Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12#include "zoned.h"
13#include "fs.h"
14#include "accessors.h"
15#include "extent-tree.h"
16
17/*
18 * HOW DOES SPACE RESERVATION WORK
19 *
20 * If you want to know about delalloc specifically, there is a separate comment
21 * for that with the delalloc code. This comment is about how the whole system
22 * works generally.
23 *
24 * BASIC CONCEPTS
25 *
26 * 1) space_info. This is the ultimate arbiter of how much space we can use.
27 * There's a description of the bytes_ fields with the struct declaration,
28 * refer to that for specifics on each field. Suffice it to say that for
29 * reservations we care about total_bytes - SUM(space_info->bytes_) when
30 * determining if there is space to make an allocation. There is a space_info
31 * for METADATA, SYSTEM, and DATA areas.
32 *
33 * 2) block_rsv's. These are basically buckets for every different type of
34 * metadata reservation we have. You can see the comment in the block_rsv
35 * code on the rules for each type, but generally block_rsv->reserved is how
36 * much space is accounted for in space_info->bytes_may_use.
37 *
38 * 3) btrfs_calc*_size. These are the worst case calculations we used based
39 * on the number of items we will want to modify. We have one for changing
40 * items, and one for inserting new items. Generally we use these helpers to
41 * determine the size of the block reserves, and then use the actual bytes
42 * values to adjust the space_info counters.
43 *
44 * MAKING RESERVATIONS, THE NORMAL CASE
45 *
46 * We call into either btrfs_reserve_data_bytes() or
47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48 * num_bytes we want to reserve.
49 *
50 * ->reserve
51 * space_info->bytes_may_reserve += num_bytes
52 *
53 * ->extent allocation
54 * Call btrfs_add_reserved_bytes() which does
55 * space_info->bytes_may_reserve -= num_bytes
56 * space_info->bytes_reserved += extent_bytes
57 *
58 * ->insert reference
59 * Call btrfs_update_block_group() which does
60 * space_info->bytes_reserved -= extent_bytes
61 * space_info->bytes_used += extent_bytes
62 *
63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64 *
65 * Assume we are unable to simply make the reservation because we do not have
66 * enough space
67 *
68 * -> __reserve_bytes
69 * create a reserve_ticket with ->bytes set to our reservation, add it to
70 * the tail of space_info->tickets, kick async flush thread
71 *
72 * ->handle_reserve_ticket
73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74 * on the ticket.
75 *
76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77 * Flushes various things attempting to free up space.
78 *
79 * -> btrfs_try_granting_tickets()
80 * This is called by anything that either subtracts space from
81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82 * space_info->total_bytes. This loops through the ->priority_tickets and
83 * then the ->tickets list checking to see if the reservation can be
84 * completed. If it can the space is added to space_info->bytes_may_use and
85 * the ticket is woken up.
86 *
87 * -> ticket wakeup
88 * Check if ->bytes == 0, if it does we got our reservation and we can carry
89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90 * were interrupted.)
91 *
92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93 *
94 * Same as the above, except we add ourselves to the
95 * space_info->priority_tickets, and we do not use ticket->wait, we simply
96 * call flush_space() ourselves for the states that are safe for us to call
97 * without deadlocking and hope for the best.
98 *
99 * THE FLUSHING STATES
100 *
101 * Generally speaking we will have two cases for each state, a "nice" state
102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
103 * reduce the locking over head on the various trees, and even to keep from
104 * doing any work at all in the case of delayed refs. Each of these delayed
105 * things however hold reservations, and so letting them run allows us to
106 * reclaim space so we can make new reservations.
107 *
108 * FLUSH_DELAYED_ITEMS
109 * Every inode has a delayed item to update the inode. Take a simple write
110 * for example, we would update the inode item at write time to update the
111 * mtime, and then again at finish_ordered_io() time in order to update the
112 * isize or bytes. We keep these delayed items to coalesce these operations
113 * into a single operation done on demand. These are an easy way to reclaim
114 * metadata space.
115 *
116 * FLUSH_DELALLOC
117 * Look at the delalloc comment to get an idea of how much space is reserved
118 * for delayed allocation. We can reclaim some of this space simply by
119 * running delalloc, but usually we need to wait for ordered extents to
120 * reclaim the bulk of this space.
121 *
122 * FLUSH_DELAYED_REFS
123 * We have a block reserve for the outstanding delayed refs space, and every
124 * delayed ref operation holds a reservation. Running these is a quick way
125 * to reclaim space, but we want to hold this until the end because COW can
126 * churn a lot and we can avoid making some extent tree modifications if we
127 * are able to delay for as long as possible.
128 *
129 * ALLOC_CHUNK
130 * We will skip this the first time through space reservation, because of
131 * overcommit and we don't want to have a lot of useless metadata space when
132 * our worst case reservations will likely never come true.
133 *
134 * RUN_DELAYED_IPUTS
135 * If we're freeing inodes we're likely freeing checksums, file extent
136 * items, and extent tree items. Loads of space could be freed up by these
137 * operations, however they won't be usable until the transaction commits.
138 *
139 * COMMIT_TRANS
140 * This will commit the transaction. Historically we had a lot of logic
141 * surrounding whether or not we'd commit the transaction, but this waits born
142 * out of a pre-tickets era where we could end up committing the transaction
143 * thousands of times in a row without making progress. Now thanks to our
144 * ticketing system we know if we're not making progress and can error
145 * everybody out after a few commits rather than burning the disk hoping for
146 * a different answer.
147 *
148 * OVERCOMMIT
149 *
150 * Because we hold so many reservations for metadata we will allow you to
151 * reserve more space than is currently free in the currently allocate
152 * metadata space. This only happens with metadata, data does not allow
153 * overcommitting.
154 *
155 * You can see the current logic for when we allow overcommit in
156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
157 * is no unallocated space to be had, all reservations are kept within the
158 * free space in the allocated metadata chunks.
159 *
160 * Because of overcommitting, you generally want to use the
161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
162 * thing with or without extra unallocated space.
163 */
164
165u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 bool may_use_included)
167{
168 ASSERT(s_info);
169 return s_info->bytes_used + s_info->bytes_reserved +
170 s_info->bytes_pinned + s_info->bytes_readonly +
171 s_info->bytes_zone_unusable +
172 (may_use_included ? s_info->bytes_may_use : 0);
173}
174
175/*
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
178 */
179void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180{
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
183
184 list_for_each_entry(found, head, list)
185 found->full = 0;
186}
187
188/*
189 * Block groups with more than this value (percents) of unusable space will be
190 * scheduled for background reclaim.
191 */
192#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
193
194/*
195 * Calculate chunk size depending on volume type (regular or zoned).
196 */
197static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198{
199 if (btrfs_is_zoned(fs_info))
200 return fs_info->zone_size;
201
202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204 if (flags & BTRFS_BLOCK_GROUP_DATA)
205 return BTRFS_MAX_DATA_CHUNK_SIZE;
206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 return SZ_32M;
208
209 /* Handle BTRFS_BLOCK_GROUP_METADATA */
210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 return SZ_1G;
212
213 return SZ_256M;
214}
215
216/*
217 * Update default chunk size.
218 */
219void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 u64 chunk_size)
221{
222 WRITE_ONCE(space_info->chunk_size, chunk_size);
223}
224
225static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226{
227
228 struct btrfs_space_info *space_info;
229 int i;
230 int ret;
231
232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 if (!space_info)
234 return -ENOMEM;
235
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 INIT_LIST_HEAD(&space_info->block_groups[i]);
238 init_rwsem(&space_info->groups_sem);
239 spin_lock_init(&space_info->lock);
240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 INIT_LIST_HEAD(&space_info->ro_bgs);
243 INIT_LIST_HEAD(&space_info->tickets);
244 INIT_LIST_HEAD(&space_info->priority_tickets);
245 space_info->clamp = 1;
246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247
248 if (btrfs_is_zoned(info))
249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
251 ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 if (ret)
253 return ret;
254
255 list_add(&space_info->list, &info->space_info);
256 if (flags & BTRFS_BLOCK_GROUP_DATA)
257 info->data_sinfo = space_info;
258
259 return ret;
260}
261
262int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263{
264 struct btrfs_super_block *disk_super;
265 u64 features;
266 u64 flags;
267 int mixed = 0;
268 int ret;
269
270 disk_super = fs_info->super_copy;
271 if (!btrfs_super_root(disk_super))
272 return -EINVAL;
273
274 features = btrfs_super_incompat_flags(disk_super);
275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 mixed = 1;
277
278 flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 ret = create_space_info(fs_info, flags);
280 if (ret)
281 goto out;
282
283 if (mixed) {
284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 ret = create_space_info(fs_info, flags);
286 } else {
287 flags = BTRFS_BLOCK_GROUP_METADATA;
288 ret = create_space_info(fs_info, flags);
289 if (ret)
290 goto out;
291
292 flags = BTRFS_BLOCK_GROUP_DATA;
293 ret = create_space_info(fs_info, flags);
294 }
295out:
296 return ret;
297}
298
299void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 struct btrfs_block_group *block_group)
301{
302 struct btrfs_space_info *found;
303 int factor, index;
304
305 factor = btrfs_bg_type_to_factor(block_group->flags);
306
307 found = btrfs_find_space_info(info, block_group->flags);
308 ASSERT(found);
309 spin_lock(&found->lock);
310 found->total_bytes += block_group->length;
311 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
312 found->active_total_bytes += block_group->length;
313 found->disk_total += block_group->length * factor;
314 found->bytes_used += block_group->used;
315 found->disk_used += block_group->used * factor;
316 found->bytes_readonly += block_group->bytes_super;
317 found->bytes_zone_unusable += block_group->zone_unusable;
318 if (block_group->length > 0)
319 found->full = 0;
320 btrfs_try_granting_tickets(info, found);
321 spin_unlock(&found->lock);
322
323 block_group->space_info = found;
324
325 index = btrfs_bg_flags_to_raid_index(block_group->flags);
326 down_write(&found->groups_sem);
327 list_add_tail(&block_group->list, &found->block_groups[index]);
328 up_write(&found->groups_sem);
329}
330
331struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
332 u64 flags)
333{
334 struct list_head *head = &info->space_info;
335 struct btrfs_space_info *found;
336
337 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
338
339 list_for_each_entry(found, head, list) {
340 if (found->flags & flags)
341 return found;
342 }
343 return NULL;
344}
345
346static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
347 struct btrfs_space_info *space_info,
348 enum btrfs_reserve_flush_enum flush)
349{
350 u64 profile;
351 u64 avail;
352 int factor;
353
354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355 profile = btrfs_system_alloc_profile(fs_info);
356 else
357 profile = btrfs_metadata_alloc_profile(fs_info);
358
359 avail = atomic64_read(&fs_info->free_chunk_space);
360
361 /*
362 * If we have dup, raid1 or raid10 then only half of the free
363 * space is actually usable. For raid56, the space info used
364 * doesn't include the parity drive, so we don't have to
365 * change the math
366 */
367 factor = btrfs_bg_type_to_factor(profile);
368 avail = div_u64(avail, factor);
369
370 /*
371 * If we aren't flushing all things, let us overcommit up to
372 * 1/2th of the space. If we can flush, don't let us overcommit
373 * too much, let it overcommit up to 1/8 of the space.
374 */
375 if (flush == BTRFS_RESERVE_FLUSH_ALL)
376 avail >>= 3;
377 else
378 avail >>= 1;
379 return avail;
380}
381
382static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
383 struct btrfs_space_info *space_info)
384{
385 /*
386 * On regular filesystem, all total_bytes are always writable. On zoned
387 * filesystem, there may be a limitation imposed by max_active_zones.
388 * For metadata allocation, we cannot finish an existing active block
389 * group to avoid a deadlock. Thus, we need to consider only the active
390 * groups to be writable for metadata space.
391 */
392 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
393 return space_info->total_bytes;
394
395 return space_info->active_total_bytes;
396}
397
398int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
399 struct btrfs_space_info *space_info, u64 bytes,
400 enum btrfs_reserve_flush_enum flush)
401{
402 u64 avail;
403 u64 used;
404
405 /* Don't overcommit when in mixed mode */
406 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
407 return 0;
408
409 used = btrfs_space_info_used(space_info, true);
410 if (test_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags) &&
411 (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
412 avail = 0;
413 else
414 avail = calc_available_free_space(fs_info, space_info, flush);
415
416 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
417 return 1;
418 return 0;
419}
420
421static void remove_ticket(struct btrfs_space_info *space_info,
422 struct reserve_ticket *ticket)
423{
424 if (!list_empty(&ticket->list)) {
425 list_del_init(&ticket->list);
426 ASSERT(space_info->reclaim_size >= ticket->bytes);
427 space_info->reclaim_size -= ticket->bytes;
428 }
429}
430
431/*
432 * This is for space we already have accounted in space_info->bytes_may_use, so
433 * basically when we're returning space from block_rsv's.
434 */
435void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
436 struct btrfs_space_info *space_info)
437{
438 struct list_head *head;
439 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
440
441 lockdep_assert_held(&space_info->lock);
442
443 head = &space_info->priority_tickets;
444again:
445 while (!list_empty(head)) {
446 struct reserve_ticket *ticket;
447 u64 used = btrfs_space_info_used(space_info, true);
448
449 ticket = list_first_entry(head, struct reserve_ticket, list);
450
451 /* Check and see if our ticket can be satisfied now. */
452 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
453 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
454 flush)) {
455 btrfs_space_info_update_bytes_may_use(fs_info,
456 space_info,
457 ticket->bytes);
458 remove_ticket(space_info, ticket);
459 ticket->bytes = 0;
460 space_info->tickets_id++;
461 wake_up(&ticket->wait);
462 } else {
463 break;
464 }
465 }
466
467 if (head == &space_info->priority_tickets) {
468 head = &space_info->tickets;
469 flush = BTRFS_RESERVE_FLUSH_ALL;
470 goto again;
471 }
472}
473
474#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
475do { \
476 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
477 spin_lock(&__rsv->lock); \
478 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
479 __rsv->size, __rsv->reserved); \
480 spin_unlock(&__rsv->lock); \
481} while (0)
482
483static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
484{
485 switch (space_info->flags) {
486 case BTRFS_BLOCK_GROUP_SYSTEM:
487 return "SYSTEM";
488 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
489 return "DATA+METADATA";
490 case BTRFS_BLOCK_GROUP_DATA:
491 return "DATA";
492 case BTRFS_BLOCK_GROUP_METADATA:
493 return "METADATA";
494 default:
495 return "UNKNOWN";
496 }
497}
498
499static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
500{
501 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
502 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
503 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
504 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
505 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
506}
507
508static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 struct btrfs_space_info *info)
510{
511 const char *flag_str = space_info_flag_to_str(info);
512 lockdep_assert_held(&info->lock);
513
514 /* The free space could be negative in case of overcommit */
515 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
516 flag_str,
517 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
518 info->full ? "" : "not ");
519 btrfs_info(fs_info,
520"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
521 info->total_bytes, info->bytes_used, info->bytes_pinned,
522 info->bytes_reserved, info->bytes_may_use,
523 info->bytes_readonly, info->bytes_zone_unusable);
524}
525
526void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
527 struct btrfs_space_info *info, u64 bytes,
528 int dump_block_groups)
529{
530 struct btrfs_block_group *cache;
531 int index = 0;
532
533 spin_lock(&info->lock);
534 __btrfs_dump_space_info(fs_info, info);
535 dump_global_block_rsv(fs_info);
536 spin_unlock(&info->lock);
537
538 if (!dump_block_groups)
539 return;
540
541 down_read(&info->groups_sem);
542again:
543 list_for_each_entry(cache, &info->block_groups[index], list) {
544 spin_lock(&cache->lock);
545 btrfs_info(fs_info,
546 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
547 cache->start, cache->length, cache->used, cache->pinned,
548 cache->reserved, cache->zone_unusable,
549 cache->ro ? "[readonly]" : "");
550 spin_unlock(&cache->lock);
551 btrfs_dump_free_space(cache, bytes);
552 }
553 if (++index < BTRFS_NR_RAID_TYPES)
554 goto again;
555 up_read(&info->groups_sem);
556}
557
558static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
559 u64 to_reclaim)
560{
561 u64 bytes;
562 u64 nr;
563
564 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 nr = div64_u64(to_reclaim, bytes);
566 if (!nr)
567 nr = 1;
568 return nr;
569}
570
571#define EXTENT_SIZE_PER_ITEM SZ_256K
572
573/*
574 * shrink metadata reservation for delalloc
575 */
576static void shrink_delalloc(struct btrfs_fs_info *fs_info,
577 struct btrfs_space_info *space_info,
578 u64 to_reclaim, bool wait_ordered,
579 bool for_preempt)
580{
581 struct btrfs_trans_handle *trans;
582 u64 delalloc_bytes;
583 u64 ordered_bytes;
584 u64 items;
585 long time_left;
586 int loops;
587
588 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
589 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
590 if (delalloc_bytes == 0 && ordered_bytes == 0)
591 return;
592
593 /* Calc the number of the pages we need flush for space reservation */
594 if (to_reclaim == U64_MAX) {
595 items = U64_MAX;
596 } else {
597 /*
598 * to_reclaim is set to however much metadata we need to
599 * reclaim, but reclaiming that much data doesn't really track
600 * exactly. What we really want to do is reclaim full inode's
601 * worth of reservations, however that's not available to us
602 * here. We will take a fraction of the delalloc bytes for our
603 * flushing loops and hope for the best. Delalloc will expand
604 * the amount we write to cover an entire dirty extent, which
605 * will reclaim the metadata reservation for that range. If
606 * it's not enough subsequent flush stages will be more
607 * aggressive.
