Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include "messages.h"
  4#include "ctree.h"
  5#include "delalloc-space.h"
  6#include "block-rsv.h"
  7#include "btrfs_inode.h"
  8#include "space-info.h"
  9#include "transaction.h"
 10#include "qgroup.h"
 11#include "block-group.h"
 12#include "fs.h"
 13
 14/*
 15 * HOW DOES THIS WORK
 16 *
 17 * There are two stages to data reservations, one for data and one for metadata
 18 * to handle the new extents and checksums generated by writing data.
 19 *
 20 *
 21 * DATA RESERVATION
 22 *   The general flow of the data reservation is as follows
 23 *
 24 *   -> Reserve
 25 *     We call into btrfs_reserve_data_bytes() for the user request bytes that
 26 *     they wish to write.  We make this reservation and add it to
 27 *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
 28 *     for the range and carry on if this is buffered, or follow up trying to
 29 *     make a real allocation if we are pre-allocating or doing O_DIRECT.
 30 *
 31 *   -> Use
 32 *     At writepages()/prealloc/O_DIRECT time we will call into
 33 *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
 34 *     will make the allocation and subtract space_info->bytes_may_use by the
 35 *     original requested length and increase the space_info->bytes_reserved by
 36 *     the allocated length.  This distinction is important because compression
 37 *     may allocate a smaller on disk extent than we previously reserved.
 38 *
 39 *   -> Allocation
 40 *     finish_ordered_io() will insert the new file extent item for this range,
 41 *     and then add a delayed ref update for the extent tree.  Once that delayed
 42 *     ref is written the extent size is subtracted from
 43 *     space_info->bytes_reserved and added to space_info->bytes_used.
 44 *
 45 *   Error handling
 46 *
 47 *   -> By the reservation maker
 48 *     This is the simplest case, we haven't completed our operation and we know
 49 *     how much we reserved, we can simply call
 50 *     btrfs_free_reserved_data_space*() and it will be removed from
 51 *     space_info->bytes_may_use.
 52 *
 53 *   -> After the reservation has been made, but before cow_file_range()
 54 *     This is specifically for the delalloc case.  You must clear
 55 *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
 56 *     be subtracted from space_info->bytes_may_use.
 57 *
 58 * METADATA RESERVATION
 59 *   The general metadata reservation lifetimes are discussed elsewhere, this
 60 *   will just focus on how it is used for delalloc space.
 61 *
 62 *   We keep track of two things on a per inode bases
 63 *
 64 *   ->outstanding_extents
 65 *     This is the number of file extent items we'll need to handle all of the
 66 *     outstanding DELALLOC space we have in this inode.  We limit the maximum
 67 *     size of an extent, so a large contiguous dirty area may require more than
 68 *     one outstanding_extent, which is why count_max_extents() is used to
 69 *     determine how many outstanding_extents get added.
 70 *
 71 *   ->csum_bytes
 72 *     This is essentially how many dirty bytes we have for this inode, so we
 73 *     can calculate the number of checksum items we would have to add in order
 74 *     to checksum our outstanding data.
 75 *
 76 *   We keep a per-inode block_rsv in order to make it easier to keep track of
 77 *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
 78 *   calculate the current theoretical maximum reservation we would need for the
 79 *   metadata for this inode.  We call this and then adjust our reservation as
 80 *   necessary, either by attempting to reserve more space, or freeing up excess
 81 *   space.
 82 *
 83 * OUTSTANDING_EXTENTS HANDLING
 84 *
 85 *  ->outstanding_extents is used for keeping track of how many extents we will
 86 *  need to use for this inode, and it will fluctuate depending on where you are
 87 *  in the life cycle of the dirty data.  Consider the following normal case for
 88 *  a completely clean inode, with a num_bytes < our maximum allowed extent size
 89 *
 90 *  -> reserve
 91 *    ->outstanding_extents += 1 (current value is 1)
 92 *
 93 *  -> set_delalloc
 94 *    ->outstanding_extents += 1 (current value is 2)
 95 *
 96 *  -> btrfs_delalloc_release_extents()
 97 *    ->outstanding_extents -= 1 (current value is 1)
 98 *
 99 *    We must call this once we are done, as we hold our reservation for the
100 *    duration of our operation, and then assume set_delalloc will update the
101 *    counter appropriately.
102 *
103 *  -> add ordered extent
104 *    ->outstanding_extents += 1 (current value is 2)
105 *
106 *  -> btrfs_clear_delalloc_extent
107 *    ->outstanding_extents -= 1 (current value is 1)
108 *
109 *  -> finish_ordered_io/btrfs_remove_ordered_extent
110 *    ->outstanding_extents -= 1 (current value is 0)
111 *
112 *  Each stage is responsible for their own accounting of the extent, thus
113 *  making error handling and cleanup easier.
114 */
115
116int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
117{
