Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2
 
   3#include <linux/list_sort.h>
   4#include "misc.h"
   5#include "ctree.h"
   6#include "block-group.h"
   7#include "space-info.h"
   8#include "disk-io.h"
   9#include "free-space-cache.h"
  10#include "free-space-tree.h"
  11#include "volumes.h"
  12#include "transaction.h"
  13#include "ref-verify.h"
  14#include "sysfs.h"
  15#include "tree-log.h"
  16#include "delalloc-space.h"
  17#include "discard.h"
  18#include "raid56.h"
  19#include "zoned.h"
  20#include "fs.h"
  21#include "accessors.h"
  22#include "extent-tree.h"
  23
  24#ifdef CONFIG_BTRFS_DEBUG
  25int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
  26{
  27	struct btrfs_fs_info *fs_info = block_group->fs_info;
  28
  29	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
  30		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
  31	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
  32		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
  33}
  34#endif
  35
  36/*
  37 * Return target flags in extended format or 0 if restripe for this chunk_type
  38 * is not in progress
  39 *
  40 * Should be called with balance_lock held
  41 */
  42static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  43{
  44	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  45	u64 target = 0;
  46
  47	if (!bctl)
  48		return 0;
  49
  50	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  51	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  52		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  53	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  54		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  55		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  56	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  57		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  58		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  59	}
  60
  61	return target;
  62}
  63
  64/*
  65 * @flags: available profiles in extended format (see ctree.h)
  66 *
  67 * Return reduced profile in chunk format.  If profile changing is in progress
  68 * (either running or paused) picks the target profile (if it's already
  69 * available), otherwise falls back to plain reducing.
  70 */
  71static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  72{
  73	u64 num_devices = fs_info->fs_devices->rw_devices;
  74	u64 target;
  75	u64 raid_type;
  76	u64 allowed = 0;
  77
  78	/*
  79	 * See if restripe for this chunk_type is in progress, if so try to
  80	 * reduce to the target profile
  81	 */
  82	spin_lock(&fs_info->balance_lock);
  83	target = get_restripe_target(fs_info, flags);
  84	if (target) {
  85		spin_unlock(&fs_info->balance_lock);
  86		return extended_to_chunk(target);
  87	}
  88	spin_unlock(&fs_info->balance_lock);
  89
  90	/* First, mask out the RAID levels which aren't possible */
  91	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  92		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  93			allowed |= btrfs_raid_array[raid_type].bg_flag;
  94	}
  95	allowed &= flags;
  96
  97	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
 
 
 
  98		allowed = BTRFS_BLOCK_GROUP_RAID6;
 
 
  99	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 100		allowed = BTRFS_BLOCK_GROUP_RAID5;
 101	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 102		allowed = BTRFS_BLOCK_GROUP_RAID10;
 103	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 104		allowed = BTRFS_BLOCK_GROUP_RAID1;
 
 
 105	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 106		allowed = BTRFS_BLOCK_GROUP_RAID0;
 107
 108	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 109
 110	return extended_to_chunk(flags | allowed);
 111}
 112
 113u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
 114{
 115	unsigned seq;
 116	u64 flags;
 117
 118	do {
 119		flags = orig_flags;
 120		seq = read_seqbegin(&fs_info->profiles_lock);
 121
 122		if (flags & BTRFS_BLOCK_GROUP_DATA)
 123			flags |= fs_info->avail_data_alloc_bits;
 124		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 125			flags |= fs_info->avail_system_alloc_bits;
 126		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 127			flags |= fs_info->avail_metadata_alloc_bits;
 128	} while (read_seqretry(&fs_info->profiles_lock, seq));
 129
 130	return btrfs_reduce_alloc_profile(fs_info, flags);
 131}
 132
 133void btrfs_get_block_group(struct btrfs_block_group *cache)
 134{
 135	refcount_inc(&cache->refs);
 136}
 137
 138void btrfs_put_block_group(struct btrfs_block_group *cache)
 139{
 140	if (refcount_dec_and_test(&cache->refs)) {
 141		WARN_ON(cache->pinned > 0);
 142		/*
 143		 * If there was a failure to cleanup a log tree, very likely due
 144		 * to an IO failure on a writeback attempt of one or more of its
 145		 * extent buffers, we could not do proper (and cheap) unaccounting
 146		 * of their reserved space, so don't warn on reserved > 0 in that
 147		 * case.
 148		 */
 149		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
 150		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
 151			WARN_ON(cache->reserved > 0);
 152
 153		/*
 154		 * A block_group shouldn't be on the discard_list anymore.
 155		 * Remove the block_group from the discard_list to prevent us
 156		 * from causing a panic due to NULL pointer dereference.
 157		 */
 158		if (WARN_ON(!list_empty(&cache->discard_list)))
 159			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 160						  cache);
 161
 162		/*
 163		 * If not empty, someone is still holding mutex of
 164		 * full_stripe_lock, which can only be released by caller.
 165		 * And it will definitely cause use-after-free when caller
 166		 * tries to release full stripe lock.
 167		 *
 168		 * No better way to resolve, but only to warn.
 169		 */
 170		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 171		kfree(cache->free_space_ctl);
 172		kfree(cache->physical_map);
 173		kfree(cache);
 174	}
 175}
 176
 177/*
 178 * This adds the block group to the fs_info rb tree for the block group cache
 179 */
 180static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 181				       struct btrfs_block_group *block_group)
 182{
 183	struct rb_node **p;
 184	struct rb_node *parent = NULL;
 185	struct btrfs_block_group *cache;
 186	bool leftmost = true;
 187
 188	ASSERT(block_group->length != 0);
 189
 190	write_lock(&info->block_group_cache_lock);
 191	p = &info->block_group_cache_tree.rb_root.rb_node;
 192
 193	while (*p) {
 194		parent = *p;
 195		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 196		if (block_group->start < cache->start) {
 197			p = &(*p)->rb_left;
 198		} else if (block_group->start > cache->start) {
 199			p = &(*p)->rb_right;
 200			leftmost = false;
 201		} else {
 202			write_unlock(&info->block_group_cache_lock);
 203			return -EEXIST;
 204		}
 205	}
 206
 207	rb_link_node(&block_group->cache_node, parent, p);
 208	rb_insert_color_cached(&block_group->cache_node,
 209			       &info->block_group_cache_tree, leftmost);
 210
 211	write_unlock(&info->block_group_cache_lock);
 212
 213	return 0;
 214}
 215
 216/*
 217 * This will return the block group at or after bytenr if contains is 0, else
 218 * it will return the block group that contains the bytenr
 219 */
 220static struct btrfs_block_group *block_group_cache_tree_search(
 221		struct btrfs_fs_info *info, u64 bytenr, int contains)
 222{
 223	struct btrfs_block_group *cache, *ret = NULL;
 224	struct rb_node *n;
 225	u64 end, start;
 226
 227	read_lock(&info->block_group_cache_lock);
 228	n = info->block_group_cache_tree.rb_root.rb_node;
 229
 230	while (n) {
 231		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 232		end = cache->start + cache->length - 1;
 233		start = cache->start;
 234
 235		if (bytenr < start) {
 236			if (!contains && (!ret || start < ret->start))
 237				ret = cache;
 238			n = n->rb_left;
 239		} else if (bytenr > start) {
 240			if (contains && bytenr <= end) {
 241				ret = cache;
 242				break;
 243			}
 244			n = n->rb_right;
 245		} else {
 246			ret = cache;
 247			break;
 248		}
 249	}
 250	if (ret)
 251		btrfs_get_block_group(ret);
 252	read_unlock(&info->block_group_cache_lock);
 253
 254	return ret;
 255}
 256
 257/*
 258 * Return the block group that starts at or after bytenr
 259 */
 260struct btrfs_block_group *btrfs_lookup_first_block_group(
 261		struct btrfs_fs_info *info, u64 bytenr)
 262{
 263	return block_group_cache_tree_search(info, bytenr, 0);
 264}
 265
 266/*
 267 * Return the block group that contains the given bytenr
 268 */
 269struct btrfs_block_group *btrfs_lookup_block_group(
 270		struct btrfs_fs_info *info, u64 bytenr)
 271{
 272	return block_group_cache_tree_search(info, bytenr, 1);
 273}
 274
 275struct btrfs_block_group *btrfs_next_block_group(
 276		struct btrfs_block_group *cache)
 277{
 278	struct btrfs_fs_info *fs_info = cache->fs_info;
 279	struct rb_node *node;
 280
 281	read_lock(&fs_info->block_group_cache_lock);
 282
 283	/* If our block group was removed, we need a full search. */
 284	if (RB_EMPTY_NODE(&cache->cache_node)) {
 285		const u64 next_bytenr = cache->start + cache->length;
 286
 287		read_unlock(&fs_info->block_group_cache_lock);
 288		btrfs_put_block_group(cache);
 289		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
 290	}
 291	node = rb_next(&cache->cache_node);
 292	btrfs_put_block_group(cache);
 293	if (node) {
 294		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 295		btrfs_get_block_group(cache);
 296	} else
 297		cache = NULL;
 298	read_unlock(&fs_info->block_group_cache_lock);
 299	return cache;
 300}
 301
 302/*
 303 * Check if we can do a NOCOW write for a given extent.
 304 *
 305 * @fs_info:       The filesystem information object.
 306 * @bytenr:        Logical start address of the extent.
 307 *
 308 * Check if we can do a NOCOW write for the given extent, and increments the
 309 * number of NOCOW writers in the block group that contains the extent, as long
 310 * as the block group exists and it's currently not in read-only mode.
 311 *
 312 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
 313 *          is responsible for calling btrfs_dec_nocow_writers() later.
 314 *
 315 *          Or NULL if we can not do a NOCOW write
 316 */
 317struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
 318						  u64 bytenr)
 319{
 320	struct btrfs_block_group *bg;
 321	bool can_nocow = true;
 322
 323	bg = btrfs_lookup_block_group(fs_info, bytenr);
 324	if (!bg)
 325		return NULL;
 326
 327	spin_lock(&bg->lock);
 328	if (bg->ro)
 329		can_nocow = false;
 330	else
 331		atomic_inc(&bg->nocow_writers);
 332	spin_unlock(&bg->lock);
 333
 334	if (!can_nocow) {
 335		btrfs_put_block_group(bg);
 336		return NULL;
 337	}
 338
 339	/* No put on block group, done by btrfs_dec_nocow_writers(). */
 340	return bg;
 341}
 342
 343/*
 344 * Decrement the number of NOCOW writers in a block group.
 345 *
 346 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
 347 * and on the block group returned by that call. Typically this is called after
 348 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
 349 * relocation.
 350 *
 351 * After this call, the caller should not use the block group anymore. It it wants
 352 * to use it, then it should get a reference on it before calling this function.
 353 */
 354void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
 355{
 356	if (atomic_dec_and_test(&bg->nocow_writers))
 357		wake_up_var(&bg->nocow_writers);
 358
 359	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
 360	btrfs_put_block_group(bg);
 361}
 362
 363void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 364{
 365	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 366}
 367
 368void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 369					const u64 start)
 370{
 371	struct btrfs_block_group *bg;
 372
 373	bg = btrfs_lookup_block_group(fs_info, start);
 374	ASSERT(bg);
 375	if (atomic_dec_and_test(&bg->reservations))
 376		wake_up_var(&bg->reservations);
 377	btrfs_put_block_group(bg);
 378}
 379
 380void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 381{
 382	struct btrfs_space_info *space_info = bg->space_info;
 383
 384	ASSERT(bg->ro);
 385
 386	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 387		return;
 388
 389	/*
 390	 * Our block group is read only but before we set it to read only,
 391	 * some task might have had allocated an extent from it already, but it
 392	 * has not yet created a respective ordered extent (and added it to a
 393	 * root's list of ordered extents).
 394	 * Therefore wait for any task currently allocating extents, since the
 395	 * block group's reservations counter is incremented while a read lock
 396	 * on the groups' semaphore is held and decremented after releasing
 397	 * the read access on that semaphore and creating the ordered extent.
 398	 */
 399	down_write(&space_info->groups_sem);
 400	up_write(&space_info->groups_sem);
 401
 402	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 403}
 404
 405struct btrfs_caching_control *btrfs_get_caching_control(
 406		struct btrfs_block_group *cache)
 407{
 408	struct btrfs_caching_control *ctl;
 409
 410	spin_lock(&cache->lock);
 411	if (!cache->caching_ctl) {
 412		spin_unlock(&cache->lock);
 413		return NULL;
 414	}
 415
 416	ctl = cache->caching_ctl;
 417	refcount_inc(&ctl->count);
 418	spin_unlock(&cache->lock);
 419	return ctl;
 420}
 421
 422void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 423{
 424	if (refcount_dec_and_test(&ctl->count))
 425		kfree(ctl);
 426}
 427
 428/*
 429 * When we wait for progress in the block group caching, its because our
 430 * allocation attempt failed at least once.  So, we must sleep and let some
 431 * progress happen before we try again.
 432 *
 433 * This function will sleep at least once waiting for new free space to show
 434 * up, and then it will check the block group free space numbers for our min
 435 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 436 * a free extent of a given size, but this is a good start.
 437 *
 438 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 439 * any of the information in this block group.
 440 */
 441void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 442					   u64 num_bytes)
 443{
 444	struct btrfs_caching_control *caching_ctl;
 
 445
 446	caching_ctl = btrfs_get_caching_control(cache);
 447	if (!caching_ctl)
 448		return;
 449
 
 
 
 
 
 
 
 
 450	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 451		   (cache->free_space_ctl->free_space >= num_bytes));
 
 452
 453	btrfs_put_caching_control(caching_ctl);
 454}
 455
 456static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
 457				       struct btrfs_caching_control *caching_ctl)
 458{
 459	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 460	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
 461}
 462
 463static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 464{
 465	struct btrfs_caching_control *caching_ctl;
 466	int ret;
 467
 468	caching_ctl = btrfs_get_caching_control(cache);
 469	if (!caching_ctl)
 470		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 471	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 472	btrfs_put_caching_control(caching_ctl);
 473	return ret;
 474}
 475
 476#ifdef CONFIG_BTRFS_DEBUG
 477static void fragment_free_space(struct btrfs_block_group *block_group)
 478{
 479	struct btrfs_fs_info *fs_info = block_group->fs_info;
 480	u64 start = block_group->start;
 481	u64 len = block_group->length;
 482	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 483		fs_info->nodesize : fs_info->sectorsize;
 484	u64 step = chunk << 1;
 485
 486	while (len > chunk) {
 487		btrfs_remove_free_space(block_group, start, chunk);
 488		start += step;
 489		if (len < step)
 490			len = 0;
 491		else
 492			len -= step;
 493	}
 494}
 495#endif
 496
 497/*
 498 * This is only called by btrfs_cache_block_group, since we could have freed
 499 * extents we need to check the pinned_extents for any extents that can't be
 500 * used yet since their free space will be released as soon as the transaction
 501 * commits.
 
 
 
 
 
 
 
 502 */
 503u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
 
 504{
 505	struct btrfs_fs_info *info = block_group->fs_info;
 506	u64 extent_start, extent_end, size, total_added = 0;
 507	int ret;
 508
 
 
 
 509	while (start < end) {
 510		ret = find_first_extent_bit(&info->excluded_extents, start,
 511					    &extent_start, &extent_end,
 512					    EXTENT_DIRTY | EXTENT_UPTODATE,
 513					    NULL);
 514		if (ret)
 515			break;
 516
 517		if (extent_start <= start) {
 518			start = extent_end + 1;
 519		} else if (extent_start > start && extent_start < end) {
 520			size = extent_start - start;
 521			total_added += size;
 522			ret = btrfs_add_free_space_async_trimmed(block_group,
 523								 start, size);
 524			BUG_ON(ret); /* -ENOMEM or logic error */
 
 
 
 525			start = extent_end + 1;
 526		} else {
 527			break;
 528		}
 529	}
 530
 531	if (start < end) {
 532		size = end - start;
 533		total_added += size;
 534		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 535							 size);
 536		BUG_ON(ret); /* -ENOMEM or logic error */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	return total_added;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540}
 541
 542static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 543{
 544	struct btrfs_block_group *block_group = caching_ctl->block_group;
 545	struct btrfs_fs_info *fs_info = block_group->fs_info;
 546	struct btrfs_root *extent_root;
 547	struct btrfs_path *path;
 548	struct extent_buffer *leaf;
 549	struct btrfs_key key;
 550	u64 total_found = 0;
 551	u64 last = 0;
 552	u32 nritems;
 553	int ret;
 554	bool wakeup = true;
 555
 556	path = btrfs_alloc_path();
 557	if (!path)
 558		return -ENOMEM;
 559
 560	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 561	extent_root = btrfs_extent_root(fs_info, last);
 562
 563#ifdef CONFIG_BTRFS_DEBUG
 564	/*
 565	 * If we're fragmenting we don't want to make anybody think we can
 566	 * allocate from this block group until we've had a chance to fragment
 567	 * the free space.
 568	 */
 569	if (btrfs_should_fragment_free_space(block_group))
 570		wakeup = false;
 571#endif
 572	/*
 573	 * We don't want to deadlock with somebody trying to allocate a new
 574	 * extent for the extent root while also trying to search the extent
 575	 * root to add free space.  So we skip locking and search the commit
 576	 * root, since its read-only
 577	 */
 578	path->skip_locking = 1;
 579	path->search_commit_root = 1;
 580	path->reada = READA_FORWARD;
 581
 582	key.objectid = last;
 583	key.offset = 0;
 584	key.type = BTRFS_EXTENT_ITEM_KEY;
 585
 586next:
 587	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 588	if (ret < 0)
 589		goto out;
 590
 591	leaf = path->nodes[0];
 592	nritems = btrfs_header_nritems(leaf);
 593
 594	while (1) {
 595		if (btrfs_fs_closing(fs_info) > 1) {
 596			last = (u64)-1;
 597			break;
 598		}
 599
 600		if (path->slots[0] < nritems) {
 601			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 602		} else {
 603			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 604			if (ret)
 605				break;
 606
 607			if (need_resched() ||
 608			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 609				btrfs_release_path(path);
 610				up_read(&fs_info->commit_root_sem);
 611				mutex_unlock(&caching_ctl->mutex);
 612				cond_resched();
 613				mutex_lock(&caching_ctl->mutex);
 614				down_read(&fs_info->commit_root_sem);
 615				goto next;
 616			}
 617
 618			ret = btrfs_next_leaf(extent_root, path);
 619			if (ret < 0)
 620				goto out;
 621			if (ret)
 622				break;
 623			leaf = path->nodes[0];
 624			nritems = btrfs_header_nritems(leaf);
 625			continue;
 626		}
 627
 628		if (key.objectid < last) {
 629			key.objectid = last;
 630			key.offset = 0;
 631			key.type = BTRFS_EXTENT_ITEM_KEY;
 632			btrfs_release_path(path);
 633			goto next;
 634		}
 635
 636		if (key.objectid < block_group->start) {
 637			path->slots[0]++;
 638			continue;
 639		}
 640
 641		if (key.objectid >= block_group->start + block_group->length)
 642			break;
 643
 644		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 645		    key.type == BTRFS_METADATA_ITEM_KEY) {
 646			total_found += add_new_free_space(block_group, last,
 647							  key.objectid);
 
 
 
 
 
 648			if (key.type == BTRFS_METADATA_ITEM_KEY)
 649				last = key.objectid +
 650					fs_info->nodesize;
 651			else
 652				last = key.objectid + key.offset;
 653
 654			if (total_found > CACHING_CTL_WAKE_UP) {
 655				total_found = 0;
 656				if (wakeup)
 
 657					wake_up(&caching_ctl->wait);
 
 658			}
 659		}
 660		path->slots[0]++;
 661	}
 662	ret = 0;
 663
 664	total_found += add_new_free_space(block_group, last,
 665				block_group->start + block_group->length);
 666
 
 
 
 667out:
 668	btrfs_free_path(path);
 669	return ret;
 670}
 671
 
 
 
 
 
 
 672static noinline void caching_thread(struct btrfs_work *work)
 673{
 674	struct btrfs_block_group *block_group;
 675	struct btrfs_fs_info *fs_info;
 676	struct btrfs_caching_control *caching_ctl;
 677	int ret;
 678
 679	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 680	block_group = caching_ctl->block_group;
 681	fs_info = block_group->fs_info;
 682
 683	mutex_lock(&caching_ctl->mutex);
 684	down_read(&fs_info->commit_root_sem);
 685
 
 686	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 687		ret = load_free_space_cache(block_group);
 688		if (ret == 1) {
 689			ret = 0;
 690			goto done;
 691		}
 692
 693		/*
 694		 * We failed to load the space cache, set ourselves to
 695		 * CACHE_STARTED and carry on.
 696		 */
 697		spin_lock(&block_group->lock);
 698		block_group->cached = BTRFS_CACHE_STARTED;
 699		spin_unlock(&block_group->lock);
 700		wake_up(&caching_ctl->wait);
 701	}
 702
 703	/*
 704	 * If we are in the transaction that populated the free space tree we
 705	 * can't actually cache from the free space tree as our commit root and
 706	 * real root are the same, so we could change the contents of the blocks
 707	 * while caching.  Instead do the slow caching in this case, and after
 708	 * the transaction has committed we will be safe.
 709	 */
 710	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 711	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
 712		ret = load_free_space_tree(caching_ctl);
 713	else
 714		ret = load_extent_tree_free(caching_ctl);
 715done:
 716	spin_lock(&block_group->lock);
 717	block_group->caching_ctl = NULL;
 718	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 719	spin_unlock(&block_group->lock);
 720
 721#ifdef CONFIG_BTRFS_DEBUG
 722	if (btrfs_should_fragment_free_space(block_group)) {
 723		u64 bytes_used;
 724
 725		spin_lock(&block_group->space_info->lock);
 726		spin_lock(&block_group->lock);
 727		bytes_used = block_group->length - block_group->used;
 728		block_group->space_info->bytes_used += bytes_used >> 1;
 729		spin_unlock(&block_group->lock);
 730		spin_unlock(&block_group->space_info->lock);
 731		fragment_free_space(block_group);
 732	}
 733#endif
 734
 735	up_read(&fs_info->commit_root_sem);
 736	btrfs_free_excluded_extents(block_group);
 737	mutex_unlock(&caching_ctl->mutex);
 738
 739	wake_up(&caching_ctl->wait);
 740
 741	btrfs_put_caching_control(caching_ctl);
 742	btrfs_put_block_group(block_group);
 743}
 744
 745int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
 746{
 747	struct btrfs_fs_info *fs_info = cache->fs_info;
 748	struct btrfs_caching_control *caching_ctl = NULL;
 749	int ret = 0;
 750
 751	/* Allocator for zoned filesystems does not use the cache at all */
 752	if (btrfs_is_zoned(fs_info))
 753		return 0;
 754
 755	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 756	if (!caching_ctl)
 757		return -ENOMEM;
 758
 759	INIT_LIST_HEAD(&caching_ctl->list);
 760	mutex_init(&caching_ctl->mutex);
 761	init_waitqueue_head(&caching_ctl->wait);
 762	caching_ctl->block_group = cache;
 763	refcount_set(&caching_ctl->count, 2);
 764	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
 
 765
 766	spin_lock(&cache->lock);
 767	if (cache->cached != BTRFS_CACHE_NO) {
 768		kfree(caching_ctl);
 769
 770		caching_ctl = cache->caching_ctl;
 771		if (caching_ctl)
 772			refcount_inc(&caching_ctl->count);
 773		spin_unlock(&cache->lock);
 774		goto out;
 775	}
 776	WARN_ON(cache->caching_ctl);
 777	cache->caching_ctl = caching_ctl;
 778	cache->cached = BTRFS_CACHE_STARTED;
 779	spin_unlock(&cache->lock);
 780
 781	write_lock(&fs_info->block_group_cache_lock);
 782	refcount_inc(&caching_ctl->count);
 783	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 784	write_unlock(&fs_info->block_group_cache_lock);
 785
 786	btrfs_get_block_group(cache);
 787
 788	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 789out:
 790	if (wait && caching_ctl)
 791		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 792	if (caching_ctl)
 793		btrfs_put_caching_control(caching_ctl);
 794
 795	return ret;
 796}
 797
 798static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 799{
 800	u64 extra_flags = chunk_to_extended(flags) &
 801				BTRFS_EXTENDED_PROFILE_MASK;
 802
 803	write_seqlock(&fs_info->profiles_lock);
 804	if (flags & BTRFS_BLOCK_GROUP_DATA)
 805		fs_info->avail_data_alloc_bits &= ~extra_flags;
 806	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 807		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 808	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 809		fs_info->avail_system_alloc_bits &= ~extra_flags;
 810	write_sequnlock(&fs_info->profiles_lock);
 811}
 812
 813/*
 814 * Clear incompat bits for the following feature(s):
 815 *
 816 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 817 *            in the whole filesystem
 818 *
 819 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 820 */
 821static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 822{
 823	bool found_raid56 = false;
 824	bool found_raid1c34 = false;
 825
 826	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
 827	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
 828	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
 829		struct list_head *head = &fs_info->space_info;
 830		struct btrfs_space_info *sinfo;
 831
 832		list_for_each_entry_rcu(sinfo, head, list) {
 833			down_read(&sinfo->groups_sem);
 834			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
 835				found_raid56 = true;
 836			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
 837				found_raid56 = true;
 838			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
 839				found_raid1c34 = true;
 840			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
 841				found_raid1c34 = true;
 842			up_read(&sinfo->groups_sem);
 843		}
 844		if (!found_raid56)
 845			btrfs_clear_fs_incompat(fs_info, RAID56);
 846		if (!found_raid1c34)
 847			btrfs_clear_fs_incompat(fs_info, RAID1C34);
 848	}
 849}
 850
 
 
 
 
 
 
 
 851static int remove_block_group_item(struct btrfs_trans_handle *trans,
 852				   struct btrfs_path *path,
 853				   struct btrfs_block_group *block_group)
 854{
 855	struct btrfs_fs_info *fs_info = trans->fs_info;
 856	struct btrfs_root *root;
 857	struct btrfs_key key;
 858	int ret;
 859
 860	root = btrfs_block_group_root(fs_info);
 861	key.objectid = block_group->start;
 862	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 863	key.offset = block_group->length;
 864
 865	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 866	if (ret > 0)
 867		ret = -ENOENT;
 868	if (ret < 0)
 869		return ret;
 870
 871	ret = btrfs_del_item(trans, root, path);
 872	return ret;
 873}
 874
 875int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 876			     u64 group_start, struct extent_map *em)
 877{
 878	struct btrfs_fs_info *fs_info = trans->fs_info;
 879	struct btrfs_path *path;
 880	struct btrfs_block_group *block_group;
 881	struct btrfs_free_cluster *cluster;
 882	struct inode *inode;
 883	struct kobject *kobj = NULL;
 884	int ret;
 885	int index;
 886	int factor;
 887	struct btrfs_caching_control *caching_ctl = NULL;
 888	bool remove_em;
 889	bool remove_rsv = false;
 890
 891	block_group = btrfs_lookup_block_group(fs_info, group_start);
 892	BUG_ON(!block_group);
 
 
 893	BUG_ON(!block_group->ro);
 894
 895	trace_btrfs_remove_block_group(block_group);
 896	/*
 897	 * Free the reserved super bytes from this block group before
 898	 * remove it.
 899	 */
 900	btrfs_free_excluded_extents(block_group);
 901	btrfs_free_ref_tree_range(fs_info, block_group->start,
 902				  block_group->length);
 903
 904	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 905	factor = btrfs_bg_type_to_factor(block_group->flags);
 906
 907	/* make sure this block group isn't part of an allocation cluster */
 908	cluster = &fs_info->data_alloc_cluster;
 909	spin_lock(&cluster->refill_lock);
 910	btrfs_return_cluster_to_free_space(block_group, cluster);
 911	spin_unlock(&cluster->refill_lock);
 912
 913	/*
 914	 * make sure this block group isn't part of a metadata
 915	 * allocation cluster
 916	 */
 917	cluster = &fs_info->meta_alloc_cluster;
 918	spin_lock(&cluster->refill_lock);
 919	btrfs_return_cluster_to_free_space(block_group, cluster);
 920	spin_unlock(&cluster->refill_lock);
 921
 922	btrfs_clear_treelog_bg(block_group);
 923	btrfs_clear_data_reloc_bg(block_group);
 924
 925	path = btrfs_alloc_path();
 926	if (!path) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	/*
 932	 * get the inode first so any iput calls done for the io_list
 933	 * aren't the final iput (no unlinks allowed now)
 934	 */
 935	inode = lookup_free_space_inode(block_group, path);
 936
 937	mutex_lock(&trans->transaction->cache_write_mutex);
 938	/*
 939	 * Make sure our free space cache IO is done before removing the
 940	 * free space inode
 941	 */
 942	spin_lock(&trans->transaction->dirty_bgs_lock);
 943	if (!list_empty(&block_group->io_list)) {
 944		list_del_init(&block_group->io_list);
 945
 946		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
 947
 948		spin_unlock(&trans->transaction->dirty_bgs_lock);
 949		btrfs_wait_cache_io(trans, block_group, path);
 950		btrfs_put_block_group(block_group);
 951		spin_lock(&trans->transaction->dirty_bgs_lock);
 952	}
 953
 954	if (!list_empty(&block_group->dirty_list)) {
 955		list_del_init(&block_group->dirty_list);
 956		remove_rsv = true;
 957		btrfs_put_block_group(block_group);
 958	}
 959	spin_unlock(&trans->transaction->dirty_bgs_lock);
 960	mutex_unlock(&trans->transaction->cache_write_mutex);
 961
 962	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
 963	if (ret)
 964		goto out;
 965
 966	write_lock(&fs_info->block_group_cache_lock);
 967	rb_erase_cached(&block_group->cache_node,
 968			&fs_info->block_group_cache_tree);
 969	RB_CLEAR_NODE(&block_group->cache_node);
 970
 971	/* Once for the block groups rbtree */
 972	btrfs_put_block_group(block_group);
 973
 974	write_unlock(&fs_info->block_group_cache_lock);
 975
 976	down_write(&block_group->space_info->groups_sem);
 977	/*
 978	 * we must use list_del_init so people can check to see if they
 979	 * are still on the list after taking the semaphore
 980	 */
 981	list_del_init(&block_group->list);
 982	if (list_empty(&block_group->space_info->block_groups[index])) {
 983		kobj = block_group->space_info->block_group_kobjs[index];
 984		block_group->space_info->block_group_kobjs[index] = NULL;
 985		clear_avail_alloc_bits(fs_info, block_group->flags);
 986	}
 987	up_write(&block_group->space_info->groups_sem);
 988	clear_incompat_bg_bits(fs_info, block_group->flags);
 989	if (kobj) {
 990		kobject_del(kobj);
 991		kobject_put(kobj);
 992	}
 993
 994	if (block_group->cached == BTRFS_CACHE_STARTED)
 995		btrfs_wait_block_group_cache_done(block_group);
 996
 997	write_lock(&fs_info->block_group_cache_lock);
 998	caching_ctl = btrfs_get_caching_control(block_group);
 999	if (!caching_ctl) {
1000		struct btrfs_caching_control *ctl;
1001
1002		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1003			if (ctl->block_group == block_group) {
1004				caching_ctl = ctl;
1005				refcount_inc(&caching_ctl->count);
1006				break;
1007			}
1008		}
1009	}
1010	if (caching_ctl)
1011		list_del_init(&caching_ctl->list);
1012	write_unlock(&fs_info->block_group_cache_lock);
1013
1014	if (caching_ctl) {
1015		/* Once for the caching bgs list and once for us. */
1016		btrfs_put_caching_control(caching_ctl);
1017		btrfs_put_caching_control(caching_ctl);
1018	}
1019
1020	spin_lock(&trans->transaction->dirty_bgs_lock);
1021	WARN_ON(!list_empty(&block_group->dirty_list));
1022	WARN_ON(!list_empty(&block_group->io_list));
1023	spin_unlock(&trans->transaction->dirty_bgs_lock);
1024
1025	btrfs_remove_free_space_cache(block_group);
1026
1027	spin_lock(&block_group->space_info->lock);
1028	list_del_init(&block_group->ro_list);
1029
1030	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1031		WARN_ON(block_group->space_info->total_bytes
1032			< block_group->length);
1033		WARN_ON(block_group->space_info->bytes_readonly
1034			< block_group->length - block_group->zone_unusable);
1035		WARN_ON(block_group->space_info->bytes_zone_unusable
1036			< block_group->zone_unusable);
1037		WARN_ON(block_group->space_info->disk_total
1038			< block_group->length * factor);
1039		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1040				 &block_group->runtime_flags) &&
1041			block_group->space_info->active_total_bytes
1042			< block_group->length);
1043	}
1044	block_group->space_info->total_bytes -= block_group->length;
1045	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1046		block_group->space_info->active_total_bytes -= block_group->length;
1047	block_group->space_info->bytes_readonly -=
1048		(block_group->length - block_group->zone_unusable);
1049	block_group->space_info->bytes_zone_unusable -=
1050		block_group->zone_unusable;
1051	block_group->space_info->disk_total -= block_group->length * factor;
1052
1053	spin_unlock(&block_group->space_info->lock);
1054
1055	/*
1056	 * Remove the free space for the block group from the free space tree
1057	 * and the block group's item from the extent tree before marking the
1058	 * block group as removed. This is to prevent races with tasks that
1059	 * freeze and unfreeze a block group, this task and another task
1060	 * allocating a new block group - the unfreeze task ends up removing
1061	 * the block group's extent map before the task calling this function
1062	 * deletes the block group item from the extent tree, allowing for
1063	 * another task to attempt to create another block group with the same
1064	 * item key (and failing with -EEXIST and a transaction abort).
1065	 */
1066	ret = remove_block_group_free_space(trans, block_group);
1067	if (ret)
1068		goto out;
1069
1070	ret = remove_block_group_item(trans, path, block_group);
1071	if (ret < 0)
1072		goto out;
1073
1074	spin_lock(&block_group->lock);
1075	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1076
1077	/*
1078	 * At this point trimming or scrub can't start on this block group,
1079	 * because we removed the block group from the rbtree
1080	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1081	 * even if someone already got this block group before we removed it
1082	 * from the rbtree, they have already incremented block_group->frozen -
1083	 * if they didn't, for the trimming case they won't find any free space
1084	 * entries because we already removed them all when we called
1085	 * btrfs_remove_free_space_cache().
1086	 *
1087	 * And we must not remove the extent map from the fs_info->mapping_tree
1088	 * to prevent the same logical address range and physical device space
1089	 * ranges from being reused for a new block group. This is needed to
1090	 * avoid races with trimming and scrub.
1091	 *
1092	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1093	 * completely transactionless, so while it is trimming a range the
1094	 * currently running transaction might finish and a new one start,
1095	 * allowing for new block groups to be created that can reuse the same
1096	 * physical device locations unless we take this special care.
1097	 *
1098	 * There may also be an implicit trim operation if the file system
1099	 * is mounted with -odiscard. The same protections must remain
1100	 * in place until the extents have been discarded completely when
1101	 * the transaction commit has completed.
1102	 */
1103	remove_em = (atomic_read(&block_group->frozen) == 0);
1104	spin_unlock(&block_group->lock);
1105
1106	if (remove_em) {
1107		struct extent_map_tree *em_tree;
1108
1109		em_tree = &fs_info->mapping_tree;
1110		write_lock(&em_tree->lock);
1111		remove_extent_mapping(em_tree, em);
1112		write_unlock(&em_tree->lock);
1113		/* once for the tree */
1114		free_extent_map(em);
1115	}
1116
1117out:
1118	/* Once for the lookup reference */
1119	btrfs_put_block_group(block_group);
1120	if (remove_rsv)
1121		btrfs_delayed_refs_rsv_release(fs_info, 1);
1122	btrfs_free_path(path);
1123	return ret;
1124}
1125
1126struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1127		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1128{
1129	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1130	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1131	struct extent_map *em;
1132	struct map_lookup *map;
1133	unsigned int num_items;
1134
1135	read_lock(&em_tree->lock);
1136	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1137	read_unlock(&em_tree->lock);
1138	ASSERT(em && em->start == chunk_offset);
1139
1140	/*
1141	 * We need to reserve 3 + N units from the metadata space info in order
1142	 * to remove a block group (done at btrfs_remove_chunk() and at
1143	 * btrfs_remove_block_group()), which are used for:
1144	 *
1145	 * 1 unit for adding the free space inode's orphan (located in the tree
1146	 * of tree roots).
1147	 * 1 unit for deleting the block group item (located in the extent
1148	 * tree).
1149	 * 1 unit for deleting the free space item (located in tree of tree
1150	 * roots).
1151	 * N units for deleting N device extent items corresponding to each
1152	 * stripe (located in the device tree).
1153	 *
1154	 * In order to remove a block group we also need to reserve units in the
1155	 * system space info in order to update the chunk tree (update one or
1156	 * more device items and remove one chunk item), but this is done at
1157	 * btrfs_remove_chunk() through a call to check_system_chunk().
1158	 */
1159	map = em->map_lookup;
1160	num_items = 3 + map->num_stripes;
1161	free_extent_map(em);
1162
1163	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1164}
1165
1166/*
1167 * Mark block group @cache read-only, so later write won't happen to block
1168 * group @cache.
1169 *
1170 * If @force is not set, this function will only mark the block group readonly
1171 * if we have enough free space (1M) in other metadata/system block groups.
1172 * If @force is not set, this function will mark the block group readonly
1173 * without checking free space.
1174 *
1175 * NOTE: This function doesn't care if other block groups can contain all the
1176 * data in this block group. That check should be done by relocation routine,
1177 * not this function.
1178 */
1179static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1180{
1181	struct btrfs_space_info *sinfo = cache->space_info;
1182	u64 num_bytes;
1183	int ret = -ENOSPC;
1184
1185	spin_lock(&sinfo->lock);
1186	spin_lock(&cache->lock);
1187
1188	if (cache->swap_extents) {
1189		ret = -ETXTBSY;
1190		goto out;
1191	}
1192
1193	if (cache->ro) {
1194		cache->ro++;
1195		ret = 0;
1196		goto out;
1197	}
1198
1199	num_bytes = cache->length - cache->reserved - cache->pinned -
1200		    cache->bytes_super - cache->zone_unusable - cache->used;
1201
1202	/*
1203	 * Data never overcommits, even in mixed mode, so do just the straight
1204	 * check of left over space in how much we have allocated.
1205	 */
1206	if (force) {
1207		ret = 0;
1208	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1209		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1210
1211		/*
1212		 * Here we make sure if we mark this bg RO, we still have enough
1213		 * free space as buffer.
1214		 */
1215		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1216			ret = 0;
1217	} else {
1218		/*
1219		 * We overcommit metadata, so we need to do the
1220		 * btrfs_can_overcommit check here, and we need to pass in
1221		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1222		 * leeway to allow us to mark this block group as read only.
1223		 */
1224		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1225					 BTRFS_RESERVE_NO_FLUSH))
1226			ret = 0;
1227	}
1228
1229	if (!ret) {
1230		sinfo->bytes_readonly += num_bytes;
1231		if (btrfs_is_zoned(cache->fs_info)) {
1232			/* Migrate zone_unusable bytes to readonly */
1233			sinfo->bytes_readonly += cache->zone_unusable;
1234			sinfo->bytes_zone_unusable -= cache->zone_unusable;
 
