Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2022 Christoph Hellwig.
  5 */
  6
  7#include <linux/bio.h>
  8#include "bio.h"
  9#include "ctree.h"
 10#include "volumes.h"
 11#include "raid56.h"
 12#include "async-thread.h"
 13#include "check-integrity.h"
 14#include "dev-replace.h"
 15#include "rcu-string.h"
 16#include "zoned.h"
 
 
 17
 18static struct bio_set btrfs_bioset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/*
 21 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 22 * is already initialized by the block layer.
 23 */
 24static inline void btrfs_bio_init(struct btrfs_bio *bbio,
 25				  btrfs_bio_end_io_t end_io, void *private)
 26{
 27	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
 
 28	bbio->end_io = end_io;
 29	bbio->private = private;
 
 
 30}
 31
 32/*
 33 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 34 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
 35 *
 36 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 37 * a mempool.
 38 */
 39struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
 40			    btrfs_bio_end_io_t end_io, void *private)
 
 41{
 
 42	struct bio *bio;
 43
 44	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
 45	btrfs_bio_init(btrfs_bio(bio), end_io, private);
 46	return bio;
 
 47}
 48
 49struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
 50				    btrfs_bio_end_io_t end_io, void *private)
 
 51{
 52	struct bio *bio;
 53	struct btrfs_bio *bbio;
 
 54
 55	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
 
 
 
 56
 57	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
 58	bbio = btrfs_bio(bio);
 59	btrfs_bio_init(bbio, end_io, private);
 
 
 
 
 
 
 
 
 
 
 60
 61	bio_trim(bio, offset >> 9, size >> 9);
 62	bbio->iter = bio->bi_iter;
 63	return bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64}
 65
 66static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
 67{
 68	if (!dev || !dev->bdev)
 69		return;
 70	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
 71		return;
 72
 73	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
 74		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
 75	if (!(bio->bi_opf & REQ_RAHEAD))
 76		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 77	if (bio->bi_opf & REQ_PREFLUSH)
 78		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
 79}
 80
 81static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
 82						struct bio *bio)
 83{
 84	if (bio->bi_opf & REQ_META)
 85		return fs_info->endio_meta_workers;
 86	return fs_info->endio_workers;
 87}
 88
 89static void btrfs_end_bio_work(struct work_struct *work)
 90{
 91	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
 92
 93	bbio->end_io(bbio);
 
 
 
 
 94}
 95
 96static void btrfs_simple_end_io(struct bio *bio)
 97{
 98	struct btrfs_fs_info *fs_info = bio->bi_private;
 99	struct btrfs_bio *bbio = btrfs_bio(bio);
 
 
100
101	btrfs_bio_counter_dec(fs_info);
102
103	if (bio->bi_status)
104		btrfs_log_dev_io_error(bio, bbio->device);
105
106	if (bio_op(bio) == REQ_OP_READ) {
107		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
108		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
109	} else {
110		bbio->end_io(bbio);
 
 
111	}
112}
113
114static void btrfs_raid56_end_io(struct bio *bio)
115{
116	struct btrfs_io_context *bioc = bio->bi_private;
117	struct btrfs_bio *bbio = btrfs_bio(bio);
118
119	btrfs_bio_counter_dec(bioc->fs_info);
120	bbio->mirror_num = bioc->mirror_num;
121	bbio->end_io(bbio);
 
 
 
122
123	btrfs_put_bioc(bioc);
124}
125
126static void btrfs_orig_write_end_io(struct bio *bio)
127{
128	struct btrfs_io_stripe *stripe = bio->bi_private;
129	struct btrfs_io_context *bioc = stripe->bioc;
130	struct btrfs_bio *bbio = btrfs_bio(bio);
131
132	btrfs_bio_counter_dec(bioc->fs_info);
133
134	if (bio->bi_status) {
135		atomic_inc(&bioc->error);
136		btrfs_log_dev_io_error(bio, stripe->dev);
137	}
138
139	/*
140	 * Only send an error to the higher layers if it is beyond the tolerance
141	 * threshold.
142	 */
143	if (atomic_read(&bioc->error) > bioc->max_errors)
144		bio->bi_status = BLK_STS_IOERR;
145	else
146		bio->bi_status = BLK_STS_OK;
147
148	bbio->end_io(bbio);
 
 
 
149	btrfs_put_bioc(bioc);
150}
151
152static void btrfs_clone_write_end_io(struct bio *bio)
153{
154	struct btrfs_io_stripe *stripe = bio->bi_private;
155
156	if (bio->bi_status) {
157		atomic_inc(&stripe->bioc->error);
158		btrfs_log_dev_io_error(bio, stripe->dev);
 
