Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/types.h>
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/etherdevice.h>
11#include <linux/pci.h>
12#include <linux/firmware.h>
13
14#include "iwl-drv.h"
15#include "iwl-modparams.h"
16#include "iwl-nvm-parse.h"
17#include "iwl-prph.h"
18#include "iwl-io.h"
19#include "iwl-csr.h"
20#include "fw/acpi.h"
21#include "fw/api/nvm-reg.h"
22#include "fw/api/commands.h"
23#include "fw/api/cmdhdr.h"
24#include "fw/img.h"
25#include "mei/iwl-mei.h"
26
27/* NVM offsets (in words) definitions */
28enum nvm_offsets {
29 /* NVM HW-Section offset (in words) definitions */
30 SUBSYSTEM_ID = 0x0A,
31 HW_ADDR = 0x15,
32
33 /* NVM SW-Section offset (in words) definitions */
34 NVM_SW_SECTION = 0x1C0,
35 NVM_VERSION = 0,
36 RADIO_CFG = 1,
37 SKU = 2,
38 N_HW_ADDRS = 3,
39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40
41 /* NVM calibration section offset (in words) definitions */
42 NVM_CALIB_SECTION = 0x2B8,
43 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44
45 /* NVM REGULATORY -Section offset (in words) definitions */
46 NVM_CHANNELS_SDP = 0,
47};
48
49enum ext_nvm_offsets {
50 /* NVM HW-Section offset (in words) definitions */
51 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52
53 /* NVM SW-Section offset (in words) definitions */
54 NVM_VERSION_EXT_NVM = 0,
55 N_HW_ADDRS_FAMILY_8000 = 3,
56
57 /* NVM PHY_SKU-Section offset (in words) definitions */
58 RADIO_CFG_FAMILY_EXT_NVM = 0,
59 SKU_FAMILY_8000 = 2,
60
61 /* NVM REGULATORY -Section offset (in words) definitions */
62 NVM_CHANNELS_EXTENDED = 0,
63 NVM_LAR_OFFSET_OLD = 0x4C7,
64 NVM_LAR_OFFSET = 0x507,
65 NVM_LAR_ENABLED = 0x7,
66};
67
68/* SKU Capabilities (actual values from NVM definition) */
69enum nvm_sku_bits {
70 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
71 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
72 NVM_SKU_CAP_11N_ENABLE = BIT(2),
73 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
74 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
75};
76
77/*
78 * These are the channel numbers in the order that they are stored in the NVM
79 */
80static const u16 iwl_nvm_channels[] = {
81 /* 2.4 GHz */
82 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 /* 5 GHz */
84 36, 40, 44 , 48, 52, 56, 60, 64,
85 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 149, 153, 157, 161, 165
87};
88
89static const u16 iwl_ext_nvm_channels[] = {
90 /* 2.4 GHz */
91 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 /* 5 GHz */
93 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 149, 153, 157, 161, 165, 169, 173, 177, 181
96};
97
98static const u16 iwl_uhb_nvm_channels[] = {
99 /* 2.4 GHz */
100 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 /* 5 GHz */
102 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 149, 153, 157, 161, 165, 169, 173, 177, 181,
105 /* 6-7 GHz */
106 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110};
111
112#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
113#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
114#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
115#define NUM_2GHZ_CHANNELS 14
116#define NUM_5GHZ_CHANNELS 37
117#define FIRST_2GHZ_HT_MINUS 5
118#define LAST_2GHZ_HT_PLUS 9
119#define N_HW_ADDR_MASK 0xF
120
121/* rate data (static) */
122static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138};
139#define RATES_24_OFFS 0
140#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
141#define RATES_52_OFFS 4
142#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
143
144/**
145 * enum iwl_nvm_channel_flags - channel flags in NVM
146 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148 * @NVM_CHANNEL_ACTIVE: active scanning allowed
149 * @NVM_CHANNEL_RADAR: radar detection required
150 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152 * on same channel on 2.4 or same UNII band on 5.2
153 * @NVM_CHANNEL_UNIFORM: uniform spreading required
154 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159 */
160enum iwl_nvm_channel_flags {
161 NVM_CHANNEL_VALID = BIT(0),
162 NVM_CHANNEL_IBSS = BIT(1),
163 NVM_CHANNEL_ACTIVE = BIT(3),
164 NVM_CHANNEL_RADAR = BIT(4),
165 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
166 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
167 NVM_CHANNEL_UNIFORM = BIT(7),
168 NVM_CHANNEL_20MHZ = BIT(8),
169 NVM_CHANNEL_40MHZ = BIT(9),
170 NVM_CHANNEL_80MHZ = BIT(10),
171 NVM_CHANNEL_160MHZ = BIT(11),
172 NVM_CHANNEL_DC_HIGH = BIT(12),
173};
174
175/**
176 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
177 * domain.
178 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179 * 2.4Ghz band is allowed.
180 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181 * 5Ghz band is allowed.
182 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183 * for this regulatory domain (valid only in 5Ghz).
184 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185 * for this regulatory domain (valid only in 5Ghz).
186 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189 * for this regulatory domain (valid only in 5Ghz).
190 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
191 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192 */
193enum iwl_reg_capa_flags {
194 REG_CAPA_BF_CCD_LOW_BAND = BIT(0),
195 REG_CAPA_BF_CCD_HIGH_BAND = BIT(1),
196 REG_CAPA_160MHZ_ALLOWED = BIT(2),
197 REG_CAPA_80MHZ_ALLOWED = BIT(3),
198 REG_CAPA_MCS_8_ALLOWED = BIT(4),
199 REG_CAPA_MCS_9_ALLOWED = BIT(5),
200 REG_CAPA_40MHZ_FORBIDDEN = BIT(7),
201 REG_CAPA_DC_HIGH_ENABLED = BIT(9),
202 REG_CAPA_11AX_DISABLED = BIT(10),
203};
204
205/**
206 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207 * domain (version 2).
208 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209 * disabled.
210 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211 * 2.4Ghz band is allowed.
212 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213 * 5Ghz band is allowed.
214 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215 * for this regulatory domain (valid only in 5Ghz).
216 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217 * for this regulatory domain (valid only in 5Ghz).
218 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221 * 126, 122) are disabled.
222 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223 * for this regulatory domain (uvalid only in 5Ghz).
224 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225 */
226enum iwl_reg_capa_flags_v2 {
227 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
228 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
229 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
230 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
231 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
232 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
233 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
234 REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
235 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
236 REG_CAPA_V2_11AX_DISABLED = BIT(10),
237};
238
239/*
240* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
241* MCC update command response.
242*/
243#define REG_CAPA_V2_RESP_VER 6
244
245/**
246 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
247 * handling the different APIs of reg_capa_flags.
248 *
249 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
250 * for this regulatory domain (valid only in 5Ghz).
251 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
252 * for this regulatory domain (valid only in 5Ghz).
253 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
254 * for this regulatory domain (valid only in 5Ghz).
255 * @disable_11ax: 11ax is forbidden for this regulatory domain.
256 */
257struct iwl_reg_capa {
258 u16 allow_40mhz;
259 u16 allow_80mhz;
260 u16 allow_160mhz;
261 u16 disable_11ax;
262};
263
264static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
265 int chan, u32 flags)
266{
267#define CHECK_AND_PRINT_I(x) \
268 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
269
270 if (!(flags & NVM_CHANNEL_VALID)) {
271 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
272 chan, flags);
273 return;
274 }
275
276 /* Note: already can print up to 101 characters, 110 is the limit! */
277 IWL_DEBUG_DEV(dev, level,
278 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
279 chan, flags,
280 CHECK_AND_PRINT_I(VALID),
281 CHECK_AND_PRINT_I(IBSS),
282 CHECK_AND_PRINT_I(ACTIVE),
283 CHECK_AND_PRINT_I(RADAR),
284 CHECK_AND_PRINT_I(INDOOR_ONLY),
285 CHECK_AND_PRINT_I(GO_CONCURRENT),
286 CHECK_AND_PRINT_I(UNIFORM),
287 CHECK_AND_PRINT_I(20MHZ),
288 CHECK_AND_PRINT_I(40MHZ),
289 CHECK_AND_PRINT_I(80MHZ),
290 CHECK_AND_PRINT_I(160MHZ),
291 CHECK_AND_PRINT_I(DC_HIGH));
292#undef CHECK_AND_PRINT_I
293}
294
295static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
296 u32 nvm_flags, const struct iwl_cfg *cfg)
297{
298 u32 flags = IEEE80211_CHAN_NO_HT40;
299
300 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
301 if (ch_num <= LAST_2GHZ_HT_PLUS)
302 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
303 if (ch_num >= FIRST_2GHZ_HT_MINUS)
304 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
305 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
306 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
307 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
308 else
309 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
310 }
311 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
312 flags |= IEEE80211_CHAN_NO_80MHZ;
313 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
314 flags |= IEEE80211_CHAN_NO_160MHZ;
315
316 if (!(nvm_flags & NVM_CHANNEL_IBSS))
317 flags |= IEEE80211_CHAN_NO_IR;
318
319 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
320 flags |= IEEE80211_CHAN_NO_IR;
321
322 if (nvm_flags & NVM_CHANNEL_RADAR)
323 flags |= IEEE80211_CHAN_RADAR;
324
325 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
326 flags |= IEEE80211_CHAN_INDOOR_ONLY;
327
328 /* Set the GO concurrent flag only in case that NO_IR is set.
329 * Otherwise it is meaningless
330 */
331 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
332 (flags & IEEE80211_CHAN_NO_IR))
333 flags |= IEEE80211_CHAN_IR_CONCURRENT;
334
335 return flags;
336}
337
338static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
339{
340 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
341 return NL80211_BAND_6GHZ;
342 }
343
344 if (ch_idx >= NUM_2GHZ_CHANNELS)
345 return NL80211_BAND_5GHZ;
346 return NL80211_BAND_2GHZ;
347}
348
349static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
350 struct iwl_nvm_data *data,
351 const void * const nvm_ch_flags,
352 u32 sbands_flags, bool v4)
353{
354 int ch_idx;
355 int n_channels = 0;
356 struct ieee80211_channel *channel;
357 u32 ch_flags;
358 int num_of_ch;
359 const u16 *nvm_chan;
360
361 if (cfg->uhb_supported) {
362 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
363 nvm_chan = iwl_uhb_nvm_channels;
364 } else if (cfg->nvm_type == IWL_NVM_EXT) {
365 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
366 nvm_chan = iwl_ext_nvm_channels;
367 } else {
368 num_of_ch = IWL_NVM_NUM_CHANNELS;
369 nvm_chan = iwl_nvm_channels;
370 }
371
372 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
373 enum nl80211_band band =
374 iwl_nl80211_band_from_channel_idx(ch_idx);
375
376 if (v4)
377 ch_flags =
378 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
379 else
380 ch_flags =
381 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
382
383 if (band == NL80211_BAND_5GHZ &&
384 !data->sku_cap_band_52ghz_enable)
385 continue;
386
387 /* workaround to disable wide channels in 5GHz */
388 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
389 band == NL80211_BAND_5GHZ) {
390 ch_flags &= ~(NVM_CHANNEL_40MHZ |
391 NVM_CHANNEL_80MHZ |
392 NVM_CHANNEL_160MHZ);
393 }
394
395 if (ch_flags & NVM_CHANNEL_160MHZ)
396 data->vht160_supported = true;
397
398 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
399 !(ch_flags & NVM_CHANNEL_VALID)) {
400 /*
401 * Channels might become valid later if lar is
402 * supported, hence we still want to add them to
403 * the list of supported channels to cfg80211.
