Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/readpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 * Copyright (C) 2015, Google, Inc.
  7 *
  8 * This was originally taken from fs/mpage.c
  9 *
 10 * The ext4_mpage_readpages() function here is intended to
 11 * replace mpage_readahead() in the general case, not just for
 12 * encrypted files.  It has some limitations (see below), where it
 13 * will fall back to read_block_full_page(), but these limitations
 14 * should only be hit when page_size != block_size.
 15 *
 16 * This will allow us to attach a callback function to support ext4
 17 * encryption.
 18 *
 19 * If anything unusual happens, such as:
 20 *
 21 * - encountering a page which has buffers
 22 * - encountering a page which has a non-hole after a hole
 23 * - encountering a page with non-contiguous blocks
 24 *
 25 * then this code just gives up and calls the buffer_head-based read function.
 26 * It does handle a page which has holes at the end - that is a common case:
 27 * the end-of-file on blocksize < PAGE_SIZE setups.
 28 *
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/export.h>
 33#include <linux/mm.h>
 34#include <linux/kdev_t.h>
 35#include <linux/gfp.h>
 36#include <linux/bio.h>
 37#include <linux/fs.h>
 38#include <linux/buffer_head.h>
 39#include <linux/blkdev.h>
 40#include <linux/highmem.h>
 41#include <linux/prefetch.h>
 42#include <linux/mpage.h>
 43#include <linux/writeback.h>
 44#include <linux/backing-dev.h>
 45#include <linux/pagevec.h>
 46
 47#include "ext4.h"
 48
 49#define NUM_PREALLOC_POST_READ_CTXS	128
 50
 51static struct kmem_cache *bio_post_read_ctx_cache;
 52static mempool_t *bio_post_read_ctx_pool;
 53
 54/* postprocessing steps for read bios */
 55enum bio_post_read_step {
 56	STEP_INITIAL = 0,
 57	STEP_DECRYPT,
 58	STEP_VERITY,
 59	STEP_MAX,
 60};
 61
 62struct bio_post_read_ctx {
 63	struct bio *bio;
 64	struct work_struct work;
 65	unsigned int cur_step;
 66	unsigned int enabled_steps;
 67};
 68
 69static void __read_end_io(struct bio *bio)
 70{
 71	struct page *page;
 72	struct bio_vec *bv;
 73	struct bvec_iter_all iter_all;
 74
 75	bio_for_each_segment_all(bv, bio, iter_all) {
 76		page = bv->bv_page;
 77
 78		if (bio->bi_status)
 79			ClearPageUptodate(page);
 80		else
 81			SetPageUptodate(page);
 82		unlock_page(page);
 83	}
 84	if (bio->bi_private)
 85		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 86	bio_put(bio);
 87}
 88
 89static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 90
 91static void decrypt_work(struct work_struct *work)
 92{
 93	struct bio_post_read_ctx *ctx =
 94		container_of(work, struct bio_post_read_ctx, work);
 95	struct bio *bio = ctx->bio;
 96
 97	if (fscrypt_decrypt_bio(bio))
 98		bio_post_read_processing(ctx);
 99	else
100		__read_end_io(bio);
101}
102
103static void verity_work(struct work_struct *work)
104{
105	struct bio_post_read_ctx *ctx =
106		container_of(work, struct bio_post_read_ctx, work);
107	struct bio *bio = ctx->bio;
108
109	/*
110	 * fsverity_verify_bio() may call readahead() again, and although verity
111	 * will be disabled for that, decryption may still be needed, causing
112	 * another bio_post_read_ctx to be allocated.  So to guarantee that
113	 * mempool_alloc() never deadlocks we must free the current ctx first.
114	 * This is safe because verity is the last post-read step.
115	 */
116	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
117	mempool_free(ctx, bio_post_read_ctx_pool);
118	bio->bi_private = NULL;
119
120	fsverity_verify_bio(bio);
121
122	__read_end_io(bio);
123}
124
125static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
126{
127	/*
128	 * We use different work queues for decryption and for verity because
129	 * verity may require reading metadata pages that need decryption, and
130	 * we shouldn't recurse to the same workqueue.
131	 */
132	switch (++ctx->cur_step) {
133	case STEP_DECRYPT:
134		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
135			INIT_WORK(&ctx->work, decrypt_work);
136			fscrypt_enqueue_decrypt_work(&ctx->work);
137			return;