118	struct btrfs_root *root = inode->root;
119	struct btrfs_fs_info *fs_info = root->fs_info;
120	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
121
122	/* Make sure bytes are sectorsize aligned */
123	bytes = ALIGN(bytes, fs_info->sectorsize);
124
125	if (btrfs_is_free_space_inode(inode))
126		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
127
128	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
129}
130
131int btrfs_check_data_free_space(struct btrfs_inode *inode,
132				struct extent_changeset **reserved, u64 start,
133				u64 len, bool noflush)
134{
135	struct btrfs_fs_info *fs_info = inode->root->fs_info;
136	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
137	int ret;
138
139	/* align the range */
140	len = round_up(start + len, fs_info->sectorsize) -
141	      round_down(start, fs_info->sectorsize);
142	start = round_down(start, fs_info->sectorsize);
143
144	if (noflush)
145		flush = BTRFS_RESERVE_NO_FLUSH;
146	else if (btrfs_is_free_space_inode(inode))
147		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
148
149	ret = btrfs_reserve_data_bytes(fs_info, len, flush);
150	if (ret < 0)
151		return ret;
152
153	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
154	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
155	if (ret < 0) {
156		btrfs_free_reserved_data_space_noquota(fs_info, len);
157		extent_changeset_free(*reserved);
158		*reserved = NULL;
159	} else {
160		ret = 0;
161	}
162	return ret;
163}
164
165/*
166 * Called if we need to clear a data reservation for this inode
167 * Normally in a error case.
168 *
169 * This one will *NOT* use accurate qgroup reserved space API, just for case
170 * which we can't sleep and is sure it won't affect qgroup reserved space.
171 * Like clear_bit_hook().
172 */
173void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
174					    u64 len)
175{
176	struct btrfs_space_info *data_sinfo;
177
178	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
179
180	data_sinfo = fs_info->data_sinfo;
181	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
182}
183
184/*
185 * Called if we need to clear a data reservation for this inode
186 * Normally in a error case.
187 *
188 * This one will handle the per-inode data rsv map for accurate reserved
189 * space framework.
190 */
191void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
192			struct extent_changeset *reserved, u64 start, u64 len)
193{
194	struct btrfs_fs_info *fs_info = inode->root->fs_info;
195
196	/* Make sure the range is aligned to sectorsize */
197	len = round_up(start + len, fs_info->sectorsize) -
198	      round_down(start, fs_info->sectorsize);
199	start = round_down(start, fs_info->sectorsize);
200
201	btrfs_free_reserved_data_space_noquota(fs_info, len);
202	btrfs_qgroup_free_data(inode, reserved, start, len);
203}
204
205/*
206 * Release any excessive reservations for an inode.
207 *
208 * @inode:       the inode we need to release from
209 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
210 *               meta reservation needs to know if we are freeing qgroup
211 *               reservation or just converting it into per-trans.  Normally
212 *               @qgroup_free is true for error handling, and false for normal
213 *               release.
214 *
215 * This is the same as btrfs_block_rsv_release, except that it handles the
216 * tracepoint for the reservation.
217 */
218static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
219{
220	struct btrfs_fs_info *fs_info = inode->root->fs_info;
221	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
222	u64 released = 0;
223	u64 qgroup_to_release = 0;
224
225	/*
226	 * Since we statically set the block_rsv->size we just want to say we
227	 * are releasing 0 bytes, and then we'll just get the reservation over
228	 * the size free'd.
229	 */
230	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
231					   &qgroup_to_release);
232	if (released > 0)
233		trace_btrfs_space_reservation(fs_info, "delalloc",
234					      btrfs_ino(inode), released, 0);
235	if (qgroup_free)
236		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
237	else
238		btrfs_qgroup_convert_reserved_meta(inode->root,
239						   qgroup_to_release);
240}
241
242static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
243						 struct btrfs_inode *inode)
244{
245	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
246	u64 reserve_size = 0;
247	u64 qgroup_rsv_size = 0;
248	u64 csum_leaves;
249	unsigned outstanding_extents;
250
251	lockdep_assert_held(&inode->lock);
252	outstanding_extents = inode->outstanding_extents;
253
254	/*
255	 * Insert size for the number of outstanding extents, 1 normal size for
256	 * updating the inode.
257	 */
258	if (outstanding_extents) {
259		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
260						outstanding_extents);
261		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
262	}
263	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
264						 inode->csum_bytes);
265	reserve_size += btrfs_calc_insert_metadata_size(fs_info,
266							csum_leaves);
 
