)
 252			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 253		else
 254			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 255					       r->len, r->hash, &r->nm);
 256	} else {
 257		if (r->deletion)
 258			switch (key_type(c, &r->key)) {
 259			case UBIFS_INO_KEY:
 260			{
 261				ino_t inum = key_inum(c, &r->key);
 262
 263				if (inode_still_linked(c, r)) {
 264					err = 0;
 265					break;
 266				}
 267
 268				err = ubifs_tnc_remove_ino(c, inum);
 269				break;
 270			}
 271			case UBIFS_TRUN_KEY:
 272				err = trun_remove_range(c, r);
 273				break;
 274			default:
 275				err = ubifs_tnc_remove(c, &r->key);
 276				break;
 277			}
 278		else
 279			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 280					    r->len, r->hash);
 281		if (err)
 282			return err;
 283
 284		if (c->need_recovery)
 285			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 286						       r->new_size);
 287	}
 288
 289	return err;
 290}
 291
 292/**
 293 * replay_entries_cmp - compare 2 replay entries.
 294 * @priv: UBIFS file-system description object
 295 * @a: first replay entry
 296 * @b: second replay entry
 297 *
 298 * This is a comparios function for 'list_sort()' which compares 2 replay
 299 * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
 300 * greater sequence number and %-1 otherwise.
 301 */
 302static int replay_entries_cmp(void *priv, const struct list_head *a,
 303			      const struct list_head *b)
 304{
 305	struct ubifs_info *c = priv;
 306	struct replay_entry *ra, *rb;
 307
 308	cond_resched();
 309	if (a == b)
 310		return 0;
 311
 312	ra = list_entry(a, struct replay_entry, list);
 313	rb = list_entry(b, struct replay_entry, list);
 314	ubifs_assert(c, ra->sqnum != rb->sqnum);
 315	if (ra->sqnum > rb->sqnum)
 316		return 1;
 317	return -1;
 318}
 319
 320/**
 321 * apply_replay_list - apply the replay list to the TNC.
 322 * @c: UBIFS file-system description object
 323 *
 324 * Apply all entries in the replay list to the TNC. Returns zero in case of
 325 * success and a negative error code in case of failure.
 326 */
 327static int apply_replay_list(struct ubifs_info *c)
 328{
 329	struct replay_entry *r;
 330	int err;
 331
 332	list_sort(c, &c->replay_list, &replay_entries_cmp);
 333
 334	list_for_each_entry(r, &c->replay_list, list) {
 335		cond_resched();
 336
 337		err = apply_replay_entry(c, r);
 338		if (err)
 339			return err;
 340	}
 341
 342	return 0;
 343}
 344
 345/**
 346 * destroy_replay_list - destroy the replay.
 347 * @c: UBIFS file-system description object
 348 *
 349 * Destroy the replay list.
 350 */
 351static void destroy_replay_list(struct ubifs_info *c)
 352{
 353	struct replay_entry *r, *tmp;
 354
 355	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 356		if (is_hash_key(c, &r->key))
 357			kfree(fname_name(&r->nm));
 358		list_del(&r->list);
 359		kfree(r);
 360	}
 361}
 362
 363/**
 364 * insert_node - insert a node to the replay list
 365 * @c: UBIFS file-system description object
 366 * @lnum: node logical eraseblock number
 367 * @offs: node offset
 368 * @len: node length
 369 * @hash: node hash
 370 * @key: node key
 371 * @sqnum: sequence number
 372 * @deletion: non-zero if this is a deletion
 373 * @used: number of bytes in use in a LEB
 374 * @old_size: truncation old size
 375 * @new_size: truncation new size
 376 *
 377 * This function inserts a scanned non-direntry node to the replay list. The
 378 * replay list contains @struct replay_entry elements, and we sort this list in
 379 * sequence number order before applying it. The replay list is applied at the
 380 * very end of the replay process. Since the list is sorted in sequence number
 381 * order, the older modifications are applied first. This function returns zero
 382 * in case of success and a negative error code in case of failure.