138		}
139		ctx->cur_step++;
140		fallthrough;
141	case STEP_VERITY:
142		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
143			INIT_WORK(&ctx->work, verity_work);
144			fsverity_enqueue_verify_work(&ctx->work);
145			return;
146		}
147		ctx->cur_step++;
148		fallthrough;
149	default:
150		__read_end_io(ctx->bio);
151	}
152}
153
154static bool bio_post_read_required(struct bio *bio)
155{
156	return bio->bi_private && !bio->bi_status;
157}
158
159/*
160 * I/O completion handler for multipage BIOs.
161 *
162 * The mpage code never puts partial pages into a BIO (except for end-of-file).
163 * If a page does not map to a contiguous run of blocks then it simply falls
164 * back to block_read_full_folio().
165 *
166 * Why is this?  If a page's completion depends on a number of different BIOs
167 * which can complete in any order (or at the same time) then determining the
168 * status of that page is hard.  See end_buffer_async_read() for the details.
169 * There is no point in duplicating all that complexity.
170 */
171static void mpage_end_io(struct bio *bio)
172{
173	if (bio_post_read_required(bio)) {
174		struct bio_post_read_ctx *ctx = bio->bi_private;
175
176		ctx->cur_step = STEP_INITIAL;
177		bio_post_read_processing(ctx);
178		return;
179	}
180	__read_end_io(bio);
181}
182
183static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
184{
185	return fsverity_active(inode) &&
186	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
187}
188
189static void ext4_set_bio_post_read_ctx(struct bio *bio,
190				       const struct inode *inode,
191				       pgoff_t first_idx)
192{
193	unsigned int post_read_steps = 0;
194
195	if (fscrypt_inode_uses_fs_layer_crypto(inode))
196		post_read_steps |= 1 << STEP_DECRYPT;
197
198	if (ext4_need_verity(inode, first_idx))
199		post_read_steps |= 1 << STEP_VERITY;
200
201	if (post_read_steps) {
202		/* Due to the mempool, this never fails. */
203		struct bio_post_read_ctx *ctx =
204			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
205
206		ctx->bio = bio;
207		ctx->enabled_steps = post_read_steps;
208		bio->bi_private = ctx;
209	}
210}
211
212static inline loff_t ext4_readpage_limit(struct inode *inode)
213{
214	if (IS_ENABLED(CONFIG_FS_VERITY) &&
215	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
216		return inode->i_sb->s_maxbytes;
217
218	return i_size_read(inode);
219}
220
221int ext4_mpage_readpages(struct inode *inode,
222		struct readahead_control *rac, struct page *page)
223{
224	struct bio *bio = NULL;
225	sector_t last_block_in_bio = 0;
226
227	const unsigned blkbits = inode->i_blkbits;
228	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
229	const unsigned blocksize = 1 << blkbits;
230	sector_t next_block;
231	sector_t block_in_file;
232	sector_t last_block;
233	sector_t last_block_in_file;
234	sector_t blocks[MAX_BUF_PER_PAGE];
235	unsigned page_block;
236	struct block_device *bdev = inode->i_sb->s_bdev;
237	int length;
238	unsigned relative_block = 0;
239	struct ext4_map_blocks map;
240	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
241
242	map.m_pblk = 0;
243	map.m_lblk = 0;
244	map.m_len = 0;
245	map.m_flags = 0;
246
247	for (; nr_pages; nr_pages--) {
248		int fully_mapped = 1;
249		unsigned first_hole = blocks_per_page;
250
251		if (rac) {
252			page = readahead_page(rac);
253			prefetchw(&page->flags);
254		}
255
256		if (page_has_buffers(page))
257			goto confused;
258
259		block_in_file = next_block =
260			(sector_t)page->index << (PAGE_SHIFT - blkbits);
261		last_block = block_in_file + nr_pages * blocks_per_page;
262		last_block_in_file = (ext4_readpage_limit(inode) +
263				      blocksize - 1) >> blkbits;
264		if (last_block > last_block_in_file)
265			last_block = last_block_in_file;
266		page_block = 0;
267
268		/*
269		 * Map blocks using the previous result first.
270		 */
271		if ((map.m_flags & EXT4_MAP_MAPPED) &&
272		    block_in_file > map.m_lblk &&
273		    block_in_file < (map.m_lblk + map.m_len)) {
274			unsigned map_offset = block_in_file - map.m_lblk;
275			unsigned last = map.m_len - map_offset;
276
 