404 */
405 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
406 nvm_chan[ch_idx], ch_flags);
407 continue;
408 }
409
410 channel = &data->channels[n_channels];
411 n_channels++;
412
413 channel->hw_value = nvm_chan[ch_idx];
414 channel->band = band;
415 channel->center_freq =
416 ieee80211_channel_to_frequency(
417 channel->hw_value, channel->band);
418
419 /* Initialize regulatory-based run-time data */
420
421 /*
422 * Default value - highest tx power value. max_power
423 * is not used in mvm, and is used for backwards compatibility
424 */
425 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
426
427 /* don't put limitations in case we're using LAR */
428 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
429 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
430 ch_idx, band,
431 ch_flags, cfg);
432 else
433 channel->flags = 0;
434
435 /* TODO: Don't put limitations on UHB devices as we still don't
436 * have NVM for them
437 */
438 if (cfg->uhb_supported)
439 channel->flags = 0;
440 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
441 channel->hw_value, ch_flags);
442 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
443 channel->hw_value, channel->max_power);
444 }
445
446 return n_channels;
447}
448
449static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
450 struct iwl_nvm_data *data,
451 struct ieee80211_sta_vht_cap *vht_cap,
452 u8 tx_chains, u8 rx_chains)
453{
454 const struct iwl_cfg *cfg = trans->cfg;
455 int num_rx_ants = num_of_ant(rx_chains);
456 int num_tx_ants = num_of_ant(tx_chains);
457
458 vht_cap->vht_supported = true;
459
460 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
461 IEEE80211_VHT_CAP_RXSTBC_1 |
462 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
463 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
464 IEEE80211_VHT_MAX_AMPDU_1024K <<
465 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
466
467 if (data->vht160_supported)
468 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
469 IEEE80211_VHT_CAP_SHORT_GI_160;
470
471 if (cfg->vht_mu_mimo_supported)
472 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
473
474 if (cfg->ht_params->ldpc)
475 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
476
477 if (data->sku_cap_mimo_disabled) {
478 num_rx_ants = 1;
479 num_tx_ants = 1;
480 }
481
482 if (num_tx_ants > 1)
483 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
484 else
485 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
486
487 switch (iwlwifi_mod_params.amsdu_size) {
488 case IWL_AMSDU_DEF:
489 if (trans->trans_cfg->mq_rx_supported)
490 vht_cap->cap |=
491 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
492 else
493 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
494 break;
495 case IWL_AMSDU_2K:
496 if (trans->trans_cfg->mq_rx_supported)
497 vht_cap->cap |=
498 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
499 else
500 WARN(1, "RB size of 2K is not supported by this device\n");
501 break;
502 case IWL_AMSDU_4K:
503 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
504 break;
505 case IWL_AMSDU_8K:
506 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
507 break;
508 case IWL_AMSDU_12K:
509 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
510 break;
511 default:
512 break;
513 }
514
515 vht_cap->vht_mcs.rx_mcs_map =
516 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
517 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
518 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
519 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
520 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
521 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
522 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
523 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
524
525 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
526 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
527 /* this works because NOT_SUPPORTED == 3 */
528 vht_cap->vht_mcs.rx_mcs_map |=
529 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
530 }
531
532 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
533
534 vht_cap->vht_mcs.tx_highest |=
535 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
536}
537
538static const u8 iwl_vendor_caps[] = {
539 0xdd, /* vendor element */
540 0x06, /* length */
541 0x00, 0x17, 0x35, /* Intel OUI */
542 0x08, /* type (Intel Capabilities) */
543 /* followed by 16 bits of capabilities */
544#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
545 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
546 0x00
547};
548
549static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
550 {
551 .types_mask = BIT(NL80211_IFTYPE_STATION),
552 .he_cap = {
553 .has_he = true,
554 .he_cap_elem = {
555 .mac_cap_info[0] =
556 IEEE80211_HE_MAC_CAP0_HTC_HE,
557 .mac_cap_info[1] =
558 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
559 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
560 .mac_cap_info[2] =
561 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
562 .mac_cap_info[3] =
563 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
564 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
565 .mac_cap_info[4] =
566 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
567 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
568 .mac_cap_info[5] =
569 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
570 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
571 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
572 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
573 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
574 .phy_cap_info[1] =
575 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
576 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
577 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
578 .phy_cap_info[2] =
579 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
580 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
581 .phy_cap_info[3] =
582 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
583 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
584 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
585 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
586 .phy_cap_info[4] =
587 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
588 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
589 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
590 .phy_cap_info[6] =
591 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
592 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
593 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
594 .phy_cap_info[7] =
595 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
596 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
597 .phy_cap_info[8] =
598 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
599 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
600 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
601 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
602 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
603 .phy_cap_info[9] =
604 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
605 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
606 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
607 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
608 .phy_cap_info[10] =
609 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
610 },
611 /*
612 * Set default Tx/Rx HE MCS NSS Support field.
613 * Indicate support for up to 2 spatial streams and all
614 * MCS, without any special cases
615 */
616 .he_mcs_nss_supp = {
617 .rx_mcs_80 = cpu_to_le16(0xfffa),
618 .tx_mcs_80 = cpu_to_le16(0xfffa),
619 .rx_mcs_160 = cpu_to_le16(0xfffa),
620 .tx_mcs_160 = cpu_to_le16(0xfffa),
621 .rx_mcs_80p80 = cpu_to_le16(0xffff),
622 .tx_mcs_80p80 = cpu_to_le16(0xffff),
623 },
624 /*
625 * Set default PPE thresholds, with PPET16 set to 0,
626 * PPET8 set to 7
627 */
628 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
629 },
630 .eht_cap = {
631 .has_eht = true,
632 .eht_cap_elem = {
633 .mac_cap_info[0] =
634 IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
635 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
636 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
637 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
638 .phy_cap_info[0] =
639 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
640 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
641 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
642 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
643 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
644 .phy_cap_info[1] =
645 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
646 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
647 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
648 .phy_cap_info[3] =
649 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
650 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
651 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
652 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
653 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
654 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
655 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
656
657 .phy_cap_info[4] =
658 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
659 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
660 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
661 .phy_cap_info[5] =
662 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
663 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
664 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
665 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
666 .phy_cap_info[6] =
667 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
668 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
669 .phy_cap_info[8] =
670 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
671 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
672 },
673
674 /* For all MCS and bandwidth, set 2 NSS for both Tx and
675 * Rx - note we don't set the only_20mhz, but due to this
676 * being a union, it gets set correctly anyway.
677 */
678 .eht_mcs_nss_supp = {
679 .bw._80 = {
680 .rx_tx_mcs9_max_nss = 0x22,
681 .rx_tx_mcs11_max_nss = 0x22,
682 .rx_tx_mcs13_max_nss = 0x22,
683 },
684 .bw._160 = {
685 .rx_tx_mcs9_max_nss = 0x22,
686 .rx_tx_mcs11_max_nss = 0x22,
687 .rx_tx_mcs13_max_nss = 0x22,
688 },
689 .bw._320 = {
690 .rx_tx_mcs9_max_nss = 0x22,
691 .rx_tx_mcs11_max_nss = 0x22,
692 .rx_tx_mcs13_max_nss = 0x22,
693 },
694 },
695
696 /*
697 * PPE thresholds for NSS = 2, and RU index bitmap set
698 * to 0xc.
699 */
700 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
701 },
702 },
703 {
704 .types_mask = BIT(NL80211_IFTYPE_AP),
705 .he_cap = {
706 .has_he = true,
707 .he_cap_elem = {
708 .mac_cap_info[0] =
709 IEEE80211_HE_MAC_CAP0_HTC_HE,
710 .mac_cap_info[1] =
711 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
712 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
713 .mac_cap_info[3] =
714 IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
715 .phy_cap_info[1] =
716 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
717 .phy_cap_info[2] =
718 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
719 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
720 .phy_cap_info[3] =
721 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
722 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
723 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
724 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
725 .phy_cap_info[6] =
726 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
727 .phy_cap_info[7] =
728 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
729 .phy_cap_info[8] =
730 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
731 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
732 .phy_cap_info[9] =
733 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
734 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
735 },
736 /*
737 * Set default Tx/Rx HE MCS NSS Support field.
738 * Indicate support for up to 2 spatial streams and all
739 * MCS, without any special cases
740 */
741 .he_mcs_nss_supp = {
742 .rx_mcs_80 = cpu_to_le16(0xfffa),
743 .tx_mcs_80 = cpu_to_le16(0xfffa),
744 .rx_mcs_160 = cpu_to_le16(0xfffa),
745 .tx_mcs_160 = cpu_to_le16(0xfffa),
746 .rx_mcs_80p80 = cpu_to_le16(0xffff),
747 .tx_mcs_80p80 = cpu_to_le16(0xffff),
748 },
749 /*
750 * Set default PPE thresholds, with PPET16 set to 0,
751 * PPET8 set to 7
752 */
753 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
754 },
755 .eht_cap = {
756 .has_eht = true,
757 .eht_cap_elem = {
758 .mac_cap_info[0] =
759 IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
760 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
761 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
762 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
763 .phy_cap_info[0] =
764 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
765 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
766 .phy_cap_info[5] =
767 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
768 },
769
770 /* For all MCS and bandwidth, set 2 NSS for both Tx and
771 * Rx - note we don't set the only_20mhz, but due to this
772 * being a union, it gets set correctly anyway.