 
159	}
160
161	/* Pass on control to the original bio this one was cloned from */
162	bio_endio(stripe->bioc->orig_bio);
163	bio_put(bio);
164}
165
166static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
167{
168	if (!dev || !dev->bdev ||
169	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
170	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
171	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
172		bio_io_error(bio);
173		return;
174	}
175
176	bio_set_dev(bio, dev->bdev);
177
178	/*
179	 * For zone append writing, bi_sector must point the beginning of the
180	 * zone
181	 */
182	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
183		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 
184
185		if (btrfs_dev_is_sequential(dev, physical)) {
186			u64 zone_start = round_down(physical,
187						    dev->fs_info->zone_size);
188
189			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
190		} else {
191			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
192			bio->bi_opf |= REQ_OP_WRITE;
193		}
194	}
195	btrfs_debug_in_rcu(dev->fs_info,
196	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
197		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
198		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
199		dev->devid, bio->bi_iter.bi_size);
200
201	btrfsic_check_bio(bio);
202	submit_bio(bio);
 
 
203}
204
205static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
206{
207	struct bio *orig_bio = bioc->orig_bio, *bio;
208
209	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
210
211	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
212	if (dev_nr == bioc->num_stripes - 1) {
213		bio = orig_bio;
214		bio->bi_end_io = btrfs_orig_write_end_io;
215	} else {
216		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
217		bio_inc_remaining(orig_bio);
218		bio->bi_end_io = btrfs_clone_write_end_io;
219	}
220
221	bio->bi_private = &bioc->stripes[dev_nr];
222	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
223	bioc->stripes[dev_nr].bioc = bioc;
 
224	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
225}
226
227void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
 
228{
229	u64 logical = bio->bi_iter.bi_sector << 9;
230	u64 length = bio->bi_iter.bi_size;
231	u64 map_length = length;
232	struct btrfs_io_context *bioc = NULL;
233	struct btrfs_io_stripe smap;
234	int ret;
235
236	btrfs_bio_counter_inc_blocked(fs_info);
237	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
238				&bioc, &smap, &mirror_num, 1);
239	if (ret) {
240		btrfs_bio_counter_dec(fs_info);
241		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
242		return;
243	}
244
245	if (map_length < length) {
246		btrfs_crit(fs_info,
247			   "mapping failed logical %llu bio len %llu len %llu",
248			   logical, length, map_length);
249		BUG();
250	}
251
252	if (!bioc) {
253		/* Single mirror read/write fast path */
254		btrfs_bio(bio)->mirror_num = mirror_num;
255		btrfs_bio(bio)->device = smap.dev;
256		bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
257		bio->bi_private = fs_info;
 
258		bio->bi_end_io = btrfs_simple_end_io;
259		btrfs_submit_dev_bio(smap.dev, bio);
260	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
261		/* Parity RAID write or read recovery */
262		bio->bi_private = bioc;
263		bio->bi_end_io = btrfs_raid56_end_io;
264		if (bio_op(bio) == REQ_OP_READ)
265			raid56_parity_recover(bio, bioc, mirror_num);
266		else
267			raid56_parity_write(bio, bioc);
268	} else {
269		/* Write to multiple mirrors */
270		int total_devs = bioc->num_stripes;
271		int dev_nr;
272
273		bioc->orig_bio = bio;
274		for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
275			btrfs_submit_mirrored_bio(bioc, dev_nr);
276	}
277}
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279/*
280 * Submit a repair write.
281 *
282 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
283 * RAID setup.  Here we only want to write the one bad copy, so we do the
284 * mapping ourselves and submit the bio directly.
285 *
286 * The I/O is issued sychronously to block the repair read completion from
287 * freeing the bio.
288 */
289int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
290			    u64 length, u64 logical, struct page *page,
291			    unsigned int pg_offset, int mirror_num)
292{
293	struct btrfs_device *dev;
294	struct bio_vec bvec;
295	struct bio bio;
296	u64 map_length = 0;
297	u64 sector;
298	struct btrfs_io_context *bioc = NULL;
299	int ret = 0;
300
301	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
302	BUG_ON(!mirror_num);
303
304	if (btrfs_repair_one_zone(fs_info, logical))
305		return 0;
306
307	map_length = length;
308
309	/*
310	 * Avoid races with device replace and make sure our bioc has devices
311	 * associated to its stripes that don't go away while we are doing the
312	 * read repair operation.
313	 */
314	btrfs_bio_counter_inc_blocked(fs_info);
315	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
316		/*
317		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
318		 * to update all raid stripes, but here we just want to correct
319		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
320		 * stripe's dev and sector.
321		 */
322		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
323				      &map_length, &bioc, 0);
324		if (ret)
325			goto out_counter_dec;
326		ASSERT(bioc->mirror_num == 1);
327	} else {
328		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
329				      &map_length, &bioc, mirror_num);
330		if (ret)
331			goto out_counter_dec;
332		/*
333		 * This happens when dev-replace is also running, and the
334		 * mirror_num indicates the dev-replace target.
335		 *
336		 * In this case, we don't need to do anything, as the read
337		 * error just means the replace progress hasn't reached our
338		 * read range, and later replace routine would handle it well.
339		 */
340		if (mirror_num != bioc->mirror_num)
341			goto out_counter_dec;
342	}
343
344	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
345	dev = bioc->stripes[bioc->mirror_num - 1].dev;
346	btrfs_put_bioc(bioc);
347
348	if (!dev || !dev->bdev ||
349	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
350		ret = -EIO;
351		goto out_counter_dec;
352	}
353
354	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
355	bio.bi_iter.bi_sector = sector;
356	__bio_add_page(&bio, page, length, pg_offset);
357
358	btrfsic_check_bio(&bio);
359	ret = submit_bio_wait(&bio);
360	if (ret) {
361		/* try to remap that extent elsewhere? */
362		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
363		goto out_bio_uninit;
364	}
365
366	btrfs_info_rl_in_rcu(fs_info,
367		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
368			     ino, start, btrfs_dev_name(dev), sector);
 
