Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2011 STRATO.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_BACKREF_H
  7#define BTRFS_BACKREF_H
  8
  9#include <linux/btrfs.h>
 
 
 
 
 
 10#include "messages.h"
 11#include "ulist.h"
 12#include "disk-io.h"
 13#include "extent_io.h"
 
 
 
 
 
 
 
 14
 15/*
 16 * Used by implementations of iterate_extent_inodes_t (see definition below) to
 17 * signal that backref iteration can stop immediately and no error happened.
 18 * The value must be non-negative and must not be 0, 1 (which is a common return
 19 * value from things like btrfs_search_slot() and used internally in the backref
 20 * walking code) and different from BACKREF_FOUND_SHARED and
 21 * BACKREF_FOUND_NOT_SHARED
 22 */
 23#define BTRFS_ITERATE_EXTENT_INODES_STOP 5
 24
 25/*
 26 * Should return 0 if no errors happened and iteration of backrefs should
 27 * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
 28 * value to immediately stop iteration and possibly signal an error back to
 29 * the caller.
 30 */
 31typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
 32				      u64 root, void *ctx);
 33
 34/*
 35 * Context and arguments for backref walking functions. Some of the fields are
 36 * to be filled by the caller of such functions while other are filled by the
 37 * functions themselves, as described below.
 38 */
 39struct btrfs_backref_walk_ctx {
 40	/*
 41	 * The address of the extent for which we are doing backref walking.
 42	 * Can be either a data extent or a metadata extent.
 43	 *
 44	 * Must always be set by the top level caller.
 45	 */
 46	u64 bytenr;
 47	/*
 48	 * Offset relative to the target extent. This is only used for data
 49	 * extents, and it's meaningful because we can have file extent items
 50	 * that point only to a section of a data extent ("bookend" extents),
 51	 * and we want to filter out any that don't point to a section of the
 52	 * data extent containing the given offset.
 53	 *
 54	 * Must always be set by the top level caller.
 55	 */
 56	u64 extent_item_pos;
 57	/*
 58	 * If true and bytenr corresponds to a data extent, then references from
 59	 * all file extent items that point to the data extent are considered,
 60	 * @extent_item_pos is ignored.
 61	 */
 62	bool ignore_extent_item_pos;
 
 
 
 
 
 
 63	/* A valid transaction handle or NULL. */
 64	struct btrfs_trans_handle *trans;
 65	/*
 66	 * The file system's info object, can not be NULL.
 67	 *
 68	 * Must always be set by the top level caller.
 69	 */
 70	struct btrfs_fs_info *fs_info;
 71	/*
 72	 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
 73	 * caller joined the tree mod log to get a consistent view of b+trees
 74	 * while we do backref walking, or BTRFS_SEQ_LAST.
 75	 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
 76	 * commit roots when searching b+trees - this is a special case for
 77	 * qgroups used during a transaction commit.
 78	 */
 79	u64 time_seq;
 80	/*
 81	 * Used to collect the bytenr of metadata extents that point to the
 82	 * target extent.
 83	 */
 84	struct ulist *refs;
 85	/*
 86	 * List used to collect the IDs of the roots from which the target
 87	 * extent is accessible. Can be NULL in case the caller does not care
 88	 * about collecting root IDs.
 89	 */
 90	struct ulist *roots;
 91	/*
 92	 * Used by iterate_extent_inodes() and the main backref walk code
 93	 * (find_parent_nodes()). Lookup and store functions for an optional
 94	 * cache which maps the logical address (bytenr) of leaves to an array
 95	 * of root IDs.
 96	 */
 97	bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
 98			     const u64 **root_ids_ret, int *root_count_ret);
 99	void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
100			    void *user_ctx);
101	/*
102	 * If this is not NULL, then the backref walking code will call this
103	 * for each indirect data extent reference as soon as it finds one,
104	 * before collecting all the remaining backrefs and before resolving
105	 * indirect backrefs. This allows for the caller to terminate backref
106	 * walking as soon as it finds one backref that matches some specific
107	 * criteria. The @cache_lookup and @cache_store callbacks should not
108	 * be NULL in order to use this callback.
