Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/fs.h>
   5#include <linux/sort.h>
   6#include <linux/slab.h>
   7#include <linux/iversion.h>
   8#include "super.h"
   9#include "mds_client.h"
  10#include <linux/ceph/decode.h>
  11
  12/* unused map expires after 5 minutes */
  13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  14
  15/*
  16 * Snapshots in ceph are driven in large part by cooperation from the
  17 * client.  In contrast to local file systems or file servers that
  18 * implement snapshots at a single point in the system, ceph's
  19 * distributed access to storage requires clients to help decide
  20 * whether a write logically occurs before or after a recently created
  21 * snapshot.
  22 *
  23 * This provides a perfect instantanous client-wide snapshot.  Between
  24 * clients, however, snapshots may appear to be applied at slightly
  25 * different points in time, depending on delays in delivering the
  26 * snapshot notification.
  27 *
  28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  29 * applies to the subdirectory nested beneath some directory.  This
  30 * effectively divides the hierarchy into multiple "realms," where all
  31 * of the files contained by each realm share the same set of
  32 * snapshots.  An individual realm's snap set contains snapshots
  33 * explicitly created on that realm, as well as any snaps in its
  34 * parent's snap set _after_ the point at which the parent became it's
  35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  36 * during the time intervals during which they were the parent are included.
  37 *
  38 * The client is spared most of this detail, fortunately... it must only
  39 * maintains a hierarchy of realms reflecting the current parent/child
  40 * realm relationship, and for each realm has an explicit list of snaps
  41 * inherited from prior parents.
  42 *
  43 * A snap_realm struct is maintained for realms containing every inode
  44 * with an open cap in the system.  (The needed snap realm information is
  45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  46 * version number is used to ensure that as realm parameters change (new
  47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  48 *
  49 * The realm hierarchy drives the generation of a 'snap context' for each
  50 * realm, which simply lists the resulting set of snaps for the realm.  This
  51 * is attached to any writes sent to OSDs.
  52 */
  53/*
  54 * Unfortunately error handling is a bit mixed here.  If we get a snap
  55 * update, but don't have enough memory to update our realm hierarchy,
  56 * it's not clear what we can do about it (besides complaining to the
  57 * console).
  58 */
  59
  60
  61/*
  62 * increase ref count for the realm
  63 *
  64 * caller must hold snap_rwsem.
  65 */
  66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  67			 struct ceph_snap_realm *realm)
  68{
  69	lockdep_assert_held(&mdsc->snap_rwsem);
  70
  71	/*
  72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
  73	 * atomically with the refcount change. Go ahead and bump the
  74	 * nref here, unless it's 0, in which case we take the spinlock
  75	 * and then do the increment and remove it from the list.
  76	 */
  77	if (atomic_inc_not_zero(&realm->nref))
  78		return;
  79
  80	spin_lock(&mdsc->snap_empty_lock);
  81	if (atomic_inc_return(&realm->nref) == 1)
  82		list_del_init(&realm->empty_item);
  83	spin_unlock(&mdsc->snap_empty_lock);
  84}
  85
  86static void __insert_snap_realm(struct rb_root *root,
  87				struct ceph_snap_realm *new)
  88{
  89	struct rb_node **p = &root->rb_node;
  90	struct rb_node *parent = NULL;
  91	struct ceph_snap_realm *r = NULL;
  92
  93	while (*p) {
  94		parent = *p;
  95		r = rb_entry(parent, struct ceph_snap_realm, node);
  96		if (new->ino < r->ino)
  97			p = &(*p)->rb_left;
  98		else if (new->ino > r->ino)
  99			p = &(*p)->rb_right;
 100		else
 101			BUG();
 102	}
 103
 104	rb_link_node(&new->node, parent, p);
 105	rb_insert_color(&new->node, root);
 106}
 107
 108/*
 109 * create and get the realm rooted at @ino and bump its ref count.
 110 *
 111 * caller must hold snap_rwsem for write.
 112 */
 113static struct ceph_snap_realm *ceph_create_snap_realm(
 114	struct ceph_mds_client *mdsc,
 115	u64 ino)
 116{
 117	struct ceph_snap_realm *realm;
 118
 119	lockdep_assert_held_write(&mdsc->snap_rwsem);
 120
 121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 122	if (!realm)
 123		return ERR_PTR(-ENOMEM);
 124
 125	/* Do not release the global dummy snaprealm until unmouting */
 126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
 127		atomic_set(&realm->nref, 2);
 128	else
 129		atomic_set(&realm->nref, 1);
 130	realm->ino = ino;
 131	INIT_LIST_HEAD(&realm->children);
 132	INIT_LIST_HEAD(&realm->child_item);
 133	INIT_LIST_HEAD(&realm->empty_item);
 134	INIT_LIST_HEAD(&realm->dirty_item);
 135	INIT_LIST_HEAD(&realm->rebuild_item);
 136	INIT_LIST_HEAD(&realm->inodes_with_caps);
 137	spin_lock_init(&realm->inodes_with_caps_lock);
 138	__insert_snap_realm(&mdsc->snap_realms, realm);
 139	mdsc->num_snap_realms++;
 140
 141	dout("%s %llx %p\n", __func__, realm->ino, realm);
 142	return realm;
 143}
 144
 145/*
 146 * lookup the realm rooted at @ino.
 147 *
 148 * caller must hold snap_rwsem.
 149 */
 150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 151						   u64 ino)
 152{
 
 153	struct rb_node *n = mdsc->snap_realms.rb_node;
 154	struct ceph_snap_realm *r;
 155
 156	lockdep_assert_held(&mdsc->snap_rwsem);
 157
 158	while (n) {
 159		r = rb_entry(n, struct ceph_snap_realm, node);
 160		if (ino < r->ino)
 161			n = n->rb_left;
 162		else if (ino > r->ino)
 163			n = n->rb_right;
 164		else {
 165			dout("%s %llx %p\n", __func__, r->ino, r);
 166			return r;
 167		}
 168	}
 169	return NULL;
 170}
 171
 172struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 173					       u64 ino)
 174{
 175	struct ceph_snap_realm *r;
 176	r = __lookup_snap_realm(mdsc, ino);
 177	if (r)
 178		ceph_get_snap_realm(mdsc, r);
 179	return r;
 180}
 181
 182static void __put_snap_realm(struct ceph_mds_client *mdsc,
 183			     struct ceph_snap_realm *realm);
 184
 185/*
 186 * called with snap_rwsem (write)
 187 */
 188static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 189				 struct ceph_snap_realm *realm)
 190{
 
 191	lockdep_assert_held_write(&mdsc->snap_rwsem);
 192
 193	dout("%s %p %llx\n", __func__, realm, realm->ino);
 194
 195	rb_erase(&realm->node, &mdsc->snap_realms);
 196	mdsc->num_snap_realms--;
 197
 198	if (realm->parent) {
 199		list_del_init(&realm->child_item);
 200		__put_snap_realm(mdsc, realm->parent);
 201	}
 202
 203	kfree(realm->prior_parent_snaps);
 204	kfree(realm->snaps);
 205	ceph_put_snap_context(realm->cached_context);
 206	kfree(realm);
 207}
 208
 209/*
 210 * caller holds snap_rwsem (write)
 211 */
 212static void __put_snap_realm(struct ceph_mds_client *mdsc,
 213			     struct ceph_snap_realm *realm)
 214{
 215	lockdep_assert_held_write(&mdsc->snap_rwsem);
 216
 217	/*
 218	 * We do not require the snap_empty_lock here, as any caller that
 219	 * increments the value must hold the snap_rwsem.
 220	 */
 221	if (atomic_dec_and_test(&realm->nref))
 222		__destroy_snap_realm(mdsc, realm);
 223}
 224
 225/*
 226 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
 227 */
 228void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 229			 struct ceph_snap_realm *realm)
 230{
 231	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
 232		return;
 233
 234	if (down_write_trylock(&mdsc->snap_rwsem)) {
 235		spin_unlock(&mdsc->snap_empty_lock);
 236		__destroy_snap_realm(mdsc, realm);
 237		up_write(&mdsc->snap_rwsem);
 238	} else {
 239		list_add(&realm->empty_item, &mdsc->snap_empty);
 240		spin_unlock(&mdsc->snap_empty_lock);
 241	}
 242}
 243
 244/*
 245 * Clean up any realms whose ref counts have dropped to zero.  Note
 246 * that this does not include realms who were created but not yet
 247 * used.
 248 *
 249 * Called under snap_rwsem (write)
 250 */
 251static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 252{
 253	struct ceph_snap_realm *realm;
 254
 255	lockdep_assert_held_write(&mdsc->snap_rwsem);
 256
 257	spin_lock(&mdsc->snap_empty_lock);
 258	while (!list_empty(&mdsc->snap_empty)) {
 259		realm = list_first_entry(&mdsc->snap_empty,
 260				   struct ceph_snap_realm, empty_item);
 261		list_del(&realm->empty_item);
 262		spin_unlock(&mdsc->snap_empty_lock);
 263		__destroy_snap_realm(mdsc, realm);
 264		spin_lock(&mdsc->snap_empty_lock);
 265	}
 266	spin_unlock(&mdsc->snap_empty_lock);
 267}
 268
 269void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
 270{
 271	struct ceph_snap_realm *global_realm;
 272
 273	down_write(&mdsc->snap_rwsem);
 274	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
 275	if (global_realm)
 276		ceph_put_snap_realm(mdsc, global_realm);
 277	__cleanup_empty_realms(mdsc);
 278	up_write(&mdsc->snap_rwsem);
 279}
 280
 281/*
 282 * adjust the parent realm of a given @realm.  adjust child list, and parent
 283 * pointers, and ref counts appropriately.
 284 *
 285 * return true if parent was changed, 0 if unchanged, <0 on error.
 286 *
 287 * caller must hold snap_rwsem for write.
 288 */
 289static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 290				    struct ceph_snap_realm *realm,
 291				    u64 parentino)
 292{
 
 293	struct ceph_snap_realm *parent;
 294
 295	lockdep_assert_held_write(&mdsc->snap_rwsem);
 296
 297	if (realm->parent_ino == parentino)
 298		return 0;
 299
 300	parent = ceph_lookup_snap_realm(mdsc, parentino);
 301	if (!parent) {
 302		parent = ceph_create_snap_realm(mdsc, parentino);
 303		if (IS_ERR(parent))
 304			return PTR_ERR(parent);
 305	}
 306	dout("%s %llx %p: %llx %p -> %llx %p\n", __func__, realm->ino,
 307	     realm, realm->parent_ino, realm->parent, parentino, parent);
 308	if (realm->parent) {
 309		list_del_init(&realm->child_item);
 310		ceph_put_snap_realm(mdsc, realm->parent);
 311	}
 312	realm->parent_ino = parentino;
 313	realm->parent = parent;
 314	list_add(&realm->child_item, &parent->children);
 315	return 1;
 316}
 317
 318
 319static int cmpu64_rev(const void *a, const void *b)
 320{
 321	if (*(u64 *)a < *(u64 *)b)
 322		return 1;
 323	if (*(u64 *)a > *(u64 *)b)
 324		return -1;
 325	return 0;
 326}
 327
 328
 329/*
 330 * build the snap context for a given realm.
 331 */
 332static int build_snap_context(struct ceph_snap_realm *realm,
 
 333			      struct list_head *realm_queue,
 334			      struct list_head *dirty_realms)
 335{
 