369	ret = 0;
370
371out_bio_uninit:
372	bio_uninit(&bio);
373out_counter_dec:
374	btrfs_bio_counter_dec(fs_info);
375	return ret;
376}
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378int __init btrfs_bioset_init(void)
379{
380	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
381			offsetof(struct btrfs_bio, bio),
382			BIOSET_NEED_BVECS))
383		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
384	return 0;
 
 
 
 
 
 
 
 
385}
386
387void __cold btrfs_bioset_exit(void)
388{
 
 
 
389	bioset_exit(&btrfs_bioset);
390}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 * Copyright (C) 2022 Christoph Hellwig.
  5 */
  6
  7#include <linux/bio.h>
  8#include "bio.h"
  9#include "ctree.h"
 10#include "volumes.h"
 11#include "raid56.h"
 12#include "async-thread.h"
 
 13#include "dev-replace.h"
 
 14#include "zoned.h"
 15#include "file-item.h"
 16#include "raid-stripe-tree.h"
 17
 18static struct bio_set btrfs_bioset;
 19static struct bio_set btrfs_clone_bioset;
 20static struct bio_set btrfs_repair_bioset;
 21static mempool_t btrfs_failed_bio_pool;
 22
 23struct btrfs_failed_bio {
 24	struct btrfs_bio *bbio;
 25	int num_copies;
 26	atomic_t repair_count;
 27};
 28
 29/* Is this a data path I/O that needs storage layer checksum and repair? */
 30static inline bool is_data_bbio(struct btrfs_bio *bbio)
 31{
 32	return bbio->inode && is_data_inode(bbio->inode);
 33}
 34
 35static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
 36{
 37	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
 38}
 39
 40/*
 41 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 42 * is already initialized by the block layer.
 43 */
 44void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
 45		    btrfs_bio_end_io_t end_io, void *private)
 46{
 47	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
 48	bbio->fs_info = fs_info;
 49	bbio->end_io = end_io;
 50	bbio->private = private;
 51	atomic_set(&bbio->pending_ios, 1);
 52	WRITE_ONCE(bbio->status, BLK_STS_OK);
 53}
 54
 55/*
 56 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
 58 *
 59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 60 * a mempool.
 61 */
 62struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
 63				  struct btrfs_fs_info *fs_info,
 64				  btrfs_bio_end_io_t end_io, void *private)
 65{
 66	struct btrfs_bio *bbio;
 67	struct bio *bio;
 68
 69	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
 70	bbio = btrfs_bio(bio);
 71	btrfs_bio_init(bbio, fs_info, end_io, private);
 72	return bbio;
 73}
 74
 75static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
 76					 struct btrfs_bio *orig_bbio,
 77					 u64 map_length)
 78{
 
 79	struct btrfs_bio *bbio;
 80	struct bio *bio;
 81
 82	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
 83			&btrfs_clone_bioset);
 84	if (IS_ERR(bio))
 85		return ERR_CAST(bio);
 86
 