773 */
774 .eht_mcs_nss_supp = {
775 .bw._80 = {
776 .rx_tx_mcs9_max_nss = 0x22,
777 .rx_tx_mcs11_max_nss = 0x22,
778 .rx_tx_mcs13_max_nss = 0x22,
779 },
780 .bw._160 = {
781 .rx_tx_mcs9_max_nss = 0x22,
782 .rx_tx_mcs11_max_nss = 0x22,
783 .rx_tx_mcs13_max_nss = 0x22,
784 },
785 .bw._320 = {
786 .rx_tx_mcs9_max_nss = 0x22,
787 .rx_tx_mcs11_max_nss = 0x22,
788 .rx_tx_mcs13_max_nss = 0x22,
789 },
790 },
791
792 /*
793 * PPE thresholds for NSS = 2, and RU index bitmap set
794 * to 0xc.
795 */
796 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
797 },
798 },
799};
800
801static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
802 struct iwl_nvm_data *data,
803 struct ieee80211_supported_band *sband,
804 u8 tx_chains, u8 rx_chains)
805{
806 struct ieee80211_sta_ht_cap ht_cap;
807 struct ieee80211_sta_vht_cap vht_cap = {};
808 struct ieee80211_sband_iftype_data *iftype_data;
809 u16 he_6ghz_capa = 0;
810 u32 exp;
811 int i;
812
813 if (sband->band != NL80211_BAND_6GHZ)
814 return;
815
816 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
817 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
818 tx_chains, rx_chains);
819 WARN_ON(!ht_cap.ht_supported);
820 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
821 WARN_ON(!vht_cap.vht_supported);
822
823 he_6ghz_capa |=
824 u16_encode_bits(ht_cap.ampdu_density,
825 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
826 exp = u32_get_bits(vht_cap.cap,
827 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
828 he_6ghz_capa |=
829 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
830 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
831 he_6ghz_capa |=
832 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
833 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
834 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
835 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
836 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
837 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
838
839 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
840
841 /* we know it's writable - we set it before ourselves */
842 iftype_data = (void *)(uintptr_t)sband->iftype_data;
843 for (i = 0; i < sband->n_iftype_data; i++)
844 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
845}
846
847static void
848iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
849 struct iwl_nvm_data *data,
850 struct ieee80211_supported_band *sband,
851 struct ieee80211_sband_iftype_data *iftype_data,
852 u8 tx_chains, u8 rx_chains,
853 const struct iwl_fw *fw)
854{
855 bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
856
857 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
858 iftype_data->eht_cap.has_eht = false;
859
860 /* Advertise an A-MPDU exponent extension based on
861 * operating band
862 */
863 if (sband->band != NL80211_BAND_2GHZ)
864 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
865 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
866 else
867 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
868 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
869
870 switch (sband->band) {
871 case NL80211_BAND_2GHZ:
872 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
873 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
874 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
875 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
876 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
877 break;
878 case NL80211_BAND_6GHZ:
879 if (!is_ap || iwlwifi_mod_params.nvm_file)
880 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
881 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
882 fallthrough;
883 case NL80211_BAND_5GHZ:
884 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
885 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G;
886 if (!is_ap || iwlwifi_mod_params.nvm_file)
887 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
888 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
889 break;
890 default:
891 WARN_ON(1);
892 break;
893 }
894
895 if ((tx_chains & rx_chains) == ANT_AB) {
896 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
897 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
898 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
899 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
900 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
901 if (!is_ap) {
902 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
903 IEEE80211_HE_PHY_CAP7_MAX_NC_2;
904
905 if (iftype_data->eht_cap.has_eht) {
906 /*
907 * Set the number of sounding dimensions for each
908 * bandwidth to 1 to indicate the maximal supported
909 * value of TXVECTOR parameter NUM_STS of 2
910 */
911 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
912
913 /*
914 * Set the MAX NC to 1 to indicate sounding feedback of
915 * 2 supported by the beamfomee.
916 */
917 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
918 }
919 }
920 } else {
921 if (iftype_data->eht_cap.has_eht) {
922 struct ieee80211_eht_mcs_nss_supp *mcs_nss =
923 &iftype_data->eht_cap.eht_mcs_nss_supp;
924
925 memset(mcs_nss, 0x11, sizeof(*mcs_nss));
926 }
927
928 if (!is_ap) {
929 /* If not 2x2, we need to indicate 1x1 in the
930 * Midamble RX Max NSTS - but not for AP mode
931 */
932 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
933 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
934 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
935 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
936 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
937 IEEE80211_HE_PHY_CAP7_MAX_NC_1;
938 }
939 }
940
941 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
942 case IWL_CFG_RF_TYPE_GF:
943 case IWL_CFG_RF_TYPE_MR:
944 case IWL_CFG_RF_TYPE_MS:
945 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
946 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
947 if (!is_ap)
948 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
949 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
950 break;
951 }
952
953 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
954 iftype_data->eht_cap.has_eht) {
955 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
956 ~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
957 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
958 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
959 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
960 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
961 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
962 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
963 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
964 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
965 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
966 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
967 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
968 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
969 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
970 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
971 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
972 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
973 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
974 }
975
976 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
977 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
978 IEEE80211_HE_MAC_CAP2_BCAST_TWT;
979
980 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
981 !is_ap) {
982 iftype_data->vendor_elems.data = iwl_vendor_caps;
983 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
984 }
985}
986
987static void iwl_init_he_hw_capab(struct iwl_trans *trans,
988 struct iwl_nvm_data *data,
989 struct ieee80211_supported_band *sband,
990 u8 tx_chains, u8 rx_chains,
991 const struct iwl_fw *fw)
992{
993 struct ieee80211_sband_iftype_data *iftype_data;
994 int i;
995
996 /* should only initialize once */
997 if (WARN_ON(sband->iftype_data))
998 return;
999
1000 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1001 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1002
1003 switch (sband->band) {
1004 case NL80211_BAND_2GHZ:
1005 iftype_data = data->iftd.low;
1006 break;
1007 case NL80211_BAND_5GHZ:
1008 case NL80211_BAND_6GHZ:
1009 iftype_data = data->iftd.high;
1010 break;
1011 default:
1012 WARN_ON(1);
1013 return;
1014 }
1015
1016 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1017
1018 sband->iftype_data = iftype_data;
1019 sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1020
1021 for (i = 0; i < sband->n_iftype_data; i++)
1022 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1023 tx_chains, rx_chains, fw);
1024
1025 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1026}
1027
1028static void iwl_init_sbands(struct iwl_trans *trans,
1029 struct iwl_nvm_data *data,
1030 const void *nvm_ch_flags, u8 tx_chains,
1031 u8 rx_chains, u32 sbands_flags, bool v4,
1032 const struct iwl_fw *fw)
1033{
1034 struct device *dev = trans->dev;
1035 const struct iwl_cfg *cfg = trans->cfg;
1036 int n_channels;
1037 int n_used = 0;
1038 struct ieee80211_supported_band *sband;
1039
1040 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1041 sbands_flags, v4);
1042 sband = &data->bands[NL80211_BAND_2GHZ];
1043 sband->band = NL80211_BAND_2GHZ;
1044 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1045 sband->n_bitrates = N_RATES_24;
1046 n_used += iwl_init_sband_channels(data, sband, n_channels,
1047 NL80211_BAND_2GHZ);
1048 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1049 tx_chains, rx_chains);
1050
1051 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1052 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1053 fw);
1054
1055 sband = &data->bands[NL80211_BAND_5GHZ];
1056 sband->band = NL80211_BAND_5GHZ;
1057 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1058 sband->n_bitrates = N_RATES_52;
1059 n_used += iwl_init_sband_channels(data, sband, n_channels,
1060 NL80211_BAND_5GHZ);
1061 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1062 tx_chains, rx_chains);
1063 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1064 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1065 tx_chains, rx_chains);
1066
1067 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1068 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1069 fw);
1070
1071 /* 6GHz band. */
1072 sband = &data->bands[NL80211_BAND_6GHZ];
1073 sband->band = NL80211_BAND_6GHZ;
1074 /* use the same rates as 5GHz band */
1075 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1076 sband->n_bitrates = N_RATES_52;
1077 n_used += iwl_init_sband_channels(data, sband, n_channels,
1078 NL80211_BAND_6GHZ);
1079
1080 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1081 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1082 fw);
1083 else
1084 sband->n_channels = 0;
1085 if (n_channels != n_used)
1086 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1087 n_used, n_channels);
1088}
1089
1090static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1091 const __le16 *phy_sku)
1092{
1093 if (cfg->nvm_type != IWL_NVM_EXT)
1094 return le16_to_cpup(nvm_sw + SKU);
1095
1096 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1097}
1098
1099static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1100{
1101 if (cfg->nvm_type != IWL_NVM_EXT)
1102 return le16_to_cpup(nvm_sw + NVM_VERSION);
1103 else
1104 return le32_to_cpup((const __le32 *)(nvm_sw +
1105 NVM_VERSION_EXT_NVM));
1106}
1107
1108static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1109 const __le16 *phy_sku)
1110{
1111 if (cfg->nvm_type != IWL_NVM_EXT)
1112 return le16_to_cpup(nvm_sw + RADIO_CFG);
1113
1114 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1115
1116}
1117
1118static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1119{
1120 int n_hw_addr;
1121
1122 if (cfg->nvm_type != IWL_NVM_EXT)
1123 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1124
1125 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1126
1127 return n_hw_addr & N_HW_ADDR_MASK;
1128}
1129
1130static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1131 struct iwl_nvm_data *data,
1132 u32 radio_cfg)
1133{
1134 if (cfg->nvm_type != IWL_NVM_EXT) {
1135 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1136 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1137 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1138 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1139 return;
1140 }
1141
1142 /* set the radio configuration for family 8000 */
1143 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1144 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1145 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1146 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1147 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1148 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1149}
1150
1151static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1152{
1153 const u8 *hw_addr;
1154
1155 hw_addr = (const u8 *)&mac_addr0;
1156 dest[0] = hw_addr[3];
1157 dest[1] = hw_addr[2];
1158 dest[2] = hw_addr[1];
1159 dest[3] = hw_addr[0];
1160
1161 hw_addr = (const u8 *)&mac_addr1;
1162 dest[4] = hw_addr[1];
1163 dest[5] = hw_addr[0];
1164}
1165
1166static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1167 struct iwl_nvm_data *data)
1168{
1169 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1170 CSR_MAC_ADDR0_STRAP(trans)));
1171 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1172 CSR_MAC_ADDR1_STRAP(trans)));
1173
1174 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1175 /*
1176 * If the OEM fused a valid address, use it instead of the one in the
1177 * OTP
1178 */
1179 if (is_valid_ether_addr(data->hw_addr))
1180 return;
1181
1182 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1183 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1184
1185 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1186}
1187
1188static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1189 const struct iwl_cfg *cfg,
1190 struct iwl_nvm_data *data,
1191 const __le16 *mac_override,
1192 const __be16 *nvm_hw)
1193{
1194 const u8 *hw_addr;
1195
1196 if (mac_override) {
1197 static const u8 reserved_mac[] = {
1198 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1199 };
1200
1201 hw_addr = (const u8 *)(mac_override +
1202 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1203
1204 /*
1205 * Store the MAC address from MAO section.