1235			cache->zone_unusable = 0;
1236		}
1237		cache->ro++;
1238		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1239	}
1240out:
1241	spin_unlock(&cache->lock);
1242	spin_unlock(&sinfo->lock);
1243	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244		btrfs_info(cache->fs_info,
1245			"unable to make block group %llu ro", cache->start);
1246		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247	}
1248	return ret;
1249}
1250
1251static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1252				 struct btrfs_block_group *bg)
1253{
1254	struct btrfs_fs_info *fs_info = bg->fs_info;
1255	struct btrfs_transaction *prev_trans = NULL;
1256	const u64 start = bg->start;
1257	const u64 end = start + bg->length - 1;
1258	int ret;
1259
1260	spin_lock(&fs_info->trans_lock);
1261	if (trans->transaction->list.prev != &fs_info->trans_list) {
1262		prev_trans = list_last_entry(&trans->transaction->list,
1263					     struct btrfs_transaction, list);
1264		refcount_inc(&prev_trans->use_count);
1265	}
1266	spin_unlock(&fs_info->trans_lock);
1267
1268	/*
1269	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1270	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1271	 * task might be running finish_extent_commit() for the previous
1272	 * transaction N - 1, and have seen a range belonging to the block
1273	 * group in pinned_extents before we were able to clear the whole block
1274	 * group range from pinned_extents. This means that task can lookup for
1275	 * the block group after we unpinned it from pinned_extents and removed
1276	 * it, leading to a BUG_ON() at unpin_extent_range().
1277	 */
1278	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1279	if (prev_trans) {
1280		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1281					EXTENT_DIRTY);
1282		if (ret)
1283			goto out;
1284	}
1285
1286	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1287				EXTENT_DIRTY);
1288out:
1289	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1290	if (prev_trans)
1291		btrfs_put_transaction(prev_trans);
1292
1293	return ret == 0;
1294}
1295
1296/*
1297 * Process the unused_bgs list and remove any that don't have any allocated
1298 * space inside of them.
1299 */
1300void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1301{
 
1302	struct btrfs_block_group *block_group;
1303	struct btrfs_space_info *space_info;
1304	struct btrfs_trans_handle *trans;
1305	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1306	int ret = 0;
1307
1308	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1309		return;
1310
1311	if (btrfs_fs_closing(fs_info))
1312		return;
1313
1314	/*
1315	 * Long running balances can keep us blocked here for eternity, so
1316	 * simply skip deletion if we're unable to get the mutex.
1317	 */
1318	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1319		return;
1320
1321	spin_lock(&fs_info->unused_bgs_lock);
1322	while (!list_empty(&fs_info->unused_bgs)) {
 
1323		int trimming;
1324
1325		block_group = list_first_entry(&fs_info->unused_bgs,
1326					       struct btrfs_block_group,
1327					       bg_list);
1328		list_del_init(&block_group->bg_list);
1329
1330		space_info = block_group->space_info;
1331
1332		if (ret || btrfs_mixed_space_info(space_info)) {
1333			btrfs_put_block_group(block_group);
1334			continue;
1335		}
1336		spin_unlock(&fs_info->unused_bgs_lock);
1337
1338		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1339
1340		/* Don't want to race with allocators so take the groups_sem */
1341		down_write(&space_info->groups_sem);
1342
1343		/*
1344		 * Async discard moves the final block group discard to be prior
1345		 * to the unused_bgs code path.  Therefore, if it's not fully
1346		 * trimmed, punt it back to the async discard lists.
1347		 */
1348		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1349		    !btrfs_is_free_space_trimmed(block_group)) {
1350			trace_btrfs_skip_unused_block_group(block_group);
1351			up_write(&space_info->groups_sem);
1352			/* Requeue if we failed because of async discard */
1353			btrfs_discard_queue_work(&fs_info->discard_ctl,
1354						 block_group);
1355			goto next;
1356		}
1357
 
1358		spin_lock(&block_group->lock);
1359		if (block_group->reserved || block_group->pinned ||
1360		    block_group->used || block_group->ro ||
1361		    list_is_singular(&block_group->list)) {
1362			/*
1363			 * We want to bail if we made new allocations or have
1364			 * outstanding allocations in this block group.  We do
1365			 * the ro check in case balance is currently acting on
1366			 * this block group.
 
 
 
 
 
 
 
1367			 */
1368			trace_btrfs_skip_unused_block_group(block_group);
1369			spin_unlock(&block_group->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370			up_write(&space_info->groups_sem);
1371			goto next;
1372		}
 
1373		spin_unlock(&block_group->lock);
 
1374
1375		/* We don't want to force the issue, only flip if it's ok. */
1376		ret = inc_block_group_ro(block_group, 0);
1377		up_write(&space_info->groups_sem);
1378		if (ret < 0) {
1379			ret = 0;
1380			goto next;
1381		}
1382
1383		ret = btrfs_zone_finish(block_group);
1384		if (ret < 0) {
1385			btrfs_dec_block_group_ro(block_group);
1386			if (ret == -EAGAIN)
1387				ret = 0;
1388			goto next;
1389		}
1390
1391		/*
1392		 * Want to do this before we do anything else so we can recover
1393		 * properly if we fail to join the transaction.
1394		 */
1395		trans = btrfs_start_trans_remove_block_group(fs_info,
1396						     block_group->start);
1397		if (IS_ERR(trans)) {
1398			btrfs_dec_block_group_ro(block_group);
1399			ret = PTR_ERR(trans);
1400			goto next;
1401		}
1402
1403		/*
1404		 * We could have pending pinned extents for this block group,
1405		 * just delete them, we don't care about them anymore.
1406		 */
1407		if (!clean_pinned_extents(trans, block_group)) {
1408			btrfs_dec_block_group_ro(block_group);
1409			goto end_trans;
1410		}
1411
1412		/*
1413		 * At this point, the block_group is read only and should fail
1414		 * new allocations.  However, btrfs_finish_extent_commit() can
1415		 * cause this block_group to be placed back on the discard
1416		 * lists because now the block_group isn't fully discarded.
1417		 * Bail here and try again later after discarding everything.
1418		 */
1419		spin_lock(&fs_info->discard_ctl.lock);
1420		if (!list_empty(&block_group->discard_list)) {
1421			spin_unlock(&fs_info->discard_ctl.lock);
1422			btrfs_dec_block_group_ro(block_group);
1423			btrfs_discard_queue_work(&fs_info->discard_ctl,
1424						 block_group);
1425			goto end_trans;
1426		}
1427		spin_unlock(&fs_info->discard_ctl.lock);
1428
1429		/* Reset pinned so btrfs_put_block_group doesn't complain */
1430		spin_lock(&space_info->lock);
1431		spin_lock(&block_group->lock);
1432
1433		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1434						     -block_group->pinned);
1435		space_info->bytes_readonly += block_group->pinned;
1436		block_group->pinned = 0;
1437
1438		spin_unlock(&block_group->lock);
1439		spin_unlock(&space_info->lock);
1440
1441		/*
1442		 * The normal path here is an unused block group is passed here,
1443		 * then trimming is handled in the transaction commit path.
1444		 * Async discard interposes before this to do the trimming
1445		 * before coming down the unused block group path as trimming
1446		 * will no longer be done later in the transaction commit path.
1447		 */
1448		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1449			goto flip_async;
1450
1451		/*
1452		 * DISCARD can flip during remount. On zoned filesystems, we
1453		 * need to reset sequential-required zones.
1454		 */
1455		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1456				btrfs_is_zoned(fs_info);
1457
1458		/* Implicit trim during transaction commit. */
1459		if (trimming)
1460			btrfs_freeze_block_group(block_group);
1461
1462		/*
1463		 * Btrfs_remove_chunk will abort the transaction if things go
1464		 * horribly wrong.
1465		 */
1466		ret = btrfs_remove_chunk(trans, block_group->start);
1467
1468		if (ret) {
1469			if (trimming)
1470				btrfs_unfreeze_block_group(block_group);
1471			goto end_trans;
1472		}
1473
1474		/*
1475		 * If we're not mounted with -odiscard, we can just forget
1476		 * about this block group. Otherwise we'll need to wait
1477		 * until transaction commit to do the actual discard.
1478		 */
1479		if (trimming) {
1480			spin_lock(&fs_info->unused_bgs_lock);
1481			/*
1482			 * A concurrent scrub might have added us to the list
1483			 * fs_info->unused_bgs, so use a list_move operation
1484			 * to add the block group to the deleted_bgs list.
1485			 */
1486			list_move(&block_group->bg_list,
1487				  &trans->transaction->deleted_bgs);
1488			spin_unlock(&fs_info->unused_bgs_lock);
1489			btrfs_get_block_group(block_group);
1490		}
1491end_trans:
1492		btrfs_end_transaction(trans);
1493next:
1494		btrfs_put_block_group(block_group);
1495		spin_lock(&fs_info->unused_bgs_lock);
1496	}
 
1497	spin_unlock(&fs_info->unused_bgs_lock);
1498	mutex_unlock(&fs_info->reclaim_bgs_lock);
1499	return;
1500
1501flip_async:
1502	btrfs_end_transaction(trans);
 
 
 
1503	mutex_unlock(&fs_info->reclaim_bgs_lock);
1504	btrfs_put_block_group(block_group);
1505	btrfs_discard_punt_unused_bgs_list(fs_info);
1506}
1507
1508void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1509{
1510	struct btrfs_fs_info *fs_info = bg->fs_info;
1511
1512	spin_lock(&fs_info->unused_bgs_lock);
1513	if (list_empty(&bg->bg_list)) {
1514		btrfs_get_block_group(bg);
1515		trace_btrfs_add_unused_block_group(bg);
1516		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
 
 
 
 
1517	}
1518	spin_unlock(&fs_info->unused_bgs_lock);
1519}
1520
1521/*
1522 * We want block groups with a low number of used bytes to be in the beginning
1523 * of the list, so they will get reclaimed first.
1524 */
1525static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1526			   const struct list_head *b)
1527{
1528	const struct btrfs_block_group *bg1, *bg2;
1529
1530	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1531	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1532
1533	return bg1->used > bg2->used;
1534}
1535
1536static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1537{
1538	if (btrfs_is_zoned(fs_info))
1539		return btrfs_zoned_should_reclaim(fs_info);
1540	return true;
1541}
1542
1543static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1544{
1545	const struct btrfs_space_info *space_info = bg->space_info;
1546	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1547	const u64 new_val = bg->used;
1548	const u64 old_val = new_val + bytes_freed;
1549	u64 thresh;
1550
1551	if (reclaim_thresh == 0)
1552		return false;
1553
1554	thresh = mult_perc(bg->length, reclaim_thresh);
1555
1556	/*
1557	 * If we were below the threshold before don't reclaim, we are likely a
1558	 * brand new block group and we don't want to relocate new block groups.
1559	 */
1560	if (old_val < thresh)
1561		return false;
1562	if (new_val >= thresh)
1563		return false;
1564	return true;
1565}
1566
1567void btrfs_reclaim_bgs_work(struct work_struct *work)
1568{
1569	struct btrfs_fs_info *fs_info =
1570		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1571	struct btrfs_block_group *bg;
1572	struct btrfs_space_info *space_info;
 
1573
1574	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1575		return;
1576
1577	if (btrfs_fs_closing(fs_info))
1578		return;
1579
1580	if (!btrfs_should_reclaim(fs_info))
1581		return;
1582
1583	sb_start_write(fs_info->sb);
1584
1585	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1586		sb_end_write(fs_info->sb);
1587		return;
1588	}
1589
1590	/*
1591	 * Long running balances can keep us blocked here for eternity, so
1592	 * simply skip reclaim if we're unable to get the mutex.
1593	 */
1594	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1595		btrfs_exclop_finish(fs_info);
1596		sb_end_write(fs_info->sb);
1597		return;
1598	}
1599
1600	spin_lock(&fs_info->unused_bgs_lock);
1601	/*
1602	 * Sort happens under lock because we can't simply splice it and sort.
1603	 * The block groups might still be in use and reachable via bg_list,
1604	 * and their presence in the reclaim_bgs list must be preserved.
1605	 */
1606	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1607	while (!list_empty(&fs_info->reclaim_bgs)) {
1608		u64 zone_unusable;
 
1609		int ret = 0;
1610
1611		bg = list_first_entry(&fs_info->reclaim_bgs,
1612				      struct btrfs_block_group,
1613				      bg_list);
1614		list_del_init(&bg->bg_list);
1615
1616		space_info = bg->space_info;
1617		spin_unlock(&fs_info->unused_bgs_lock);
1618
1619		/* Don't race with allocators so take the groups_sem */
1620		down_write(&space_info->groups_sem);
1621
 
1622		spin_lock(&bg->lock);
1623		if (bg->reserved || bg->pinned || bg->ro) {
1624			/*
1625			 * We want to bail if we made new allocations or have
1626			 * outstanding allocations in this block group.  We do
1627			 * the ro check in case balance is currently acting on
1628			 * this block group.
1629			 */
1630			spin_unlock(&bg->lock);
 
1631			up_write(&space_info->groups_sem);
1632			goto next;
1633		}
1634		if (bg->used == 0) {
1635			/*
1636			 * It is possible that we trigger relocation on a block
1637			 * group as its extents are deleted and it first goes
1638			 * below the threshold, then shortly after goes empty.
1639			 *
1640			 * In this case, relocating it does delete it, but has
1641			 * some overhead in relocation specific metadata, looking
1642			 * for the non-existent extents and running some extra
1643			 * transactions, which we can avoid by using one of the
1644			 * other mechanisms for dealing with empty block groups.
1645			 */
1646			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1647				btrfs_mark_bg_unused(bg);
1648			spin_unlock(&bg->lock);
 
1649			up_write(&space_info->groups_sem);
1650			goto next;
1651
1652		}
1653		/*
1654		 * The block group might no longer meet the reclaim condition by
1655		 * the time we get around to reclaiming it, so to avoid
1656		 * reclaiming overly full block_groups, skip reclaiming them.
1657		 *
1658		 * Since the decision making process also depends on the amount
1659		 * being freed, pass in a fake giant value to skip that extra
1660		 * check, which is more meaningful when adding to the list in
1661		 * the first place.
1662		 */
1663		if (!should_reclaim_block_group(bg, bg->length)) {
1664			spin_unlock(&bg->lock);
 
1665			up_write(&space_info->groups_sem);
1666			goto next;
1667		}
1668		spin_unlock(&bg->lock);
 
1669
1670		/* Get out fast, in case we're unmounting the filesystem */
1671		if (btrfs_fs_closing(fs_info)) {
 
 
 
 
 
 
 
1672			up_write(&space_info->groups_sem);
1673			goto next;
1674		}
1675
1676		/*
1677		 * Cache the zone_unusable value before turning the block group
1678		 * to read only. As soon as the blog group is read only it's
1679		 * zone_unusable value gets moved to the block group's read-only
1680		 * bytes and isn't available for calculations anymore.
1681		 */
1682		zone_unusable = bg->zone_unusable;
1683		ret = inc_block_group_ro(bg, 0);
1684		up_write(&space_info->groups_sem);
1685		if (ret < 0)
1686			goto next;
1687
1688		btrfs_info(fs_info,
1689			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1690				bg->start, div_u64(bg->used * 100, bg->length),
 
1691				div64_u64(zone_unusable * 100, bg->length));
1692		trace_btrfs_reclaim_block_group(bg);
 
1693		ret = btrfs_relocate_chunk(fs_info, bg->start);
1694		if (ret) {
1695			btrfs_dec_block_group_ro(bg);
1696			btrfs_err(fs_info, "error relocating chunk %llu",
1697				  bg->start);
 
 
 
 
 
 
1698		}
 
 
 
 
1699
1700next:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701		btrfs_put_block_group(bg);
 
 
 
 
 
 
 
 
 
 
 
 
 
1702		spin_lock(&fs_info->unused_bgs_lock);
1703	}
1704	spin_unlock(&fs_info->unused_bgs_lock);
1705	mutex_unlock(&fs_info->reclaim_bgs_lock);
 
 
 
 
1706	btrfs_exclop_finish(fs_info);
1707	sb_end_write(fs_info->sb);
1708}
1709
1710void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1711{
 
1712	spin_lock(&fs_info->unused_bgs_lock);
1713	if (!list_empty(&fs_info->reclaim_bgs))
1714		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1715	spin_unlock(&fs_info->unused_bgs_lock);
1716}
1717
1718void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1719{
1720	struct btrfs_fs_info *fs_info = bg->fs_info;
1721
1722	spin_lock(&fs_info->unused_bgs_lock);
1723	if (list_empty(&bg->bg_list)) {
1724		btrfs_get_block_group(bg);
1725		trace_btrfs_add_reclaim_block_group(bg);
1726		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1727	}
1728	spin_unlock(&fs_info->unused_bgs_lock);
1729}
1730
1731static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1732			   struct btrfs_path *path)
1733{
1734	struct extent_map_tree *em_tree;
1735	struct extent_map *em;
1736	struct btrfs_block_group_item bg;
1737	struct extent_buffer *leaf;
1738	int slot;
1739	u64 flags;
1740	int ret = 0;
1741
1742	slot = path->slots[0];
1743	leaf = path->nodes[0];
1744
1745	em_tree = &fs_info->mapping_tree;
1746	read_lock(&em_tree->lock);
1747	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1748	read_unlock(&em_tree->lock);
1749	if (!em) {
1750		btrfs_err(fs_info,
1751			  "logical %llu len %llu found bg but no related chunk",
1752			  key->objectid, key->offset);
1753		return -ENOENT;
1754	}
1755
1756	if (em->start != key->objectid || em->len != key->offset) {
1757		btrfs_err(fs_info,
1758			"block group %llu len %llu mismatch with chunk %llu len %llu",
1759			key->objectid, key->offset, em->start, em->len);
1760		ret = -EUCLEAN;
1761		goto out_free_em;
1762	}
1763
1764	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1765			   sizeof(bg));
1766	flags = btrfs_stack_block_group_flags(&bg) &
1767		BTRFS_BLOCK_GROUP_TYPE_MASK;
1768
1769	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1770		btrfs_err(fs_info,
1771"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1772			  key->objectid, key->offset, flags,
1773			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1774		ret = -EUCLEAN;
1775	}
1776
1777out_free_em:
1778	free_extent_map(em);
1779	return ret;
1780}
1781
1782static int find_first_block_group(struct btrfs_fs_info *fs_info,
1783				  struct btrfs_path *path,
1784				  struct btrfs_key *key)
1785{
1786	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1787	int ret;
1788	struct btrfs_key found_key;
1789
1790	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1791		if (found_key.objectid >= key->objectid &&
1792		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1793			return read_bg_from_eb(fs_info, &found_key, path);
1794		}
1795	}
1796	return ret;
1797}
1798
1799static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1800{
1801	u64 extra_flags = chunk_to_extended(flags) &
1802				BTRFS_EXTENDED_PROFILE_MASK;
1803
1804	write_seqlock(&fs_info->profiles_lock);
1805	if (flags & BTRFS_BLOCK_GROUP_DATA)
1806		fs_info->avail_data_alloc_bits |= extra_flags;
1807	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1808		fs_info->avail_metadata_alloc_bits |= extra_flags;
1809	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1810		fs_info->avail_system_alloc_bits |= extra_flags;
1811	write_sequnlock(&fs_info->profiles_lock);
1812}
1813
1814/*
1815 * Map a physical disk address to a list of logical addresses.
1816 *
1817 * @fs_info:       the filesystem
1818 * @chunk_start:   logical address of block group
1819 * @bdev:	   physical device to resolve, can be NULL to indicate any device
1820 * @physical:	   physical address to map to logical addresses
1821 * @logical:	   return array of logical addresses which map to @physical
1822 * @naddrs:	   length of @logical
1823 * @stripe_len:    size of IO stripe for the given block group
1824 *
1825 * Maps a particular @physical disk address to a list of @logical addresses.
1826 * Used primarily to exclude those portions of a block group that contain super
1827 * block copies.
1828 */
1829int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1830		     struct block_device *bdev, u64 physical, u64 **logical,
1831		     int *naddrs, int *stripe_len)
1832{
1833	struct extent_map *em;
1834	struct map_lookup *map;
1835	u64 *buf;
1836	u64 bytenr;
1837	u64 data_stripe_length;
1838	u64 io_stripe_size;
1839	int i, nr = 0;
1840	int ret = 0;
1841
1842	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1843	if (IS_ERR(em))
1844		return -EIO;
1845
1846	map = em->map_lookup;
1847	data_stripe_length = em->orig_block_len;
1848	io_stripe_size = map->stripe_len;
1849	chunk_start = em->start;
1850
1851	/* For RAID5/6 adjust to a full IO stripe length */
1852	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1853		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1854
1855	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1856	if (!buf) {
1857		ret = -ENOMEM;
1858		goto out;
1859	}
1860
1861	for (i = 0; i < map->num_stripes; i++) {
1862		bool already_inserted = false;
1863		u64 stripe_nr;
1864		u64 offset;
1865		int j;
1866
1867		if (!in_range(physical, map->stripes[i].physical,
1868			      data_stripe_length))
1869			continue;
1870
1871		if (bdev && map->stripes[i].dev->bdev != bdev)
1872			continue;
1873
1874		stripe_nr = physical - map->stripes[i].physical;
1875		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1876
1877		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1878				 BTRFS_BLOCK_GROUP_RAID10)) {
1879			stripe_nr = stripe_nr * map->num_stripes + i;
1880			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1881		}
1882		/*
1883		 * The remaining case would be for RAID56, multiply by
1884		 * nr_data_stripes().  Alternatively, just use rmap_len below
1885		 * instead of map->stripe_len
1886		 */
1887
1888		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1889
1890		/* Ensure we don't add duplicate addresses */
1891		for (j = 0; j < nr; j++) {
1892			if (buf[j] == bytenr) {
1893				already_inserted = true;
1894				break;
1895			}
1896		}
1897
1898		if (!already_inserted)
1899			buf[nr++] = bytenr;
1900	}
1901
1902	*logical = buf;
1903	*naddrs = nr;
1904	*stripe_len = io_stripe_size;
1905out:
1906	free_extent_map(em);
1907	return ret;
1908}
1909
1910static int exclude_super_stripes(struct btrfs_block_group *cache)
1911{
1912	struct btrfs_fs_info *fs_info = cache->fs_info;
1913	const bool zoned = btrfs_is_zoned(fs_info);
1914	u64 bytenr;
1915	u64 *logical;
1916	int stripe_len;
1917	int i, nr, ret;
1918
1919	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1920		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1921		cache->bytes_super += stripe_len;
1922		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1923						stripe_len);
 
1924		if (ret)
1925			return ret;
1926	}
1927
1928	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1929		bytenr = btrfs_sb_offset(i);
1930		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1931				       bytenr, &logical, &nr, &stripe_len);
1932		if (ret)
1933			return ret;
1934
1935		/* Shouldn't have super stripes in sequential zones */
1936		if (zoned && nr) {
 
1937			btrfs_err(fs_info,
1938			"zoned: block group %llu must not contain super block",
1939				  cache->start);
1940			return -EUCLEAN;
1941		}
1942
1943		while (nr--) {
1944			u64 len = min_t(u64, stripe_len,
1945				cache->start + cache->length - logical[nr]);
1946
1947			cache->bytes_super += len;
1948			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1949							len);
 
1950			if (ret) {
1951				kfree(logical);
1952				return ret;
1953			}
1954		}
1955
1956		kfree(logical);
1957	}
1958	return 0;
1959}
1960
1961static struct btrfs_block_group *btrfs_create_block_group_cache(
1962		struct btrfs_fs_info *fs_info, u64 start)
1963{
1964	struct btrfs_block_group *cache;
1965
1966	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1967	if (!cache)
1968		return NULL;
1969
1970	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1971					GFP_NOFS);
1972	if (!cache->free_space_ctl) {
1973		kfree(cache);
1974		return NULL;
1975	}
1976
1977	cache->start = start;
1978
1979	cache->fs_info = fs_info;
1980	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1981
1982	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1983
1984	refcount_set(&cache->refs, 1);
1985	spin_lock_init(&cache->lock);
1986	init_rwsem(&cache->data_rwsem);
1987	INIT_LIST_HEAD(&cache->list);
1988	INIT_LIST_HEAD(&cache->cluster_list);
1989	INIT_LIST_HEAD(&cache->bg_list);
1990	INIT_LIST_HEAD(&cache->ro_list);
1991	INIT_LIST_HEAD(&cache->discard_list);
1992	INIT_LIST_HEAD(&cache->dirty_list);
1993	INIT_LIST_HEAD(&cache->io_list);
1994	INIT_LIST_HEAD(&cache->active_bg_list);
1995	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1996	atomic_set(&cache->frozen, 0);
1997	mutex_init(&cache->free_space_lock);
1998	cache->full_stripe_locks_root.root = RB_ROOT;
1999	mutex_init(&cache->full_stripe_locks_root.lock);
2000
2001	return cache;
2002}
2003
2004/*
2005 * Iterate all chunks and verify that each of them has the corresponding block
2006 * group
2007 */
2008static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2009{
2010	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2011	struct extent_map *em;
2012	struct btrfs_block_group *bg;
2013	u64 start = 0;
2014	int ret = 0;
2015
2016	while (1) {
2017		read_lock(&map_tree->lock);
 
 
2018		/*
2019		 * lookup_extent_mapping will return the first extent map
2020		 * intersecting the range, so setting @len to 1 is enough to
2021		 * get the first chunk.
2022		 */
2023		em = lookup_extent_mapping(map_tree, start, 1);
2024		read_unlock(&map_tree->lock);
2025		if (!em)
2026			break;
2027
2028		bg = btrfs_lookup_block_group(fs_info, em->start);
2029		if (!bg) {
2030			btrfs_err(fs_info,
2031	"chunk start=%llu len=%llu doesn't have corresponding block group",
2032				     em->start, em->len);
2033			ret = -EUCLEAN;
2034			free_extent_map(em);
2035			break;
2036		}
2037		if (bg->start != em->start || bg->length != em->len ||
2038		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2039		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2040			btrfs_err(fs_info,
2041"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2042				em->start, em->len,
2043				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2044				bg->start, bg->length,
2045				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2046			ret = -EUCLEAN;
2047			free_extent_map(em);
2048			btrfs_put_block_group(bg);
2049			break;
2050		}
2051		start = em->start + em->len;
2052		free_extent_map(em);
2053		btrfs_put_block_group(bg);
2054	}
2055	return ret;
2056}
2057
2058static int read_one_block_group(struct btrfs_fs_info *info,
2059				struct btrfs_block_group_item *bgi,
2060				const struct btrfs_key *key,
2061				int need_clear)
2062{
2063	struct btrfs_block_group *cache;
2064	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2065	int ret;
2066
2067	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2068
2069	cache = btrfs_create_block_group_cache(info, key->objectid);
2070	if (!cache)
2071		return -ENOMEM;
2072
2073	cache->length = key->offset;
2074	cache->used = btrfs_stack_block_group_used(bgi);
2075	cache->commit_used = cache->used;
2076	cache->flags = btrfs_stack_block_group_flags(bgi);
2077	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2078
2079	set_free_space_tree_thresholds(cache);
2080
2081	if (need_clear) {
2082		/*
2083		 * When we mount with old space cache, we need to
2084		 * set BTRFS_DC_CLEAR and set dirty flag.
2085		 *
2086		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2087		 *    truncate the old free space cache inode and
2088		 *    setup a new one.
2089		 * b) Setting 'dirty flag' makes sure that we flush
2090		 *    the new space cache info onto disk.
2091		 */
2092		if (btrfs_test_opt(info, SPACE_CACHE))
2093			cache->disk_cache_state = BTRFS_DC_CLEAR;
2094	}
2095	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2096	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2097			btrfs_err(info,
2098"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2099				  cache->start);
2100			ret = -EINVAL;
2101			goto error;
2102	}
2103
2104	ret = btrfs_load_block_group_zone_info(cache, false);
2105	if (ret) {
2106		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2107			  cache->start);
2108		goto error;
2109	}
2110
2111	/*
2112	 * We need to exclude the super stripes now so that the space info has
2113	 * super bytes accounted for, otherwise we'll think we have more space
2114	 * than we actually do.
2115	 */
2116	ret = exclude_super_stripes(cache);
2117	if (ret) {
2118		/* We may have excluded something, so call this just in case. */
2119		btrfs_free_excluded_extents(cache);
2120		goto error;
2121	}
2122
2123	/*
2124	 * For zoned filesystem, space after the allocation offset is the only
2125	 * free space for a block group. So, we don't need any caching work.
2126	 * btrfs_calc_zone_unusable() will set the amount of free space and
2127	 * zone_unusable space.
2128	 *
2129	 * For regular filesystem, check for two cases, either we are full, and
2130	 * therefore don't need to bother with the caching work since we won't
2131	 * find any space, or we are empty, and we can just add all the space
2132	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2133	 * in the full case.
2134	 */
2135	if (btrfs_is_zoned(info)) {
2136		btrfs_calc_zone_unusable(cache);
2137		/* Should not have any excluded extents. Just in case, though. */
2138		btrfs_free_excluded_extents(cache);
2139	} else if (cache->length == cache->used) {
2140		cache->cached = BTRFS_CACHE_FINISHED;
2141		btrfs_free_excluded_extents(cache);
2142	} else if (cache->used == 0) {
2143		cache->cached = BTRFS_CACHE_FINISHED;
2144		add_new_free_space(cache, cache->start,
2145				   cache->start + cache->length);
2146		btrfs_free_excluded_extents(cache);
 
 
2147	}
2148
2149	ret = btrfs_add_block_group_cache(info, cache);
2150	if (ret) {
2151		btrfs_remove_free_space_cache(cache);
2152		goto error;
2153	}
2154	trace_btrfs_add_block_group(info, cache, 0);
2155	btrfs_add_bg_to_space_info(info, cache);
2156
2157	set_avail_alloc_bits(info, cache->flags);
2158	if (btrfs_chunk_writeable(info, cache->start)) {
2159		if (cache->used == 0) {
2160			ASSERT(list_empty(&cache->bg_list));
2161			if (btrfs_test_opt(info, DISCARD_ASYNC))
2162				btrfs_discard_queue_work(&info->discard_ctl, cache);
2163			else
2164				btrfs_mark_bg_unused(cache);
2165		}
2166	} else {
2167		inc_block_group_ro(cache, 1);
2168	}
2169
2170	return 0;
2171error:
2172	btrfs_put_block_group(cache);
2173	return ret;
2174}
2175
2176static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2177{
2178	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2179	struct rb_node *node;
2180	int ret = 0;
2181
2182	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2183		struct extent_map *em;
2184		struct map_lookup *map;
2185		struct btrfs_block_group *bg;
2186
2187		em = rb_entry(node, struct extent_map, rb_node);
2188		map = em->map_lookup;
2189		bg = btrfs_create_block_group_cache(fs_info, em->start);
2190		if (!bg) {
2191			ret = -ENOMEM;
2192			break;
2193		}
2194
2195		/* Fill dummy cache as FULL */
2196		bg->length = em->len;
2197		bg->flags = map->type;
2198		bg->cached = BTRFS_CACHE_FINISHED;
2199		bg->used = em->len;
2200		bg->flags = map->type;
2201		ret = btrfs_add_block_group_cache(fs_info, bg);
2202		/*
2203		 * We may have some valid block group cache added already, in
2204		 * that case we skip to the next one.
2205		 */
2206		if (ret == -EEXIST) {
2207			ret = 0;
2208			btrfs_put_block_group(bg);
2209			continue;
2210		}
2211
2212		if (ret) {
2213			btrfs_remove_free_space_cache(bg);
2214			btrfs_put_block_group(bg);
2215			break;
2216		}
2217
2218		btrfs_add_bg_to_space_info(fs_info, bg);
2219
2220		set_avail_alloc_bits(fs_info, bg->flags);
2221	}
2222	if (!ret)
2223		btrfs_init_global_block_rsv(fs_info);
2224	return ret;
2225}
2226
2227int btrfs_read_block_groups(struct btrfs_fs_info *info)
2228{
2229	struct btrfs_root *root = btrfs_block_group_root(info);
2230	struct btrfs_path *path;
2231	int ret;
2232	struct btrfs_block_group *cache;
2233	struct btrfs_space_info *space_info;
2234	struct btrfs_key key;
2235	int need_clear = 0;
2236	u64 cache_gen;
2237
2238	/*
2239	 * Either no extent root (with ibadroots rescue option) or we have
2240	 * unsupported RO options. The fs can never be mounted read-write, so no
2241	 * need to waste time searching block group items.
2242	 *
2243	 * This also allows new extent tree related changes to be RO compat,
2244	 * no need for a full incompat flag.
2245	 */
2246	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2247		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2248		return fill_dummy_bgs(info);
2249
2250	key.objectid = 0;
2251	key.offset = 0;
2252	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2253	path = btrfs_alloc_path();
2254	if (!path)
2255		return -ENOMEM;
2256
2257	cache_gen = btrfs_super_cache_generation(info->super_copy);
2258	if (btrfs_test_opt(info, SPACE_CACHE) &&
2259	    btrfs_super_generation(info->super_copy) != cache_gen)
2260		need_clear = 1;
2261	if (btrfs_test_opt(info, CLEAR_CACHE))
2262		need_clear = 1;
2263
2264	while (1) {
2265		struct btrfs_block_group_item bgi;
2266		struct extent_buffer *leaf;
2267		int slot;
2268
2269		ret = find_first_block_group(info, path, &key);
2270		if (ret > 0)
2271			break;
2272		if (ret != 0)
2273			goto error;
2274
2275		leaf = path->nodes[0];
2276		slot = path->slots[0];
2277
2278		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2279				   sizeof(bgi));
2280
2281		btrfs_item_key_to_cpu(leaf, &key, slot);
2282		btrfs_release_path(path);
2283		ret = read_one_block_group(info, &bgi, &key, need_clear);
2284		if (ret < 0)
2285			goto error;
2286		key.objectid += key.offset;
2287		key.offset = 0;
2288	}
2289	btrfs_release_path(path);
2290
2291	list_for_each_entry(space_info, &info->space_info, list) {
2292		int i;
2293
2294		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2295			if (list_empty(&space_info->block_groups[i]))
2296				continue;
2297			cache = list_first_entry(&space_info->block_groups[i],
2298						 struct btrfs_block_group,
2299						 list);
2300			btrfs_sysfs_add_block_group_type(cache);
2301		}
2302
2303		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2304		      (BTRFS_BLOCK_GROUP_RAID10 |
2305		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2306		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2307		       BTRFS_BLOCK_GROUP_DUP)))
2308			continue;
2309		/*
2310		 * Avoid allocating from un-mirrored block group if there are
2311		 * mirrored block groups.
2312		 */
2313		list_for_each_entry(cache,
2314				&space_info->block_groups[BTRFS_RAID_RAID0],
2315				list)
2316			inc_block_group_ro(cache, 1);
2317		list_for_each_entry(cache,
2318				&space_info->block_groups[BTRFS_RAID_SINGLE],
2319				list)
2320			inc_block_group_ro(cache, 1);
2321	}
2322
2323	btrfs_init_global_block_rsv(info);
2324	ret = check_chunk_block_group_mappings(info);
2325error:
2326	btrfs_free_path(path);
2327	/*
2328	 * We've hit some error while reading the extent tree, and have
2329	 * rescue=ibadroots mount option.
2330	 * Try to fill the tree using dummy block groups so that the user can
2331	 * continue to mount and grab their data.
2332	 */
2333	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2334		ret = fill_dummy_bgs(info);
2335	return ret;
2336}
2337
2338/*
2339 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2340 * allocation.
2341 *
2342 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2343 * phases.
2344 */
2345static int insert_block_group_item(struct btrfs_trans_handle *trans,
2346				   struct btrfs_block_group *block_group)
2347{
2348	struct btrfs_fs_info *fs_info = trans->fs_info;
2349	struct btrfs_block_group_item bgi;
2350	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2351	struct btrfs_key key;
 