 87	bbio = btrfs_bio(bio);
 88	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
 89	bbio->inode = orig_bbio->inode;
 90	bbio->file_offset = orig_bbio->file_offset;
 91	orig_bbio->file_offset += map_length;
 92	if (bbio_has_ordered_extent(bbio)) {
 93		refcount_inc(&orig_bbio->ordered->refs);
 94		bbio->ordered = orig_bbio->ordered;
 95	}
 96	atomic_inc(&orig_bbio->pending_ios);
 97	return bbio;
 98}
 99
100/* Free a bio that was never submitted to the underlying device. */
101static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
102{
103	if (bbio_has_ordered_extent(bbio))
104		btrfs_put_ordered_extent(bbio->ordered);
105	bio_put(&bbio->bio);
106}
107
108static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
109{
110	if (bbio_has_ordered_extent(bbio)) {
111		struct btrfs_ordered_extent *ordered = bbio->ordered;
112
113		bbio->end_io(bbio);
114		btrfs_put_ordered_extent(ordered);
115	} else {
116		bbio->end_io(bbio);
117	}
118}
119
120void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
121{
122	bbio->bio.bi_status = status;
123	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
124		struct btrfs_bio *orig_bbio = bbio->private;
125
126		btrfs_cleanup_bio(bbio);
127		bbio = orig_bbio;
128	}
129
130	/*
131	 * At this point, bbio always points to the original btrfs_bio. Save
132	 * the first error in it.
133	 */
134	if (status != BLK_STS_OK)
135		cmpxchg(&bbio->status, BLK_STS_OK, status);
136
137	if (atomic_dec_and_test(&bbio->pending_ios)) {
138		/* Load split bio's error which might be set above. */
139		if (status == BLK_STS_OK)
140			bbio->bio.bi_status = READ_ONCE(bbio->status);
141		__btrfs_bio_end_io(bbio);
142	}
143}
144
145static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
146{
147	if (cur_mirror == fbio->num_copies)
148		return cur_mirror + 1 - fbio->num_copies;
149	return cur_mirror + 1;
150}
151
152static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
153{
154	if (cur_mirror == 1)
155		return fbio->num_copies;
156	return cur_mirror - 1;
157}
158
159static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
160{
161	if (atomic_dec_and_test(&fbio->repair_count)) {
162		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
163		mempool_free(fbio, &btrfs_failed_bio_pool);
164	}
165}
166
167static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
168				 struct btrfs_device *dev)
169{
170	struct btrfs_failed_bio *fbio = repair_bbio->private;
171	struct btrfs_inode *inode = repair_bbio->inode;
172	struct btrfs_fs_info *fs_info = inode->root->fs_info;
173	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
174	int mirror = repair_bbio->mirror_num;
175
176	/*
177	 * We can only trigger this for data bio, which doesn't support larger
178	 * folios yet.
179	 */
180	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
181
182	if (repair_bbio->bio.bi_status ||
183	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
184		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
185		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
186
187		mirror = next_repair_mirror(fbio, mirror);
188		if (mirror == fbio->bbio->mirror_num) {
189			btrfs_debug(fs_info, "no mirror left");
190			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
191			goto done;
192		}
193
194		btrfs_submit_bbio(repair_bbio, mirror);
195		return;
196	}
197
198	do {
199		mirror = prev_repair_mirror(fbio, mirror);
200		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
201				  repair_bbio->file_offset, fs_info->sectorsize,
202				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
203				  page_folio(bv->bv_page), bv->bv_offset, mirror);
204	} while (mirror != fbio->bbio->mirror_num);
205
206done:
207	btrfs_repair_done(fbio);
208	bio_put(&repair_bbio->bio);
209}
210
211/*
212 * Try to kick off a repair read to the next available mirror for a bad sector.
213 *
214 * This primarily tries to recover good data to serve the actual read request,
215 * but also tries to write the good data back to the bad mirror(s) when a
216 * read succeeded to restore the redundancy.
217 */
218static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
219						  u32 bio_offset,
220						  struct bio_vec *bv,
221						  struct btrfs_failed_bio *fbio)
222{
223	struct btrfs_inode *inode = failed_bbio->inode;
224	struct btrfs_fs_info *fs_info = inode->root->fs_info;
225	const u32 sectorsize = fs_info->sectorsize;
226	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
227	struct btrfs_bio *repair_bbio;
228	struct bio *repair_bio;
229	int num_copies;
230	int mirror;
231
232	btrfs_debug(fs_info, "repair read error: read error at %llu",
233		    failed_bbio->file_offset + bio_offset);
234
235	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
236	if (num_copies == 1) {
237		btrfs_debug(fs_info, "no copy to repair from");
238		failed_bbio->bio.bi_status = BLK_STS_IOERR;
239		return fbio;
240	}
241
242	if (!fbio) {
243		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
244		fbio->bbio = failed_bbio;
245		fbio->num_copies = num_copies;
246		atomic_set(&fbio->repair_count, 1);
247	}
248
249	atomic_inc(&fbio->repair_count);
250
251	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
252				      &btrfs_repair_bioset);
253	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
254	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
255
256	repair_bbio = btrfs_bio(repair_bio);
257	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
258	repair_bbio->inode = failed_bbio->inode;
259	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
260
261	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
262	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
263	btrfs_submit_bbio(repair_bbio, mirror);
264	return fbio;
265}
266
267static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
268{
269	struct btrfs_inode *inode = bbio->inode;
270	struct btrfs_fs_info *fs_info = inode->root->fs_info;
271	u32 sectorsize = fs_info->sectorsize;
272	struct bvec_iter *iter = &bbio->saved_iter;
273	blk_status_t status = bbio->bio.bi_status;
274	struct btrfs_failed_bio *fbio = NULL;
275	u32 offset = 0;
276
277	/* Read-repair requires the inode field to be set by the submitter. */
278	ASSERT(inode);
279
280	/*
281	 * Hand off repair bios to the repair code as there is no upper level
282	 * submitter for them.
283	 */
284	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
285		btrfs_end_repair_bio(bbio, dev);
286		return;
287	}
288
289	/* Clear the I/O error. A failed repair will reset it. */
290	bbio->bio.bi_status = BLK_STS_OK;
291
292	while (iter->bi_size) {
293		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
294
295		bv.bv_len = min(bv.bv_len, sectorsize);
296		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
297			fbio = repair_one_sector(bbio, offset, &bv, fbio);
298
299		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
300		offset += sectorsize;
301	}
302
303	if (bbio->csum != bbio->csum_inline)
304		kfree(bbio->csum);
305
306	if (fbio)
307		btrfs_repair_done(fbio);
308	else
309		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
310}
311
312static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
313{
314	if (!dev || !dev->bdev)
315		return;
316	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
317		return;
318
319	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
320		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
321	else if (!(bio->bi_opf & REQ_RAHEAD))
322		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
323	if (bio->bi_opf & REQ_PREFLUSH)
324		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
325}
326
327static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
328						struct bio *bio)
329{
330	if (bio->bi_opf & REQ_META)
331		return fs_info->endio_meta_workers;
332	return fs_info->endio_workers;
333}
334
335static void btrfs_end_bio_work(struct work_struct *work)
336{
337	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
338
339	/* Metadata reads are checked and repaired by the submitter. */
340	if (is_data_bbio(bbio))
341		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
342	else
343		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
344}
345
346static void btrfs_simple_end_io(struct bio *bio)
347{
 