109	 */
110	iterate_extent_inodes_t *indirect_ref_iterator;
111	/*
112	 * If this is not NULL, then the backref walking code will call this for
113	 * each extent item it's meant to process before it actually starts
114	 * processing it. If this returns anything other than 0, then it stops
115	 * the backref walking code immediately.
116	 */
117	int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
118				 const struct extent_buffer *leaf, void *user_ctx);
119	/*
120	 * If this is not NULL, then the backref walking code will call this for
121	 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
122	 * processing that data ref. If this callback return false, then it will
123	 * ignore this data ref and it will never resolve the indirect data ref,
124	 * saving time searching for leaves in a fs tree with file extent items
125	 * matching the data ref.
126	 */
127	bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
128	/* Context object to pass to the callbacks defined above. */
129	void *user_ctx;
130};
131
132struct inode_fs_paths {
133	struct btrfs_path		*btrfs_path;
134	struct btrfs_root		*fs_root;
135	struct btrfs_data_container	*fspath;
136};
137
138struct btrfs_backref_shared_cache_entry {
139	u64 bytenr;
140	u64 gen;
141	bool is_shared;
142};
143
144#define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
145
146struct btrfs_backref_share_check_ctx {
147	/* Ulists used during backref walking. */
148	struct ulist refs;
149	/*
150	 * The current leaf the caller of btrfs_is_data_extent_shared() is at.
151	 * Typically the caller (at the moment only fiemap) tries to determine
152	 * the sharedness of data extents point by file extent items from entire
153	 * leaves.
154	 */
155	u64 curr_leaf_bytenr;
156	/*
157	 * The previous leaf the caller was at in the previous call to
158	 * btrfs_is_data_extent_shared(). This may be the same as the current
159	 * leaf. On the first call it must be 0.
160	 */
161	u64 prev_leaf_bytenr;
162	/*
163	 * A path from a root to a leaf that has a file extent item pointing to
164	 * a given data extent should never exceed the maximum b+tree height.
165	 */
166	struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
167	bool use_path_cache;
168	/*
169	 * Cache the sharedness result for the last few extents we have found,
170	 * but only for extents for which we have multiple file extent items
171	 * that point to them.
172	 * It's very common to have several file extent items that point to the
173	 * same extent (bytenr) but with different offsets and lengths. This
174	 * typically happens for COW writes, partial writes into prealloc
175	 * extents, NOCOW writes after snapshoting a root, hole punching or
176	 * reflinking within the same file (less common perhaps).
177	 * So keep a small cache with the lookup results for the extent pointed
178	 * by the last few file extent items. This cache is checked, with a
179	 * linear scan, whenever btrfs_is_data_extent_shared() is called, so
180	 * it must be small so that it does not negatively affect performance in
181	 * case we don't have multiple file extent items that point to the same
182	 * data extent.
183	 */
184	struct {
185		u64 bytenr;
186		bool is_shared;
187	} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
188	/*
189	 * The slot in the prev_extents_cache array that will be used for
190	 * storing the sharedness result of a new data extent.
191	 */
192	int prev_extents_cache_slot;
193};
194
195struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
196void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
197
198int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
199			struct btrfs_path *path, struct btrfs_key *found_key,
200			u64 *flags);
201
202int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
203			    struct btrfs_key *key, struct btrfs_extent_item *ei,
204			    u32 item_size, u64 *out_root, u8 *out_level);
205
206int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
207			  bool search_commit_root,
208			  iterate_extent_inodes_t *iterate, void *user_ctx);
209
210int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
211				struct btrfs_path *path, void *ctx,
212				bool ignore_offset);
213
214int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
215
216int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
217int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
218			 bool skip_commit_root_sem);
219char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
220			u32 name_len, unsigned long name_off,
221			struct extent_buffer *eb_in, u64 parent,
222			char *dest, u32 size);
223
224struct btrfs_data_container *init_data_container(u32 total_bytes);
225struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
226					struct btrfs_path *path);
227void free_ipath(struct inode_fs_paths *ipath);
228
229int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
230			  u64 start_off, struct btrfs_path *path,
231			  struct btrfs_inode_extref **ret_extref,
232			  u64 *found_off);
233int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
234				u64 extent_gen,
235				struct btrfs_backref_share_check_ctx *ctx);
236
237int __init btrfs_prelim_ref_init(void);
238void __cold btrfs_prelim_ref_exit(void);
239
240struct prelim_ref {
241	struct rb_node rbnode;
242	u64 root_id;
243	struct btrfs_key key_for_search;
244	int level;
245	int count;
246	struct extent_inode_elem *inode_list;
247	u64 parent;
248	u64 wanted_disk_byte;
249};
250
251/*
252 * Iterate backrefs of one extent.