277			for (relative_block = 0; ; relative_block++) {
278				if (relative_block == last) {
279					/* needed? */
280					map.m_flags &= ~EXT4_MAP_MAPPED;
281					break;
282				}
283				if (page_block == blocks_per_page)
284					break;
285				blocks[page_block] = map.m_pblk + map_offset +
286					relative_block;
287				page_block++;
288				block_in_file++;
289			}
290		}
291
292		/*
293		 * Then do more ext4_map_blocks() calls until we are
294		 * done with this page.
295		 */
296		while (page_block < blocks_per_page) {
297			if (block_in_file < last_block) {
298				map.m_lblk = block_in_file;
299				map.m_len = last_block - block_in_file;
300
301				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
302				set_error_page:
303					SetPageError(page);
304					zero_user_segment(page, 0,
305							  PAGE_SIZE);
306					unlock_page(page);
307					goto next_page;
308				}
309			}
310			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
311				fully_mapped = 0;
312				if (first_hole == blocks_per_page)
313					first_hole = page_block;
314				page_block++;
315				block_in_file++;
316				continue;
317			}
318			if (first_hole != blocks_per_page)
319				goto confused;		/* hole -> non-hole */
320
321			/* Contiguous blocks? */
322			if (page_block && blocks[page_block-1] != map.m_pblk-1)
 