1206 * No byte swapping is required in MAO section
1207 */
1208 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1209
1210 /*
1211 * Force the use of the OTP MAC address in case of reserved MAC
1212 * address in the NVM, or if address is given but invalid.
1213 */
1214 if (is_valid_ether_addr(data->hw_addr) &&
1215 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1216 return;
1217
1218 IWL_ERR(trans,
1219 "mac address from nvm override section is not valid\n");
1220 }
1221
1222 if (nvm_hw) {
1223 /* read the mac address from WFMP registers */
1224 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1225 WFMP_MAC_ADDR_0));
1226 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1227 WFMP_MAC_ADDR_1));
1228
1229 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1230
1231 return;
1232 }
1233
1234 IWL_ERR(trans, "mac address is not found\n");
1235}
1236
1237static int iwl_set_hw_address(struct iwl_trans *trans,
1238 const struct iwl_cfg *cfg,
1239 struct iwl_nvm_data *data, const __be16 *nvm_hw,
1240 const __le16 *mac_override)
1241{
1242 if (cfg->mac_addr_from_csr) {
1243 iwl_set_hw_address_from_csr(trans, data);
1244 } else if (cfg->nvm_type != IWL_NVM_EXT) {
1245 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1246
1247 /* The byte order is little endian 16 bit, meaning 214365 */
1248 data->hw_addr[0] = hw_addr[1];
1249 data->hw_addr[1] = hw_addr[0];
1250 data->hw_addr[2] = hw_addr[3];
1251 data->hw_addr[3] = hw_addr[2];
1252 data->hw_addr[4] = hw_addr[5];
1253 data->hw_addr[5] = hw_addr[4];
1254 } else {
1255 iwl_set_hw_address_family_8000(trans, cfg, data,
1256 mac_override, nvm_hw);
1257 }
1258
1259 if (!is_valid_ether_addr(data->hw_addr)) {
1260 IWL_ERR(trans, "no valid mac address was found\n");
1261 return -EINVAL;
1262 }
1263
1264 if (!trans->csme_own)
1265 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1266 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1267
1268 return 0;
1269}
1270
1271static bool
1272iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1273 const __be16 *nvm_hw)
1274{
1275 /*
1276 * Workaround a bug in Indonesia SKUs where the regulatory in
1277 * some 7000-family OTPs erroneously allow wide channels in
1278 * 5GHz. To check for Indonesia, we take the SKU value from
1279 * bits 1-4 in the subsystem ID and check if it is either 5 or
1280 * 9. In those cases, we need to force-disable wide channels
1281 * in 5GHz otherwise the FW will throw a sysassert when we try
1282 * to use them.
1283 */
1284 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1285 /*
1286 * Unlike the other sections in the NVM, the hw
1287 * section uses big-endian.
1288 */
1289 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1290 u8 sku = (subsystem_id & 0x1e) >> 1;
1291
1292 if (sku == 5 || sku == 9) {
1293 IWL_DEBUG_EEPROM(trans->dev,
1294 "disabling wide channels in 5GHz (0x%0x %d)\n",
1295 subsystem_id, sku);
1296 return true;
1297 }
1298 }
1299
1300 return false;
1301}
1302
1303struct iwl_nvm_data *
1304iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1305 const struct iwl_mei_nvm *mei_nvm,
1306 const struct iwl_fw *fw)
1307{
1308 struct iwl_nvm_data *data;
1309 u32 sbands_flags = 0;
1310 u8 rx_chains = fw->valid_rx_ant;
1311 u8 tx_chains = fw->valid_rx_ant;
1312
1313 if (cfg->uhb_supported)
1314 data = kzalloc(struct_size(data, channels,
1315 IWL_NVM_NUM_CHANNELS_UHB),
1316 GFP_KERNEL);
1317 else
1318 data = kzalloc(struct_size(data, channels,
1319 IWL_NVM_NUM_CHANNELS_EXT),
1320 GFP_KERNEL);
1321 if (!data)
1322 return NULL;
1323
1324 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1325 IWL_NVM_NUM_CHANNELS_UHB);
1326 data->nvm_version = mei_nvm->nvm_version;
1327
1328 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1329 if (data->valid_tx_ant)
1330 tx_chains &= data->valid_tx_ant;
1331 if (data->valid_rx_ant)
1332 rx_chains &= data->valid_rx_ant;
1333
1334 data->sku_cap_mimo_disabled = false;
1335 data->sku_cap_band_24ghz_enable = true;
1336 data->sku_cap_band_52ghz_enable = true;
1337 data->sku_cap_11n_enable =
1338 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1339 data->sku_cap_11ac_enable = true;
1340 data->sku_cap_11ax_enable =
1341 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1342
1343 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1344
1345 data->n_hw_addrs = mei_nvm->n_hw_addrs;
1346 /* If no valid mac address was found - bail out */
1347 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1348 kfree(data);
1349 return NULL;
1350 }
1351
1352 if (data->lar_enabled &&
1353 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1354 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1355
1356 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1357 sbands_flags, true, fw);
1358
1359 return data;
1360}
1361IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1362
1363struct iwl_nvm_data *
1364iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1365 const struct iwl_fw *fw,
1366 const __be16 *nvm_hw, const __le16 *nvm_sw,
1367 const __le16 *nvm_calib, const __le16 *regulatory,
1368 const __le16 *mac_override, const __le16 *phy_sku,
1369 u8 tx_chains, u8 rx_chains)
1370{
1371 struct iwl_nvm_data *data;
1372 bool lar_enabled;
1373 u32 sku, radio_cfg;
1374 u32 sbands_flags = 0;
1375 u16 lar_config;
1376 const __le16 *ch_section;
1377
1378 if (cfg->uhb_supported)
1379 data = kzalloc(struct_size(data, channels,
1380 IWL_NVM_NUM_CHANNELS_UHB),
1381 GFP_KERNEL);
1382 else if (cfg->nvm_type != IWL_NVM_EXT)
1383 data = kzalloc(struct_size(data, channels,
1384 IWL_NVM_NUM_CHANNELS),
1385 GFP_KERNEL);
1386 else
1387 data = kzalloc(struct_size(data, channels,
1388 IWL_NVM_NUM_CHANNELS_EXT),
1389 GFP_KERNEL);
1390 if (!data)
1391 return NULL;
1392
1393 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1394
1395 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1396 iwl_set_radio_cfg(cfg, data, radio_cfg);
1397 if (data->valid_tx_ant)
1398 tx_chains &= data->valid_tx_ant;
1399 if (data->valid_rx_ant)
1400 rx_chains &= data->valid_rx_ant;
1401
1402 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1403 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1404 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1405 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1406 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1407 data->sku_cap_11n_enable = false;
1408 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1409 (sku & NVM_SKU_CAP_11AC_ENABLE);
1410 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1411
1412 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1413
1414 if (cfg->nvm_type != IWL_NVM_EXT) {
1415 /* Checking for required sections */
1416 if (!nvm_calib) {
1417 IWL_ERR(trans,
1418 "Can't parse empty Calib NVM sections\n");
1419 kfree(data);
1420 return NULL;
1421 }
1422
1423 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1424 ®ulatory[NVM_CHANNELS_SDP] :
1425 &nvm_sw[NVM_CHANNELS];
1426
1427 /* in family 8000 Xtal calibration values moved to OTP */
1428 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1429 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1430 lar_enabled = true;
1431 } else {
1432 u16 lar_offset = data->nvm_version < 0xE39 ?
1433 NVM_LAR_OFFSET_OLD :
1434 NVM_LAR_OFFSET;
1435
1436 lar_config = le16_to_cpup(regulatory + lar_offset);
1437 data->lar_enabled = !!(lar_config &
1438 NVM_LAR_ENABLED);
1439 lar_enabled = data->lar_enabled;
1440 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
1441 }
1442
1443 /* If no valid mac address was found - bail out */
1444 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1445 kfree(data);
1446 return NULL;
1447 }
1448
1449 if (lar_enabled &&
1450 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1451 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1452
1453 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1454 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1455
1456 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1457 sbands_flags, false, fw);
1458 data->calib_version = 255;
1459
1460 return data;
1461}
1462IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1463
1464static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1465 int ch_idx, u16 nvm_flags,
1466 struct iwl_reg_capa reg_capa,
1467 const struct iwl_cfg *cfg)
1468{
1469 u32 flags = NL80211_RRF_NO_HT40;
1470
1471 if (ch_idx < NUM_2GHZ_CHANNELS &&
1472 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1473 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1474 flags &= ~NL80211_RRF_NO_HT40PLUS;
1475 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1476 flags &= ~NL80211_RRF_NO_HT40MINUS;
1477 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1478 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1479 flags &= ~NL80211_RRF_NO_HT40PLUS;
1480 else
1481 flags &= ~NL80211_RRF_NO_HT40MINUS;
1482 }
1483
1484 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1485 flags |= NL80211_RRF_NO_80MHZ;
1486 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1487 flags |= NL80211_RRF_NO_160MHZ;
1488
1489 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1490 flags |= NL80211_RRF_NO_IR;
1491
1492 if (nvm_flags & NVM_CHANNEL_RADAR)
1493 flags |= NL80211_RRF_DFS;
1494
1495 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1496 flags |= NL80211_RRF_NO_OUTDOOR;
1497
1498 /* Set the GO concurrent flag only in case that NO_IR is set.