253 *
254 * Now it only supports iteration of tree block in commit root.
255 */
256struct btrfs_backref_iter {
257	u64 bytenr;
258	struct btrfs_path *path;
259	struct btrfs_fs_info *fs_info;
260	struct btrfs_key cur_key;
261	u32 item_ptr;
262	u32 cur_ptr;
263	u32 end_ptr;
264};
265
266struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
267
268static inline void btrfs_backref_iter_free(struct btrfs_backref_iter *iter)
269{
270	if (!iter)
271		return;
272	btrfs_free_path(iter->path);
273	kfree(iter);
274}
275
276static inline struct extent_buffer *btrfs_backref_get_eb(
277		struct btrfs_backref_iter *iter)
278{
279	if (!iter)
280		return NULL;
281	return iter->path->nodes[0];
282}
283
284/*
285 * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
286 * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
287 *
288 * This helper determines if that's the case.
289 */
290static inline bool btrfs_backref_has_tree_block_info(
291		struct btrfs_backref_iter *iter)
292{
293	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
294	    iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
295		return true;
296	return false;
297}
298
299int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
300
301int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
302
303static inline bool btrfs_backref_iter_is_inline_ref(
304		struct btrfs_backref_iter *iter)
305{
306	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
307	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
308		return true;
309	return false;
310}
311
312static inline void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
313{
314	iter->bytenr = 0;
315	iter->item_ptr = 0;
316	iter->cur_ptr = 0;
317	iter->end_ptr = 0;
318	btrfs_release_path(iter->path);
319	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
320}
321
322/*
323 * Backref cache related structures
324 *
325 * The whole objective of backref_cache is to build a bi-directional map
326 * of tree blocks (represented by backref_node) and all their parents.
327 */
328
329/*
330 * Represent a tree block in the backref cache
331 */
332struct btrfs_backref_node {
333	struct {
334		struct rb_node rb_node;
335		u64 bytenr;
336	}; /* Use rb_simple_node for search/insert */
337
338	u64 new_bytenr;
339	/* Objectid of tree block owner, can be not uptodate */
340	u64 owner;
341	/* Link to pending, changed or detached list */
342	struct list_head list;
343
344	/* List of upper level edges, which link this node to its parents */
345	struct list_head upper;
346	/* List of lower level edges, which link this node to its children */
347	struct list_head lower;
348
349	/* NULL if this node is not tree root */
350	struct btrfs_root *root;
351	/* Extent buffer got by COWing the block */
352	struct extent_buffer *eb;
353	/* Level of the tree block */
354	unsigned int level:8;
355	/* Is the block in a non-shareable tree */
356	unsigned int cowonly:1;
357	/* 1 if no child node is in the cache */
358	unsigned int lowest:1;
359	/* Is the extent buffer locked */
360	unsigned int locked:1;
361	/* Has the block been processed */
362	unsigned int processed:1;
363	/* Have backrefs of this block been checked */
364	unsigned int checked:1;
365	/*
366	 * 1 if corresponding block has been COWed but some upper level block
367	 * pointers may not point to the new location
368	 */
369	unsigned int pending:1;
370	/* 1 if the backref node isn't connected to any other backref node */
371	unsigned int detached:1;
372
373	/*
374	 * For generic purpose backref cache, where we only care if it's a reloc
375	 * root, doesn't care the source subvolid.