 
267	/*
268	 * For qgroup rsv, the calculation is very simple:
269	 * account one nodesize for each outstanding extent
270	 *
271	 * This is overestimating in most cases.
272	 */
273	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
274
275	spin_lock(&block_rsv->lock);
276	block_rsv->size = reserve_size;
277	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
278	spin_unlock(&block_rsv->lock);
279}
280
281static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
282				    u64 num_bytes, u64 disk_num_bytes,
283				    u64 *meta_reserve, u64 *qgroup_reserve)
284{
 
285	u64 nr_extents = count_max_extents(fs_info, num_bytes);
286	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
287	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
288
 
 
 
 
 
289	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
290						nr_extents + csum_leaves);
291
292	/*
293	 * finish_ordered_io has to update the inode, so add the space required
294	 * for an inode update.
295	 */
296	*meta_reserve += inode_update;
297	*qgroup_reserve = nr_extents * fs_info->nodesize;
298}
299
300int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
301				    u64 disk_num_bytes, bool noflush)
302{
303	struct btrfs_root *root = inode->root;
304	struct btrfs_fs_info *fs_info = root->fs_info;
305	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
306	u64 meta_reserve, qgroup_reserve;
307	unsigned nr_extents;
308	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
309	int ret = 0;
310
311	/*
312	 * If we are a free space inode we need to not flush since we will be in
313	 * the middle of a transaction commit.  We also don't need the delalloc
314	 * mutex since we won't race with anybody.  We need this mostly to make
315	 * lockdep shut its filthy mouth.
316	 *
317	 * If we have a transaction open (can happen if we call truncate_block
318	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
319	 */
320	if (noflush || btrfs_is_free_space_inode(inode)) {
321		flush = BTRFS_RESERVE_NO_FLUSH;
322	} else {
323		if (current->journal_info)
324			flush = BTRFS_RESERVE_FLUSH_LIMIT;
325
326		if (btrfs_transaction_in_commit(fs_info))
327			schedule_timeout(1);
328	}
329
330	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
331	disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
332
333	/*
334	 * We always want to do it this way, every other way is wrong and ends
335	 * in tears.  Pre-reserving the amount we are going to add will always
336	 * be the right way, because otherwise if we have enough parallelism we
337	 * could end up with thousands of inodes all holding little bits of
338	 * reservations they were able to make previously and the only way to
339	 * reclaim that space is to ENOSPC out the operations and clear
340	 * everything out and try again, which is bad.  This way we just
341	 * over-reserve slightly, and clean up the mess when we are done.
342	 */
343	calc_inode_reservations(fs_info, num_bytes, disk_num_bytes,
344				&meta_reserve, &qgroup_reserve);
345	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
346						 noflush);
347	if (ret)
348		return ret;
349	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush);
 
350	if (ret) {
351		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
352		return ret;
353	}
354
355	/*
356	 * Now we need to update our outstanding extents and csum bytes _first_
357	 * and then add the reservation to the block_rsv.  This keeps us from
358	 * racing with an ordered completion or some such that would think it
359	 * needs to free the reservation we just made.
360	 */
361	spin_lock(&inode->lock);
362	nr_extents = count_max_extents(fs_info, num_bytes);
 
363	btrfs_mod_outstanding_extents(inode, nr_extents);
364	inode->csum_bytes += disk_num_bytes;
 