1499 * Otherwise it is meaningless
1500 */
1501 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1502 (flags & NL80211_RRF_NO_IR))
1503 flags |= NL80211_RRF_GO_CONCURRENT;
1504
1505 /*
1506 * reg_capa is per regulatory domain so apply it for every channel
1507 */
1508 if (ch_idx >= NUM_2GHZ_CHANNELS) {
1509 if (!reg_capa.allow_40mhz)
1510 flags |= NL80211_RRF_NO_HT40;
1511
1512 if (!reg_capa.allow_80mhz)
1513 flags |= NL80211_RRF_NO_80MHZ;
1514
1515 if (!reg_capa.allow_160mhz)
1516 flags |= NL80211_RRF_NO_160MHZ;
1517 }
1518 if (reg_capa.disable_11ax)
1519 flags |= NL80211_RRF_NO_HE;
1520
1521 return flags;
1522}
1523
1524static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1525{
1526 struct iwl_reg_capa reg_capa;
1527
1528 if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1529 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1530 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1531 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1532 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1533 } else {
1534 reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1535 reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1536 reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1537 reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1538 }
1539 return reg_capa;
1540}
1541
1542struct ieee80211_regdomain *
1543iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1544 int num_of_ch, __le32 *channels, u16 fw_mcc,
1545 u16 geo_info, u16 cap, u8 resp_ver)
1546{
1547 int ch_idx;
1548 u16 ch_flags;
1549 u32 reg_rule_flags, prev_reg_rule_flags = 0;
1550 const u16 *nvm_chan;
1551 struct ieee80211_regdomain *regd, *copy_rd;
1552 struct ieee80211_reg_rule *rule;
1553 enum nl80211_band band;
1554 int center_freq, prev_center_freq = 0;
1555 int valid_rules = 0;
1556 bool new_rule;
1557 int max_num_ch;
1558 struct iwl_reg_capa reg_capa;
1559
1560 if (cfg->uhb_supported) {
1561 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1562 nvm_chan = iwl_uhb_nvm_channels;
1563 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1564 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1565 nvm_chan = iwl_ext_nvm_channels;
1566 } else {
1567 max_num_ch = IWL_NVM_NUM_CHANNELS;
1568 nvm_chan = iwl_nvm_channels;
1569 }
1570
1571 if (num_of_ch > max_num_ch) {
1572 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1573 "Num of channels (%d) is greater than expected. Truncating to %d\n",
1574 num_of_ch, max_num_ch);
1575 num_of_ch = max_num_ch;
1576 }
1577
1578 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1579 return ERR_PTR(-EINVAL);
1580
1581 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1582 num_of_ch);
1583
1584 /* build a regdomain rule for every valid channel */
1585 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1586 if (!regd)
1587 return ERR_PTR(-ENOMEM);
1588
1589 /* set alpha2 from FW. */
1590 regd->alpha2[0] = fw_mcc >> 8;
1591 regd->alpha2[1] = fw_mcc & 0xff;
1592
1593 /* parse regulatory capability flags */
1594 reg_capa = iwl_get_reg_capa(cap, resp_ver);
1595
1596 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1597 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1598 band = iwl_nl80211_band_from_channel_idx(ch_idx);
1599 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1600 band);
1601 new_rule = false;
1602
1603 if (!(ch_flags & NVM_CHANNEL_VALID)) {
1604 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1605 nvm_chan[ch_idx], ch_flags);
1606 continue;
1607 }
1608
1609 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1610 ch_flags, reg_capa,
1611 cfg);
1612
1613 /* we can't continue the same rule */
1614 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1615 center_freq - prev_center_freq > 20) {
1616 valid_rules++;
1617 new_rule = true;
1618 }
1619
1620 rule = ®d->reg_rules[valid_rules - 1];
1621
1622 if (new_rule)
1623 rule->freq_range.start_freq_khz =
1624 MHZ_TO_KHZ(center_freq - 10);
1625
1626 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1627
1628 /* this doesn't matter - not used by FW */
1629 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1630 rule->power_rule.max_eirp =
1631 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1632
1633 rule->flags = reg_rule_flags;
1634
1635 /* rely on auto-calculation to merge BW of contiguous chans */
1636 rule->flags |= NL80211_RRF_AUTO_BW;
1637 rule->freq_range.max_bandwidth_khz = 0;
1638
1639 prev_center_freq = center_freq;
1640 prev_reg_rule_flags = reg_rule_flags;
1641
1642 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1643 nvm_chan[ch_idx], ch_flags);
1644
1645 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1646 band == NL80211_BAND_2GHZ)
1647 continue;
1648
1649 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1650 }
1651
1652 /*
1653 * Certain firmware versions might report no valid channels
1654 * if booted in RF-kill, i.e. not all calibrations etc. are
1655 * running. We'll get out of this situation later when the
1656 * rfkill is removed and we update the regdomain again, but
1657 * since cfg80211 doesn't accept an empty regdomain, add a
1658 * dummy (unusable) rule here in this case so we can init.
1659 */
1660 if (!valid_rules) {
1661 valid_rules = 1;
1662 rule = ®d->reg_rules[valid_rules - 1];
1663 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1664 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1665 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1666 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1667 rule->power_rule.max_eirp =
1668 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1669 }
1670
1671 regd->n_reg_rules = valid_rules;
1672
1673 /*
1674 * Narrow down regdom for unused regulatory rules to prevent hole
1675 * between reg rules to wmm rules.
1676 */
1677 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1678 GFP_KERNEL);
1679 if (!copy_rd)
1680 copy_rd = ERR_PTR(-ENOMEM);
1681
1682 kfree(regd);
1683 return copy_rd;
1684}
1685IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1686
1687#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1688#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1689#define MAX_NVM_FILE_LEN 16384
1690
1691void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1692 unsigned int len)
1693{
1694#define IWL_4165_DEVICE_ID 0x5501
1695#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1696
1697 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1698 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1699 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1700 /* OTP 0x52 bug work around: it's a 1x1 device */
1701 data[3] = ANT_B | (ANT_B << 4);
1702}
1703IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1704
1705/*
1706 * Reads external NVM from a file into mvm->nvm_sections
1707 *
1708 * HOW TO CREATE THE NVM FILE FORMAT:
1709 * ------------------------------
1710 * 1. create hex file, format:
1711 * 3800 -> header
1712 * 0000 -> header
1713 * 5a40 -> data
1714 *
1715 * rev - 6 bit (word1)
1716 * len - 10 bit (word1)
1717 * id - 4 bit (word2)
1718 * rsv - 12 bit (word2)
1719 *
1720 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1721 *
1722 * 3. create binary file from the hex file
1723 *
1724 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1725 */
1726int iwl_read_external_nvm(struct iwl_trans *trans,
1727 const char *nvm_file_name,
1728 struct iwl_nvm_section *nvm_sections)
1729{
1730 int ret, section_size;
1731 u16 section_id;
1732 const struct firmware *fw_entry;
1733 const struct {
1734 __le16 word1;
1735 __le16 word2;
1736 u8 data[];
1737 } *file_sec;
1738 const u8 *eof;
1739 u8 *temp;
1740 int max_section_size;
1741 const __le32 *dword_buff;
1742
1743#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1744#define NVM_WORD2_ID(x) (x >> 12)
1745#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1746#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1747#define NVM_HEADER_0 (0x2A504C54)
1748#define NVM_HEADER_1 (0x4E564D2A)
1749#define NVM_HEADER_SIZE (4 * sizeof(u32))
1750
1751 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1752
1753 /* Maximal size depends on NVM version */
1754 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1755 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1756 else
1757 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1758
1759 /*
1760 * Obtain NVM image via request_firmware. Since we already used
1761 * request_firmware_nowait() for the firmware binary load and only
1762 * get here after that we assume the NVM request can be satisfied
1763 * synchronously.
1764 */
1765 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1766 if (ret) {
1767 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1768 nvm_file_name, ret);
1769 return ret;
1770 }
1771
1772 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1773 nvm_file_name, fw_entry->size);
1774
1775 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1776 IWL_ERR(trans, "NVM file too large\n");
1777 ret = -EINVAL;
1778 goto out;
1779 }
1780
1781 eof = fw_entry->data + fw_entry->size;
1782 dword_buff = (const __le32 *)fw_entry->data;
1783
1784 /* some NVM file will contain a header.
1785 * The header is identified by 2 dwords header as follow:
1786 * dword[0] = 0x2A504C54
1787 * dword[1] = 0x4E564D2A
1788 *
1789 * This header must be skipped when providing the NVM data to the FW.
1790 */
1791 if (fw_entry->size > NVM_HEADER_SIZE &&
1792 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1793 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1794 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1795 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1796 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1797 le32_to_cpu(dword_buff[3]));
1798
1799 /* nvm file validation, dword_buff[2] holds the file version */
1800 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1801 trans->hw_rev_step == SILICON_C_STEP &&
1802 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1803 ret = -EFAULT;
1804 goto out;
1805 }
1806 } else {
1807 file_sec = (const void *)fw_entry->data;
1808 }
1809
1810 while (true) {
1811 if (file_sec->data > eof) {
1812 IWL_ERR(trans,
1813 "ERROR - NVM file too short for section header\n");
1814 ret = -EINVAL;
1815 break;
1816 }
1817
1818 /* check for EOF marker */
1819 if (!file_sec->word1 && !file_sec->word2) {
1820 ret = 0;
1821 break;
1822 }
1823
1824 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1825 section_size =
1826 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1827 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1828 } else {
1829 section_size = 2 * EXT_NVM_WORD2_LEN(
1830 le16_to_cpu(file_sec->word2));
1831 section_id = EXT_NVM_WORD1_ID(
1832 le16_to_cpu(file_sec->word1));
1833 }
1834
1835 if (section_size > max_section_size) {
1836 IWL_ERR(trans, "ERROR - section too large (%d)\n",
1837 section_size);
1838 ret = -EINVAL;
1839 break;
1840 }
1841
1842 if (!section_size) {
1843 IWL_ERR(trans, "ERROR - section empty\n");
1844 ret = -EINVAL;
1845 break;
1846 }
1847
1848 if (file_sec->data + section_size > eof) {
1849 IWL_ERR(trans,
1850 "ERROR - NVM file too short for section (%d bytes)\n",
1851 section_size);
1852 ret = -EINVAL;
1853 break;
1854 }
1855
1856 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1857 "Invalid NVM section ID %d\n", section_id)) {
1858 ret = -EINVAL;
1859 break;
1860 }
1861
1862 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1863 if (!temp) {
1864 ret = -ENOMEM;
1865 break;
1866 }
1867
1868 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1869
1870 kfree(nvm_sections[section_id].data);
1871 nvm_sections[section_id].data = temp;
1872 nvm_sections[section_id].length = section_size;
1873
1874 /* advance to the next section */
1875 file_sec = (const void *)(file_sec->data + section_size);
1876 }
1877out:
1878 release_firmware(fw_entry);
1879 return ret;
1880}
1881IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1882
1883struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1884 const struct iwl_fw *fw)
1885{
1886 struct iwl_nvm_get_info cmd = {};
1887 struct iwl_nvm_data *nvm;
1888 struct iwl_host_cmd hcmd = {
1889 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1890 .data = { &cmd, },
1891 .len = { sizeof(cmd) },
1892 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1893 };
1894 int ret;
1895 bool empty_otp;
1896 u32 mac_flags;
1897 u32 sbands_flags = 0;
1898 /*
1899 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1900 * in v3, except for the channel profile part of the
1901 * regulatory. So we can just access the new struct, with the
1902 * exception of the latter.