 
2352
2353	spin_lock(&block_group->lock);
2354	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2355	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2356						   block_group->global_root_id);
2357	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
 
 
2358	key.objectid = block_group->start;
2359	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2360	key.offset = block_group->length;
2361	spin_unlock(&block_group->lock);
2362
2363	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
 
 
 
 
 
 
 
2364}
2365
2366static int insert_dev_extent(struct btrfs_trans_handle *trans,
2367			    struct btrfs_device *device, u64 chunk_offset,
2368			    u64 start, u64 num_bytes)
2369{
2370	struct btrfs_fs_info *fs_info = device->fs_info;
2371	struct btrfs_root *root = fs_info->dev_root;
2372	struct btrfs_path *path;
2373	struct btrfs_dev_extent *extent;
2374	struct extent_buffer *leaf;
2375	struct btrfs_key key;
2376	int ret;
2377
2378	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2379	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2380	path = btrfs_alloc_path();
2381	if (!path)
2382		return -ENOMEM;
2383
2384	key.objectid = device->devid;
2385	key.type = BTRFS_DEV_EXTENT_KEY;
2386	key.offset = start;
2387	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2388	if (ret)
2389		goto out;
2390
2391	leaf = path->nodes[0];
2392	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2393	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2394	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2395					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2396	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2397
2398	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2399	btrfs_mark_buffer_dirty(leaf);
2400out:
2401	btrfs_free_path(path);
2402	return ret;
2403}
2404
2405/*
2406 * This function belongs to phase 2.
2407 *
2408 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2409 * phases.
2410 */
2411static int insert_dev_extents(struct btrfs_trans_handle *trans,
2412				   u64 chunk_offset, u64 chunk_size)
2413{
2414	struct btrfs_fs_info *fs_info = trans->fs_info;
2415	struct btrfs_device *device;
2416	struct extent_map *em;
2417	struct map_lookup *map;
2418	u64 dev_offset;
2419	u64 stripe_size;
2420	int i;
2421	int ret = 0;
2422
2423	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2424	if (IS_ERR(em))
2425		return PTR_ERR(em);
2426
2427	map = em->map_lookup;
2428	stripe_size = em->orig_block_len;
2429
2430	/*
2431	 * Take the device list mutex to prevent races with the final phase of
2432	 * a device replace operation that replaces the device object associated
2433	 * with the map's stripes, because the device object's id can change
2434	 * at any time during that final phase of the device replace operation
2435	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2436	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2437	 * resulting in persisting a device extent item with such ID.
2438	 */
2439	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2440	for (i = 0; i < map->num_stripes; i++) {
2441		device = map->stripes[i].dev;
2442		dev_offset = map->stripes[i].physical;
2443
2444		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2445				       stripe_size);
2446		if (ret)
2447			break;
2448	}
2449	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450
2451	free_extent_map(em);
2452	return ret;
2453}
2454
2455/*
2456 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2457 * chunk allocation.
2458 *
2459 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2460 * phases.
2461 */
2462void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2463{
2464	struct btrfs_fs_info *fs_info = trans->fs_info;
2465	struct btrfs_block_group *block_group;
2466	int ret = 0;
2467
2468	while (!list_empty(&trans->new_bgs)) {
2469		int index;
2470
2471		block_group = list_first_entry(&trans->new_bgs,
2472					       struct btrfs_block_group,
2473					       bg_list);
2474		if (ret)
2475			goto next;
2476
2477		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2478
2479		ret = insert_block_group_item(trans, block_group);
2480		if (ret)
2481			btrfs_abort_transaction(trans, ret);
2482		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2483			      &block_group->runtime_flags)) {
2484			mutex_lock(&fs_info->chunk_mutex);
2485			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2486			mutex_unlock(&fs_info->chunk_mutex);
2487			if (ret)
2488				btrfs_abort_transaction(trans, ret);
2489		}
2490		ret = insert_dev_extents(trans, block_group->start,
2491					 block_group->length);
2492		if (ret)
2493			btrfs_abort_transaction(trans, ret);
2494		add_block_group_free_space(trans, block_group);
2495
2496		/*
2497		 * If we restriped during balance, we may have added a new raid
2498		 * type, so now add the sysfs entries when it is safe to do so.
2499		 * We don't have to worry about locking here as it's handled in
2500		 * btrfs_sysfs_add_block_group_type.
2501		 */
2502		if (block_group->space_info->block_group_kobjs[index] == NULL)
2503			btrfs_sysfs_add_block_group_type(block_group);
2504
2505		/* Already aborted the transaction if it failed. */
2506next:
2507		btrfs_delayed_refs_rsv_release(fs_info, 1);
2508		list_del_init(&block_group->bg_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2509	}
2510	btrfs_trans_release_chunk_metadata(trans);
2511}
2512
2513/*
2514 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2515 * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2516 */
2517static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2518{
2519	u64 div = SZ_1G;
2520	u64 index;
2521
2522	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2523		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2524
2525	/* If we have a smaller fs index based on 128MiB. */
2526	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2527		div = SZ_128M;
2528
2529	offset = div64_u64(offset, div);
2530	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2531	return index;
2532}
2533
2534struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2535						 u64 bytes_used, u64 type,
2536						 u64 chunk_offset, u64 size)
2537{
2538	struct btrfs_fs_info *fs_info = trans->fs_info;
2539	struct btrfs_block_group *cache;
2540	int ret;
2541
2542	btrfs_set_log_full_commit(trans);
2543
2544	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2545	if (!cache)
2546		return ERR_PTR(-ENOMEM);
2547
 
 
 
 
 
 
 
2548	cache->length = size;
2549	set_free_space_tree_thresholds(cache);
2550	cache->used = bytes_used;
2551	cache->flags = type;
2552	cache->cached = BTRFS_CACHE_FINISHED;
2553	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2554
2555	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2556		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2557
2558	ret = btrfs_load_block_group_zone_info(cache, true);
2559	if (ret) {
2560		btrfs_put_block_group(cache);
2561		return ERR_PTR(ret);
2562	}
2563
2564	ret = exclude_super_stripes(cache);
2565	if (ret) {
2566		/* We may have excluded something, so call this just in case */
2567		btrfs_free_excluded_extents(cache);
2568		btrfs_put_block_group(cache);
2569		return ERR_PTR(ret);
2570	}
2571
2572	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2573
2574	btrfs_free_excluded_extents(cache);
 
 
 
 
2575
2576	/*
2577	 * Ensure the corresponding space_info object is created and
2578	 * assigned to our block group. We want our bg to be added to the rbtree
2579	 * with its ->space_info set.
2580	 */
2581	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2582	ASSERT(cache->space_info);
2583
2584	ret = btrfs_add_block_group_cache(fs_info, cache);
2585	if (ret) {
2586		btrfs_remove_free_space_cache(cache);
2587		btrfs_put_block_group(cache);
2588		return ERR_PTR(ret);
2589	}
2590
2591	/*
2592	 * Now that our block group has its ->space_info set and is inserted in
2593	 * the rbtree, update the space info's counters.
2594	 */
2595	trace_btrfs_add_block_group(fs_info, cache, 1);
2596	btrfs_add_bg_to_space_info(fs_info, cache);
2597	btrfs_update_global_block_rsv(fs_info);
2598
2599#ifdef CONFIG_BTRFS_DEBUG
2600	if (btrfs_should_fragment_free_space(cache)) {
2601		u64 new_bytes_used = size - bytes_used;
2602
2603		cache->space_info->bytes_used += new_bytes_used >> 1;
2604		fragment_free_space(cache);
2605	}
2606#endif
2607
2608	list_add_tail(&cache->bg_list, &trans->new_bgs);
2609	trans->delayed_ref_updates++;
2610	btrfs_update_delayed_refs_rsv(trans);
2611
2612	set_avail_alloc_bits(fs_info, type);
2613	return cache;
2614}
2615
2616/*
2617 * Mark one block group RO, can be called several times for the same block
2618 * group.
2619 *
2620 * @cache:		the destination block group
2621 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2622 * 			ensure we still have some free space after marking this
2623 * 			block group RO.
2624 */
2625int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2626			     bool do_chunk_alloc)
2627{
2628	struct btrfs_fs_info *fs_info = cache->fs_info;
2629	struct btrfs_trans_handle *trans;
2630	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2631	u64 alloc_flags;
2632	int ret;
2633	bool dirty_bg_running;
2634
2635	/*
2636	 * This can only happen when we are doing read-only scrub on read-only
2637	 * mount.
2638	 * In that case we should not start a new transaction on read-only fs.
2639	 * Thus here we skip all chunk allocations.
2640	 */
2641	if (sb_rdonly(fs_info->sb)) {
2642		mutex_lock(&fs_info->ro_block_group_mutex);
2643		ret = inc_block_group_ro(cache, 0);
2644		mutex_unlock(&fs_info->ro_block_group_mutex);
2645		return ret;
2646	}
2647
2648	do {
2649		trans = btrfs_join_transaction(root);
2650		if (IS_ERR(trans))
2651			return PTR_ERR(trans);
2652
2653		dirty_bg_running = false;
2654
2655		/*
2656		 * We're not allowed to set block groups readonly after the dirty
2657		 * block group cache has started writing.  If it already started,
2658		 * back off and let this transaction commit.
2659		 */
2660		mutex_lock(&fs_info->ro_block_group_mutex);
2661		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2662			u64 transid = trans->transid;
2663
2664			mutex_unlock(&fs_info->ro_block_group_mutex);
2665			btrfs_end_transaction(trans);
2666
2667			ret = btrfs_wait_for_commit(fs_info, transid);
2668			if (ret)
2669				return ret;
2670			dirty_bg_running = true;
2671		}
2672	} while (dirty_bg_running);
2673
2674	if (do_chunk_alloc) {
2675		/*
2676		 * If we are changing raid levels, try to allocate a
2677		 * corresponding block group with the new raid level.
2678		 */
2679		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2680		if (alloc_flags != cache->flags) {
2681			ret = btrfs_chunk_alloc(trans, alloc_flags,
2682						CHUNK_ALLOC_FORCE);
2683			/*
2684			 * ENOSPC is allowed here, we may have enough space
2685			 * already allocated at the new raid level to carry on
2686			 */
2687			if (ret == -ENOSPC)
2688				ret = 0;
2689			if (ret < 0)
2690				goto out;
2691		}
2692	}
2693
2694	ret = inc_block_group_ro(cache, 0);
2695	if (!do_chunk_alloc || ret == -ETXTBSY)
2696		goto unlock_out;
2697	if (!ret)
2698		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2699	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2700	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2701	if (ret < 0)
2702		goto out;
2703	/*
2704	 * We have allocated a new chunk. We also need to activate that chunk to
2705	 * grant metadata tickets for zoned filesystem.
2706	 */
2707	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2708	if (ret < 0)
2709		goto out;
2710
2711	ret = inc_block_group_ro(cache, 0);
2712	if (ret == -ETXTBSY)
2713		goto unlock_out;
2714out:
2715	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2716		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2717		mutex_lock(&fs_info->chunk_mutex);
2718		check_system_chunk(trans, alloc_flags);
2719		mutex_unlock(&fs_info->chunk_mutex);
2720	}
2721unlock_out:
2722	mutex_unlock(&fs_info->ro_block_group_mutex);
2723
2724	btrfs_end_transaction(trans);
2725	return ret;
2726}
2727
2728void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2729{
2730	struct btrfs_space_info *sinfo = cache->space_info;
2731	u64 num_bytes;
2732
2733	BUG_ON(!cache->ro);
2734
2735	spin_lock(&sinfo->lock);
2736	spin_lock(&cache->lock);
2737	if (!--cache->ro) {
2738		if (btrfs_is_zoned(cache->fs_info)) {
2739			/* Migrate zone_unusable bytes back */
2740			cache->zone_unusable =
2741				(cache->alloc_offset - cache->used) +
 
2742				(cache->length - cache->zone_capacity);
2743			sinfo->bytes_zone_unusable += cache->zone_unusable;
 
2744			sinfo->bytes_readonly -= cache->zone_unusable;
2745		}
2746		num_bytes = cache->length - cache->reserved -
2747			    cache->pinned - cache->bytes_super -
2748			    cache->zone_unusable - cache->used;
2749		sinfo->bytes_readonly -= num_bytes;
2750		list_del_init(&cache->ro_list);
2751	}
2752	spin_unlock(&cache->lock);
2753	spin_unlock(&sinfo->lock);
2754}
2755
2756static int update_block_group_item(struct btrfs_trans_handle *trans,
2757				   struct btrfs_path *path,
2758				   struct btrfs_block_group *cache)
2759{
2760	struct btrfs_fs_info *fs_info = trans->fs_info;
2761	int ret;
2762	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2763	unsigned long bi;
2764	struct extent_buffer *leaf;
2765	struct btrfs_block_group_item bgi;
2766	struct btrfs_key key;
2767	u64 old_commit_used;
2768	u64 used;
2769
2770	/*
2771	 * Block group items update can be triggered out of commit transaction
2772	 * critical section, thus we need a consistent view of used bytes.
2773	 * We cannot use cache->used directly outside of the spin lock, as it
2774	 * may be changed.
2775	 */
2776	spin_lock(&cache->lock);
2777	old_commit_used = cache->commit_used;
2778	used = cache->used;
2779	/* No change in used bytes, can safely skip it. */
2780	if (cache->commit_used == used) {
2781		spin_unlock(&cache->lock);
2782		return 0;
2783	}
2784	cache->commit_used = used;
2785	spin_unlock(&cache->lock);
2786
2787	key.objectid = cache->start;
2788	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2789	key.offset = cache->length;
2790
2791	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2792	if (ret) {
2793		if (ret > 0)
2794			ret = -ENOENT;
2795		goto fail;
2796	}
2797
2798	leaf = path->nodes[0];
2799	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2800	btrfs_set_stack_block_group_used(&bgi, used);
2801	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2802						   cache->global_root_id);
2803	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2804	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2805	btrfs_mark_buffer_dirty(leaf);
2806fail:
2807	btrfs_release_path(path);
2808	/* We didn't update the block group item, need to revert @commit_used. */
2809	if (ret < 0) {
 
 
 
 
 
 
 
 
2810		spin_lock(&cache->lock);
2811		cache->commit_used = old_commit_used;
2812		spin_unlock(&cache->lock);
2813	}
2814	return ret;
2815
2816}
2817
2818static int cache_save_setup(struct btrfs_block_group *block_group,
2819			    struct btrfs_trans_handle *trans,
2820			    struct btrfs_path *path)
2821{
2822	struct btrfs_fs_info *fs_info = block_group->fs_info;
2823	struct btrfs_root *root = fs_info->tree_root;
2824	struct inode *inode = NULL;
2825	struct extent_changeset *data_reserved = NULL;
2826	u64 alloc_hint = 0;
2827	int dcs = BTRFS_DC_ERROR;
2828	u64 cache_size = 0;
2829	int retries = 0;
2830	int ret = 0;
2831
2832	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2833		return 0;
2834
2835	/*
2836	 * If this block group is smaller than 100 megs don't bother caching the
2837	 * block group.
2838	 */
2839	if (block_group->length < (100 * SZ_1M)) {
2840		spin_lock(&block_group->lock);
2841		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2842		spin_unlock(&block_group->lock);
2843		return 0;
2844	}
2845
2846	if (TRANS_ABORTED(trans))
2847		return 0;
2848again:
2849	inode = lookup_free_space_inode(block_group, path);
2850	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2851		ret = PTR_ERR(inode);
2852		btrfs_release_path(path);
2853		goto out;
2854	}
2855
2856	if (IS_ERR(inode)) {
2857		BUG_ON(retries);
2858		retries++;
2859
2860		if (block_group->ro)
2861			goto out_free;
2862
2863		ret = create_free_space_inode(trans, block_group, path);
2864		if (ret)
2865			goto out_free;
2866		goto again;
2867	}
2868
2869	/*
2870	 * We want to set the generation to 0, that way if anything goes wrong
2871	 * from here on out we know not to trust this cache when we load up next
2872	 * time.
2873	 */
2874	BTRFS_I(inode)->generation = 0;
2875	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2876	if (ret) {
2877		/*
2878		 * So theoretically we could recover from this, simply set the
2879		 * super cache generation to 0 so we know to invalidate the
2880		 * cache, but then we'd have to keep track of the block groups
2881		 * that fail this way so we know we _have_ to reset this cache
2882		 * before the next commit or risk reading stale cache.  So to
2883		 * limit our exposure to horrible edge cases lets just abort the
2884		 * transaction, this only happens in really bad situations
2885		 * anyway.
2886		 */
2887		btrfs_abort_transaction(trans, ret);
2888		goto out_put;
2889	}
2890	WARN_ON(ret);
2891
2892	/* We've already setup this transaction, go ahead and exit */
2893	if (block_group->cache_generation == trans->transid &&
2894	    i_size_read(inode)) {
2895		dcs = BTRFS_DC_SETUP;
2896		goto out_put;
2897	}
2898
2899	if (i_size_read(inode) > 0) {
2900		ret = btrfs_check_trunc_cache_free_space(fs_info,
2901					&fs_info->global_block_rsv);
2902		if (ret)
2903			goto out_put;
2904
2905		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2906		if (ret)
2907			goto out_put;
2908	}
2909
2910	spin_lock(&block_group->lock);
2911	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2912	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2913		/*
2914		 * don't bother trying to write stuff out _if_
2915		 * a) we're not cached,
2916		 * b) we're with nospace_cache mount option,
2917		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2918		 */
2919		dcs = BTRFS_DC_WRITTEN;
2920		spin_unlock(&block_group->lock);
2921		goto out_put;
2922	}
2923	spin_unlock(&block_group->lock);
2924
2925	/*
2926	 * We hit an ENOSPC when setting up the cache in this transaction, just
2927	 * skip doing the setup, we've already cleared the cache so we're safe.
2928	 */
2929	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2930		ret = -ENOSPC;
2931		goto out_put;
2932	}
2933
2934	/*
2935	 * Try to preallocate enough space based on how big the block group is.
2936	 * Keep in mind this has to include any pinned space which could end up
2937	 * taking up quite a bit since it's not folded into the other space
2938	 * cache.
2939	 */
2940	cache_size = div_u64(block_group->length, SZ_256M);
2941	if (!cache_size)
2942		cache_size = 1;
2943
2944	cache_size *= 16;
2945	cache_size *= fs_info->sectorsize;
2946
2947	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2948					  cache_size, false);
2949	if (ret)
2950		goto out_put;
2951
2952	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2953					      cache_size, cache_size,
2954					      &alloc_hint);
2955	/*
2956	 * Our cache requires contiguous chunks so that we don't modify a bunch
2957	 * of metadata or split extents when writing the cache out, which means
2958	 * we can enospc if we are heavily fragmented in addition to just normal
2959	 * out of space conditions.  So if we hit this just skip setting up any
2960	 * other block groups for this transaction, maybe we'll unpin enough
2961	 * space the next time around.
2962	 */
2963	if (!ret)
2964		dcs = BTRFS_DC_SETUP;
2965	else if (ret == -ENOSPC)
2966		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2967
2968out_put:
2969	iput(inode);
2970out_free:
2971	btrfs_release_path(path);
2972out:
2973	spin_lock(&block_group->lock);
2974	if (!ret && dcs == BTRFS_DC_SETUP)
2975		block_group->cache_generation = trans->transid;
2976	block_group->disk_cache_state = dcs;
2977	spin_unlock(&block_group->lock);
2978
2979	extent_changeset_free(data_reserved);
2980	return ret;
2981}
2982
2983int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2984{
2985	struct btrfs_fs_info *fs_info = trans->fs_info;
2986	struct btrfs_block_group *cache, *tmp;
2987	struct btrfs_transaction *cur_trans = trans->transaction;
2988	struct btrfs_path *path;
2989
2990	if (list_empty(&cur_trans->dirty_bgs) ||
2991	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2992		return 0;
2993
2994	path = btrfs_alloc_path();
2995	if (!path)
2996		return -ENOMEM;
2997
2998	/* Could add new block groups, use _safe just in case */
2999	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3000				 dirty_list) {
3001		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3002			cache_save_setup(cache, trans, path);
3003	}
3004
3005	btrfs_free_path(path);
3006	return 0;
3007}
3008
3009/*
3010 * Transaction commit does final block group cache writeback during a critical
3011 * section where nothing is allowed to change the FS.  This is required in
3012 * order for the cache to actually match the block group, but can introduce a
3013 * lot of latency into the commit.
3014 *
3015 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3016 * There's a chance we'll have to redo some of it if the block group changes
3017 * again during the commit, but it greatly reduces the commit latency by
3018 * getting rid of the easy block groups while we're still allowing others to
3019 * join the commit.
3020 */
3021int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3022{
3023	struct btrfs_fs_info *fs_info = trans->fs_info;
3024	struct btrfs_block_group *cache;
3025	struct btrfs_transaction *cur_trans = trans->transaction;
3026	int ret = 0;
3027	int should_put;
3028	struct btrfs_path *path = NULL;
3029	LIST_HEAD(dirty);
3030	struct list_head *io = &cur_trans->io_bgs;
3031	int loops = 0;
3032
3033	spin_lock(&cur_trans->dirty_bgs_lock);
3034	if (list_empty(&cur_trans->dirty_bgs)) {
3035		spin_unlock(&cur_trans->dirty_bgs_lock);
3036		return 0;
3037	}
3038	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3039	spin_unlock(&cur_trans->dirty_bgs_lock);
3040
3041again:
3042	/* Make sure all the block groups on our dirty list actually exist */
3043	btrfs_create_pending_block_groups(trans);
3044
3045	if (!path) {
3046		path = btrfs_alloc_path();
3047		if (!path) {
3048			ret = -ENOMEM;
3049			goto out;
3050		}
3051	}
3052
3053	/*
3054	 * cache_write_mutex is here only to save us from balance or automatic
3055	 * removal of empty block groups deleting this block group while we are
3056	 * writing out the cache
3057	 */
3058	mutex_lock(&trans->transaction->cache_write_mutex);
3059	while (!list_empty(&dirty)) {
3060		bool drop_reserve = true;
3061
3062		cache = list_first_entry(&dirty, struct btrfs_block_group,
3063					 dirty_list);
3064		/*
3065		 * This can happen if something re-dirties a block group that
3066		 * is already under IO.  Just wait for it to finish and then do
3067		 * it all again
3068		 */
3069		if (!list_empty(&cache->io_list)) {
3070			list_del_init(&cache->io_list);
3071			btrfs_wait_cache_io(trans, cache, path);
3072			btrfs_put_block_group(cache);
3073		}
3074
3075
3076		/*
3077		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3078		 * it should update the cache_state.  Don't delete until after
3079		 * we wait.
3080		 *
3081		 * Since we're not running in the commit critical section
3082		 * we need the dirty_bgs_lock to protect from update_block_group
3083		 */
3084		spin_lock(&cur_trans->dirty_bgs_lock);
3085		list_del_init(&cache->dirty_list);
3086		spin_unlock(&cur_trans->dirty_bgs_lock);
3087
3088		should_put = 1;
3089
3090		cache_save_setup(cache, trans, path);
3091
3092		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3093			cache->io_ctl.inode = NULL;
3094			ret = btrfs_write_out_cache(trans, cache, path);
3095			if (ret == 0 && cache->io_ctl.inode) {
3096				should_put = 0;
3097
3098				/*
3099				 * The cache_write_mutex is protecting the
3100				 * io_list, also refer to the definition of
3101				 * btrfs_transaction::io_bgs for more details
3102				 */
3103				list_add_tail(&cache->io_list, io);
3104			} else {
3105				/*
3106				 * If we failed to write the cache, the
3107				 * generation will be bad and life goes on
3108				 */
3109				ret = 0;
3110			}
3111		}
3112		if (!ret) {
3113			ret = update_block_group_item(trans, path, cache);
3114			/*
3115			 * Our block group might still be attached to the list
3116			 * of new block groups in the transaction handle of some
3117			 * other task (struct btrfs_trans_handle->new_bgs). This
3118			 * means its block group item isn't yet in the extent
3119			 * tree. If this happens ignore the error, as we will
3120			 * try again later in the critical section of the
3121			 * transaction commit.
3122			 */
3123			if (ret == -ENOENT) {
3124				ret = 0;
3125				spin_lock(&cur_trans->dirty_bgs_lock);
3126				if (list_empty(&cache->dirty_list)) {
3127					list_add_tail(&cache->dirty_list,
3128						      &cur_trans->dirty_bgs);
3129					btrfs_get_block_group(cache);
3130					drop_reserve = false;
3131				}
3132				spin_unlock(&cur_trans->dirty_bgs_lock);
3133			} else if (ret) {
3134				btrfs_abort_transaction(trans, ret);
3135			}
3136		}
3137
3138		/* If it's not on the io list, we need to put the block group */
3139		if (should_put)
3140			btrfs_put_block_group(cache);
3141		if (drop_reserve)
3142			btrfs_delayed_refs_rsv_release(fs_info, 1);
3143		/*
3144		 * Avoid blocking other tasks for too long. It might even save
3145		 * us from writing caches for block groups that are going to be
3146		 * removed.
3147		 */
3148		mutex_unlock(&trans->transaction->cache_write_mutex);
3149		if (ret)
3150			goto out;
3151		mutex_lock(&trans->transaction->cache_write_mutex);
3152	}
3153	mutex_unlock(&trans->transaction->cache_write_mutex);
3154
3155	/*
3156	 * Go through delayed refs for all the stuff we've just kicked off
3157	 * and then loop back (just once)
3158	 */
3159	if (!ret)
3160		ret = btrfs_run_delayed_refs(trans, 0);
3161	if (!ret && loops == 0) {
3162		loops++;
3163		spin_lock(&cur_trans->dirty_bgs_lock);
3164		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3165		/*
3166		 * dirty_bgs_lock protects us from concurrent block group
3167		 * deletes too (not just cache_write_mutex).
3168		 */
3169		if (!list_empty(&dirty)) {
3170			spin_unlock(&cur_trans->dirty_bgs_lock);
3171			goto again;
3172		}
3173		spin_unlock(&cur_trans->dirty_bgs_lock);
3174	}
3175out:
3176	if (ret < 0) {
3177		spin_lock(&cur_trans->dirty_bgs_lock);
3178		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3179		spin_unlock(&cur_trans->dirty_bgs_lock);
3180		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3181	}
3182
3183	btrfs_free_path(path);
3184	return ret;
3185}
3186
3187int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3188{
3189	struct btrfs_fs_info *fs_info = trans->fs_info;
3190	struct btrfs_block_group *cache;
3191	struct btrfs_transaction *cur_trans = trans->transaction;
3192	int ret = 0;
3193	int should_put;
3194	struct btrfs_path *path;
3195	struct list_head *io = &cur_trans->io_bgs;
3196
3197	path = btrfs_alloc_path();
3198	if (!path)
3199		return -ENOMEM;
3200
3201	/*
3202	 * Even though we are in the critical section of the transaction commit,
3203	 * we can still have concurrent tasks adding elements to this
3204	 * transaction's list of dirty block groups. These tasks correspond to
3205	 * endio free space workers started when writeback finishes for a
3206	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3207	 * allocate new block groups as a result of COWing nodes of the root
3208	 * tree when updating the free space inode. The writeback for the space
3209	 * caches is triggered by an earlier call to
3210	 * btrfs_start_dirty_block_groups() and iterations of the following
3211	 * loop.
3212	 * Also we want to do the cache_save_setup first and then run the
3213	 * delayed refs to make sure we have the best chance at doing this all
3214	 * in one shot.
3215	 */
3216	spin_lock(&cur_trans->dirty_bgs_lock);
3217	while (!list_empty(&cur_trans->dirty_bgs)) {
3218		cache = list_first_entry(&cur_trans->dirty_bgs,
3219					 struct btrfs_block_group,
3220					 dirty_list);
3221
3222		/*
3223		 * This can happen if cache_save_setup re-dirties a block group
3224		 * that is already under IO.  Just wait for it to finish and
3225		 * then do it all again
3226		 */
3227		if (!list_empty(&cache->io_list)) {
3228			spin_unlock(&cur_trans->dirty_bgs_lock);
3229			list_del_init(&cache->io_list);
3230			btrfs_wait_cache_io(trans, cache, path);
3231			btrfs_put_block_group(cache);
3232			spin_lock(&cur_trans->dirty_bgs_lock);
3233		}
3234
3235		/*
3236		 * Don't remove from the dirty list until after we've waited on
3237		 * any pending IO
3238		 */
3239		list_del_init(&cache->dirty_list);
3240		spin_unlock(&cur_trans->dirty_bgs_lock);
3241		should_put = 1;
3242
3243		cache_save_setup(cache, trans, path);
3244
3245		if (!ret)
3246			ret = btrfs_run_delayed_refs(trans,
3247						     (unsigned long) -1);
3248
3249		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3250			cache->io_ctl.inode = NULL;
3251			ret = btrfs_write_out_cache(trans, cache, path);
3252			if (ret == 0 && cache->io_ctl.inode) {
3253				should_put = 0;
3254				list_add_tail(&cache->io_list, io);
3255			} else {
3256				/*
3257				 * If we failed to write the cache, the
3258				 * generation will be bad and life goes on
3259				 */
3260				ret = 0;
3261			}
3262		}
3263		if (!ret) {
3264			ret = update_block_group_item(trans, path, cache);
3265			/*
3266			 * One of the free space endio workers might have
3267			 * created a new block group while updating a free space
3268			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3269			 * and hasn't released its transaction handle yet, in
3270			 * which case the new block group is still attached to
3271			 * its transaction handle and its creation has not
3272			 * finished yet (no block group item in the extent tree
3273			 * yet, etc). If this is the case, wait for all free
3274			 * space endio workers to finish and retry. This is a
3275			 * very rare case so no need for a more efficient and
3276			 * complex approach.
3277			 */
3278			if (ret == -ENOENT) {
3279				wait_event(cur_trans->writer_wait,
3280				   atomic_read(&cur_trans->num_writers) == 1);
3281				ret = update_block_group_item(trans, path, cache);
3282			}
3283			if (ret)
3284				btrfs_abort_transaction(trans, ret);
3285		}
3286
3287		/* If its not on the io list, we need to put the block group */
3288		if (should_put)
3289			btrfs_put_block_group(cache);
3290		btrfs_delayed_refs_rsv_release(fs_info, 1);
3291		spin_lock(&cur_trans->dirty_bgs_lock);
3292	}
3293	spin_unlock(&cur_trans->dirty_bgs_lock);
3294
3295	/*
3296	 * Refer to the definition of io_bgs member for details why it's safe
3297	 * to use it without any locking
3298	 */
3299	while (!list_empty(io)) {
3300		cache = list_first_entry(io, struct btrfs_block_group,
3301					 io_list);
3302		list_del_init(&cache->io_list);
3303		btrfs_wait_cache_io(trans, cache, path);
3304		btrfs_put_block_group(cache);
3305	}
3306
3307	btrfs_free_path(path);
3308	return ret;
3309}
3310
3311int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3312			     u64 bytenr, u64 num_bytes, bool alloc)
3313{
3314	struct btrfs_fs_info *info = trans->fs_info;
3315	struct btrfs_block_group *cache = NULL;
3316	u64 total = num_bytes;
3317	u64 old_val;
3318	u64 byte_in_group;
 
3319	int factor;
3320	int ret = 0;
3321
3322	/* Block accounting for super block */
3323	spin_lock(&info->delalloc_root_lock);
3324	old_val = btrfs_super_bytes_used(info->super_copy);
3325	if (alloc)
3326		old_val += num_bytes;
3327	else
3328		old_val -= num_bytes;
3329	btrfs_set_super_bytes_used(info->super_copy, old_val);
3330	spin_unlock(&info->delalloc_root_lock);
3331
3332	while (total) {
3333		bool reclaim;
3334
3335		cache = btrfs_lookup_block_group(info, bytenr);
3336		if (!cache) {
3337			ret = -ENOENT;
3338			break;
3339		}
3340		factor = btrfs_bg_type_to_factor(cache->flags);
3341
3342		/*
3343		 * If this block group has free space cache written out, we
3344		 * need to make sure to load it if we are removing space.  This
3345		 * is because we need the unpinning stage to actually add the
3346		 * space back to the block group, otherwise we will leak space.
3347		 */
3348		if (!alloc && !btrfs_block_group_done(cache))
3349			btrfs_cache_block_group(cache, true);
3350
3351		byte_in_group = bytenr - cache->start;
3352		WARN_ON(byte_in_group > cache->length);
3353
3354		spin_lock(&cache->space_info->lock);
3355		spin_lock(&cache->lock);
 
 
 
 
 
 
3356
3357		if (btrfs_test_opt(info, SPACE_CACHE) &&
3358		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3359			cache->disk_cache_state = BTRFS_DC_CLEAR;
3360
3361		old_val = cache->used;
3362		num_bytes = min(total, cache->length - byte_in_group);
3363		if (alloc) {
3364			old_val += num_bytes;
3365			cache->used = old_val;
3366			cache->reserved -= num_bytes;
3367			cache->space_info->bytes_reserved -= num_bytes;
3368			cache->space_info->bytes_used += num_bytes;
3369			cache->space_info->disk_used += num_bytes * factor;
3370			spin_unlock(&cache->lock);
3371			spin_unlock(&cache->space_info->lock);
3372		} else {
3373			old_val -= num_bytes;
3374			cache->used = old_val;
3375			cache->pinned += num_bytes;
3376			btrfs_space_info_update_bytes_pinned(info,
3377					cache->space_info, num_bytes);
3378			cache->space_info->bytes_used -= num_bytes;
3379			cache->space_info->disk_used -= num_bytes * factor;
3380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381			reclaim = should_reclaim_block_group(cache, num_bytes);
3382			spin_unlock(&cache->lock);
3383			spin_unlock(&cache->space_info->lock);
3384
3385			set_extent_dirty(&trans->transaction->pinned_extents,
3386					 bytenr, bytenr + num_bytes - 1,
3387					 GFP_NOFS | __GFP_NOFAIL);
3388		}
3389
3390		spin_lock(&trans->transaction->dirty_bgs_lock);
3391		if (list_empty(&cache->dirty_list)) {
3392			list_add_tail(&cache->dirty_list,
3393				      &trans->transaction->dirty_bgs);
3394			trans->delayed_ref_updates++;
3395			btrfs_get_block_group(cache);
3396		}
3397		spin_unlock(&trans->transaction->dirty_bgs_lock);
3398
3399		/*
3400		 * No longer have used bytes in this block group, queue it for
3401		 * deletion. We do this after adding the block group to the
3402		 * dirty list to avoid races between cleaner kthread and space
3403		 * cache writeout.
3404		 */
3405		if (!alloc && old_val == 0) {
3406			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3407				btrfs_mark_bg_unused(cache);
3408		} else if (!alloc && reclaim) {
3409			btrfs_mark_bg_to_reclaim(cache);
3410		}
3411
3412		btrfs_put_block_group(cache);
3413		total -= num_bytes;
3414		bytenr += num_bytes;
 