376	 */
377	unsigned int is_reloc_root:1;
378};
379
380#define LOWER	0
381#define UPPER	1
382
383/*
384 * Represent an edge connecting upper and lower backref nodes.
385 */
386struct btrfs_backref_edge {
387	/*
388	 * list[LOWER] is linked to btrfs_backref_node::upper of lower level
389	 * node, and list[UPPER] is linked to btrfs_backref_node::lower of
390	 * upper level node.
391	 *
392	 * Also, build_backref_tree() uses list[UPPER] for pending edges, before
393	 * linking list[UPPER] to its upper level nodes.
394	 */
395	struct list_head list[2];
396
397	/* Two related nodes */
398	struct btrfs_backref_node *node[2];
399};
400
401struct btrfs_backref_cache {
402	/* Red black tree of all backref nodes in the cache */
403	struct rb_root rb_root;
404	/* For passing backref nodes to btrfs_reloc_cow_block */
405	struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
406	/*
407	 * List of blocks that have been COWed but some block pointers in upper
408	 * level blocks may not reflect the new location
409	 */
410	struct list_head pending[BTRFS_MAX_LEVEL];
411	/* List of backref nodes with no child node */
412	struct list_head leaves;
413	/* List of blocks that have been COWed in current transaction */
414	struct list_head changed;
415	/* List of detached backref node. */
416	struct list_head detached;
417
418	u64 last_trans;
419
420	int nr_nodes;
421	int nr_edges;
422
423	/* List of unchecked backref edges during backref cache build */
424	struct list_head pending_edge;
425
426	/* List of useless backref nodes during backref cache build */
427	struct list_head useless_node;
428
429	struct btrfs_fs_info *fs_info;
430
431	/*
432	 * Whether this cache is for relocation
433	 *
434	 * Reloction backref cache require more info for reloc root compared
435	 * to generic backref cache.
436	 */
437	unsigned int is_reloc;
438};
439
440void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
441			      struct btrfs_backref_cache *cache, int is_reloc);
442struct btrfs_backref_node *btrfs_backref_alloc_node(
443		struct btrfs_backref_cache *cache, u64 bytenr, int level);
444struct btrfs_backref_edge *btrfs_backref_alloc_edge(
445		struct btrfs_backref_cache *cache);
446
447#define		LINK_LOWER	(1 << 0)
448#define		LINK_UPPER	(1 << 1)
449static inline void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
450					   struct btrfs_backref_node *lower,
451					   struct btrfs_backref_node *upper,
452					   int link_which)
453{
454	ASSERT(upper && lower && upper->level == lower->level + 1);
455	edge->node[LOWER] = lower;
456	edge->node[UPPER] = upper;
457	if (link_which & LINK_LOWER)
458		list_add_tail(&edge->list[LOWER], &lower->upper);
459	if (link_which & LINK_UPPER)
460		list_add_tail(&edge->list[UPPER], &upper->lower);
461}
462
463static inline void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
464					   struct btrfs_backref_node *node)
465{
466	if (node) {
467		ASSERT(list_empty(&node->list));
468		ASSERT(list_empty(&node->lower));
469		ASSERT(node->eb == NULL);
470		cache->nr_nodes--;
471		btrfs_put_root(node->root);
472		kfree(node);
473	}
474}
475
476static inline void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
477					   struct btrfs_backref_edge *edge)
478{
479	if (edge) {
480		cache->nr_edges--;
481		kfree(edge);
482	}
483}
484
485static inline void btrfs_backref_unlock_node_buffer(
486		struct btrfs_backref_node *node)
487{
488	if (node->locked) {
489		btrfs_tree_unlock(node->eb);
490		node->locked = 0;
491	}
492}
493
494static inline void btrfs_backref_drop_node_buffer(
495		struct btrfs_backref_node *node)
496{
497	if (node->eb) {
498		btrfs_backref_unlock_node_buffer(node);
499		free_extent_buffer(node->eb);
500		node->eb = NULL;
501	}
502}
503
504/*
505 * Drop the backref node from cache without cleaning up its children
506 * edges.
507 *
508 * This can only be called on node without parent edges.