 336	struct ceph_snap_realm *parent = realm->parent;
 337	struct ceph_snap_context *snapc;
 338	int err = 0;
 339	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 340
 341	/*
 342	 * build parent context, if it hasn't been built.
 343	 * conservatively estimate that all parent snaps might be
 344	 * included by us.
 345	 */
 346	if (parent) {
 347		if (!parent->cached_context) {
 348			/* add to the queue head */
 349			list_add(&parent->rebuild_item, realm_queue);
 350			return 1;
 351		}
 352		num += parent->cached_context->num_snaps;
 353	}
 354
 355	/* do i actually need to update?  not if my context seq
 356	   matches realm seq, and my parents' does to.  (this works
 357	   because we rebuild_snap_realms() works _downward_ in
 358	   hierarchy after each update.) */
 359	if (realm->cached_context &&
 360	    realm->cached_context->seq == realm->seq &&
 361	    (!parent ||
 362	     realm->cached_context->seq >= parent->cached_context->seq)) {
 363		dout("%s %llx %p: %p seq %lld (%u snaps) (unchanged)\n",
 364		     __func__, realm->ino, realm, realm->cached_context,
 365		     realm->cached_context->seq,
 366		     (unsigned int)realm->cached_context->num_snaps);
 367		return 0;
 368	}
 369
 370	/* alloc new snap context */
 371	err = -ENOMEM;
 372	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 373		goto fail;
 374	snapc = ceph_create_snap_context(num, GFP_NOFS);
 375	if (!snapc)
 376		goto fail;
 377
 378	/* build (reverse sorted) snap vector */
 379	num = 0;
 380	snapc->seq = realm->seq;
 381	if (parent) {
 382		u32 i;
 383
 384		/* include any of parent's snaps occurring _after_ my
 385		   parent became my parent */
 386		for (i = 0; i < parent->cached_context->num_snaps; i++)
 387			if (parent->cached_context->snaps[i] >=
 388			    realm->parent_since)
 389				snapc->snaps[num++] =
 390					parent->cached_context->snaps[i];
 391		if (parent->cached_context->seq > snapc->seq)
 392			snapc->seq = parent->cached_context->seq;
 393	}
 394	memcpy(snapc->snaps + num, realm->snaps,
 395	       sizeof(u64)*realm->num_snaps);
 396	num += realm->num_snaps;
 397	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 398	       sizeof(u64)*realm->num_prior_parent_snaps);
 399	num += realm->num_prior_parent_snaps;
 400
 401	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 402	snapc->num_snaps = num;
 403	dout("%s %llx %p: %p seq %lld (%u snaps)\n", __func__, realm->ino,
 404	     realm, snapc, snapc->seq, (unsigned int) snapc->num_snaps);
 405
 406	ceph_put_snap_context(realm->cached_context);
 407	realm->cached_context = snapc;
 408	/* queue realm for cap_snap creation */
 409	list_add_tail(&realm->dirty_item, dirty_realms);
 410	return 0;
 411
 412fail:
 413	/*
 414	 * if we fail, clear old (incorrect) cached_context... hopefully
 415	 * we'll have better luck building it later
 416	 */
 417	if (realm->cached_context) {
 418		ceph_put_snap_context(realm->cached_context);
 419		realm->cached_context = NULL;
 420	}
 421	pr_err("%s %llx %p fail %d\n", __func__, realm->ino, realm, err);
 422	return err;
 423}
 424
 425/*
 426 * rebuild snap context for the given realm and all of its children.
 427 */
 428static void rebuild_snap_realms(struct ceph_snap_realm *realm,
 
 429				struct list_head *dirty_realms)
 430{
 
 431	LIST_HEAD(realm_queue);
 432	int last = 0;
 433	bool skip = false;
 434
 435	list_add_tail(&realm->rebuild_item, &realm_queue);
 436
 437	while (!list_empty(&realm_queue)) {
 438		struct ceph_snap_realm *_realm, *child;
 439
 440		_realm = list_first_entry(&realm_queue,
 441					  struct ceph_snap_realm,
 442					  rebuild_item);
 443
 444		/*
 445		 * If the last building failed dues to memory
 446		 * issue, just empty the realm_queue and return
 447		 * to avoid infinite loop.
 448		 */
 449		if (last < 0) {
 450			list_del_init(&_realm->rebuild_item);
 451			continue;
 452		}
 453
 454		last = build_snap_context(_realm, &realm_queue, dirty_realms);
 455		dout("%s %llx %p, %s\n", __func__, _realm->ino, _realm,
 456		     last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
 
 457
 458		/* is any child in the list ? */
 459		list_for_each_entry(child, &_realm->children, child_item) {
 460			if (!list_empty(&child->rebuild_item)) {
 461				skip = true;
 462				break;
 463			}
 464		}
 465
 466		if (!skip) {
 467			list_for_each_entry(child, &_realm->children, child_item)
 468				list_add_tail(&child->rebuild_item, &realm_queue);
 469		}
 470
 471		/* last == 1 means need to build parent first */
 472		if (last <= 0)
 473			list_del_init(&_realm->rebuild_item);
 474	}
 475}
 476
 477
 478/*
 479 * helper to allocate and decode an array of snapids.  free prior
 480 * instance, if any.
 481 */
 482static int dup_array(u64 **dst, __le64 *src, u32 num)
 483{
 484	u32 i;
 485
 486	kfree(*dst);
 487	if (num) {
 488		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 489		if (!*dst)
 490			return -ENOMEM;
 491		for (i = 0; i < num; i++)
 492			(*dst)[i] = get_unaligned_le64(src + i);
 493	} else {
 494		*dst = NULL;
 495	}
 496	return 0;
 497}
 498
 499static bool has_new_snaps(struct ceph_snap_context *o,
 500			  struct ceph_snap_context *n)
 501{
 502	if (n->num_snaps == 0)
 503		return false;
 504	/* snaps are in descending order */
 505	return n->snaps[0] > o->seq;
 506}
 507
 508/*
 509 * When a snapshot is applied, the size/mtime inode metadata is queued
 510 * in a ceph_cap_snap (one for each snapshot) until writeback
 511 * completes and the metadata can be flushed back to the MDS.
 512 *
 513 * However, if a (sync) write is currently in-progress when we apply
 514 * the snapshot, we have to wait until the write succeeds or fails
 515 * (and a final size/mtime is known).  In this case the
 516 * cap_snap->writing = 1, and is said to be "pending."  When the write
 517 * finishes, we __ceph_finish_cap_snap().
 518 *
 519 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 520 * change).
 521 */
 522static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
 523				struct ceph_cap_snap **pcapsnap)
 524{
 525	struct inode *inode = &ci->netfs.inode;
 
 526	struct ceph_snap_context *old_snapc, *new_snapc;
 527	struct ceph_cap_snap *capsnap = *pcapsnap;
 528	struct ceph_buffer *old_blob = NULL;
 529	int used, dirty;
 530
 531	spin_lock(&ci->i_ceph_lock);
 532	used = __ceph_caps_used(ci);
 533	dirty = __ceph_caps_dirty(ci);
 534
 535	old_snapc = ci->i_head_snapc;
 536	new_snapc = ci->i_snap_realm->cached_context;
 537
 538	/*
 539	 * If there is a write in progress, treat that as a dirty Fw,
 540	 * even though it hasn't completed yet; by the time we finish
 541	 * up this capsnap it will be.
 542	 */
 543	if (used & CEPH_CAP_FILE_WR)
 544		dirty |= CEPH_CAP_FILE_WR;
 545
 546	if (__ceph_have_pending_cap_snap(ci)) {
 547		/* there is no point in queuing multiple "pending" cap_snaps,
 548		   as no new writes are allowed to start when pending, so any
 549		   writes in progress now were started before the previous
 550		   cap_snap.  lucky us. */
 551		dout("%s %p %llx.%llx already pending\n",
 552		     __func__, inode, ceph_vinop(inode));
 553		goto update_snapc;
 554	}
 555	if (ci->i_wrbuffer_ref_head == 0 &&
 556	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 557		dout("%s %p %llx.%llx nothing dirty|writing\n",
 558		     __func__, inode, ceph_vinop(inode));
 559		goto update_snapc;
 560	}
 561
 562	BUG_ON(!old_snapc);
 563
 564	/*
 565	 * There is no need to send FLUSHSNAP message to MDS if there is
 566	 * no new snapshot. But when there is dirty pages or on-going
 567	 * writes, we still need to create cap_snap. cap_snap is needed
 568	 * by the write path and page writeback path.
 569	 *
 570	 * also see ceph_try_drop_cap_snap()
 571	 */
 572	if (has_new_snaps(old_snapc, new_snapc)) {
 573		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 574			capsnap->need_flush = true;
 575	} else {
 576		if (!(used & CEPH_CAP_FILE_WR) &&
 577		    ci->i_wrbuffer_ref_head == 0) {
 578			dout("%s %p %llx.%llx no new_snap|dirty_page|writing\n",
 579			     __func__, inode, ceph_vinop(inode));
 580			goto update_snapc;
 581		}
 582	}
 583
 584	dout("%s %p %llx.%llx cap_snap %p queuing under %p %s %s\n",
 585	     __func__, inode, ceph_vinop(inode), capsnap, old_snapc,
 586	     ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
 587	ihold(inode);
 588
 589	capsnap->follows = old_snapc->seq;
 590	capsnap->issued = __ceph_caps_issued(ci, NULL);
 591	capsnap->dirty = dirty;
 592
 593	capsnap->mode = inode->i_mode;
 594	capsnap->uid = inode->i_uid;
 595	capsnap->gid = inode->i_gid;
 596
 597	if (dirty & CEPH_CAP_XATTR_EXCL) {
 598		old_blob = __ceph_build_xattrs_blob(ci);
 599		capsnap->xattr_blob =
 600			ceph_buffer_get(ci->i_xattrs.blob);
 601		capsnap->xattr_version = ci->i_xattrs.version;
 602	} else {
 603		capsnap->xattr_blob = NULL;
 604		capsnap->xattr_version = 0;
 605	}
 606
 607	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 608
 609	/* dirty page count moved from _head to this cap_snap;
 610	   all subsequent writes page dirties occur _after_ this
 611	   snapshot. */
 612	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 613	ci->i_wrbuffer_ref_head = 0;
 614	capsnap->context = old_snapc;
 615	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 616
 617	if (used & CEPH_CAP_FILE_WR) {
 618		dout("%s %p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
 619		     " now pending\n", __func__, inode, ceph_vinop(inode),
 620		     capsnap, old_snapc, old_snapc->seq);
 621		capsnap->writing = 1;
 622	} else {
 623		/* note mtime, size NOW. */
 624		__ceph_finish_cap_snap(ci, capsnap);
 625	}
 626	*pcapsnap = NULL;
 627	old_snapc = NULL;
 628
 629update_snapc:
 630	if (ci->i_wrbuffer_ref_head == 0 &&
 631	    ci->i_wr_ref == 0 &&
 632	    ci->i_dirty_caps == 0 &&
 633	    ci->i_flushing_caps == 0) {
 634		ci->i_head_snapc = NULL;
 635	} else {
 636		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 637		dout(" new snapc is %p\n", new_snapc);
 638	}
 639	spin_unlock(&ci->i_ceph_lock);
 640
 641	ceph_buffer_put(old_blob);
 642	ceph_put_snap_context(old_snapc);
 643}
 644
 645/*
 646 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 647 * to be used for the snapshot, to be flushed back to the mds.
 648 *
 649 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 650 *
 651 * Caller must hold i_ceph_lock.
 652 */
 653int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 654			    struct ceph_cap_snap *capsnap)
 655{
 656	struct inode *inode = &ci->netfs.inode;
 657	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
 