 383 */
 384static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 385		       const u8 *hash, union ubifs_key *key,
 386		       unsigned long long sqnum, int deletion, int *used,
 387		       loff_t old_size, loff_t new_size)
 388{
 389	struct replay_entry *r;
 390
 391	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 392
 393	if (key_inum(c, key) >= c->highest_inum)
 394		c->highest_inum = key_inum(c, key);
 395
 396	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 397	if (!r)
 398		return -ENOMEM;
 399
 400	if (!deletion)
 401		*used += ALIGN(len, 8);
 402	r->lnum = lnum;
 403	r->offs = offs;
 404	r->len = len;
 405	ubifs_copy_hash(c, hash, r->hash);
 406	r->deletion = !!deletion;
 407	r->sqnum = sqnum;
 408	key_copy(c, key, &r->key);
 409	r->old_size = old_size;
 410	r->new_size = new_size;
 411
 412	list_add_tail(&r->list, &c->replay_list);
 413	return 0;
 414}
 415
 416/**
 417 * insert_dent - insert a directory entry node into the replay list.
 418 * @c: UBIFS file-system description object
 419 * @lnum: node logical eraseblock number
 420 * @offs: node offset
 421 * @len: node length
 422 * @hash: node hash
 423 * @key: node key
 424 * @name: directory entry name
 425 * @nlen: directory entry name length
 426 * @sqnum: sequence number
 427 * @deletion: non-zero if this is a deletion
 428 * @used: number of bytes in use in a LEB
 429 *
 430 * This function inserts a scanned directory entry node or an extended
 431 * attribute entry to the replay list. Returns zero in case of success and a
 432 * negative error code in case of failure.
 433 */
 434static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 435		       const u8 *hash, union ubifs_key *key,
 436		       const char *name, int nlen, unsigned long long sqnum,
 437		       int deletion, int *used)
 438{
 439	struct replay_entry *r;
 440	char *nbuf;
 441
 442	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 443	if (key_inum(c, key) >= c->highest_inum)
 444		c->highest_inum = key_inum(c, key);
 445
 446	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 447	if (!r)
 448		return -ENOMEM;
 449
 450	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 451	if (!nbuf) {
 452		kfree(r);
 453		return -ENOMEM;
 454	}
 455
 456	if (!deletion)
 457		*used += ALIGN(len, 8);
 458	r->lnum = lnum;
 459	r->offs = offs;
 460	r->len = len;
 461	ubifs_copy_hash(c, hash, r->hash);
 462	r->deletion = !!deletion;
 463	r->sqnum = sqnum;
 464	key_copy(c, key, &r->key);
 465	fname_len(&r->nm) = nlen;
 466	memcpy(nbuf, name, nlen);
 467	nbuf[nlen] = '\0';
 468	fname_name(&r->nm) = nbuf;
 469
 470	list_add_tail(&r->list, &c->replay_list);
 471	return 0;
 472}
 473
 474/**
 475 * ubifs_validate_entry - validate directory or extended attribute entry node.
 476 * @c: UBIFS file-system description object
 477 * @dent: the node to validate
 478 *
 479 * This function validates directory or extended attribute entry node @dent.
 480 * Returns zero if the node is all right and a %-EINVAL if not.
 481 */
 482int ubifs_validate_entry(struct ubifs_info *c,
 483			 const struct ubifs_dent_node *dent)
 484{
 485	int key_type = key_type_flash(c, dent->key);
 486	int nlen = le16_to_cpu(dent->nlen);
 487
 488	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 489	    dent->type >= UBIFS_ITYPES_CNT ||
 490	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 491	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 492	    le64_to_cpu(dent->inum) > MAX_INUM) {
 493		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 494			  "directory entry" : "extended attribute entry");
 495		return -EINVAL;
 496	}
 497
 498	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 499		ubifs_err(c, "bad key type %d", key_type);
 500		return -EINVAL;
 501	}
 502
 503	return 0;
 504}
 505
 506/**
 507 * is_last_bud - check if the bud is the last in the journal head.