608 */
609 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
610 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
611 }
612
613 trans = current->journal_info;
614
615 /*
616 * If we are doing more ordered than delalloc we need to just wait on
617 * ordered extents, otherwise we'll waste time trying to flush delalloc
618 * that likely won't give us the space back we need.
619 */
620 if (ordered_bytes > delalloc_bytes && !for_preempt)
621 wait_ordered = true;
622
623 loops = 0;
624 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
625 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
626 long nr_pages = min_t(u64, temp, LONG_MAX);
627 int async_pages;
628
629 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
630
631 /*
632 * We need to make sure any outstanding async pages are now
633 * processed before we continue. This is because things like
634 * sync_inode() try to be smart and skip writing if the inode is
635 * marked clean. We don't use filemap_fwrite for flushing
636 * because we want to control how many pages we write out at a
637 * time, thus this is the only safe way to make sure we've
638 * waited for outstanding compressed workers to have started
639 * their jobs and thus have ordered extents set up properly.
640 *
641 * This exists because we do not want to wait for each
642 * individual inode to finish its async work, we simply want to
643 * start the IO on everybody, and then come back here and wait
644 * for all of the async work to catch up. Once we're done with
645 * that we know we'll have ordered extents for everything and we
646 * can decide if we wait for that or not.
647 *
648 * If we choose to replace this in the future, make absolutely
649 * sure that the proper waiting is being done in the async case,
650 * as there have been bugs in that area before.
651 */
652 async_pages = atomic_read(&fs_info->async_delalloc_pages);
653 if (!async_pages)
654 goto skip_async;
655
656 /*
657 * We don't want to wait forever, if we wrote less pages in this
658 * loop than we have outstanding, only wait for that number of
659 * pages, otherwise we can wait for all async pages to finish
660 * before continuing.
661 */
662 if (async_pages > nr_pages)
663 async_pages -= nr_pages;
664 else
665 async_pages = 0;
666 wait_event(fs_info->async_submit_wait,
667 atomic_read(&fs_info->async_delalloc_pages) <=
668 async_pages);
669skip_async:
670 loops++;
671 if (wait_ordered && !trans) {
672 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
673 } else {
674 time_left = schedule_timeout_killable(1);
675 if (time_left)
676 break;
677 }
678
679 /*
680 * If we are for preemption we just want a one-shot of delalloc
681 * flushing so we can stop flushing if we decide we don't need
682 * to anymore.
683 */
684 if (for_preempt)
685 break;
686
687 spin_lock(&space_info->lock);
688 if (list_empty(&space_info->tickets) &&
689 list_empty(&space_info->priority_tickets)) {
690 spin_unlock(&space_info->lock);
691 break;
692 }
693 spin_unlock(&space_info->lock);
694
695 delalloc_bytes = percpu_counter_sum_positive(
696 &fs_info->delalloc_bytes);
697 ordered_bytes = percpu_counter_sum_positive(
698 &fs_info->ordered_bytes);
699 }
700}
701
702/*
703 * Try to flush some data based on policy set by @state. This is only advisory
704 * and may fail for various reasons. The caller is supposed to examine the
705 * state of @space_info to detect the outcome.
706 */
707static void flush_space(struct btrfs_fs_info *fs_info,
708 struct btrfs_space_info *space_info, u64 num_bytes,
709 enum btrfs_flush_state state, bool for_preempt)
710{
711 struct btrfs_root *root = fs_info->tree_root;
712 struct btrfs_trans_handle *trans;
713 int nr;
714 int ret = 0;
715
716 switch (state) {
717 case FLUSH_DELAYED_ITEMS_NR:
718 case FLUSH_DELAYED_ITEMS:
719 if (state == FLUSH_DELAYED_ITEMS_NR)
720 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
721 else
722 nr = -1;
723
724 trans = btrfs_join_transaction(root);
725 if (IS_ERR(trans)) {
726 ret = PTR_ERR(trans);
727 break;
728 }
729 ret = btrfs_run_delayed_items_nr(trans, nr);
730 btrfs_end_transaction(trans);
731 break;
732 case FLUSH_DELALLOC:
733 case FLUSH_DELALLOC_WAIT:
734 case FLUSH_DELALLOC_FULL:
735 if (state == FLUSH_DELALLOC_FULL)
736 num_bytes = U64_MAX;
737 shrink_delalloc(fs_info, space_info, num_bytes,
738 state != FLUSH_DELALLOC, for_preempt);
739 break;
740 case FLUSH_DELAYED_REFS_NR:
741 case FLUSH_DELAYED_REFS:
742 trans = btrfs_join_transaction(root);
743 if (IS_ERR(trans)) {
744 ret = PTR_ERR(trans);
745 break;
746 }
747 if (state == FLUSH_DELAYED_REFS_NR)
748 nr = calc_reclaim_items_nr(fs_info, num_bytes);
749 else
750 nr = 0;
751 btrfs_run_delayed_refs(trans, nr);
752 btrfs_end_transaction(trans);
753 break;
754 case ALLOC_CHUNK:
755 case ALLOC_CHUNK_FORCE:
756 /*
757 * For metadata space on zoned filesystem, reaching here means we
758 * don't have enough space left in active_total_bytes. Try to
759 * activate a block group first, because we may have inactive
760 * block group already allocated.
761 */
762 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
763 if (ret < 0)
764 break;
765 else if (ret == 1)
766 break;
767
768 trans = btrfs_join_transaction(root);
769 if (IS_ERR(trans)) {
770 ret = PTR_ERR(trans);
771 break;
772 }
773 ret = btrfs_chunk_alloc(trans,
774 btrfs_get_alloc_profile(fs_info, space_info->flags),
775 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
776 CHUNK_ALLOC_FORCE);
777 btrfs_end_transaction(trans);
778
779 /*
780 * For metadata space on zoned filesystem, allocating a new chunk
781 * is not enough. We still need to activate the block * group.
782 * Active the newly allocated block group by (maybe) finishing
783 * a block group.
784 */
785 if (ret == 1) {
786 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
787 /*
788 * Revert to the original ret regardless we could finish
789 * one block group or not.
790 */
791 if (ret >= 0)
792 ret = 1;
793 }
794
795 if (ret > 0 || ret == -ENOSPC)
796 ret = 0;
797 break;
798 case RUN_DELAYED_IPUTS:
799 /*
800 * If we have pending delayed iputs then we could free up a
801 * bunch of pinned space, so make sure we run the iputs before
802 * we do our pinned bytes check below.
803 */
804 btrfs_run_delayed_iputs(fs_info);
805 btrfs_wait_on_delayed_iputs(fs_info);
806 break;
807 case COMMIT_TRANS:
808 ASSERT(current->journal_info == NULL);
809 trans = btrfs_join_transaction(root);
810 if (IS_ERR(trans)) {
811 ret = PTR_ERR(trans);
812 break;
813 }
814 ret = btrfs_commit_transaction(trans);
815 break;
816 default:
817 ret = -ENOSPC;
818 break;
819 }
820
821 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
822 ret, for_preempt);
823 return;
824}
825
826static inline u64
827btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
828 struct btrfs_space_info *space_info)
829{
830 u64 used;
831 u64 avail;
832 u64 total;
833 u64 to_reclaim = space_info->reclaim_size;
834
835 lockdep_assert_held(&space_info->lock);
836
837 avail = calc_available_free_space(fs_info, space_info,
838 BTRFS_RESERVE_FLUSH_ALL);
839 used = btrfs_space_info_used(space_info, true);
840
841 /*
842 * We may be flushing because suddenly we have less space than we had
843 * before, and now we're well over-committed based on our current free
844 * space. If that's the case add in our overage so we make sure to put
845 * appropriate pressure on the flushing state machine.
846 */
847 total = writable_total_bytes(fs_info, space_info);
848 if (total + avail < used)
849 to_reclaim += used - (total + avail);
850
851 return to_reclaim;
852}
853
854static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
855 struct btrfs_space_info *space_info)
856{
857 u64 global_rsv_size = fs_info->global_block_rsv.reserved;
858 u64 ordered, delalloc;
859 u64 total = writable_total_bytes(fs_info, space_info);
860 u64 thresh;
861 u64 used;
862
863 thresh = mult_perc(total, 90);
864
865 lockdep_assert_held(&space_info->lock);
866
867 /* If we're just plain full then async reclaim just slows us down. */
868 if ((space_info->bytes_used + space_info->bytes_reserved +
869 global_rsv_size) >= thresh)
870 return false;
871
872 used = space_info->bytes_may_use + space_info->bytes_pinned;
873
874 /* The total flushable belongs to the global rsv, don't flush. */
875 if (global_rsv_size >= used)
876 return false;
877
878 /*
879 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
880 * that devoted to other reservations then there's no sense in flushing,
881 * we don't have a lot of things that need flushing.
882 */
883 if (used - global_rsv_size <= SZ_128M)
884 return false;
885
886 /*
887 * We have tickets queued, bail so we don't compete with the async
888 * flushers.
889 */
890 if (space_info->reclaim_size)
891 return false;
892
893 /*
894 * If we have over half of the free space occupied by reservations or
895 * pinned then we want to start flushing.
896 *
897 * We do not do the traditional thing here, which is to say
898 *
899 * if (used >= ((total_bytes + avail) / 2))
900 * return 1;
901 *
902 * because this doesn't quite work how we want. If we had more than 50%
903 * of the space_info used by bytes_used and we had 0 available we'd just
904 * constantly run the background flusher. Instead we want it to kick in
905 * if our reclaimable space exceeds our clamped free space.
906 *
907 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
908 * the following:
909 *
910 * Amount of RAM Minimum threshold Maximum threshold
911 *
912 * 256GiB 1GiB 128GiB
913 * 128GiB 512MiB 64GiB
914 * 64GiB 256MiB 32GiB
915 * 32GiB 128MiB 16GiB
916 * 16GiB 64MiB 8GiB
917 *
918 * These are the range our thresholds will fall in, corresponding to how
919 * much delalloc we need for the background flusher to kick in.
920 */
921
922 thresh = calc_available_free_space(fs_info, space_info,
923 BTRFS_RESERVE_FLUSH_ALL);
924 used = space_info->bytes_used + space_info->bytes_reserved +
925 space_info->bytes_readonly + global_rsv_size;
926 if (used < total)
927 thresh += total - used;
928 thresh >>= space_info->clamp;
929
930 used = space_info->bytes_pinned;
931
932 /*
933 * If we have more ordered bytes than delalloc bytes then we're either
934 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935 * around. Preemptive flushing is only useful in that it can free up
936 * space before tickets need to wait for things to finish. In the case
937 * of ordered extents, preemptively waiting on ordered extents gets us
938 * nothing, if our reservations are tied up in ordered extents we'll
939 * simply have to slow down writers by forcing them to wait on ordered
940 * extents.
941 *
942 * In the case that ordered is larger than delalloc, only include the
943 * block reserves that we would actually be able to directly reclaim
944 * from. In this case if we're heavy on metadata operations this will
945 * clearly be heavy enough to warrant preemptive flushing. In the case
946 * of heavy DIO or ordered reservations, preemptive flushing will just
947 * waste time and cause us to slow down.
948 *
949 * We want to make sure we truly are maxed out on ordered however, so
950 * cut ordered in half, and if it's still higher than delalloc then we
951 * can keep flushing. This is to avoid the case where we start
952 * flushing, and now delalloc == ordered and we stop preemptively
953 * flushing when we could still have several gigs of delalloc to flush.
954 */
955 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
956 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
957 if (ordered >= delalloc)
958 used += fs_info->delayed_refs_rsv.reserved +
959 fs_info->delayed_block_rsv.reserved;
960 else
961 used += space_info->bytes_may_use - global_rsv_size;
962
963 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965}
966
967static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968 struct btrfs_space_info *space_info,
969 struct reserve_ticket *ticket)
970{
971 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972 u64 min_bytes;
973
974 if (!ticket->steal)
975 return false;
976
977 if (global_rsv->space_info != space_info)
978 return false;
979
980 spin_lock(&global_rsv->lock);
981 min_bytes = mult_perc(global_rsv->size, 10);
982 if (global_rsv->reserved < min_bytes + ticket->bytes) {
983 spin_unlock(&global_rsv->lock);
984 return false;
985 }
986 global_rsv->reserved -= ticket->bytes;
987 remove_ticket(space_info, ticket);
988 ticket->bytes = 0;
989 wake_up(&ticket->wait);
990 space_info->tickets_id++;
991 if (global_rsv->reserved < global_rsv->size)
992 global_rsv->full = 0;
993 spin_unlock(&global_rsv->lock);
994
995 return true;
996}
997
998/*
999 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
1000 * @fs_info - fs_info for this fs
1001 * @space_info - the space info we were flushing
1002 *
1003 * We call this when we've exhausted our flushing ability and haven't made
1004 * progress in satisfying tickets. The reservation code handles tickets in
1005 * order, so if there is a large ticket first and then smaller ones we could
1006 * very well satisfy the smaller tickets. This will attempt to wake up any
1007 * tickets in the list to catch this case.
1008 *
1009 * This function returns true if it was able to make progress by clearing out
1010 * other tickets, or if it stumbles across a ticket that was smaller than the
1011 * first ticket.