365	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
366	spin_unlock(&inode->lock);
367
368	/* Now we can safely add our space to our block rsv */
369	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
370	trace_btrfs_space_reservation(root->fs_info, "delalloc",
371				      btrfs_ino(inode), meta_reserve, 1);
372
373	spin_lock(&block_rsv->lock);
374	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
375	spin_unlock(&block_rsv->lock);
376
377	return 0;
378}
379
380/*
381 * Release a metadata reservation for an inode.
382 *
383 * @inode:        the inode to release the reservation for.
384 * @num_bytes:    the number of bytes we are releasing.
385 * @qgroup_free:  free qgroup reservation or convert it to per-trans reservation
386 *
387 * This will release the metadata reservation for an inode.  This can be called
388 * once we complete IO for a given set of bytes to release their metadata
389 * reservations, or on error for the same reason.
390 */
391void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
392				     bool qgroup_free)
393{
394	struct btrfs_fs_info *fs_info = inode->root->fs_info;
395
396	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
397	spin_lock(&inode->lock);
398	inode->csum_bytes -= num_bytes;
 
399	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
400	spin_unlock(&inode->lock);
401
402	if (btrfs_is_testing(fs_info))
403		return;
404
405	btrfs_inode_rsv_release(inode, qgroup_free);
406}
407
408/*
409 * Release our outstanding_extents for an inode.
410 *
411 * @inode:      the inode to balance the reservation for.
412 * @num_bytes:  the number of bytes we originally reserved with
413 *
414 * When we reserve space we increase outstanding_extents for the extents we may
415 * add.  Once we've set the range as delalloc or created our ordered extents we
416 * have outstanding_extents to track the real usage, so we use this to free our
417 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
418 * with btrfs_delalloc_reserve_metadata.
419 */
420void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
421{
422	struct btrfs_fs_info *fs_info = inode->root->fs_info;
423	unsigned num_extents;
424
425	spin_lock(&inode->lock);
426	num_extents = count_max_extents(fs_info, num_bytes);
427	btrfs_mod_outstanding_extents(inode, -num_extents);
428	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
429	spin_unlock(&inode->lock);
430
431	if (btrfs_is_testing(fs_info))
432		return;
433
434	btrfs_inode_rsv_release(inode, true);
435}
436
437/*
438 * Reserve data and metadata space for delalloc
439 *
440 * @inode:     inode we're writing to
441 * @start:     start range we are writing to
442 * @len:       how long the range we are writing to
443 * @reserved:  mandatory parameter, record actually reserved qgroup ranges of
444 * 	       current reservation.
445 *
446 * This will do the following things
447 *
448 * - reserve space in data space info for num bytes and reserve precious
449 *   corresponding qgroup space
450 *   (Done in check_data_free_space)
451 *
452 * - reserve space for metadata space, based on the number of outstanding
453 *   extents and how much csums will be needed also reserve metadata space in a
454 *   per root over-reserve method.
455 * - add to the inodes->delalloc_bytes
456 * - add it to the fs_info's delalloc inodes list.
457 *   (Above 3 all done in delalloc_reserve_metadata)
458 *
459 * Return 0 for success
460 * Return <0 for error(-ENOSPC or -EDQUOT)
461 */
462int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
463			struct extent_changeset **reserved, u64 start, u64 len)
464{
465	int ret;
466
467	ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
468	if (ret < 0)
469		return ret;
470	ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
471	if (ret < 0) {
472		btrfs_free_reserved_data_space(inode, *reserved, start, len);
473		extent_changeset_free(*reserved);
474		*reserved = NULL;
475	}
476	return ret;
477}
478
479/*
480 * Release data and metadata space for delalloc
481 *
482 * @inode:       inode we're releasing space for
483 * @reserved:    list of changed/reserved ranges
484 * @start:       start position of the space already reserved
485 * @len:         length of the space already reserved
486 * @qgroup_free: should qgroup reserved-space also be freed
487 *
488 * Release the metadata space that was not used and will decrement
489 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
490 * there are no delalloc bytes left.  Also it will handle the qgroup reserved
491 * space.
492 */
493void btrfs_delalloc_release_space(struct btrfs_inode *inode,
494				  struct extent_changeset *reserved,
495				  u64 start, u64 len, bool qgroup_free)
496{
497	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
498	btrfs_free_reserved_data_space(inode, reserved, start, len);
499}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include "messages.h"
  4#include "ctree.h"
  5#include "delalloc-space.h"
  6#include "block-rsv.h"
  7#include "btrfs_inode.h"
  8#include "space-info.h"
 