 508 * @c: UBIFS file-system description object
 509 * @bud: bud description object
 510 *
 511 * This function checks if bud @bud is the last bud in its journal head. This
 512 * information is then used by 'replay_bud()' to decide whether the bud can
 513 * have corruptions or not. Indeed, only last buds can be corrupted by power
 514 * cuts. Returns %1 if this is the last bud, and %0 if not.
 515 */
 516static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 517{
 518	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 519	struct ubifs_bud *next;
 520	uint32_t data;
 521	int err;
 522
 523	if (list_is_last(&bud->list, &jh->buds_list))
 524		return 1;
 525
 526	/*
 527	 * The following is a quirk to make sure we work correctly with UBIFS
 528	 * images used with older UBIFS.
 529	 *
 530	 * Normally, the last bud will be the last in the journal head's list
 531	 * of bud. However, there is one exception if the UBIFS image belongs
 532	 * to older UBIFS. This is fairly unlikely: one would need to use old
 533	 * UBIFS, then have a power cut exactly at the right point, and then
 534	 * try to mount this image with new UBIFS.
 535	 *
 536	 * The exception is: it is possible to have 2 buds A and B, A goes
 537	 * before B, and B is the last, bud B is contains no data, and bud A is
 538	 * corrupted at the end. The reason is that in older versions when the
 539	 * journal code switched the next bud (from A to B), it first added a
 540	 * log reference node for the new bud (B), and only after this it
 541	 * synchronized the write-buffer of current bud (A). But later this was
 542	 * changed and UBIFS started to always synchronize the write-buffer of
 543	 * the bud (A) before writing the log reference for the new bud (B).
 544	 *
 545	 * But because older UBIFS always synchronized A's write-buffer before
 546	 * writing to B, we can recognize this exceptional situation but
 547	 * checking the contents of bud B - if it is empty, then A can be
 548	 * treated as the last and we can recover it.
 549	 *
 550	 * TODO: remove this piece of code in a couple of years (today it is
 551	 * 16.05.2011).
 552	 */
 553	next = list_entry(bud->list.next, struct ubifs_bud, list);
 554	if (!list_is_last(&next->list, &jh->buds_list))
 555		return 0;
 556
 557	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 558	if (err)
 559		return 0;
 560
 561	return data == 0xFFFFFFFF;
 562}
 563
 564/* authenticate_sleb_hash is split out for stack usage */
 565static int noinline_for_stack
 566authenticate_sleb_hash(struct ubifs_info *c,
 567		       struct shash_desc *log_hash, u8 *hash)
 568{
 569	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
 570
 571	hash_desc->tfm = c->hash_tfm;
 572
 573	ubifs_shash_copy_state(c, log_hash, hash_desc);
 574	return crypto_shash_final(hash_desc, hash);
 575}
 576
 577/**
 578 * authenticate_sleb - authenticate one scan LEB
 579 * @c: UBIFS file-system description object
 580 * @sleb: the scan LEB to authenticate
 581 * @log_hash:
 582 * @is_last: if true, this is the last LEB
 583 *
 584 * This function iterates over the buds of a single LEB authenticating all buds
 585 * with the authentication nodes on this LEB. Authentication nodes are written
 586 * after some buds and contain a HMAC covering the authentication node itself
 587 * and the buds between the last authentication node and the current
 588 * authentication node. It can happen that the last buds cannot be authenticated
 589 * because a powercut happened when some nodes were written but not the
 590 * corresponding authentication node. This function returns the number of nodes
 591 * that could be authenticated or a negative error code.