1012 */
1013static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1014 struct btrfs_space_info *space_info)
1015{
1016 struct reserve_ticket *ticket;
1017 u64 tickets_id = space_info->tickets_id;
1018 const bool aborted = BTRFS_FS_ERROR(fs_info);
1019
1020 trace_btrfs_fail_all_tickets(fs_info, space_info);
1021
1022 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1023 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1024 __btrfs_dump_space_info(fs_info, space_info);
1025 }
1026
1027 while (!list_empty(&space_info->tickets) &&
1028 tickets_id == space_info->tickets_id) {
1029 ticket = list_first_entry(&space_info->tickets,
1030 struct reserve_ticket, list);
1031
1032 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1033 return true;
1034
1035 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1036 btrfs_info(fs_info, "failing ticket with %llu bytes",
1037 ticket->bytes);
1038
1039 remove_ticket(space_info, ticket);
1040 if (aborted)
1041 ticket->error = -EIO;
1042 else
1043 ticket->error = -ENOSPC;
1044 wake_up(&ticket->wait);
1045
1046 /*
1047 * We're just throwing tickets away, so more flushing may not
1048 * trip over btrfs_try_granting_tickets, so we need to call it
1049 * here to see if we can make progress with the next ticket in
1050 * the list.
1051 */
1052 if (!aborted)
1053 btrfs_try_granting_tickets(fs_info, space_info);
1054 }
1055 return (tickets_id != space_info->tickets_id);
1056}
1057
1058/*
1059 * This is for normal flushers, we can wait all goddamned day if we want to. We
1060 * will loop and continuously try to flush as long as we are making progress.
1061 * We count progress as clearing off tickets each time we have to loop.
1062 */
1063static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1064{
1065 struct btrfs_fs_info *fs_info;
1066 struct btrfs_space_info *space_info;
1067 u64 to_reclaim;
1068 enum btrfs_flush_state flush_state;
1069 int commit_cycles = 0;
1070 u64 last_tickets_id;
1071
1072 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1073 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1074
1075 spin_lock(&space_info->lock);
1076 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1077 if (!to_reclaim) {
1078 space_info->flush = 0;
1079 spin_unlock(&space_info->lock);
1080 return;
1081 }
1082 last_tickets_id = space_info->tickets_id;
1083 spin_unlock(&space_info->lock);
1084
1085 flush_state = FLUSH_DELAYED_ITEMS_NR;
1086 do {
1087 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1088 spin_lock(&space_info->lock);
1089 if (list_empty(&space_info->tickets)) {
1090 space_info->flush = 0;
1091 spin_unlock(&space_info->lock);
1092 return;
1093 }
1094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1095 space_info);
1096 if (last_tickets_id == space_info->tickets_id) {
1097 flush_state++;
1098 } else {
1099 last_tickets_id = space_info->tickets_id;
1100 flush_state = FLUSH_DELAYED_ITEMS_NR;
1101 if (commit_cycles)
1102 commit_cycles--;
1103 }
1104
1105 /*
1106 * We do not want to empty the system of delalloc unless we're
1107 * under heavy pressure, so allow one trip through the flushing
1108 * logic before we start doing a FLUSH_DELALLOC_FULL.
1109 */
1110 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1111 flush_state++;
1112
1113 /*
1114 * We don't want to force a chunk allocation until we've tried
1115 * pretty hard to reclaim space. Think of the case where we
1116 * freed up a bunch of space and so have a lot of pinned space
1117 * to reclaim. We would rather use that than possibly create a
1118 * underutilized metadata chunk. So if this is our first run
1119 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1120 * commit the transaction. If nothing has changed the next go
1121 * around then we can force a chunk allocation.
1122 */
1123 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1124 flush_state++;
1125
1126 if (flush_state > COMMIT_TRANS) {
1127 commit_cycles++;
1128 if (commit_cycles > 2) {
1129 if (maybe_fail_all_tickets(fs_info, space_info)) {
1130 flush_state = FLUSH_DELAYED_ITEMS_NR;
1131 commit_cycles--;
1132 } else {
1133 space_info->flush = 0;
1134 }
1135 } else {
1136 flush_state = FLUSH_DELAYED_ITEMS_NR;
1137 }
1138 }
1139 spin_unlock(&space_info->lock);
1140 } while (flush_state <= COMMIT_TRANS);
1141}
1142
1143/*
1144 * This handles pre-flushing of metadata space before we get to the point that
1145 * we need to start blocking threads on tickets. The logic here is different
1146 * from the other flush paths because it doesn't rely on tickets to tell us how
1147 * much we need to flush, instead it attempts to keep us below the 80% full
1148 * watermark of space by flushing whichever reservation pool is currently the
1149 * largest.
1150 */
1151static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1152{
1153 struct btrfs_fs_info *fs_info;
1154 struct btrfs_space_info *space_info;
1155 struct btrfs_block_rsv *delayed_block_rsv;
1156 struct btrfs_block_rsv *delayed_refs_rsv;
1157 struct btrfs_block_rsv *global_rsv;
1158 struct btrfs_block_rsv *trans_rsv;
1159 int loops = 0;
1160
1161 fs_info = container_of(work, struct btrfs_fs_info,
1162 preempt_reclaim_work);
1163 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1164 delayed_block_rsv = &fs_info->delayed_block_rsv;
1165 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1166 global_rsv = &fs_info->global_block_rsv;
1167 trans_rsv = &fs_info->trans_block_rsv;
1168
1169 spin_lock(&space_info->lock);
1170 while (need_preemptive_reclaim(fs_info, space_info)) {
1171 enum btrfs_flush_state flush;
1172 u64 delalloc_size = 0;
1173 u64 to_reclaim, block_rsv_size;
1174 u64 global_rsv_size = global_rsv->reserved;
1175
1176 loops++;
1177
1178 /*
1179 * We don't have a precise counter for the metadata being
1180 * reserved for delalloc, so we'll approximate it by subtracting
1181 * out the block rsv's space from the bytes_may_use. If that
1182 * amount is higher than the individual reserves, then we can
1183 * assume it's tied up in delalloc reservations.
1184 */
1185 block_rsv_size = global_rsv_size +
1186 delayed_block_rsv->reserved +
1187 delayed_refs_rsv->reserved +
1188 trans_rsv->reserved;
1189 if (block_rsv_size < space_info->bytes_may_use)
1190 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1191
1192 /*
1193 * We don't want to include the global_rsv in our calculation,
1194 * because that's space we can't touch. Subtract it from the
1195 * block_rsv_size for the next checks.
1196 */
1197 block_rsv_size -= global_rsv_size;
1198
1199 /*
1200 * We really want to avoid flushing delalloc too much, as it
1201 * could result in poor allocation patterns, so only flush it if
1202 * it's larger than the rest of the pools combined.
1203 */
1204 if (delalloc_size > block_rsv_size) {
1205 to_reclaim = delalloc_size;
1206 flush = FLUSH_DELALLOC;
1207 } else if (space_info->bytes_pinned >
1208 (delayed_block_rsv->reserved +
1209 delayed_refs_rsv->reserved)) {
1210 to_reclaim = space_info->bytes_pinned;
1211 flush = COMMIT_TRANS;
1212 } else if (delayed_block_rsv->reserved >
1213 delayed_refs_rsv->reserved) {
1214 to_reclaim = delayed_block_rsv->reserved;
1215 flush = FLUSH_DELAYED_ITEMS_NR;
1216 } else {
1217 to_reclaim = delayed_refs_rsv->reserved;
1218 flush = FLUSH_DELAYED_REFS_NR;
1219 }
1220
1221 spin_unlock(&space_info->lock);
1222
1223 /*
1224 * We don't want to reclaim everything, just a portion, so scale
1225 * down the to_reclaim by 1/4. If it takes us down to 0,
1226 * reclaim 1 items worth.
1227 */
1228 to_reclaim >>= 2;
1229 if (!to_reclaim)
1230 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1231 flush_space(fs_info, space_info, to_reclaim, flush, true);
1232 cond_resched();
1233 spin_lock(&space_info->lock);
1234 }
1235
1236 /* We only went through once, back off our clamping. */
1237 if (loops == 1 && !space_info->reclaim_size)
1238 space_info->clamp = max(1, space_info->clamp - 1);
1239 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1240 spin_unlock(&space_info->lock);
1241}
1242
1243/*
1244 * FLUSH_DELALLOC_WAIT:
1245 * Space is freed from flushing delalloc in one of two ways.
1246 *
1247 * 1) compression is on and we allocate less space than we reserved
1248 * 2) we are overwriting existing space
1249 *
1250 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1251 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1252 * length to ->bytes_reserved, and subtracts the reserved space from
1253 * ->bytes_may_use.
1254 *
1255 * For #2 this is trickier. Once the ordered extent runs we will drop the
1256 * extent in the range we are overwriting, which creates a delayed ref for
1257 * that freed extent. This however is not reclaimed until the transaction
1258 * commits, thus the next stages.
1259 *
1260 * RUN_DELAYED_IPUTS
1261 * If we are freeing inodes, we want to make sure all delayed iputs have
1262 * completed, because they could have been on an inode with i_nlink == 0, and
1263 * thus have been truncated and freed up space. But again this space is not
1264 * immediately re-usable, it comes in the form of a delayed ref, which must be
1265 * run and then the transaction must be committed.
1266 *
1267 * COMMIT_TRANS
1268 * This is where we reclaim all of the pinned space generated by running the
1269 * iputs
1270 *
1271 * ALLOC_CHUNK_FORCE
1272 * For data we start with alloc chunk force, however we could have been full
1273 * before, and then the transaction commit could have freed new block groups,
1274 * so if we now have space to allocate do the force chunk allocation.
1275 */
1276static const enum btrfs_flush_state data_flush_states[] = {
1277 FLUSH_DELALLOC_FULL,
1278 RUN_DELAYED_IPUTS,
1279 COMMIT_TRANS,
1280 ALLOC_CHUNK_FORCE,
1281};
1282
1283static void btrfs_async_reclaim_data_space(struct work_struct *work)
1284{
1285 struct btrfs_fs_info *fs_info;
1286 struct btrfs_space_info *space_info;
1287 u64 last_tickets_id;
1288 enum btrfs_flush_state flush_state = 0;
1289
1290 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1291 space_info = fs_info->data_sinfo;
1292
1293 spin_lock(&space_info->lock);
1294 if (list_empty(&space_info->tickets)) {
1295 space_info->flush = 0;
1296 spin_unlock(&space_info->lock);
1297 return;
1298 }
1299 last_tickets_id = space_info->tickets_id;
1300 spin_unlock(&space_info->lock);
1301
1302 while (!space_info->full) {
1303 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1304 spin_lock(&space_info->lock);
1305 if (list_empty(&space_info->tickets)) {
1306 space_info->flush = 0;
1307 spin_unlock(&space_info->lock);
1308 return;
1309 }
1310
1311 /* Something happened, fail everything and bail. */
1312 if (BTRFS_FS_ERROR(fs_info))
1313 goto aborted_fs;
1314 last_tickets_id = space_info->tickets_id;
1315 spin_unlock(&space_info->lock);
1316 }
1317
1318 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1319 flush_space(fs_info, space_info, U64_MAX,
1320 data_flush_states[flush_state], false);
1321 spin_lock(&space_info->lock);
1322 if (list_empty(&space_info->tickets)) {
1323 space_info->flush = 0;
1324 spin_unlock(&space_info->lock);
1325 return;
1326 }
1327
1328 if (last_tickets_id == space_info->tickets_id) {
1329 flush_state++;
1330 } else {
1331 last_tickets_id = space_info->tickets_id;
1332 flush_state = 0;
1333 }
1334
1335 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1336 if (space_info->full) {
1337 if (maybe_fail_all_tickets(fs_info, space_info))
1338 flush_state = 0;
1339 else
1340 space_info->flush = 0;
1341 } else {
1342 flush_state = 0;
1343 }
1344
1345 /* Something happened, fail everything and bail. */
1346 if (BTRFS_FS_ERROR(fs_info))
1347 goto aborted_fs;
1348
1349 }
1350 spin_unlock(&space_info->lock);
1351 }
1352 return;
1353
1354aborted_fs:
1355 maybe_fail_all_tickets(fs_info, space_info);
1356 space_info->flush = 0;
1357 spin_unlock(&space_info->lock);
1358}
1359
1360void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1361{
1362 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1363 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1364 INIT_WORK(&fs_info->preempt_reclaim_work,
1365 btrfs_preempt_reclaim_metadata_space);
1366}
1367
1368static const enum btrfs_flush_state priority_flush_states[] = {
1369 FLUSH_DELAYED_ITEMS_NR,
1370 FLUSH_DELAYED_ITEMS,
1371 ALLOC_CHUNK,
1372};
1373
1374static const enum btrfs_flush_state evict_flush_states[] = {
1375 FLUSH_DELAYED_ITEMS_NR,
1376 FLUSH_DELAYED_ITEMS,
1377 FLUSH_DELAYED_REFS_NR,
1378 FLUSH_DELAYED_REFS,
1379 FLUSH_DELALLOC,
1380 FLUSH_DELALLOC_WAIT,
1381 FLUSH_DELALLOC_FULL,
1382 ALLOC_CHUNK,
1383 COMMIT_TRANS,
1384};
1385
1386static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1387 struct btrfs_space_info *space_info,
1388 struct reserve_ticket *ticket,
1389 const enum btrfs_flush_state *states,
1390 int states_nr)
1391{
1392 u64 to_reclaim;
1393 int flush_state = 0;
1394
1395 spin_lock(&space_info->lock);
1396 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1397 /*
1398 * This is the priority reclaim path, so to_reclaim could be >0 still
1399 * because we may have only satisfied the priority tickets and still
1400 * left non priority tickets on the list. We would then have
1401 * to_reclaim but ->bytes == 0.
1402 */
1403 if (ticket->bytes == 0) {
1404 spin_unlock(&space_info->lock);
1405 return;
1406 }
1407
1408 while (flush_state < states_nr) {
1409 spin_unlock(&space_info->lock);
1410 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1411 false);
1412 flush_state++;
1413 spin_lock(&space_info->lock);
1414 if (ticket->bytes == 0) {
1415 spin_unlock(&space_info->lock);
1416 return;
1417 }
1418 }
1419
1420 /* Attempt to steal from the global rsv if we can. */
1421 if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1422 ticket->error = -ENOSPC;
1423 remove_ticket(space_info, ticket);
1424 }
1425
1426 /*
1427 * We must run try_granting_tickets here because we could be a large
1428 * ticket in front of a smaller ticket that can now be satisfied with
1429 * the available space.
1430 */
1431 btrfs_try_granting_tickets(fs_info, space_info);
1432 spin_unlock(&space_info->lock);
1433}
1434
1435static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1436 struct btrfs_space_info *space_info,
1437 struct reserve_ticket *ticket)
1438{
1439 spin_lock(&space_info->lock);
1440
1441 /* We could have been granted before we got here. */
1442 if (ticket->bytes == 0) {
1443 spin_unlock(&space_info->lock);
1444 return;
1445 }
1446
1447 while (!space_info->full) {
1448 spin_unlock(&space_info->lock);
1449 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1450 spin_lock(&space_info->lock);
1451 if (ticket->bytes == 0) {
1452 spin_unlock(&space_info->lock);
1453 return;
1454 }
1455 }
1456
1457 ticket->error = -ENOSPC;
1458 remove_ticket(space_info, ticket);
1459 btrfs_try_granting_tickets(fs_info, space_info);
1460 spin_unlock(&space_info->lock);
1461}
1462
1463static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1464 struct btrfs_space_info *space_info,
1465 struct reserve_ticket *ticket)
1466
1467{
1468 DEFINE_WAIT(wait);
1469 int ret = 0;
1470
1471 spin_lock(&space_info->lock);
1472 while (ticket->bytes > 0 && ticket->error == 0) {
1473 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1474 if (ret) {
1475 /*
1476 * Delete us from the list. After we unlock the space
1477 * info, we don't want the async reclaim job to reserve
1478 * space for this ticket. If that would happen, then the
1479 * ticket's task would not known that space was reserved
1480 * despite getting an error, resulting in a space leak
1481 * (bytes_may_use counter of our space_info).