348	struct btrfs_bio *bbio = btrfs_bio(bio);
349	struct btrfs_device *dev = bio->bi_private;
350	struct btrfs_fs_info *fs_info = bbio->fs_info;
351
352	btrfs_bio_counter_dec(fs_info);
353
354	if (bio->bi_status)
355		btrfs_log_dev_io_error(bio, dev);
356
357	if (bio_op(bio) == REQ_OP_READ) {
358		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
359		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
360	} else {
361		if (bio_is_zone_append(bio) && !bio->bi_status)
362			btrfs_record_physical_zoned(bbio);
363		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
364	}
365}
366
367static void btrfs_raid56_end_io(struct bio *bio)
368{
369	struct btrfs_io_context *bioc = bio->bi_private;
370	struct btrfs_bio *bbio = btrfs_bio(bio);
371
372	btrfs_bio_counter_dec(bioc->fs_info);
373	bbio->mirror_num = bioc->mirror_num;
374	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
375		btrfs_check_read_bio(bbio, NULL);
376	else
377		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
378
379	btrfs_put_bioc(bioc);
380}
381
382static void btrfs_orig_write_end_io(struct bio *bio)
383{
384	struct btrfs_io_stripe *stripe = bio->bi_private;
385	struct btrfs_io_context *bioc = stripe->bioc;
386	struct btrfs_bio *bbio = btrfs_bio(bio);
387
388	btrfs_bio_counter_dec(bioc->fs_info);
389
390	if (bio->bi_status) {
391		atomic_inc(&bioc->error);
392		btrfs_log_dev_io_error(bio, stripe->dev);
393	}
394
395	/*
396	 * Only send an error to the higher layers if it is beyond the tolerance
397	 * threshold.
398	 */
399	if (atomic_read(&bioc->error) > bioc->max_errors)
400		bio->bi_status = BLK_STS_IOERR;
401	else
402		bio->bi_status = BLK_STS_OK;
403
404	if (bio_is_zone_append(bio) && !bio->bi_status)
405		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
406
407	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
408	btrfs_put_bioc(bioc);
409}
410
411static void btrfs_clone_write_end_io(struct bio *bio)
412{
413	struct btrfs_io_stripe *stripe = bio->bi_private;
414
415	if (bio->bi_status) {
416		atomic_inc(&stripe->bioc->error);
417		btrfs_log_dev_io_error(bio, stripe->dev);
418	} else if (bio_is_zone_append(bio)) {
419		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
420	}
421
422	/* Pass on control to the original bio this one was cloned from */
423	bio_endio(stripe->bioc->orig_bio);
424	bio_put(bio);
425}
426
427static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
428{
429	if (!dev || !dev->bdev ||
430	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
431	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
432	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
433		bio_io_error(bio);
434		return;
435	}
436
437	bio_set_dev(bio, dev->bdev);
438
439	/*
440	 * For zone append writing, bi_sector must point the beginning of the
441	 * zone
442	 */
443	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
444		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
445		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
446
447		ASSERT(btrfs_dev_is_sequential(dev, physical));
448		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
 