 
323				goto confused;
324			for (relative_block = 0; ; relative_block++) {
325				if (relative_block == map.m_len) {
326					/* needed? */
327					map.m_flags &= ~EXT4_MAP_MAPPED;
328					break;
329				} else if (page_block == blocks_per_page)
330					break;
331				blocks[page_block] = map.m_pblk+relative_block;
332				page_block++;
333				block_in_file++;
334			}
335		}
336		if (first_hole != blocks_per_page) {
337			zero_user_segment(page, first_hole << blkbits,
338					  PAGE_SIZE);
339			if (first_hole == 0) {
340				if (ext4_need_verity(inode, page->index) &&
341				    !fsverity_verify_page(page))
342					goto set_error_page;
343				SetPageUptodate(page);
344				unlock_page(page);
345				goto next_page;
346			}
347		} else if (fully_mapped) {
348			SetPageMappedToDisk(page);
349		}
350
351		/*
352		 * This page will go to BIO.  Do we need to send this
353		 * BIO off first?
354		 */
355		if (bio && (last_block_in_bio != blocks[0] - 1 ||
356			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
357		submit_and_realloc:
358			submit_bio(bio);
359			bio = NULL;
360		}
361		if (bio == NULL) {
362			/*
363			 * bio_alloc will _always_ be able to allocate a bio if
364			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
365			 */
366			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
367					REQ_OP_READ, GFP_KERNEL);
368			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
369						  GFP_KERNEL);
370			ext4_set_bio_post_read_ctx(bio, inode, page->index);
371			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
372			bio->bi_end_io = mpage_end_io;
373			if (rac)
374				bio->bi_opf |= REQ_RAHEAD;
375		}
376
377		length = first_hole << blkbits;
378		if (bio_add_page(bio, page, length, 0) < length)
379			goto submit_and_realloc;
380
381		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
382		     (relative_block == map.m_len)) ||
383		    (first_hole != blocks_per_page)) {
384			submit_bio(bio);
385			bio = NULL;
386		} else
387			last_block_in_bio = blocks[blocks_per_page - 1];
388		goto next_page;
389	confused:
390		if (bio) {
391			submit_bio(bio);
392			bio = NULL;
393		}
394		if (!PageUptodate(page))
395			block_read_full_folio(page_folio(page), ext4_get_block);
396		else
397			unlock_page(page);
398	next_page:
399		if (rac)
400			put_page(page);
401	}
402	if (bio)
403		submit_bio(bio);
404	return 0;
405}
406
407int __init ext4_init_post_read_processing(void)
408{
409	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
410
411	if (!bio_post_read_ctx_cache)
412		goto fail;
413	bio_post_read_ctx_pool =
414		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
415					 bio_post_read_ctx_cache);
416	if (!bio_post_read_ctx_pool)
417		goto fail_free_cache;
418	return 0;
419
420fail_free_cache:
421	kmem_cache_destroy(bio_post_read_ctx_cache);
422fail:
423	return -ENOMEM;
424}
425
426void ext4_exit_post_read_processing(void)
427{
428	mempool_destroy(bio_post_read_ctx_pool);
429	kmem_cache_destroy(bio_post_read_ctx_cache);
430}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/readpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 * Copyright (C) 2015, Google, Inc.
  7 *
  8 * This was originally taken from fs/mpage.c
  9 *
 10 * The ext4_mpage_readpages() function here is intended to
 11 * replace mpage_readahead() in the general case, not just for
 12 * encrypted files.  It has some limitations (see below), where it
 13 * will fall back to read_block_full_page(), but these limitations
 14 * should only be hit when page_size != block_size.
 15 *
 16 * This will allow us to attach a callback function to support ext4
 17 * encryption.
 18 *
 19 * If anything unusual happens, such as:
 20 *
 21 * - encountering a page which has buffers
 22 * - encountering a page which has a non-hole after a hole
 23 * - encountering a page with non-contiguous blocks
 24 *
 25 * then this code just gives up and calls the buffer_head-based read function.
 26 * It does handle a page which has holes at the end - that is a common case:
 27 * the end-of-file on blocksize < PAGE_SIZE setups.
 28 *
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/export.h>
 33#include <linux/mm.h>
 34#include <linux/kdev_t.h>
 35#include <linux/gfp.h>
 36#include <linux/bio.h>
 37#include <linux/fs.h>
 38#include <linux/buffer_head.h>
 39#include <linux/blkdev.h>
 40#include <linux/highmem.h>
 41#include <linux/prefetch.h>
 42#include <linux/mpage.h>
 43#include <linux/writeback.h>
 44#include <linux/backing-dev.h>
 45#include <linux/pagevec.h>
 46
 47#include "ext4.h"
 48
 49#define NUM_PREALLOC_POST_READ_CTXS	128
 50
 51static struct kmem_cache *bio_post_read_ctx_cache;
 52static mempool_t *bio_post_read_ctx_pool;
 53
 54/* postprocessing steps for read bios */
 55enum bio_post_read_step {
 56	STEP_INITIAL = 0,
 57	STEP_DECRYPT,
 58	STEP_VERITY,
 59	STEP_MAX,
 60};
 61
 62struct bio_post_read_ctx {
 63	struct bio *bio;
 64	struct work_struct work;
 65	unsigned int cur_step;
 66	unsigned int enabled_steps;
 67};
 68
 69static void __read_end_io(struct bio *bio)
 70{
 71	struct folio_iter fi;
 