509 * The children edges are still kept as is.
510 */
511static inline void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
512					   struct btrfs_backref_node *node)
513{
514	ASSERT(list_empty(&node->upper));
515
516	btrfs_backref_drop_node_buffer(node);
517	list_del_init(&node->list);
518	list_del_init(&node->lower);
519	if (!RB_EMPTY_NODE(&node->rb_node))
520		rb_erase(&node->rb_node, &tree->rb_root);
521	btrfs_backref_free_node(tree, node);
522}
523
524void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
525				struct btrfs_backref_node *node);
 
 
526
527void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
528
529static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
530				       u64 bytenr, int errno)
531{
532	btrfs_panic(fs_info, errno,
533		    "Inconsistency in backref cache found at offset %llu",
534		    bytenr);
535}
536
537int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
 
538				struct btrfs_path *path,
539				struct btrfs_backref_iter *iter,
540				struct btrfs_key *node_key,
541				struct btrfs_backref_node *cur);
542
543int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
544				     struct btrfs_backref_node *start);
545
546void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
547				 struct btrfs_backref_node *node);
548
549#endif
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2011 STRATO.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_BACKREF_H
  7#define BTRFS_BACKREF_H
  8
  9#include <linux/types.h>
 10#include <linux/rbtree.h>
 11#include <linux/list.h>
 12#include <linux/slab.h>
 13#include <uapi/linux/btrfs.h>
 14#include <uapi/linux/btrfs_tree.h>
 15#include "messages.h"
 16#include "locking.h"
 17#include "disk-io.h"
 18#include "extent_io.h"
 19#include "ctree.h"
 20
 21struct extent_inode_elem;
 22struct ulist;
 23struct btrfs_extent_item;
 24struct btrfs_trans_handle;
 25struct btrfs_fs_info;
 26
 27/*
 28 * Used by implementations of iterate_extent_inodes_t (see definition below) to
 29 * signal that backref iteration can stop immediately and no error happened.
 30 * The value must be non-negative and must not be 0, 1 (which is a common return
 31 * value from things like btrfs_search_slot() and used internally in the backref
 32 * walking code) and different from BACKREF_FOUND_SHARED and
 33 * BACKREF_FOUND_NOT_SHARED
 34 */
 35#define BTRFS_ITERATE_EXTENT_INODES_STOP 5
 36
 37/*
 38 * Should return 0 if no errors happened and iteration of backrefs should
 39 * continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
 40 * value to immediately stop iteration and possibly signal an error back to
 41 * the caller.
 42 */
 43typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
 44				      u64 root, void *ctx);
 45
 46/*
 47 * Context and arguments for backref walking functions. Some of the fields are
 48 * to be filled by the caller of such functions while other are filled by the
 49 * functions themselves, as described below.
 50 */
 51struct btrfs_backref_walk_ctx {
 52	/*
 53	 * The address of the extent for which we are doing backref walking.
 54	 * Can be either a data extent or a metadata extent.
 55	 *
 56	 * Must always be set by the top level caller.
 57	 */
 58	u64 bytenr;
 59	/*
 60	 * Offset relative to the target extent. This is only used for data
 61	 * extents, and it's meaningful because we can have file extent items
 62	 * that point only to a section of a data extent ("bookend" extents),
 63	 * and we want to filter out any that don't point to a section of the
 64	 * data extent containing the given offset.
 65	 *
 66	 * Must always be set by the top level caller.
 67	 */
 68	u64 extent_item_pos;
 69	/*
 70	 * If true and bytenr corresponds to a data extent, then references from
 71	 * all file extent items that point to the data extent are considered,
 72	 * @extent_item_pos is ignored.
 73	 */
 74	bool ignore_extent_item_pos;
 75	/*
 76	 * If true and bytenr corresponds to a data extent, then the inode list
 77	 * (each member describing inode number, file offset and root) is not
 78	 * added to each reference added to the @refs ulist.
 79	 */
 80	bool skip_inode_ref_list;
 81	/* A valid transaction handle or NULL. */
 82	struct btrfs_trans_handle *trans;
 83	/*
 84	 * The file system's info object, can not be NULL.