1482 */
1483 remove_ticket(space_info, ticket);
1484 ticket->error = -EINTR;
1485 break;
1486 }
1487 spin_unlock(&space_info->lock);
1488
1489 schedule();
1490
1491 finish_wait(&ticket->wait, &wait);
1492 spin_lock(&space_info->lock);
1493 }
1494 spin_unlock(&space_info->lock);
1495}
1496
1497/*
1498 * Do the appropriate flushing and waiting for a ticket.
1499 *
1500 * @fs_info: the filesystem
1501 * @space_info: space info for the reservation
1502 * @ticket: ticket for the reservation
1503 * @start_ns: timestamp when the reservation started
1504 * @orig_bytes: amount of bytes originally reserved
1505 * @flush: how much we can flush
1506 *
1507 * This does the work of figuring out how to flush for the ticket, waiting for
1508 * the reservation, and returning the appropriate error if there is one.
1509 */
1510static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1511 struct btrfs_space_info *space_info,
1512 struct reserve_ticket *ticket,
1513 u64 start_ns, u64 orig_bytes,
1514 enum btrfs_reserve_flush_enum flush)
1515{
1516 int ret;
1517
1518 switch (flush) {
1519 case BTRFS_RESERVE_FLUSH_DATA:
1520 case BTRFS_RESERVE_FLUSH_ALL:
1521 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1522 wait_reserve_ticket(fs_info, space_info, ticket);
1523 break;
1524 case BTRFS_RESERVE_FLUSH_LIMIT:
1525 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1526 priority_flush_states,
1527 ARRAY_SIZE(priority_flush_states));
1528 break;
1529 case BTRFS_RESERVE_FLUSH_EVICT:
1530 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1531 evict_flush_states,
1532 ARRAY_SIZE(evict_flush_states));
1533 break;
1534 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1535 priority_reclaim_data_space(fs_info, space_info, ticket);
1536 break;
1537 default:
1538 ASSERT(0);
1539 break;
1540 }
1541
1542 ret = ticket->error;
1543 ASSERT(list_empty(&ticket->list));
1544 /*
1545 * Check that we can't have an error set if the reservation succeeded,
1546 * as that would confuse tasks and lead them to error out without
1547 * releasing reserved space (if an error happens the expectation is that
1548 * space wasn't reserved at all).
1549 */
1550 ASSERT(!(ticket->bytes == 0 && ticket->error));
1551 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1552 start_ns, flush, ticket->error);
1553 return ret;
1554}
1555
1556/*
1557 * This returns true if this flush state will go through the ordinary flushing
1558 * code.
1559 */
1560static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1561{
1562 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1563 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1564}
1565
1566static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1567 struct btrfs_space_info *space_info)
1568{
1569 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1570 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1571
1572 /*
1573 * If we're heavy on ordered operations then clamping won't help us. We
1574 * need to clamp specifically to keep up with dirty'ing buffered
1575 * writers, because there's not a 1:1 correlation of writing delalloc
1576 * and freeing space, like there is with flushing delayed refs or
1577 * delayed nodes. If we're already more ordered than delalloc then
1578 * we're keeping up, otherwise we aren't and should probably clamp.
1579 */
1580 if (ordered < delalloc)
1581 space_info->clamp = min(space_info->clamp + 1, 8);
1582}
1583
1584static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1585{
1586 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1587 flush == BTRFS_RESERVE_FLUSH_EVICT);
1588}
1589
1590/*
1591 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1592 * fail as quickly as possible.
1593 */
1594static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1595{
1596 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1597 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1598}
1599
1600/*
1601 * Try to reserve bytes from the block_rsv's space.
1602 *
1603 * @fs_info: the filesystem
1604 * @space_info: space info we want to allocate from
1605 * @orig_bytes: number of bytes we want
1606 * @flush: whether or not we can flush to make our reservation
1607 *
1608 * This will reserve orig_bytes number of bytes from the space info associated
1609 * with the block_rsv. If there is not enough space it will make an attempt to
1610 * flush out space to make room. It will do this by flushing delalloc if
1611 * possible or committing the transaction. If flush is 0 then no attempts to
1612 * regain reservations will be made and this will fail if there is not enough
1613 * space already.
1614 */
1615static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1616 struct btrfs_space_info *space_info, u64 orig_bytes,
1617 enum btrfs_reserve_flush_enum flush)
1618{
1619 struct work_struct *async_work;
1620 struct reserve_ticket ticket;
1621 u64 start_ns = 0;
1622 u64 used;
1623 int ret = 0;
1624 bool pending_tickets;
1625
1626 ASSERT(orig_bytes);
1627 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1628
1629 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1630 async_work = &fs_info->async_data_reclaim_work;
1631 else
1632 async_work = &fs_info->async_reclaim_work;
1633
1634 spin_lock(&space_info->lock);
1635 ret = -ENOSPC;
1636 used = btrfs_space_info_used(space_info, true);
1637
1638 /*
1639 * We don't want NO_FLUSH allocations to jump everybody, they can
1640 * generally handle ENOSPC in a different way, so treat them the same as
1641 * normal flushers when it comes to skipping pending tickets.
1642 */
1643 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1644 pending_tickets = !list_empty(&space_info->tickets) ||
1645 !list_empty(&space_info->priority_tickets);
1646 else
1647 pending_tickets = !list_empty(&space_info->priority_tickets);
1648
1649 /*
1650 * Carry on if we have enough space (short-circuit) OR call
1651 * can_overcommit() to ensure we can overcommit to continue.
1652 */
1653 if (!pending_tickets &&
1654 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1655 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1656 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1657 orig_bytes);
1658 ret = 0;
1659 }
1660
1661 /*
1662 * Things are dire, we need to make a reservation so we don't abort. We
1663 * will let this reservation go through as long as we have actual space
1664 * left to allocate for the block.
1665 */
1666 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1667 used = btrfs_space_info_used(space_info, false);
1668 if (used + orig_bytes <=
1669 writable_total_bytes(fs_info, space_info)) {
1670 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1671 orig_bytes);
1672 ret = 0;
1673 }
1674 }
1675
1676 /*
1677 * If we couldn't make a reservation then setup our reservation ticket
1678 * and kick the async worker if it's not already running.
1679 *
1680 * If we are a priority flusher then we just need to add our ticket to
1681 * the list and we will do our own flushing further down.
1682 */
1683 if (ret && can_ticket(flush)) {
1684 ticket.bytes = orig_bytes;
1685 ticket.error = 0;
1686 space_info->reclaim_size += ticket.bytes;
1687 init_waitqueue_head(&ticket.wait);
1688 ticket.steal = can_steal(flush);
1689 if (trace_btrfs_reserve_ticket_enabled())
1690 start_ns = ktime_get_ns();
1691
1692 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1693 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1694 flush == BTRFS_RESERVE_FLUSH_DATA) {
1695 list_add_tail(&ticket.list, &space_info->tickets);
1696 if (!space_info->flush) {
1697 /*
1698 * We were forced to add a reserve ticket, so
1699 * our preemptive flushing is unable to keep
1700 * up. Clamp down on the threshold for the
1701 * preemptive flushing in order to keep up with
1702 * the workload.
1703 */
1704 maybe_clamp_preempt(fs_info, space_info);
1705
1706 space_info->flush = 1;
1707 trace_btrfs_trigger_flush(fs_info,
1708 space_info->flags,
1709 orig_bytes, flush,
1710 "enospc");
1711 queue_work(system_unbound_wq, async_work);
1712 }
1713 } else {
1714 list_add_tail(&ticket.list,
1715 &space_info->priority_tickets);
1716 }
1717 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718 /*
1719 * We will do the space reservation dance during log replay,
1720 * which means we won't have fs_info->fs_root set, so don't do
1721 * the async reclaim as we will panic.
1722 */
1723 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1724 !work_busy(&fs_info->preempt_reclaim_work) &&
1725 need_preemptive_reclaim(fs_info, space_info)) {
1726 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1727 orig_bytes, flush, "preempt");
1728 queue_work(system_unbound_wq,
1729 &fs_info->preempt_reclaim_work);
1730 }
1731 }
1732 spin_unlock(&space_info->lock);
1733 if (!ret || !can_ticket(flush))
1734 return ret;
1735
1736 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1737 orig_bytes, flush);
1738}
1739
1740/*
1741 * Try to reserve metadata bytes from the block_rsv's space.
1742 *
1743 * @fs_info: the filesystem
1744 * @block_rsv: block_rsv we're allocating for
1745 * @orig_bytes: number of bytes we want
1746 * @flush: whether or not we can flush to make our reservation
1747 *
1748 * This will reserve orig_bytes number of bytes from the space info associated
1749 * with the block_rsv. If there is not enough space it will make an attempt to
1750 * flush out space to make room. It will do this by flushing delalloc if
1751 * possible or committing the transaction. If flush is 0 then no attempts to
1752 * regain reservations will be made and this will fail if there is not enough
1753 * space already.
1754 */
1755int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1756 struct btrfs_block_rsv *block_rsv,
1757 u64 orig_bytes,
1758 enum btrfs_reserve_flush_enum flush)
1759{
1760 int ret;
1761
1762 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1763 if (ret == -ENOSPC) {
1764 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1765 block_rsv->space_info->flags,
1766 orig_bytes, 1);
1767
1768 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1770 orig_bytes, 0);
1771 }
1772 return ret;
1773}
1774
1775/*
1776 * Try to reserve data bytes for an allocation.
1777 *
1778 * @fs_info: the filesystem
1779 * @bytes: number of bytes we need
1780 * @flush: how we are allowed to flush
1781 *
1782 * This will reserve bytes from the data space info. If there is not enough
1783 * space then we will attempt to flush space as specified by flush.
1784 */
1785int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1786 enum btrfs_reserve_flush_enum flush)
1787{
1788 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1789 int ret;
1790
1791 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1792 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1793 flush == BTRFS_RESERVE_NO_FLUSH);
1794 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1795
1796 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1797 if (ret == -ENOSPC) {
1798 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1799 data_sinfo->flags, bytes, 1);
1800 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1801 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1802 }
1803 return ret;
1804}
1805
1806/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1807__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1808{
1809 struct btrfs_space_info *space_info;
1810
1811 btrfs_info(fs_info, "dumping space info:");
1812 list_for_each_entry(space_info, &fs_info->space_info, list) {
1813 spin_lock(&space_info->lock);
1814 __btrfs_dump_space_info(fs_info, space_info);
1815 spin_unlock(&space_info->lock);
1816 }
1817 dump_global_block_rsv(fs_info);
1818}
1819
1820/*
1821 * Account the unused space of all the readonly block group in the space_info.
1822 * takes mirrors into account.
1823 */
1824u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1825{
1826 struct btrfs_block_group *block_group;
1827 u64 free_bytes = 0;
1828 int factor;
1829
1830 /* It's df, we don't care if it's racy */
1831 if (list_empty(&sinfo->ro_bgs))
1832 return 0;
1833
1834 spin_lock(&sinfo->lock);
1835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1836 spin_lock(&block_group->lock);
1837
1838 if (!block_group->ro) {
1839 spin_unlock(&block_group->lock);
1840 continue;
1841 }
1842
1843 factor = btrfs_bg_type_to_factor(block_group->flags);
1844 free_bytes += (block_group->length -
1845 block_group->used) * factor;
1846
1847 spin_unlock(&block_group->lock);
1848 }
1849 spin_unlock(&sinfo->lock);
1850
1851 return free_bytes;
1852}
1// SPDX-License-Identifier: GPL-2.0
2
3#include "linux/spinlock.h"
4#include <linux/minmax.h>
5#include "misc.h"
6#include "ctree.h"
7#include "space-info.h"
8#include "sysfs.h"
9#include "volumes.h"
10#include "free-space-cache.h"
11#include "ordered-data.h"
12#include "transaction.h"
13#include "block-group.h"
14#include "fs.h"
15#include "accessors.h"
16#include "extent-tree.h"
17
18/*
19 * HOW DOES SPACE RESERVATION WORK
20 *
21 * If you want to know about delalloc specifically, there is a separate comment
22 * for that with the delalloc code. This comment is about how the whole system
23 * works generally.
24 *
25 * BASIC CONCEPTS
26 *
27 * 1) space_info. This is the ultimate arbiter of how much space we can use.
28 * There's a description of the bytes_ fields with the struct declaration,
29 * refer to that for specifics on each field. Suffice it to say that for
30 * reservations we care about total_bytes - SUM(space_info->bytes_) when
31 * determining if there is space to make an allocation. There is a space_info
32 * for METADATA, SYSTEM, and DATA areas.
33 *
34 * 2) block_rsv's. These are basically buckets for every different type of
35 * metadata reservation we have. You can see the comment in the block_rsv
36 * code on the rules for each type, but generally block_rsv->reserved is how
37 * much space is accounted for in space_info->bytes_may_use.
38 *
39 * 3) btrfs_calc*_size. These are the worst case calculations we used based
40 * on the number of items we will want to modify. We have one for changing
41 * items, and one for inserting new items. Generally we use these helpers to
42 * determine the size of the block reserves, and then use the actual bytes
43 * values to adjust the space_info counters.
44 *
45 * MAKING RESERVATIONS, THE NORMAL CASE
46 *
47 * We call into either btrfs_reserve_data_bytes() or
48 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
49 * num_bytes we want to reserve.
50 *
51 * ->reserve
52 * space_info->bytes_may_reserve += num_bytes
53 *
54 * ->extent allocation
55 * Call btrfs_add_reserved_bytes() which does
56 * space_info->bytes_may_reserve -= num_bytes
57 * space_info->bytes_reserved += extent_bytes
58 *
59 * ->insert reference
60 * Call btrfs_update_block_group() which does
61 * space_info->bytes_reserved -= extent_bytes
62 * space_info->bytes_used += extent_bytes
63 *
64 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
65 *
66 * Assume we are unable to simply make the reservation because we do not have
67 * enough space
68 *
69 * -> __reserve_bytes
70 * create a reserve_ticket with ->bytes set to our reservation, add it to
71 * the tail of space_info->tickets, kick async flush thread
72 *
73 * ->handle_reserve_ticket
74 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
75 * on the ticket.
76 *
77 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
78 * Flushes various things attempting to free up space.
79 *
80 * -> btrfs_try_granting_tickets()
81 * This is called by anything that either subtracts space from
82 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
83 * space_info->total_bytes. This loops through the ->priority_tickets and
84 * then the ->tickets list checking to see if the reservation can be
85 * completed. If it can the space is added to space_info->bytes_may_use and
86 * the ticket is woken up.
87 *
88 * -> ticket wakeup
89 * Check if ->bytes == 0, if it does we got our reservation and we can carry
90 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
91 * were interrupted.)
92 *
93 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
94 *
95 * Same as the above, except we add ourselves to the
96 * space_info->priority_tickets, and we do not use ticket->wait, we simply
97 * call flush_space() ourselves for the states that are safe for us to call
98 * without deadlocking and hope for the best.
99 *
100 * THE FLUSHING STATES
101 *
102 * Generally speaking we will have two cases for each state, a "nice" state
103 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
104 * reduce the locking over head on the various trees, and even to keep from
105 * doing any work at all in the case of delayed refs. Each of these delayed
106 * things however hold reservations, and so letting them run allows us to
107 * reclaim space so we can make new reservations.
108 *
109 * FLUSH_DELAYED_ITEMS
110 * Every inode has a delayed item to update the inode. Take a simple write
111 * for example, we would update the inode item at write time to update the
112 * mtime, and then again at finish_ordered_io() time in order to update the
113 * isize or bytes. We keep these delayed items to coalesce these operations
114 * into a single operation done on demand. These are an easy way to reclaim
115 * metadata space.