 
 72
 73	bio_for_each_folio_all(fi, bio)
 74		folio_end_read(fi.folio, bio->bi_status == 0);
 
 
 
 
 
 
 
 75	if (bio->bi_private)
 76		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 77	bio_put(bio);
 78}
 79
 80static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 81
 82static void decrypt_work(struct work_struct *work)
 83{
 84	struct bio_post_read_ctx *ctx =
 85		container_of(work, struct bio_post_read_ctx, work);
 86	struct bio *bio = ctx->bio;
 87
 88	if (fscrypt_decrypt_bio(bio))
 89		bio_post_read_processing(ctx);
 90	else
 91		__read_end_io(bio);
 92}
 93
 94static void verity_work(struct work_struct *work)
 95{
 96	struct bio_post_read_ctx *ctx =
 97		container_of(work, struct bio_post_read_ctx, work);
 98	struct bio *bio = ctx->bio;
 99
100	/*
101	 * fsverity_verify_bio() may call readahead() again, and although verity
102	 * will be disabled for that, decryption may still be needed, causing
103	 * another bio_post_read_ctx to be allocated.  So to guarantee that
104	 * mempool_alloc() never deadlocks we must free the current ctx first.
105	 * This is safe because verity is the last post-read step.
106	 */
107	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108	mempool_free(ctx, bio_post_read_ctx_pool);
109	bio->bi_private = NULL;
110
111	fsverity_verify_bio(bio);
112
113	__read_end_io(bio);
114}
115
116static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117{
118	/*
119	 * We use different work queues for decryption and for verity because
120	 * verity may require reading metadata pages that need decryption, and
121	 * we shouldn't recurse to the same workqueue.
122	 */
123	switch (++ctx->cur_step) {
124	case STEP_DECRYPT:
125		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126			INIT_WORK(&ctx->work, decrypt_work);
127			fscrypt_enqueue_decrypt_work(&ctx->work);
128			return;
129		}
130		ctx->cur_step++;
131		fallthrough;
132	case STEP_VERITY:
133		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134			INIT_WORK(&ctx->work, verity_work);
135			fsverity_enqueue_verify_work(&ctx->work);
136			return;
137		}
138		ctx->cur_step++;
139		fallthrough;
140	default:
141		__read_end_io(ctx->bio);
142	}
143}
144
145static bool bio_post_read_required(struct bio *bio)
146{
147	return bio->bi_private && !bio->bi_status;
148}
149
150/*
151 * I/O completion handler for multipage BIOs.
152 *
153 * The mpage code never puts partial pages into a BIO (except for end-of-file).
154 * If a page does not map to a contiguous run of blocks then it simply falls
155 * back to block_read_full_folio().
156 *
157 * Why is this?  If a page's completion depends on a number of different BIOs
158 * which can complete in any order (or at the same time) then determining the
159 * status of that page is hard.  See end_buffer_async_read() for the details.
160 * There is no point in duplicating all that complexity.
161 */
162static void mpage_end_io(struct bio *bio)
163{
164	if (bio_post_read_required(bio)) {
165		struct bio_post_read_ctx *ctx = bio->bi_private;
166
167		ctx->cur_step = STEP_INITIAL;
168		bio_post_read_processing(ctx);
169		return;
170	}
171	__read_end_io(bio);
172}
173
174static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175{
176	return fsverity_active(inode) &&
177	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178}
179
180static void ext4_set_bio_post_read_ctx(struct bio *bio,
181				       const struct inode *inode,
182				       pgoff_t first_idx)
183{
184	unsigned int post_read_steps = 0;
185
186	if (fscrypt_inode_uses_fs_layer_crypto(inode))
187		post_read_steps |= 1 << STEP_DECRYPT;
188
189	if (ext4_need_verity(inode, first_idx))
190		post_read_steps |= 1 << STEP_VERITY;
191
192	if (post_read_steps) {
193		/* Due to the mempool, this never fails. */
194		struct bio_post_read_ctx *ctx =
195			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196
197		ctx->bio = bio;
198		ctx->enabled_steps = post_read_steps;
199		bio->bi_private = ctx;
200	}
201}
202
203static inline loff_t ext4_readpage_limit(struct inode *inode)
204{
205	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
 
206		return inode->i_sb->s_maxbytes;
207
208	return i_size_read(inode);
209}
210
211int ext4_mpage_readpages(struct inode *inode,
212		struct readahead_control *rac, struct folio *folio)
213{
214	struct bio *bio = NULL;
215	sector_t last_block_in_bio = 0;
216
217	const unsigned blkbits = inode->i_blkbits;
218	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
219	const unsigned blocksize = 1 << blkbits;
220	sector_t next_block;
221	sector_t block_in_file;
222	sector_t last_block;
223	sector_t last_block_in_file;
224	sector_t first_block;
225	unsigned page_block;
226	struct block_device *bdev = inode->i_sb->s_bdev;
227	int length;
228	unsigned relative_block = 0;
229	struct ext4_map_blocks map;
230	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
231
232	map.m_pblk = 0;
233	map.m_lblk = 0;
234	map.m_len = 0;
235	map.m_flags = 0;
236
237	for (; nr_pages; nr_pages--) {
238		int fully_mapped = 1;
239		unsigned first_hole = blocks_per_page;
240
241		if (rac)
242			folio = readahead_folio(rac);
243		prefetchw(&folio->flags);
 
244
245		if (folio_buffers(folio))
246			goto confused;
247
248		block_in_file = next_block =
249			(sector_t)folio->index << (PAGE_SHIFT - blkbits);
250		last_block = block_in_file + nr_pages * blocks_per_page;
251		last_block_in_file = (ext4_readpage_limit(inode) +
252				      blocksize - 1) >> blkbits;
253		if (last_block > last_block_in_file)
254			last_block = last_block_in_file;
255		page_block = 0;
256
257		/*
258		 * Map blocks using the previous result first.
259		 */
260		if ((map.m_flags & EXT4_MAP_MAPPED) &&
261		    block_in_file > map.m_lblk &&
262		    block_in_file < (map.m_lblk + map.m_len)) {
263			unsigned map_offset = block_in_file - map.m_lblk;
264			unsigned last = map.m_len - map_offset;
265
266			first_block = map.m_pblk + map_offset;
267			for (relative_block = 0; ; relative_block++) {
268				if (relative_block == last) {
269					/* needed? */
270					map.m_flags &= ~EXT4_MAP_MAPPED;
271					break;
272				}
273				if (page_block == blocks_per_page)
274					break;
 