 85	 *
 86	 * Must always be set by the top level caller.
 87	 */
 88	struct btrfs_fs_info *fs_info;
 89	/*
 90	 * Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
 91	 * caller joined the tree mod log to get a consistent view of b+trees
 92	 * while we do backref walking, or BTRFS_SEQ_LAST.
 93	 * When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
 94	 * commit roots when searching b+trees - this is a special case for
 95	 * qgroups used during a transaction commit.
 96	 */
 97	u64 time_seq;
 98	/*
 99	 * Used to collect the bytenr of metadata extents that point to the
100	 * target extent.
101	 */
102	struct ulist *refs;
103	/*
104	 * List used to collect the IDs of the roots from which the target
105	 * extent is accessible. Can be NULL in case the caller does not care
106	 * about collecting root IDs.
107	 */
108	struct ulist *roots;
109	/*
110	 * Used by iterate_extent_inodes() and the main backref walk code
111	 * (find_parent_nodes()). Lookup and store functions for an optional
112	 * cache which maps the logical address (bytenr) of leaves to an array
113	 * of root IDs.
114	 */
115	bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
116			     const u64 **root_ids_ret, int *root_count_ret);
117	void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
118			    void *user_ctx);
119	/*
120	 * If this is not NULL, then the backref walking code will call this
121	 * for each indirect data extent reference as soon as it finds one,
122	 * before collecting all the remaining backrefs and before resolving
123	 * indirect backrefs. This allows for the caller to terminate backref
124	 * walking as soon as it finds one backref that matches some specific
125	 * criteria. The @cache_lookup and @cache_store callbacks should not
126	 * be NULL in order to use this callback.
127	 */
128	iterate_extent_inodes_t *indirect_ref_iterator;
129	/*
130	 * If this is not NULL, then the backref walking code will call this for
131	 * each extent item it's meant to process before it actually starts
132	 * processing it. If this returns anything other than 0, then it stops
133	 * the backref walking code immediately.
134	 */
135	int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
136				 const struct extent_buffer *leaf, void *user_ctx);
137	/*
138	 * If this is not NULL, then the backref walking code will call this for
139	 * each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
140	 * processing that data ref. If this callback return false, then it will
141	 * ignore this data ref and it will never resolve the indirect data ref,
142	 * saving time searching for leaves in a fs tree with file extent items
143	 * matching the data ref.
144	 */
145	bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
146	/* Context object to pass to the callbacks defined above. */
147	void *user_ctx;
148};
149
150struct inode_fs_paths {
151	struct btrfs_path		*btrfs_path;
152	struct btrfs_root		*fs_root;
153	struct btrfs_data_container	*fspath;
154};
155
156struct btrfs_backref_shared_cache_entry {
157	u64 bytenr;
158	u64 gen;
159	bool is_shared;
160};
161
162#define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
163
164struct btrfs_backref_share_check_ctx {
165	/* Ulists used during backref walking. */
166	struct ulist refs;
167	/*
168	 * The current leaf the caller of btrfs_is_data_extent_shared() is at.
169	 * Typically the caller (at the moment only fiemap) tries to determine
170	 * the sharedness of data extents point by file extent items from entire
171	 * leaves.
172	 */
173	u64 curr_leaf_bytenr;
174	/*
175	 * The previous leaf the caller was at in the previous call to
176	 * btrfs_is_data_extent_shared(). This may be the same as the current
177	 * leaf. On the first call it must be 0.
178	 */
179	u64 prev_leaf_bytenr;
180	/*
181	 * A path from a root to a leaf that has a file extent item pointing to
182	 * a given data extent should never exceed the maximum b+tree height.
183	 */
184	struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
185	bool use_path_cache;
186	/*
187	 * Cache the sharedness result for the last few extents we have found,
188	 * but only for extents for which we have multiple file extent items
189	 * that point to them.
190	 * It's very common to have several file extent items that point to the
191	 * same extent (bytenr) but with different offsets and lengths. This
192	 * typically happens for COW writes, partial writes into prealloc
193	 * extents, NOCOW writes after snapshoting a root, hole punching or
194	 * reflinking within the same file (less common perhaps).