 
 
 
 
 
 
3415	}
3416
 
 
3417	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3418	btrfs_update_delayed_refs_rsv(trans);
3419	return ret;
 
 
3420}
3421
3422/*
3423 * Update the block_group and space info counters.
3424 *
3425 * @cache:	The cache we are manipulating
3426 * @ram_bytes:  The number of bytes of file content, and will be same to
3427 *              @num_bytes except for the compress path.
3428 * @num_bytes:	The number of bytes in question
3429 * @delalloc:   The blocks are allocated for the delalloc write
3430 *
3431 * This is called by the allocator when it reserves space. If this is a
3432 * reservation and the block group has become read only we cannot make the
3433 * reservation and return -EAGAIN, otherwise this function always succeeds.
3434 */
3435int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3436			     u64 ram_bytes, u64 num_bytes, int delalloc)
 
3437{
3438	struct btrfs_space_info *space_info = cache->space_info;
 
3439	int ret = 0;
3440
3441	spin_lock(&space_info->lock);
3442	spin_lock(&cache->lock);
3443	if (cache->ro) {
3444		ret = -EAGAIN;
3445	} else {
3446		cache->reserved += num_bytes;
3447		space_info->bytes_reserved += num_bytes;
3448		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3449					      space_info->flags, num_bytes, 1);
3450		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3451						      space_info, -ram_bytes);
3452		if (delalloc)
3453			cache->delalloc_bytes += num_bytes;
3454
3455		/*
3456		 * Compression can use less space than we reserved, so wake
3457		 * tickets if that happens
3458		 */
3459		if (num_bytes < ram_bytes)
3460			btrfs_try_granting_tickets(cache->fs_info, space_info);
3461	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3462	spin_unlock(&cache->lock);
3463	spin_unlock(&space_info->lock);
3464	return ret;
3465}
3466
3467/*
3468 * Update the block_group and space info counters.
3469 *
3470 * @cache:      The cache we are manipulating
3471 * @num_bytes:  The number of bytes in question
3472 * @delalloc:   The blocks are allocated for the delalloc write
3473 *
3474 * This is called by somebody who is freeing space that was never actually used
3475 * on disk.  For example if you reserve some space for a new leaf in transaction
3476 * A and before transaction A commits you free that leaf, you call this with
3477 * reserve set to 0 in order to clear the reservation.
3478 */
3479void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3480			       u64 num_bytes, int delalloc)
3481{
3482	struct btrfs_space_info *space_info = cache->space_info;
3483
3484	spin_lock(&space_info->lock);
3485	spin_lock(&cache->lock);
3486	if (cache->ro)
3487		space_info->bytes_readonly += num_bytes;
 
 
3488	cache->reserved -= num_bytes;
3489	space_info->bytes_reserved -= num_bytes;
3490	space_info->max_extent_size = 0;
3491
3492	if (delalloc)
3493		cache->delalloc_bytes -= num_bytes;
3494	spin_unlock(&cache->lock);
3495
3496	btrfs_try_granting_tickets(cache->fs_info, space_info);
3497	spin_unlock(&space_info->lock);
3498}
3499
3500static void force_metadata_allocation(struct btrfs_fs_info *info)
3501{
3502	struct list_head *head = &info->space_info;
3503	struct btrfs_space_info *found;
3504
3505	list_for_each_entry(found, head, list) {
3506		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3507			found->force_alloc = CHUNK_ALLOC_FORCE;
3508	}
3509}
3510
3511static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3512			      struct btrfs_space_info *sinfo, int force)
3513{
3514	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3515	u64 thresh;
3516
3517	if (force == CHUNK_ALLOC_FORCE)
3518		return 1;
3519
3520	/*
3521	 * in limited mode, we want to have some free space up to
3522	 * about 1% of the FS size.
3523	 */
3524	if (force == CHUNK_ALLOC_LIMITED) {
3525		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3526		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3527
3528		if (sinfo->total_bytes - bytes_used < thresh)
3529			return 1;
3530	}
3531
3532	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3533		return 0;
3534	return 1;
3535}
3536
3537int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3538{
3539	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3540
3541	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3542}
3543
3544static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3545{
3546	struct btrfs_block_group *bg;
3547	int ret;
3548
3549	/*
3550	 * Check if we have enough space in the system space info because we
3551	 * will need to update device items in the chunk btree and insert a new
3552	 * chunk item in the chunk btree as well. This will allocate a new
3553	 * system block group if needed.
3554	 */
3555	check_system_chunk(trans, flags);
3556
3557	bg = btrfs_create_chunk(trans, flags);
3558	if (IS_ERR(bg)) {
3559		ret = PTR_ERR(bg);
3560		goto out;
3561	}
3562
3563	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3564	/*
3565	 * Normally we are not expected to fail with -ENOSPC here, since we have
3566	 * previously reserved space in the system space_info and allocated one
3567	 * new system chunk if necessary. However there are three exceptions:
3568	 *
3569	 * 1) We may have enough free space in the system space_info but all the
3570	 *    existing system block groups have a profile which can not be used
3571	 *    for extent allocation.
3572	 *
3573	 *    This happens when mounting in degraded mode. For example we have a
3574	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3575	 *    using the other device in degraded mode. If we then allocate a chunk,
3576	 *    we may have enough free space in the existing system space_info, but
3577	 *    none of the block groups can be used for extent allocation since they
3578	 *    have a RAID1 profile, and because we are in degraded mode with a
3579	 *    single device, we are forced to allocate a new system chunk with a
3580	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3581	 *    block groups and check if they have a usable profile and enough space
3582	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3583	 *    try again after forcing allocation of a new system chunk. Like this
3584	 *    we avoid paying the cost of that search in normal circumstances, when
3585	 *    we were not mounted in degraded mode;
3586	 *
3587	 * 2) We had enough free space info the system space_info, and one suitable
3588	 *    block group to allocate from when we called check_system_chunk()
3589	 *    above. However right after we called it, the only system block group
3590	 *    with enough free space got turned into RO mode by a running scrub,
3591	 *    and in this case we have to allocate a new one and retry. We only
3592	 *    need do this allocate and retry once, since we have a transaction
3593	 *    handle and scrub uses the commit root to search for block groups;
3594	 *
3595	 * 3) We had one system block group with enough free space when we called
3596	 *    check_system_chunk(), but after that, right before we tried to
3597	 *    allocate the last extent buffer we needed, a discard operation came
3598	 *    in and it temporarily removed the last free space entry from the
3599	 *    block group (discard removes a free space entry, discards it, and
3600	 *    then adds back the entry to the block group cache).
3601	 */
3602	if (ret == -ENOSPC) {
3603		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3604		struct btrfs_block_group *sys_bg;
3605
3606		sys_bg = btrfs_create_chunk(trans, sys_flags);
3607		if (IS_ERR(sys_bg)) {
3608			ret = PTR_ERR(sys_bg);
3609			btrfs_abort_transaction(trans, ret);
3610			goto out;
3611		}
3612
3613		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3614		if (ret) {
3615			btrfs_abort_transaction(trans, ret);
3616			goto out;
3617		}
3618
3619		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3620		if (ret) {
3621			btrfs_abort_transaction(trans, ret);
3622			goto out;
3623		}
3624	} else if (ret) {
3625		btrfs_abort_transaction(trans, ret);
3626		goto out;
3627	}
3628out:
3629	btrfs_trans_release_chunk_metadata(trans);
3630
3631	if (ret)
3632		return ERR_PTR(ret);
3633
3634	btrfs_get_block_group(bg);
3635	return bg;
3636}
3637
3638/*
3639 * Chunk allocation is done in 2 phases:
3640 *
3641 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3642 *    the chunk, the chunk mapping, create its block group and add the items
3643 *    that belong in the chunk btree to it - more specifically, we need to
3644 *    update device items in the chunk btree and add a new chunk item to it.
3645 *
3646 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3647 *    group item to the extent btree and the device extent items to the devices
3648 *    btree.
3649 *
3650 * This is done to prevent deadlocks. For example when COWing a node from the
3651 * extent btree we are holding a write lock on the node's parent and if we
3652 * trigger chunk allocation and attempted to insert the new block group item
3653 * in the extent btree right way, we could deadlock because the path for the
3654 * insertion can include that parent node. At first glance it seems impossible
3655 * to trigger chunk allocation after starting a transaction since tasks should
3656 * reserve enough transaction units (metadata space), however while that is true
3657 * most of the time, chunk allocation may still be triggered for several reasons:
3658 *
3659 * 1) When reserving metadata, we check if there is enough free space in the
3660 *    metadata space_info and therefore don't trigger allocation of a new chunk.
3661 *    However later when the task actually tries to COW an extent buffer from
3662 *    the extent btree or from the device btree for example, it is forced to
3663 *    allocate a new block group (chunk) because the only one that had enough
3664 *    free space was just turned to RO mode by a running scrub for example (or
3665 *    device replace, block group reclaim thread, etc), so we can not use it
3666 *    for allocating an extent and end up being forced to allocate a new one;
3667 *
3668 * 2) Because we only check that the metadata space_info has enough free bytes,
3669 *    we end up not allocating a new metadata chunk in that case. However if
3670 *    the filesystem was mounted in degraded mode, none of the existing block
3671 *    groups might be suitable for extent allocation due to their incompatible
3672 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3673 *    use a RAID1 profile, in degraded mode using a single device). In this case
3674 *    when the task attempts to COW some extent buffer of the extent btree for
3675 *    example, it will trigger allocation of a new metadata block group with a
3676 *    suitable profile (SINGLE profile in the example of the degraded mount of
3677 *    the RAID1 filesystem);
3678 *
3679 * 3) The task has reserved enough transaction units / metadata space, but when
3680 *    it attempts to COW an extent buffer from the extent or device btree for
3681 *    example, it does not find any free extent in any metadata block group,
3682 *    therefore forced to try to allocate a new metadata block group.
3683 *    This is because some other task allocated all available extents in the
3684 *    meanwhile - this typically happens with tasks that don't reserve space
3685 *    properly, either intentionally or as a bug. One example where this is
3686 *    done intentionally is fsync, as it does not reserve any transaction units
3687 *    and ends up allocating a variable number of metadata extents for log
3688 *    tree extent buffers;
3689 *
3690 * 4) The task has reserved enough transaction units / metadata space, but right
3691 *    before it tries to allocate the last extent buffer it needs, a discard
3692 *    operation comes in and, temporarily, removes the last free space entry from
3693 *    the only metadata block group that had free space (discard starts by
3694 *    removing a free space entry from a block group, then does the discard
3695 *    operation and, once it's done, it adds back the free space entry to the
3696 *    block group).
3697 *
3698 * We also need this 2 phases setup when adding a device to a filesystem with
3699 * a seed device - we must create new metadata and system chunks without adding
3700 * any of the block group items to the chunk, extent and device btrees. If we
3701 * did not do it this way, we would get ENOSPC when attempting to update those
3702 * btrees, since all the chunks from the seed device are read-only.
3703 *
3704 * Phase 1 does the updates and insertions to the chunk btree because if we had
3705 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3706 * parallel, we risk having too many system chunks allocated by many tasks if
3707 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3708 * extreme case this leads to exhaustion of the system chunk array in the
3709 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3710 * and with RAID filesystems (so we have more device items in the chunk btree).
3711 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3712 * the system chunk array due to concurrent allocations") provides more details.
3713 *
3714 * Allocation of system chunks does not happen through this function. A task that
3715 * needs to update the chunk btree (the only btree that uses system chunks), must
3716 * preallocate chunk space by calling either check_system_chunk() or
3717 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3718 * metadata chunk or when removing a chunk, while the later is used before doing
3719 * a modification to the chunk btree - use cases for the later are adding,
3720 * removing and resizing a device as well as relocation of a system chunk.
3721 * See the comment below for more details.
3722 *
3723 * The reservation of system space, done through check_system_chunk(), as well
3724 * as all the updates and insertions into the chunk btree must be done while
3725 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3726 * an extent buffer from the chunks btree we never trigger allocation of a new
3727 * system chunk, which would result in a deadlock (trying to lock twice an
3728 * extent buffer of the chunk btree, first time before triggering the chunk
3729 * allocation and the second time during chunk allocation while attempting to
3730 * update the chunks btree). The system chunk array is also updated while holding
3731 * that mutex. The same logic applies to removing chunks - we must reserve system
3732 * space, update the chunk btree and the system chunk array in the superblock
3733 * while holding fs_info->chunk_mutex.
3734 *
3735 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3736 *
3737 * If @force is CHUNK_ALLOC_FORCE:
3738 *    - return 1 if it successfully allocates a chunk,
3739 *    - return errors including -ENOSPC otherwise.
3740 * If @force is NOT CHUNK_ALLOC_FORCE:
3741 *    - return 0 if it doesn't need to allocate a new chunk,
3742 *    - return 1 if it successfully allocates a chunk,
3743 *    - return errors including -ENOSPC otherwise.
3744 */
3745int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3746		      enum btrfs_chunk_alloc_enum force)
3747{
3748	struct btrfs_fs_info *fs_info = trans->fs_info;
3749	struct btrfs_space_info *space_info;
3750	struct btrfs_block_group *ret_bg;
3751	bool wait_for_alloc = false;
3752	bool should_alloc = false;
3753	bool from_extent_allocation = false;
3754	int ret = 0;
3755
3756	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3757		from_extent_allocation = true;
3758		force = CHUNK_ALLOC_FORCE;
3759	}
3760
3761	/* Don't re-enter if we're already allocating a chunk */
3762	if (trans->allocating_chunk)
3763		return -ENOSPC;
3764	/*
3765	 * Allocation of system chunks can not happen through this path, as we
3766	 * could end up in a deadlock if we are allocating a data or metadata
3767	 * chunk and there is another task modifying the chunk btree.
3768	 *
3769	 * This is because while we are holding the chunk mutex, we will attempt
3770	 * to add the new chunk item to the chunk btree or update an existing
3771	 * device item in the chunk btree, while the other task that is modifying
3772	 * the chunk btree is attempting to COW an extent buffer while holding a
3773	 * lock on it and on its parent - if the COW operation triggers a system
3774	 * chunk allocation, then we can deadlock because we are holding the
3775	 * chunk mutex and we may need to access that extent buffer or its parent
3776	 * in order to add the chunk item or update a device item.
3777	 *
3778	 * Tasks that want to modify the chunk tree should reserve system space
3779	 * before updating the chunk btree, by calling either
3780	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3781	 * It's possible that after a task reserves the space, it still ends up
3782	 * here - this happens in the cases described above at do_chunk_alloc().
3783	 * The task will have to either retry or fail.
3784	 */
3785	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3786		return -ENOSPC;
3787
3788	space_info = btrfs_find_space_info(fs_info, flags);
3789	ASSERT(space_info);
3790
3791	do {
3792		spin_lock(&space_info->lock);
3793		if (force < space_info->force_alloc)
3794			force = space_info->force_alloc;
3795		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3796		if (space_info->full) {
3797			/* No more free physical space */
3798			if (should_alloc)
3799				ret = -ENOSPC;
3800			else
3801				ret = 0;
3802			spin_unlock(&space_info->lock);
3803			return ret;
3804		} else if (!should_alloc) {
3805			spin_unlock(&space_info->lock);
3806			return 0;
3807		} else if (space_info->chunk_alloc) {
3808			/*
3809			 * Someone is already allocating, so we need to block
3810			 * until this someone is finished and then loop to
3811			 * recheck if we should continue with our allocation
3812			 * attempt.
3813			 */
3814			wait_for_alloc = true;
3815			force = CHUNK_ALLOC_NO_FORCE;
3816			spin_unlock(&space_info->lock);
3817			mutex_lock(&fs_info->chunk_mutex);
3818			mutex_unlock(&fs_info->chunk_mutex);
3819		} else {
3820			/* Proceed with allocation */
3821			space_info->chunk_alloc = 1;
3822			wait_for_alloc = false;
3823			spin_unlock(&space_info->lock);
3824		}
3825
3826		cond_resched();
3827	} while (wait_for_alloc);
3828
3829	mutex_lock(&fs_info->chunk_mutex);
3830	trans->allocating_chunk = true;
3831
3832	/*
3833	 * If we have mixed data/metadata chunks we want to make sure we keep
3834	 * allocating mixed chunks instead of individual chunks.
3835	 */
3836	if (btrfs_mixed_space_info(space_info))
3837		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3838
3839	/*
3840	 * if we're doing a data chunk, go ahead and make sure that
3841	 * we keep a reasonable number of metadata chunks allocated in the
3842	 * FS as well.
3843	 */
3844	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3845		fs_info->data_chunk_allocations++;
3846		if (!(fs_info->data_chunk_allocations %
3847		      fs_info->metadata_ratio))
3848			force_metadata_allocation(fs_info);
3849	}
3850
3851	ret_bg = do_chunk_alloc(trans, flags);
3852	trans->allocating_chunk = false;
3853
3854	if (IS_ERR(ret_bg)) {
3855		ret = PTR_ERR(ret_bg);
3856	} else if (from_extent_allocation) {
3857		/*
3858		 * New block group is likely to be used soon. Try to activate
3859		 * it now. Failure is OK for now.
3860		 */
3861		btrfs_zone_activate(ret_bg);
3862	}
3863
3864	if (!ret)
3865		btrfs_put_block_group(ret_bg);
3866
3867	spin_lock(&space_info->lock);
3868	if (ret < 0) {
3869		if (ret == -ENOSPC)
3870			space_info->full = 1;
3871		else
3872			goto out;
3873	} else {
3874		ret = 1;
3875		space_info->max_extent_size = 0;
3876	}
3877
3878	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879out:
3880	space_info->chunk_alloc = 0;
3881	spin_unlock(&space_info->lock);
3882	mutex_unlock(&fs_info->chunk_mutex);
3883
3884	return ret;
3885}
3886
3887static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3888{
3889	u64 num_dev;
3890
3891	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3892	if (!num_dev)
3893		num_dev = fs_info->fs_devices->rw_devices;
3894
3895	return num_dev;
3896}
3897
3898static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3899				u64 bytes,
3900				u64 type)
3901{
3902	struct btrfs_fs_info *fs_info = trans->fs_info;
3903	struct btrfs_space_info *info;
3904	u64 left;
3905	int ret = 0;
3906
3907	/*
3908	 * Needed because we can end up allocating a system chunk and for an
3909	 * atomic and race free space reservation in the chunk block reserve.
3910	 */
3911	lockdep_assert_held(&fs_info->chunk_mutex);
3912
3913	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3914	spin_lock(&info->lock);
3915	left = info->total_bytes - btrfs_space_info_used(info, true);
3916	spin_unlock(&info->lock);
3917
3918	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3919		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3920			   left, bytes, type);
3921		btrfs_dump_space_info(fs_info, info, 0, 0);
3922	}
3923
3924	if (left < bytes) {
3925		u64 flags = btrfs_system_alloc_profile(fs_info);
3926		struct btrfs_block_group *bg;
3927
3928		/*
3929		 * Ignore failure to create system chunk. We might end up not
3930		 * needing it, as we might not need to COW all nodes/leafs from
3931		 * the paths we visit in the chunk tree (they were already COWed
3932		 * or created in the current transaction for example).
3933		 */
3934		bg = btrfs_create_chunk(trans, flags);
3935		if (IS_ERR(bg)) {
3936			ret = PTR_ERR(bg);
3937		} else {
3938			/*
3939			 * We have a new chunk. We also need to activate it for
3940			 * zoned filesystem.
3941			 */
3942			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3943			if (ret < 0)
3944				return;
3945
3946			/*
3947			 * If we fail to add the chunk item here, we end up
3948			 * trying again at phase 2 of chunk allocation, at
3949			 * btrfs_create_pending_block_groups(). So ignore
3950			 * any error here. An ENOSPC here could happen, due to
3951			 * the cases described at do_chunk_alloc() - the system
3952			 * block group we just created was just turned into RO
3953			 * mode by a scrub for example, or a running discard
3954			 * temporarily removed its free space entries, etc.
3955			 */
3956			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3957		}
3958	}
3959
3960	if (!ret) {
3961		ret = btrfs_block_rsv_add(fs_info,
3962					  &fs_info->chunk_block_rsv,
3963					  bytes, BTRFS_RESERVE_NO_FLUSH);
3964		if (!ret)
3965			trans->chunk_bytes_reserved += bytes;
3966	}
3967}
3968
3969/*
3970 * Reserve space in the system space for allocating or removing a chunk.
3971 * The caller must be holding fs_info->chunk_mutex.
3972 */
3973void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3974{
3975	struct btrfs_fs_info *fs_info = trans->fs_info;
3976	const u64 num_devs = get_profile_num_devs(fs_info, type);
3977	u64 bytes;
3978
3979	/* num_devs device items to update and 1 chunk item to add or remove. */
3980	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3981		btrfs_calc_insert_metadata_size(fs_info, 1);
3982
3983	reserve_chunk_space(trans, bytes, type);
3984}
3985
3986/*
3987 * Reserve space in the system space, if needed, for doing a modification to the
3988 * chunk btree.
3989 *
3990 * @trans:		A transaction handle.
3991 * @is_item_insertion:	Indicate if the modification is for inserting a new item
3992 *			in the chunk btree or if it's for the deletion or update
3993 *			of an existing item.
3994 *
3995 * This is used in a context where we need to update the chunk btree outside
3996 * block group allocation and removal, to avoid a deadlock with a concurrent
3997 * task that is allocating a metadata or data block group and therefore needs to
3998 * update the chunk btree while holding the chunk mutex. After the update to the
3999 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4000 *
4001 */
4002void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4003				  bool is_item_insertion)
4004{
4005	struct btrfs_fs_info *fs_info = trans->fs_info;
4006	u64 bytes;
4007
4008	if (is_item_insertion)
4009		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4010	else
4011		bytes = btrfs_calc_metadata_size(fs_info, 1);
4012
4013	mutex_lock(&fs_info->chunk_mutex);
4014	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4015	mutex_unlock(&fs_info->chunk_mutex);
4016}
4017
4018void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4019{
4020	struct btrfs_block_group *block_group;
4021
4022	block_group = btrfs_lookup_first_block_group(info, 0);
4023	while (block_group) {
4024		btrfs_wait_block_group_cache_done(block_group);
4025		spin_lock(&block_group->lock);
4026		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4027				       &block_group->runtime_flags)) {
4028			struct inode *inode = block_group->inode;
4029
4030			block_group->inode = NULL;
4031			spin_unlock(&block_group->lock);
4032
4033			ASSERT(block_group->io_ctl.inode == NULL);
4034			iput(inode);
4035		} else {
4036			spin_unlock(&block_group->lock);
4037		}
4038		block_group = btrfs_next_block_group(block_group);
4039	}
4040}
4041
4042/*
4043 * Must be called only after stopping all workers, since we could have block
4044 * group caching kthreads running, and therefore they could race with us if we
4045 * freed the block groups before stopping them.
4046 */
4047int btrfs_free_block_groups(struct btrfs_fs_info *info)
4048{
4049	struct btrfs_block_group *block_group;
4050	struct btrfs_space_info *space_info;
4051	struct btrfs_caching_control *caching_ctl;
4052	struct rb_node *n;
4053
 
 
 
 
 
 
 
 
 
 
 
4054	write_lock(&info->block_group_cache_lock);
4055	while (!list_empty(&info->caching_block_groups)) {
4056		caching_ctl = list_entry(info->caching_block_groups.next,
4057					 struct btrfs_caching_control, list);
4058		list_del(&caching_ctl->list);
4059		btrfs_put_caching_control(caching_ctl);
4060	}
4061	write_unlock(&info->block_group_cache_lock);
4062
4063	spin_lock(&info->unused_bgs_lock);
4064	while (!list_empty(&info->unused_bgs)) {
4065		block_group = list_first_entry(&info->unused_bgs,
4066					       struct btrfs_block_group,
4067					       bg_list);
4068		list_del_init(&block_group->bg_list);
4069		btrfs_put_block_group(block_group);
4070	}
4071
4072	while (!list_empty(&info->reclaim_bgs)) {
4073		block_group = list_first_entry(&info->reclaim_bgs,
4074					       struct btrfs_block_group,
4075					       bg_list);
4076		list_del_init(&block_group->bg_list);
4077		btrfs_put_block_group(block_group);
4078	}
4079	spin_unlock(&info->unused_bgs_lock);
4080
4081	spin_lock(&info->zone_active_bgs_lock);
4082	while (!list_empty(&info->zone_active_bgs)) {
4083		block_group = list_first_entry(&info->zone_active_bgs,
4084					       struct btrfs_block_group,
4085					       active_bg_list);
4086		list_del_init(&block_group->active_bg_list);
4087		btrfs_put_block_group(block_group);
4088	}
4089	spin_unlock(&info->zone_active_bgs_lock);
4090
4091	write_lock(&info->block_group_cache_lock);
4092	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4093		block_group = rb_entry(n, struct btrfs_block_group,
4094				       cache_node);
4095		rb_erase_cached(&block_group->cache_node,
4096				&info->block_group_cache_tree);
4097		RB_CLEAR_NODE(&block_group->cache_node);
4098		write_unlock(&info->block_group_cache_lock);
4099
4100		down_write(&block_group->space_info->groups_sem);
4101		list_del(&block_group->list);
4102		up_write(&block_group->space_info->groups_sem);
4103
4104		/*
4105		 * We haven't cached this block group, which means we could
4106		 * possibly have excluded extents on this block group.
4107		 */
4108		if (block_group->cached == BTRFS_CACHE_NO ||
4109		    block_group->cached == BTRFS_CACHE_ERROR)
4110			btrfs_free_excluded_extents(block_group);
4111
4112		btrfs_remove_free_space_cache(block_group);
4113		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4114		ASSERT(list_empty(&block_group->dirty_list));
4115		ASSERT(list_empty(&block_group->io_list));
4116		ASSERT(list_empty(&block_group->bg_list));
4117		ASSERT(refcount_read(&block_group->refs) == 1);
4118		ASSERT(block_group->swap_extents == 0);
4119		btrfs_put_block_group(block_group);
4120
4121		write_lock(&info->block_group_cache_lock);
4122	}
4123	write_unlock(&info->block_group_cache_lock);
4124
4125	btrfs_release_global_block_rsv(info);
4126
4127	while (!list_empty(&info->space_info)) {
4128		space_info = list_entry(info->space_info.next,
4129					struct btrfs_space_info,
4130					list);
4131
4132		/*
4133		 * Do not hide this behind enospc_debug, this is actually
4134		 * important and indicates a real bug if this happens.
4135		 */
4136		if (WARN_ON(space_info->bytes_pinned > 0 ||
4137			    space_info->bytes_may_use > 0))
4138			btrfs_dump_space_info(info, space_info, 0, 0);
4139
4140		/*
4141		 * If there was a failure to cleanup a log tree, very likely due
4142		 * to an IO failure on a writeback attempt of one or more of its
4143		 * extent buffers, we could not do proper (and cheap) unaccounting
4144		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4145		 * that case.
4146		 */
4147		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4148		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4149			if (WARN_ON(space_info->bytes_reserved > 0))
4150				btrfs_dump_space_info(info, space_info, 0, 0);
4151		}
4152
4153		WARN_ON(space_info->reclaim_size > 0);
4154		list_del(&space_info->list);
4155		btrfs_sysfs_remove_space_info(space_info);
4156	}
4157	return 0;
4158}
4159
4160void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4161{
4162	atomic_inc(&cache->frozen);
4163}
4164
4165void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4166{
4167	struct btrfs_fs_info *fs_info = block_group->fs_info;
4168	struct extent_map_tree *em_tree;
4169	struct extent_map *em;
4170	bool cleanup;
4171
4172	spin_lock(&block_group->lock);
4173	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4174		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4175	spin_unlock(&block_group->lock);
4176
4177	if (cleanup) {
4178		em_tree = &fs_info->mapping_tree;
4179		write_lock(&em_tree->lock);
4180		em = lookup_extent_mapping(em_tree, block_group->start,
4181					   1);
4182		BUG_ON(!em); /* logic error, can't happen */
4183		remove_extent_mapping(em_tree, em);
4184		write_unlock(&em_tree->lock);
4185
4186		/* once for us and once for the tree */
4187		free_extent_map(em);
4188		free_extent_map(em);
4189
4190		/*
4191		 * We may have left one free space entry and other possible
4192		 * tasks trimming this block group have left 1 entry each one.
4193		 * Free them if any.
4194		 */
4195		btrfs_remove_free_space_cache(block_group);
4196	}
4197}
4198
4199bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4200{
4201	bool ret = true;
4202
4203	spin_lock(&bg->lock);
4204	if (bg->ro)
4205		ret = false;
4206	else
4207		bg->swap_extents++;
4208	spin_unlock(&bg->lock);
4209
4210	return ret;
4211}
4212
4213void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4214{
4215	spin_lock(&bg->lock);
4216	ASSERT(!bg->ro);
4217	ASSERT(bg->swap_extents >= amount);
4218	bg->swap_extents -= amount;
4219	spin_unlock(&bg->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/sizes.h>
   4#include <linux/list_sort.h>
   5#include "misc.h"
   6#include "ctree.h"
   7#include "block-group.h"
   8#include "space-info.h"
   9#include "disk-io.h"
  10#include "free-space-cache.h"
  11#include "free-space-tree.h"
  12#include "volumes.h"
  13#include "transaction.h"
  14#include "ref-verify.h"
  15#include "sysfs.h"
  16#include "tree-log.h"
  17#include "delalloc-space.h"
  18#include "discard.h"
  19#include "raid56.h"
  20#include "zoned.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24
  25#ifdef CONFIG_BTRFS_DEBUG
  26int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
  27{
  28	struct btrfs_fs_info *fs_info = block_group->fs_info;
  29
  30	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
  31		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
  32	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
  33		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
  34}
  35#endif
  36
  37/*
  38 * Return target flags in extended format or 0 if restripe for this chunk_type
  39 * is not in progress
  40 *
  41 * Should be called with balance_lock held
  42 */
  43static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
  44{
  45	const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  46	u64 target = 0;
  47
  48	if (!bctl)
  49		return 0;
  50
  51	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  52	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  53		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  54	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  55		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  56		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  57	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  58		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  59		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  60	}
  61
  62	return target;
  63}
  64
  65/*
  66 * @flags: available profiles in extended format (see ctree.h)
  67 *
  68 * Return reduced profile in chunk format.  If profile changing is in progress
  69 * (either running or paused) picks the target profile (if it's already
  70 * available), otherwise falls back to plain reducing.
  71 */
  72static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  73{
  74	u64 num_devices = fs_info->fs_devices->rw_devices;
  75	u64 target;
  76	u64 raid_type;
  77	u64 allowed = 0;
  78
  79	/*
  80	 * See if restripe for this chunk_type is in progress, if so try to
  81	 * reduce to the target profile
  82	 */
  83	spin_lock(&fs_info->balance_lock);
  84	target = get_restripe_target(fs_info, flags);
  85	if (target) {
  86		spin_unlock(&fs_info->balance_lock);
  87		return extended_to_chunk(target);
  88	}
  89	spin_unlock(&fs_info->balance_lock);
  90
  91	/* First, mask out the RAID levels which aren't possible */
  92	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  93		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  94			allowed |= btrfs_raid_array[raid_type].bg_flag;
  95	}
  96	allowed &= flags;
  97
  98	/* Select the highest-redundancy RAID level. */
  99	if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
 100		allowed = BTRFS_BLOCK_GROUP_RAID1C4;
 101	else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
 102		allowed = BTRFS_BLOCK_GROUP_RAID6;
 103	else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
 104		allowed = BTRFS_BLOCK_GROUP_RAID1C3;
 105	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 106		allowed = BTRFS_BLOCK_GROUP_RAID5;
 107	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 108		allowed = BTRFS_BLOCK_GROUP_RAID10;
 109	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 110		allowed = BTRFS_BLOCK_GROUP_RAID1;
 111	else if (allowed & BTRFS_BLOCK_GROUP_DUP)
 112		allowed = BTRFS_BLOCK_GROUP_DUP;
 113	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 114		allowed = BTRFS_BLOCK_GROUP_RAID0;
 115
 116	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 117
 118	return extended_to_chunk(flags | allowed);
 119}
 120
 121u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
 122{
 123	unsigned seq;
 124	u64 flags;
 125
 126	do {
 127		flags = orig_flags;
 128		seq = read_seqbegin(&fs_info->profiles_lock);
 129
 130		if (flags & BTRFS_BLOCK_GROUP_DATA)
 131			flags |= fs_info->avail_data_alloc_bits;
 132		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 133			flags |= fs_info->avail_system_alloc_bits;
 134		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 135			flags |= fs_info->avail_metadata_alloc_bits;
 136	} while (read_seqretry(&fs_info->profiles_lock, seq));
 137
 138	return btrfs_reduce_alloc_profile(fs_info, flags);
 139}
 140
 141void btrfs_get_block_group(struct btrfs_block_group *cache)
 142{
 143	refcount_inc(&cache->refs);
 144}
 145
 146void btrfs_put_block_group(struct btrfs_block_group *cache)
 147{
 148	if (refcount_dec_and_test(&cache->refs)) {
 149		WARN_ON(cache->pinned > 0);
 150		/*
 151		 * If there was a failure to cleanup a log tree, very likely due
 152		 * to an IO failure on a writeback attempt of one or more of its
 153		 * extent buffers, we could not do proper (and cheap) unaccounting
 154		 * of their reserved space, so don't warn on reserved > 0 in that
 155		 * case.
 156		 */
 157		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
 158		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
 159			WARN_ON(cache->reserved > 0);
 160
 161		/*
 162		 * A block_group shouldn't be on the discard_list anymore.
 163		 * Remove the block_group from the discard_list to prevent us
 164		 * from causing a panic due to NULL pointer dereference.
 165		 */
 166		if (WARN_ON(!list_empty(&cache->discard_list)))
 167			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 168						  cache);
 169
 
 
 
 
 
 
 
 
 