116 *
117 * FLUSH_DELALLOC
118 * Look at the delalloc comment to get an idea of how much space is reserved
119 * for delayed allocation. We can reclaim some of this space simply by
120 * running delalloc, but usually we need to wait for ordered extents to
121 * reclaim the bulk of this space.
122 *
123 * FLUSH_DELAYED_REFS
124 * We have a block reserve for the outstanding delayed refs space, and every
125 * delayed ref operation holds a reservation. Running these is a quick way
126 * to reclaim space, but we want to hold this until the end because COW can
127 * churn a lot and we can avoid making some extent tree modifications if we
128 * are able to delay for as long as possible.
129 *
130 * ALLOC_CHUNK
131 * We will skip this the first time through space reservation, because of
132 * overcommit and we don't want to have a lot of useless metadata space when
133 * our worst case reservations will likely never come true.
134 *
135 * RUN_DELAYED_IPUTS
136 * If we're freeing inodes we're likely freeing checksums, file extent
137 * items, and extent tree items. Loads of space could be freed up by these
138 * operations, however they won't be usable until the transaction commits.
139 *
140 * COMMIT_TRANS
141 * This will commit the transaction. Historically we had a lot of logic
142 * surrounding whether or not we'd commit the transaction, but this waits born
143 * out of a pre-tickets era where we could end up committing the transaction
144 * thousands of times in a row without making progress. Now thanks to our
145 * ticketing system we know if we're not making progress and can error
146 * everybody out after a few commits rather than burning the disk hoping for
147 * a different answer.
148 *
149 * OVERCOMMIT
150 *
151 * Because we hold so many reservations for metadata we will allow you to
152 * reserve more space than is currently free in the currently allocate
153 * metadata space. This only happens with metadata, data does not allow
154 * overcommitting.
155 *
156 * You can see the current logic for when we allow overcommit in
157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
158 * is no unallocated space to be had, all reservations are kept within the
159 * free space in the allocated metadata chunks.
160 *
161 * Because of overcommitting, you generally want to use the
162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
163 * thing with or without extra unallocated space.
164 */
165
166u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
167 bool may_use_included)
168{
169 ASSERT(s_info);
170 return s_info->bytes_used + s_info->bytes_reserved +
171 s_info->bytes_pinned + s_info->bytes_readonly +
172 s_info->bytes_zone_unusable +
173 (may_use_included ? s_info->bytes_may_use : 0);
174}
175
176/*
177 * after adding space to the filesystem, we need to clear the full flags
178 * on all the space infos.
179 */
180void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181{
182 struct list_head *head = &info->space_info;
183 struct btrfs_space_info *found;
184
185 list_for_each_entry(found, head, list)
186 found->full = 0;
187}
188
189/*
190 * Block groups with more than this value (percents) of unusable space will be
191 * scheduled for background reclaim.
192 */
193#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
194
195#define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL)
196
197/*
198 * Calculate chunk size depending on volume type (regular or zoned).
199 */
200static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
201{
202 if (btrfs_is_zoned(fs_info))
203 return fs_info->zone_size;
204
205 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
206
207 if (flags & BTRFS_BLOCK_GROUP_DATA)
208 return BTRFS_MAX_DATA_CHUNK_SIZE;
209 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
210 return SZ_32M;
211
212 /* Handle BTRFS_BLOCK_GROUP_METADATA */
213 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
214 return SZ_1G;
215
216 return SZ_256M;
217}
218
219/*
220 * Update default chunk size.
221 */
222void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
223 u64 chunk_size)
224{
225 WRITE_ONCE(space_info->chunk_size, chunk_size);
226}
227
228static int create_space_info(struct btrfs_fs_info *info, u64 flags)
229{
230
231 struct btrfs_space_info *space_info;
232 int i;
233 int ret;
234
235 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
236 if (!space_info)
237 return -ENOMEM;
238
239 space_info->fs_info = info;
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 INIT_LIST_HEAD(&space_info->block_groups[i]);
242 init_rwsem(&space_info->groups_sem);
243 spin_lock_init(&space_info->lock);
244 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
245 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
246 INIT_LIST_HEAD(&space_info->ro_bgs);
247 INIT_LIST_HEAD(&space_info->tickets);
248 INIT_LIST_HEAD(&space_info->priority_tickets);
249 space_info->clamp = 1;
250 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
251
252 if (btrfs_is_zoned(info))
253 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
254
255 ret = btrfs_sysfs_add_space_info_type(info, space_info);
256 if (ret)
257 return ret;
258
259 list_add(&space_info->list, &info->space_info);
260 if (flags & BTRFS_BLOCK_GROUP_DATA)
261 info->data_sinfo = space_info;
262
263 return ret;
264}
265
266int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
267{
268 struct btrfs_super_block *disk_super;
269 u64 features;
270 u64 flags;
271 int mixed = 0;
272 int ret;
273
274 disk_super = fs_info->super_copy;
275 if (!btrfs_super_root(disk_super))
276 return -EINVAL;
277
278 features = btrfs_super_incompat_flags(disk_super);
279 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
280 mixed = 1;
281
282 flags = BTRFS_BLOCK_GROUP_SYSTEM;
283 ret = create_space_info(fs_info, flags);
284 if (ret)
285 goto out;
286
287 if (mixed) {
288 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
289 ret = create_space_info(fs_info, flags);
290 } else {
291 flags = BTRFS_BLOCK_GROUP_METADATA;
292 ret = create_space_info(fs_info, flags);
293 if (ret)
294 goto out;
295
296 flags = BTRFS_BLOCK_GROUP_DATA;
297 ret = create_space_info(fs_info, flags);
298 }
299out:
300 return ret;
301}
302
303void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
304 struct btrfs_block_group *block_group)
305{
306 struct btrfs_space_info *found;
307 int factor, index;
308
309 factor = btrfs_bg_type_to_factor(block_group->flags);
310
311 found = btrfs_find_space_info(info, block_group->flags);
312 ASSERT(found);
313 spin_lock(&found->lock);
314 found->total_bytes += block_group->length;
315 found->disk_total += block_group->length * factor;
316 found->bytes_used += block_group->used;
317 found->disk_used += block_group->used * factor;
318 found->bytes_readonly += block_group->bytes_super;
319 btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
320 if (block_group->length > 0)
321 found->full = 0;
322 btrfs_try_granting_tickets(info, found);
323 spin_unlock(&found->lock);
324
325 block_group->space_info = found;
326
327 index = btrfs_bg_flags_to_raid_index(block_group->flags);
328 down_write(&found->groups_sem);
329 list_add_tail(&block_group->list, &found->block_groups[index]);
330 up_write(&found->groups_sem);
331}
332
333struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
334 u64 flags)
335{
336 struct list_head *head = &info->space_info;
337 struct btrfs_space_info *found;
338
339 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
340
341 list_for_each_entry(found, head, list) {
342 if (found->flags & flags)
343 return found;
344 }
345 return NULL;
346}
347
348static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
349{
350 struct btrfs_space_info *data_sinfo;
351 u64 data_chunk_size;
352
353 /*
354 * Calculate the data_chunk_size, space_info->chunk_size is the
355 * "optimal" chunk size based on the fs size. However when we actually
356 * allocate the chunk we will strip this down further, making it no
357 * more than 10% of the disk or 1G, whichever is smaller.
358 *
359 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
360 * as it is.
361 */
362 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
363 if (btrfs_is_zoned(fs_info))
364 return data_sinfo->chunk_size;
365 data_chunk_size = min(data_sinfo->chunk_size,
366 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
367 return min_t(u64, data_chunk_size, SZ_1G);
368}
369
370static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
371 const struct btrfs_space_info *space_info,
372 enum btrfs_reserve_flush_enum flush)
373{
374 u64 profile;
375 u64 avail;
376 u64 data_chunk_size;
377 int factor;
378
379 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
380 profile = btrfs_system_alloc_profile(fs_info);
381 else
382 profile = btrfs_metadata_alloc_profile(fs_info);
383
384 avail = atomic64_read(&fs_info->free_chunk_space);
385
386 /*
387 * If we have dup, raid1 or raid10 then only half of the free
388 * space is actually usable. For raid56, the space info used
389 * doesn't include the parity drive, so we don't have to
390 * change the math
391 */
392 factor = btrfs_bg_type_to_factor(profile);
393 avail = div_u64(avail, factor);
394 if (avail == 0)
395 return 0;
396
397 data_chunk_size = calc_effective_data_chunk_size(fs_info);
398
399 /*
400 * Since data allocations immediately use block groups as part of the
401 * reservation, because we assume that data reservations will == actual
402 * usage, we could potentially overcommit and then immediately have that
403 * available space used by a data allocation, which could put us in a
404 * bind when we get close to filling the file system.
405 *
406 * To handle this simply remove the data_chunk_size from the available
407 * space. If we are relatively empty this won't affect our ability to
408 * overcommit much, and if we're very close to full it'll keep us from
409 * getting into a position where we've given ourselves very little
410 * metadata wiggle room.
411 */
412 if (avail <= data_chunk_size)
413 return 0;
414 avail -= data_chunk_size;
415
416 /*
417 * If we aren't flushing all things, let us overcommit up to
418 * 1/2th of the space. If we can flush, don't let us overcommit
419 * too much, let it overcommit up to 1/8 of the space.
420 */
421 if (flush == BTRFS_RESERVE_FLUSH_ALL)
422 avail >>= 3;
423 else
424 avail >>= 1;
425
426 /*
427 * On the zoned mode, we always allocate one zone as one chunk.
428 * Returning non-zone size alingned bytes here will result in
429 * less pressure for the async metadata reclaim process, and it
430 * will over-commit too much leading to ENOSPC. Align down to the
431 * zone size to avoid that.
432 */
433 if (btrfs_is_zoned(fs_info))
434 avail = ALIGN_DOWN(avail, fs_info->zone_size);
435
436 return avail;
437}
438
439int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
440 const struct btrfs_space_info *space_info, u64 bytes,
441 enum btrfs_reserve_flush_enum flush)
442{
443 u64 avail;
444 u64 used;
445
446 /* Don't overcommit when in mixed mode */
447 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
448 return 0;
449
450 used = btrfs_space_info_used(space_info, true);
451 avail = calc_available_free_space(fs_info, space_info, flush);
452
453 if (used + bytes < space_info->total_bytes + avail)
454 return 1;
455 return 0;
456}
457
458static void remove_ticket(struct btrfs_space_info *space_info,
459 struct reserve_ticket *ticket)
460{
461 if (!list_empty(&ticket->list)) {
462 list_del_init(&ticket->list);
463 ASSERT(space_info->reclaim_size >= ticket->bytes);
464 space_info->reclaim_size -= ticket->bytes;
465 }
466}
467
468/*
469 * This is for space we already have accounted in space_info->bytes_may_use, so
470 * basically when we're returning space from block_rsv's.
471 */
472void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
473 struct btrfs_space_info *space_info)
474{
475 struct list_head *head;
476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
477
478 lockdep_assert_held(&space_info->lock);
479
480 head = &space_info->priority_tickets;
481again:
482 while (!list_empty(head)) {
483 struct reserve_ticket *ticket;
484 u64 used = btrfs_space_info_used(space_info, true);
485
486 ticket = list_first_entry(head, struct reserve_ticket, list);
487
488 /* Check and see if our ticket can be satisfied now. */
489 if ((used + ticket->bytes <= space_info->total_bytes) ||
490 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
491 flush)) {
492 btrfs_space_info_update_bytes_may_use(fs_info,
493 space_info,
494 ticket->bytes);
495 remove_ticket(space_info, ticket);
496 ticket->bytes = 0;
497 space_info->tickets_id++;
498 wake_up(&ticket->wait);
499 } else {
500 break;
501 }
502 }
503
504 if (head == &space_info->priority_tickets) {
505 head = &space_info->tickets;
506 flush = BTRFS_RESERVE_FLUSH_ALL;
507 goto again;
508 }
509}
510
511#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
512do { \
513 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
514 spin_lock(&__rsv->lock); \
515 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
516 __rsv->size, __rsv->reserved); \
517 spin_unlock(&__rsv->lock); \
518} while (0)
519
520static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
521{
522 switch (space_info->flags) {
523 case BTRFS_BLOCK_GROUP_SYSTEM:
524 return "SYSTEM";
525 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
526 return "DATA+METADATA";
527 case BTRFS_BLOCK_GROUP_DATA:
528 return "DATA";
529 case BTRFS_BLOCK_GROUP_METADATA:
530 return "METADATA";
531 default:
532 return "UNKNOWN";
533 }
534}
535
536static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
537{
538 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
539 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
540 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
541 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
542 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
543}
544
545static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
546 const struct btrfs_space_info *info)
547{
548 const char *flag_str = space_info_flag_to_str(info);
549 lockdep_assert_held(&info->lock);
550
551 /* The free space could be negative in case of overcommit */
552 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
553 flag_str,
554 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
555 info->full ? "" : "not ");
556 btrfs_info(fs_info,
557"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
558 info->total_bytes, info->bytes_used, info->bytes_pinned,
559 info->bytes_reserved, info->bytes_may_use,
560 info->bytes_readonly, info->bytes_zone_unusable);
561}
562
563void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
564 struct btrfs_space_info *info, u64 bytes,
565 int dump_block_groups)
566{
567 struct btrfs_block_group *cache;
568 u64 total_avail = 0;
569 int index = 0;
570
571 spin_lock(&info->lock);
572 __btrfs_dump_space_info(fs_info, info);
573 dump_global_block_rsv(fs_info);
574 spin_unlock(&info->lock);
575
576 if (!dump_block_groups)
577 return;
578
579 down_read(&info->groups_sem);
580again:
581 list_for_each_entry(cache, &info->block_groups[index], list) {
582 u64 avail;
583
584 spin_lock(&cache->lock);
585 avail = cache->length - cache->used - cache->pinned -
586 cache->reserved - cache->bytes_super - cache->zone_unusable;
587 btrfs_info(fs_info,
588"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
589 cache->start, cache->length, cache->used, cache->pinned,
590 cache->reserved, cache->delalloc_bytes,
591 cache->bytes_super, cache->zone_unusable,
592 avail, cache->ro ? "[readonly]" : "");
593 spin_unlock(&cache->lock);
594 btrfs_dump_free_space(cache, bytes);
595 total_avail += avail;
596 }
597 if (++index < BTRFS_NR_RAID_TYPES)
598 goto again;
599 up_read(&info->groups_sem);
600
601 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
602}
603
604static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
605 u64 to_reclaim)
606{
607 u64 bytes;
608 u64 nr;
609
610 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
611 nr = div64_u64(to_reclaim, bytes);
612 if (!nr)
613 nr = 1;
614 return nr;
615}
616
617/*
618 * shrink metadata reservation for delalloc
619 */
620static void shrink_delalloc(struct btrfs_fs_info *fs_info,
621 struct btrfs_space_info *space_info,
622 u64 to_reclaim, bool wait_ordered,
623 bool for_preempt)
624{
625 struct btrfs_trans_handle *trans;
626 u64 delalloc_bytes;
627 u64 ordered_bytes;
628 u64 items;
629 long time_left;
630 int loops;
631
632 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
633 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
634 if (delalloc_bytes == 0 && ordered_bytes == 0)
635 return;
636
637 /* Calc the number of the pages we need flush for space reservation */
638 if (to_reclaim == U64_MAX) {
639 items = U64_MAX;
640 } else {
641 /*
642 * to_reclaim is set to however much metadata we need to
643 * reclaim, but reclaiming that much data doesn't really track
644 * exactly. What we really want to do is reclaim full inode's
645 * worth of reservations, however that's not available to us
646 * here. We will take a fraction of the delalloc bytes for our
647 * flushing loops and hope for the best. Delalloc will expand
648 * the amount we write to cover an entire dirty extent, which
649 * will reclaim the metadata reservation for that range. If
650 * it's not enough subsequent flush stages will be more
651 * aggressive.