 592 */
 593static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 594			     struct shash_desc *log_hash, int is_last)
 595{
 596	int n_not_auth = 0;
 597	struct ubifs_scan_node *snod;
 598	int n_nodes = 0;
 599	int err;
 600	u8 hash[UBIFS_HASH_ARR_SZ];
 601	u8 hmac[UBIFS_HMAC_ARR_SZ];
 602
 603	if (!ubifs_authenticated(c))
 604		return sleb->nodes_cnt;
 605
 606	list_for_each_entry(snod, &sleb->nodes, list) {
 607
 608		n_nodes++;
 609
 610		if (snod->type == UBIFS_AUTH_NODE) {
 611			struct ubifs_auth_node *auth = snod->node;
 612
 613			err = authenticate_sleb_hash(c, log_hash, hash);
 614			if (err)
 615				goto out;
 616
 617			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
 618						      c->hash_len, hmac);
 619			if (err)
 620				goto out;
 621
 622			err = ubifs_check_hmac(c, auth->hmac, hmac);
 623			if (err) {
 624				err = -EPERM;
 625				goto out;
 626			}
 627			n_not_auth = 0;
 628		} else {
 629			err = crypto_shash_update(log_hash, snod->node,
 630						  snod->len);
 631			if (err)
 632				goto out;
 633			n_not_auth++;
 634		}
 635	}
 636
 637	/*
 638	 * A powercut can happen when some nodes were written, but not yet
 639	 * the corresponding authentication node. This may only happen on
 640	 * the last bud though.
 641	 */
 642	if (n_not_auth) {
 643		if (is_last) {
 644			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
 645				n_not_auth, sleb->lnum);
 646			err = 0;
 647		} else {
 648			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
 649				n_not_auth, sleb->lnum);
 650			err = -EPERM;
 651		}
 652	} else {
 653		err = 0;
 654	}
 655out:
 656	return err ? err : n_nodes - n_not_auth;
 657}
 658
 659/**
 660 * replay_bud - replay a bud logical eraseblock.
 661 * @c: UBIFS file-system description object
 662 * @b: bud entry which describes the bud
 663 *
 664 * This function replays bud @bud, recovers it if needed, and adds all nodes
 665 * from this bud to the replay list. Returns zero in case of success and a
 666 * negative error code in case of failure.
 667 */
 668static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 669{
 670	int is_last = is_last_bud(c, b->bud);
 671	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 672	int n_nodes, n = 0;
 673	struct ubifs_scan_leb *sleb;
 674	struct ubifs_scan_node *snod;
 675
 676	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 677		lnum, b->bud->jhead, offs, is_last);
 678
 679	if (c->need_recovery && is_last)
 680		/*
 681		 * Recover only last LEBs in the journal heads, because power
 682		 * cuts may cause corruptions only in these LEBs, because only
 683		 * these LEBs could possibly be written to at the power cut
 684		 * time.
 685		 */
 686		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 687	else
 688		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 689	if (IS_ERR(sleb))
 690		return PTR_ERR(sleb);
 691
 692	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
 693	if (n_nodes < 0) {
 694		err = n_nodes;
 695		goto out;
 696	}
 697
 698	ubifs_shash_copy_state(c, b->bud->log_hash,
 699			       c->jheads[b->bud->jhead].log_hash);
 700
 701	/*
 702	 * The bud does not have to start from offset zero - the beginning of
 703	 * the 'lnum' LEB may contain previously committed data. One of the
 704	 * things we have to do in replay is to correctly update lprops with
 705	 * newer information about this LEB.
 706	 *
 707	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 708	 * bytes of free space because it only contain information about
 709	 * committed data.
 710	 *
 711	 * But we know that real amount of free space is 'c->leb_size -
 712	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 713	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 714	 * how much of these data are dirty and update lprops with this
 715	 * information.
 716	 *
 717	 * The dirt in that LEB region is comprised of padding nodes, deletion
 718	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 719	 * nodes in this LEB. So instead of calculating clean space, we
 720	 * calculate used space ('used' variable).