 170		kfree(cache->free_space_ctl);
 171		btrfs_free_chunk_map(cache->physical_map);
 172		kfree(cache);
 173	}
 174}
 175
 176/*
 177 * This adds the block group to the fs_info rb tree for the block group cache
 178 */
 179static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 180				       struct btrfs_block_group *block_group)
 181{
 182	struct rb_node **p;
 183	struct rb_node *parent = NULL;
 184	struct btrfs_block_group *cache;
 185	bool leftmost = true;
 186
 187	ASSERT(block_group->length != 0);
 188
 189	write_lock(&info->block_group_cache_lock);
 190	p = &info->block_group_cache_tree.rb_root.rb_node;
 191
 192	while (*p) {
 193		parent = *p;
 194		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 195		if (block_group->start < cache->start) {
 196			p = &(*p)->rb_left;
 197		} else if (block_group->start > cache->start) {
 198			p = &(*p)->rb_right;
 199			leftmost = false;
 200		} else {
 201			write_unlock(&info->block_group_cache_lock);
 202			return -EEXIST;
 203		}
 204	}
 205
 206	rb_link_node(&block_group->cache_node, parent, p);
 207	rb_insert_color_cached(&block_group->cache_node,
 208			       &info->block_group_cache_tree, leftmost);
 209
 210	write_unlock(&info->block_group_cache_lock);
 211
 212	return 0;
 213}
 214
 215/*
 216 * This will return the block group at or after bytenr if contains is 0, else
 217 * it will return the block group that contains the bytenr
 218 */
 219static struct btrfs_block_group *block_group_cache_tree_search(
 220		struct btrfs_fs_info *info, u64 bytenr, int contains)
 221{
 222	struct btrfs_block_group *cache, *ret = NULL;
 223	struct rb_node *n;
 224	u64 end, start;
 225
 226	read_lock(&info->block_group_cache_lock);
 227	n = info->block_group_cache_tree.rb_root.rb_node;
 228
 229	while (n) {
 230		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 231		end = cache->start + cache->length - 1;
 232		start = cache->start;
 233
 234		if (bytenr < start) {
 235			if (!contains && (!ret || start < ret->start))
 236				ret = cache;
 237			n = n->rb_left;
 238		} else if (bytenr > start) {
 239			if (contains && bytenr <= end) {
 240				ret = cache;
 241				break;
 242			}
 243			n = n->rb_right;
 244		} else {
 245			ret = cache;
 246			break;
 247		}
 248	}
 249	if (ret)
 250		btrfs_get_block_group(ret);
 251	read_unlock(&info->block_group_cache_lock);
 252
 253	return ret;
 254}
 255
 256/*
 257 * Return the block group that starts at or after bytenr
 258 */
 259struct btrfs_block_group *btrfs_lookup_first_block_group(
 260		struct btrfs_fs_info *info, u64 bytenr)
 261{
 262	return block_group_cache_tree_search(info, bytenr, 0);
 263}
 264
 265/*
 266 * Return the block group that contains the given bytenr
 267 */
 268struct btrfs_block_group *btrfs_lookup_block_group(
 269		struct btrfs_fs_info *info, u64 bytenr)
 270{
 271	return block_group_cache_tree_search(info, bytenr, 1);
 272}
 273
 274struct btrfs_block_group *btrfs_next_block_group(
 275		struct btrfs_block_group *cache)
 276{
 277	struct btrfs_fs_info *fs_info = cache->fs_info;
 278	struct rb_node *node;
 279
 280	read_lock(&fs_info->block_group_cache_lock);
 281
 282	/* If our block group was removed, we need a full search. */
 283	if (RB_EMPTY_NODE(&cache->cache_node)) {
 284		const u64 next_bytenr = cache->start + cache->length;
 285
 286		read_unlock(&fs_info->block_group_cache_lock);
 287		btrfs_put_block_group(cache);
 288		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
 289	}
 290	node = rb_next(&cache->cache_node);
 291	btrfs_put_block_group(cache);
 292	if (node) {
 293		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 294		btrfs_get_block_group(cache);
 295	} else
 296		cache = NULL;
 297	read_unlock(&fs_info->block_group_cache_lock);
 298	return cache;
 299}
 300
 301/*
 302 * Check if we can do a NOCOW write for a given extent.
 303 *
 304 * @fs_info:       The filesystem information object.
 305 * @bytenr:        Logical start address of the extent.
 306 *
 307 * Check if we can do a NOCOW write for the given extent, and increments the
 308 * number of NOCOW writers in the block group that contains the extent, as long
 309 * as the block group exists and it's currently not in read-only mode.
 310 *
 311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
 312 *          is responsible for calling btrfs_dec_nocow_writers() later.
 313 *
 314 *          Or NULL if we can not do a NOCOW write
 315 */
 316struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
 317						  u64 bytenr)
 318{
 319	struct btrfs_block_group *bg;
 320	bool can_nocow = true;
 321
 322	bg = btrfs_lookup_block_group(fs_info, bytenr);
 323	if (!bg)
 324		return NULL;
 325
 326	spin_lock(&bg->lock);
 327	if (bg->ro)
 328		can_nocow = false;
 329	else
 330		atomic_inc(&bg->nocow_writers);
 331	spin_unlock(&bg->lock);
 332
 333	if (!can_nocow) {
 334		btrfs_put_block_group(bg);
 335		return NULL;
 336	}
 337
 338	/* No put on block group, done by btrfs_dec_nocow_writers(). */
 339	return bg;
 340}
 341
 342/*
 343 * Decrement the number of NOCOW writers in a block group.
 344 *
 345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
 346 * and on the block group returned by that call. Typically this is called after
 347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
 348 * relocation.
 349 *
 350 * After this call, the caller should not use the block group anymore. It it wants
 351 * to use it, then it should get a reference on it before calling this function.
 352 */
 353void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
 354{
 355	if (atomic_dec_and_test(&bg->nocow_writers))
 356		wake_up_var(&bg->nocow_writers);
 357
 358	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
 359	btrfs_put_block_group(bg);
 360}
 361
 362void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 363{
 364	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 365}
 366
 367void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 368					const u64 start)
 369{
 370	struct btrfs_block_group *bg;
 371
 372	bg = btrfs_lookup_block_group(fs_info, start);
 373	ASSERT(bg);
 374	if (atomic_dec_and_test(&bg->reservations))
 375		wake_up_var(&bg->reservations);
 376	btrfs_put_block_group(bg);
 377}
 378
 379void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 380{
 381	struct btrfs_space_info *space_info = bg->space_info;
 382
 383	ASSERT(bg->ro);
 384
 385	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 386		return;
 387
 388	/*
 389	 * Our block group is read only but before we set it to read only,
 390	 * some task might have had allocated an extent from it already, but it
 391	 * has not yet created a respective ordered extent (and added it to a
 392	 * root's list of ordered extents).
 393	 * Therefore wait for any task currently allocating extents, since the
 394	 * block group's reservations counter is incremented while a read lock
 395	 * on the groups' semaphore is held and decremented after releasing
 396	 * the read access on that semaphore and creating the ordered extent.
 397	 */
 398	down_write(&space_info->groups_sem);
 399	up_write(&space_info->groups_sem);
 400
 401	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 402}
 403
 404struct btrfs_caching_control *btrfs_get_caching_control(
 405		struct btrfs_block_group *cache)
 406{
 407	struct btrfs_caching_control *ctl;
 408
 409	spin_lock(&cache->lock);
 410	if (!cache->caching_ctl) {
 411		spin_unlock(&cache->lock);
 412		return NULL;
 413	}
 414
 415	ctl = cache->caching_ctl;
 416	refcount_inc(&ctl->count);
 417	spin_unlock(&cache->lock);
 418	return ctl;
 419}
 420
 421static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 422{
 423	if (refcount_dec_and_test(&ctl->count))
 424		kfree(ctl);
 425}
 426
 427/*
 428 * When we wait for progress in the block group caching, its because our
 429 * allocation attempt failed at least once.  So, we must sleep and let some
 430 * progress happen before we try again.
 431 *
 432 * This function will sleep at least once waiting for new free space to show
 433 * up, and then it will check the block group free space numbers for our min
 434 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 435 * a free extent of a given size, but this is a good start.
 436 *
 437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 438 * any of the information in this block group.
 439 */
 440void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 441					   u64 num_bytes)
 442{
 443	struct btrfs_caching_control *caching_ctl;
 444	int progress;
 445
 446	caching_ctl = btrfs_get_caching_control(cache);
 447	if (!caching_ctl)
 448		return;
 449
 450	/*
 451	 * We've already failed to allocate from this block group, so even if
 452	 * there's enough space in the block group it isn't contiguous enough to
 453	 * allow for an allocation, so wait for at least the next wakeup tick,
 454	 * or for the thing to be done.
 455	 */
 456	progress = atomic_read(&caching_ctl->progress);
 457
 458	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 459		   (progress != atomic_read(&caching_ctl->progress) &&
 460		    (cache->free_space_ctl->free_space >= num_bytes)));
 461
 462	btrfs_put_caching_control(caching_ctl);
 463}
 464
 465static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
 466				       struct btrfs_caching_control *caching_ctl)
 467{
 468	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 469	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
 470}
 471
 472static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 473{
 474	struct btrfs_caching_control *caching_ctl;
 475	int ret;
 476
 477	caching_ctl = btrfs_get_caching_control(cache);
 478	if (!caching_ctl)
 479		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 480	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 481	btrfs_put_caching_control(caching_ctl);
 482	return ret;
 483}
 484
 485#ifdef CONFIG_BTRFS_DEBUG
 486static void fragment_free_space(struct btrfs_block_group *block_group)
 487{
 488	struct btrfs_fs_info *fs_info = block_group->fs_info;
 489	u64 start = block_group->start;
 490	u64 len = block_group->length;
 491	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 492		fs_info->nodesize : fs_info->sectorsize;
 493	u64 step = chunk << 1;
 494
 495	while (len > chunk) {
 496		btrfs_remove_free_space(block_group, start, chunk);
 497		start += step;
 498		if (len < step)
 499			len = 0;
 500		else
 501			len -= step;
 502	}
 503}
 504#endif
 505
 506/*
 507 * Add a free space range to the in memory free space cache of a block group.
 508 * This checks if the range contains super block locations and any such
 509 * locations are not added to the free space cache.
 510 *
 511 * @block_group:      The target block group.
 512 * @start:            Start offset of the range.
 513 * @end:              End offset of the range (exclusive).
 514 * @total_added_ret:  Optional pointer to return the total amount of space
 515 *                    added to the block group's free space cache.
 516 *
 517 * Returns 0 on success or < 0 on error.
 518 */
 519int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
 520			     u64 end, u64 *total_added_ret)
 521{
 522	struct btrfs_fs_info *info = block_group->fs_info;
 523	u64 extent_start, extent_end, size;
 524	int ret;
 525
 526	if (total_added_ret)
 527		*total_added_ret = 0;
 528
 529	while (start < end) {
 530		if (!find_first_extent_bit(&info->excluded_extents, start,
 531					   &extent_start, &extent_end,
 532					   EXTENT_DIRTY | EXTENT_UPTODATE,
 533					   NULL))
 
 534			break;
 535
 536		if (extent_start <= start) {
 537			start = extent_end + 1;
 538		} else if (extent_start > start && extent_start < end) {
 539			size = extent_start - start;
 
 540			ret = btrfs_add_free_space_async_trimmed(block_group,
 541								 start, size);
 542			if (ret)
 543				return ret;
 544			if (total_added_ret)
 545				*total_added_ret += size;
 546			start = extent_end + 1;
 547		} else {
 548			break;
 549		}
 550	}
 551
 552	if (start < end) {
 553		size = end - start;
 
 554		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 555							 size);
 556		if (ret)
 557			return ret;
 558		if (total_added_ret)
 559			*total_added_ret += size;
 560	}
 561
 562	return 0;
 563}
 564
 565/*
 566 * Get an arbitrary extent item index / max_index through the block group
 567 *
 568 * @block_group   the block group to sample from
 569 * @index:        the integral step through the block group to grab from
 570 * @max_index:    the granularity of the sampling
 571 * @key:          return value parameter for the item we find
 572 *
 573 * Pre-conditions on indices:
 574 * 0 <= index <= max_index
 575 * 0 < max_index
 576 *
 577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
 578 * error code on error.
 579 */
 580static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
 581					  struct btrfs_block_group *block_group,
 582					  int index, int max_index,
 583					  struct btrfs_key *found_key)
 584{
 585	struct btrfs_fs_info *fs_info = block_group->fs_info;
 586	struct btrfs_root *extent_root;
 587	u64 search_offset;
 588	u64 search_end = block_group->start + block_group->length;
 589	struct btrfs_path *path;
 590	struct btrfs_key search_key;
 591	int ret = 0;
 592
 593	ASSERT(index >= 0);
 594	ASSERT(index <= max_index);
 595	ASSERT(max_index > 0);
 596	lockdep_assert_held(&caching_ctl->mutex);
 597	lockdep_assert_held_read(&fs_info->commit_root_sem);
 598
 599	path = btrfs_alloc_path();
 600	if (!path)
 601		return -ENOMEM;
 602
 603	extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
 604						       BTRFS_SUPER_INFO_OFFSET));
 605
 606	path->skip_locking = 1;
 607	path->search_commit_root = 1;
 608	path->reada = READA_FORWARD;
 609
 610	search_offset = index * div_u64(block_group->length, max_index);
 611	search_key.objectid = block_group->start + search_offset;
 612	search_key.type = BTRFS_EXTENT_ITEM_KEY;
 613	search_key.offset = 0;
 614
 615	btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
 616		/* Success; sampled an extent item in the block group */
 617		if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
 618		    found_key->objectid >= block_group->start &&
 619		    found_key->objectid + found_key->offset <= search_end)
 620			break;
 621
 622		/* We can't possibly find a valid extent item anymore */
 623		if (found_key->objectid >= search_end) {
 624			ret = 1;
 625			break;
 626		}
 627	}
 628
 629	lockdep_assert_held(&caching_ctl->mutex);
 630	lockdep_assert_held_read(&fs_info->commit_root_sem);
 631	btrfs_free_path(path);
 632	return ret;
 633}
 634
 635/*
 636 * Best effort attempt to compute a block group's size class while caching it.
 637 *
 638 * @block_group: the block group we are caching
 639 *
 640 * We cannot infer the size class while adding free space extents, because that
 641 * logic doesn't care about contiguous file extents (it doesn't differentiate
 642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
 643 * file extent items. Reading all of them is quite wasteful, because usually
 644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
 645 * them at even steps through the block group and pick the smallest size class
 646 * we see. Since size class is best effort, and not guaranteed in general,
 647 * inaccuracy is acceptable.
 648 *
 649 * To be more explicit about why this algorithm makes sense:
 650 *
 651 * If we are caching in a block group from disk, then there are three major cases
 652 * to consider:
 653 * 1. the block group is well behaved and all extents in it are the same size
 654 *    class.
 655 * 2. the block group is mostly one size class with rare exceptions for last
 656 *    ditch allocations
 657 * 3. the block group was populated before size classes and can have a totally
 658 *    arbitrary mix of size classes.
 659 *
 660 * In case 1, looking at any extent in the block group will yield the correct
 661 * result. For the mixed cases, taking the minimum size class seems like a good
 662 * approximation, since gaps from frees will be usable to the size class. For
 663 * 2., a small handful of file extents is likely to yield the right answer. For
 664 * 3, we can either read every file extent, or admit that this is best effort
 665 * anyway and try to stay fast.
 666 *
 667 * Returns: 0 on success, negative error code on error.
 668 */
 669static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
 670				       struct btrfs_block_group *block_group)
 671{
 672	struct btrfs_fs_info *fs_info = block_group->fs_info;
 673	struct btrfs_key key;
 674	int i;
 675	u64 min_size = block_group->length;
 676	enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
 677	int ret;
 678
 679	if (!btrfs_block_group_should_use_size_class(block_group))
 680		return 0;
 681
 682	lockdep_assert_held(&caching_ctl->mutex);
 683	lockdep_assert_held_read(&fs_info->commit_root_sem);
 684	for (i = 0; i < 5; ++i) {
 685		ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
 686		if (ret < 0)
 687			goto out;
 688		if (ret > 0)
 689			continue;
 690		min_size = min_t(u64, min_size, key.offset);
 691		size_class = btrfs_calc_block_group_size_class(min_size);
 692	}
 693	if (size_class != BTRFS_BG_SZ_NONE) {
 694		spin_lock(&block_group->lock);
 695		block_group->size_class = size_class;
 696		spin_unlock(&block_group->lock);
 697	}
 698out:
 699	return ret;
 700}
 701
 702static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 703{
 704	struct btrfs_block_group *block_group = caching_ctl->block_group;
 705	struct btrfs_fs_info *fs_info = block_group->fs_info;
 706	struct btrfs_root *extent_root;
 707	struct btrfs_path *path;
 708	struct extent_buffer *leaf;
 709	struct btrfs_key key;
 710	u64 total_found = 0;
 711	u64 last = 0;
 712	u32 nritems;
 713	int ret;
 714	bool wakeup = true;
 715
 716	path = btrfs_alloc_path();
 717	if (!path)
 718		return -ENOMEM;
 719
 720	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 721	extent_root = btrfs_extent_root(fs_info, last);
 722
 723#ifdef CONFIG_BTRFS_DEBUG
 724	/*
 725	 * If we're fragmenting we don't want to make anybody think we can
 726	 * allocate from this block group until we've had a chance to fragment
 727	 * the free space.
 728	 */
 729	if (btrfs_should_fragment_free_space(block_group))
 730		wakeup = false;
 731#endif
 732	/*
 733	 * We don't want to deadlock with somebody trying to allocate a new
 734	 * extent for the extent root while also trying to search the extent
 735	 * root to add free space.  So we skip locking and search the commit
 736	 * root, since its read-only
 737	 */
 738	path->skip_locking = 1;
 739	path->search_commit_root = 1;
 740	path->reada = READA_FORWARD;
 741
 742	key.objectid = last;
 743	key.offset = 0;
 744	key.type = BTRFS_EXTENT_ITEM_KEY;
 745
 746next:
 747	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 748	if (ret < 0)
 749		goto out;
 750
 751	leaf = path->nodes[0];
 752	nritems = btrfs_header_nritems(leaf);
 753
 754	while (1) {
 755		if (btrfs_fs_closing(fs_info) > 1) {
 756			last = (u64)-1;
 757			break;
 758		}
 759
 760		if (path->slots[0] < nritems) {
 761			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 762		} else {
 763			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 764			if (ret)
 765				break;
 766
 767			if (need_resched() ||
 768			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 769				btrfs_release_path(path);
 770				up_read(&fs_info->commit_root_sem);
 771				mutex_unlock(&caching_ctl->mutex);
 772				cond_resched();
 773				mutex_lock(&caching_ctl->mutex);
 774				down_read(&fs_info->commit_root_sem);
 775				goto next;
 776			}
 777
 778			ret = btrfs_next_leaf(extent_root, path);
 779			if (ret < 0)
 780				goto out;
 781			if (ret)
 782				break;
 783			leaf = path->nodes[0];
 784			nritems = btrfs_header_nritems(leaf);
 785			continue;
 786		}
 787
 788		if (key.objectid < last) {
 789			key.objectid = last;
 790			key.offset = 0;
 791			key.type = BTRFS_EXTENT_ITEM_KEY;
 792			btrfs_release_path(path);
 793			goto next;
 794		}
 795
 796		if (key.objectid < block_group->start) {
 797			path->slots[0]++;
 798			continue;
 799		}
 800
 801		if (key.objectid >= block_group->start + block_group->length)
 802			break;
 803
 804		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 805		    key.type == BTRFS_METADATA_ITEM_KEY) {
 806			u64 space_added;
 807
 808			ret = btrfs_add_new_free_space(block_group, last,
 809						       key.objectid, &space_added);
 810			if (ret)
 811				goto out;
 812			total_found += space_added;
 813			if (key.type == BTRFS_METADATA_ITEM_KEY)
 814				last = key.objectid +
 815					fs_info->nodesize;
 816			else
 817				last = key.objectid + key.offset;
 818
 819			if (total_found > CACHING_CTL_WAKE_UP) {
 820				total_found = 0;
 821				if (wakeup) {
 822					atomic_inc(&caching_ctl->progress);
 823					wake_up(&caching_ctl->wait);
 824				}
 825			}
 826		}
 827		path->slots[0]++;
 828	}
 
 
 
 
 829
 830	ret = btrfs_add_new_free_space(block_group, last,
 831				       block_group->start + block_group->length,
 832				       NULL);
 833out:
 834	btrfs_free_path(path);
 835	return ret;
 836}
 837
 838static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
 839{
 840	clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
 841			  bg->start + bg->length - 1, EXTENT_UPTODATE);
 842}
 843
 844static noinline void caching_thread(struct btrfs_work *work)
 845{
 846	struct btrfs_block_group *block_group;
 847	struct btrfs_fs_info *fs_info;
 848	struct btrfs_caching_control *caching_ctl;
 849	int ret;
 850
 851	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 852	block_group = caching_ctl->block_group;
 853	fs_info = block_group->fs_info;
 854
 855	mutex_lock(&caching_ctl->mutex);
 856	down_read(&fs_info->commit_root_sem);
 857
 858	load_block_group_size_class(caching_ctl, block_group);
 859	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 860		ret = load_free_space_cache(block_group);
 861		if (ret == 1) {
 862			ret = 0;
 863			goto done;
 864		}
 865
 866		/*
 867		 * We failed to load the space cache, set ourselves to
 868		 * CACHE_STARTED and carry on.
 869		 */
 870		spin_lock(&block_group->lock);
 871		block_group->cached = BTRFS_CACHE_STARTED;
 872		spin_unlock(&block_group->lock);
 873		wake_up(&caching_ctl->wait);
 874	}
 875
 876	/*
 877	 * If we are in the transaction that populated the free space tree we
 878	 * can't actually cache from the free space tree as our commit root and
 879	 * real root are the same, so we could change the contents of the blocks
 880	 * while caching.  Instead do the slow caching in this case, and after
 881	 * the transaction has committed we will be safe.
 882	 */
 883	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 884	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
 885		ret = load_free_space_tree(caching_ctl);
 886	else
 887		ret = load_extent_tree_free(caching_ctl);
 888done:
 889	spin_lock(&block_group->lock);
 890	block_group->caching_ctl = NULL;
 891	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 892	spin_unlock(&block_group->lock);
 893
 894#ifdef CONFIG_BTRFS_DEBUG
 895	if (btrfs_should_fragment_free_space(block_group)) {
 896		u64 bytes_used;
 897
 898		spin_lock(&block_group->space_info->lock);
 899		spin_lock(&block_group->lock);
 900		bytes_used = block_group->length - block_group->used;
 901		block_group->space_info->bytes_used += bytes_used >> 1;
 902		spin_unlock(&block_group->lock);
 903		spin_unlock(&block_group->space_info->lock);
 904		fragment_free_space(block_group);
 905	}
 906#endif
 907
 908	up_read(&fs_info->commit_root_sem);
 909	btrfs_free_excluded_extents(block_group);
 910	mutex_unlock(&caching_ctl->mutex);
 911
 912	wake_up(&caching_ctl->wait);
 913
 914	btrfs_put_caching_control(caching_ctl);
 915	btrfs_put_block_group(block_group);
 916}
 917
 918int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
 919{
 920	struct btrfs_fs_info *fs_info = cache->fs_info;
 921	struct btrfs_caching_control *caching_ctl = NULL;
 922	int ret = 0;
 923
 924	/* Allocator for zoned filesystems does not use the cache at all */
 925	if (btrfs_is_zoned(fs_info))
 926		return 0;
 927
 928	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 929	if (!caching_ctl)
 930		return -ENOMEM;
 931
 932	INIT_LIST_HEAD(&caching_ctl->list);
 933	mutex_init(&caching_ctl->mutex);
 934	init_waitqueue_head(&caching_ctl->wait);
 935	caching_ctl->block_group = cache;
 936	refcount_set(&caching_ctl->count, 2);
 937	atomic_set(&caching_ctl->progress, 0);
 938	btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
 939
 940	spin_lock(&cache->lock);
 941	if (cache->cached != BTRFS_CACHE_NO) {
 942		kfree(caching_ctl);
 943
 944		caching_ctl = cache->caching_ctl;
 945		if (caching_ctl)
 946			refcount_inc(&caching_ctl->count);
 947		spin_unlock(&cache->lock);
 948		goto out;
 949	}
 950	WARN_ON(cache->caching_ctl);
 951	cache->caching_ctl = caching_ctl;
 952	cache->cached = BTRFS_CACHE_STARTED;
 953	spin_unlock(&cache->lock);
 954
 955	write_lock(&fs_info->block_group_cache_lock);
 956	refcount_inc(&caching_ctl->count);
 957	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 958	write_unlock(&fs_info->block_group_cache_lock);
 959
 960	btrfs_get_block_group(cache);
 961
 962	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 963out:
 964	if (wait && caching_ctl)
 965		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 966	if (caching_ctl)
 967		btrfs_put_caching_control(caching_ctl);
 968
 969	return ret;
 970}
 971
 972static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 973{
 974	u64 extra_flags = chunk_to_extended(flags) &
 975				BTRFS_EXTENDED_PROFILE_MASK;
 976
 977	write_seqlock(&fs_info->profiles_lock);
 978	if (flags & BTRFS_BLOCK_GROUP_DATA)
 979		fs_info->avail_data_alloc_bits &= ~extra_flags;
 980	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 981		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 982	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 983		fs_info->avail_system_alloc_bits &= ~extra_flags;
 984	write_sequnlock(&fs_info->profiles_lock);
 985}
 986
 987/*
 988 * Clear incompat bits for the following feature(s):
 989 *
 990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 991 *            in the whole filesystem
 992 *
 993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 994 */
 995static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 996{
 997	bool found_raid56 = false;
 998	bool found_raid1c34 = false;
 999
1000	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003		struct list_head *head = &fs_info->space_info;
1004		struct btrfs_space_info *sinfo;
1005
1006		list_for_each_entry_rcu(sinfo, head, list) {
1007			down_read(&sinfo->groups_sem);
1008			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009				found_raid56 = true;
1010			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011				found_raid56 = true;
1012			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013				found_raid1c34 = true;
1014			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015				found_raid1c34 = true;
1016			up_read(&sinfo->groups_sem);
1017		}
1018		if (!found_raid56)
1019			btrfs_clear_fs_incompat(fs_info, RAID56);
1020		if (!found_raid1c34)
1021			btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022	}
1023}
1024
1025static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1026{
1027	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1028		return fs_info->block_group_root;
1029	return btrfs_extent_root(fs_info, 0);
1030}
1031
1032static int remove_block_group_item(struct btrfs_trans_handle *trans,
1033				   struct btrfs_path *path,
1034				   struct btrfs_block_group *block_group)
1035{
1036	struct btrfs_fs_info *fs_info = trans->fs_info;
1037	struct btrfs_root *root;
1038	struct btrfs_key key;
1039	int ret;
1040
1041	root = btrfs_block_group_root(fs_info);
1042	key.objectid = block_group->start;
1043	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1044	key.offset = block_group->length;
1045
1046	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047	if (ret > 0)
1048		ret = -ENOENT;
1049	if (ret < 0)
1050		return ret;
1051
1052	ret = btrfs_del_item(trans, root, path);
1053	return ret;
1054}
1055
1056int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1057			     struct btrfs_chunk_map *map)
1058{
1059	struct btrfs_fs_info *fs_info = trans->fs_info;
1060	struct btrfs_path *path;
1061	struct btrfs_block_group *block_group;
1062	struct btrfs_free_cluster *cluster;
1063	struct inode *inode;
1064	struct kobject *kobj = NULL;
1065	int ret;
1066	int index;
1067	int factor;
1068	struct btrfs_caching_control *caching_ctl = NULL;
1069	bool remove_map;
1070	bool remove_rsv = false;
1071
1072	block_group = btrfs_lookup_block_group(fs_info, map->start);
1073	if (!block_group)
1074		return -ENOENT;
1075
1076	BUG_ON(!block_group->ro);
1077
1078	trace_btrfs_remove_block_group(block_group);
1079	/*
1080	 * Free the reserved super bytes from this block group before
1081	 * remove it.
1082	 */
1083	btrfs_free_excluded_extents(block_group);
1084	btrfs_free_ref_tree_range(fs_info, block_group->start,
1085				  block_group->length);
1086
1087	index = btrfs_bg_flags_to_raid_index(block_group->flags);
1088	factor = btrfs_bg_type_to_factor(block_group->flags);
1089
1090	/* make sure this block group isn't part of an allocation cluster */
1091	cluster = &fs_info->data_alloc_cluster;
1092	spin_lock(&cluster->refill_lock);
1093	btrfs_return_cluster_to_free_space(block_group, cluster);
1094	spin_unlock(&cluster->refill_lock);
1095
1096	/*
1097	 * make sure this block group isn't part of a metadata
1098	 * allocation cluster
1099	 */
1100	cluster = &fs_info->meta_alloc_cluster;
1101	spin_lock(&cluster->refill_lock);
1102	btrfs_return_cluster_to_free_space(block_group, cluster);
1103	spin_unlock(&cluster->refill_lock);
1104
1105	btrfs_clear_treelog_bg(block_group);
1106	btrfs_clear_data_reloc_bg(block_group);
1107
1108	path = btrfs_alloc_path();
1109	if (!path) {
1110		ret = -ENOMEM;
1111		goto out;
1112	}
1113
1114	/*
1115	 * get the inode first so any iput calls done for the io_list
1116	 * aren't the final iput (no unlinks allowed now)
1117	 */
1118	inode = lookup_free_space_inode(block_group, path);
1119
1120	mutex_lock(&trans->transaction->cache_write_mutex);
1121	/*
1122	 * Make sure our free space cache IO is done before removing the
1123	 * free space inode
1124	 */
1125	spin_lock(&trans->transaction->dirty_bgs_lock);
1126	if (!list_empty(&block_group->io_list)) {
1127		list_del_init(&block_group->io_list);
1128
1129		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1130
1131		spin_unlock(&trans->transaction->dirty_bgs_lock);
1132		btrfs_wait_cache_io(trans, block_group, path);
1133		btrfs_put_block_group(block_group);
1134		spin_lock(&trans->transaction->dirty_bgs_lock);
1135	}
1136
1137	if (!list_empty(&block_group->dirty_list)) {
1138		list_del_init(&block_group->dirty_list);
1139		remove_rsv = true;
1140		btrfs_put_block_group(block_group);
1141	}
1142	spin_unlock(&trans->transaction->dirty_bgs_lock);
1143	mutex_unlock(&trans->transaction->cache_write_mutex);
1144
1145	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1146	if (ret)
1147		goto out;
1148
1149	write_lock(&fs_info->block_group_cache_lock);
1150	rb_erase_cached(&block_group->cache_node,
1151			&fs_info->block_group_cache_tree);
1152	RB_CLEAR_NODE(&block_group->cache_node);
1153
1154	/* Once for the block groups rbtree */
1155	btrfs_put_block_group(block_group);
1156
1157	write_unlock(&fs_info->block_group_cache_lock);
1158
1159	down_write(&block_group->space_info->groups_sem);
1160	/*
1161	 * we must use list_del_init so people can check to see if they
1162	 * are still on the list after taking the semaphore
1163	 */
1164	list_del_init(&block_group->list);
1165	if (list_empty(&block_group->space_info->block_groups[index])) {
1166		kobj = block_group->space_info->block_group_kobjs[index];
1167		block_group->space_info->block_group_kobjs[index] = NULL;
1168		clear_avail_alloc_bits(fs_info, block_group->flags);
1169	}
1170	up_write(&block_group->space_info->groups_sem);
1171	clear_incompat_bg_bits(fs_info, block_group->flags);
1172	if (kobj) {
1173		kobject_del(kobj);
1174		kobject_put(kobj);
1175	}
1176
1177	if (block_group->cached == BTRFS_CACHE_STARTED)
1178		btrfs_wait_block_group_cache_done(block_group);
1179
1180	write_lock(&fs_info->block_group_cache_lock);
1181	caching_ctl = btrfs_get_caching_control(block_group);
1182	if (!caching_ctl) {
1183		struct btrfs_caching_control *ctl;
1184
1185		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1186			if (ctl->block_group == block_group) {
1187				caching_ctl = ctl;
1188				refcount_inc(&caching_ctl->count);
1189				break;
1190			}
1191		}
1192	}
1193	if (caching_ctl)
1194		list_del_init(&caching_ctl->list);
1195	write_unlock(&fs_info->block_group_cache_lock);
1196
1197	if (caching_ctl) {
1198		/* Once for the caching bgs list and once for us. */
1199		btrfs_put_caching_control(caching_ctl);
1200		btrfs_put_caching_control(caching_ctl);
1201	}
1202
1203	spin_lock(&trans->transaction->dirty_bgs_lock);
1204	WARN_ON(!list_empty(&block_group->dirty_list));
1205	WARN_ON(!list_empty(&block_group->io_list));
1206	spin_unlock(&trans->transaction->dirty_bgs_lock);
1207
1208	btrfs_remove_free_space_cache(block_group);
1209
1210	spin_lock(&block_group->space_info->lock);
1211	list_del_init(&block_group->ro_list);
1212
1213	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1214		WARN_ON(block_group->space_info->total_bytes
1215			< block_group->length);
1216		WARN_ON(block_group->space_info->bytes_readonly
1217			< block_group->length - block_group->zone_unusable);
1218		WARN_ON(block_group->space_info->bytes_zone_unusable
1219			< block_group->zone_unusable);
1220		WARN_ON(block_group->space_info->disk_total
1221			< block_group->length * factor);
 
 
 
 
1222	}
1223	block_group->space_info->total_bytes -= block_group->length;
 
 
1224	block_group->space_info->bytes_readonly -=
1225		(block_group->length - block_group->zone_unusable);
1226	btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1227						    -block_group->zone_unusable);
1228	block_group->space_info->disk_total -= block_group->length * factor;
1229
1230	spin_unlock(&block_group->space_info->lock);
1231
1232	/*
1233	 * Remove the free space for the block group from the free space tree
1234	 * and the block group's item from the extent tree before marking the
1235	 * block group as removed. This is to prevent races with tasks that
1236	 * freeze and unfreeze a block group, this task and another task
1237	 * allocating a new block group - the unfreeze task ends up removing
1238	 * the block group's extent map before the task calling this function
1239	 * deletes the block group item from the extent tree, allowing for
1240	 * another task to attempt to create another block group with the same
1241	 * item key (and failing with -EEXIST and a transaction abort).
1242	 */
1243	ret = remove_block_group_free_space(trans, block_group);
1244	if (ret)
1245		goto out;
1246
1247	ret = remove_block_group_item(trans, path, block_group);
1248	if (ret < 0)
1249		goto out;
1250
1251	spin_lock(&block_group->lock);
1252	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1253
1254	/*
1255	 * At this point trimming or scrub can't start on this block group,
1256	 * because we removed the block group from the rbtree
1257	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1258	 * even if someone already got this block group before we removed it
1259	 * from the rbtree, they have already incremented block_group->frozen -
1260	 * if they didn't, for the trimming case they won't find any free space
1261	 * entries because we already removed them all when we called
1262	 * btrfs_remove_free_space_cache().
1263	 *
1264	 * And we must not remove the chunk map from the fs_info->mapping_tree
1265	 * to prevent the same logical address range and physical device space
1266	 * ranges from being reused for a new block group. This is needed to
1267	 * avoid races with trimming and scrub.
1268	 *
1269	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1270	 * completely transactionless, so while it is trimming a range the
1271	 * currently running transaction might finish and a new one start,
1272	 * allowing for new block groups to be created that can reuse the same
1273	 * physical device locations unless we take this special care.
1274	 *
1275	 * There may also be an implicit trim operation if the file system
1276	 * is mounted with -odiscard. The same protections must remain
1277	 * in place until the extents have been discarded completely when
1278	 * the transaction commit has completed.
1279	 */
1280	remove_map = (atomic_read(&block_group->frozen) == 0);
1281	spin_unlock(&block_group->lock);
1282
1283	if (remove_map)
1284		btrfs_remove_chunk_map(fs_info, map);
 
 
 
 
 
 
 
 
1285
1286out:
1287	/* Once for the lookup reference */
1288	btrfs_put_block_group(block_group);
1289	if (remove_rsv)
1290		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1291	btrfs_free_path(path);
1292	return ret;
1293}
1294
1295struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1296		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1297{
1298	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1299	struct btrfs_chunk_map *map;
 
 
1300	unsigned int num_items;
1301
1302	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1303	ASSERT(map != NULL);
1304	ASSERT(map->start == chunk_offset);
 
1305
1306	/*
1307	 * We need to reserve 3 + N units from the metadata space info in order
1308	 * to remove a block group (done at btrfs_remove_chunk() and at
1309	 * btrfs_remove_block_group()), which are used for:
1310	 *
1311	 * 1 unit for adding the free space inode's orphan (located in the tree
1312	 * of tree roots).
1313	 * 1 unit for deleting the block group item (located in the extent
1314	 * tree).
1315	 * 1 unit for deleting the free space item (located in tree of tree
1316	 * roots).
1317	 * N units for deleting N device extent items corresponding to each
1318	 * stripe (located in the device tree).
1319	 *
1320	 * In order to remove a block group we also need to reserve units in the
1321	 * system space info in order to update the chunk tree (update one or
1322	 * more device items and remove one chunk item), but this is done at
1323	 * btrfs_remove_chunk() through a call to check_system_chunk().
1324	 */
 