  9#include "qgroup.h"
 
 10#include "fs.h"
 11
 12/*
 13 * HOW DOES THIS WORK
 14 *
 15 * There are two stages to data reservations, one for data and one for metadata
 16 * to handle the new extents and checksums generated by writing data.
 17 *
 18 *
 19 * DATA RESERVATION
 20 *   The general flow of the data reservation is as follows
 21 *
 22 *   -> Reserve
 23 *     We call into btrfs_reserve_data_bytes() for the user request bytes that
 24 *     they wish to write.  We make this reservation and add it to
 25 *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
 26 *     for the range and carry on if this is buffered, or follow up trying to
 27 *     make a real allocation if we are pre-allocating or doing O_DIRECT.
 28 *
 29 *   -> Use
 30 *     At writepages()/prealloc/O_DIRECT time we will call into
 31 *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
 32 *     will make the allocation and subtract space_info->bytes_may_use by the
 33 *     original requested length and increase the space_info->bytes_reserved by
 34 *     the allocated length.  This distinction is important because compression
 35 *     may allocate a smaller on disk extent than we previously reserved.
 36 *
 37 *   -> Allocation
 38 *     finish_ordered_io() will insert the new file extent item for this range,
 39 *     and then add a delayed ref update for the extent tree.  Once that delayed
 40 *     ref is written the extent size is subtracted from
 41 *     space_info->bytes_reserved and added to space_info->bytes_used.
 42 *
 43 *   Error handling
 44 *
 45 *   -> By the reservation maker
 46 *     This is the simplest case, we haven't completed our operation and we know
 47 *     how much we reserved, we can simply call
 48 *     btrfs_free_reserved_data_space*() and it will be removed from
 49 *     space_info->bytes_may_use.
 50 *
 51 *   -> After the reservation has been made, but before cow_file_range()
 52 *     This is specifically for the delalloc case.  You must clear
 53 *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
 54 *     be subtracted from space_info->bytes_may_use.
 55 *
 56 * METADATA RESERVATION
 57 *   The general metadata reservation lifetimes are discussed elsewhere, this
 58 *   will just focus on how it is used for delalloc space.
 59 *
 60 *   We keep track of two things on a per inode bases
 61 *
 62 *   ->outstanding_extents
 63 *     This is the number of file extent items we'll need to handle all of the
 64 *     outstanding DELALLOC space we have in this inode.  We limit the maximum
 65 *     size of an extent, so a large contiguous dirty area may require more than
 66 *     one outstanding_extent, which is why count_max_extents() is used to
 67 *     determine how many outstanding_extents get added.
 68 *
 69 *   ->csum_bytes
 70 *     This is essentially how many dirty bytes we have for this inode, so we
 71 *     can calculate the number of checksum items we would have to add in order
 72 *     to checksum our outstanding data.
 73 *
 74 *   We keep a per-inode block_rsv in order to make it easier to keep track of
 75 *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
 76 *   calculate the current theoretical maximum reservation we would need for the
 77 *   metadata for this inode.  We call this and then adjust our reservation as
 78 *   necessary, either by attempting to reserve more space, or freeing up excess
 79 *   space.
 80 *
 81 * OUTSTANDING_EXTENTS HANDLING
 82 *
 83 *  ->outstanding_extents is used for keeping track of how many extents we will
 84 *  need to use for this inode, and it will fluctuate depending on where you are
 85 *  in the life cycle of the dirty data.  Consider the following normal case for
 86 *  a completely clean inode, with a num_bytes < our maximum allowed extent size
 87 *
 88 *  -> reserve
 89 *    ->outstanding_extents += 1 (current value is 1)
 90 *
 91 *  -> set_delalloc
 92 *    ->outstanding_extents += 1 (current value is 2)
 93 *
 94 *  -> btrfs_delalloc_release_extents()
 95 *    ->outstanding_extents -= 1 (current value is 1)
 96 *
 97 *    We must call this once we are done, as we hold our reservation for the
 98 *    duration of our operation, and then assume set_delalloc will update the
 99 *    counter appropriately.
100 *
101 *  -> add ordered extent
102 *    ->outstanding_extents += 1 (current value is 2)
103 *
104 *  -> btrfs_clear_delalloc_extent
105 *    ->outstanding_extents -= 1 (current value is 1)
106 *
107 *  -> finish_ordered_io/btrfs_remove_ordered_extent
108 *    ->outstanding_extents -= 1 (current value is 0)
109 *