 
 
 
 
 
 
449	}
450	btrfs_debug_in_rcu(dev->fs_info,
451	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
452		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
453		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
454		dev->devid, bio->bi_iter.bi_size);
455
456	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
457		blkcg_punt_bio_submit(bio);
458	else
459		submit_bio(bio);
460}
461
462static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
463{
464	struct bio *orig_bio = bioc->orig_bio, *bio;
465
466	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
467
468	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
469	if (dev_nr == bioc->num_stripes - 1) {
470		bio = orig_bio;
471		bio->bi_end_io = btrfs_orig_write_end_io;
472	} else {
473		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
474		bio_inc_remaining(orig_bio);
475		bio->bi_end_io = btrfs_clone_write_end_io;
476	}
477
478	bio->bi_private = &bioc->stripes[dev_nr];
479	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
480	bioc->stripes[dev_nr].bioc = bioc;
481	bioc->size = bio->bi_iter.bi_size;
482	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
483}
484
485static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
486			     struct btrfs_io_stripe *smap, int mirror_num)
487{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488	if (!bioc) {
489		/* Single mirror read/write fast path. */
490		btrfs_bio(bio)->mirror_num = mirror_num;
491		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
492		if (bio_op(bio) != REQ_OP_READ)
493			btrfs_bio(bio)->orig_physical = smap->physical;
494		bio->bi_private = smap->dev;
495		bio->bi_end_io = btrfs_simple_end_io;
496		btrfs_submit_dev_bio(smap->dev, bio);
497	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
498		/* Parity RAID write or read recovery. */
499		bio->bi_private = bioc;
500		bio->bi_end_io = btrfs_raid56_end_io;
501		if (bio_op(bio) == REQ_OP_READ)
502			raid56_parity_recover(bio, bioc, mirror_num);
503		else
504			raid56_parity_write(bio, bioc);
505	} else {
506		/* Write to multiple mirrors. */
507		int total_devs = bioc->num_stripes;
 