1325	num_items = 3 + map->num_stripes;
1326	btrfs_free_chunk_map(map);
1327
1328	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1329}
1330
1331/*
1332 * Mark block group @cache read-only, so later write won't happen to block
1333 * group @cache.
1334 *
1335 * If @force is not set, this function will only mark the block group readonly
1336 * if we have enough free space (1M) in other metadata/system block groups.
1337 * If @force is not set, this function will mark the block group readonly
1338 * without checking free space.
1339 *
1340 * NOTE: This function doesn't care if other block groups can contain all the
1341 * data in this block group. That check should be done by relocation routine,
1342 * not this function.
1343 */
1344static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1345{
1346	struct btrfs_space_info *sinfo = cache->space_info;
1347	u64 num_bytes;
1348	int ret = -ENOSPC;
1349
1350	spin_lock(&sinfo->lock);
1351	spin_lock(&cache->lock);
1352
1353	if (cache->swap_extents) {
1354		ret = -ETXTBSY;
1355		goto out;
1356	}
1357
1358	if (cache->ro) {
1359		cache->ro++;
1360		ret = 0;
1361		goto out;
1362	}
1363
1364	num_bytes = cache->length - cache->reserved - cache->pinned -
1365		    cache->bytes_super - cache->zone_unusable - cache->used;
1366
1367	/*
1368	 * Data never overcommits, even in mixed mode, so do just the straight
1369	 * check of left over space in how much we have allocated.
1370	 */
1371	if (force) {
1372		ret = 0;
1373	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1374		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1375
1376		/*
1377		 * Here we make sure if we mark this bg RO, we still have enough
1378		 * free space as buffer.
1379		 */
1380		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1381			ret = 0;
1382	} else {
1383		/*
1384		 * We overcommit metadata, so we need to do the
1385		 * btrfs_can_overcommit check here, and we need to pass in
1386		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1387		 * leeway to allow us to mark this block group as read only.
1388		 */
1389		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1390					 BTRFS_RESERVE_NO_FLUSH))
1391			ret = 0;
1392	}
1393
1394	if (!ret) {
1395		sinfo->bytes_readonly += num_bytes;
1396		if (btrfs_is_zoned(cache->fs_info)) {
1397			/* Migrate zone_unusable bytes to readonly */
1398			sinfo->bytes_readonly += cache->zone_unusable;
1399			btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1400								    -cache->zone_unusable);
1401			cache->zone_unusable = 0;
1402		}
1403		cache->ro++;
1404		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1405	}
1406out:
1407	spin_unlock(&cache->lock);
1408	spin_unlock(&sinfo->lock);
1409	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1410		btrfs_info(cache->fs_info,
1411			"unable to make block group %llu ro", cache->start);
1412		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1413	}
1414	return ret;
1415}
1416
1417static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1418				 const struct btrfs_block_group *bg)
1419{
1420	struct btrfs_fs_info *fs_info = trans->fs_info;
1421	struct btrfs_transaction *prev_trans = NULL;
1422	const u64 start = bg->start;
1423	const u64 end = start + bg->length - 1;
1424	int ret;
1425
1426	spin_lock(&fs_info->trans_lock);
1427	if (trans->transaction->list.prev != &fs_info->trans_list) {
1428		prev_trans = list_last_entry(&trans->transaction->list,
1429					     struct btrfs_transaction, list);
1430		refcount_inc(&prev_trans->use_count);
1431	}
1432	spin_unlock(&fs_info->trans_lock);
1433
1434	/*
1435	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1436	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1437	 * task might be running finish_extent_commit() for the previous
1438	 * transaction N - 1, and have seen a range belonging to the block
1439	 * group in pinned_extents before we were able to clear the whole block
1440	 * group range from pinned_extents. This means that task can lookup for
1441	 * the block group after we unpinned it from pinned_extents and removed
1442	 * it, leading to an error at unpin_extent_range().
1443	 */
1444	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1445	if (prev_trans) {
1446		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1447					EXTENT_DIRTY);
1448		if (ret)
1449			goto out;
1450	}
1451
1452	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1453				EXTENT_DIRTY);
1454out:
1455	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1456	if (prev_trans)
1457		btrfs_put_transaction(prev_trans);
1458
1459	return ret == 0;
1460}
1461
1462/*
1463 * Process the unused_bgs list and remove any that don't have any allocated
1464 * space inside of them.
1465 */
1466void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1467{
1468	LIST_HEAD(retry_list);
1469	struct btrfs_block_group *block_group;
1470	struct btrfs_space_info *space_info;
1471	struct btrfs_trans_handle *trans;
1472	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1473	int ret = 0;
1474
1475	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1476		return;
1477
1478	if (btrfs_fs_closing(fs_info))
1479		return;
1480
1481	/*
1482	 * Long running balances can keep us blocked here for eternity, so
1483	 * simply skip deletion if we're unable to get the mutex.
1484	 */
1485	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1486		return;
1487
1488	spin_lock(&fs_info->unused_bgs_lock);
1489	while (!list_empty(&fs_info->unused_bgs)) {
1490		u64 used;
1491		int trimming;
1492
1493		block_group = list_first_entry(&fs_info->unused_bgs,
1494					       struct btrfs_block_group,
1495					       bg_list);
1496		list_del_init(&block_group->bg_list);
1497
1498		space_info = block_group->space_info;
1499
1500		if (ret || btrfs_mixed_space_info(space_info)) {
1501			btrfs_put_block_group(block_group);
1502			continue;
1503		}
1504		spin_unlock(&fs_info->unused_bgs_lock);
1505
1506		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1507
1508		/* Don't want to race with allocators so take the groups_sem */
1509		down_write(&space_info->groups_sem);
1510
1511		/*
1512		 * Async discard moves the final block group discard to be prior
1513		 * to the unused_bgs code path.  Therefore, if it's not fully
1514		 * trimmed, punt it back to the async discard lists.
1515		 */
1516		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1517		    !btrfs_is_free_space_trimmed(block_group)) {
1518			trace_btrfs_skip_unused_block_group(block_group);
1519			up_write(&space_info->groups_sem);
1520			/* Requeue if we failed because of async discard */
1521			btrfs_discard_queue_work(&fs_info->discard_ctl,
1522						 block_group);
1523			goto next;
1524		}
1525
1526		spin_lock(&space_info->lock);
1527		spin_lock(&block_group->lock);
1528		if (btrfs_is_block_group_used(block_group) || block_group->ro ||
 
1529		    list_is_singular(&block_group->list)) {
1530			/*
1531			 * We want to bail if we made new allocations or have
1532			 * outstanding allocations in this block group.  We do
1533			 * the ro check in case balance is currently acting on
1534			 * this block group.
1535			 *
1536			 * Also bail out if this is the only block group for its
1537			 * type, because otherwise we would lose profile
1538			 * information from fs_info->avail_*_alloc_bits and the
1539			 * next block group of this type would be created with a
1540			 * "single" profile (even if we're in a raid fs) because
1541			 * fs_info->avail_*_alloc_bits would be 0.
1542			 */
1543			trace_btrfs_skip_unused_block_group(block_group);
1544			spin_unlock(&block_group->lock);
1545			spin_unlock(&space_info->lock);
1546			up_write(&space_info->groups_sem);
1547			goto next;
1548		}
1549
1550		/*
1551		 * The block group may be unused but there may be space reserved
1552		 * accounting with the existence of that block group, that is,
1553		 * space_info->bytes_may_use was incremented by a task but no
1554		 * space was yet allocated from the block group by the task.
1555		 * That space may or may not be allocated, as we are generally
1556		 * pessimistic about space reservation for metadata as well as
1557		 * for data when using compression (as we reserve space based on
1558		 * the worst case, when data can't be compressed, and before
1559		 * actually attempting compression, before starting writeback).
1560		 *
1561		 * So check if the total space of the space_info minus the size
1562		 * of this block group is less than the used space of the
1563		 * space_info - if that's the case, then it means we have tasks
1564		 * that might be relying on the block group in order to allocate
1565		 * extents, and add back the block group to the unused list when
1566		 * we finish, so that we retry later in case no tasks ended up
1567		 * needing to allocate extents from the block group.
1568		 */
1569		used = btrfs_space_info_used(space_info, true);
1570		if (space_info->total_bytes - block_group->length < used &&
1571		    block_group->zone_unusable < block_group->length) {
1572			/*
1573			 * Add a reference for the list, compensate for the ref
1574			 * drop under the "next" label for the
1575			 * fs_info->unused_bgs list.
1576			 */
1577			btrfs_get_block_group(block_group);
1578			list_add_tail(&block_group->bg_list, &retry_list);
1579
1580			trace_btrfs_skip_unused_block_group(block_group);
1581			spin_unlock(&block_group->lock);
1582			spin_unlock(&space_info->lock);
1583			up_write(&space_info->groups_sem);
1584			goto next;
1585		}
1586
1587		spin_unlock(&block_group->lock);
1588		spin_unlock(&space_info->lock);
1589
1590		/* We don't want to force the issue, only flip if it's ok. */
1591		ret = inc_block_group_ro(block_group, 0);
1592		up_write(&space_info->groups_sem);
1593		if (ret < 0) {
1594			ret = 0;
1595			goto next;
1596		}
1597
1598		ret = btrfs_zone_finish(block_group);
1599		if (ret < 0) {
1600			btrfs_dec_block_group_ro(block_group);
1601			if (ret == -EAGAIN)
1602				ret = 0;
1603			goto next;
1604		}
1605
1606		/*
1607		 * Want to do this before we do anything else so we can recover
1608		 * properly if we fail to join the transaction.
1609		 */
1610		trans = btrfs_start_trans_remove_block_group(fs_info,
1611						     block_group->start);
1612		if (IS_ERR(trans)) {
1613			btrfs_dec_block_group_ro(block_group);
1614			ret = PTR_ERR(trans);
1615			goto next;
1616		}
1617
1618		/*
1619		 * We could have pending pinned extents for this block group,
1620		 * just delete them, we don't care about them anymore.
1621		 */
1622		if (!clean_pinned_extents(trans, block_group)) {
1623			btrfs_dec_block_group_ro(block_group);
1624			goto end_trans;
1625		}
1626
1627		/*
1628		 * At this point, the block_group is read only and should fail
1629		 * new allocations.  However, btrfs_finish_extent_commit() can
1630		 * cause this block_group to be placed back on the discard
1631		 * lists because now the block_group isn't fully discarded.
1632		 * Bail here and try again later after discarding everything.
1633		 */
1634		spin_lock(&fs_info->discard_ctl.lock);
1635		if (!list_empty(&block_group->discard_list)) {
1636			spin_unlock(&fs_info->discard_ctl.lock);
1637			btrfs_dec_block_group_ro(block_group);
1638			btrfs_discard_queue_work(&fs_info->discard_ctl,
1639						 block_group);
1640			goto end_trans;
1641		}
1642		spin_unlock(&fs_info->discard_ctl.lock);
1643
1644		/* Reset pinned so btrfs_put_block_group doesn't complain */
1645		spin_lock(&space_info->lock);
1646		spin_lock(&block_group->lock);
1647
1648		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1649						     -block_group->pinned);
1650		space_info->bytes_readonly += block_group->pinned;
1651		block_group->pinned = 0;
1652
1653		spin_unlock(&block_group->lock);
1654		spin_unlock(&space_info->lock);
1655
1656		/*
1657		 * The normal path here is an unused block group is passed here,
1658		 * then trimming is handled in the transaction commit path.
1659		 * Async discard interposes before this to do the trimming
1660		 * before coming down the unused block group path as trimming
1661		 * will no longer be done later in the transaction commit path.
1662		 */
1663		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1664			goto flip_async;
1665
1666		/*
1667		 * DISCARD can flip during remount. On zoned filesystems, we
1668		 * need to reset sequential-required zones.
1669		 */
1670		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1671				btrfs_is_zoned(fs_info);
1672
1673		/* Implicit trim during transaction commit. */
1674		if (trimming)
1675			btrfs_freeze_block_group(block_group);
1676
1677		/*
1678		 * Btrfs_remove_chunk will abort the transaction if things go
1679		 * horribly wrong.
1680		 */
1681		ret = btrfs_remove_chunk(trans, block_group->start);
1682
1683		if (ret) {
1684			if (trimming)
1685				btrfs_unfreeze_block_group(block_group);
1686			goto end_trans;
1687		}
1688
1689		/*
1690		 * If we're not mounted with -odiscard, we can just forget
1691		 * about this block group. Otherwise we'll need to wait
1692		 * until transaction commit to do the actual discard.
1693		 */
1694		if (trimming) {
1695			spin_lock(&fs_info->unused_bgs_lock);
1696			/*
1697			 * A concurrent scrub might have added us to the list
1698			 * fs_info->unused_bgs, so use a list_move operation
1699			 * to add the block group to the deleted_bgs list.
1700			 */
1701			list_move(&block_group->bg_list,
1702				  &trans->transaction->deleted_bgs);
1703			spin_unlock(&fs_info->unused_bgs_lock);
1704			btrfs_get_block_group(block_group);
1705		}
1706end_trans:
1707		btrfs_end_transaction(trans);
1708next:
1709		btrfs_put_block_group(block_group);
1710		spin_lock(&fs_info->unused_bgs_lock);
1711	}
1712	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1713	spin_unlock(&fs_info->unused_bgs_lock);
1714	mutex_unlock(&fs_info->reclaim_bgs_lock);
1715	return;
1716
1717flip_async:
1718	btrfs_end_transaction(trans);
1719	spin_lock(&fs_info->unused_bgs_lock);
1720	list_splice_tail(&retry_list, &fs_info->unused_bgs);
1721	spin_unlock(&fs_info->unused_bgs_lock);
1722	mutex_unlock(&fs_info->reclaim_bgs_lock);
1723	btrfs_put_block_group(block_group);
1724	btrfs_discard_punt_unused_bgs_list(fs_info);
1725}
1726
1727void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1728{
1729	struct btrfs_fs_info *fs_info = bg->fs_info;
1730
1731	spin_lock(&fs_info->unused_bgs_lock);
1732	if (list_empty(&bg->bg_list)) {
1733		btrfs_get_block_group(bg);
1734		trace_btrfs_add_unused_block_group(bg);
1735		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1736	} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1737		/* Pull out the block group from the reclaim_bgs list. */
1738		trace_btrfs_add_unused_block_group(bg);
1739		list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1740	}
1741	spin_unlock(&fs_info->unused_bgs_lock);
1742}
1743
1744/*
1745 * We want block groups with a low number of used bytes to be in the beginning
1746 * of the list, so they will get reclaimed first.
1747 */
1748static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1749			   const struct list_head *b)
1750{
1751	const struct btrfs_block_group *bg1, *bg2;
1752
1753	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1754	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1755
1756	return bg1->used > bg2->used;
1757}
1758
1759static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1760{
1761	if (btrfs_is_zoned(fs_info))
1762		return btrfs_zoned_should_reclaim(fs_info);
1763	return true;
1764}
1765
1766static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1767{
1768	const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1769	u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1770	const u64 new_val = bg->used;
1771	const u64 old_val = new_val + bytes_freed;
 
1772
1773	if (thresh_bytes == 0)
1774		return false;
1775
 
 
1776	/*
1777	 * If we were below the threshold before don't reclaim, we are likely a
1778	 * brand new block group and we don't want to relocate new block groups.
1779	 */
1780	if (old_val < thresh_bytes)
1781		return false;
1782	if (new_val >= thresh_bytes)
1783		return false;
1784	return true;
1785}
1786
1787void btrfs_reclaim_bgs_work(struct work_struct *work)
1788{
1789	struct btrfs_fs_info *fs_info =
1790		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1791	struct btrfs_block_group *bg;
1792	struct btrfs_space_info *space_info;
1793	LIST_HEAD(retry_list);
1794
1795	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1796		return;
1797
1798	if (btrfs_fs_closing(fs_info))
1799		return;
1800
1801	if (!btrfs_should_reclaim(fs_info))
1802		return;
1803
1804	sb_start_write(fs_info->sb);
1805
1806	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1807		sb_end_write(fs_info->sb);
1808		return;
1809	}
1810
1811	/*
1812	 * Long running balances can keep us blocked here for eternity, so
1813	 * simply skip reclaim if we're unable to get the mutex.
1814	 */
1815	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1816		btrfs_exclop_finish(fs_info);
1817		sb_end_write(fs_info->sb);
1818		return;
1819	}
1820
1821	spin_lock(&fs_info->unused_bgs_lock);
1822	/*
1823	 * Sort happens under lock because we can't simply splice it and sort.
1824	 * The block groups might still be in use and reachable via bg_list,
1825	 * and their presence in the reclaim_bgs list must be preserved.
1826	 */
1827	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1828	while (!list_empty(&fs_info->reclaim_bgs)) {
1829		u64 zone_unusable;
1830		u64 reclaimed;
1831		int ret = 0;
1832
1833		bg = list_first_entry(&fs_info->reclaim_bgs,
1834				      struct btrfs_block_group,
1835				      bg_list);
1836		list_del_init(&bg->bg_list);
1837
1838		space_info = bg->space_info;
1839		spin_unlock(&fs_info->unused_bgs_lock);
1840
1841		/* Don't race with allocators so take the groups_sem */
1842		down_write(&space_info->groups_sem);
1843
1844		spin_lock(&space_info->lock);
1845		spin_lock(&bg->lock);
1846		if (bg->reserved || bg->pinned || bg->ro) {
1847			/*
1848			 * We want to bail if we made new allocations or have
1849			 * outstanding allocations in this block group.  We do
1850			 * the ro check in case balance is currently acting on
1851			 * this block group.
1852			 */
1853			spin_unlock(&bg->lock);
1854			spin_unlock(&space_info->lock);
1855			up_write(&space_info->groups_sem);
1856			goto next;
1857		}
1858		if (bg->used == 0) {
1859			/*
1860			 * It is possible that we trigger relocation on a block
1861			 * group as its extents are deleted and it first goes
1862			 * below the threshold, then shortly after goes empty.
1863			 *
1864			 * In this case, relocating it does delete it, but has
1865			 * some overhead in relocation specific metadata, looking
1866			 * for the non-existent extents and running some extra
1867			 * transactions, which we can avoid by using one of the
1868			 * other mechanisms for dealing with empty block groups.
1869			 */
1870			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1871				btrfs_mark_bg_unused(bg);
1872			spin_unlock(&bg->lock);
1873			spin_unlock(&space_info->lock);
1874			up_write(&space_info->groups_sem);
1875			goto next;
1876
1877		}
1878		/*
1879		 * The block group might no longer meet the reclaim condition by
1880		 * the time we get around to reclaiming it, so to avoid
1881		 * reclaiming overly full block_groups, skip reclaiming them.
1882		 *
1883		 * Since the decision making process also depends on the amount
1884		 * being freed, pass in a fake giant value to skip that extra
1885		 * check, which is more meaningful when adding to the list in
1886		 * the first place.
1887		 */
1888		if (!should_reclaim_block_group(bg, bg->length)) {
1889			spin_unlock(&bg->lock);
1890			spin_unlock(&space_info->lock);
1891			up_write(&space_info->groups_sem);
1892			goto next;
1893		}
1894		spin_unlock(&bg->lock);
1895		spin_unlock(&space_info->lock);
1896
1897		/*
1898		 * Get out fast, in case we're read-only or unmounting the
1899		 * filesystem. It is OK to drop block groups from the list even
1900		 * for the read-only case. As we did sb_start_write(),
1901		 * "mount -o remount,ro" won't happen and read-only filesystem
1902		 * means it is forced read-only due to a fatal error. So, it
1903		 * never gets back to read-write to let us reclaim again.
1904		 */
1905		if (btrfs_need_cleaner_sleep(fs_info)) {
1906			up_write(&space_info->groups_sem);
1907			goto next;
1908		}
1909
1910		/*
1911		 * Cache the zone_unusable value before turning the block group
1912		 * to read only. As soon as the blog group is read only it's
1913		 * zone_unusable value gets moved to the block group's read-only
1914		 * bytes and isn't available for calculations anymore.
1915		 */
1916		zone_unusable = bg->zone_unusable;
1917		ret = inc_block_group_ro(bg, 0);
1918		up_write(&space_info->groups_sem);
1919		if (ret < 0)
1920			goto next;
1921
1922		btrfs_info(fs_info,
1923			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1924				bg->start,
1925				div64_u64(bg->used * 100, bg->length),
1926				div64_u64(zone_unusable * 100, bg->length));
1927		trace_btrfs_reclaim_block_group(bg);
1928		reclaimed = bg->used;
1929		ret = btrfs_relocate_chunk(fs_info, bg->start);
1930		if (ret) {
1931			btrfs_dec_block_group_ro(bg);
1932			btrfs_err(fs_info, "error relocating chunk %llu",
1933				  bg->start);
1934			reclaimed = 0;
1935			spin_lock(&space_info->lock);
1936			space_info->reclaim_errors++;
1937			if (READ_ONCE(space_info->periodic_reclaim))
1938				space_info->periodic_reclaim_ready = false;
1939			spin_unlock(&space_info->lock);
1940		}
1941		spin_lock(&space_info->lock);
1942		space_info->reclaim_count++;
1943		space_info->reclaim_bytes += reclaimed;
1944		spin_unlock(&space_info->lock);
1945
1946next:
1947		if (ret && !READ_ONCE(space_info->periodic_reclaim)) {
1948			/* Refcount held by the reclaim_bgs list after splice. */
1949			spin_lock(&fs_info->unused_bgs_lock);
1950			/*
1951			 * This block group might be added to the unused list
1952			 * during the above process. Move it back to the
1953			 * reclaim list otherwise.
1954			 */
1955			if (list_empty(&bg->bg_list)) {
1956				btrfs_get_block_group(bg);
1957				list_add_tail(&bg->bg_list, &retry_list);
1958			}
1959			spin_unlock(&fs_info->unused_bgs_lock);
1960		}
1961		btrfs_put_block_group(bg);
1962
1963		mutex_unlock(&fs_info->reclaim_bgs_lock);
1964		/*
1965		 * Reclaiming all the block groups in the list can take really
1966		 * long.  Prioritize cleaning up unused block groups.
1967		 */
1968		btrfs_delete_unused_bgs(fs_info);
1969		/*
1970		 * If we are interrupted by a balance, we can just bail out. The
1971		 * cleaner thread restart again if necessary.
1972		 */
1973		if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1974			goto end;
1975		spin_lock(&fs_info->unused_bgs_lock);
1976	}
1977	spin_unlock(&fs_info->unused_bgs_lock);
1978	mutex_unlock(&fs_info->reclaim_bgs_lock);
1979end:
1980	spin_lock(&fs_info->unused_bgs_lock);
1981	list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1982	spin_unlock(&fs_info->unused_bgs_lock);
1983	btrfs_exclop_finish(fs_info);
1984	sb_end_write(fs_info->sb);
1985}
1986
1987void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1988{
1989	btrfs_reclaim_sweep(fs_info);
1990	spin_lock(&fs_info->unused_bgs_lock);
1991	if (!list_empty(&fs_info->reclaim_bgs))
1992		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1993	spin_unlock(&fs_info->unused_bgs_lock);
1994}
1995
1996void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1997{
1998	struct btrfs_fs_info *fs_info = bg->fs_info;
1999
2000	spin_lock(&fs_info->unused_bgs_lock);
2001	if (list_empty(&bg->bg_list)) {
2002		btrfs_get_block_group(bg);
2003		trace_btrfs_add_reclaim_block_group(bg);
2004		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
2005	}
2006	spin_unlock(&fs_info->unused_bgs_lock);
2007}
2008
2009static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2010			   const struct btrfs_path *path)
2011{
2012	struct btrfs_chunk_map *map;
 
2013	struct btrfs_block_group_item bg;
2014	struct extent_buffer *leaf;
2015	int slot;
2016	u64 flags;
2017	int ret = 0;
2018
2019	slot = path->slots[0];
2020	leaf = path->nodes[0];
2021
2022	map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2023	if (!map) {
 
 
 
2024		btrfs_err(fs_info,
2025			  "logical %llu len %llu found bg but no related chunk",
2026			  key->objectid, key->offset);
2027		return -ENOENT;
2028	}
2029
2030	if (map->start != key->objectid || map->chunk_len != key->offset) {
2031		btrfs_err(fs_info,
2032			"block group %llu len %llu mismatch with chunk %llu len %llu",
2033			  key->objectid, key->offset, map->start, map->chunk_len);
2034		ret = -EUCLEAN;
2035		goto out_free_map;
2036	}
2037
2038	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2039			   sizeof(bg));
2040	flags = btrfs_stack_block_group_flags(&bg) &
2041		BTRFS_BLOCK_GROUP_TYPE_MASK;
2042
2043	if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2044		btrfs_err(fs_info,
2045"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2046			  key->objectid, key->offset, flags,
2047			  (BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2048		ret = -EUCLEAN;
2049	}
2050
2051out_free_map:
2052	btrfs_free_chunk_map(map);
2053	return ret;
2054}
2055
2056static int find_first_block_group(struct btrfs_fs_info *fs_info,
2057				  struct btrfs_path *path,
2058				  const struct btrfs_key *key)
2059{
2060	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2061	int ret;
2062	struct btrfs_key found_key;
2063
2064	btrfs_for_each_slot(root, key, &found_key, path, ret) {
2065		if (found_key.objectid >= key->objectid &&
2066		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2067			return read_bg_from_eb(fs_info, &found_key, path);
2068		}
2069	}
2070	return ret;
2071}
2072
2073static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2074{
2075	u64 extra_flags = chunk_to_extended(flags) &
2076				BTRFS_EXTENDED_PROFILE_MASK;
2077
2078	write_seqlock(&fs_info->profiles_lock);
2079	if (flags & BTRFS_BLOCK_GROUP_DATA)
2080		fs_info->avail_data_alloc_bits |= extra_flags;
2081	if (flags & BTRFS_BLOCK_GROUP_METADATA)
2082		fs_info->avail_metadata_alloc_bits |= extra_flags;
2083	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2084		fs_info->avail_system_alloc_bits |= extra_flags;
2085	write_sequnlock(&fs_info->profiles_lock);
2086}
2087
2088/*
2089 * Map a physical disk address to a list of logical addresses.
2090 *
2091 * @fs_info:       the filesystem
2092 * @chunk_start:   logical address of block group
 
2093 * @physical:	   physical address to map to logical addresses
2094 * @logical:	   return array of logical addresses which map to @physical
2095 * @naddrs:	   length of @logical
2096 * @stripe_len:    size of IO stripe for the given block group
2097 *
2098 * Maps a particular @physical disk address to a list of @logical addresses.
2099 * Used primarily to exclude those portions of a block group that contain super
2100 * block copies.
2101 */
2102int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2103		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
 
2104{
2105	struct btrfs_chunk_map *map;
 
2106	u64 *buf;
2107	u64 bytenr;
2108	u64 data_stripe_length;
2109	u64 io_stripe_size;
2110	int i, nr = 0;
2111	int ret = 0;
2112
2113	map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2114	if (IS_ERR(map))
2115		return -EIO;
2116
2117	data_stripe_length = map->stripe_size;
2118	io_stripe_size = BTRFS_STRIPE_LEN;
2119	chunk_start = map->start;
 
2120
2121	/* For RAID5/6 adjust to a full IO stripe length */
2122	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2123		io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2124
2125	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2126	if (!buf) {
2127		ret = -ENOMEM;
2128		goto out;
2129	}
2130
2131	for (i = 0; i < map->num_stripes; i++) {
2132		bool already_inserted = false;
2133		u32 stripe_nr;
2134		u32 offset;
2135		int j;
2136
2137		if (!in_range(physical, map->stripes[i].physical,
2138			      data_stripe_length))
2139			continue;
2140
2141		stripe_nr = (physical - map->stripes[i].physical) >>
2142			    BTRFS_STRIPE_LEN_SHIFT;
2143		offset = (physical - map->stripes[i].physical) &
2144			 BTRFS_STRIPE_LEN_MASK;
 
2145
2146		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2147				 BTRFS_BLOCK_GROUP_RAID10))
2148			stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2149					    map->sub_stripes);
 
2150		/*
2151		 * The remaining case would be for RAID56, multiply by
2152		 * nr_data_stripes().  Alternatively, just use rmap_len below
2153		 * instead of map->stripe_len
2154		 */
 
2155		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2156
2157		/* Ensure we don't add duplicate addresses */
2158		for (j = 0; j < nr; j++) {
2159			if (buf[j] == bytenr) {
2160				already_inserted = true;
2161				break;
2162			}
2163		}
2164
2165		if (!already_inserted)
2166			buf[nr++] = bytenr;
2167	}
2168
2169	*logical = buf;
2170	*naddrs = nr;
2171	*stripe_len = io_stripe_size;
2172out:
2173	btrfs_free_chunk_map(map);
2174	return ret;
2175}
2176
2177static int exclude_super_stripes(struct btrfs_block_group *cache)
2178{
2179	struct btrfs_fs_info *fs_info = cache->fs_info;
2180	const bool zoned = btrfs_is_zoned(fs_info);
2181	u64 bytenr;
2182	u64 *logical;
2183	int stripe_len;
2184	int i, nr, ret;
2185
2186	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2187		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2188		cache->bytes_super += stripe_len;
2189		ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2190				     cache->start + stripe_len - 1,
2191				     EXTENT_UPTODATE, NULL);
2192		if (ret)
2193			return ret;
2194	}
2195
2196	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2197		bytenr = btrfs_sb_offset(i);
2198		ret = btrfs_rmap_block(fs_info, cache->start,
2199				       bytenr, &logical, &nr, &stripe_len);
2200		if (ret)
2201			return ret;
2202
2203		/* Shouldn't have super stripes in sequential zones */
2204		if (zoned && nr) {
2205			kfree(logical);
2206			btrfs_err(fs_info,
2207			"zoned: block group %llu must not contain super block",
2208				  cache->start);
2209			return -EUCLEAN;
2210		}
2211
2212		while (nr--) {
2213			u64 len = min_t(u64, stripe_len,
2214				cache->start + cache->length - logical[nr]);
2215
2216			cache->bytes_super += len;
2217			ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2218					     logical[nr] + len - 1,
2219					     EXTENT_UPTODATE, NULL);
2220			if (ret) {
2221				kfree(logical);
2222				return ret;
2223			}
2224		}
2225
2226		kfree(logical);
2227	}
2228	return 0;
2229}
2230
2231static struct btrfs_block_group *btrfs_create_block_group_cache(
2232		struct btrfs_fs_info *fs_info, u64 start)
2233{
2234	struct btrfs_block_group *cache;
2235
2236	cache = kzalloc(sizeof(*cache), GFP_NOFS);
2237	if (!cache)
2238		return NULL;
2239
2240	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2241					GFP_NOFS);
2242	if (!cache->free_space_ctl) {
2243		kfree(cache);
2244		return NULL;
2245	}
2246
2247	cache->start = start;
2248
2249	cache->fs_info = fs_info;
2250	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2251
2252	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2253
2254	refcount_set(&cache->refs, 1);
2255	spin_lock_init(&cache->lock);
2256	init_rwsem(&cache->data_rwsem);
2257	INIT_LIST_HEAD(&cache->list);
2258	INIT_LIST_HEAD(&cache->cluster_list);
2259	INIT_LIST_HEAD(&cache->bg_list);
2260	INIT_LIST_HEAD(&cache->ro_list);
2261	INIT_LIST_HEAD(&cache->discard_list);
2262	INIT_LIST_HEAD(&cache->dirty_list);
2263	INIT_LIST_HEAD(&cache->io_list);
2264	INIT_LIST_HEAD(&cache->active_bg_list);
2265	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2266	atomic_set(&cache->frozen, 0);
2267	mutex_init(&cache->free_space_lock);
 
 
2268
2269	return cache;
2270}
2271
2272/*
2273 * Iterate all chunks and verify that each of them has the corresponding block
2274 * group
2275 */
2276static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2277{
 
 
 
2278	u64 start = 0;
2279	int ret = 0;
2280
2281	while (1) {
2282		struct btrfs_chunk_map *map;
2283		struct btrfs_block_group *bg;
2284
2285		/*
2286		 * btrfs_find_chunk_map() will return the first chunk map
2287		 * intersecting the range, so setting @length to 1 is enough to
2288		 * get the first chunk.
2289		 */
2290		map = btrfs_find_chunk_map(fs_info, start, 1);
2291		if (!map)
 
2292			break;
2293
2294		bg = btrfs_lookup_block_group(fs_info, map->start);
2295		if (!bg) {
2296			btrfs_err(fs_info,
2297	"chunk start=%llu len=%llu doesn't have corresponding block group",
2298				     map->start, map->chunk_len);
2299			ret = -EUCLEAN;
2300			btrfs_free_chunk_map(map);
2301			break;
2302		}
2303		if (bg->start != map->start || bg->length != map->chunk_len ||
2304		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2305		    (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2306			btrfs_err(fs_info,
2307"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2308				map->start, map->chunk_len,
2309				map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2310				bg->start, bg->length,
2311				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2312			ret = -EUCLEAN;
2313			btrfs_free_chunk_map(map);
2314			btrfs_put_block_group(bg);
2315			break;
2316		}
2317		start = map->start + map->chunk_len;
2318		btrfs_free_chunk_map(map);
2319		btrfs_put_block_group(bg);
2320	}
2321	return ret;
2322}
2323
2324static int read_one_block_group(struct btrfs_fs_info *info,
2325				struct btrfs_block_group_item *bgi,
2326				const struct btrfs_key *key,
2327				int need_clear)
2328{
2329	struct btrfs_block_group *cache;
2330	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2331	int ret;
2332
2333	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2334
2335	cache = btrfs_create_block_group_cache(info, key->objectid);
2336	if (!cache)
2337		return -ENOMEM;
2338
2339	cache->length = key->offset;
2340	cache->used = btrfs_stack_block_group_used(bgi);
2341	cache->commit_used = cache->used;
2342	cache->flags = btrfs_stack_block_group_flags(bgi);
2343	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2344
2345	set_free_space_tree_thresholds(cache);
2346
2347	if (need_clear) {
2348		/*
2349		 * When we mount with old space cache, we need to
2350		 * set BTRFS_DC_CLEAR and set dirty flag.
2351		 *
2352		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2353		 *    truncate the old free space cache inode and
2354		 *    setup a new one.
2355		 * b) Setting 'dirty flag' makes sure that we flush
2356		 *    the new space cache info onto disk.
2357		 */
2358		if (btrfs_test_opt(info, SPACE_CACHE))
2359			cache->disk_cache_state = BTRFS_DC_CLEAR;
2360	}
2361	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2362	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2363			btrfs_err(info,
2364"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2365				  cache->start);
2366			ret = -EINVAL;
2367			goto error;
2368	}
2369
2370	ret = btrfs_load_block_group_zone_info(cache, false);
2371	if (ret) {
2372		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2373			  cache->start);
2374		goto error;
2375	}
2376
2377	/*
2378	 * We need to exclude the super stripes now so that the space info has
2379	 * super bytes accounted for, otherwise we'll think we have more space
2380	 * than we actually do.
2381	 */
2382	ret = exclude_super_stripes(cache);
2383	if (ret) {
2384		/* We may have excluded something, so call this just in case. */
2385		btrfs_free_excluded_extents(cache);
2386		goto error;
2387	}
2388
2389	/*
2390	 * For zoned filesystem, space after the allocation offset is the only
2391	 * free space for a block group. So, we don't need any caching work.
2392	 * btrfs_calc_zone_unusable() will set the amount of free space and
2393	 * zone_unusable space.
2394	 *
2395	 * For regular filesystem, check for two cases, either we are full, and
2396	 * therefore don't need to bother with the caching work since we won't
2397	 * find any space, or we are empty, and we can just add all the space
2398	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2399	 * in the full case.
2400	 */
2401	if (btrfs_is_zoned(info)) {
2402		btrfs_calc_zone_unusable(cache);
2403		/* Should not have any excluded extents. Just in case, though. */
2404		btrfs_free_excluded_extents(cache);
2405	} else if (cache->length == cache->used) {
2406		cache->cached = BTRFS_CACHE_FINISHED;
2407		btrfs_free_excluded_extents(cache);
2408	} else if (cache->used == 0) {
2409		cache->cached = BTRFS_CACHE_FINISHED;
2410		ret = btrfs_add_new_free_space(cache, cache->start,
2411					       cache->start + cache->length, NULL);
2412		btrfs_free_excluded_extents(cache);
2413		if (ret)
2414			goto error;
2415	}
2416
2417	ret = btrfs_add_block_group_cache(info, cache);
2418	if (ret) {
2419		btrfs_remove_free_space_cache(cache);
2420		goto error;
2421	}
2422	trace_btrfs_add_block_group(info, cache, 0);
2423	btrfs_add_bg_to_space_info(info, cache);
2424
2425	set_avail_alloc_bits(info, cache->flags);
2426	if (btrfs_chunk_writeable(info, cache->start)) {
2427		if (cache->used == 0) {
2428			ASSERT(list_empty(&cache->bg_list));
2429			if (btrfs_test_opt(info, DISCARD_ASYNC))
2430				btrfs_discard_queue_work(&info->discard_ctl, cache);
2431			else
2432				btrfs_mark_bg_unused(cache);
2433		}
2434	} else {
2435		inc_block_group_ro(cache, 1);
2436	}
2437
2438	return 0;
2439error:
2440	btrfs_put_block_group(cache);
2441	return ret;
2442}
2443
2444static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2445{
 
2446	struct rb_node *node;
2447	int ret = 0;
2448
2449	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2450		struct btrfs_chunk_map *map;
 
2451		struct btrfs_block_group *bg;
2452
2453		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2454		bg = btrfs_create_block_group_cache(fs_info, map->start);
 