 658
 659	BUG_ON(capsnap->writing);
 660	capsnap->size = i_size_read(inode);
 661	capsnap->mtime = inode->i_mtime;
 662	capsnap->atime = inode->i_atime;
 663	capsnap->ctime = inode->i_ctime;
 664	capsnap->btime = ci->i_btime;
 665	capsnap->change_attr = inode_peek_iversion_raw(inode);
 666	capsnap->time_warp_seq = ci->i_time_warp_seq;
 667	capsnap->truncate_size = ci->i_truncate_size;
 668	capsnap->truncate_seq = ci->i_truncate_seq;
 669	if (capsnap->dirty_pages) {
 670		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
 671		     "still has %d dirty pages\n", __func__, inode,
 672		     ceph_vinop(inode), capsnap, capsnap->context,
 673		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 674		     capsnap->size, capsnap->dirty_pages);
 
 675		return 0;
 676	}
 677
 678	/* Fb cap still in use, delay it */
 679	if (ci->i_wb_ref) {
 680		dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu "
 681		     "used WRBUFFER, delaying\n", __func__, inode,
 682		     ceph_vinop(inode), capsnap, capsnap->context,
 683		     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 684		     capsnap->size);
 685		capsnap->writing = 1;
 
 
 
 686		return 0;
 687	}
 688
 689	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 690	dout("%s %p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
 691	     __func__, inode, ceph_vinop(inode), capsnap, capsnap->context,
 692	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 693	     capsnap->size);
 694
 695	spin_lock(&mdsc->snap_flush_lock);
 696	if (list_empty(&ci->i_snap_flush_item))
 
 697		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 
 698	spin_unlock(&mdsc->snap_flush_lock);
 699	return 1;  /* caller may want to ceph_flush_snaps */
 700}
 701
 702/*
 703 * Queue cap_snaps for snap writeback for this realm and its children.
 704 * Called under snap_rwsem, so realm topology won't change.
 705 */
 706static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
 
 707{
 
 708	struct ceph_inode_info *ci;
 709	struct inode *lastinode = NULL;
 710	struct ceph_cap_snap *capsnap = NULL;
 711
 712	dout("%s %p %llx inode\n", __func__, realm, realm->ino);
 713
 714	spin_lock(&realm->inodes_with_caps_lock);
 715	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 716		struct inode *inode = igrab(&ci->netfs.inode);
 717		if (!inode)
 718			continue;
 719		spin_unlock(&realm->inodes_with_caps_lock);
 720		iput(lastinode);
 721		lastinode = inode;
 722
 723		/*
 724		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
 725		 * to reduce very possible but unnecessary frequently memory
 726		 * allocate/free in this loop.
 727		 */
 728		if (!capsnap) {
 729			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
 730			if (!capsnap) {
 731				pr_err("ENOMEM allocating ceph_cap_snap on %p\n",
 732				       inode);
 
 733				return;
 734			}
 735		}
 736		capsnap->cap_flush.is_capsnap = true;
 737		refcount_set(&capsnap->nref, 1);
 738		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
 739		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
 740		INIT_LIST_HEAD(&capsnap->ci_item);
 741
 742		ceph_queue_cap_snap(ci, &capsnap);
 743		spin_lock(&realm->inodes_with_caps_lock);
 744	}
 745	spin_unlock(&realm->inodes_with_caps_lock);
 746	iput(lastinode);
 747
 748	if (capsnap)
 749		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
 750	dout("%s %p %llx done\n", __func__, realm, realm->ino);
 751}
 752
 753/*
 754 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 755 * the snap realm parameters from a given realm and all of its ancestors,
 756 * up to the root.
 757 *
 758 * Caller must hold snap_rwsem for write.
 759 */
 760int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 761			   void *p, void *e, bool deletion,
 762			   struct ceph_snap_realm **realm_ret)
 763{
 
 764	struct ceph_mds_snap_realm *ri;    /* encoded */
 765	__le64 *snaps;                     /* encoded */
 766	__le64 *prior_parent_snaps;        /* encoded */
 767	struct ceph_snap_realm *realm;
 768	struct ceph_snap_realm *first_realm = NULL;
 769	struct ceph_snap_realm *realm_to_rebuild = NULL;
 770	struct ceph_client *client = mdsc->fsc->client;
 771	int rebuild_snapcs;
 772	int err = -ENOMEM;
 773	int ret;
 774	LIST_HEAD(dirty_realms);
 775
 776	lockdep_assert_held_write(&mdsc->snap_rwsem);
 777
 778	dout("%s deletion=%d\n", __func__, deletion);
 779more:
 780	realm = NULL;
 781	rebuild_snapcs = 0;
 782	ceph_decode_need(&p, e, sizeof(*ri), bad);
 783	ri = p;
 784	p += sizeof(*ri);
 785	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 786			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 787	snaps = p;
 788	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 789	prior_parent_snaps = p;
 790	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 791
 792	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 793	if (!realm) {
 794		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 795		if (IS_ERR(realm)) {
 796			err = PTR_ERR(realm);
 797			goto fail;
 798		}
 799	}
 800
 801	/* ensure the parent is correct */
 802	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 803	if (err < 0)
 804		goto fail;
 805	rebuild_snapcs += err;
 806
 807	if (le64_to_cpu(ri->seq) > realm->seq) {
 808		dout("%s updating %llx %p %lld -> %lld\n", __func__,
 809		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
 810		/* update realm parameters, snap lists */
 811		realm->seq = le64_to_cpu(ri->seq);
 812		realm->created = le64_to_cpu(ri->created);
 813		realm->parent_since = le64_to_cpu(ri->parent_since);
 814
 815		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 816		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 817		if (err < 0)
 818			goto fail;
 819
 820		realm->num_prior_parent_snaps =
 821			le32_to_cpu(ri->num_prior_parent_snaps);
 822		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 823				realm->num_prior_parent_snaps);
 824		if (err < 0)
 825			goto fail;
 826
 827		if (realm->seq > mdsc->last_snap_seq)
 828			mdsc->last_snap_seq = realm->seq;
 829
 830		rebuild_snapcs = 1;
 831	} else if (!realm->cached_context) {
 832		dout("%s %llx %p seq %lld new\n", __func__,
 833		     realm->ino, realm, realm->seq);
 834		rebuild_snapcs = 1;
 835	} else {
 836		dout("%s %llx %p seq %lld unchanged\n", __func__,
 837		     realm->ino, realm, realm->seq);
 838	}
 839
 840	dout("done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
 841	     realm, rebuild_snapcs, p, e);
 842
 843	/*
 844	 * this will always track the uppest parent realm from which
 845	 * we need to rebuild the snapshot contexts _downward_ in
 846	 * hierarchy.
 847	 */
 848	if (rebuild_snapcs)
 849		realm_to_rebuild = realm;
 850
 851	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
 852	if (realm_to_rebuild && p >= e)
 853		rebuild_snap_realms(realm_to_rebuild, &dirty_realms);
 854
 855	if (!first_realm)
 856		first_realm = realm;
 857	else
 858		ceph_put_snap_realm(mdsc, realm);
 859
 860	if (p < e)
 861		goto more;
 862
 863	/*
 864	 * queue cap snaps _after_ we've built the new snap contexts,
 865	 * so that i_head_snapc can be set appropriately.
 866	 */
 867	while (!list_empty(&dirty_realms)) {
 868		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 869					 dirty_item);
 870		list_del_init(&realm->dirty_item);
 871		queue_realm_cap_snaps(realm);
 872	}
 873
 874	if (realm_ret)
 875		*realm_ret = first_realm;
 876	else
 877		ceph_put_snap_realm(mdsc, first_realm);
 878
 879	__cleanup_empty_realms(mdsc);
 880	return 0;
 881
 882bad:
 883	err = -EIO;
 884fail:
 885	if (realm && !IS_ERR(realm))
 886		ceph_put_snap_realm(mdsc, realm);
 887	if (first_realm)
 888		ceph_put_snap_realm(mdsc, first_realm);
 889	pr_err("%s error %d\n", __func__, err);
 890
 891	/*
 892	 * When receiving a corrupted snap trace we don't know what
 893	 * exactly has happened in MDS side. And we shouldn't continue
 894	 * writing to OSD, which may corrupt the snapshot contents.
 895	 *
 896	 * Just try to blocklist this kclient and then this kclient
 897	 * must be remounted to continue after the corrupted metadata
 898	 * fixed in the MDS side.
 899	 */
 900	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
 901	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
 902	if (ret)
 903		pr_err("%s failed to blocklist %s: %d\n", __func__,
 904		       ceph_pr_addr(&client->msgr.inst.addr), ret);
 905
 906	WARN(1, "%s: %s%sdo remount to continue%s",
 907	     __func__, ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
 
 908	     ret ? "" : " was blocklisted, ",
 909	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
 910
 911	return err;
 912}
 913
 914
 915/*
 916 * Send any cap_snaps that are queued for flush.  Try to carry
 917 * s_mutex across multiple snap flushes to avoid locking overhead.
 918 *
 919 * Caller holds no locks.
 920 */
 921static void flush_snaps(struct ceph_mds_client *mdsc)
 922{
 
 923	struct ceph_inode_info *ci;
 924	struct inode *inode;
 925	struct ceph_mds_session *session = NULL;
 926
 927	dout("%s\n", __func__);
 928	spin_lock(&mdsc->snap_flush_lock);
 929	while (!list_empty(&mdsc->snap_flush_list)) {
 930		ci = list_first_entry(&mdsc->snap_flush_list,
 931				struct ceph_inode_info, i_snap_flush_item);
 932		inode = &ci->netfs.inode;
 933		ihold(inode);
 934		spin_unlock(&mdsc->snap_flush_lock);
 935		ceph_flush_snaps(ci, &session);
 936		iput(inode);
 937		spin_lock(&mdsc->snap_flush_lock);
 938	}
 939	spin_unlock(&mdsc->snap_flush_lock);
 940
 941	ceph_put_mds_session(session);
 942	dout("%s done\n", __func__);
 943}
 944
 945/**
 946 * ceph_change_snap_realm - change the snap_realm for an inode
 947 * @inode: inode to move to new snap realm
 948 * @realm: new realm to move inode into (may be NULL)
 949 *
 950 * Detach an inode from its old snaprealm (if any) and attach it to
 951 * the new snaprealm (if any). The old snap realm reference held by
 952 * the inode is put. If realm is non-NULL, then the caller's reference
 953 * to it is taken over by the inode.
 954 */
 955void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
 956{
 957	struct ceph_inode_info *ci = ceph_inode(inode);
 958	struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
 959	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
 960
 961	lockdep_assert_held(&ci->i_ceph_lock);
 962
 963	if (oldrealm) {
 964		spin_lock(&oldrealm->inodes_with_caps_lock);
 965		list_del_init(&ci->i_snap_realm_item);
 966		if (oldrealm->ino == ci->i_vino.ino)
 967			oldrealm->inode = NULL;
 968		spin_unlock(&oldrealm->inodes_with_caps_lock);
 969		ceph_put_snap_realm(mdsc, oldrealm);
 970	}
 971
 972	ci->i_snap_realm = realm;
 973
 974	if (realm) {
 975		spin_lock(&realm->inodes_with_caps_lock);
 976		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
 977		if (realm->ino == ci->i_vino.ino)
 978			realm->inode = inode;
 979		spin_unlock(&realm->inodes_with_caps_lock);
 980	}
 981}
 982
 983/*
 984 * Handle a snap notification from the MDS.
 985 *
 986 * This can take two basic forms: the simplest is just a snap creation
 987 * or deletion notification on an existing realm.  This should update the
 988 * realm and its children.
 989 *
 990 * The more difficult case is realm creation, due to snap creation at a
 991 * new point in the file hierarchy, or due to a rename that moves a file or
 992 * directory into another realm.
 993 */
 994void ceph_handle_snap(struct ceph_mds_client *mdsc,
 995		      struct ceph_mds_session *session,
 996		      struct ceph_msg *msg)
 997{
 