652 */
653 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
654 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
655 }
656
657 trans = current->journal_info;
658
659 /*
660 * If we are doing more ordered than delalloc we need to just wait on
661 * ordered extents, otherwise we'll waste time trying to flush delalloc
662 * that likely won't give us the space back we need.
663 */
664 if (ordered_bytes > delalloc_bytes && !for_preempt)
665 wait_ordered = true;
666
667 loops = 0;
668 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
669 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
670 long nr_pages = min_t(u64, temp, LONG_MAX);
671 int async_pages;
672
673 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
674
675 /*
676 * We need to make sure any outstanding async pages are now
677 * processed before we continue. This is because things like
678 * sync_inode() try to be smart and skip writing if the inode is
679 * marked clean. We don't use filemap_fwrite for flushing
680 * because we want to control how many pages we write out at a
681 * time, thus this is the only safe way to make sure we've
682 * waited for outstanding compressed workers to have started
683 * their jobs and thus have ordered extents set up properly.
684 *
685 * This exists because we do not want to wait for each
686 * individual inode to finish its async work, we simply want to
687 * start the IO on everybody, and then come back here and wait
688 * for all of the async work to catch up. Once we're done with
689 * that we know we'll have ordered extents for everything and we
690 * can decide if we wait for that or not.
691 *
692 * If we choose to replace this in the future, make absolutely
693 * sure that the proper waiting is being done in the async case,
694 * as there have been bugs in that area before.
695 */
696 async_pages = atomic_read(&fs_info->async_delalloc_pages);
697 if (!async_pages)
698 goto skip_async;
699
700 /*
701 * We don't want to wait forever, if we wrote less pages in this
702 * loop than we have outstanding, only wait for that number of
703 * pages, otherwise we can wait for all async pages to finish
704 * before continuing.
705 */
706 if (async_pages > nr_pages)
707 async_pages -= nr_pages;
708 else
709 async_pages = 0;
710 wait_event(fs_info->async_submit_wait,
711 atomic_read(&fs_info->async_delalloc_pages) <=
712 async_pages);
713skip_async:
714 loops++;
715 if (wait_ordered && !trans) {
716 btrfs_wait_ordered_roots(fs_info, items, NULL);
717 } else {
718 time_left = schedule_timeout_killable(1);
719 if (time_left)
720 break;
721 }
722
723 /*
724 * If we are for preemption we just want a one-shot of delalloc
725 * flushing so we can stop flushing if we decide we don't need
726 * to anymore.
727 */
728 if (for_preempt)
729 break;
730
731 spin_lock(&space_info->lock);
732 if (list_empty(&space_info->tickets) &&
733 list_empty(&space_info->priority_tickets)) {
734 spin_unlock(&space_info->lock);
735 break;
736 }
737 spin_unlock(&space_info->lock);
738
739 delalloc_bytes = percpu_counter_sum_positive(
740 &fs_info->delalloc_bytes);
741 ordered_bytes = percpu_counter_sum_positive(
742 &fs_info->ordered_bytes);
743 }
744}
745
746/*
747 * Try to flush some data based on policy set by @state. This is only advisory
748 * and may fail for various reasons. The caller is supposed to examine the
749 * state of @space_info to detect the outcome.
750 */
751static void flush_space(struct btrfs_fs_info *fs_info,
752 struct btrfs_space_info *space_info, u64 num_bytes,
753 enum btrfs_flush_state state, bool for_preempt)
754{
755 struct btrfs_root *root = fs_info->tree_root;
756 struct btrfs_trans_handle *trans;
757 int nr;
758 int ret = 0;
759
760 switch (state) {
761 case FLUSH_DELAYED_ITEMS_NR:
762 case FLUSH_DELAYED_ITEMS:
763 if (state == FLUSH_DELAYED_ITEMS_NR)
764 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
765 else
766 nr = -1;
767
768 trans = btrfs_join_transaction_nostart(root);
769 if (IS_ERR(trans)) {
770 ret = PTR_ERR(trans);
771 if (ret == -ENOENT)
772 ret = 0;
773 break;
774 }
775 ret = btrfs_run_delayed_items_nr(trans, nr);
776 btrfs_end_transaction(trans);
777 break;
778 case FLUSH_DELALLOC:
779 case FLUSH_DELALLOC_WAIT:
780 case FLUSH_DELALLOC_FULL:
781 if (state == FLUSH_DELALLOC_FULL)
782 num_bytes = U64_MAX;
783 shrink_delalloc(fs_info, space_info, num_bytes,
784 state != FLUSH_DELALLOC, for_preempt);
785 break;
786 case FLUSH_DELAYED_REFS_NR:
787 case FLUSH_DELAYED_REFS:
788 trans = btrfs_join_transaction_nostart(root);
789 if (IS_ERR(trans)) {
790 ret = PTR_ERR(trans);
791 if (ret == -ENOENT)
792 ret = 0;
793 break;
794 }
795 if (state == FLUSH_DELAYED_REFS_NR)
796 btrfs_run_delayed_refs(trans, num_bytes);
797 else
798 btrfs_run_delayed_refs(trans, 0);
799 btrfs_end_transaction(trans);
800 break;
801 case ALLOC_CHUNK:
802 case ALLOC_CHUNK_FORCE:
803 trans = btrfs_join_transaction(root);
804 if (IS_ERR(trans)) {
805 ret = PTR_ERR(trans);
806 break;
807 }
808 ret = btrfs_chunk_alloc(trans,
809 btrfs_get_alloc_profile(fs_info, space_info->flags),
810 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
811 CHUNK_ALLOC_FORCE);
812 btrfs_end_transaction(trans);
813
814 if (ret > 0 || ret == -ENOSPC)
815 ret = 0;
816 break;
817 case RUN_DELAYED_IPUTS:
818 /*
819 * If we have pending delayed iputs then we could free up a
820 * bunch of pinned space, so make sure we run the iputs before
821 * we do our pinned bytes check below.
822 */
823 btrfs_run_delayed_iputs(fs_info);
824 btrfs_wait_on_delayed_iputs(fs_info);
825 break;
826 case COMMIT_TRANS:
827 ASSERT(current->journal_info == NULL);
828 /*
829 * We don't want to start a new transaction, just attach to the
830 * current one or wait it fully commits in case its commit is
831 * happening at the moment. Note: we don't use a nostart join
832 * because that does not wait for a transaction to fully commit
833 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
834 */
835 ret = btrfs_commit_current_transaction(root);
836 break;
837 default:
838 ret = -ENOSPC;
839 break;
840 }
841
842 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
843 ret, for_preempt);
844 return;
845}
846
847static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
848 const struct btrfs_space_info *space_info)
849{
850 u64 used;
851 u64 avail;
852 u64 to_reclaim = space_info->reclaim_size;
853
854 lockdep_assert_held(&space_info->lock);
855
856 avail = calc_available_free_space(fs_info, space_info,
857 BTRFS_RESERVE_FLUSH_ALL);
858 used = btrfs_space_info_used(space_info, true);
859
860 /*
861 * We may be flushing because suddenly we have less space than we had
862 * before, and now we're well over-committed based on our current free
863 * space. If that's the case add in our overage so we make sure to put
864 * appropriate pressure on the flushing state machine.
865 */
866 if (space_info->total_bytes + avail < used)
867 to_reclaim += used - (space_info->total_bytes + avail);
868
869 return to_reclaim;
870}
871
872static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
873 const struct btrfs_space_info *space_info)
874{
875 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
876 u64 ordered, delalloc;
877 u64 thresh;
878 u64 used;
879
880 thresh = mult_perc(space_info->total_bytes, 90);
881
882 lockdep_assert_held(&space_info->lock);
883
884 /* If we're just plain full then async reclaim just slows us down. */
885 if ((space_info->bytes_used + space_info->bytes_reserved +
886 global_rsv_size) >= thresh)
887 return false;
888
889 used = space_info->bytes_may_use + space_info->bytes_pinned;
890
891 /* The total flushable belongs to the global rsv, don't flush. */
892 if (global_rsv_size >= used)
893 return false;
894
895 /*
896 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
897 * that devoted to other reservations then there's no sense in flushing,
898 * we don't have a lot of things that need flushing.
899 */
900 if (used - global_rsv_size <= SZ_128M)
901 return false;
902
903 /*
904 * We have tickets queued, bail so we don't compete with the async
905 * flushers.
906 */
907 if (space_info->reclaim_size)
908 return false;
909
910 /*
911 * If we have over half of the free space occupied by reservations or
912 * pinned then we want to start flushing.
913 *
914 * We do not do the traditional thing here, which is to say
915 *
916 * if (used >= ((total_bytes + avail) / 2))
917 * return 1;
918 *
919 * because this doesn't quite work how we want. If we had more than 50%
920 * of the space_info used by bytes_used and we had 0 available we'd just
921 * constantly run the background flusher. Instead we want it to kick in
922 * if our reclaimable space exceeds our clamped free space.
923 *
924 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
925 * the following:
926 *
927 * Amount of RAM Minimum threshold Maximum threshold
928 *
929 * 256GiB 1GiB 128GiB
930 * 128GiB 512MiB 64GiB
931 * 64GiB 256MiB 32GiB
932 * 32GiB 128MiB 16GiB
933 * 16GiB 64MiB 8GiB
934 *
935 * These are the range our thresholds will fall in, corresponding to how
936 * much delalloc we need for the background flusher to kick in.
937 */
938
939 thresh = calc_available_free_space(fs_info, space_info,
940 BTRFS_RESERVE_FLUSH_ALL);
941 used = space_info->bytes_used + space_info->bytes_reserved +
942 space_info->bytes_readonly + global_rsv_size;
943 if (used < space_info->total_bytes)
944 thresh += space_info->total_bytes - used;
945 thresh >>= space_info->clamp;
946
947 used = space_info->bytes_pinned;
948
949 /*
950 * If we have more ordered bytes than delalloc bytes then we're either
951 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
952 * around. Preemptive flushing is only useful in that it can free up
953 * space before tickets need to wait for things to finish. In the case
954 * of ordered extents, preemptively waiting on ordered extents gets us
955 * nothing, if our reservations are tied up in ordered extents we'll
956 * simply have to slow down writers by forcing them to wait on ordered
957 * extents.
958 *
959 * In the case that ordered is larger than delalloc, only include the
960 * block reserves that we would actually be able to directly reclaim
961 * from. In this case if we're heavy on metadata operations this will
962 * clearly be heavy enough to warrant preemptive flushing. In the case
963 * of heavy DIO or ordered reservations, preemptive flushing will just
964 * waste time and cause us to slow down.
965 *
966 * We want to make sure we truly are maxed out on ordered however, so
967 * cut ordered in half, and if it's still higher than delalloc then we
968 * can keep flushing. This is to avoid the case where we start
969 * flushing, and now delalloc == ordered and we stop preemptively
970 * flushing when we could still have several gigs of delalloc to flush.
971 */
972 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
973 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
974 if (ordered >= delalloc)
975 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
976 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
977 else
978 used += space_info->bytes_may_use - global_rsv_size;
979
980 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
981 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
982}
983
984static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
985 struct btrfs_space_info *space_info,
986 struct reserve_ticket *ticket)
987{
988 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
989 u64 min_bytes;
990
991 if (!ticket->steal)
992 return false;
993
994 if (global_rsv->space_info != space_info)
995 return false;
996
997 spin_lock(&global_rsv->lock);
998 min_bytes = mult_perc(global_rsv->size, 10);
999 if (global_rsv->reserved < min_bytes + ticket->bytes) {
1000 spin_unlock(&global_rsv->lock);
1001 return false;
1002 }
1003 global_rsv->reserved -= ticket->bytes;
1004 remove_ticket(space_info, ticket);
1005 ticket->bytes = 0;
1006 wake_up(&ticket->wait);
1007 space_info->tickets_id++;
1008 if (global_rsv->reserved < global_rsv->size)
1009 global_rsv->full = 0;
1010 spin_unlock(&global_rsv->lock);
1011
1012 return true;
1013}
1014
1015/*
1016 * We've exhausted our flushing, start failing tickets.
1017 *
1018 * @fs_info - fs_info for this fs
1019 * @space_info - the space info we were flushing
1020 *
1021 * We call this when we've exhausted our flushing ability and haven't made
1022 * progress in satisfying tickets. The reservation code handles tickets in
1023 * order, so if there is a large ticket first and then smaller ones we could
1024 * very well satisfy the smaller tickets. This will attempt to wake up any
1025 * tickets in the list to catch this case.
1026 *
1027 * This function returns true if it was able to make progress by clearing out
1028 * other tickets, or if it stumbles across a ticket that was smaller than the
1029 * first ticket.
1030 */
1031static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1032 struct btrfs_space_info *space_info)
1033{
1034 struct reserve_ticket *ticket;
1035 u64 tickets_id = space_info->tickets_id;
1036 const bool aborted = BTRFS_FS_ERROR(fs_info);
1037
1038 trace_btrfs_fail_all_tickets(fs_info, space_info);
1039
1040 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1041 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1042 __btrfs_dump_space_info(fs_info, space_info);
1043 }
1044
1045 while (!list_empty(&space_info->tickets) &&
1046 tickets_id == space_info->tickets_id) {
1047 ticket = list_first_entry(&space_info->tickets,
1048 struct reserve_ticket, list);
1049
1050 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1051 return true;
1052
1053 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1054 btrfs_info(fs_info, "failing ticket with %llu bytes",
1055 ticket->bytes);
1056
1057 remove_ticket(space_info, ticket);
1058 if (aborted)
1059 ticket->error = -EIO;
1060 else
1061 ticket->error = -ENOSPC;
1062 wake_up(&ticket->wait);
1063
1064 /*
1065 * We're just throwing tickets away, so more flushing may not
1066 * trip over btrfs_try_granting_tickets, so we need to call it
1067 * here to see if we can make progress with the next ticket in
1068 * the list.
1069 */
1070 if (!aborted)
1071 btrfs_try_granting_tickets(fs_info, space_info);
1072 }
1073 return (tickets_id != space_info->tickets_id);
1074}
1075
1076/*
1077 * This is for normal flushers, we can wait all goddamned day if we want to. We
1078 * will loop and continuously try to flush as long as we are making progress.
1079 * We count progress as clearing off tickets each time we have to loop.
1080 */
1081static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1082{
1083 struct btrfs_fs_info *fs_info;
1084 struct btrfs_space_info *space_info;
1085 u64 to_reclaim;
1086 enum btrfs_flush_state flush_state;
1087 int commit_cycles = 0;
1088 u64 last_tickets_id;
1089
1090 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1091 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1092
1093 spin_lock(&space_info->lock);
1094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1095 if (!to_reclaim) {
1096 space_info->flush = 0;
1097 spin_unlock(&space_info->lock);
1098 return;
1099 }
1100 last_tickets_id = space_info->tickets_id;
1101 spin_unlock(&space_info->lock);
1102
1103 flush_state = FLUSH_DELAYED_ITEMS_NR;
1104 do {
1105 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1106 spin_lock(&space_info->lock);
1107 if (list_empty(&space_info->tickets)) {
1108 space_info->flush = 0;
1109 spin_unlock(&space_info->lock);
1110 return;
1111 }
1112 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1113 space_info);
1114 if (last_tickets_id == space_info->tickets_id) {
1115 flush_state++;
1116 } else {
1117 last_tickets_id = space_info->tickets_id;
1118 flush_state = FLUSH_DELAYED_ITEMS_NR;
1119 if (commit_cycles)
1120 commit_cycles--;
1121 }
1122
1123 /*
1124 * We do not want to empty the system of delalloc unless we're
1125 * under heavy pressure, so allow one trip through the flushing
1126 * logic before we start doing a FLUSH_DELALLOC_FULL.