110 *  Each stage is responsible for their own accounting of the extent, thus
111 *  making error handling and cleanup easier.
112 */
113
114int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes)
115{
116	struct btrfs_root *root = inode->root;
117	struct btrfs_fs_info *fs_info = root->fs_info;
118	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
119
120	/* Make sure bytes are sectorsize aligned */
121	bytes = ALIGN(bytes, fs_info->sectorsize);
122
123	if (btrfs_is_free_space_inode(inode))
124		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
125
126	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
127}
128
129int btrfs_check_data_free_space(struct btrfs_inode *inode,
130				struct extent_changeset **reserved, u64 start,
131				u64 len, bool noflush)
132{
133	struct btrfs_fs_info *fs_info = inode->root->fs_info;
134	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
135	int ret;
136
137	/* align the range */
138	len = round_up(start + len, fs_info->sectorsize) -
139	      round_down(start, fs_info->sectorsize);
140	start = round_down(start, fs_info->sectorsize);
141
142	if (noflush)
143		flush = BTRFS_RESERVE_NO_FLUSH;
144	else if (btrfs_is_free_space_inode(inode))
145		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
146
147	ret = btrfs_reserve_data_bytes(fs_info, len, flush);
148	if (ret < 0)
149		return ret;
150
151	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
152	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
153	if (ret < 0) {
154		btrfs_free_reserved_data_space_noquota(fs_info, len);
155		extent_changeset_free(*reserved);
156		*reserved = NULL;
157	} else {
158		ret = 0;
159	}
160	return ret;
161}
162
163/*
164 * Called if we need to clear a data reservation for this inode
165 * Normally in a error case.
166 *
167 * This one will *NOT* use accurate qgroup reserved space API, just for case
168 * which we can't sleep and is sure it won't affect qgroup reserved space.
169 * Like clear_bit_hook().
170 */
171void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
172					    u64 len)
173{
174	struct btrfs_space_info *data_sinfo;
175
176	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
177
178	data_sinfo = fs_info->data_sinfo;
179	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
180}
181
182/*
183 * Called if we need to clear a data reservation for this inode
184 * Normally in a error case.
185 *
186 * This one will handle the per-inode data rsv map for accurate reserved
187 * space framework.
188 */
189void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
190			struct extent_changeset *reserved, u64 start, u64 len)
191{
192	struct btrfs_fs_info *fs_info = inode->root->fs_info;
193
194	/* Make sure the range is aligned to sectorsize */
195	len = round_up(start + len, fs_info->sectorsize) -
196	      round_down(start, fs_info->sectorsize);
197	start = round_down(start, fs_info->sectorsize);
198
199	btrfs_free_reserved_data_space_noquota(fs_info, len);
200	btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
201}
202
203/*
204 * Release any excessive reservations for an inode.
205 *
206 * @inode:       the inode we need to release from
207 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
208 *               meta reservation needs to know if we are freeing qgroup
209 *               reservation or just converting it into per-trans.  Normally
210 *               @qgroup_free is true for error handling, and false for normal
211 *               release.
212 *
213 * This is the same as btrfs_block_rsv_release, except that it handles the
214 * tracepoint for the reservation.
215 */
216static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
217{
218	struct btrfs_fs_info *fs_info = inode->root->fs_info;
219	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
220	u64 released = 0;
221	u64 qgroup_to_release = 0;
222
223	/*
224	 * Since we statically set the block_rsv->size we just want to say we
225	 * are releasing 0 bytes, and then we'll just get the reservation over
226	 * the size free'd.
227	 */
228	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
229					   &qgroup_to_release);
230	if (released > 0)
231		trace_btrfs_space_reservation(fs_info, "delalloc",
232					      btrfs_ino(inode), released, 0);
233	if (qgroup_free)
234		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
235	else
236		btrfs_qgroup_convert_reserved_meta(inode->root,
237						   qgroup_to_release);
238}
239
240static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
241						 struct btrfs_inode *inode)
242{
243	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
244	u64 reserve_size = 0;
245	u64 qgroup_rsv_size = 0;
 