1903 */
1904 struct iwl_nvm_get_info_rsp *rsp;
1905 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1906 bool v4 = fw_has_api(&fw->ucode_capa,
1907 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1908 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1909 void *channel_profile;
1910
1911 ret = iwl_trans_send_cmd(trans, &hcmd);
1912 if (ret)
1913 return ERR_PTR(ret);
1914
1915 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1916 "Invalid payload len in NVM response from FW %d",
1917 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1918 ret = -EINVAL;
1919 goto out;
1920 }
1921
1922 rsp = (void *)hcmd.resp_pkt->data;
1923 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1924 NVM_GENERAL_FLAGS_EMPTY_OTP);
1925 if (empty_otp)
1926 IWL_INFO(trans, "OTP is empty\n");
1927
1928 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1929 if (!nvm) {
1930 ret = -ENOMEM;
1931 goto out;
1932 }
1933
1934 iwl_set_hw_address_from_csr(trans, nvm);
1935 /* TODO: if platform NVM has MAC address - override it here */
1936
1937 if (!is_valid_ether_addr(nvm->hw_addr)) {
1938 IWL_ERR(trans, "no valid mac address was found\n");
1939 ret = -EINVAL;
1940 goto err_free;
1941 }
1942
1943 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1944
1945 /* Initialize general data */
1946 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1947 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1948 if (nvm->n_hw_addrs == 0)
1949 IWL_WARN(trans,
1950 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1951 empty_otp);
1952
1953 /* Initialize MAC sku data */
1954 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1955 nvm->sku_cap_11ac_enable =
1956 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1957 nvm->sku_cap_11n_enable =
1958 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1959 nvm->sku_cap_11ax_enable =
1960 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1961 nvm->sku_cap_band_24ghz_enable =
1962 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1963 nvm->sku_cap_band_52ghz_enable =
1964 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1965 nvm->sku_cap_mimo_disabled =
1966 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1967 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
1968 nvm->sku_cap_11be_enable = true;
1969
1970 /* Initialize PHY sku data */
1971 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1972 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1973
1974 if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1975 fw_has_capa(&fw->ucode_capa,
1976 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1977 nvm->lar_enabled = true;
1978 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1979 }
1980
1981 rsp_v3 = (void *)rsp;
1982 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1983 (void *)rsp_v3->regulatory.channel_profile;
1984
1985 iwl_init_sbands(trans, nvm,
1986 channel_profile,
1987 nvm->valid_tx_ant & fw->valid_tx_ant,
1988 nvm->valid_rx_ant & fw->valid_rx_ant,
1989 sbands_flags, v4, fw);
1990
1991 iwl_free_resp(&hcmd);
1992 return nvm;
1993
1994err_free:
1995 kfree(nvm);
1996out:
1997 iwl_free_resp(&hcmd);
1998 return ERR_PTR(ret);
1999}
2000IWL_EXPORT_SYMBOL(iwl_get_nvm);
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/types.h>
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/etherdevice.h>
11#include <linux/pci.h>
12#include <linux/firmware.h>
13
14#include "iwl-drv.h"
15#include "iwl-modparams.h"
16#include "iwl-nvm-parse.h"
17#include "iwl-prph.h"
18#include "iwl-io.h"
19#include "iwl-csr.h"
20#include "fw/acpi.h"
21#include "fw/api/nvm-reg.h"
22#include "fw/api/commands.h"
23#include "fw/api/cmdhdr.h"
24#include "fw/img.h"
25#include "mei/iwl-mei.h"
26
27/* NVM offsets (in words) definitions */
28enum nvm_offsets {
29 /* NVM HW-Section offset (in words) definitions */
30 SUBSYSTEM_ID = 0x0A,
31 HW_ADDR = 0x15,
32
33 /* NVM SW-Section offset (in words) definitions */
34 NVM_SW_SECTION = 0x1C0,
35 NVM_VERSION = 0,
36 RADIO_CFG = 1,
37 SKU = 2,
38 N_HW_ADDRS = 3,
39 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40
41 /* NVM REGULATORY -Section offset (in words) definitions */
42 NVM_CHANNELS_SDP = 0,
43};
44
45enum ext_nvm_offsets {
46 /* NVM HW-Section offset (in words) definitions */
47
48 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49
50 /* NVM SW-Section offset (in words) definitions */
51 NVM_VERSION_EXT_NVM = 0,
52 N_HW_ADDRS_FAMILY_8000 = 3,
53
54 /* NVM PHY_SKU-Section offset (in words) definitions */
55 RADIO_CFG_FAMILY_EXT_NVM = 0,
56 SKU_FAMILY_8000 = 2,
57
58 /* NVM REGULATORY -Section offset (in words) definitions */
59 NVM_CHANNELS_EXTENDED = 0,
60 NVM_LAR_OFFSET_OLD = 0x4C7,
61 NVM_LAR_OFFSET = 0x507,
62 NVM_LAR_ENABLED = 0x7,
63};
64
65/* SKU Capabilities (actual values from NVM definition) */
66enum nvm_sku_bits {
67 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
68 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
69 NVM_SKU_CAP_11N_ENABLE = BIT(2),
70 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
71 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
72};
73
74/*
75 * These are the channel numbers in the order that they are stored in the NVM
76 */
77static const u16 iwl_nvm_channels[] = {
78 /* 2.4 GHz */
79 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 /* 5 GHz */
81 36, 40, 44, 48, 52, 56, 60, 64,
82 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 149, 153, 157, 161, 165
84};
85
86static const u16 iwl_ext_nvm_channels[] = {
87 /* 2.4 GHz */
88 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 /* 5 GHz */
90 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 149, 153, 157, 161, 165, 169, 173, 177, 181
93};
94
95static const u16 iwl_uhb_nvm_channels[] = {
96 /* 2.4 GHz */
97 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 /* 5 GHz */
99 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 149, 153, 157, 161, 165, 169, 173, 177, 181,
102 /* 6-7 GHz */
103 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107};
108
109#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
110#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
111#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
112#define NUM_2GHZ_CHANNELS 14
113#define NUM_5GHZ_CHANNELS 37
114#define FIRST_2GHZ_HT_MINUS 5
115#define LAST_2GHZ_HT_PLUS 9
116#define N_HW_ADDR_MASK 0xF
117
118/* rate data (static) */
119static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135};
136#define RATES_24_OFFS 0
137#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
138#define RATES_52_OFFS 4
139#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
140
141/**
142 * enum iwl_nvm_channel_flags - channel flags in NVM
143 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
145 * @NVM_CHANNEL_ACTIVE: active scanning allowed
146 * @NVM_CHANNEL_RADAR: radar detection required
147 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
148 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
149 * on same channel on 2.4 or same UNII band on 5.2
150 * @NVM_CHANNEL_UNIFORM: uniform spreading required
151 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
152 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
153 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
154 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
155 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
156 * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
157 * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
158 */
159enum iwl_nvm_channel_flags {
160 NVM_CHANNEL_VALID = BIT(0),
161 NVM_CHANNEL_IBSS = BIT(1),
162 NVM_CHANNEL_ACTIVE = BIT(3),
163 NVM_CHANNEL_RADAR = BIT(4),
164 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
165 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
166 NVM_CHANNEL_UNIFORM = BIT(7),
167 NVM_CHANNEL_20MHZ = BIT(8),
168 NVM_CHANNEL_40MHZ = BIT(9),
169 NVM_CHANNEL_80MHZ = BIT(10),
170 NVM_CHANNEL_160MHZ = BIT(11),
171 NVM_CHANNEL_DC_HIGH = BIT(12),
172 NVM_CHANNEL_VLP = BIT(13),
173 NVM_CHANNEL_AFC = BIT(14),
174};
175
176/**
177 * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
178 * domain.
179 * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
180 * 2.4Ghz band is allowed.
181 * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
182 * 5Ghz band is allowed.
183 * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
184 * for this regulatory domain (valid only in 5Ghz).
185 * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
186 * for this regulatory domain (valid only in 5Ghz).
187 * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
188 * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
189 * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
190 * for this regulatory domain (valid only in 5Ghz).
191 * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
192 * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
193 */
194enum iwl_reg_capa_flags_v1 {
195 REG_CAPA_V1_BF_CCD_LOW_BAND = BIT(0),
196 REG_CAPA_V1_BF_CCD_HIGH_BAND = BIT(1),
197 REG_CAPA_V1_160MHZ_ALLOWED = BIT(2),
198 REG_CAPA_V1_80MHZ_ALLOWED = BIT(3),
199 REG_CAPA_V1_MCS_8_ALLOWED = BIT(4),
200 REG_CAPA_V1_MCS_9_ALLOWED = BIT(5),
201 REG_CAPA_V1_40MHZ_FORBIDDEN = BIT(7),
202 REG_CAPA_V1_DC_HIGH_ENABLED = BIT(9),
203 REG_CAPA_V1_11AX_DISABLED = BIT(10),
204}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
205
206/**
207 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
208 * domain (version 2).
209 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
210 * disabled.
211 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
212 * 2.4Ghz band is allowed.
213 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
214 * 5Ghz band is allowed.
215 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
216 * for this regulatory domain (valid only in 5Ghz).
217 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
218 * for this regulatory domain (valid only in 5Ghz).
219 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
220 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
221 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
222 * 126, 122) are disabled.
223 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
224 * for this regulatory domain (uvalid only in 5Ghz).
225 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
226 */
227enum iwl_reg_capa_flags_v2 {
228 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
229 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
230 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
231 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
232 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
233 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
234 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
235 REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
236 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
237 REG_CAPA_V2_11AX_DISABLED = BIT(10),
238}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
239
240/**
241 * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
242 * domain.
243 * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
244 * for this regulatory domain (valid only in 5Ghz).
245 * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
246 * for this regulatory domain (valid only in 5Ghz).
247 * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
248 * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
249 * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
250 * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
251 * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
252 * for this regulatory domain (valid only in 5GHz).
253 */
254enum iwl_reg_capa_flags_v4 {
255 REG_CAPA_V4_160MHZ_ALLOWED = BIT(3),
256 REG_CAPA_V4_80MHZ_ALLOWED = BIT(4),
257 REG_CAPA_V4_MCS_12_ALLOWED = BIT(5),
258 REG_CAPA_V4_MCS_13_ALLOWED = BIT(6),
259 REG_CAPA_V4_11BE_DISABLED = BIT(8),
260 REG_CAPA_V4_11AX_DISABLED = BIT(13),
261 REG_CAPA_V4_320MHZ_ALLOWED = BIT(16),
262}; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
263
264/*
265* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
266* MCC update command response.