 721	 */
 722
 723	list_for_each_entry(snod, &sleb->nodes, list) {
 724		u8 hash[UBIFS_HASH_ARR_SZ];
 725		int deletion = 0;
 726
 727		cond_resched();
 728
 729		if (snod->sqnum >= SQNUM_WATERMARK) {
 730			ubifs_err(c, "file system's life ended");
 731			goto out_dump;
 732		}
 733
 734		ubifs_node_calc_hash(c, snod->node, hash);
 735
 736		if (snod->sqnum > c->max_sqnum)
 737			c->max_sqnum = snod->sqnum;
 738
 739		switch (snod->type) {
 740		case UBIFS_INO_NODE:
 741		{
 742			struct ubifs_ino_node *ino = snod->node;
 743			loff_t new_size = le64_to_cpu(ino->size);
 744
 745			if (le32_to_cpu(ino->nlink) == 0)
 746				deletion = 1;
 747			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 748					  &snod->key, snod->sqnum, deletion,
 749					  &used, 0, new_size);
 750			break;
 751		}
 752		case UBIFS_DATA_NODE:
 753		{
 754			struct ubifs_data_node *dn = snod->node;
 755			loff_t new_size = le32_to_cpu(dn->size) +
 756					  key_block(c, &snod->key) *
 757					  UBIFS_BLOCK_SIZE;
 758
 759			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 760					  &snod->key, snod->sqnum, deletion,
 761					  &used, 0, new_size);
 762			break;
 763		}
 764		case UBIFS_DENT_NODE:
 765		case UBIFS_XENT_NODE:
 766		{
 767			struct ubifs_dent_node *dent = snod->node;
 768
 769			err = ubifs_validate_entry(c, dent);
 770			if (err)
 771				goto out_dump;
 772
 773			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
 774					  &snod->key, dent->name,
 775					  le16_to_cpu(dent->nlen), snod->sqnum,
 776					  !le64_to_cpu(dent->inum), &used);
 777			break;
 778		}
 779		case UBIFS_TRUN_NODE:
 780		{
 781			struct ubifs_trun_node *trun = snod->node;
 782			loff_t old_size = le64_to_cpu(trun->old_size);
 783			loff_t new_size = le64_to_cpu(trun->new_size);
 784			union ubifs_key key;
 785
 786			/* Validate truncation node */
 787			if (old_size < 0 || old_size > c->max_inode_sz ||
 788			    new_size < 0 || new_size > c->max_inode_sz ||
 789			    old_size <= new_size) {
 790				ubifs_err(c, "bad truncation node");
 791				goto out_dump;
 792			}
 793
 794			/*
 795			 * Create a fake truncation key just to use the same
 796			 * functions which expect nodes to have keys.
 797			 */
 798			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 799			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 800					  &key, snod->sqnum, 1, &used,
 801					  old_size, new_size);
 802			break;
 803		}
 804		case UBIFS_AUTH_NODE:
 805			break;
 806		default:
 807			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 808				  snod->type, lnum, snod->offs);
 809			err = -EINVAL;
 810			goto out_dump;
 811		}
 812		if (err)
 813			goto out;
 814
 815		n++;
 816		if (n == n_nodes)
 817			break;
 818	}
 819
 820	ubifs_assert(c, ubifs_search_bud(c, lnum));
 821	ubifs_assert(c, sleb->endpt - offs >= used);
 822	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
 823
 824	b->dirty = sleb->endpt - offs - used;
 825	b->free = c->leb_size - sleb->endpt;
 826	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 827		lnum, b->dirty, b->free);
 828
 829out:
 830	ubifs_scan_destroy(sleb);
 831	return err;
 832
 833out_dump:
 834	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 835	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 836	ubifs_scan_destroy(sleb);
 837	return -EINVAL;
 838}
 839
 840/**
 841 * replay_buds - replay all buds.
 842 * @c: UBIFS file-system description object
 843 *
 844 * This function returns zero in case of success and a negative error code in
 845 * case of failure.