 998	struct super_block *sb = mdsc->fsc->sb;
 999	int mds = session->s_mds;
1000	u64 split;
1001	int op;
1002	int trace_len;
1003	struct ceph_snap_realm *realm = NULL;
1004	void *p = msg->front.iov_base;
1005	void *e = p + msg->front.iov_len;
1006	struct ceph_mds_snap_head *h;
1007	int num_split_inos, num_split_realms;
1008	__le64 *split_inos = NULL, *split_realms = NULL;
1009	int i;
1010	int locked_rwsem = 0;
1011	bool close_sessions = false;
1012
 
 
 
1013	/* decode */
1014	if (msg->front.iov_len < sizeof(*h))
1015		goto bad;
1016	h = p;
1017	op = le32_to_cpu(h->op);
1018	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1019					  * existing realm */
1020	num_split_inos = le32_to_cpu(h->num_split_inos);
1021	num_split_realms = le32_to_cpu(h->num_split_realms);
1022	trace_len = le32_to_cpu(h->trace_len);
1023	p += sizeof(*h);
1024
1025	dout("%s from mds%d op %s split %llx tracelen %d\n", __func__,
1026	     mds, ceph_snap_op_name(op), split, trace_len);
1027
1028	mutex_lock(&session->s_mutex);
1029	inc_session_sequence(session);
1030	mutex_unlock(&session->s_mutex);
1031
1032	down_write(&mdsc->snap_rwsem);
1033	locked_rwsem = 1;
1034
1035	if (op == CEPH_SNAP_OP_SPLIT) {
1036		struct ceph_mds_snap_realm *ri;
1037
1038		/*
1039		 * A "split" breaks part of an existing realm off into
1040		 * a new realm.  The MDS provides a list of inodes
1041		 * (with caps) and child realms that belong to the new
1042		 * child.
1043		 */
1044		split_inos = p;
1045		p += sizeof(u64) * num_split_inos;
1046		split_realms = p;
1047		p += sizeof(u64) * num_split_realms;
1048		ceph_decode_need(&p, e, sizeof(*ri), bad);
1049		/* we will peek at realm info here, but will _not_
1050		 * advance p, as the realm update will occur below in
1051		 * ceph_update_snap_trace. */
1052		ri = p;
1053
1054		realm = ceph_lookup_snap_realm(mdsc, split);
1055		if (!realm) {
1056			realm = ceph_create_snap_realm(mdsc, split);
1057			if (IS_ERR(realm))
1058				goto out;
1059		}
1060
1061		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
1062		for (i = 0; i < num_split_inos; i++) {
1063			struct ceph_vino vino = {
1064				.ino = le64_to_cpu(split_inos[i]),
1065				.snap = CEPH_NOSNAP,
1066			};
1067			struct inode *inode = ceph_find_inode(sb, vino);
1068			struct ceph_inode_info *ci;
1069
1070			if (!inode)
1071				continue;
1072			ci = ceph_inode(inode);
1073
1074			spin_lock(&ci->i_ceph_lock);
1075			if (!ci->i_snap_realm)
1076				goto skip_inode;
1077			/*
1078			 * If this inode belongs to a realm that was
1079			 * created after our new realm, we experienced
1080			 * a race (due to another split notifications
1081			 * arriving from a different MDS).  So skip
1082			 * this inode.
1083			 */
1084			if (ci->i_snap_realm->created >
1085			    le64_to_cpu(ri->created)) {
1086				dout(" leaving %p %llx.%llx in newer realm %llx %p\n",
1087				     inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1088				     ci->i_snap_realm);
1089				goto skip_inode;
1090			}
1091			dout(" will move %p %llx.%llx to split realm %llx %p\n",
1092			     inode, ceph_vinop(inode), realm->ino, realm);
1093
1094			ceph_get_snap_realm(mdsc, realm);
1095			ceph_change_snap_realm(inode, realm);
1096			spin_unlock(&ci->i_ceph_lock);
1097			iput(inode);
1098			continue;
1099
1100skip_inode:
1101			spin_unlock(&ci->i_ceph_lock);
1102			iput(inode);
1103		}
1104
1105		/* we may have taken some of the old realm's children. */
1106		for (i = 0; i < num_split_realms; i++) {
1107			struct ceph_snap_realm *child =
1108				__lookup_snap_realm(mdsc,
1109					   le64_to_cpu(split_realms[i]));
1110			if (!child)
1111				continue;
1112			adjust_snap_realm_parent(mdsc, child, realm->ino);
1113		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1114	}
1115
1116	/*
1117	 * update using the provided snap trace. if we are deleting a
1118	 * snap, we can avoid queueing cap_snaps.
1119	 */
1120	if (ceph_update_snap_trace(mdsc, p, e,
1121				   op == CEPH_SNAP_OP_DESTROY,
1122				   NULL)) {
1123		close_sessions = true;
1124		goto bad;
1125	}
1126
1127	if (op == CEPH_SNAP_OP_SPLIT)
1128		/* we took a reference when we created the realm, above */
1129		ceph_put_snap_realm(mdsc, realm);
1130
1131	__cleanup_empty_realms(mdsc);
1132
1133	up_write(&mdsc->snap_rwsem);
1134
1135	flush_snaps(mdsc);
 
1136	return;
1137
1138bad:
1139	pr_err("%s corrupt snap message from mds%d\n", __func__, mds);
1140	ceph_msg_dump(msg);
1141out:
1142	if (locked_rwsem)
1143		up_write(&mdsc->snap_rwsem);
1144
 
 
1145	if (close_sessions)
1146		ceph_mdsc_close_sessions(mdsc);
1147	return;
1148}
1149
1150struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1151					    u64 snap)
1152{
 
1153	struct ceph_snapid_map *sm, *exist;
1154	struct rb_node **p, *parent;
1155	int ret;
1156
1157	exist = NULL;
1158	spin_lock(&mdsc->snapid_map_lock);
1159	p = &mdsc->snapid_map_tree.rb_node;
1160	while (*p) {
1161		exist = rb_entry(*p, struct ceph_snapid_map, node);
1162		if (snap > exist->snap) {
1163			p = &(*p)->rb_left;
1164		} else if (snap < exist->snap) {
1165			p = &(*p)->rb_right;
1166		} else {
1167			if (atomic_inc_return(&exist->ref) == 1)
1168				list_del_init(&exist->lru);
1169			break;
1170		}
1171		exist = NULL;
1172	}
1173	spin_unlock(&mdsc->snapid_map_lock);
1174	if (exist) {
1175		dout("%s found snapid map %llx -> %x\n", __func__,
1176		     exist->snap, exist->dev);
1177		return exist;
1178	}
1179
1180	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1181	if (!sm)
1182		return NULL;
1183
1184	ret = get_anon_bdev(&sm->dev);
1185	if (ret < 0) {
1186		kfree(sm);
1187		return NULL;
1188	}
1189
1190	INIT_LIST_HEAD(&sm->lru);
1191	atomic_set(&sm->ref, 1);
1192	sm->snap = snap;
1193
1194	exist = NULL;
1195	parent = NULL;
1196	p = &mdsc->snapid_map_tree.rb_node;
1197	spin_lock(&mdsc->snapid_map_lock);
1198	while (*p) {
1199		parent = *p;
1200		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201		if (snap > exist->snap)
1202			p = &(*p)->rb_left;
1203		else if (snap < exist->snap)
1204			p = &(*p)->rb_right;
1205		else
1206			break;
1207		exist = NULL;
1208	}
1209	if (exist) {
1210		if (atomic_inc_return(&exist->ref) == 1)
1211			list_del_init(&exist->lru);
1212	} else {
1213		rb_link_node(&sm->node, parent, p);
1214		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1215	}
1216	spin_unlock(&mdsc->snapid_map_lock);
1217	if (exist) {
1218		free_anon_bdev(sm->dev);
1219		kfree(sm);
1220		dout("%s found snapid map %llx -> %x\n", __func__,
1221		     exist->snap, exist->dev);
1222		return exist;
1223	}
1224
1225	dout("%s create snapid map %llx -> %x\n", __func__,
1226	     sm->snap, sm->dev);
1227	return sm;
1228}
1229
1230void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1231			 struct ceph_snapid_map *sm)
1232{
1233	if (!sm)
1234		return;
1235	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1236		if (!RB_EMPTY_NODE(&sm->node)) {
1237			sm->last_used = jiffies;
1238			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1239			spin_unlock(&mdsc->snapid_map_lock);
1240		} else {
1241			/* already cleaned up by
1242			 * ceph_cleanup_snapid_map() */
1243			spin_unlock(&mdsc->snapid_map_lock);
1244			kfree(sm);
1245		}
1246	}
1247}
1248
1249void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1250{
 
1251	struct ceph_snapid_map *sm;
1252	unsigned long now;
1253	LIST_HEAD(to_free);
1254
1255	spin_lock(&mdsc->snapid_map_lock);
1256	now = jiffies;
1257
1258	while (!list_empty(&mdsc->snapid_map_lru)) {
1259		sm = list_first_entry(&mdsc->snapid_map_lru,
1260				      struct ceph_snapid_map, lru);
1261		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1262			break;
1263
1264		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1265		list_move(&sm->lru, &to_free);
1266	}
1267	spin_unlock(&mdsc->snapid_map_lock);
1268
1269	while (!list_empty(&to_free)) {
1270		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1271		list_del(&sm->lru);
1272		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1273		free_anon_bdev(sm->dev);
1274		kfree(sm);
1275	}
1276}
1277
1278void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1279{
 