2455		if (!bg) {
2456			ret = -ENOMEM;
2457			break;
2458		}
2459
2460		/* Fill dummy cache as FULL */
2461		bg->length = map->chunk_len;
2462		bg->flags = map->type;
2463		bg->cached = BTRFS_CACHE_FINISHED;
2464		bg->used = map->chunk_len;
2465		bg->flags = map->type;
2466		ret = btrfs_add_block_group_cache(fs_info, bg);
2467		/*
2468		 * We may have some valid block group cache added already, in
2469		 * that case we skip to the next one.
2470		 */
2471		if (ret == -EEXIST) {
2472			ret = 0;
2473			btrfs_put_block_group(bg);
2474			continue;
2475		}
2476
2477		if (ret) {
2478			btrfs_remove_free_space_cache(bg);
2479			btrfs_put_block_group(bg);
2480			break;
2481		}
2482
2483		btrfs_add_bg_to_space_info(fs_info, bg);
2484
2485		set_avail_alloc_bits(fs_info, bg->flags);
2486	}
2487	if (!ret)
2488		btrfs_init_global_block_rsv(fs_info);
2489	return ret;
2490}
2491
2492int btrfs_read_block_groups(struct btrfs_fs_info *info)
2493{
2494	struct btrfs_root *root = btrfs_block_group_root(info);
2495	struct btrfs_path *path;
2496	int ret;
2497	struct btrfs_block_group *cache;
2498	struct btrfs_space_info *space_info;
2499	struct btrfs_key key;
2500	int need_clear = 0;
2501	u64 cache_gen;
2502
2503	/*
2504	 * Either no extent root (with ibadroots rescue option) or we have
2505	 * unsupported RO options. The fs can never be mounted read-write, so no
2506	 * need to waste time searching block group items.
2507	 *
2508	 * This also allows new extent tree related changes to be RO compat,
2509	 * no need for a full incompat flag.
2510	 */
2511	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2512		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2513		return fill_dummy_bgs(info);
2514
2515	key.objectid = 0;
2516	key.offset = 0;
2517	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2518	path = btrfs_alloc_path();
2519	if (!path)
2520		return -ENOMEM;
2521
2522	cache_gen = btrfs_super_cache_generation(info->super_copy);
2523	if (btrfs_test_opt(info, SPACE_CACHE) &&
2524	    btrfs_super_generation(info->super_copy) != cache_gen)
2525		need_clear = 1;
2526	if (btrfs_test_opt(info, CLEAR_CACHE))
2527		need_clear = 1;
2528
2529	while (1) {
2530		struct btrfs_block_group_item bgi;
2531		struct extent_buffer *leaf;
2532		int slot;
2533
2534		ret = find_first_block_group(info, path, &key);
2535		if (ret > 0)
2536			break;
2537		if (ret != 0)
2538			goto error;
2539
2540		leaf = path->nodes[0];
2541		slot = path->slots[0];
2542
2543		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2544				   sizeof(bgi));
2545
2546		btrfs_item_key_to_cpu(leaf, &key, slot);
2547		btrfs_release_path(path);
2548		ret = read_one_block_group(info, &bgi, &key, need_clear);
2549		if (ret < 0)
2550			goto error;
2551		key.objectid += key.offset;
2552		key.offset = 0;
2553	}
2554	btrfs_release_path(path);
2555
2556	list_for_each_entry(space_info, &info->space_info, list) {
2557		int i;
2558
2559		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2560			if (list_empty(&space_info->block_groups[i]))
2561				continue;
2562			cache = list_first_entry(&space_info->block_groups[i],
2563						 struct btrfs_block_group,
2564						 list);
2565			btrfs_sysfs_add_block_group_type(cache);
2566		}
2567
2568		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2569		      (BTRFS_BLOCK_GROUP_RAID10 |
2570		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2571		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2572		       BTRFS_BLOCK_GROUP_DUP)))
2573			continue;
2574		/*
2575		 * Avoid allocating from un-mirrored block group if there are
2576		 * mirrored block groups.
2577		 */
2578		list_for_each_entry(cache,
2579				&space_info->block_groups[BTRFS_RAID_RAID0],
2580				list)
2581			inc_block_group_ro(cache, 1);
2582		list_for_each_entry(cache,
2583				&space_info->block_groups[BTRFS_RAID_SINGLE],
2584				list)
2585			inc_block_group_ro(cache, 1);
2586	}
2587
2588	btrfs_init_global_block_rsv(info);
2589	ret = check_chunk_block_group_mappings(info);
2590error:
2591	btrfs_free_path(path);
2592	/*
2593	 * We've hit some error while reading the extent tree, and have
2594	 * rescue=ibadroots mount option.
2595	 * Try to fill the tree using dummy block groups so that the user can
2596	 * continue to mount and grab their data.
2597	 */
2598	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2599		ret = fill_dummy_bgs(info);
2600	return ret;
2601}
2602
2603/*
2604 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2605 * allocation.
2606 *
2607 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2608 * phases.
2609 */
2610static int insert_block_group_item(struct btrfs_trans_handle *trans,
2611				   struct btrfs_block_group *block_group)
2612{
2613	struct btrfs_fs_info *fs_info = trans->fs_info;
2614	struct btrfs_block_group_item bgi;
2615	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2616	struct btrfs_key key;
2617	u64 old_commit_used;
2618	int ret;
2619
2620	spin_lock(&block_group->lock);
2621	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2622	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2623						   block_group->global_root_id);
2624	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2625	old_commit_used = block_group->commit_used;
2626	block_group->commit_used = block_group->used;
2627	key.objectid = block_group->start;
2628	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2629	key.offset = block_group->length;
2630	spin_unlock(&block_group->lock);
2631
2632	ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2633	if (ret < 0) {
2634		spin_lock(&block_group->lock);
2635		block_group->commit_used = old_commit_used;
2636		spin_unlock(&block_group->lock);
2637	}
2638
2639	return ret;
2640}
2641
2642static int insert_dev_extent(struct btrfs_trans_handle *trans,
2643			     const struct btrfs_device *device, u64 chunk_offset,
2644			     u64 start, u64 num_bytes)
2645{
2646	struct btrfs_fs_info *fs_info = device->fs_info;
2647	struct btrfs_root *root = fs_info->dev_root;
2648	struct btrfs_path *path;
2649	struct btrfs_dev_extent *extent;
2650	struct extent_buffer *leaf;
2651	struct btrfs_key key;
2652	int ret;
2653
2654	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2655	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2656	path = btrfs_alloc_path();
2657	if (!path)
2658		return -ENOMEM;
2659
2660	key.objectid = device->devid;
2661	key.type = BTRFS_DEV_EXTENT_KEY;
2662	key.offset = start;
2663	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2664	if (ret)
2665		goto out;
2666
2667	leaf = path->nodes[0];
2668	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2669	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2670	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2671					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2672	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2673
2674	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2675	btrfs_mark_buffer_dirty(trans, leaf);
2676out:
2677	btrfs_free_path(path);
2678	return ret;
2679}
2680
2681/*
2682 * This function belongs to phase 2.
2683 *
2684 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2685 * phases.
2686 */
2687static int insert_dev_extents(struct btrfs_trans_handle *trans,
2688				   u64 chunk_offset, u64 chunk_size)
2689{
2690	struct btrfs_fs_info *fs_info = trans->fs_info;
2691	struct btrfs_device *device;
2692	struct btrfs_chunk_map *map;
 
2693	u64 dev_offset;
 
2694	int i;
2695	int ret = 0;
2696
2697	map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2698	if (IS_ERR(map))
2699		return PTR_ERR(map);
 
 
 
2700
2701	/*
2702	 * Take the device list mutex to prevent races with the final phase of
2703	 * a device replace operation that replaces the device object associated
2704	 * with the map's stripes, because the device object's id can change
2705	 * at any time during that final phase of the device replace operation
2706	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2707	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2708	 * resulting in persisting a device extent item with such ID.
2709	 */
2710	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2711	for (i = 0; i < map->num_stripes; i++) {
2712		device = map->stripes[i].dev;
2713		dev_offset = map->stripes[i].physical;
2714
2715		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2716					map->stripe_size);
2717		if (ret)
2718			break;
2719	}
2720	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2721
2722	btrfs_free_chunk_map(map);
2723	return ret;
2724}
2725
2726/*
2727 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2728 * chunk allocation.
2729 *
2730 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2731 * phases.
2732 */
2733void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2734{
2735	struct btrfs_fs_info *fs_info = trans->fs_info;
2736	struct btrfs_block_group *block_group;
2737	int ret = 0;
2738
2739	while (!list_empty(&trans->new_bgs)) {
2740		int index;
2741
2742		block_group = list_first_entry(&trans->new_bgs,
2743					       struct btrfs_block_group,
2744					       bg_list);
2745		if (ret)
2746			goto next;
2747
2748		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2749
2750		ret = insert_block_group_item(trans, block_group);
2751		if (ret)
2752			btrfs_abort_transaction(trans, ret);
2753		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2754			      &block_group->runtime_flags)) {
2755			mutex_lock(&fs_info->chunk_mutex);
2756			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2757			mutex_unlock(&fs_info->chunk_mutex);
2758			if (ret)
2759				btrfs_abort_transaction(trans, ret);
2760		}
2761		ret = insert_dev_extents(trans, block_group->start,
2762					 block_group->length);
2763		if (ret)
2764			btrfs_abort_transaction(trans, ret);
2765		add_block_group_free_space(trans, block_group);
2766
2767		/*
2768		 * If we restriped during balance, we may have added a new raid
2769		 * type, so now add the sysfs entries when it is safe to do so.
2770		 * We don't have to worry about locking here as it's handled in
2771		 * btrfs_sysfs_add_block_group_type.
2772		 */
2773		if (block_group->space_info->block_group_kobjs[index] == NULL)
2774			btrfs_sysfs_add_block_group_type(block_group);
2775
2776		/* Already aborted the transaction if it failed. */
2777next:
2778		btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2779		list_del_init(&block_group->bg_list);
2780		clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2781
2782		/*
2783		 * If the block group is still unused, add it to the list of
2784		 * unused block groups. The block group may have been created in
2785		 * order to satisfy a space reservation, in which case the
2786		 * extent allocation only happens later. But often we don't
2787		 * actually need to allocate space that we previously reserved,
2788		 * so the block group may become unused for a long time. For
2789		 * example for metadata we generally reserve space for a worst
2790		 * possible scenario, but then don't end up allocating all that
2791		 * space or none at all (due to no need to COW, extent buffers
2792		 * were already COWed in the current transaction and still
2793		 * unwritten, tree heights lower than the maximum possible
2794		 * height, etc). For data we generally reserve the axact amount
2795		 * of space we are going to allocate later, the exception is
2796		 * when using compression, as we must reserve space based on the
2797		 * uncompressed data size, because the compression is only done
2798		 * when writeback triggered and we don't know how much space we
2799		 * are actually going to need, so we reserve the uncompressed
2800		 * size because the data may be incompressible in the worst case.
2801		 */
2802		if (ret == 0) {
2803			bool used;
2804
2805			spin_lock(&block_group->lock);
2806			used = btrfs_is_block_group_used(block_group);
2807			spin_unlock(&block_group->lock);
2808
2809			if (!used)
2810				btrfs_mark_bg_unused(block_group);
2811		}
2812	}
2813	btrfs_trans_release_chunk_metadata(trans);
2814}
2815
2816/*
2817 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2818 * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2819 */
2820static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2821{
2822	u64 div = SZ_1G;
2823	u64 index;
2824
2825	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2826		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827
2828	/* If we have a smaller fs index based on 128MiB. */
2829	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2830		div = SZ_128M;
2831
2832	offset = div64_u64(offset, div);
2833	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2834	return index;
2835}
2836
2837struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2838						 u64 type,
2839						 u64 chunk_offset, u64 size)
2840{
2841	struct btrfs_fs_info *fs_info = trans->fs_info;
2842	struct btrfs_block_group *cache;
2843	int ret;
2844
2845	btrfs_set_log_full_commit(trans);
2846
2847	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2848	if (!cache)
2849		return ERR_PTR(-ENOMEM);
2850
2851	/*
2852	 * Mark it as new before adding it to the rbtree of block groups or any
2853	 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2854	 * before the new flag is set.
2855	 */
2856	set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2857
2858	cache->length = size;
2859	set_free_space_tree_thresholds(cache);
 
2860	cache->flags = type;
2861	cache->cached = BTRFS_CACHE_FINISHED;
2862	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2863
2864	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2865		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2866
2867	ret = btrfs_load_block_group_zone_info(cache, true);
2868	if (ret) {
2869		btrfs_put_block_group(cache);
2870		return ERR_PTR(ret);
2871	}
2872
2873	ret = exclude_super_stripes(cache);
2874	if (ret) {
2875		/* We may have excluded something, so call this just in case */
2876		btrfs_free_excluded_extents(cache);
2877		btrfs_put_block_group(cache);
2878		return ERR_PTR(ret);
2879	}
2880
2881	ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
 
2882	btrfs_free_excluded_extents(cache);
2883	if (ret) {
2884		btrfs_put_block_group(cache);
2885		return ERR_PTR(ret);
2886	}
2887
2888	/*
2889	 * Ensure the corresponding space_info object is created and
2890	 * assigned to our block group. We want our bg to be added to the rbtree
2891	 * with its ->space_info set.
2892	 */
2893	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2894	ASSERT(cache->space_info);
2895
2896	ret = btrfs_add_block_group_cache(fs_info, cache);
2897	if (ret) {
2898		btrfs_remove_free_space_cache(cache);
2899		btrfs_put_block_group(cache);
2900		return ERR_PTR(ret);
2901	}
2902
2903	/*
2904	 * Now that our block group has its ->space_info set and is inserted in
2905	 * the rbtree, update the space info's counters.
2906	 */
2907	trace_btrfs_add_block_group(fs_info, cache, 1);
2908	btrfs_add_bg_to_space_info(fs_info, cache);
2909	btrfs_update_global_block_rsv(fs_info);
2910
2911#ifdef CONFIG_BTRFS_DEBUG
2912	if (btrfs_should_fragment_free_space(cache)) {
2913		cache->space_info->bytes_used += size >> 1;
 
 
2914		fragment_free_space(cache);
2915	}
2916#endif
2917
2918	list_add_tail(&cache->bg_list, &trans->new_bgs);
2919	btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
 
2920
2921	set_avail_alloc_bits(fs_info, type);
2922	return cache;
2923}
2924
2925/*
2926 * Mark one block group RO, can be called several times for the same block
2927 * group.
2928 *
2929 * @cache:		the destination block group
2930 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2931 * 			ensure we still have some free space after marking this
2932 * 			block group RO.
2933 */
2934int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2935			     bool do_chunk_alloc)
2936{
2937	struct btrfs_fs_info *fs_info = cache->fs_info;
2938	struct btrfs_trans_handle *trans;
2939	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2940	u64 alloc_flags;
2941	int ret;
2942	bool dirty_bg_running;
2943
2944	/*
2945	 * This can only happen when we are doing read-only scrub on read-only
2946	 * mount.
2947	 * In that case we should not start a new transaction on read-only fs.
2948	 * Thus here we skip all chunk allocations.
2949	 */
2950	if (sb_rdonly(fs_info->sb)) {
2951		mutex_lock(&fs_info->ro_block_group_mutex);
2952		ret = inc_block_group_ro(cache, 0);
2953		mutex_unlock(&fs_info->ro_block_group_mutex);
2954		return ret;
2955	}
2956
2957	do {
2958		trans = btrfs_join_transaction(root);
2959		if (IS_ERR(trans))
2960			return PTR_ERR(trans);
2961
2962		dirty_bg_running = false;
2963
2964		/*
2965		 * We're not allowed to set block groups readonly after the dirty
2966		 * block group cache has started writing.  If it already started,
2967		 * back off and let this transaction commit.
2968		 */
2969		mutex_lock(&fs_info->ro_block_group_mutex);
2970		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2971			u64 transid = trans->transid;
2972
2973			mutex_unlock(&fs_info->ro_block_group_mutex);
2974			btrfs_end_transaction(trans);
2975
2976			ret = btrfs_wait_for_commit(fs_info, transid);
2977			if (ret)
2978				return ret;
2979			dirty_bg_running = true;
2980		}
2981	} while (dirty_bg_running);
2982
2983	if (do_chunk_alloc) {
2984		/*
2985		 * If we are changing raid levels, try to allocate a
2986		 * corresponding block group with the new raid level.
2987		 */
2988		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2989		if (alloc_flags != cache->flags) {
2990			ret = btrfs_chunk_alloc(trans, alloc_flags,
2991						CHUNK_ALLOC_FORCE);
2992			/*
2993			 * ENOSPC is allowed here, we may have enough space
2994			 * already allocated at the new raid level to carry on
2995			 */
2996			if (ret == -ENOSPC)
2997				ret = 0;
2998			if (ret < 0)
2999				goto out;
3000		}
3001	}
3002
3003	ret = inc_block_group_ro(cache, 0);
 
 
3004	if (!ret)
3005		goto out;
3006	if (ret == -ETXTBSY)
3007		goto unlock_out;
3008
3009	/*
3010	 * Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3011	 * chunk allocation storm to exhaust the system chunk array.  Otherwise
3012	 * we still want to try our best to mark the block group read-only.
3013	 */
3014	if (!do_chunk_alloc && ret == -ENOSPC &&
3015	    (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3016		goto unlock_out;
3017
3018	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
3019	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3020	if (ret < 0)
3021		goto out;
3022	/*
3023	 * We have allocated a new chunk. We also need to activate that chunk to
3024	 * grant metadata tickets for zoned filesystem.
3025	 */
3026	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
3027	if (ret < 0)
3028		goto out;
3029
3030	ret = inc_block_group_ro(cache, 0);
3031	if (ret == -ETXTBSY)
3032		goto unlock_out;
3033out:
3034	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3035		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3036		mutex_lock(&fs_info->chunk_mutex);
3037		check_system_chunk(trans, alloc_flags);
3038		mutex_unlock(&fs_info->chunk_mutex);
3039	}
3040unlock_out:
3041	mutex_unlock(&fs_info->ro_block_group_mutex);
3042
3043	btrfs_end_transaction(trans);
3044	return ret;
3045}
3046
3047void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3048{
3049	struct btrfs_space_info *sinfo = cache->space_info;
3050	u64 num_bytes;
3051
3052	BUG_ON(!cache->ro);
3053
3054	spin_lock(&sinfo->lock);
3055	spin_lock(&cache->lock);
3056	if (!--cache->ro) {
3057		if (btrfs_is_zoned(cache->fs_info)) {
3058			/* Migrate zone_unusable bytes back */
3059			cache->zone_unusable =
3060				(cache->alloc_offset - cache->used - cache->pinned -
3061				 cache->reserved) +
3062				(cache->length - cache->zone_capacity);
3063			btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3064								    cache->zone_unusable);
3065			sinfo->bytes_readonly -= cache->zone_unusable;
3066		}
3067		num_bytes = cache->length - cache->reserved -
3068			    cache->pinned - cache->bytes_super -
3069			    cache->zone_unusable - cache->used;
3070		sinfo->bytes_readonly -= num_bytes;
3071		list_del_init(&cache->ro_list);
3072	}
3073	spin_unlock(&cache->lock);
3074	spin_unlock(&sinfo->lock);
3075}
3076
3077static int update_block_group_item(struct btrfs_trans_handle *trans,
3078				   struct btrfs_path *path,
3079				   struct btrfs_block_group *cache)
3080{
3081	struct btrfs_fs_info *fs_info = trans->fs_info;
3082	int ret;
3083	struct btrfs_root *root = btrfs_block_group_root(fs_info);
3084	unsigned long bi;
3085	struct extent_buffer *leaf;
3086	struct btrfs_block_group_item bgi;
3087	struct btrfs_key key;
3088	u64 old_commit_used;
3089	u64 used;
3090
3091	/*
3092	 * Block group items update can be triggered out of commit transaction
3093	 * critical section, thus we need a consistent view of used bytes.
3094	 * We cannot use cache->used directly outside of the spin lock, as it
3095	 * may be changed.
3096	 */
3097	spin_lock(&cache->lock);
3098	old_commit_used = cache->commit_used;
3099	used = cache->used;
3100	/* No change in used bytes, can safely skip it. */
3101	if (cache->commit_used == used) {
3102		spin_unlock(&cache->lock);
3103		return 0;
3104	}
3105	cache->commit_used = used;
3106	spin_unlock(&cache->lock);
3107
3108	key.objectid = cache->start;
3109	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3110	key.offset = cache->length;
3111
3112	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3113	if (ret) {
3114		if (ret > 0)
3115			ret = -ENOENT;
3116		goto fail;
3117	}
3118
3119	leaf = path->nodes[0];
3120	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3121	btrfs_set_stack_block_group_used(&bgi, used);
3122	btrfs_set_stack_block_group_chunk_objectid(&bgi,
3123						   cache->global_root_id);
3124	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3125	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3126	btrfs_mark_buffer_dirty(trans, leaf);
3127fail:
3128	btrfs_release_path(path);
3129	/*
3130	 * We didn't update the block group item, need to revert commit_used
3131	 * unless the block group item didn't exist yet - this is to prevent a
3132	 * race with a concurrent insertion of the block group item, with
3133	 * insert_block_group_item(), that happened just after we attempted to
3134	 * update. In that case we would reset commit_used to 0 just after the
3135	 * insertion set it to a value greater than 0 - if the block group later
3136	 * becomes with 0 used bytes, we would incorrectly skip its update.
3137	 */
3138	if (ret < 0 && ret != -ENOENT) {
3139		spin_lock(&cache->lock);
3140		cache->commit_used = old_commit_used;
3141		spin_unlock(&cache->lock);
3142	}
3143	return ret;
3144
3145}
3146
3147static int cache_save_setup(struct btrfs_block_group *block_group,
3148			    struct btrfs_trans_handle *trans,
3149			    struct btrfs_path *path)
3150{
3151	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
3152	struct inode *inode = NULL;
3153	struct extent_changeset *data_reserved = NULL;
3154	u64 alloc_hint = 0;
3155	int dcs = BTRFS_DC_ERROR;
3156	u64 cache_size = 0;
3157	int retries = 0;
3158	int ret = 0;
3159
3160	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3161		return 0;
3162
3163	/*
3164	 * If this block group is smaller than 100 megs don't bother caching the
3165	 * block group.
3166	 */
3167	if (block_group->length < (100 * SZ_1M)) {
3168		spin_lock(&block_group->lock);
3169		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3170		spin_unlock(&block_group->lock);
3171		return 0;
3172	}
3173
3174	if (TRANS_ABORTED(trans))
3175		return 0;
3176again:
3177	inode = lookup_free_space_inode(block_group, path);
3178	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3179		ret = PTR_ERR(inode);
3180		btrfs_release_path(path);
3181		goto out;
3182	}
3183
3184	if (IS_ERR(inode)) {
3185		BUG_ON(retries);
3186		retries++;
3187
3188		if (block_group->ro)
3189			goto out_free;
3190
3191		ret = create_free_space_inode(trans, block_group, path);
3192		if (ret)
3193			goto out_free;
3194		goto again;
3195	}
3196
3197	/*
3198	 * We want to set the generation to 0, that way if anything goes wrong
3199	 * from here on out we know not to trust this cache when we load up next
3200	 * time.
3201	 */
3202	BTRFS_I(inode)->generation = 0;
3203	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3204	if (ret) {
3205		/*
3206		 * So theoretically we could recover from this, simply set the
3207		 * super cache generation to 0 so we know to invalidate the
3208		 * cache, but then we'd have to keep track of the block groups
3209		 * that fail this way so we know we _have_ to reset this cache
3210		 * before the next commit or risk reading stale cache.  So to
3211		 * limit our exposure to horrible edge cases lets just abort the
3212		 * transaction, this only happens in really bad situations
3213		 * anyway.
3214		 */
3215		btrfs_abort_transaction(trans, ret);
3216		goto out_put;
3217	}
3218	WARN_ON(ret);
3219
3220	/* We've already setup this transaction, go ahead and exit */
3221	if (block_group->cache_generation == trans->transid &&
3222	    i_size_read(inode)) {
3223		dcs = BTRFS_DC_SETUP;
3224		goto out_put;
3225	}
3226
3227	if (i_size_read(inode) > 0) {
3228		ret = btrfs_check_trunc_cache_free_space(fs_info,
3229					&fs_info->global_block_rsv);
3230		if (ret)
3231			goto out_put;
3232
3233		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3234		if (ret)
3235			goto out_put;
3236	}
3237
3238	spin_lock(&block_group->lock);
3239	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3240	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3241		/*
3242		 * don't bother trying to write stuff out _if_
3243		 * a) we're not cached,
3244		 * b) we're with nospace_cache mount option,
3245		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3246		 */
3247		dcs = BTRFS_DC_WRITTEN;
3248		spin_unlock(&block_group->lock);
3249		goto out_put;
3250	}
3251	spin_unlock(&block_group->lock);
3252
3253	/*
3254	 * We hit an ENOSPC when setting up the cache in this transaction, just
3255	 * skip doing the setup, we've already cleared the cache so we're safe.
3256	 */
3257	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3258		ret = -ENOSPC;
3259		goto out_put;
3260	}
3261
3262	/*
3263	 * Try to preallocate enough space based on how big the block group is.
3264	 * Keep in mind this has to include any pinned space which could end up
3265	 * taking up quite a bit since it's not folded into the other space
3266	 * cache.
3267	 */
3268	cache_size = div_u64(block_group->length, SZ_256M);
3269	if (!cache_size)
3270		cache_size = 1;
3271
3272	cache_size *= 16;
3273	cache_size *= fs_info->sectorsize;
3274
3275	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3276					  cache_size, false);
3277	if (ret)
3278		goto out_put;
3279
3280	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3281					      cache_size, cache_size,
3282					      &alloc_hint);
3283	/*
3284	 * Our cache requires contiguous chunks so that we don't modify a bunch
3285	 * of metadata or split extents when writing the cache out, which means
3286	 * we can enospc if we are heavily fragmented in addition to just normal
3287	 * out of space conditions.  So if we hit this just skip setting up any
3288	 * other block groups for this transaction, maybe we'll unpin enough
3289	 * space the next time around.
3290	 */
3291	if (!ret)
3292		dcs = BTRFS_DC_SETUP;
3293	else if (ret == -ENOSPC)
3294		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3295
3296out_put:
3297	iput(inode);
3298out_free:
3299	btrfs_release_path(path);
3300out:
3301	spin_lock(&block_group->lock);
3302	if (!ret && dcs == BTRFS_DC_SETUP)
3303		block_group->cache_generation = trans->transid;
3304	block_group->disk_cache_state = dcs;
3305	spin_unlock(&block_group->lock);
3306
3307	extent_changeset_free(data_reserved);
3308	return ret;
3309}
3310
3311int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3312{
3313	struct btrfs_fs_info *fs_info = trans->fs_info;
3314	struct btrfs_block_group *cache, *tmp;
3315	struct btrfs_transaction *cur_trans = trans->transaction;
3316	struct btrfs_path *path;
3317
3318	if (list_empty(&cur_trans->dirty_bgs) ||
3319	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3320		return 0;
3321
3322	path = btrfs_alloc_path();
3323	if (!path)
3324		return -ENOMEM;
3325
3326	/* Could add new block groups, use _safe just in case */
3327	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3328				 dirty_list) {
3329		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3330			cache_save_setup(cache, trans, path);
3331	}
3332
3333	btrfs_free_path(path);
3334	return 0;
3335}
3336
3337/*
3338 * Transaction commit does final block group cache writeback during a critical
3339 * section where nothing is allowed to change the FS.  This is required in
3340 * order for the cache to actually match the block group, but can introduce a
3341 * lot of latency into the commit.
3342 *
3343 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3344 * There's a chance we'll have to redo some of it if the block group changes
3345 * again during the commit, but it greatly reduces the commit latency by
3346 * getting rid of the easy block groups while we're still allowing others to
3347 * join the commit.
3348 */
3349int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3350{
3351	struct btrfs_fs_info *fs_info = trans->fs_info;
3352	struct btrfs_block_group *cache;
3353	struct btrfs_transaction *cur_trans = trans->transaction;
3354	int ret = 0;
3355	int should_put;
3356	struct btrfs_path *path = NULL;
3357	LIST_HEAD(dirty);
3358	struct list_head *io = &cur_trans->io_bgs;
3359	int loops = 0;
3360
3361	spin_lock(&cur_trans->dirty_bgs_lock);
3362	if (list_empty(&cur_trans->dirty_bgs)) {
3363		spin_unlock(&cur_trans->dirty_bgs_lock);
3364		return 0;
3365	}
3366	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3367	spin_unlock(&cur_trans->dirty_bgs_lock);
3368
3369again:
3370	/* Make sure all the block groups on our dirty list actually exist */
3371	btrfs_create_pending_block_groups(trans);
3372
3373	if (!path) {
3374		path = btrfs_alloc_path();
3375		if (!path) {
3376			ret = -ENOMEM;
3377			goto out;
3378		}
3379	}
3380
3381	/*
3382	 * cache_write_mutex is here only to save us from balance or automatic
3383	 * removal of empty block groups deleting this block group while we are
3384	 * writing out the cache
3385	 */
3386	mutex_lock(&trans->transaction->cache_write_mutex);
3387	while (!list_empty(&dirty)) {
3388		bool drop_reserve = true;
3389
3390		cache = list_first_entry(&dirty, struct btrfs_block_group,
3391					 dirty_list);
3392		/*
3393		 * This can happen if something re-dirties a block group that
3394		 * is already under IO.  Just wait for it to finish and then do
3395		 * it all again
3396		 */
3397		if (!list_empty(&cache->io_list)) {
3398			list_del_init(&cache->io_list);
3399			btrfs_wait_cache_io(trans, cache, path);
3400			btrfs_put_block_group(cache);
3401		}
3402
3403
3404		/*
3405		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3406		 * it should update the cache_state.  Don't delete until after
3407		 * we wait.
3408		 *
3409		 * Since we're not running in the commit critical section
3410		 * we need the dirty_bgs_lock to protect from update_block_group
3411		 */
3412		spin_lock(&cur_trans->dirty_bgs_lock);
3413		list_del_init(&cache->dirty_list);
3414		spin_unlock(&cur_trans->dirty_bgs_lock);
3415
3416		should_put = 1;
3417
3418		cache_save_setup(cache, trans, path);
3419
3420		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421			cache->io_ctl.inode = NULL;
3422			ret = btrfs_write_out_cache(trans, cache, path);
3423			if (ret == 0 && cache->io_ctl.inode) {
3424				should_put = 0;
3425
3426				/*
3427				 * The cache_write_mutex is protecting the
3428				 * io_list, also refer to the definition of
3429				 * btrfs_transaction::io_bgs for more details
3430				 */
3431				list_add_tail(&cache->io_list, io);
3432			} else {
3433				/*
3434				 * If we failed to write the cache, the
3435				 * generation will be bad and life goes on
3436				 */
3437				ret = 0;
3438			}
3439		}
3440		if (!ret) {
3441			ret = update_block_group_item(trans, path, cache);
3442			/*
3443			 * Our block group might still be attached to the list
3444			 * of new block groups in the transaction handle of some
3445			 * other task (struct btrfs_trans_handle->new_bgs). This
3446			 * means its block group item isn't yet in the extent
3447			 * tree. If this happens ignore the error, as we will
3448			 * try again later in the critical section of the
3449			 * transaction commit.
3450			 */
3451			if (ret == -ENOENT) {
3452				ret = 0;
3453				spin_lock(&cur_trans->dirty_bgs_lock);
3454				if (list_empty(&cache->dirty_list)) {
3455					list_add_tail(&cache->dirty_list,
3456						      &cur_trans->dirty_bgs);
3457					btrfs_get_block_group(cache);
3458					drop_reserve = false;
3459				}
3460				spin_unlock(&cur_trans->dirty_bgs_lock);
3461			} else if (ret) {
3462				btrfs_abort_transaction(trans, ret);
3463			}
3464		}
3465
3466		/* If it's not on the io list, we need to put the block group */
3467		if (should_put)
3468			btrfs_put_block_group(cache);
3469		if (drop_reserve)
3470			btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3471		/*
3472		 * Avoid blocking other tasks for too long. It might even save
3473		 * us from writing caches for block groups that are going to be
3474		 * removed.
3475		 */
3476		mutex_unlock(&trans->transaction->cache_write_mutex);
3477		if (ret)
3478			goto out;
3479		mutex_lock(&trans->transaction->cache_write_mutex);
3480	}
3481	mutex_unlock(&trans->transaction->cache_write_mutex);
3482
3483	/*
3484	 * Go through delayed refs for all the stuff we've just kicked off
3485	 * and then loop back (just once)
3486	 */
3487	if (!ret)
3488		ret = btrfs_run_delayed_refs(trans, 0);
3489	if (!ret && loops == 0) {
3490		loops++;
3491		spin_lock(&cur_trans->dirty_bgs_lock);
3492		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3493		/*
3494		 * dirty_bgs_lock protects us from concurrent block group
3495		 * deletes too (not just cache_write_mutex).
3496		 */
3497		if (!list_empty(&dirty)) {
3498			spin_unlock(&cur_trans->dirty_bgs_lock);
3499			goto again;
3500		}
3501		spin_unlock(&cur_trans->dirty_bgs_lock);
3502	}
3503out:
3504	if (ret < 0) {
3505		spin_lock(&cur_trans->dirty_bgs_lock);
3506		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3507		spin_unlock(&cur_trans->dirty_bgs_lock);
3508		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3509	}
3510
3511	btrfs_free_path(path);
3512	return ret;
3513}
3514
3515int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3516{
3517	struct btrfs_fs_info *fs_info = trans->fs_info;
3518	struct btrfs_block_group *cache;
3519	struct btrfs_transaction *cur_trans = trans->transaction;
3520	int ret = 0;
3521	int should_put;
3522	struct btrfs_path *path;
3523	struct list_head *io = &cur_trans->io_bgs;
3524
3525	path = btrfs_alloc_path();
3526	if (!path)
3527		return -ENOMEM;
3528
3529	/*
3530	 * Even though we are in the critical section of the transaction commit,
3531	 * we can still have concurrent tasks adding elements to this
3532	 * transaction's list of dirty block groups. These tasks correspond to
3533	 * endio free space workers started when writeback finishes for a
3534	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3535	 * allocate new block groups as a result of COWing nodes of the root
3536	 * tree when updating the free space inode. The writeback for the space
3537	 * caches is triggered by an earlier call to
3538	 * btrfs_start_dirty_block_groups() and iterations of the following
3539	 * loop.
3540	 * Also we want to do the cache_save_setup first and then run the
3541	 * delayed refs to make sure we have the best chance at doing this all
3542	 * in one shot.
3543	 */
3544	spin_lock(&cur_trans->dirty_bgs_lock);
3545	while (!list_empty(&cur_trans->dirty_bgs)) {
3546		cache = list_first_entry(&cur_trans->dirty_bgs,
3547					 struct btrfs_block_group,
3548					 dirty_list);
3549
3550		/*
3551		 * This can happen if cache_save_setup re-dirties a block group
3552		 * that is already under IO.  Just wait for it to finish and
3553		 * then do it all again
3554		 */
3555		if (!list_empty(&cache->io_list)) {
3556			spin_unlock(&cur_trans->dirty_bgs_lock);
3557			list_del_init(&cache->io_list);
3558			btrfs_wait_cache_io(trans, cache, path);
3559			btrfs_put_block_group(cache);
3560			spin_lock(&cur_trans->dirty_bgs_lock);
3561		}
3562
3563		/*
3564		 * Don't remove from the dirty list until after we've waited on
3565		 * any pending IO
3566		 */
3567		list_del_init(&cache->dirty_list);
3568		spin_unlock(&cur_trans->dirty_bgs_lock);
3569		should_put = 1;
3570
3571		cache_save_setup(cache, trans, path);
3572
3573		if (!ret)
3574			ret = btrfs_run_delayed_refs(trans, U64_MAX);
 
3575
3576		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577			cache->io_ctl.inode = NULL;
3578			ret = btrfs_write_out_cache(trans, cache, path);
3579			if (ret == 0 && cache->io_ctl.inode) {
3580				should_put = 0;
3581				list_add_tail(&cache->io_list, io);
3582			} else {
3583				/*
3584				 * If we failed to write the cache, the
3585				 * generation will be bad and life goes on
3586				 */
3587				ret = 0;
3588			}
3589		}
3590		if (!ret) {
3591			ret = update_block_group_item(trans, path, cache);
3592			/*
3593			 * One of the free space endio workers might have
3594			 * created a new block group while updating a free space
3595			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3596			 * and hasn't released its transaction handle yet, in
3597			 * which case the new block group is still attached to
3598			 * its transaction handle and its creation has not
3599			 * finished yet (no block group item in the extent tree
3600			 * yet, etc). If this is the case, wait for all free
3601			 * space endio workers to finish and retry. This is a
3602			 * very rare case so no need for a more efficient and
3603			 * complex approach.
3604			 */
3605			if (ret == -ENOENT) {
3606				wait_event(cur_trans->writer_wait,
3607				   atomic_read(&cur_trans->num_writers) == 1);
3608				ret = update_block_group_item(trans, path, cache);
3609			}
3610			if (ret)
3611				btrfs_abort_transaction(trans, ret);
3612		}
3613
3614		/* If its not on the io list, we need to put the block group */
3615		if (should_put)
3616			btrfs_put_block_group(cache);
3617		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3618		spin_lock(&cur_trans->dirty_bgs_lock);
3619	}
3620	spin_unlock(&cur_trans->dirty_bgs_lock);
3621
3622	/*
3623	 * Refer to the definition of io_bgs member for details why it's safe
3624	 * to use it without any locking
3625	 */
3626	while (!list_empty(io)) {
3627		cache = list_first_entry(io, struct btrfs_block_group,
3628					 io_list);
3629		list_del_init(&cache->io_list);
3630		btrfs_wait_cache_io(trans, cache, path);
3631		btrfs_put_block_group(cache);
3632	}
3633
3634	btrfs_free_path(path);
3635	return ret;
3636}
3637
3638int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3639			     u64 bytenr, u64 num_bytes, bool alloc)
3640{
3641	struct btrfs_fs_info *info = trans->fs_info;
3642	struct btrfs_space_info *space_info;
3643	struct btrfs_block_group *cache;
3644	u64 old_val;
3645	bool reclaim = false;
3646	bool bg_already_dirty = true;
3647	int factor;
 