1127 */
1128 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1129 flush_state++;
1130
1131 /*
1132 * We don't want to force a chunk allocation until we've tried
1133 * pretty hard to reclaim space. Think of the case where we
1134 * freed up a bunch of space and so have a lot of pinned space
1135 * to reclaim. We would rather use that than possibly create a
1136 * underutilized metadata chunk. So if this is our first run
1137 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1138 * commit the transaction. If nothing has changed the next go
1139 * around then we can force a chunk allocation.
1140 */
1141 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1142 flush_state++;
1143
1144 if (flush_state > COMMIT_TRANS) {
1145 commit_cycles++;
1146 if (commit_cycles > 2) {
1147 if (maybe_fail_all_tickets(fs_info, space_info)) {
1148 flush_state = FLUSH_DELAYED_ITEMS_NR;
1149 commit_cycles--;
1150 } else {
1151 space_info->flush = 0;
1152 }
1153 } else {
1154 flush_state = FLUSH_DELAYED_ITEMS_NR;
1155 }
1156 }
1157 spin_unlock(&space_info->lock);
1158 } while (flush_state <= COMMIT_TRANS);
1159}
1160
1161/*
1162 * This handles pre-flushing of metadata space before we get to the point that
1163 * we need to start blocking threads on tickets. The logic here is different
1164 * from the other flush paths because it doesn't rely on tickets to tell us how
1165 * much we need to flush, instead it attempts to keep us below the 80% full
1166 * watermark of space by flushing whichever reservation pool is currently the
1167 * largest.
1168 */
1169static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1170{
1171 struct btrfs_fs_info *fs_info;
1172 struct btrfs_space_info *space_info;
1173 struct btrfs_block_rsv *delayed_block_rsv;
1174 struct btrfs_block_rsv *delayed_refs_rsv;
1175 struct btrfs_block_rsv *global_rsv;
1176 struct btrfs_block_rsv *trans_rsv;
1177 int loops = 0;
1178
1179 fs_info = container_of(work, struct btrfs_fs_info,
1180 preempt_reclaim_work);
1181 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1182 delayed_block_rsv = &fs_info->delayed_block_rsv;
1183 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1184 global_rsv = &fs_info->global_block_rsv;
1185 trans_rsv = &fs_info->trans_block_rsv;
1186
1187 spin_lock(&space_info->lock);
1188 while (need_preemptive_reclaim(fs_info, space_info)) {
1189 enum btrfs_flush_state flush;
1190 u64 delalloc_size = 0;
1191 u64 to_reclaim, block_rsv_size;
1192 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1193
1194 loops++;
1195
1196 /*
1197 * We don't have a precise counter for the metadata being
1198 * reserved for delalloc, so we'll approximate it by subtracting
1199 * out the block rsv's space from the bytes_may_use. If that
1200 * amount is higher than the individual reserves, then we can
1201 * assume it's tied up in delalloc reservations.
1202 */
1203 block_rsv_size = global_rsv_size +
1204 btrfs_block_rsv_reserved(delayed_block_rsv) +
1205 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1206 btrfs_block_rsv_reserved(trans_rsv);
1207 if (block_rsv_size < space_info->bytes_may_use)
1208 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1209
1210 /*
1211 * We don't want to include the global_rsv in our calculation,
1212 * because that's space we can't touch. Subtract it from the
1213 * block_rsv_size for the next checks.
1214 */
1215 block_rsv_size -= global_rsv_size;
1216
1217 /*
1218 * We really want to avoid flushing delalloc too much, as it
1219 * could result in poor allocation patterns, so only flush it if
1220 * it's larger than the rest of the pools combined.
1221 */
1222 if (delalloc_size > block_rsv_size) {
1223 to_reclaim = delalloc_size;
1224 flush = FLUSH_DELALLOC;
1225 } else if (space_info->bytes_pinned >
1226 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1227 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1228 to_reclaim = space_info->bytes_pinned;
1229 flush = COMMIT_TRANS;
1230 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1231 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1232 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1233 flush = FLUSH_DELAYED_ITEMS_NR;
1234 } else {
1235 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1236 flush = FLUSH_DELAYED_REFS_NR;
1237 }
1238
1239 spin_unlock(&space_info->lock);
1240
1241 /*
1242 * We don't want to reclaim everything, just a portion, so scale
1243 * down the to_reclaim by 1/4. If it takes us down to 0,
1244 * reclaim 1 items worth.
1245 */
1246 to_reclaim >>= 2;
1247 if (!to_reclaim)
1248 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1249 flush_space(fs_info, space_info, to_reclaim, flush, true);
1250 cond_resched();
1251 spin_lock(&space_info->lock);
1252 }
1253
1254 /* We only went through once, back off our clamping. */
1255 if (loops == 1 && !space_info->reclaim_size)
1256 space_info->clamp = max(1, space_info->clamp - 1);
1257 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1258 spin_unlock(&space_info->lock);
1259}
1260
1261/*
1262 * FLUSH_DELALLOC_WAIT:
1263 * Space is freed from flushing delalloc in one of two ways.
1264 *
1265 * 1) compression is on and we allocate less space than we reserved
1266 * 2) we are overwriting existing space
1267 *
1268 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1269 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1270 * length to ->bytes_reserved, and subtracts the reserved space from
1271 * ->bytes_may_use.
1272 *
1273 * For #2 this is trickier. Once the ordered extent runs we will drop the
1274 * extent in the range we are overwriting, which creates a delayed ref for
1275 * that freed extent. This however is not reclaimed until the transaction
1276 * commits, thus the next stages.
1277 *
1278 * RUN_DELAYED_IPUTS
1279 * If we are freeing inodes, we want to make sure all delayed iputs have
1280 * completed, because they could have been on an inode with i_nlink == 0, and
1281 * thus have been truncated and freed up space. But again this space is not
1282 * immediately reusable, it comes in the form of a delayed ref, which must be
1283 * run and then the transaction must be committed.
1284 *
1285 * COMMIT_TRANS
1286 * This is where we reclaim all of the pinned space generated by running the
1287 * iputs
1288 *
1289 * ALLOC_CHUNK_FORCE
1290 * For data we start with alloc chunk force, however we could have been full
1291 * before, and then the transaction commit could have freed new block groups,
1292 * so if we now have space to allocate do the force chunk allocation.
1293 */
1294static const enum btrfs_flush_state data_flush_states[] = {
1295 FLUSH_DELALLOC_FULL,
1296 RUN_DELAYED_IPUTS,
1297 COMMIT_TRANS,
1298 ALLOC_CHUNK_FORCE,
1299};
1300
1301static void btrfs_async_reclaim_data_space(struct work_struct *work)
1302{
1303 struct btrfs_fs_info *fs_info;
1304 struct btrfs_space_info *space_info;
1305 u64 last_tickets_id;
1306 enum btrfs_flush_state flush_state = 0;
1307
1308 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1309 space_info = fs_info->data_sinfo;
1310
1311 spin_lock(&space_info->lock);
1312 if (list_empty(&space_info->tickets)) {
1313 space_info->flush = 0;
1314 spin_unlock(&space_info->lock);
1315 return;
1316 }
1317 last_tickets_id = space_info->tickets_id;
1318 spin_unlock(&space_info->lock);
1319
1320 while (!space_info->full) {
1321 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1322 spin_lock(&space_info->lock);
1323 if (list_empty(&space_info->tickets)) {
1324 space_info->flush = 0;
1325 spin_unlock(&space_info->lock);
1326 return;
1327 }
1328
1329 /* Something happened, fail everything and bail. */
1330 if (BTRFS_FS_ERROR(fs_info))
1331 goto aborted_fs;
1332 last_tickets_id = space_info->tickets_id;
1333 spin_unlock(&space_info->lock);
1334 }
1335
1336 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1337 flush_space(fs_info, space_info, U64_MAX,
1338 data_flush_states[flush_state], false);
1339 spin_lock(&space_info->lock);
1340 if (list_empty(&space_info->tickets)) {
1341 space_info->flush = 0;
1342 spin_unlock(&space_info->lock);
1343 return;
1344 }
1345
1346 if (last_tickets_id == space_info->tickets_id) {
1347 flush_state++;
1348 } else {
1349 last_tickets_id = space_info->tickets_id;
1350 flush_state = 0;
1351 }
1352
1353 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1354 if (space_info->full) {
1355 if (maybe_fail_all_tickets(fs_info, space_info))
1356 flush_state = 0;
1357 else
1358 space_info->flush = 0;
1359 } else {
1360 flush_state = 0;
1361 }
1362
1363 /* Something happened, fail everything and bail. */
1364 if (BTRFS_FS_ERROR(fs_info))
1365 goto aborted_fs;
1366
1367 }
1368 spin_unlock(&space_info->lock);
1369 }
1370 return;
1371
1372aborted_fs:
1373 maybe_fail_all_tickets(fs_info, space_info);
1374 space_info->flush = 0;
1375 spin_unlock(&space_info->lock);
1376}
1377
1378void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1379{
1380 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1381 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1382 INIT_WORK(&fs_info->preempt_reclaim_work,
1383 btrfs_preempt_reclaim_metadata_space);
1384}
1385
1386static const enum btrfs_flush_state priority_flush_states[] = {
1387 FLUSH_DELAYED_ITEMS_NR,
1388 FLUSH_DELAYED_ITEMS,
1389 ALLOC_CHUNK,
1390};
1391
1392static const enum btrfs_flush_state evict_flush_states[] = {
1393 FLUSH_DELAYED_ITEMS_NR,
1394 FLUSH_DELAYED_ITEMS,
1395 FLUSH_DELAYED_REFS_NR,
1396 FLUSH_DELAYED_REFS,
1397 FLUSH_DELALLOC,
1398 FLUSH_DELALLOC_WAIT,
1399 FLUSH_DELALLOC_FULL,
1400 ALLOC_CHUNK,
1401 COMMIT_TRANS,
1402};
1403
1404static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1405 struct btrfs_space_info *space_info,
1406 struct reserve_ticket *ticket,
1407 const enum btrfs_flush_state *states,
1408 int states_nr)
1409{
1410 u64 to_reclaim;
1411 int flush_state = 0;
1412
1413 spin_lock(&space_info->lock);
1414 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1415 /*
1416 * This is the priority reclaim path, so to_reclaim could be >0 still
1417 * because we may have only satisfied the priority tickets and still
1418 * left non priority tickets on the list. We would then have
1419 * to_reclaim but ->bytes == 0.
1420 */
1421 if (ticket->bytes == 0) {
1422 spin_unlock(&space_info->lock);
1423 return;
1424 }
1425
1426 while (flush_state < states_nr) {
1427 spin_unlock(&space_info->lock);
1428 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1429 false);
1430 flush_state++;
1431 spin_lock(&space_info->lock);
1432 if (ticket->bytes == 0) {
1433 spin_unlock(&space_info->lock);
1434 return;
1435 }
1436 }
1437
1438 /*
1439 * Attempt to steal from the global rsv if we can, except if the fs was
1440 * turned into error mode due to a transaction abort when flushing space
1441 * above, in that case fail with the abort error instead of returning
1442 * success to the caller if we can steal from the global rsv - this is
1443 * just to have caller fail immeditelly instead of later when trying to
1444 * modify the fs, making it easier to debug -ENOSPC problems.
1445 */
1446 if (BTRFS_FS_ERROR(fs_info)) {
1447 ticket->error = BTRFS_FS_ERROR(fs_info);
1448 remove_ticket(space_info, ticket);
1449 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1450 ticket->error = -ENOSPC;
1451 remove_ticket(space_info, ticket);
1452 }
1453
1454 /*
1455 * We must run try_granting_tickets here because we could be a large
1456 * ticket in front of a smaller ticket that can now be satisfied with
1457 * the available space.
1458 */
1459 btrfs_try_granting_tickets(fs_info, space_info);
1460 spin_unlock(&space_info->lock);
1461}
1462
1463static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1464 struct btrfs_space_info *space_info,
1465 struct reserve_ticket *ticket)
1466{
1467 spin_lock(&space_info->lock);
1468
1469 /* We could have been granted before we got here. */
1470 if (ticket->bytes == 0) {
1471 spin_unlock(&space_info->lock);
1472 return;
1473 }
1474
1475 while (!space_info->full) {
1476 spin_unlock(&space_info->lock);
1477 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1478 spin_lock(&space_info->lock);
1479 if (ticket->bytes == 0) {
1480 spin_unlock(&space_info->lock);
1481 return;
1482 }
1483 }
1484
1485 ticket->error = -ENOSPC;
1486 remove_ticket(space_info, ticket);
1487 btrfs_try_granting_tickets(fs_info, space_info);
1488 spin_unlock(&space_info->lock);
1489}
1490
1491static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1492 struct reserve_ticket *ticket)
1493
1494{
1495 DEFINE_WAIT(wait);
1496 int ret = 0;
1497
1498 spin_lock(&space_info->lock);
1499 while (ticket->bytes > 0 && ticket->error == 0) {
1500 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1501 if (ret) {
1502 /*
1503 * Delete us from the list. After we unlock the space
1504 * info, we don't want the async reclaim job to reserve
1505 * space for this ticket. If that would happen, then the
1506 * ticket's task would not known that space was reserved
1507 * despite getting an error, resulting in a space leak
1508 * (bytes_may_use counter of our space_info).
1509 */
1510 remove_ticket(space_info, ticket);
1511 ticket->error = -EINTR;
1512 break;
1513 }
1514 spin_unlock(&space_info->lock);
1515
1516 schedule();
1517
1518 finish_wait(&ticket->wait, &wait);
1519 spin_lock(&space_info->lock);
1520 }
1521 spin_unlock(&space_info->lock);
1522}
1523
1524/*
1525 * Do the appropriate flushing and waiting for a ticket.
1526 *
1527 * @fs_info: the filesystem
1528 * @space_info: space info for the reservation
1529 * @ticket: ticket for the reservation
1530 * @start_ns: timestamp when the reservation started
1531 * @orig_bytes: amount of bytes originally reserved
1532 * @flush: how much we can flush
1533 *
1534 * This does the work of figuring out how to flush for the ticket, waiting for
1535 * the reservation, and returning the appropriate error if there is one.
1536 */
1537static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1538 struct btrfs_space_info *space_info,
1539 struct reserve_ticket *ticket,
1540 u64 start_ns, u64 orig_bytes,
1541 enum btrfs_reserve_flush_enum flush)
1542{
1543 int ret;
1544
1545 switch (flush) {
1546 case BTRFS_RESERVE_FLUSH_DATA:
1547 case BTRFS_RESERVE_FLUSH_ALL:
1548 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1549 wait_reserve_ticket(space_info, ticket);
1550 break;
1551 case BTRFS_RESERVE_FLUSH_LIMIT:
1552 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1553 priority_flush_states,
1554 ARRAY_SIZE(priority_flush_states));
1555 break;
1556 case BTRFS_RESERVE_FLUSH_EVICT:
1557 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1558 evict_flush_states,
1559 ARRAY_SIZE(evict_flush_states));
1560 break;
1561 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1562 priority_reclaim_data_space(fs_info, space_info, ticket);
1563 break;
1564 default:
1565 ASSERT(0);
1566 break;
1567 }
1568
1569 ret = ticket->error;
1570 ASSERT(list_empty(&ticket->list));
1571 /*
1572 * Check that we can't have an error set if the reservation succeeded,
1573 * as that would confuse tasks and lead them to error out without
1574 * releasing reserved space (if an error happens the expectation is that
1575 * space wasn't reserved at all).