267*/
268#define REG_CAPA_V2_RESP_VER 6
269
270/* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
271 * MCC update command response.
272 */
273#define REG_CAPA_V4_RESP_VER 8
274
275/**
276 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
277 * handling the different APIs of reg_capa_flags.
278 *
279 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
280 * for this regulatory domain.
281 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
282 * for this regulatory domain (valid only in 5 and 6 Ghz).
283 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
284 * for this regulatory domain (valid only in 5 and 6 Ghz).
285 * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
286 * for this regulatory domain (valid only in 6 Ghz).
287 * @disable_11ax: 11ax is forbidden for this regulatory domain.
288 * @disable_11be: 11be is forbidden for this regulatory domain.
289 */
290struct iwl_reg_capa {
291 bool allow_40mhz;
292 bool allow_80mhz;
293 bool allow_160mhz;
294 bool allow_320mhz;
295 bool disable_11ax;
296 bool disable_11be;
297};
298
299static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
300 int chan, u32 flags)
301{
302#define CHECK_AND_PRINT_I(x) \
303 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
304
305 if (!(flags & NVM_CHANNEL_VALID)) {
306 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
307 chan, flags);
308 return;
309 }
310
311 /* Note: already can print up to 101 characters, 110 is the limit! */
312 IWL_DEBUG_DEV(dev, level,
313 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
314 chan, flags,
315 CHECK_AND_PRINT_I(VALID),
316 CHECK_AND_PRINT_I(IBSS),
317 CHECK_AND_PRINT_I(ACTIVE),
318 CHECK_AND_PRINT_I(RADAR),
319 CHECK_AND_PRINT_I(INDOOR_ONLY),
320 CHECK_AND_PRINT_I(GO_CONCURRENT),
321 CHECK_AND_PRINT_I(UNIFORM),
322 CHECK_AND_PRINT_I(20MHZ),
323 CHECK_AND_PRINT_I(40MHZ),
324 CHECK_AND_PRINT_I(80MHZ),
325 CHECK_AND_PRINT_I(160MHZ),
326 CHECK_AND_PRINT_I(DC_HIGH),
327 CHECK_AND_PRINT_I(VLP),
328 CHECK_AND_PRINT_I(AFC));
329#undef CHECK_AND_PRINT_I
330}
331
332static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
333 u32 nvm_flags, const struct iwl_cfg *cfg)
334{
335 u32 flags = IEEE80211_CHAN_NO_HT40;
336
337 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
338 if (ch_num <= LAST_2GHZ_HT_PLUS)
339 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
340 if (ch_num >= FIRST_2GHZ_HT_MINUS)
341 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
342 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
343 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
344 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
345 else
346 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
347 }
348 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
349 flags |= IEEE80211_CHAN_NO_80MHZ;
350 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
351 flags |= IEEE80211_CHAN_NO_160MHZ;
352
353 if (!(nvm_flags & NVM_CHANNEL_IBSS))
354 flags |= IEEE80211_CHAN_NO_IR;
355
356 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
357 flags |= IEEE80211_CHAN_NO_IR;
358
359 if (nvm_flags & NVM_CHANNEL_RADAR)
360 flags |= IEEE80211_CHAN_RADAR;
361
362 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
363 flags |= IEEE80211_CHAN_INDOOR_ONLY;
364
365 /* Set the GO concurrent flag only in case that NO_IR is set.
366 * Otherwise it is meaningless
367 */
368 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
369 (flags & IEEE80211_CHAN_NO_IR))
370 flags |= IEEE80211_CHAN_IR_CONCURRENT;
371
372 /* Set the AP type for the UHB case. */
373 if (nvm_flags & NVM_CHANNEL_VLP)
374 flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
375 else
376 flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
377 if (!(nvm_flags & NVM_CHANNEL_AFC))
378 flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
379
380 return flags;
381}
382
383static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
384{
385 if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
386 return NL80211_BAND_6GHZ;
387 }
388
389 if (ch_idx >= NUM_2GHZ_CHANNELS)
390 return NL80211_BAND_5GHZ;
391 return NL80211_BAND_2GHZ;
392}
393
394static int iwl_init_channel_map(struct iwl_trans *trans,
395 const struct iwl_fw *fw,
396 struct iwl_nvm_data *data,
397 const void * const nvm_ch_flags,
398 u32 sbands_flags, bool v4)
399{
400 const struct iwl_cfg *cfg = trans->cfg;
401 struct device *dev = trans->dev;
402 int ch_idx;
403 int n_channels = 0;
404 struct ieee80211_channel *channel;
405 u32 ch_flags;
406 int num_of_ch;
407 const u16 *nvm_chan;
408
409 if (cfg->uhb_supported) {
410 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
411 nvm_chan = iwl_uhb_nvm_channels;
412 } else if (cfg->nvm_type == IWL_NVM_EXT) {
413 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
414 nvm_chan = iwl_ext_nvm_channels;
415 } else {
416 num_of_ch = IWL_NVM_NUM_CHANNELS;
417 nvm_chan = iwl_nvm_channels;
418 }
419
420 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
421 enum nl80211_band band =
422 iwl_nl80211_band_from_channel_idx(ch_idx);
423
424 if (v4)
425 ch_flags =
426 __le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
427 else
428 ch_flags =
429 __le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
430
431 if (band == NL80211_BAND_5GHZ &&
432 !data->sku_cap_band_52ghz_enable)
433 continue;
434
435 /* workaround to disable wide channels in 5GHz */
436 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
437 band == NL80211_BAND_5GHZ) {
438 ch_flags &= ~(NVM_CHANNEL_40MHZ |
439 NVM_CHANNEL_80MHZ |
440 NVM_CHANNEL_160MHZ);
441 }
442
443 if (ch_flags & NVM_CHANNEL_160MHZ)
444 data->vht160_supported = true;
445
446 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
447 !(ch_flags & NVM_CHANNEL_VALID)) {
448 /*
449 * Channels might become valid later if lar is
450 * supported, hence we still want to add them to
451 * the list of supported channels to cfg80211.
452 */
453 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
454 nvm_chan[ch_idx], ch_flags);
455 continue;
456 }
457
458 channel = &data->channels[n_channels];
459 n_channels++;
460
461 channel->hw_value = nvm_chan[ch_idx];
462 channel->band = band;
463 channel->center_freq =
464 ieee80211_channel_to_frequency(
465 channel->hw_value, channel->band);
466
467 /* Initialize regulatory-based run-time data */
468
469 /*
470 * Default value - highest tx power value. max_power
471 * is not used in mvm, and is used for backwards compatibility
472 */
473 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
474
475 /* don't put limitations in case we're using LAR */
476 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
477 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
478 ch_idx, band,
479 ch_flags, cfg);
480 else
481 channel->flags = 0;
482
483 if (fw_has_capa(&fw->ucode_capa,
484 IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
485 channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
486
487 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
488 channel->hw_value, ch_flags);
489 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
490 channel->hw_value, channel->max_power);
491 }
492
493 return n_channels;
494}
495
496static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
497 struct iwl_nvm_data *data,
498 struct ieee80211_sta_vht_cap *vht_cap,
499 u8 tx_chains, u8 rx_chains)
500{
501 const struct iwl_cfg *cfg = trans->cfg;
502 int num_rx_ants = num_of_ant(rx_chains);
503 int num_tx_ants = num_of_ant(tx_chains);
504
505 vht_cap->vht_supported = true;
506
507 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
508 IEEE80211_VHT_CAP_RXSTBC_1 |
509 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
510 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
511 IEEE80211_VHT_MAX_AMPDU_1024K <<
512 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
513
514 if (!trans->cfg->ht_params->stbc)
515 vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
516
517 if (data->vht160_supported)
518 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
519 IEEE80211_VHT_CAP_SHORT_GI_160;
520
521 if (cfg->vht_mu_mimo_supported)
522 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
523
524 if (cfg->ht_params->ldpc)
525 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
526
527 if (data->sku_cap_mimo_disabled) {
528 num_rx_ants = 1;
529 num_tx_ants = 1;
530 }
531
532 if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
533 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
534 else
535 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
536
537 switch (iwlwifi_mod_params.amsdu_size) {
538 case IWL_AMSDU_DEF:
539 if (trans->trans_cfg->mq_rx_supported)
540 vht_cap->cap |=
541 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
542 else
543 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
544 break;
545 case IWL_AMSDU_2K:
546 if (trans->trans_cfg->mq_rx_supported)
547 vht_cap->cap |=
548 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
549 else
550 WARN(1, "RB size of 2K is not supported by this device\n");
551 break;
552 case IWL_AMSDU_4K:
553 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
554 break;
555 case IWL_AMSDU_8K:
556 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
557 break;
558 case IWL_AMSDU_12K:
559 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
560 break;
561 default:
562 break;
563 }
564
565 vht_cap->vht_mcs.rx_mcs_map =
566 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
567 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
568 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
569 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
570 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
571 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
572 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
573 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
574
575 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
576 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
577 /* this works because NOT_SUPPORTED == 3 */
578 vht_cap->vht_mcs.rx_mcs_map |=
579 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
580 }
581
582 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
583
584 vht_cap->vht_mcs.tx_highest |=
585 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
586}
587
588static const u8 iwl_vendor_caps[] = {
589 0xdd, /* vendor element */
590 0x06, /* length */
591 0x00, 0x17, 0x35, /* Intel OUI */
592 0x08, /* type (Intel Capabilities) */
593 /* followed by 16 bits of capabilities */
594#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
595 IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
596 0x00
597};
598
599static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
600 {
601 .types_mask = BIT(NL80211_IFTYPE_STATION) |
602 BIT(NL80211_IFTYPE_P2P_CLIENT),
603 .he_cap = {
604 .has_he = true,
605 .he_cap_elem = {
606 .mac_cap_info[0] =
607 IEEE80211_HE_MAC_CAP0_HTC_HE,
608 .mac_cap_info[1] =
609 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
610 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
611 .mac_cap_info[2] =
612 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
613 .mac_cap_info[3] =
614 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
615 IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
616 .mac_cap_info[4] =
617 IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
618 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
619 .mac_cap_info[5] =
620 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
621 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
622 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
623 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
624 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
625 .phy_cap_info[1] =
626 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
627 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
628 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
629 .phy_cap_info[2] =
630 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
631 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
632 .phy_cap_info[3] =
633 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
634 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
635 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
636 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
637 .phy_cap_info[4] =
638 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
639 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
640 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
641 .phy_cap_info[6] =
642 IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
643 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
644 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
645 .phy_cap_info[7] =
646 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
647 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
648 .phy_cap_info[8] =
649 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
650 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
651 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
652 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
653 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
654 .phy_cap_info[9] =
655 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
656 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
657 (IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
658 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
659 .phy_cap_info[10] =
660 IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
661 },
662 /*
663 * Set default Tx/Rx HE MCS NSS Support field.