3648
3649	/* Block accounting for super block */
3650	spin_lock(&info->delalloc_root_lock);
3651	old_val = btrfs_super_bytes_used(info->super_copy);
3652	if (alloc)
3653		old_val += num_bytes;
3654	else
3655		old_val -= num_bytes;
3656	btrfs_set_super_bytes_used(info->super_copy, old_val);
3657	spin_unlock(&info->delalloc_root_lock);
3658
3659	cache = btrfs_lookup_block_group(info, bytenr);
3660	if (!cache)
3661		return -ENOENT;
 
 
 
 
 
 
3662
3663	/* An extent can not span multiple block groups. */
3664	ASSERT(bytenr + num_bytes <= cache->start + cache->length);
 
 
 
 
 
 
3665
3666	space_info = cache->space_info;
3667	factor = btrfs_bg_type_to_factor(cache->flags);
3668
3669	/*
3670	 * If this block group has free space cache written out, we need to make
3671	 * sure to load it if we are removing space.  This is because we need
3672	 * the unpinning stage to actually add the space back to the block group,
3673	 * otherwise we will leak space.
3674	 */
3675	if (!alloc && !btrfs_block_group_done(cache))
3676		btrfs_cache_block_group(cache, true);
3677
3678	spin_lock(&space_info->lock);
3679	spin_lock(&cache->lock);
 
3680
3681	if (btrfs_test_opt(info, SPACE_CACHE) &&
3682	    cache->disk_cache_state < BTRFS_DC_CLEAR)
3683		cache->disk_cache_state = BTRFS_DC_CLEAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3684
3685	old_val = cache->used;
3686	if (alloc) {
3687		old_val += num_bytes;
3688		cache->used = old_val;
3689		cache->reserved -= num_bytes;
3690		cache->reclaim_mark = 0;
3691		space_info->bytes_reserved -= num_bytes;
3692		space_info->bytes_used += num_bytes;
3693		space_info->disk_used += num_bytes * factor;
3694		if (READ_ONCE(space_info->periodic_reclaim))
3695			btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3696		spin_unlock(&cache->lock);
3697		spin_unlock(&space_info->lock);
3698	} else {
3699		old_val -= num_bytes;
3700		cache->used = old_val;
3701		cache->pinned += num_bytes;
3702		btrfs_space_info_update_bytes_pinned(info, space_info, num_bytes);
3703		space_info->bytes_used -= num_bytes;
3704		space_info->disk_used -= num_bytes * factor;
3705		if (READ_ONCE(space_info->periodic_reclaim))
3706			btrfs_space_info_update_reclaimable(space_info, num_bytes);
3707		else
3708			reclaim = should_reclaim_block_group(cache, num_bytes);
 
 
3709
3710		spin_unlock(&cache->lock);
3711		spin_unlock(&space_info->lock);
 
 
3712
3713		set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3714			       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3715	}
 
 
 
 
 
3716
3717	spin_lock(&trans->transaction->dirty_bgs_lock);
3718	if (list_empty(&cache->dirty_list)) {
3719		list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3720		bg_already_dirty = false;
3721		btrfs_get_block_group(cache);
3722	}
3723	spin_unlock(&trans->transaction->dirty_bgs_lock);
 
 
 
 
 
3724
3725	/*
3726	 * No longer have used bytes in this block group, queue it for deletion.
3727	 * We do this after adding the block group to the dirty list to avoid
3728	 * races between cleaner kthread and space cache writeout.
3729	 */
3730	if (!alloc && old_val == 0) {
3731		if (!btrfs_test_opt(info, DISCARD_ASYNC))
3732			btrfs_mark_bg_unused(cache);
3733	} else if (!alloc && reclaim) {
3734		btrfs_mark_bg_to_reclaim(cache);
3735	}
3736
3737	btrfs_put_block_group(cache);
3738
3739	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3740	if (!bg_already_dirty)
3741		btrfs_inc_delayed_refs_rsv_bg_updates(info);
3742
3743	return 0;
3744}
3745
3746/*
3747 * Update the block_group and space info counters.
3748 *
3749 * @cache:	The cache we are manipulating
3750 * @ram_bytes:  The number of bytes of file content, and will be same to
3751 *              @num_bytes except for the compress path.
3752 * @num_bytes:	The number of bytes in question
3753 * @delalloc:   The blocks are allocated for the delalloc write
3754 *
3755 * This is called by the allocator when it reserves space. If this is a
3756 * reservation and the block group has become read only we cannot make the
3757 * reservation and return -EAGAIN, otherwise this function always succeeds.
3758 */
3759int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3760			     u64 ram_bytes, u64 num_bytes, int delalloc,
3761			     bool force_wrong_size_class)
3762{
3763	struct btrfs_space_info *space_info = cache->space_info;
3764	enum btrfs_block_group_size_class size_class;
3765	int ret = 0;
3766
3767	spin_lock(&space_info->lock);
3768	spin_lock(&cache->lock);
3769	if (cache->ro) {
3770		ret = -EAGAIN;
3771		goto out;
3772	}
 
 
 
 
 
 
 
3773
3774	if (btrfs_block_group_should_use_size_class(cache)) {
3775		size_class = btrfs_calc_block_group_size_class(num_bytes);
3776		ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3777		if (ret)
3778			goto out;
 
3779	}
3780	cache->reserved += num_bytes;
3781	space_info->bytes_reserved += num_bytes;
3782	trace_btrfs_space_reservation(cache->fs_info, "space_info",
3783				      space_info->flags, num_bytes, 1);
3784	btrfs_space_info_update_bytes_may_use(cache->fs_info,
3785					      space_info, -ram_bytes);
3786	if (delalloc)
3787		cache->delalloc_bytes += num_bytes;
3788
3789	/*
3790	 * Compression can use less space than we reserved, so wake tickets if
3791	 * that happens.
3792	 */
3793	if (num_bytes < ram_bytes)
3794		btrfs_try_granting_tickets(cache->fs_info, space_info);
3795out:
3796	spin_unlock(&cache->lock);
3797	spin_unlock(&space_info->lock);
3798	return ret;
3799}
3800
3801/*
3802 * Update the block_group and space info counters.
3803 *
3804 * @cache:      The cache we are manipulating
3805 * @num_bytes:  The number of bytes in question
3806 * @delalloc:   The blocks are allocated for the delalloc write
3807 *
3808 * This is called by somebody who is freeing space that was never actually used
3809 * on disk.  For example if you reserve some space for a new leaf in transaction
3810 * A and before transaction A commits you free that leaf, you call this with
3811 * reserve set to 0 in order to clear the reservation.
3812 */
3813void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3814			       u64 num_bytes, int delalloc)
3815{
3816	struct btrfs_space_info *space_info = cache->space_info;
3817
3818	spin_lock(&space_info->lock);
3819	spin_lock(&cache->lock);
3820	if (cache->ro)
3821		space_info->bytes_readonly += num_bytes;
3822	else if (btrfs_is_zoned(cache->fs_info))
3823		space_info->bytes_zone_unusable += num_bytes;
3824	cache->reserved -= num_bytes;
3825	space_info->bytes_reserved -= num_bytes;
3826	space_info->max_extent_size = 0;
3827
3828	if (delalloc)
3829		cache->delalloc_bytes -= num_bytes;
3830	spin_unlock(&cache->lock);
3831
3832	btrfs_try_granting_tickets(cache->fs_info, space_info);
3833	spin_unlock(&space_info->lock);
3834}
3835
3836static void force_metadata_allocation(struct btrfs_fs_info *info)
3837{
3838	struct list_head *head = &info->space_info;
3839	struct btrfs_space_info *found;
3840
3841	list_for_each_entry(found, head, list) {
3842		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3843			found->force_alloc = CHUNK_ALLOC_FORCE;
3844	}
3845}
3846
3847static int should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3848			      const struct btrfs_space_info *sinfo, int force)
3849{
3850	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3851	u64 thresh;
3852
3853	if (force == CHUNK_ALLOC_FORCE)
3854		return 1;
3855
3856	/*
3857	 * in limited mode, we want to have some free space up to
3858	 * about 1% of the FS size.
3859	 */
3860	if (force == CHUNK_ALLOC_LIMITED) {
3861		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3862		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3863
3864		if (sinfo->total_bytes - bytes_used < thresh)
3865			return 1;
3866	}
3867
3868	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3869		return 0;
3870	return 1;
3871}
3872
3873int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3874{
3875	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3876
3877	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3878}
3879
3880static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3881{
3882	struct btrfs_block_group *bg;
3883	int ret;
3884
3885	/*
3886	 * Check if we have enough space in the system space info because we
3887	 * will need to update device items in the chunk btree and insert a new
3888	 * chunk item in the chunk btree as well. This will allocate a new
3889	 * system block group if needed.
3890	 */
3891	check_system_chunk(trans, flags);
3892
3893	bg = btrfs_create_chunk(trans, flags);
3894	if (IS_ERR(bg)) {
3895		ret = PTR_ERR(bg);
3896		goto out;
3897	}
3898
3899	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3900	/*
3901	 * Normally we are not expected to fail with -ENOSPC here, since we have
3902	 * previously reserved space in the system space_info and allocated one
3903	 * new system chunk if necessary. However there are three exceptions:
3904	 *
3905	 * 1) We may have enough free space in the system space_info but all the
3906	 *    existing system block groups have a profile which can not be used
3907	 *    for extent allocation.
3908	 *
3909	 *    This happens when mounting in degraded mode. For example we have a
3910	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3911	 *    using the other device in degraded mode. If we then allocate a chunk,
3912	 *    we may have enough free space in the existing system space_info, but
3913	 *    none of the block groups can be used for extent allocation since they
3914	 *    have a RAID1 profile, and because we are in degraded mode with a
3915	 *    single device, we are forced to allocate a new system chunk with a
3916	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3917	 *    block groups and check if they have a usable profile and enough space
3918	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3919	 *    try again after forcing allocation of a new system chunk. Like this
3920	 *    we avoid paying the cost of that search in normal circumstances, when
3921	 *    we were not mounted in degraded mode;
3922	 *
3923	 * 2) We had enough free space info the system space_info, and one suitable
3924	 *    block group to allocate from when we called check_system_chunk()
3925	 *    above. However right after we called it, the only system block group
3926	 *    with enough free space got turned into RO mode by a running scrub,
3927	 *    and in this case we have to allocate a new one and retry. We only
3928	 *    need do this allocate and retry once, since we have a transaction
3929	 *    handle and scrub uses the commit root to search for block groups;
3930	 *
3931	 * 3) We had one system block group with enough free space when we called
3932	 *    check_system_chunk(), but after that, right before we tried to
3933	 *    allocate the last extent buffer we needed, a discard operation came
3934	 *    in and it temporarily removed the last free space entry from the
3935	 *    block group (discard removes a free space entry, discards it, and
3936	 *    then adds back the entry to the block group cache).
3937	 */
3938	if (ret == -ENOSPC) {
3939		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3940		struct btrfs_block_group *sys_bg;
3941
3942		sys_bg = btrfs_create_chunk(trans, sys_flags);
3943		if (IS_ERR(sys_bg)) {
3944			ret = PTR_ERR(sys_bg);
3945			btrfs_abort_transaction(trans, ret);
3946			goto out;
3947		}
3948
3949		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3950		if (ret) {
3951			btrfs_abort_transaction(trans, ret);
3952			goto out;
3953		}
3954
3955		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3956		if (ret) {
3957			btrfs_abort_transaction(trans, ret);
3958			goto out;
3959		}
3960	} else if (ret) {
3961		btrfs_abort_transaction(trans, ret);
3962		goto out;
3963	}
3964out:
3965	btrfs_trans_release_chunk_metadata(trans);
3966
3967	if (ret)
3968		return ERR_PTR(ret);
3969
3970	btrfs_get_block_group(bg);
3971	return bg;
3972}
3973
3974/*
3975 * Chunk allocation is done in 2 phases:
3976 *
3977 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3978 *    the chunk, the chunk mapping, create its block group and add the items
3979 *    that belong in the chunk btree to it - more specifically, we need to
3980 *    update device items in the chunk btree and add a new chunk item to it.
3981 *
3982 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3983 *    group item to the extent btree and the device extent items to the devices
3984 *    btree.
3985 *
3986 * This is done to prevent deadlocks. For example when COWing a node from the
3987 * extent btree we are holding a write lock on the node's parent and if we
3988 * trigger chunk allocation and attempted to insert the new block group item
3989 * in the extent btree right way, we could deadlock because the path for the
3990 * insertion can include that parent node. At first glance it seems impossible
3991 * to trigger chunk allocation after starting a transaction since tasks should
3992 * reserve enough transaction units (metadata space), however while that is true
3993 * most of the time, chunk allocation may still be triggered for several reasons:
3994 *
3995 * 1) When reserving metadata, we check if there is enough free space in the
3996 *    metadata space_info and therefore don't trigger allocation of a new chunk.
3997 *    However later when the task actually tries to COW an extent buffer from
3998 *    the extent btree or from the device btree for example, it is forced to
3999 *    allocate a new block group (chunk) because the only one that had enough
4000 *    free space was just turned to RO mode by a running scrub for example (or
4001 *    device replace, block group reclaim thread, etc), so we can not use it
4002 *    for allocating an extent and end up being forced to allocate a new one;
4003 *
4004 * 2) Because we only check that the metadata space_info has enough free bytes,
4005 *    we end up not allocating a new metadata chunk in that case. However if
4006 *    the filesystem was mounted in degraded mode, none of the existing block
4007 *    groups might be suitable for extent allocation due to their incompatible
4008 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
4009 *    use a RAID1 profile, in degraded mode using a single device). In this case
4010 *    when the task attempts to COW some extent buffer of the extent btree for
4011 *    example, it will trigger allocation of a new metadata block group with a
4012 *    suitable profile (SINGLE profile in the example of the degraded mount of
4013 *    the RAID1 filesystem);
4014 *
4015 * 3) The task has reserved enough transaction units / metadata space, but when
4016 *    it attempts to COW an extent buffer from the extent or device btree for
4017 *    example, it does not find any free extent in any metadata block group,
4018 *    therefore forced to try to allocate a new metadata block group.
4019 *    This is because some other task allocated all available extents in the
4020 *    meanwhile - this typically happens with tasks that don't reserve space
4021 *    properly, either intentionally or as a bug. One example where this is
4022 *    done intentionally is fsync, as it does not reserve any transaction units
4023 *    and ends up allocating a variable number of metadata extents for log
4024 *    tree extent buffers;
4025 *
4026 * 4) The task has reserved enough transaction units / metadata space, but right
4027 *    before it tries to allocate the last extent buffer it needs, a discard
4028 *    operation comes in and, temporarily, removes the last free space entry from
4029 *    the only metadata block group that had free space (discard starts by
4030 *    removing a free space entry from a block group, then does the discard
4031 *    operation and, once it's done, it adds back the free space entry to the
4032 *    block group).
4033 *
4034 * We also need this 2 phases setup when adding a device to a filesystem with
4035 * a seed device - we must create new metadata and system chunks without adding
4036 * any of the block group items to the chunk, extent and device btrees. If we
4037 * did not do it this way, we would get ENOSPC when attempting to update those
4038 * btrees, since all the chunks from the seed device are read-only.
4039 *
4040 * Phase 1 does the updates and insertions to the chunk btree because if we had
4041 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4042 * parallel, we risk having too many system chunks allocated by many tasks if
4043 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4044 * extreme case this leads to exhaustion of the system chunk array in the
4045 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4046 * and with RAID filesystems (so we have more device items in the chunk btree).
4047 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4048 * the system chunk array due to concurrent allocations") provides more details.
4049 *
4050 * Allocation of system chunks does not happen through this function. A task that
4051 * needs to update the chunk btree (the only btree that uses system chunks), must
4052 * preallocate chunk space by calling either check_system_chunk() or
4053 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4054 * metadata chunk or when removing a chunk, while the later is used before doing
4055 * a modification to the chunk btree - use cases for the later are adding,
4056 * removing and resizing a device as well as relocation of a system chunk.
4057 * See the comment below for more details.
4058 *
4059 * The reservation of system space, done through check_system_chunk(), as well
4060 * as all the updates and insertions into the chunk btree must be done while
4061 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4062 * an extent buffer from the chunks btree we never trigger allocation of a new
4063 * system chunk, which would result in a deadlock (trying to lock twice an
4064 * extent buffer of the chunk btree, first time before triggering the chunk
4065 * allocation and the second time during chunk allocation while attempting to
4066 * update the chunks btree). The system chunk array is also updated while holding
4067 * that mutex. The same logic applies to removing chunks - we must reserve system
4068 * space, update the chunk btree and the system chunk array in the superblock
4069 * while holding fs_info->chunk_mutex.
4070 *
4071 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4072 *
4073 * If @force is CHUNK_ALLOC_FORCE:
4074 *    - return 1 if it successfully allocates a chunk,
4075 *    - return errors including -ENOSPC otherwise.
4076 * If @force is NOT CHUNK_ALLOC_FORCE:
4077 *    - return 0 if it doesn't need to allocate a new chunk,
4078 *    - return 1 if it successfully allocates a chunk,
4079 *    - return errors including -ENOSPC otherwise.
4080 */
4081int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4082		      enum btrfs_chunk_alloc_enum force)
4083{
4084	struct btrfs_fs_info *fs_info = trans->fs_info;
4085	struct btrfs_space_info *space_info;
4086	struct btrfs_block_group *ret_bg;
4087	bool wait_for_alloc = false;
4088	bool should_alloc = false;
4089	bool from_extent_allocation = false;
4090	int ret = 0;
4091
4092	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4093		from_extent_allocation = true;
4094		force = CHUNK_ALLOC_FORCE;
4095	}
4096
4097	/* Don't re-enter if we're already allocating a chunk */
4098	if (trans->allocating_chunk)
4099		return -ENOSPC;
4100	/*
4101	 * Allocation of system chunks can not happen through this path, as we
4102	 * could end up in a deadlock if we are allocating a data or metadata
4103	 * chunk and there is another task modifying the chunk btree.
4104	 *
4105	 * This is because while we are holding the chunk mutex, we will attempt
4106	 * to add the new chunk item to the chunk btree or update an existing
4107	 * device item in the chunk btree, while the other task that is modifying
4108	 * the chunk btree is attempting to COW an extent buffer while holding a
4109	 * lock on it and on its parent - if the COW operation triggers a system
4110	 * chunk allocation, then we can deadlock because we are holding the
4111	 * chunk mutex and we may need to access that extent buffer or its parent
4112	 * in order to add the chunk item or update a device item.
4113	 *
4114	 * Tasks that want to modify the chunk tree should reserve system space
4115	 * before updating the chunk btree, by calling either
4116	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4117	 * It's possible that after a task reserves the space, it still ends up
4118	 * here - this happens in the cases described above at do_chunk_alloc().
4119	 * The task will have to either retry or fail.
4120	 */
4121	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4122		return -ENOSPC;
4123
4124	space_info = btrfs_find_space_info(fs_info, flags);
4125	ASSERT(space_info);
4126
4127	do {
4128		spin_lock(&space_info->lock);
4129		if (force < space_info->force_alloc)
4130			force = space_info->force_alloc;
4131		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4132		if (space_info->full) {
4133			/* No more free physical space */
4134			if (should_alloc)
4135				ret = -ENOSPC;
4136			else
4137				ret = 0;
4138			spin_unlock(&space_info->lock);
4139			return ret;
4140		} else if (!should_alloc) {
4141			spin_unlock(&space_info->lock);
4142			return 0;
4143		} else if (space_info->chunk_alloc) {
4144			/*
4145			 * Someone is already allocating, so we need to block
4146			 * until this someone is finished and then loop to
4147			 * recheck if we should continue with our allocation
4148			 * attempt.
4149			 */
4150			wait_for_alloc = true;
4151			force = CHUNK_ALLOC_NO_FORCE;
4152			spin_unlock(&space_info->lock);
4153			mutex_lock(&fs_info->chunk_mutex);
4154			mutex_unlock(&fs_info->chunk_mutex);
4155		} else {
4156			/* Proceed with allocation */
4157			space_info->chunk_alloc = 1;
4158			wait_for_alloc = false;
4159			spin_unlock(&space_info->lock);
4160		}
4161
4162		cond_resched();
4163	} while (wait_for_alloc);
4164
4165	mutex_lock(&fs_info->chunk_mutex);
4166	trans->allocating_chunk = true;
4167
4168	/*
4169	 * If we have mixed data/metadata chunks we want to make sure we keep
4170	 * allocating mixed chunks instead of individual chunks.
4171	 */
4172	if (btrfs_mixed_space_info(space_info))
4173		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4174
4175	/*
4176	 * if we're doing a data chunk, go ahead and make sure that
4177	 * we keep a reasonable number of metadata chunks allocated in the
4178	 * FS as well.
4179	 */
4180	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4181		fs_info->data_chunk_allocations++;
4182		if (!(fs_info->data_chunk_allocations %
4183		      fs_info->metadata_ratio))
4184			force_metadata_allocation(fs_info);
4185	}
4186
4187	ret_bg = do_chunk_alloc(trans, flags);
4188	trans->allocating_chunk = false;
4189
4190	if (IS_ERR(ret_bg)) {
4191		ret = PTR_ERR(ret_bg);
4192	} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4193		/*
4194		 * New block group is likely to be used soon. Try to activate
4195		 * it now. Failure is OK for now.
4196		 */
4197		btrfs_zone_activate(ret_bg);
4198	}
4199
4200	if (!ret)
4201		btrfs_put_block_group(ret_bg);
4202
4203	spin_lock(&space_info->lock);
4204	if (ret < 0) {
4205		if (ret == -ENOSPC)
4206			space_info->full = 1;
4207		else
4208			goto out;
4209	} else {
4210		ret = 1;
4211		space_info->max_extent_size = 0;
4212	}
4213
4214	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4215out:
4216	space_info->chunk_alloc = 0;
4217	spin_unlock(&space_info->lock);
4218	mutex_unlock(&fs_info->chunk_mutex);
4219
4220	return ret;
4221}
4222
4223static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4224{
4225	u64 num_dev;
4226
4227	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4228	if (!num_dev)
4229		num_dev = fs_info->fs_devices->rw_devices;
4230
4231	return num_dev;
4232}
4233
4234static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4235				u64 bytes,
4236				u64 type)
4237{
4238	struct btrfs_fs_info *fs_info = trans->fs_info;
4239	struct btrfs_space_info *info;
4240	u64 left;
4241	int ret = 0;
4242
4243	/*
4244	 * Needed because we can end up allocating a system chunk and for an
4245	 * atomic and race free space reservation in the chunk block reserve.
4246	 */
4247	lockdep_assert_held(&fs_info->chunk_mutex);
4248
4249	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4250	spin_lock(&info->lock);
4251	left = info->total_bytes - btrfs_space_info_used(info, true);
4252	spin_unlock(&info->lock);
4253
4254	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4255		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4256			   left, bytes, type);
4257		btrfs_dump_space_info(fs_info, info, 0, 0);
4258	}
4259
4260	if (left < bytes) {
4261		u64 flags = btrfs_system_alloc_profile(fs_info);
4262		struct btrfs_block_group *bg;
4263
4264		/*
4265		 * Ignore failure to create system chunk. We might end up not
4266		 * needing it, as we might not need to COW all nodes/leafs from
4267		 * the paths we visit in the chunk tree (they were already COWed
4268		 * or created in the current transaction for example).
4269		 */
4270		bg = btrfs_create_chunk(trans, flags);
4271		if (IS_ERR(bg)) {
4272			ret = PTR_ERR(bg);
4273		} else {
4274			/*
4275			 * We have a new chunk. We also need to activate it for
4276			 * zoned filesystem.
4277			 */
4278			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4279			if (ret < 0)
4280				return;
4281
4282			/*
4283			 * If we fail to add the chunk item here, we end up
4284			 * trying again at phase 2 of chunk allocation, at
4285			 * btrfs_create_pending_block_groups(). So ignore
4286			 * any error here. An ENOSPC here could happen, due to
4287			 * the cases described at do_chunk_alloc() - the system
4288			 * block group we just created was just turned into RO
4289			 * mode by a scrub for example, or a running discard
4290			 * temporarily removed its free space entries, etc.
4291			 */
4292			btrfs_chunk_alloc_add_chunk_item(trans, bg);
4293		}
4294	}
4295
4296	if (!ret) {
4297		ret = btrfs_block_rsv_add(fs_info,
4298					  &fs_info->chunk_block_rsv,
4299					  bytes, BTRFS_RESERVE_NO_FLUSH);
4300		if (!ret)
4301			trans->chunk_bytes_reserved += bytes;
4302	}
4303}
4304
4305/*
4306 * Reserve space in the system space for allocating or removing a chunk.
4307 * The caller must be holding fs_info->chunk_mutex.
4308 */
4309void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4310{
4311	struct btrfs_fs_info *fs_info = trans->fs_info;
4312	const u64 num_devs = get_profile_num_devs(fs_info, type);
4313	u64 bytes;
4314
4315	/* num_devs device items to update and 1 chunk item to add or remove. */
4316	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4317		btrfs_calc_insert_metadata_size(fs_info, 1);
4318
4319	reserve_chunk_space(trans, bytes, type);
4320}
4321
4322/*
4323 * Reserve space in the system space, if needed, for doing a modification to the
4324 * chunk btree.
4325 *
4326 * @trans:		A transaction handle.
4327 * @is_item_insertion:	Indicate if the modification is for inserting a new item
4328 *			in the chunk btree or if it's for the deletion or update
4329 *			of an existing item.
4330 *
4331 * This is used in a context where we need to update the chunk btree outside
4332 * block group allocation and removal, to avoid a deadlock with a concurrent
4333 * task that is allocating a metadata or data block group and therefore needs to
4334 * update the chunk btree while holding the chunk mutex. After the update to the
4335 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4336 *
4337 */
4338void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4339				  bool is_item_insertion)
4340{
4341	struct btrfs_fs_info *fs_info = trans->fs_info;
4342	u64 bytes;
4343
4344	if (is_item_insertion)
4345		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4346	else
4347		bytes = btrfs_calc_metadata_size(fs_info, 1);
4348
4349	mutex_lock(&fs_info->chunk_mutex);
4350	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4351	mutex_unlock(&fs_info->chunk_mutex);
4352}
4353
4354void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4355{
4356	struct btrfs_block_group *block_group;
4357
4358	block_group = btrfs_lookup_first_block_group(info, 0);
4359	while (block_group) {
4360		btrfs_wait_block_group_cache_done(block_group);
4361		spin_lock(&block_group->lock);
4362		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4363				       &block_group->runtime_flags)) {
4364			struct btrfs_inode *inode = block_group->inode;
4365
4366			block_group->inode = NULL;
4367			spin_unlock(&block_group->lock);
4368
4369			ASSERT(block_group->io_ctl.inode == NULL);
4370			iput(&inode->vfs_inode);
4371		} else {
4372			spin_unlock(&block_group->lock);
4373		}
4374		block_group = btrfs_next_block_group(block_group);
4375	}
4376}
4377
4378/*
4379 * Must be called only after stopping all workers, since we could have block
4380 * group caching kthreads running, and therefore they could race with us if we
4381 * freed the block groups before stopping them.
4382 */
4383int btrfs_free_block_groups(struct btrfs_fs_info *info)
4384{
4385	struct btrfs_block_group *block_group;
4386	struct btrfs_space_info *space_info;
4387	struct btrfs_caching_control *caching_ctl;
4388	struct rb_node *n;
4389
4390	if (btrfs_is_zoned(info)) {
4391		if (info->active_meta_bg) {
4392			btrfs_put_block_group(info->active_meta_bg);
4393			info->active_meta_bg = NULL;
4394		}
4395		if (info->active_system_bg) {
4396			btrfs_put_block_group(info->active_system_bg);
4397			info->active_system_bg = NULL;
4398		}
4399	}
4400
4401	write_lock(&info->block_group_cache_lock);
4402	while (!list_empty(&info->caching_block_groups)) {
4403		caching_ctl = list_entry(info->caching_block_groups.next,
4404					 struct btrfs_caching_control, list);
4405		list_del(&caching_ctl->list);
4406		btrfs_put_caching_control(caching_ctl);
4407	}
4408	write_unlock(&info->block_group_cache_lock);
4409
4410	spin_lock(&info->unused_bgs_lock);
4411	while (!list_empty(&info->unused_bgs)) {
4412		block_group = list_first_entry(&info->unused_bgs,
4413					       struct btrfs_block_group,
4414					       bg_list);
4415		list_del_init(&block_group->bg_list);
4416		btrfs_put_block_group(block_group);
4417	}
4418
4419	while (!list_empty(&info->reclaim_bgs)) {
4420		block_group = list_first_entry(&info->reclaim_bgs,
4421					       struct btrfs_block_group,
4422					       bg_list);
4423		list_del_init(&block_group->bg_list);
4424		btrfs_put_block_group(block_group);
4425	}
4426	spin_unlock(&info->unused_bgs_lock);
4427
4428	spin_lock(&info->zone_active_bgs_lock);
4429	while (!list_empty(&info->zone_active_bgs)) {
4430		block_group = list_first_entry(&info->zone_active_bgs,
4431					       struct btrfs_block_group,
4432					       active_bg_list);
4433		list_del_init(&block_group->active_bg_list);
4434		btrfs_put_block_group(block_group);
4435	}
4436	spin_unlock(&info->zone_active_bgs_lock);
4437
4438	write_lock(&info->block_group_cache_lock);
4439	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4440		block_group = rb_entry(n, struct btrfs_block_group,
4441				       cache_node);
4442		rb_erase_cached(&block_group->cache_node,
4443				&info->block_group_cache_tree);
4444		RB_CLEAR_NODE(&block_group->cache_node);
4445		write_unlock(&info->block_group_cache_lock);
4446
4447		down_write(&block_group->space_info->groups_sem);
4448		list_del(&block_group->list);
4449		up_write(&block_group->space_info->groups_sem);
4450
4451		/*
4452		 * We haven't cached this block group, which means we could
4453		 * possibly have excluded extents on this block group.
4454		 */
4455		if (block_group->cached == BTRFS_CACHE_NO ||
4456		    block_group->cached == BTRFS_CACHE_ERROR)
4457			btrfs_free_excluded_extents(block_group);
4458
4459		btrfs_remove_free_space_cache(block_group);
4460		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4461		ASSERT(list_empty(&block_group->dirty_list));
4462		ASSERT(list_empty(&block_group->io_list));
4463		ASSERT(list_empty(&block_group->bg_list));
4464		ASSERT(refcount_read(&block_group->refs) == 1);
4465		ASSERT(block_group->swap_extents == 0);
4466		btrfs_put_block_group(block_group);
4467
4468		write_lock(&info->block_group_cache_lock);
4469	}
4470	write_unlock(&info->block_group_cache_lock);
4471
4472	btrfs_release_global_block_rsv(info);
4473
4474	while (!list_empty(&info->space_info)) {
4475		space_info = list_entry(info->space_info.next,
4476					struct btrfs_space_info,
4477					list);
4478
4479		/*
4480		 * Do not hide this behind enospc_debug, this is actually
4481		 * important and indicates a real bug if this happens.
4482		 */
4483		if (WARN_ON(space_info->bytes_pinned > 0 ||
4484			    space_info->bytes_may_use > 0))
4485			btrfs_dump_space_info(info, space_info, 0, 0);
4486
4487		/*
4488		 * If there was a failure to cleanup a log tree, very likely due
4489		 * to an IO failure on a writeback attempt of one or more of its
4490		 * extent buffers, we could not do proper (and cheap) unaccounting
4491		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4492		 * that case.
4493		 */
4494		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4495		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4496			if (WARN_ON(space_info->bytes_reserved > 0))
4497				btrfs_dump_space_info(info, space_info, 0, 0);
4498		}
4499
4500		WARN_ON(space_info->reclaim_size > 0);
4501		list_del(&space_info->list);
4502		btrfs_sysfs_remove_space_info(space_info);
4503	}
4504	return 0;
4505}
4506
4507void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4508{
4509	atomic_inc(&cache->frozen);
4510}
4511
4512void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4513{
4514	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
 
4515	bool cleanup;
4516
4517	spin_lock(&block_group->lock);
4518	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4519		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4520	spin_unlock(&block_group->lock);
4521
4522	if (cleanup) {
4523		struct btrfs_chunk_map *map;
4524
4525		map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4526		/* Logic error, can't happen. */
4527		ASSERT(map);
4528
4529		btrfs_remove_chunk_map(fs_info, map);
4530
4531		/* Once for our lookup reference. */
4532		btrfs_free_chunk_map(map);
 
4533
4534		/*
4535		 * We may have left one free space entry and other possible
4536		 * tasks trimming this block group have left 1 entry each one.
4537		 * Free them if any.
4538		 */
4539		btrfs_remove_free_space_cache(block_group);
4540	}
4541}
4542
4543bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4544{
4545	bool ret = true;
4546
4547	spin_lock(&bg->lock);
4548	if (bg->ro)
4549		ret = false;
4550	else
4551		bg->swap_extents++;
4552	spin_unlock(&bg->lock);
4553
4554	return ret;
4555}
4556
4557void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4558{
4559	spin_lock(&bg->lock);
4560	ASSERT(!bg->ro);
4561	ASSERT(bg->swap_extents >= amount);
4562	bg->swap_extents -= amount;
4563	spin_unlock(&bg->lock);
4564}
4565
4566enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4567{
4568	if (size <= SZ_128K)
4569		return BTRFS_BG_SZ_SMALL;
4570	if (size <= SZ_8M)
4571		return BTRFS_BG_SZ_MEDIUM;
4572	return BTRFS_BG_SZ_LARGE;
4573}
4574
4575/*
4576 * Handle a block group allocating an extent in a size class
4577 *
4578 * @bg:				The block group we allocated in.
4579 * @size_class:			The size class of the allocation.
4580 * @force_wrong_size_class:	Whether we are desperate enough to allow
4581 *				mismatched size classes.
4582 *
4583 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4584 * case of a race that leads to the wrong size class without
4585 * force_wrong_size_class set.
4586 *
4587 * find_free_extent will skip block groups with a mismatched size class until
4588 * it really needs to avoid ENOSPC. In that case it will set
4589 * force_wrong_size_class. However, if a block group is newly allocated and
4590 * doesn't yet have a size class, then it is possible for two allocations of
4591 * different sizes to race and both try to use it. The loser is caught here and
4592 * has to retry.
4593 */
4594int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4595				     enum btrfs_block_group_size_class size_class,
4596				     bool force_wrong_size_class)
4597{
4598	ASSERT(size_class != BTRFS_BG_SZ_NONE);
4599
4600	/* The new allocation is in the right size class, do nothing */
4601	if (bg->size_class == size_class)
4602		return 0;
4603	/*
4604	 * The new allocation is in a mismatched size class.
4605	 * This means one of two things:
4606	 *
4607	 * 1. Two tasks in find_free_extent for different size_classes raced
4608	 *    and hit the same empty block_group. Make the loser try again.
4609	 * 2. A call to find_free_extent got desperate enough to set
4610	 *    'force_wrong_slab'. Don't change the size_class, but allow the
4611	 *    allocation.
4612	 */
4613	if (bg->size_class != BTRFS_BG_SZ_NONE) {
4614		if (force_wrong_size_class)
4615			return 0;
4616		return -EAGAIN;
4617	}
4618	/*
4619	 * The happy new block group case: the new allocation is the first
4620	 * one in the block_group so we set size_class.
4621	 */
4622	bg->size_class = size_class;
4623
4624	return 0;
4625}
4626
4627bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4628{
4629	if (btrfs_is_zoned(bg->fs_info))
4630		return false;
4631	if (!btrfs_is_block_group_data_only(bg))
4632		return false;
4633	return true;
4634}