1280	struct ceph_snapid_map *sm;
1281	struct rb_node *p;
1282	LIST_HEAD(to_free);
1283
1284	spin_lock(&mdsc->snapid_map_lock);
1285	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1286		sm = rb_entry(p, struct ceph_snapid_map, node);
1287		rb_erase(p, &mdsc->snapid_map_tree);
1288		RB_CLEAR_NODE(p);
1289		list_move(&sm->lru, &to_free);
1290	}
1291	spin_unlock(&mdsc->snapid_map_lock);
1292
1293	while (!list_empty(&to_free)) {
1294		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1295		list_del(&sm->lru);
1296		free_anon_bdev(sm->dev);
1297		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1298			pr_err("snapid map %llx -> %x still in use\n",
1299			       sm->snap, sm->dev);
1300		}
1301		kfree(sm);
1302	}
1303}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/fs.h>
   5#include <linux/sort.h>
   6#include <linux/slab.h>
   7#include <linux/iversion.h>
   8#include "super.h"
   9#include "mds_client.h"
  10#include <linux/ceph/decode.h>
  11
  12/* unused map expires after 5 minutes */
  13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  14
  15/*
  16 * Snapshots in ceph are driven in large part by cooperation from the
  17 * client.  In contrast to local file systems or file servers that
  18 * implement snapshots at a single point in the system, ceph's
  19 * distributed access to storage requires clients to help decide
  20 * whether a write logically occurs before or after a recently created
  21 * snapshot.
  22 *
  23 * This provides a perfect instantanous client-wide snapshot.  Between
  24 * clients, however, snapshots may appear to be applied at slightly
  25 * different points in time, depending on delays in delivering the
  26 * snapshot notification.
  27 *
  28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  29 * applies to the subdirectory nested beneath some directory.  This
  30 * effectively divides the hierarchy into multiple "realms," where all
  31 * of the files contained by each realm share the same set of
  32 * snapshots.  An individual realm's snap set contains snapshots
  33 * explicitly created on that realm, as well as any snaps in its
  34 * parent's snap set _after_ the point at which the parent became it's
  35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  36 * during the time intervals during which they were the parent are included.
  37 *
  38 * The client is spared most of this detail, fortunately... it must only
  39 * maintains a hierarchy of realms reflecting the current parent/child
  40 * realm relationship, and for each realm has an explicit list of snaps
  41 * inherited from prior parents.
  42 *
  43 * A snap_realm struct is maintained for realms containing every inode
  44 * with an open cap in the system.  (The needed snap realm information is
  45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  46 * version number is used to ensure that as realm parameters change (new
  47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  48 *
  49 * The realm hierarchy drives the generation of a 'snap context' for each
  50 * realm, which simply lists the resulting set of snaps for the realm.  This
  51 * is attached to any writes sent to OSDs.
  52 */
  53/*
  54 * Unfortunately error handling is a bit mixed here.  If we get a snap
  55 * update, but don't have enough memory to update our realm hierarchy,
  56 * it's not clear what we can do about it (besides complaining to the
  57 * console).
  58 */
  59
  60
  61/*
  62 * increase ref count for the realm
  63 *
  64 * caller must hold snap_rwsem.
  65 */
  66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  67			 struct ceph_snap_realm *realm)
  68{
  69	lockdep_assert_held(&mdsc->snap_rwsem);
  70
  71	/*
  72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
  73	 * atomically with the refcount change. Go ahead and bump the
  74	 * nref here, unless it's 0, in which case we take the spinlock
  75	 * and then do the increment and remove it from the list.
  76	 */
  77	if (atomic_inc_not_zero(&realm->nref))
  78		return;
  79
  80	spin_lock(&mdsc->snap_empty_lock);
  81	if (atomic_inc_return(&realm->nref) == 1)
  82		list_del_init(&realm->empty_item);
  83	spin_unlock(&mdsc->snap_empty_lock);
  84}
  85
  86static void __insert_snap_realm(struct rb_root *root,
  87				struct ceph_snap_realm *new)
  88{
  89	struct rb_node **p = &root->rb_node;
  90	struct rb_node *parent = NULL;
  91	struct ceph_snap_realm *r = NULL;
  92
  93	while (*p) {
  94		parent = *p;
  95		r = rb_entry(parent, struct ceph_snap_realm, node);
  96		if (new->ino < r->ino)
  97			p = &(*p)->rb_left;
  98		else if (new->ino > r->ino)
  99			p = &(*p)->rb_right;
 100		else
 101			BUG();
 102	}
 103
 104	rb_link_node(&new->node, parent, p);
 105	rb_insert_color(&new->node, root);
 106}
 107
 108/*
 109 * create and get the realm rooted at @ino and bump its ref count.
 110 *
 111 * caller must hold snap_rwsem for write.
 112 */
 113static struct ceph_snap_realm *ceph_create_snap_realm(
 114	struct ceph_mds_client *mdsc,
 115	u64 ino)
 116{
 117	struct ceph_snap_realm *realm;
 118
 119	lockdep_assert_held_write(&mdsc->snap_rwsem);
 120
 121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 122	if (!realm)
 123		return ERR_PTR(-ENOMEM);
 124
 125	/* Do not release the global dummy snaprealm until unmouting */
 126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
 127		atomic_set(&realm->nref, 2);
 128	else
 129		atomic_set(&realm->nref, 1);
 130	realm->ino = ino;
 131	INIT_LIST_HEAD(&realm->children);
 132	INIT_LIST_HEAD(&realm->child_item);
 133	INIT_LIST_HEAD(&realm->empty_item);
 134	INIT_LIST_HEAD(&realm->dirty_item);
 135	INIT_LIST_HEAD(&realm->rebuild_item);
 136	INIT_LIST_HEAD(&realm->inodes_with_caps);
 137	spin_lock_init(&realm->inodes_with_caps_lock);
 138	__insert_snap_realm(&mdsc->snap_realms, realm);
 139	mdsc->num_snap_realms++;
 140
 141	doutc(mdsc->fsc->client, "%llx %p\n", realm->ino, realm);
 142	return realm;
 143}
 144
 145/*
 146 * lookup the realm rooted at @ino.
 147 *
 148 * caller must hold snap_rwsem.
 149 */
 150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 151						   u64 ino)
 152{
 153	struct ceph_client *cl = mdsc->fsc->client;
 154	struct rb_node *n = mdsc->snap_realms.rb_node;
 155	struct ceph_snap_realm *r;
 156
 157	lockdep_assert_held(&mdsc->snap_rwsem);
 158
 159	while (n) {
 160		r = rb_entry(n, struct ceph_snap_realm, node);
 161		if (ino < r->ino)
 162			n = n->rb_left;
 163		else if (ino > r->ino)
 164			n = n->rb_right;
 165		else {
 166			doutc(cl, "%llx %p\n", r->ino, r);
 167			return r;
 168		}
 169	}
 170	return NULL;
 171}
 172
 173struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 174					       u64 ino)
 175{
 176	struct ceph_snap_realm *r;
 177	r = __lookup_snap_realm(mdsc, ino);
 178	if (r)
 179		ceph_get_snap_realm(mdsc, r);
 180	return r;
 181}
 182
 183static void __put_snap_realm(struct ceph_mds_client *mdsc,
 184			     struct ceph_snap_realm *realm);
 185
 186/*
 187 * called with snap_rwsem (write)
 188 */
 189static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 190				 struct ceph_snap_realm *realm)
 191{
 192	struct ceph_client *cl = mdsc->fsc->client;
 193	lockdep_assert_held_write(&mdsc->snap_rwsem);
 194
 195	doutc(cl, "%p %llx\n", realm, realm->ino);
 196
 197	rb_erase(&realm->node, &mdsc->snap_realms);
 198	mdsc->num_snap_realms--;
 199
 200	if (realm->parent) {
 201		list_del_init(&realm->child_item);
 202		__put_snap_realm(mdsc, realm->parent);
 203	}
 204
 205	kfree(realm->prior_parent_snaps);
 206	kfree(realm->snaps);
 207	ceph_put_snap_context(realm->cached_context);
 208	kfree(realm);
 209}
 210
 211/*
 212 * caller holds snap_rwsem (write)
 213 */
 214static void __put_snap_realm(struct ceph_mds_client *mdsc,
 215			     struct ceph_snap_realm *realm)
 216{
 217	lockdep_assert_held_write(&mdsc->snap_rwsem);
 218
 219	/*
 220	 * We do not require the snap_empty_lock here, as any caller that
 221	 * increments the value must hold the snap_rwsem.
 222	 */
 223	if (atomic_dec_and_test(&realm->nref))
 224		__destroy_snap_realm(mdsc, realm);
 225}
 226
 227/*
 228 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
 229 */
 230void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 231			 struct ceph_snap_realm *realm)
 232{
 233	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
 234		return;
 235
 236	if (down_write_trylock(&mdsc->snap_rwsem)) {
 237		spin_unlock(&mdsc->snap_empty_lock);
 238		__destroy_snap_realm(mdsc, realm);
 239		up_write(&mdsc->snap_rwsem);
 240	} else {
 241		list_add(&realm->empty_item, &mdsc->snap_empty);
 242		spin_unlock(&mdsc->snap_empty_lock);
 243	}
 244}
 245
 246/*
 247 * Clean up any realms whose ref counts have dropped to zero.  Note
 248 * that this does not include realms who were created but not yet
 249 * used.
 250 *
 251 * Called under snap_rwsem (write)
 252 */
 253static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 254{
 255	struct ceph_snap_realm *realm;
 256
 257	lockdep_assert_held_write(&mdsc->snap_rwsem);
 258
 259	spin_lock(&mdsc->snap_empty_lock);
 260	while (!list_empty(&mdsc->snap_empty)) {
 261		realm = list_first_entry(&mdsc->snap_empty,
 262				   struct ceph_snap_realm, empty_item);
 263		list_del(&realm->empty_item);
 264		spin_unlock(&mdsc->snap_empty_lock);
 265		__destroy_snap_realm(mdsc, realm);
 266		spin_lock(&mdsc->snap_empty_lock);
 267	}
 268	spin_unlock(&mdsc->snap_empty_lock);
 269}
 270
 271void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
 272{
 273	struct ceph_snap_realm *global_realm;
 274
 275	down_write(&mdsc->snap_rwsem);
 276	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
 277	if (global_realm)
 278		ceph_put_snap_realm(mdsc, global_realm);
 279	__cleanup_empty_realms(mdsc);
 280	up_write(&mdsc->snap_rwsem);
 281}
 282
 283/*
 284 * adjust the parent realm of a given @realm.  adjust child list, and parent
 285 * pointers, and ref counts appropriately.
 286 *
 287 * return true if parent was changed, 0 if unchanged, <0 on error.
 288 *
 289 * caller must hold snap_rwsem for write.
 290 */
 291static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 292				    struct ceph_snap_realm *realm,
 293				    u64 parentino)
 294{
 295	struct ceph_client *cl = mdsc->fsc->client;
 296	struct ceph_snap_realm *parent;
 297
 298	lockdep_assert_held_write(&mdsc->snap_rwsem);
 299
 300	if (realm->parent_ino == parentino)
 301		return 0;
 302
 303	parent = ceph_lookup_snap_realm(mdsc, parentino);
 304	if (!parent) {
 305		parent = ceph_create_snap_realm(mdsc, parentino);
 306		if (IS_ERR(parent))
 307			return PTR_ERR(parent);
 308	}
 309	doutc(cl, "%llx %p: %llx %p -> %llx %p\n", realm->ino, realm,
 310	      realm->parent_ino, realm->parent, parentino, parent);
 311	if (realm->parent) {
 312		list_del_init(&realm->child_item);
 313		ceph_put_snap_realm(mdsc, realm->parent);
 314	}
 315	realm->parent_ino = parentino;
 316	realm->parent = parent;
 317	list_add(&realm->child_item, &parent->children);
 318	return 1;
 319}
 320
 321
 322static int cmpu64_rev(const void *a, const void *b)
 323{
 324	if (*(u64 *)a < *(u64 *)b)
 325		return 1;
 326	if (*(u64 *)a > *(u64 *)b)
 327		return -1;
 328	return 0;
 329}
 330
 331
 332/*
 333 * build the snap context for a given realm.
 334 */
 335static int build_snap_context(struct ceph_mds_client *mdsc,
 336			      struct ceph_snap_realm *realm,
 337			      struct list_head *realm_queue,
 338			      struct list_head *dirty_realms)
 339{
 340	struct ceph_client *cl = mdsc->fsc->client;
 341	struct ceph_snap_realm *parent = realm->parent;
 342	struct ceph_snap_context *snapc;
 343	int err = 0;
 344	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 345
 346	/*
 347	 * build parent context, if it hasn't been built.
 348	 * conservatively estimate that all parent snaps might be
 349	 * included by us.
 350	 */
 351	if (parent) {
 352		if (!parent->cached_context) {
 353			/* add to the queue head */
 354			list_add(&parent->rebuild_item, realm_queue);
 355			return 1;
 356		}
 357		num += parent->cached_context->num_snaps;
 358	}
 359
 360	/* do i actually need to update?  not if my context seq
 361	   matches realm seq, and my parents' does to.  (this works
 362	   because we rebuild_snap_realms() works _downward_ in
 363	   hierarchy after each update.) */
 364	if (realm->cached_context &&
 365	    realm->cached_context->seq == realm->seq &&
 366	    (!parent ||
 367	     realm->cached_context->seq >= parent->cached_context->seq)) {
 368		doutc(cl, "%llx %p: %p seq %lld (%u snaps) (unchanged)\n",
 369		      realm->ino, realm, realm->cached_context,
 370		      realm->cached_context->seq,
 371		      (unsigned int)realm->cached_context->num_snaps);
 372		return 0;
 373	}
 374
 375	/* alloc new snap context */
 376	err = -ENOMEM;
 377	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 378		goto fail;
 379	snapc = ceph_create_snap_context(num, GFP_NOFS);
 380	if (!snapc)
 381		goto fail;
 382
 383	/* build (reverse sorted) snap vector */
 384	num = 0;
 385	snapc->seq = realm->seq;
 386	if (parent) {
 387		u32 i;
 388
 389		/* include any of parent's snaps occurring _after_ my
 390		   parent became my parent */
 391		for (i = 0; i < parent->cached_context->num_snaps; i++)
 392			if (parent->cached_context->snaps[i] >=
 393			    realm->parent_since)
 394				snapc->snaps[num++] =
 395					parent->cached_context->snaps[i];
 396		if (parent->cached_context->seq > snapc->seq)
 397			snapc->seq = parent->cached_context->seq;
 398	}
 399	memcpy(snapc->snaps + num, realm->snaps,
 400	       sizeof(u64)*realm->num_snaps);
 401	num += realm->num_snaps;
 402	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 403	       sizeof(u64)*realm->num_prior_parent_snaps);
 404	num += realm->num_prior_parent_snaps;
 405
 406	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 407	snapc->num_snaps = num;
 408	doutc(cl, "%llx %p: %p seq %lld (%u snaps)\n", realm->ino, realm,
 409	      snapc, snapc->seq, (unsigned int) snapc->num_snaps);
 410
 411	ceph_put_snap_context(realm->cached_context);
 412	realm->cached_context = snapc;
 413	/* queue realm for cap_snap creation */
 414	list_add_tail(&realm->dirty_item, dirty_realms);
 415	return 0;
 416
 417fail:
 418	/*
 419	 * if we fail, clear old (incorrect) cached_context... hopefully
 420	 * we'll have better luck building it later
 421	 */
 422	if (realm->cached_context) {
 423		ceph_put_snap_context(realm->cached_context);
 424		realm->cached_context = NULL;
 425	}
 426	pr_err_client(cl, "%llx %p fail %d\n", realm->ino, realm, err);
 427	return err;
 428}
 429
 430/*
 431 * rebuild snap context for the given realm and all of its children.
 432 */
 433static void rebuild_snap_realms(struct ceph_mds_client *mdsc,
 434				struct ceph_snap_realm *realm,
 435				struct list_head *dirty_realms)
 436{
 437	struct ceph_client *cl = mdsc->fsc->client;
 438	LIST_HEAD(realm_queue);
 439	int last = 0;
 440	bool skip = false;
 441
 442	list_add_tail(&realm->rebuild_item, &realm_queue);
 443
 444	while (!list_empty(&realm_queue)) {
 445		struct ceph_snap_realm *_realm, *child;
 446
 447		_realm = list_first_entry(&realm_queue,
 448					  struct ceph_snap_realm,
 449					  rebuild_item);
 450
 451		/*
 452		 * If the last building failed dues to memory
 453		 * issue, just empty the realm_queue and return
 454		 * to avoid infinite loop.
 455		 */
 456		if (last < 0) {
 457			list_del_init(&_realm->rebuild_item);
 458			continue;
 459		}
 460
 461		last = build_snap_context(mdsc, _realm, &realm_queue,
 462					  dirty_realms);
 463		doutc(cl, "%llx %p, %s\n", realm->ino, realm,
 464		      last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
 465
 466		/* is any child in the list ? */
 467		list_for_each_entry(child, &_realm->children, child_item) {
 468			if (!list_empty(&child->rebuild_item)) {
 469				skip = true;
 470				break;
 471			}
 472		}
 473
 474		if (!skip) {
 475			list_for_each_entry(child, &_realm->children, child_item)
 476				list_add_tail(&child->rebuild_item, &realm_queue);
 477		}
 478
 479		/* last == 1 means need to build parent first */
 480		if (last <= 0)
 481			list_del_init(&_realm->rebuild_item);
 482	}
 483}
 484
 485
 486/*
 487 * helper to allocate and decode an array of snapids.  free prior
 488 * instance, if any.
 489 */
 490static int dup_array(u64 **dst, __le64 *src, u32 num)
 491{
 492	u32 i;
 493
 494	kfree(*dst);
 495	if (num) {
 496		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 497		if (!*dst)
 498			return -ENOMEM;
 499		for (i = 0; i < num; i++)
 500			(*dst)[i] = get_unaligned_le64(src + i);
 501	} else {
 502		*dst = NULL;
 503	}
 504	return 0;
 505}
 506
 507static bool has_new_snaps(struct ceph_snap_context *o,
 508			  struct ceph_snap_context *n)
 509{
 510	if (n->num_snaps == 0)
 511		return false;
 512	/* snaps are in descending order */
 513	return n->snaps[0] > o->seq;
 514}
 515
 516/*
 517 * When a snapshot is applied, the size/mtime inode metadata is queued
 518 * in a ceph_cap_snap (one for each snapshot) until writeback
 519 * completes and the metadata can be flushed back to the MDS.
 520 *
 521 * However, if a (sync) write is currently in-progress when we apply
 522 * the snapshot, we have to wait until the write succeeds or fails
 523 * (and a final size/mtime is known).  In this case the
 524 * cap_snap->writing = 1, and is said to be "pending."  When the write
 525 * finishes, we __ceph_finish_cap_snap().
 526 *
 527 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 528 * change).
 529 */
 530static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