 846 */
 847static int replay_buds(struct ubifs_info *c)
 848{
 849	struct bud_entry *b;
 850	int err;
 851	unsigned long long prev_sqnum = 0;
 852
 853	list_for_each_entry(b, &c->replay_buds, list) {
 854		err = replay_bud(c, b);
 855		if (err)
 856			return err;
 857
 858		ubifs_assert(c, b->sqnum > prev_sqnum);
 859		prev_sqnum = b->sqnum;
 860	}
 861
 862	return 0;
 863}
 864
 865/**
 866 * destroy_bud_list - destroy the list of buds to replay.
 867 * @c: UBIFS file-system description object
 868 */
 869static void destroy_bud_list(struct ubifs_info *c)
 870{
 871	struct bud_entry *b;
 872
 873	while (!list_empty(&c->replay_buds)) {
 874		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 875		list_del(&b->list);
 876		kfree(b);
 877	}
 878}
 879
 880/**
 881 * add_replay_bud - add a bud to the list of buds to replay.
 882 * @c: UBIFS file-system description object
 883 * @lnum: bud logical eraseblock number to replay
 884 * @offs: bud start offset
 885 * @jhead: journal head to which this bud belongs
 886 * @sqnum: reference node sequence number
 887 *
 888 * This function returns zero in case of success and a negative error code in
 889 * case of failure.
 890 */
 891static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 892			  unsigned long long sqnum)
 893{
 894	struct ubifs_bud *bud;
 895	struct bud_entry *b;
 896	int err;
 897
 898	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 899
 900	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 901	if (!bud)
 902		return -ENOMEM;
 903
 904	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 905	if (!b) {
 906		err = -ENOMEM;
 907		goto out;
 908	}
 909
 910	bud->lnum = lnum;
 911	bud->start = offs;
 912	bud->jhead = jhead;
 913	bud->log_hash = ubifs_hash_get_desc(c);
 914	if (IS_ERR(bud->log_hash)) {
 915		err = PTR_ERR(bud->log_hash);
 916		goto out;
 917	}
 918
 919	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
 920
 921	ubifs_add_bud(c, bud);
 922
 923	b->bud = bud;
 924	b->sqnum = sqnum;
 925	list_add_tail(&b->list, &c->replay_buds);
 926
 927	return 0;
 928out:
 929	kfree(bud);
 930	kfree(b);
 931
 932	return err;
 933}
 934
 935/**
 936 * validate_ref - validate a reference node.
 937 * @c: UBIFS file-system description object
 938 * @ref: the reference node to validate
 939 *
 940 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 941 * returned if the reference node is new, otherwise %-EINVAL is returned if
 942 * validation failed.
 943 */
 944static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 945{
 946	struct ubifs_bud *bud;
 947	int lnum = le32_to_cpu(ref->lnum);
 948	unsigned int offs = le32_to_cpu(ref->offs);
 949	unsigned int jhead = le32_to_cpu(ref->jhead);
 950
 951	/*
 952	 * ref->offs may point to the end of LEB when the journal head points
 953	 * to the end of LEB and we write reference node for it during commit.
 954	 * So this is why we require 'offs > c->leb_size'.
 955	 */
 956	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 957	    lnum < c->main_first || offs > c->leb_size ||
 958	    offs & (c->min_io_size - 1))
 959		return -EINVAL;
 960
 961	/* Make sure we have not already looked at this bud */
 962	bud = ubifs_search_bud(c, lnum);
 963	if (bud) {
 964		if (bud->jhead == jhead && bud->start <= offs)
 965			return 1;
 966		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 967		return -EINVAL;
 968	}
 969
 970	return 0;
 971}
 972
 973/**
 974 * replay_log_leb - replay a log logical eraseblock.
 975 * @c: UBIFS file-system description object
 976 * @lnum: log logical eraseblock to replay
 977 * @offs: offset to start replaying from
 978 * @sbuf: scan buffer
 979 *
 980 * This function replays a log LEB and returns zero in case of success, %1 if
 981 * this is the last LEB in the log, and a negative error code in case of
 982 * failure.