1576 */
1577 ASSERT(!(ticket->bytes == 0 && ticket->error));
1578 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1579 start_ns, flush, ticket->error);
1580 return ret;
1581}
1582
1583/*
1584 * This returns true if this flush state will go through the ordinary flushing
1585 * code.
1586 */
1587static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1588{
1589 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1590 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1591}
1592
1593static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1594 struct btrfs_space_info *space_info)
1595{
1596 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1597 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1598
1599 /*
1600 * If we're heavy on ordered operations then clamping won't help us. We
1601 * need to clamp specifically to keep up with dirty'ing buffered
1602 * writers, because there's not a 1:1 correlation of writing delalloc
1603 * and freeing space, like there is with flushing delayed refs or
1604 * delayed nodes. If we're already more ordered than delalloc then
1605 * we're keeping up, otherwise we aren't and should probably clamp.
1606 */
1607 if (ordered < delalloc)
1608 space_info->clamp = min(space_info->clamp + 1, 8);
1609}
1610
1611static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1612{
1613 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1614 flush == BTRFS_RESERVE_FLUSH_EVICT);
1615}
1616
1617/*
1618 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1619 * fail as quickly as possible.
1620 */
1621static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1622{
1623 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1624 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1625}
1626
1627/*
1628 * Try to reserve bytes from the block_rsv's space.
1629 *
1630 * @fs_info: the filesystem
1631 * @space_info: space info we want to allocate from
1632 * @orig_bytes: number of bytes we want
1633 * @flush: whether or not we can flush to make our reservation
1634 *
1635 * This will reserve orig_bytes number of bytes from the space info associated
1636 * with the block_rsv. If there is not enough space it will make an attempt to
1637 * flush out space to make room. It will do this by flushing delalloc if
1638 * possible or committing the transaction. If flush is 0 then no attempts to
1639 * regain reservations will be made and this will fail if there is not enough
1640 * space already.
1641 */
1642static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1643 struct btrfs_space_info *space_info, u64 orig_bytes,
1644 enum btrfs_reserve_flush_enum flush)
1645{
1646 struct work_struct *async_work;
1647 struct reserve_ticket ticket;
1648 u64 start_ns = 0;
1649 u64 used;
1650 int ret = -ENOSPC;
1651 bool pending_tickets;
1652
1653 ASSERT(orig_bytes);
1654 /*
1655 * If have a transaction handle (current->journal_info != NULL), then
1656 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1657 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1658 * flushing methods can trigger transaction commits.
1659 */
1660 if (current->journal_info) {
1661 /* One assert per line for easier debugging. */
1662 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1663 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1664 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1665 }
1666
1667 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1668 async_work = &fs_info->async_data_reclaim_work;
1669 else
1670 async_work = &fs_info->async_reclaim_work;
1671
1672 spin_lock(&space_info->lock);
1673 used = btrfs_space_info_used(space_info, true);
1674
1675 /*
1676 * We don't want NO_FLUSH allocations to jump everybody, they can
1677 * generally handle ENOSPC in a different way, so treat them the same as
1678 * normal flushers when it comes to skipping pending tickets.
1679 */
1680 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1681 pending_tickets = !list_empty(&space_info->tickets) ||
1682 !list_empty(&space_info->priority_tickets);
1683 else
1684 pending_tickets = !list_empty(&space_info->priority_tickets);
1685
1686 /*
1687 * Carry on if we have enough space (short-circuit) OR call
1688 * can_overcommit() to ensure we can overcommit to continue.
1689 */
1690 if (!pending_tickets &&
1691 ((used + orig_bytes <= space_info->total_bytes) ||
1692 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1693 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1694 orig_bytes);
1695 ret = 0;
1696 }
1697
1698 /*
1699 * Things are dire, we need to make a reservation so we don't abort. We
1700 * will let this reservation go through as long as we have actual space
1701 * left to allocate for the block.
1702 */
1703 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1704 used = btrfs_space_info_used(space_info, false);
1705 if (used + orig_bytes <= space_info->total_bytes) {
1706 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1707 orig_bytes);
1708 ret = 0;
1709 }
1710 }
1711
1712 /*
1713 * If we couldn't make a reservation then setup our reservation ticket
1714 * and kick the async worker if it's not already running.
1715 *
1716 * If we are a priority flusher then we just need to add our ticket to
1717 * the list and we will do our own flushing further down.
1718 */
1719 if (ret && can_ticket(flush)) {
1720 ticket.bytes = orig_bytes;
1721 ticket.error = 0;
1722 space_info->reclaim_size += ticket.bytes;
1723 init_waitqueue_head(&ticket.wait);
1724 ticket.steal = can_steal(flush);
1725 if (trace_btrfs_reserve_ticket_enabled())
1726 start_ns = ktime_get_ns();
1727
1728 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1729 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1730 flush == BTRFS_RESERVE_FLUSH_DATA) {
1731 list_add_tail(&ticket.list, &space_info->tickets);
1732 if (!space_info->flush) {
1733 /*
1734 * We were forced to add a reserve ticket, so
1735 * our preemptive flushing is unable to keep
1736 * up. Clamp down on the threshold for the
1737 * preemptive flushing in order to keep up with
1738 * the workload.
1739 */
1740 maybe_clamp_preempt(fs_info, space_info);
1741
1742 space_info->flush = 1;
1743 trace_btrfs_trigger_flush(fs_info,
1744 space_info->flags,
1745 orig_bytes, flush,
1746 "enospc");
1747 queue_work(system_unbound_wq, async_work);
1748 }
1749 } else {
1750 list_add_tail(&ticket.list,
1751 &space_info->priority_tickets);
1752 }
1753 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1754 /*
1755 * We will do the space reservation dance during log replay,
1756 * which means we won't have fs_info->fs_root set, so don't do
1757 * the async reclaim as we will panic.
1758 */
1759 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1760 !work_busy(&fs_info->preempt_reclaim_work) &&
1761 need_preemptive_reclaim(fs_info, space_info)) {
1762 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1763 orig_bytes, flush, "preempt");
1764 queue_work(system_unbound_wq,
1765 &fs_info->preempt_reclaim_work);
1766 }
1767 }
1768 spin_unlock(&space_info->lock);
1769 if (!ret || !can_ticket(flush))
1770 return ret;
1771
1772 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1773 orig_bytes, flush);
1774}
1775
1776/*
1777 * Try to reserve metadata bytes from the block_rsv's space.
1778 *
1779 * @fs_info: the filesystem
1780 * @space_info: the space_info we're allocating for
1781 * @orig_bytes: number of bytes we want
1782 * @flush: whether or not we can flush to make our reservation
1783 *
1784 * This will reserve orig_bytes number of bytes from the space info associated
1785 * with the block_rsv. If there is not enough space it will make an attempt to
1786 * flush out space to make room. It will do this by flushing delalloc if
1787 * possible or committing the transaction. If flush is 0 then no attempts to
1788 * regain reservations will be made and this will fail if there is not enough
1789 * space already.
1790 */
1791int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1792 struct btrfs_space_info *space_info,
1793 u64 orig_bytes,
1794 enum btrfs_reserve_flush_enum flush)
1795{
1796 int ret;
1797
1798 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1799 if (ret == -ENOSPC) {
1800 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1801 space_info->flags, orig_bytes, 1);
1802
1803 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1804 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1805 }
1806 return ret;
1807}
1808
1809/*
1810 * Try to reserve data bytes for an allocation.
1811 *
1812 * @fs_info: the filesystem
1813 * @bytes: number of bytes we need
1814 * @flush: how we are allowed to flush
1815 *
1816 * This will reserve bytes from the data space info. If there is not enough
1817 * space then we will attempt to flush space as specified by flush.
1818 */
1819int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1820 enum btrfs_reserve_flush_enum flush)
1821{
1822 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1823 int ret;
1824
1825 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1826 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1827 flush == BTRFS_RESERVE_NO_FLUSH);
1828 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1829
1830 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1831 if (ret == -ENOSPC) {
1832 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1833 data_sinfo->flags, bytes, 1);
1834 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1835 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1836 }
1837 return ret;
1838}
1839
1840/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1841__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1842{
1843 struct btrfs_space_info *space_info;
1844
1845 btrfs_info(fs_info, "dumping space info:");
1846 list_for_each_entry(space_info, &fs_info->space_info, list) {
1847 spin_lock(&space_info->lock);
1848 __btrfs_dump_space_info(fs_info, space_info);
1849 spin_unlock(&space_info->lock);
1850 }
1851 dump_global_block_rsv(fs_info);
1852}
1853
1854/*
1855 * Account the unused space of all the readonly block group in the space_info.
1856 * takes mirrors into account.
1857 */
1858u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1859{
1860 struct btrfs_block_group *block_group;
1861 u64 free_bytes = 0;
1862 int factor;
1863
1864 /* It's df, we don't care if it's racy */
1865 if (list_empty(&sinfo->ro_bgs))
1866 return 0;
1867
1868 spin_lock(&sinfo->lock);
1869 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1870 spin_lock(&block_group->lock);
1871
1872 if (!block_group->ro) {
1873 spin_unlock(&block_group->lock);
1874 continue;
1875 }
1876
1877 factor = btrfs_bg_type_to_factor(block_group->flags);
1878 free_bytes += (block_group->length -
1879 block_group->used) * factor;
1880
1881 spin_unlock(&block_group->lock);
1882 }
1883 spin_unlock(&sinfo->lock);
1884
1885 return free_bytes;
1886}
1887
1888static u64 calc_pct_ratio(u64 x, u64 y)
1889{
1890 int err;
1891
1892 if (!y)
1893 return 0;
1894again:
1895 err = check_mul_overflow(100, x, &x);
1896 if (err)
1897 goto lose_precision;
1898 return div64_u64(x, y);
1899lose_precision:
1900 x >>= 10;
1901 y >>= 10;
1902 if (!y)
1903 y = 1;
1904 goto again;
1905}
1906
1907/*
1908 * A reasonable buffer for unallocated space is 10 data block_groups.
1909 * If we claw this back repeatedly, we can still achieve efficient
1910 * utilization when near full, and not do too much reclaim while
1911 * always maintaining a solid buffer for workloads that quickly
1912 * allocate and pressure the unallocated space.
1913 */
1914static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1915{
1916 u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1917
1918 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1919}
1920
1921/*
1922 * The fundamental goal of automatic reclaim is to protect the filesystem's
1923 * unallocated space and thus minimize the probability of the filesystem going
1924 * read only when a metadata allocation failure causes a transaction abort.
1925 *
1926 * However, relocations happen into the space_info's unused space, therefore
1927 * automatic reclaim must also back off as that space runs low. There is no
1928 * value in doing trivial "relocations" of re-writing the same block group
1929 * into a fresh one.
1930 *
1931 * Furthermore, we want to avoid doing too much reclaim even if there are good
1932 * candidates. This is because the allocator is pretty good at filling up the
1933 * holes with writes. So we want to do just enough reclaim to try and stay
1934 * safe from running out of unallocated space but not be wasteful about it.
1935 *
1936 * Therefore, the dynamic reclaim threshold is calculated as follows:
1937 * - calculate a target unallocated amount of 5 block group sized chunks
1938 * - ratchet up the intensity of reclaim depending on how far we are from
1939 * that target by using a formula of unalloc / target to set the threshold.
1940 *
1941 * Typically with 10 block groups as the target, the discrete values this comes
1942 * out to are 0, 10, 20, ... , 80, 90, and 99.
1943 */
1944static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
1945{
1946 struct btrfs_fs_info *fs_info = space_info->fs_info;
1947 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1948 u64 target = calc_unalloc_target(fs_info);
1949 u64 alloc = space_info->total_bytes;
1950 u64 used = btrfs_space_info_used(space_info, false);
1951 u64 unused = alloc - used;
1952 u64 want = target > unalloc ? target - unalloc : 0;
1953 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1954
1955 /* If we have no unused space, don't bother, it won't work anyway. */
1956 if (unused < data_chunk_size)
1957 return 0;
1958
1959 /* Cast to int is OK because want <= target. */
1960 return calc_pct_ratio(want, target);
1961}
1962
1963int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
1964{
1965 lockdep_assert_held(&space_info->lock);
1966
1967 if (READ_ONCE(space_info->dynamic_reclaim))
1968 return calc_dynamic_reclaim_threshold(space_info);
1969 return READ_ONCE(space_info->bg_reclaim_threshold);
1970}
1971
1972/*
1973 * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1974 * recently seen successful allocations, as we are desperate to reclaim
1975 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1976 */
1977static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1978{
1979 struct btrfs_fs_info *fs_info = space_info->fs_info;
1980 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1981 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1982
1983 return unalloc < data_chunk_size;
1984}
1985
1986static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
1987{
1988 struct btrfs_block_group *bg;
1989 int thresh_pct;
1990 bool try_again = true;
1991 bool urgent;
1992
1993 spin_lock(&space_info->lock);
1994 urgent = is_reclaim_urgent(space_info);
1995 thresh_pct = btrfs_calc_reclaim_threshold(space_info);
1996 spin_unlock(&space_info->lock);
1997
1998 down_read(&space_info->groups_sem);
1999again:
2000 list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2001 u64 thresh;
2002 bool reclaim = false;
2003
2004 btrfs_get_block_group(bg);
2005 spin_lock(&bg->lock);
2006 thresh = mult_perc(bg->length, thresh_pct);
2007 if (bg->used < thresh && bg->reclaim_mark) {
2008 try_again = false;
2009 reclaim = true;
2010 }
2011 bg->reclaim_mark++;
2012 spin_unlock(&bg->lock);
2013 if (reclaim)
2014 btrfs_mark_bg_to_reclaim(bg);
2015 btrfs_put_block_group(bg);
2016 }
2017
2018 /*
2019 * In situations where we are very motivated to reclaim (low unalloc)
2020 * use two passes to make the reclaim mark check best effort.
2021 *
2022 * If we have any staler groups, we don't touch the fresher ones, but if we
2023 * really need a block group, do take a fresh one.
2024 */
2025 if (try_again && urgent) {
2026 try_again = false;
2027 goto again;
2028 }
2029
2030 up_read(&space_info->groups_sem);
2031}
2032
2033void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2034{
2035 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2036
2037 lockdep_assert_held(&space_info->lock);
2038 space_info->reclaimable_bytes += bytes;
2039
2040 if (space_info->reclaimable_bytes >= chunk_sz)
2041 btrfs_set_periodic_reclaim_ready(space_info, true);
2042}
2043
2044void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2045{
2046 lockdep_assert_held(&space_info->lock);
2047 if (!READ_ONCE(space_info->periodic_reclaim))
2048 return;
2049 if (ready != space_info->periodic_reclaim_ready) {
2050 space_info->periodic_reclaim_ready = ready;
2051 if (!ready)
2052 space_info->reclaimable_bytes = 0;
2053 }
2054}
2055
2056bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2057{
2058 bool ret;
2059
2060 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2061 return false;
2062 if (!READ_ONCE(space_info->periodic_reclaim))
2063 return false;
2064
2065 spin_lock(&space_info->lock);
2066 ret = space_info->periodic_reclaim_ready;
2067 btrfs_set_periodic_reclaim_ready(space_info, false);
2068 spin_unlock(&space_info->lock);
2069
2070 return ret;
2071}
2072
2073void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2074{
2075 int raid;
2076 struct btrfs_space_info *space_info;
2077
2078 list_for_each_entry(space_info, &fs_info->space_info, list) {
2079 if (!btrfs_should_periodic_reclaim(space_info))
2080 continue;
2081 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2082 do_reclaim_sweep(space_info, raid);
2083 }
2084}