 531				struct ceph_cap_snap **pcapsnap)
 532{
 533	struct inode *inode = &ci->netfs.inode;
 534	struct ceph_client *cl = ceph_inode_to_client(inode);
 535	struct ceph_snap_context *old_snapc, *new_snapc;
 536	struct ceph_cap_snap *capsnap = *pcapsnap;
 537	struct ceph_buffer *old_blob = NULL;
 538	int used, dirty;
 539
 540	spin_lock(&ci->i_ceph_lock);
 541	used = __ceph_caps_used(ci);
 542	dirty = __ceph_caps_dirty(ci);
 543
 544	old_snapc = ci->i_head_snapc;
 545	new_snapc = ci->i_snap_realm->cached_context;
 546
 547	/*
 548	 * If there is a write in progress, treat that as a dirty Fw,
 549	 * even though it hasn't completed yet; by the time we finish
 550	 * up this capsnap it will be.
 551	 */
 552	if (used & CEPH_CAP_FILE_WR)
 553		dirty |= CEPH_CAP_FILE_WR;
 554
 555	if (__ceph_have_pending_cap_snap(ci)) {
 556		/* there is no point in queuing multiple "pending" cap_snaps,
 557		   as no new writes are allowed to start when pending, so any
 558		   writes in progress now were started before the previous
 559		   cap_snap.  lucky us. */
 560		doutc(cl, "%p %llx.%llx already pending\n", inode,
 561		      ceph_vinop(inode));
 562		goto update_snapc;
 563	}
 564	if (ci->i_wrbuffer_ref_head == 0 &&
 565	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 566		doutc(cl, "%p %llx.%llx nothing dirty|writing\n", inode,
 567		      ceph_vinop(inode));
 568		goto update_snapc;
 569	}
 570
 571	BUG_ON(!old_snapc);
 572
 573	/*
 574	 * There is no need to send FLUSHSNAP message to MDS if there is
 575	 * no new snapshot. But when there is dirty pages or on-going
 576	 * writes, we still need to create cap_snap. cap_snap is needed
 577	 * by the write path and page writeback path.
 578	 *
 579	 * also see ceph_try_drop_cap_snap()
 580	 */
 581	if (has_new_snaps(old_snapc, new_snapc)) {
 582		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 583			capsnap->need_flush = true;
 584	} else {
 585		if (!(used & CEPH_CAP_FILE_WR) &&
 586		    ci->i_wrbuffer_ref_head == 0) {
 587			doutc(cl, "%p %llx.%llx no new_snap|dirty_page|writing\n",
 588			      inode, ceph_vinop(inode));
 589			goto update_snapc;
 590		}
 591	}
 592
 593	doutc(cl, "%p %llx.%llx cap_snap %p queuing under %p %s %s\n",
 594	      inode, ceph_vinop(inode), capsnap, old_snapc,
 595	      ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
 596	ihold(inode);
 597
 598	capsnap->follows = old_snapc->seq;
 599	capsnap->issued = __ceph_caps_issued(ci, NULL);
 600	capsnap->dirty = dirty;
 601
 602	capsnap->mode = inode->i_mode;
 603	capsnap->uid = inode->i_uid;
 604	capsnap->gid = inode->i_gid;
 605
 606	if (dirty & CEPH_CAP_XATTR_EXCL) {
 607		old_blob = __ceph_build_xattrs_blob(ci);
 608		capsnap->xattr_blob =
 609			ceph_buffer_get(ci->i_xattrs.blob);
 610		capsnap->xattr_version = ci->i_xattrs.version;
 611	} else {
 612		capsnap->xattr_blob = NULL;
 613		capsnap->xattr_version = 0;
 614	}
 615
 616	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 617
 618	/* dirty page count moved from _head to this cap_snap;
 619	   all subsequent writes page dirties occur _after_ this
 620	   snapshot. */
 621	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 622	ci->i_wrbuffer_ref_head = 0;
 623	capsnap->context = old_snapc;
 624	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 625
 626	if (used & CEPH_CAP_FILE_WR) {
 627		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
 628		      " now pending\n", inode, ceph_vinop(inode), capsnap,
 629		      old_snapc, old_snapc->seq);
 630		capsnap->writing = 1;
 631	} else {
 632		/* note mtime, size NOW. */
 633		__ceph_finish_cap_snap(ci, capsnap);
 634	}
 635	*pcapsnap = NULL;
 636	old_snapc = NULL;
 637
 638update_snapc:
 639	if (ci->i_wrbuffer_ref_head == 0 &&
 640	    ci->i_wr_ref == 0 &&
 641	    ci->i_dirty_caps == 0 &&
 642	    ci->i_flushing_caps == 0) {
 643		ci->i_head_snapc = NULL;
 644	} else {
 645		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 646		doutc(cl, " new snapc is %p\n", new_snapc);
 647	}
 648	spin_unlock(&ci->i_ceph_lock);
 649
 650	ceph_buffer_put(old_blob);
 651	ceph_put_snap_context(old_snapc);
 652}
 653
 654/*
 655 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 656 * to be used for the snapshot, to be flushed back to the mds.
 657 *
 658 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 659 *
 660 * Caller must hold i_ceph_lock.
 661 */
 662int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 663			    struct ceph_cap_snap *capsnap)
 664{
 665	struct inode *inode = &ci->netfs.inode;
 666	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
 667	struct ceph_client *cl = mdsc->fsc->client;
 668
 669	BUG_ON(capsnap->writing);
 670	capsnap->size = i_size_read(inode);
 671	capsnap->mtime = inode_get_mtime(inode);
 672	capsnap->atime = inode_get_atime(inode);
 673	capsnap->ctime = inode_get_ctime(inode);
 674	capsnap->btime = ci->i_btime;
 675	capsnap->change_attr = inode_peek_iversion_raw(inode);
 676	capsnap->time_warp_seq = ci->i_time_warp_seq;
 677	capsnap->truncate_size = ci->i_truncate_size;
 678	capsnap->truncate_seq = ci->i_truncate_seq;
 679	if (capsnap->dirty_pages) {
 680		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
 681		      "s=%llu still has %d dirty pages\n", inode,
 682		      ceph_vinop(inode), capsnap, capsnap->context,
 683		      capsnap->context->seq,
 684		      ceph_cap_string(capsnap->dirty),
 685		      capsnap->size, capsnap->dirty_pages);
 686		return 0;
 687	}
 688
 689	/*
 690	 * Defer flushing the capsnap if the dirty buffer not flushed yet.
 691	 * And trigger to flush the buffer immediately.
 692	 */
 693	if (ci->i_wrbuffer_ref) {
 694		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
 695		      "s=%llu used WRBUFFER, delaying\n", inode,
 696		      ceph_vinop(inode), capsnap, capsnap->context,
 697		      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 698		      capsnap->size);
 699		ceph_queue_writeback(inode);
 700		return 0;
 701	}
 702
 703	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 704	doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
 705	      inode, ceph_vinop(inode), capsnap, capsnap->context,
 706	      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 707	      capsnap->size);
 708
 709	spin_lock(&mdsc->snap_flush_lock);
 710	if (list_empty(&ci->i_snap_flush_item)) {
 711		ihold(inode);
 712		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 713	}
 714	spin_unlock(&mdsc->snap_flush_lock);
 715	return 1;  /* caller may want to ceph_flush_snaps */
 716}
 717
 718/*
 719 * Queue cap_snaps for snap writeback for this realm and its children.
 720 * Called under snap_rwsem, so realm topology won't change.
 721 */
 722static void queue_realm_cap_snaps(struct ceph_mds_client *mdsc,
 723				  struct ceph_snap_realm *realm)
 724{
 725	struct ceph_client *cl = mdsc->fsc->client;
 726	struct ceph_inode_info *ci;
 727	struct inode *lastinode = NULL;
 728	struct ceph_cap_snap *capsnap = NULL;
 729
 730	doutc(cl, "%p %llx inode\n", realm, realm->ino);
 731
 732	spin_lock(&realm->inodes_with_caps_lock);
 733	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 734		struct inode *inode = igrab(&ci->netfs.inode);
 735		if (!inode)
 736			continue;
 737		spin_unlock(&realm->inodes_with_caps_lock);
 738		iput(lastinode);
 739		lastinode = inode;
 740
 741		/*
 742		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
 743		 * to reduce very possible but unnecessary frequently memory
 744		 * allocate/free in this loop.
 745		 */
 746		if (!capsnap) {
 747			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
 748			if (!capsnap) {
 749				pr_err_client(cl,
 750					"ENOMEM allocating ceph_cap_snap on %p\n",
 751					inode);
 752				return;
 753			}
 754		}
 755		capsnap->cap_flush.is_capsnap = true;
 756		refcount_set(&capsnap->nref, 1);
 757		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
 758		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
 759		INIT_LIST_HEAD(&capsnap->ci_item);
 760
 761		ceph_queue_cap_snap(ci, &capsnap);
 762		spin_lock(&realm->inodes_with_caps_lock);
 763	}
 764	spin_unlock(&realm->inodes_with_caps_lock);
 765	iput(lastinode);
 766
 767	if (capsnap)
 768		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
 769	doutc(cl, "%p %llx done\n", realm, realm->ino);
 770}
 771
 772/*
 773 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 774 * the snap realm parameters from a given realm and all of its ancestors,
 775 * up to the root.
 776 *
 777 * Caller must hold snap_rwsem for write.
 778 */
 779int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 780			   void *p, void *e, bool deletion,
 781			   struct ceph_snap_realm **realm_ret)
 782{
 783	struct ceph_client *cl = mdsc->fsc->client;
 784	struct ceph_mds_snap_realm *ri;    /* encoded */
 785	__le64 *snaps;                     /* encoded */
 786	__le64 *prior_parent_snaps;        /* encoded */
 787	struct ceph_snap_realm *realm;
 788	struct ceph_snap_realm *first_realm = NULL;
 789	struct ceph_snap_realm *realm_to_rebuild = NULL;
 790	struct ceph_client *client = mdsc->fsc->client;
 791	int rebuild_snapcs;
 792	int err = -ENOMEM;
 793	int ret;
 794	LIST_HEAD(dirty_realms);
 795
 796	lockdep_assert_held_write(&mdsc->snap_rwsem);
 797
 798	doutc(cl, "deletion=%d\n", deletion);
 799more:
 800	realm = NULL;
 801	rebuild_snapcs = 0;
 802	ceph_decode_need(&p, e, sizeof(*ri), bad);
 803	ri = p;
 804	p += sizeof(*ri);
 805	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 806			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 807	snaps = p;
 808	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 809	prior_parent_snaps = p;
 810	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 811
 812	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 813	if (!realm) {
 814		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 815		if (IS_ERR(realm)) {
 816			err = PTR_ERR(realm);
 817			goto fail;
 818		}
 819	}
 820
 821	/* ensure the parent is correct */
 822	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 823	if (err < 0)
 824		goto fail;
 825	rebuild_snapcs += err;
 826
 827	if (le64_to_cpu(ri->seq) > realm->seq) {
 828		doutc(cl, "updating %llx %p %lld -> %lld\n", realm->ino,
 829		      realm, realm->seq, le64_to_cpu(ri->seq));
 830		/* update realm parameters, snap lists */
 831		realm->seq = le64_to_cpu(ri->seq);
 832		realm->created = le64_to_cpu(ri->created);
 833		realm->parent_since = le64_to_cpu(ri->parent_since);
 834
 835		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 836		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 837		if (err < 0)
 838			goto fail;
 839
 840		realm->num_prior_parent_snaps =
 841			le32_to_cpu(ri->num_prior_parent_snaps);
 842		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 843				realm->num_prior_parent_snaps);
 844		if (err < 0)
 845			goto fail;
 846
 847		if (realm->seq > mdsc->last_snap_seq)
 848			mdsc->last_snap_seq = realm->seq;
 849
 850		rebuild_snapcs = 1;
 851	} else if (!realm->cached_context) {
 852		doutc(cl, "%llx %p seq %lld new\n", realm->ino, realm,
 853		      realm->seq);
 854		rebuild_snapcs = 1;
 855	} else {
 856		doutc(cl, "%llx %p seq %lld unchanged\n", realm->ino, realm,
 857		      realm->seq);
 858	}
 859
 860	doutc(cl, "done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
 861	      realm, rebuild_snapcs, p, e);
 862
 863	/*
 864	 * this will always track the uppest parent realm from which
 865	 * we need to rebuild the snapshot contexts _downward_ in
 866	 * hierarchy.
 867	 */
 868	if (rebuild_snapcs)
 869		realm_to_rebuild = realm;
 870
 871	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
 872	if (realm_to_rebuild && p >= e)
 873		rebuild_snap_realms(mdsc, realm_to_rebuild, &dirty_realms);
 874
 875	if (!first_realm)
 876		first_realm = realm;
 877	else
 878		ceph_put_snap_realm(mdsc, realm);
 879
 880	if (p < e)
 881		goto more;
 882
 883	/*
 884	 * queue cap snaps _after_ we've built the new snap contexts,
 885	 * so that i_head_snapc can be set appropriately.
 886	 */
 887	while (!list_empty(&dirty_realms)) {
 888		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 889					 dirty_item);
 890		list_del_init(&realm->dirty_item);
 891		queue_realm_cap_snaps(mdsc, realm);
 892	}
 893
 894	if (realm_ret)
 895		*realm_ret = first_realm;
 896	else
 897		ceph_put_snap_realm(mdsc, first_realm);
 898
 899	__cleanup_empty_realms(mdsc);
 900	return 0;
 901
 902bad:
 903	err = -EIO;
 904fail:
 905	if (realm && !IS_ERR(realm))
 906		ceph_put_snap_realm(mdsc, realm);
 907	if (first_realm)
 908		ceph_put_snap_realm(mdsc, first_realm);
 909	pr_err_client(cl, "error %d\n", err);
 910
 911	/*
 912	 * When receiving a corrupted snap trace we don't know what
 913	 * exactly has happened in MDS side. And we shouldn't continue
 914	 * writing to OSD, which may corrupt the snapshot contents.
 915	 *
 916	 * Just try to blocklist this kclient and then this kclient
 917	 * must be remounted to continue after the corrupted metadata
 918	 * fixed in the MDS side.
 919	 */
 920	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
 921	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
 922	if (ret)
 923		pr_err_client(cl, "failed to blocklist %s: %d\n",
 924			      ceph_pr_addr(&client->msgr.inst.addr), ret);
 925
 926	WARN(1, "[client.%lld] %s %s%sdo remount to continue%s",
 927	     client->monc.auth->global_id, __func__,
 928	     ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
 929	     ret ? "" : " was blocklisted, ",
 930	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
 931
 932	return err;
 933}
 934
 935
 936/*
 937 * Send any cap_snaps that are queued for flush.  Try to carry
 938 * s_mutex across multiple snap flushes to avoid locking overhead.
 939 *
 940 * Caller holds no locks.
 941 */
 942static void flush_snaps(struct ceph_mds_client *mdsc)
 943{
 944	struct ceph_client *cl = mdsc->fsc->client;
 945	struct ceph_inode_info *ci;
 946	struct inode *inode;
 947	struct ceph_mds_session *session = NULL;
 948
 949	doutc(cl, "begin\n");
 950	spin_lock(&mdsc->snap_flush_lock);
 951	while (!list_empty(&mdsc->snap_flush_list)) {
 952		ci = list_first_entry(&mdsc->snap_flush_list,
 953				struct ceph_inode_info, i_snap_flush_item);
 954		inode = &ci->netfs.inode;
 955		ihold(inode);
 956		spin_unlock(&mdsc->snap_flush_lock);
 957		ceph_flush_snaps(ci, &session);
 958		iput(inode);
 959		spin_lock(&mdsc->snap_flush_lock);
 960	}
 961	spin_unlock(&mdsc->snap_flush_lock);
 962
 963	ceph_put_mds_session(session);
 964	doutc(cl, "done\n");
 965}
 966
 967/**
 968 * ceph_change_snap_realm - change the snap_realm for an inode
 969 * @inode: inode to move to new snap realm
 970 * @realm: new realm to move inode into (may be NULL)
 971 *
 972 * Detach an inode from its old snaprealm (if any) and attach it to
 973 * the new snaprealm (if any). The old snap realm reference held by
 974 * the inode is put. If realm is non-NULL, then the caller's reference
 975 * to it is taken over by the inode.
 976 */
 977void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
 978{
 979	struct ceph_inode_info *ci = ceph_inode(inode);
 980	struct ceph_mds_client *mdsc = ceph_inode_to_fs_client(inode)->mdsc;
 981	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
 982
 983	lockdep_assert_held(&ci->i_ceph_lock);
 984
 985	if (oldrealm) {
 986		spin_lock(&oldrealm->inodes_with_caps_lock);
 987		list_del_init(&ci->i_snap_realm_item);
 988		if (oldrealm->ino == ci->i_vino.ino)
 989			oldrealm->inode = NULL;
 990		spin_unlock(&oldrealm->inodes_with_caps_lock);
 991		ceph_put_snap_realm(mdsc, oldrealm);
 992	}
 993
 994	ci->i_snap_realm = realm;
 995
 996	if (realm) {
 997		spin_lock(&realm->inodes_with_caps_lock);
 998		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
 999		if (realm->ino == ci->i_vino.ino)
1000			realm->inode = inode;
1001		spin_unlock(&realm->inodes_with_caps_lock);
1002	}
1003}
1004
1005/*
1006 * Handle a snap notification from the MDS.
1007 *
1008 * This can take two basic forms: the simplest is just a snap creation
1009 * or deletion notification on an existing realm.  This should update the
1010 * realm and its children.
1011 *
1012 * The more difficult case is realm creation, due to snap creation at a
1013 * new point in the file hierarchy, or due to a rename that moves a file or
1014 * directory into another realm.
1015 */
1016void ceph_handle_snap(struct ceph_mds_client *mdsc,
1017		      struct ceph_mds_session *session,
1018		      struct ceph_msg *msg)
1019{
1020	struct ceph_client *cl = mdsc->fsc->client;
1021	struct super_block *sb = mdsc->fsc->sb;
1022	int mds = session->s_mds;
1023	u64 split;
1024	int op;
1025	int trace_len;
1026	struct ceph_snap_realm *realm = NULL;
1027	void *p = msg->front.iov_base;
1028	void *e = p + msg->front.iov_len;
1029	struct ceph_mds_snap_head *h;
1030	int num_split_inos, num_split_realms;
1031	__le64 *split_inos = NULL, *split_realms = NULL;
1032	int i;
1033	int locked_rwsem = 0;
1034	bool close_sessions = false;
1035
1036	if (!ceph_inc_mds_stopping_blocker(mdsc, session))
1037		return;
1038
1039	/* decode */
1040	if (msg->front.iov_len < sizeof(*h))
1041		goto bad;
1042	h = p;
1043	op = le32_to_cpu(h->op);
1044	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1045					  * existing realm */
1046	num_split_inos = le32_to_cpu(h->num_split_inos);
1047	num_split_realms = le32_to_cpu(h->num_split_realms);
1048	trace_len = le32_to_cpu(h->trace_len);
1049	p += sizeof(*h);
1050
1051	doutc(cl, "from mds%d op %s split %llx tracelen %d\n", mds,
1052	      ceph_snap_op_name(op), split, trace_len);
 