 983 */
 984static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 985{
 986	int err;
 987	struct ubifs_scan_leb *sleb;
 988	struct ubifs_scan_node *snod;
 989	const struct ubifs_cs_node *node;
 990
 991	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 992	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 993	if (IS_ERR(sleb)) {
 994		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 995			return PTR_ERR(sleb);
 996		/*
 997		 * Note, the below function will recover this log LEB only if
 998		 * it is the last, because unclean reboots can possibly corrupt
 999		 * only the tail of the log.
1000		 */
1001		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1002		if (IS_ERR(sleb))
1003			return PTR_ERR(sleb);
1004	}
1005
1006	if (sleb->nodes_cnt == 0) {
1007		err = 1;
1008		goto out;
1009	}
1010
1011	node = sleb->buf;
1012	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1013	if (c->cs_sqnum == 0) {
1014		/*
1015		 * This is the first log LEB we are looking at, make sure that
1016		 * the first node is a commit start node. Also record its
1017		 * sequence number so that UBIFS can determine where the log
1018		 * ends, because all nodes which were have higher sequence
1019		 * numbers.
1020		 */
1021		if (snod->type != UBIFS_CS_NODE) {
1022			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1023				  lnum, offs);
1024			goto out_dump;
1025		}
1026		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1027			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1028				  lnum, offs,
1029				  (unsigned long long)le64_to_cpu(node->cmt_no),
1030				  c->cmt_no);
1031			goto out_dump;
1032		}
1033
1034		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1035		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1036
1037		err = ubifs_shash_init(c, c->log_hash);
1038		if (err)
1039			goto out;
1040
1041		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1042		if (err < 0)
1043			goto out;
1044	}
1045
1046	if (snod->sqnum < c->cs_sqnum) {
1047		/*
1048		 * This means that we reached end of log and now
1049		 * look to the older log data, which was already
1050		 * committed but the eraseblock was not erased (UBIFS
1051		 * only un-maps it). So this basically means we have to
1052		 * exit with "end of log" code.
1053		 */
1054		err = 1;
1055		goto out;
1056	}
1057
1058	/* Make sure the first node sits at offset zero of the LEB */
1059	if (snod->offs != 0) {
1060		ubifs_err(c, "first node is not at zero offset");
1061		goto out_dump;
1062	}
1063
1064	list_for_each_entry(snod, &sleb->nodes, list) {
1065		cond_resched();
1066
1067		if (snod->sqnum >= SQNUM_WATERMARK) {
1068			ubifs_err(c, "file system's life ended");
1069			goto out_dump;
1070		}
1071
1072		if (snod->sqnum < c->cs_sqnum) {
1073			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1074				  snod->sqnum, c->cs_sqnum);
1075			goto out_dump;
1076		}
1077
1078		if (snod->sqnum > c->max_sqnum)
1079			c->max_sqnum = snod->sqnum;
1080
1081		switch (snod->type) {
1082		case UBIFS_REF_NODE: {
1083			const struct ubifs_ref_node *ref = snod->node;
1084
1085			err = validate_ref(c, ref);
1086			if (err == 1)
1087				break; /* Already have this bud */
1088			if (err)
1089				goto out_dump;
1090
1091			err = ubifs_shash_update(c, c->log_hash, ref,
1092						 UBIFS_REF_NODE_SZ);
1093			if (err)
1094				goto out;
1095
1096			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1097					     le32_to_cpu(ref->offs),
1098					     le32_to_cpu(ref->jhead),
1099					     snod->sqnum);
1100			if (err)
1101				goto out;
1102
1103			break;
1104		}
1105		case UBIFS_CS_NODE:
1106			/* Make sure it sits at the beginning of LEB */
1107			if (snod->offs != 0) {
1108				ubifs_err(c, "unexpected node in log");
1109				goto out_dump;
1110			}
1111			break;
1112		default:
1113			ubifs_err(c, "unexpected node in log");
1114			goto out_dump;
1115		}
1116	}
1117
1118	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1119		c->lhead_lnum = lnum;
1120		c->lhead_offs = sleb->endpt;
1121	}
1122
1123	err = !sleb->endpt;
1124out:
1125	ubifs_scan_destroy(sleb);
1126	return err;
1127
1128out_dump:
1129	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1130		  lnum, offs + snod->offs);
1131	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1132	ubifs_scan_destroy(sleb);
1133	return -EINVAL;
1134}
1135
1136/**
1137 * take_ihead - update the status of the index head in lprops to 'taken'.