246	unsigned outstanding_extents;
247
248	lockdep_assert_held(&inode->lock);
249	outstanding_extents = inode->outstanding_extents;
250
251	/*
252	 * Insert size for the number of outstanding extents, 1 normal size for
253	 * updating the inode.
254	 */
255	if (outstanding_extents) {
256		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
257						outstanding_extents);
258		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
259	}
260	if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
261		u64 csum_leaves;
262
263		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
264		reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
265	}
266	/*
267	 * For qgroup rsv, the calculation is very simple:
268	 * account one nodesize for each outstanding extent
269	 *
270	 * This is overestimating in most cases.
271	 */
272	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
273
274	spin_lock(&block_rsv->lock);
275	block_rsv->size = reserve_size;
276	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
277	spin_unlock(&block_rsv->lock);
278}
279
280static void calc_inode_reservations(struct btrfs_inode *inode,
281				    u64 num_bytes, u64 disk_num_bytes,
282				    u64 *meta_reserve, u64 *qgroup_reserve)
283{
284	struct btrfs_fs_info *fs_info = inode->root->fs_info;
285	u64 nr_extents = count_max_extents(fs_info, num_bytes);
286	u64 csum_leaves;
287	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
288
289	if (inode->flags & BTRFS_INODE_NODATASUM)
290		csum_leaves = 0;
291	else
292		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
293
294	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
295						nr_extents + csum_leaves);
296
297	/*
298	 * finish_ordered_io has to update the inode, so add the space required
299	 * for an inode update.
300	 */
301	*meta_reserve += inode_update;
302	*qgroup_reserve = nr_extents * fs_info->nodesize;
303}
304
305int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
306				    u64 disk_num_bytes, bool noflush)
307{
308	struct btrfs_root *root = inode->root;
309	struct btrfs_fs_info *fs_info = root->fs_info;
310	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
311	u64 meta_reserve, qgroup_reserve;
312	unsigned nr_extents;
313	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
314	int ret = 0;
315
316	/*
317	 * If we are a free space inode we need to not flush since we will be in
318	 * the middle of a transaction commit.  We also don't need the delalloc
319	 * mutex since we won't race with anybody.  We need this mostly to make
320	 * lockdep shut its filthy mouth.
321	 *
322	 * If we have a transaction open (can happen if we call truncate_block
323	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
324	 */
325	if (noflush || btrfs_is_free_space_inode(inode)) {
326		flush = BTRFS_RESERVE_NO_FLUSH;
327	} else {
328		if (current->journal_info)
329			flush = BTRFS_RESERVE_FLUSH_LIMIT;
 
 
 
330	}
331
332	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
333	disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
334
335	/*
336	 * We always want to do it this way, every other way is wrong and ends
337	 * in tears.  Pre-reserving the amount we are going to add will always
338	 * be the right way, because otherwise if we have enough parallelism we
339	 * could end up with thousands of inodes all holding little bits of
340	 * reservations they were able to make previously and the only way to
341	 * reclaim that space is to ENOSPC out the operations and clear
342	 * everything out and try again, which is bad.  This way we just
343	 * over-reserve slightly, and clean up the mess when we are done.
344	 */
345	calc_inode_reservations(inode, num_bytes, disk_num_bytes,
346				&meta_reserve, &qgroup_reserve);
347	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
348						 noflush);
349	if (ret)
350		return ret;
351	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
352					   meta_reserve, flush);
353	if (ret) {
354		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
355		return ret;
356	}
357
358	/*
359	 * Now we need to update our outstanding extents and csum bytes _first_
360	 * and then add the reservation to the block_rsv.  This keeps us from
361	 * racing with an ordered completion or some such that would think it
362	 * needs to free the reservation we just made.
363	 */
 