 
 
 
1053
1054	down_write(&mdsc->snap_rwsem);
1055	locked_rwsem = 1;
1056
1057	if (op == CEPH_SNAP_OP_SPLIT) {
1058		struct ceph_mds_snap_realm *ri;
1059
1060		/*
1061		 * A "split" breaks part of an existing realm off into
1062		 * a new realm.  The MDS provides a list of inodes
1063		 * (with caps) and child realms that belong to the new
1064		 * child.
1065		 */
1066		split_inos = p;
1067		p += sizeof(u64) * num_split_inos;
1068		split_realms = p;
1069		p += sizeof(u64) * num_split_realms;
1070		ceph_decode_need(&p, e, sizeof(*ri), bad);
1071		/* we will peek at realm info here, but will _not_
1072		 * advance p, as the realm update will occur below in
1073		 * ceph_update_snap_trace. */
1074		ri = p;
1075
1076		realm = ceph_lookup_snap_realm(mdsc, split);
1077		if (!realm) {
1078			realm = ceph_create_snap_realm(mdsc, split);
1079			if (IS_ERR(realm))
1080				goto out;
1081		}
1082
1083		doutc(cl, "splitting snap_realm %llx %p\n", realm->ino, realm);
1084		for (i = 0; i < num_split_inos; i++) {
1085			struct ceph_vino vino = {
1086				.ino = le64_to_cpu(split_inos[i]),
1087				.snap = CEPH_NOSNAP,
1088			};
1089			struct inode *inode = ceph_find_inode(sb, vino);
1090			struct ceph_inode_info *ci;
1091
1092			if (!inode)
1093				continue;
1094			ci = ceph_inode(inode);
1095
1096			spin_lock(&ci->i_ceph_lock);
1097			if (!ci->i_snap_realm)
1098				goto skip_inode;
1099			/*
1100			 * If this inode belongs to a realm that was
1101			 * created after our new realm, we experienced
1102			 * a race (due to another split notifications
1103			 * arriving from a different MDS).  So skip
1104			 * this inode.
1105			 */
1106			if (ci->i_snap_realm->created >
1107			    le64_to_cpu(ri->created)) {
1108				doutc(cl, " leaving %p %llx.%llx in newer realm %llx %p\n",
1109				      inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1110				      ci->i_snap_realm);
1111				goto skip_inode;
1112			}
1113			doutc(cl, " will move %p %llx.%llx to split realm %llx %p\n",
1114			      inode, ceph_vinop(inode), realm->ino, realm);
1115
1116			ceph_get_snap_realm(mdsc, realm);
1117			ceph_change_snap_realm(inode, realm);
1118			spin_unlock(&ci->i_ceph_lock);
1119			iput(inode);
1120			continue;
1121
1122skip_inode:
1123			spin_unlock(&ci->i_ceph_lock);
1124			iput(inode);
1125		}
1126
1127		/* we may have taken some of the old realm's children. */
1128		for (i = 0; i < num_split_realms; i++) {
1129			struct ceph_snap_realm *child =
1130				__lookup_snap_realm(mdsc,
1131					   le64_to_cpu(split_realms[i]));
1132			if (!child)
1133				continue;
1134			adjust_snap_realm_parent(mdsc, child, realm->ino);
1135		}
1136	} else {
1137		/*
1138		 * In the non-split case both 'num_split_inos' and
1139		 * 'num_split_realms' should be 0, making this a no-op.
1140		 * However the MDS happens to populate 'split_realms' list
1141		 * in one of the UPDATE op cases by mistake.
1142		 *
1143		 * Skip both lists just in case to ensure that 'p' is
1144		 * positioned at the start of realm info, as expected by
1145		 * ceph_update_snap_trace().
1146		 */
1147		p += sizeof(u64) * num_split_inos;
1148		p += sizeof(u64) * num_split_realms;
1149	}
1150
1151	/*
1152	 * update using the provided snap trace. if we are deleting a
1153	 * snap, we can avoid queueing cap_snaps.
1154	 */
1155	if (ceph_update_snap_trace(mdsc, p, e,
1156				   op == CEPH_SNAP_OP_DESTROY,
1157				   NULL)) {
1158		close_sessions = true;
1159		goto bad;
1160	}
1161
1162	if (op == CEPH_SNAP_OP_SPLIT)
1163		/* we took a reference when we created the realm, above */
1164		ceph_put_snap_realm(mdsc, realm);
1165
1166	__cleanup_empty_realms(mdsc);
1167
1168	up_write(&mdsc->snap_rwsem);
1169
1170	flush_snaps(mdsc);
1171	ceph_dec_mds_stopping_blocker(mdsc);
1172	return;
1173
1174bad:
1175	pr_err_client(cl, "corrupt snap message from mds%d\n", mds);
1176	ceph_msg_dump(msg);
1177out:
1178	if (locked_rwsem)
1179		up_write(&mdsc->snap_rwsem);
1180
1181	ceph_dec_mds_stopping_blocker(mdsc);
1182
1183	if (close_sessions)
1184		ceph_mdsc_close_sessions(mdsc);
1185	return;
1186}
1187
1188struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1189					    u64 snap)
1190{
1191	struct ceph_client *cl = mdsc->fsc->client;
1192	struct ceph_snapid_map *sm, *exist;
1193	struct rb_node **p, *parent;
1194	int ret;
1195
1196	exist = NULL;
1197	spin_lock(&mdsc->snapid_map_lock);
1198	p = &mdsc->snapid_map_tree.rb_node;
1199	while (*p) {
1200		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201		if (snap > exist->snap) {
1202			p = &(*p)->rb_left;
1203		} else if (snap < exist->snap) {
1204			p = &(*p)->rb_right;
1205		} else {
1206			if (atomic_inc_return(&exist->ref) == 1)
1207				list_del_init(&exist->lru);
1208			break;
1209		}
1210		exist = NULL;
1211	}
1212	spin_unlock(&mdsc->snapid_map_lock);
1213	if (exist) {
1214		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1215		      exist->dev);
1216		return exist;
1217	}
1218
1219	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1220	if (!sm)
1221		return NULL;
1222
1223	ret = get_anon_bdev(&sm->dev);
1224	if (ret < 0) {
1225		kfree(sm);
1226		return NULL;
1227	}
1228
1229	INIT_LIST_HEAD(&sm->lru);
1230	atomic_set(&sm->ref, 1);
1231	sm->snap = snap;
1232
1233	exist = NULL;
1234	parent = NULL;
1235	p = &mdsc->snapid_map_tree.rb_node;
1236	spin_lock(&mdsc->snapid_map_lock);
1237	while (*p) {
1238		parent = *p;
1239		exist = rb_entry(*p, struct ceph_snapid_map, node);
1240		if (snap > exist->snap)
1241			p = &(*p)->rb_left;
1242		else if (snap < exist->snap)
1243			p = &(*p)->rb_right;
1244		else
1245			break;
1246		exist = NULL;
1247	}
1248	if (exist) {
1249		if (atomic_inc_return(&exist->ref) == 1)
1250			list_del_init(&exist->lru);
1251	} else {
1252		rb_link_node(&sm->node, parent, p);
1253		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1254	}
1255	spin_unlock(&mdsc->snapid_map_lock);
1256	if (exist) {
1257		free_anon_bdev(sm->dev);
1258		kfree(sm);
1259		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1260		      exist->dev);
1261		return exist;
1262	}
1263
1264	doutc(cl, "create snapid map %llx -> %x\n", sm->snap, sm->dev);
 