508
509		bioc->orig_bio = bio;
510		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
511			btrfs_submit_mirrored_bio(bioc, dev_nr);
512	}
513}
514
515static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
516{
517	if (bbio->bio.bi_opf & REQ_META)
518		return btree_csum_one_bio(bbio);
519	return btrfs_csum_one_bio(bbio);
520}
521
522/*
523 * Async submit bios are used to offload expensive checksumming onto the worker
524 * threads.
525 */
526struct async_submit_bio {
527	struct btrfs_bio *bbio;
528	struct btrfs_io_context *bioc;
529	struct btrfs_io_stripe smap;
530	int mirror_num;
531	struct btrfs_work work;
532};
533
534/*
535 * In order to insert checksums into the metadata in large chunks, we wait
536 * until bio submission time.   All the pages in the bio are checksummed and
537 * sums are attached onto the ordered extent record.
538 *
539 * At IO completion time the csums attached on the ordered extent record are
540 * inserted into the btree.
541 */
542static void run_one_async_start(struct btrfs_work *work)
543{
544	struct async_submit_bio *async =
545		container_of(work, struct async_submit_bio, work);
546	blk_status_t ret;
547
548	ret = btrfs_bio_csum(async->bbio);
549	if (ret)
550		async->bbio->bio.bi_status = ret;
551}
552
553/*
554 * In order to insert checksums into the metadata in large chunks, we wait
555 * until bio submission time.   All the pages in the bio are checksummed and
556 * sums are attached onto the ordered extent record.
557 *
558 * At IO completion time the csums attached on the ordered extent record are
559 * inserted into the tree.
560 *
561 * If called with @do_free == true, then it will free the work struct.
562 */
563static void run_one_async_done(struct btrfs_work *work, bool do_free)
564{
565	struct async_submit_bio *async =
566		container_of(work, struct async_submit_bio, work);
567	struct bio *bio = &async->bbio->bio;
568
569	if (do_free) {
570		kfree(container_of(work, struct async_submit_bio, work));
571		return;
572	}
573
574	/* If an error occurred we just want to clean up the bio and move on. */
575	if (bio->bi_status) {
576		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
577		return;
578	}
579
580	/*
581	 * All of the bios that pass through here are from async helpers.
582	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
583	 * context.  This changes nothing when cgroups aren't in use.
584	 */
585	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
586	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
587}
588
589static bool should_async_write(struct btrfs_bio *bbio)
590{
591	bool auto_csum_mode = true;
592
593#ifdef CONFIG_BTRFS_EXPERIMENTAL
594	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
595	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
596
597	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
598		return false;
599
600	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
601#endif
602
603	/* Submit synchronously if the checksum implementation is fast. */
604	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
605		return false;
606
607	/*
608	 * Try to defer the submission to a workqueue to parallelize the
609	 * checksum calculation unless the I/O is issued synchronously.
610	 */
611	if (op_is_sync(bbio->bio.bi_opf))
612		return false;
613
614	/* Zoned devices require I/O to be submitted in order. */
615	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
616		return false;
617
618	return true;
619}
620
621/*
622 * Submit bio to an async queue.
623 *
624 * Return true if the work has been successfully submitted, else false.
625 */
626static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
627				struct btrfs_io_context *bioc,
628				struct btrfs_io_stripe *smap, int mirror_num)
629{
630	struct btrfs_fs_info *fs_info = bbio->fs_info;
631	struct async_submit_bio *async;
632
633	async = kmalloc(sizeof(*async), GFP_NOFS);
634	if (!async)
635		return false;
636
637	async->bbio = bbio;
638	async->bioc = bioc;
639	async->smap = *smap;
640	async->mirror_num = mirror_num;
641
642	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
643	btrfs_queue_work(fs_info->workers, &async->work);
644	return true;
645}
646
647static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
648{
649	unsigned int nr_segs;
650	int sector_offset;
651
652	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
653	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
654					&nr_segs, map_length);
655	if (sector_offset) {
656		/*
657		 * bio_split_rw_at() could split at a size smaller than our
658		 * sectorsize and thus cause unaligned I/Os.  Fix that by
659		 * always rounding down to the nearest boundary.
660		 */
661		return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
662	}
663	return map_length;
664}
665
666static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
667{
668	struct btrfs_inode *inode = bbio->inode;
669	struct btrfs_fs_info *fs_info = bbio->fs_info;
670	struct bio *bio = &bbio->bio;
671	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
672	u64 length = bio->bi_iter.bi_size;
673	u64 map_length = length;
674	bool use_append = btrfs_use_zone_append(bbio);
675	struct btrfs_io_context *bioc = NULL;
676	struct btrfs_io_stripe smap;
677	blk_status_t ret;
678	int error;
679
680	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
681		smap.rst_search_commit_root = true;
682	else
683		smap.rst_search_commit_root = false;
684
685	btrfs_bio_counter_inc_blocked(fs_info);
686	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
687				&bioc, &smap, &mirror_num);
688	if (error) {
689		ret = errno_to_blk_status(error);
690		btrfs_bio_counter_dec(fs_info);
691		goto end_bbio;
692	}
693
694	map_length = min(map_length, length);
695	if (use_append)
696		map_length = btrfs_append_map_length(bbio, map_length);
697
698	if (map_length < length) {
699		struct btrfs_bio *split;
700
701		split = btrfs_split_bio(fs_info, bbio, map_length);
702		if (IS_ERR(split)) {
703			ret = errno_to_blk_status(PTR_ERR(split));
704			btrfs_bio_counter_dec(fs_info);
705			goto end_bbio;
706		}
707		bbio = split;
708		bio = &bbio->bio;
709	}
710
711	/*
712	 * Save the iter for the end_io handler and preload the checksums for
713	 * data reads.
714	 */
715	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
716		bbio->saved_iter = bio->bi_iter;
717		ret = btrfs_lookup_bio_sums(bbio);
718		if (ret)
719			goto fail;
720	}
721
722	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
723		if (use_append) {
724			bio->bi_opf &= ~REQ_OP_WRITE;
725			bio->bi_opf |= REQ_OP_ZONE_APPEND;
726		}
727
728		if (is_data_bbio(bbio) && bioc &&
729		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
730			/*
731			 * No locking for the list update, as we only add to
732			 * the list in the I/O submission path, and list
733			 * iteration only happens in the completion path, which
734			 * can't happen until after the last submission.
735			 */
736			btrfs_get_bioc(bioc);
737			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
738		}
739
740		/*
741		 * Csum items for reloc roots have already been cloned at this
742		 * point, so they are handled as part of the no-checksum case.
743		 */
744		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
745		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
746		    !btrfs_is_data_reloc_root(inode->root)) {
747			if (should_async_write(bbio) &&
748			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
749				goto done;
750
751			ret = btrfs_bio_csum(bbio);
752			if (ret)
753				goto fail;
754		} else if (use_append ||
755			   (btrfs_is_zoned(fs_info) && inode &&
756			    inode->flags & BTRFS_INODE_NODATASUM)) {
757			ret = btrfs_alloc_dummy_sum(bbio);
758			if (ret)
759				goto fail;
760		}
761	}
762
763	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
764done:
765	return map_length == length;
766
767fail:
768	btrfs_bio_counter_dec(fs_info);
769	/*
770	 * We have split the original bbio, now we have to end both the current
771	 * @bbio and remaining one, as the remaining one will never be submitted.
772	 */
773	if (map_length < length) {
774		struct btrfs_bio *remaining = bbio->private;
775
776		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
777		ASSERT(remaining);
778
779		btrfs_bio_end_io(remaining, ret);
780	}
781end_bbio:
782	btrfs_bio_end_io(bbio, ret);
783	/* Do not submit another chunk */
784	return true;
785}
786
787void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
788{
789	/* If bbio->inode is not populated, its file_offset must be 0. */
790	ASSERT(bbio->inode || bbio->file_offset == 0);
791
792	while (!btrfs_submit_chunk(bbio, mirror_num))
793		;
794}
795
796/*
797 * Submit a repair write.
798 *
799 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
800 * RAID setup.  Here we only want to write the one bad copy, so we do the
801 * mapping ourselves and submit the bio directly.
802 *
803 * The I/O is issued synchronously to block the repair read completion from
804 * freeing the bio.
805 */
806int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
807			    u64 length, u64 logical, struct folio *folio,
808			    unsigned int folio_offset, int mirror_num)
809{
810	struct btrfs_io_stripe smap = { 0 };
811	struct bio_vec bvec;
812	struct bio bio;
 