195	 * So keep a small cache with the lookup results for the extent pointed
196	 * by the last few file extent items. This cache is checked, with a
197	 * linear scan, whenever btrfs_is_data_extent_shared() is called, so
198	 * it must be small so that it does not negatively affect performance in
199	 * case we don't have multiple file extent items that point to the same
200	 * data extent.
201	 */
202	struct {
203		u64 bytenr;
204		bool is_shared;
205	} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
206	/*
207	 * The slot in the prev_extents_cache array that will be used for
208	 * storing the sharedness result of a new data extent.
209	 */
210	int prev_extents_cache_slot;
211};
212
213struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
214void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
215
216int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
217			struct btrfs_path *path, struct btrfs_key *found_key,
218			u64 *flags);
219
220int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
221			    struct btrfs_key *key, struct btrfs_extent_item *ei,
222			    u32 item_size, u64 *out_root, u8 *out_level);
223
224int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
225			  bool search_commit_root,
226			  iterate_extent_inodes_t *iterate, void *user_ctx);
227
228int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
229				struct btrfs_path *path, void *ctx,
230				bool ignore_offset);
231
232int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
233
234int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
235int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
236			 bool skip_commit_root_sem);
237char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
238			u32 name_len, unsigned long name_off,
239			struct extent_buffer *eb_in, u64 parent,
240			char *dest, u32 size);
241
242struct btrfs_data_container *init_data_container(u32 total_bytes);
243struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
244					struct btrfs_path *path);
245void free_ipath(struct inode_fs_paths *ipath);
246
247int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
248			  u64 start_off, struct btrfs_path *path,
249			  struct btrfs_inode_extref **ret_extref,
250			  u64 *found_off);
251int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
252				u64 extent_gen,
253				struct btrfs_backref_share_check_ctx *ctx);
254
255int __init btrfs_prelim_ref_init(void);
256void __cold btrfs_prelim_ref_exit(void);
257
258struct prelim_ref {
259	struct rb_node rbnode;
260	u64 root_id;
261	struct btrfs_key key_for_search;
262	u8 level;
263	int count;
264	struct extent_inode_elem *inode_list;
265	u64 parent;
266	u64 wanted_disk_byte;
267};
268
269/*
270 * Iterate backrefs of one extent.
271 *
272 * Now it only supports iteration of tree block in commit root.
273 */
274struct btrfs_backref_iter {
275	u64 bytenr;
276	struct btrfs_path *path;
277	struct btrfs_fs_info *fs_info;
278	struct btrfs_key cur_key;
279	u32 item_ptr;
280	u32 cur_ptr;
281	u32 end_ptr;
282};
283
284struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286/*
287 * For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
288 * is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
289 *
290 * This helper determines if that's the case.
291 */
292static inline bool btrfs_backref_has_tree_block_info(
293		struct btrfs_backref_iter *iter)
294{
295	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
296	    iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
297		return true;
298	return false;
299}
300
301int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
302
303int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305/*
306 * Backref cache related structures
307 *
308 * The whole objective of backref_cache is to build a bi-directional map
309 * of tree blocks (represented by backref_node) and all their parents.
310 */
311
312/*
313 * Represent a tree block in the backref cache
314 */
315struct btrfs_backref_node {
316	struct {
317		struct rb_node rb_node;
318		u64 bytenr;
319	}; /* Use rb_simple_node for search/insert */
320
321	u64 new_bytenr;
322	/* Objectid of tree block owner, can be not uptodate */
323	u64 owner;
324	/* Link to pending, changed or detached list */
325	struct list_head list;
326
327	/* List of upper level edges, which link this node to its parents */
328	struct list_head upper;
329	/* List of lower level edges, which link this node to its children */
330	struct list_head lower;
331
332	/* NULL if this node is not tree root */
333	struct btrfs_root *root;
334	/* Extent buffer got by COWing the block */
335	struct extent_buffer *eb;
336	/* Level of the tree block */
337	unsigned int level:8;
338	/* Is the block in a non-shareable tree */
339	unsigned int cowonly:1;
340	/* 1 if no child node is in the cache */
341	unsigned int lowest:1;
342	/* Is the extent buffer locked */
343	unsigned int locked:1;
344	/* Has the block been processed */
345	unsigned int processed:1;
346	/* Have backrefs of this block been checked */
347	unsigned int checked:1;
348	/*
349	 * 1 if corresponding block has been COWed but some upper level block
350	 * pointers may not point to the new location
351	 */
352	unsigned int pending:1;
353	/* 1 if the backref node isn't connected to any other backref node */
354	unsigned int detached:1;
355
356	/*
357	 * For generic purpose backref cache, where we only care if it's a reloc
358	 * root, doesn't care the source subvolid.