364	nr_extents = count_max_extents(fs_info, num_bytes);
365	spin_lock(&inode->lock);
366	btrfs_mod_outstanding_extents(inode, nr_extents);
367	if (!(inode->flags & BTRFS_INODE_NODATASUM))
368		inode->csum_bytes += disk_num_bytes;
369	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
370	spin_unlock(&inode->lock);
371
372	/* Now we can safely add our space to our block rsv */
373	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
374	trace_btrfs_space_reservation(root->fs_info, "delalloc",
375				      btrfs_ino(inode), meta_reserve, 1);
376
377	spin_lock(&block_rsv->lock);
378	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
379	spin_unlock(&block_rsv->lock);
380
381	return 0;
382}
383
384/*
385 * Release a metadata reservation for an inode.
386 *
387 * @inode:        the inode to release the reservation for.
388 * @num_bytes:    the number of bytes we are releasing.
389 * @qgroup_free:  free qgroup reservation or convert it to per-trans reservation
390 *
391 * This will release the metadata reservation for an inode.  This can be called
392 * once we complete IO for a given set of bytes to release their metadata
393 * reservations, or on error for the same reason.
394 */
395void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
396				     bool qgroup_free)
397{
398	struct btrfs_fs_info *fs_info = inode->root->fs_info;
399
400	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
401	spin_lock(&inode->lock);
402	if (!(inode->flags & BTRFS_INODE_NODATASUM))
403		inode->csum_bytes -= num_bytes;
404	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
405	spin_unlock(&inode->lock);
406
407	if (btrfs_is_testing(fs_info))
408		return;
409
410	btrfs_inode_rsv_release(inode, qgroup_free);
411}
412
413/*
414 * Release our outstanding_extents for an inode.
415 *
416 * @inode:      the inode to balance the reservation for.
417 * @num_bytes:  the number of bytes we originally reserved with
418 *
419 * When we reserve space we increase outstanding_extents for the extents we may
420 * add.  Once we've set the range as delalloc or created our ordered extents we
421 * have outstanding_extents to track the real usage, so we use this to free our
422 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
423 * with btrfs_delalloc_reserve_metadata.
424 */
425void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
426{
427	struct btrfs_fs_info *fs_info = inode->root->fs_info;
428	unsigned num_extents;
429
430	spin_lock(&inode->lock);
431	num_extents = count_max_extents(fs_info, num_bytes);
432	btrfs_mod_outstanding_extents(inode, -num_extents);
433	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
434	spin_unlock(&inode->lock);
435
436	if (btrfs_is_testing(fs_info))
437		return;
438
439	btrfs_inode_rsv_release(inode, true);
440}
441
442/*
443 * Reserve data and metadata space for delalloc
444 *
445 * @inode:     inode we're writing to
446 * @start:     start range we are writing to
447 * @len:       how long the range we are writing to
448 * @reserved:  mandatory parameter, record actually reserved qgroup ranges of
449 * 	       current reservation.
450 *
451 * This will do the following things
452 *
453 * - reserve space in data space info for num bytes and reserve precious
454 *   corresponding qgroup space
455 *   (Done in check_data_free_space)
456 *
457 * - reserve space for metadata space, based on the number of outstanding
458 *   extents and how much csums will be needed also reserve metadata space in a
459 *   per root over-reserve method.
460 * - add to the inodes->delalloc_bytes
461 * - add it to the fs_info's delalloc inodes list.
462 *   (Above 3 all done in delalloc_reserve_metadata)
463 *
464 * Return 0 for success
465 * Return <0 for error(-ENOSPC or -EDQUOT)
466 */
467int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
468			struct extent_changeset **reserved, u64 start, u64 len)
469{
470	int ret;
471
472	ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
473	if (ret < 0)
474		return ret;
475	ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
476	if (ret < 0) {
477		btrfs_free_reserved_data_space(inode, *reserved, start, len);
478		extent_changeset_free(*reserved);
479		*reserved = NULL;
480	}
481	return ret;
482}
483
484/*
485 * Release data and metadata space for delalloc
486 *
487 * @inode:       inode we're releasing space for
488 * @reserved:    list of changed/reserved ranges
489 * @start:       start position of the space already reserved
490 * @len:         length of the space already reserved
491 * @qgroup_free: should qgroup reserved-space also be freed
492 *
493 * Release the metadata space that was not used and will decrement
494 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
495 * there are no delalloc bytes left.  Also it will handle the qgroup reserved
496 * space.
497 */
498void btrfs_delalloc_release_space(struct btrfs_inode *inode,
499				  struct extent_changeset *reserved,
500				  u64 start, u64 len, bool qgroup_free)
501{
502	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
503	btrfs_free_reserved_data_space(inode, reserved, start, len);
504}