 
 
813	int ret = 0;
814
815	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
816	BUG_ON(!mirror_num);
817
818	if (btrfs_repair_one_zone(fs_info, logical))
819		return 0;
820
 
 
821	/*
822	 * Avoid races with device replace and make sure our bioc has devices
823	 * associated to its stripes that don't go away while we are doing the
824	 * read repair operation.
825	 */
826	btrfs_bio_counter_inc_blocked(fs_info);
827	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
828	if (ret < 0)
829		goto out_counter_dec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830
831	if (!smap.dev->bdev ||
832	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
833		ret = -EIO;
834		goto out_counter_dec;
835	}
836
837	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
838	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
839	ret = bio_add_folio(&bio, folio, length, folio_offset);
840	ASSERT(ret);
 
841	ret = submit_bio_wait(&bio);
842	if (ret) {
843		/* try to remap that extent elsewhere? */
844		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
845		goto out_bio_uninit;
846	}
847
848	btrfs_info_rl_in_rcu(fs_info,
849		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
850			     ino, start, btrfs_dev_name(smap.dev),
851			     smap.physical >> SECTOR_SHIFT);
852	ret = 0;
853
854out_bio_uninit:
855	bio_uninit(&bio);
856out_counter_dec:
857	btrfs_bio_counter_dec(fs_info);
858	return ret;
859}
860
861/*
862 * Submit a btrfs_bio based repair write.
863 *
864 * If @dev_replace is true, the write would be submitted to dev-replace target.
865 */
866void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
867{
868	struct btrfs_fs_info *fs_info = bbio->fs_info;
869	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
870	u64 length = bbio->bio.bi_iter.bi_size;
871	struct btrfs_io_stripe smap = { 0 };
872	int ret;
873
874	ASSERT(fs_info);
875	ASSERT(mirror_num > 0);
876	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
877	ASSERT(!bbio->inode);
878
879	btrfs_bio_counter_inc_blocked(fs_info);
880	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
881	if (ret < 0)
882		goto fail;
883
884	if (dev_replace) {
885		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
886		smap.dev = fs_info->dev_replace.tgtdev;
887	}
888	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
889	return;
890
891fail:
892	btrfs_bio_counter_dec(fs_info);
893	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
894}
895
896int __init btrfs_bioset_init(void)
897{
898	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
899			offsetof(struct btrfs_bio, bio),
900			BIOSET_NEED_BVECS))
901		return -ENOMEM;
902	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
903			offsetof(struct btrfs_bio, bio), 0))
904		goto out_free_bioset;
905	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
906			offsetof(struct btrfs_bio, bio),
907			BIOSET_NEED_BVECS))
908		goto out_free_clone_bioset;
909	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
910				      sizeof(struct btrfs_failed_bio)))
911		goto out_free_repair_bioset;
912	return 0;
913
914out_free_repair_bioset:
915	bioset_exit(&btrfs_repair_bioset);
916out_free_clone_bioset:
917	bioset_exit(&btrfs_clone_bioset);
918out_free_bioset:
919	bioset_exit(&btrfs_bioset);
920	return -ENOMEM;
921}
922
923void __cold btrfs_bioset_exit(void)
924{
925	mempool_exit(&btrfs_failed_bio_pool);
926	bioset_exit(&btrfs_repair_bioset);
927	bioset_exit(&btrfs_clone_bioset);
928	bioset_exit(&btrfs_bioset);
929}