359	 */
360	unsigned int is_reloc_root:1;
361};
362
363#define LOWER	0
364#define UPPER	1
365
366/*
367 * Represent an edge connecting upper and lower backref nodes.
368 */
369struct btrfs_backref_edge {
370	/*
371	 * list[LOWER] is linked to btrfs_backref_node::upper of lower level
372	 * node, and list[UPPER] is linked to btrfs_backref_node::lower of
373	 * upper level node.
374	 *
375	 * Also, build_backref_tree() uses list[UPPER] for pending edges, before
376	 * linking list[UPPER] to its upper level nodes.
377	 */
378	struct list_head list[2];
379
380	/* Two related nodes */
381	struct btrfs_backref_node *node[2];
382};
383
384struct btrfs_backref_cache {
385	/* Red black tree of all backref nodes in the cache */
386	struct rb_root rb_root;
387	/* For passing backref nodes to btrfs_reloc_cow_block */
388	struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
389	/*
390	 * List of blocks that have been COWed but some block pointers in upper
391	 * level blocks may not reflect the new location
392	 */
393	struct list_head pending[BTRFS_MAX_LEVEL];
394	/* List of backref nodes with no child node */
395	struct list_head leaves;
396	/* List of blocks that have been COWed in current transaction */
397	struct list_head changed;
398	/* List of detached backref node. */
399	struct list_head detached;
400
401	u64 last_trans;
402
403	int nr_nodes;
404	int nr_edges;
405
406	/* List of unchecked backref edges during backref cache build */
407	struct list_head pending_edge;
408
409	/* List of useless backref nodes during backref cache build */
410	struct list_head useless_node;
411
412	struct btrfs_fs_info *fs_info;
413
414	/*
415	 * Whether this cache is for relocation
416	 *
417	 * Reloction backref cache require more info for reloc root compared
418	 * to generic backref cache.
419	 */
420	bool is_reloc;
421};
422
423void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
424			      struct btrfs_backref_cache *cache, bool is_reloc);
425struct btrfs_backref_node *btrfs_backref_alloc_node(
426		struct btrfs_backref_cache *cache, u64 bytenr, int level);
427struct btrfs_backref_edge *btrfs_backref_alloc_edge(
428		struct btrfs_backref_cache *cache);
429
430#define		LINK_LOWER	(1 << 0)
431#define		LINK_UPPER	(1 << 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432
433void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
434			     struct btrfs_backref_node *lower,
435			     struct btrfs_backref_node *upper,
436			     int link_which);
437void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
438			     struct btrfs_backref_node *node);
439void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
440			     struct btrfs_backref_edge *edge);
441void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node);
442void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443
444void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
445				struct btrfs_backref_node *node);
446void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
447			     struct btrfs_backref_node *node);
448
449void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
450
451static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
452				       u64 bytenr, int error)
453{
454	btrfs_panic(fs_info, error,
455		    "Inconsistency in backref cache found at offset %llu",
456		    bytenr);
457}
458
459int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
460				struct btrfs_backref_cache *cache,
461				struct btrfs_path *path,
462				struct btrfs_backref_iter *iter,
463				struct btrfs_key *node_key,
464				struct btrfs_backref_node *cur);
465
466int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
467				     struct btrfs_backref_node *start);
468
469void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
470				 struct btrfs_backref_node *node);
471
472#endif