1265	return sm;
1266}
1267
1268void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1269			 struct ceph_snapid_map *sm)
1270{
1271	if (!sm)
1272		return;
1273	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1274		if (!RB_EMPTY_NODE(&sm->node)) {
1275			sm->last_used = jiffies;
1276			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1277			spin_unlock(&mdsc->snapid_map_lock);
1278		} else {
1279			/* already cleaned up by
1280			 * ceph_cleanup_snapid_map() */
1281			spin_unlock(&mdsc->snapid_map_lock);
1282			kfree(sm);
1283		}
1284	}
1285}
1286
1287void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1288{
1289	struct ceph_client *cl = mdsc->fsc->client;
1290	struct ceph_snapid_map *sm;
1291	unsigned long now;
1292	LIST_HEAD(to_free);
1293
1294	spin_lock(&mdsc->snapid_map_lock);
1295	now = jiffies;
1296
1297	while (!list_empty(&mdsc->snapid_map_lru)) {
1298		sm = list_first_entry(&mdsc->snapid_map_lru,
1299				      struct ceph_snapid_map, lru);
1300		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1301			break;
1302
1303		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1304		list_move(&sm->lru, &to_free);
1305	}
1306	spin_unlock(&mdsc->snapid_map_lock);
1307
1308	while (!list_empty(&to_free)) {
1309		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1310		list_del(&sm->lru);
1311		doutc(cl, "trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1312		free_anon_bdev(sm->dev);
1313		kfree(sm);
1314	}
1315}
1316
1317void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1318{
1319	struct ceph_client *cl = mdsc->fsc->client;
1320	struct ceph_snapid_map *sm;
1321	struct rb_node *p;
1322	LIST_HEAD(to_free);
1323
1324	spin_lock(&mdsc->snapid_map_lock);
1325	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1326		sm = rb_entry(p, struct ceph_snapid_map, node);
1327		rb_erase(p, &mdsc->snapid_map_tree);
1328		RB_CLEAR_NODE(p);
1329		list_move(&sm->lru, &to_free);
1330	}
1331	spin_unlock(&mdsc->snapid_map_lock);
1332
1333	while (!list_empty(&to_free)) {
1334		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1335		list_del(&sm->lru);
1336		free_anon_bdev(sm->dev);
1337		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1338			pr_err_client(cl, "snapid map %llx -> %x still in use\n",
1339				      sm->snap, sm->dev);
1340		}
1341		kfree(sm);
1342	}
1343}