1138 * @c: UBIFS file-system description object
1139 *
1140 * This function returns the amount of free space in the index head LEB or a
1141 * negative error code.
1142 */
1143static int take_ihead(struct ubifs_info *c)
1144{
1145	const struct ubifs_lprops *lp;
1146	int err, free;
1147
1148	ubifs_get_lprops(c);
1149
1150	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1151	if (IS_ERR(lp)) {
1152		err = PTR_ERR(lp);
1153		goto out;
1154	}
1155
1156	free = lp->free;
1157
1158	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1159			     lp->flags | LPROPS_TAKEN, 0);
1160	if (IS_ERR(lp)) {
1161		err = PTR_ERR(lp);
1162		goto out;
1163	}
1164
1165	err = free;
1166out:
1167	ubifs_release_lprops(c);
1168	return err;
1169}
1170
1171/**
1172 * ubifs_replay_journal - replay journal.
1173 * @c: UBIFS file-system description object
1174 *
1175 * This function scans the journal, replays and cleans it up. It makes sure all
1176 * memory data structures related to uncommitted journal are built (dirty TNC
1177 * tree, tree of buds, modified lprops, etc).
1178 */
1179int ubifs_replay_journal(struct ubifs_info *c)
1180{
1181	int err, lnum, free;
1182
1183	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1184
1185	/* Update the status of the index head in lprops to 'taken' */
1186	free = take_ihead(c);
1187	if (free < 0)
1188		return free; /* Error code */
1189
1190	if (c->ihead_offs != c->leb_size - free) {
1191		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1192			  c->ihead_offs);
1193		return -EINVAL;
1194	}
1195
1196	dbg_mnt("start replaying the journal");
1197	c->replaying = 1;
1198	lnum = c->ltail_lnum = c->lhead_lnum;
1199
1200	do {
1201		err = replay_log_leb(c, lnum, 0, c->sbuf);
1202		if (err == 1) {
1203			if (lnum != c->lhead_lnum)
1204				/* We hit the end of the log */
1205				break;
1206
1207			/*
1208			 * The head of the log must always start with the
1209			 * "commit start" node on a properly formatted UBIFS.
1210			 * But we found no nodes at all, which means that
1211			 * something went wrong and we cannot proceed mounting
1212			 * the file-system.
1213			 */
1214			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1215				  lnum, 0);
1216			err = -EINVAL;
1217		}
1218		if (err)
1219			goto out;
1220		lnum = ubifs_next_log_lnum(c, lnum);
1221	} while (lnum != c->ltail_lnum);
1222
1223	err = replay_buds(c);
1224	if (err)
1225		goto out;
1226
1227	err = apply_replay_list(c);
1228	if (err)
1229		goto out;
1230
1231	err = set_buds_lprops(c);
1232	if (err)
1233		goto out;
1234
1235	/*
1236	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1237	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1238	 * depend on it. This means we have to initialize it to make sure
1239	 * budgeting works properly.
1240	 */
1241	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1242	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1243
1244	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1245	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1246		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1247		(unsigned long)c->highest_inum);
1248out:
1249	destroy_replay_list(c);
1250	destroy_bud_list(c);
1251	c->replaying = 0;
1252	return err;
1253}