 
275				page_block++;
276				block_in_file++;
277			}
278		}
279
280		/*
281		 * Then do more ext4_map_blocks() calls until we are
282		 * done with this folio.
283		 */
284		while (page_block < blocks_per_page) {
285			if (block_in_file < last_block) {
286				map.m_lblk = block_in_file;
287				map.m_len = last_block - block_in_file;
288
289				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
290				set_error_page:
291					folio_zero_segment(folio, 0,
292							  folio_size(folio));
293					folio_unlock(folio);
 
294					goto next_page;
295				}
296			}
297			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
298				fully_mapped = 0;
299				if (first_hole == blocks_per_page)
300					first_hole = page_block;
301				page_block++;
302				block_in_file++;
303				continue;
304			}
305			if (first_hole != blocks_per_page)
306				goto confused;		/* hole -> non-hole */
307
308			/* Contiguous blocks? */
309			if (!page_block)
310				first_block = map.m_pblk;
311			else if (first_block + page_block != map.m_pblk)
312				goto confused;
313			for (relative_block = 0; ; relative_block++) {
314				if (relative_block == map.m_len) {
315					/* needed? */
316					map.m_flags &= ~EXT4_MAP_MAPPED;
317					break;
318				} else if (page_block == blocks_per_page)
319					break;
 
320				page_block++;
321				block_in_file++;
322			}
323		}
324		if (first_hole != blocks_per_page) {
325			folio_zero_segment(folio, first_hole << blkbits,
326					  folio_size(folio));
327			if (first_hole == 0) {
328				if (ext4_need_verity(inode, folio->index) &&
329				    !fsverity_verify_folio(folio))
330					goto set_error_page;
331				folio_end_read(folio, true);
332				continue;
 
333			}
334		} else if (fully_mapped) {
335			folio_set_mappedtodisk(folio);
336		}
337
338		/*
339		 * This folio will go to BIO.  Do we need to send this
340		 * BIO off first?
341		 */
342		if (bio && (last_block_in_bio != first_block - 1 ||
343			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
344		submit_and_realloc:
345			submit_bio(bio);
346			bio = NULL;
347		}
348		if (bio == NULL) {
349			/*
350			 * bio_alloc will _always_ be able to allocate a bio if
351			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
352			 */
353			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
354					REQ_OP_READ, GFP_KERNEL);
355			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
356						  GFP_KERNEL);
357			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
358			bio->bi_iter.bi_sector = first_block << (blkbits - 9);
359			bio->bi_end_io = mpage_end_io;
360			if (rac)
361				bio->bi_opf |= REQ_RAHEAD;
362		}
363
364		length = first_hole << blkbits;
365		if (!bio_add_folio(bio, folio, length, 0))
366			goto submit_and_realloc;
367
368		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
369		     (relative_block == map.m_len)) ||
370		    (first_hole != blocks_per_page)) {
371			submit_bio(bio);
372			bio = NULL;
373		} else
374			last_block_in_bio = first_block + blocks_per_page - 1;
375		continue;
376	confused:
377		if (bio) {
378			submit_bio(bio);
379			bio = NULL;
380		}
381		if (!folio_test_uptodate(folio))
382			block_read_full_folio(folio, ext4_get_block);
383		else
384			folio_unlock(folio);
385next_page:
386		; /* A label shall be followed by a statement until C23 */
 
387	}
388	if (bio)
389		submit_bio(bio);
390	return 0;
391}
392
393int __init ext4_init_post_read_processing(void)
394{
395	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
396
397	if (!bio_post_read_ctx_cache)
398		goto fail;
399	bio_post_read_ctx_pool =
400		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
401					 bio_post_read_ctx_cache);
402	if (!bio_post_read_ctx_pool)
403		goto fail_free_cache;
404	return 0;
405
406fail_free_cache:
407	kmem_cache_destroy(bio_post_read_ctx_cache);
408fail:
409	return -ENOMEM;
410}
411
412void ext4_exit_post_read_processing(void)
413{
414	mempool_destroy(bio_post_read_ctx_pool);
415	kmem_cache_destroy(bio_post_read_ctx_cache);
416}