664 * Indicate support for up to 2 spatial streams and all
665 * MCS, without any special cases
666 */
667 .he_mcs_nss_supp = {
668 .rx_mcs_80 = cpu_to_le16(0xfffa),
669 .tx_mcs_80 = cpu_to_le16(0xfffa),
670 .rx_mcs_160 = cpu_to_le16(0xfffa),
671 .tx_mcs_160 = cpu_to_le16(0xfffa),
672 .rx_mcs_80p80 = cpu_to_le16(0xffff),
673 .tx_mcs_80p80 = cpu_to_le16(0xffff),
674 },
675 /*
676 * Set default PPE thresholds, with PPET16 set to 0,
677 * PPET8 set to 7
678 */
679 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
680 },
681 .eht_cap = {
682 .has_eht = true,
683 .eht_cap_elem = {
684 .mac_cap_info[0] =
685 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
686 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
687 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
688 IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
689 .phy_cap_info[0] =
690 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
691 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
692 IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
693 IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
694 IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
695 .phy_cap_info[1] =
696 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
697 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
698 .phy_cap_info[3] =
699 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
700 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
701 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
702 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
703 IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
704 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
705 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
706
707 .phy_cap_info[4] =
708 IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
709 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
710 IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
711 .phy_cap_info[5] =
712 FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
713 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
714 IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
715 IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
716 IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
717 .phy_cap_info[6] =
718 IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
719 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
720 .phy_cap_info[8] =
721 IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
722 IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
723 },
724
725 /* For all MCS and bandwidth, set 2 NSS for both Tx and
726 * Rx - note we don't set the only_20mhz, but due to this
727 * being a union, it gets set correctly anyway.
728 */
729 .eht_mcs_nss_supp = {
730 .bw._80 = {
731 .rx_tx_mcs9_max_nss = 0x22,
732 .rx_tx_mcs11_max_nss = 0x22,
733 .rx_tx_mcs13_max_nss = 0x22,
734 },
735 .bw._160 = {
736 .rx_tx_mcs9_max_nss = 0x22,
737 .rx_tx_mcs11_max_nss = 0x22,
738 .rx_tx_mcs13_max_nss = 0x22,
739 },
740 .bw._320 = {
741 .rx_tx_mcs9_max_nss = 0x22,
742 .rx_tx_mcs11_max_nss = 0x22,
743 .rx_tx_mcs13_max_nss = 0x22,
744 },
745 },
746
747 /*
748 * PPE thresholds for NSS = 2, and RU index bitmap set
749 * to 0xc.
750 * Note: just for stating what we want, not present in
751 * the transmitted data due to not including
752 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
753 */
754 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
755 },
756 },
757 {
758 .types_mask = BIT(NL80211_IFTYPE_AP) |
759 BIT(NL80211_IFTYPE_P2P_GO),
760 .he_cap = {
761 .has_he = true,
762 .he_cap_elem = {
763 .mac_cap_info[0] =
764 IEEE80211_HE_MAC_CAP0_HTC_HE,
765 .mac_cap_info[1] =
766 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
767 .mac_cap_info[3] =
768 IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
769 .phy_cap_info[1] =
770 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
771 .phy_cap_info[2] =
772 IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
773 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
774 .phy_cap_info[3] =
775 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
776 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
777 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
778 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
779 .phy_cap_info[6] =
780 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
781 .phy_cap_info[7] =
782 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
783 .phy_cap_info[8] =
784 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
785 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
786 .phy_cap_info[9] =
787 IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
788 << IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
789 },
790 /*
791 * Set default Tx/Rx HE MCS NSS Support field.
792 * Indicate support for up to 2 spatial streams and all
793 * MCS, without any special cases
794 */
795 .he_mcs_nss_supp = {
796 .rx_mcs_80 = cpu_to_le16(0xfffa),
797 .tx_mcs_80 = cpu_to_le16(0xfffa),
798 .rx_mcs_160 = cpu_to_le16(0xfffa),
799 .tx_mcs_160 = cpu_to_le16(0xfffa),
800 .rx_mcs_80p80 = cpu_to_le16(0xffff),
801 .tx_mcs_80p80 = cpu_to_le16(0xffff),
802 },
803 /*
804 * Set default PPE thresholds, with PPET16 set to 0,
805 * PPET8 set to 7
806 */
807 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
808 },
809 .eht_cap = {
810 .has_eht = true,
811 .eht_cap_elem = {
812 .mac_cap_info[0] =
813 IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
814 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
815 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
816 .phy_cap_info[0] =
817 IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
818 IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
819 .phy_cap_info[5] =
820 FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
821 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
822 },
823
824 /* For all MCS and bandwidth, set 2 NSS for both Tx and
825 * Rx - note we don't set the only_20mhz, but due to this
826 * being a union, it gets set correctly anyway.
827 */
828 .eht_mcs_nss_supp = {
829 .bw._80 = {
830 .rx_tx_mcs9_max_nss = 0x22,
831 .rx_tx_mcs11_max_nss = 0x22,
832 .rx_tx_mcs13_max_nss = 0x22,
833 },
834 .bw._160 = {
835 .rx_tx_mcs9_max_nss = 0x22,
836 .rx_tx_mcs11_max_nss = 0x22,
837 .rx_tx_mcs13_max_nss = 0x22,
838 },
839 .bw._320 = {
840 .rx_tx_mcs9_max_nss = 0x22,
841 .rx_tx_mcs11_max_nss = 0x22,
842 .rx_tx_mcs13_max_nss = 0x22,
843 },
844 },
845
846 /*
847 * PPE thresholds for NSS = 2, and RU index bitmap set
848 * to 0xc.
849 * Note: just for stating what we want, not present in
850 * the transmitted data due to not including
851 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
852 */
853 .eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
854 },
855 },
856};
857
858static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
859 struct iwl_nvm_data *data,
860 struct ieee80211_supported_band *sband,
861 u8 tx_chains, u8 rx_chains)
862{
863 struct ieee80211_sta_ht_cap ht_cap;
864 struct ieee80211_sta_vht_cap vht_cap = {};
865 struct ieee80211_sband_iftype_data *iftype_data;
866 u16 he_6ghz_capa = 0;
867 u32 exp;
868 int i;
869
870 if (sband->band != NL80211_BAND_6GHZ)
871 return;
872
873 /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
874 iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
875 tx_chains, rx_chains);
876 WARN_ON(!ht_cap.ht_supported);
877 iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
878 WARN_ON(!vht_cap.vht_supported);
879
880 he_6ghz_capa |=
881 u16_encode_bits(ht_cap.ampdu_density,
882 IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
883 exp = u32_get_bits(vht_cap.cap,
884 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
885 he_6ghz_capa |=
886 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
887 exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
888 he_6ghz_capa |=
889 u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
890 /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
891 if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
892 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
893 if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
894 he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
895
896 IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
897
898 /* we know it's writable - we set it before ourselves */
899 iftype_data = (void *)(uintptr_t)sband->iftype_data;
900 for (i = 0; i < sband->n_iftype_data; i++)
901 iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
902}
903
904static void
905iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
906 struct iwl_nvm_data *data,
907 struct ieee80211_supported_band *sband,
908 struct ieee80211_sband_iftype_data *iftype_data,
909 u8 tx_chains, u8 rx_chains,
910 const struct iwl_fw *fw)
911{
912 bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
913 BIT(NL80211_IFTYPE_P2P_GO));
914 bool no_320;
915
916 no_320 = (!trans->trans_cfg->integrated &&
917 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB) ||
918 trans->reduced_cap_sku;
919
920 if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
921 iftype_data->eht_cap.has_eht = false;
922
923 /* Advertise an A-MPDU exponent extension based on
924 * operating band
925 */
926 if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
927 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
928 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
929 else if (sband->band != NL80211_BAND_2GHZ)
930 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
931 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
932 else
933 iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
934 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
935
936 switch (sband->band) {
937 case NL80211_BAND_2GHZ:
938 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
939 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
940 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
941 u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
942 IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
943 break;
944 case NL80211_BAND_6GHZ:
945 if (!no_320) {
946 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
947 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
948 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
949 IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
950 }
951 fallthrough;
952 case NL80211_BAND_5GHZ:
953 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
954 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
955 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
956 break;
957 default:
958 WARN_ON(1);
959 break;
960 }
961
962 if ((tx_chains & rx_chains) == ANT_AB) {
963 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
964 IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
965 iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
966 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
967 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
968 if (!is_ap) {
969 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
970 IEEE80211_HE_PHY_CAP7_MAX_NC_2;
971
972 if (iftype_data->eht_cap.has_eht) {
973 /*
974 * Set the number of sounding dimensions for each
975 * bandwidth to 1 to indicate the maximal supported
976 * value of TXVECTOR parameter NUM_STS of 2
977 */
978 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
979
980 /*
981 * Set the MAX NC to 1 to indicate sounding feedback of
982 * 2 supported by the beamfomee.
983 */
984 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
985 }
986 }
987 } else {
988 struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
989 &iftype_data->he_cap.he_mcs_nss_supp;
990
991 if (iftype_data->eht_cap.has_eht) {
992 struct ieee80211_eht_mcs_nss_supp *mcs_nss =
993 &iftype_data->eht_cap.eht_mcs_nss_supp;
994
995 memset(mcs_nss, 0x11, sizeof(*mcs_nss));
996 }
997
998 if (!is_ap) {
999 /* If not 2x2, we need to indicate 1x1 in the
1000 * Midamble RX Max NSTS - but not for AP mode
1001 */
1002 iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1003 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1004 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1005 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1006 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1007 IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1008 }
1009
1010 he_mcs_nss_supp->rx_mcs_80 |=
1011 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1012 he_mcs_nss_supp->tx_mcs_80 |=
1013 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1014 he_mcs_nss_supp->rx_mcs_160 |=
1015 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1016 he_mcs_nss_supp->tx_mcs_160 |=
1017 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1018 he_mcs_nss_supp->rx_mcs_80p80 |=
1019 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1020 he_mcs_nss_supp->tx_mcs_80p80 |=
1021 cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1022 }
1023
1024 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1025 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1026 IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1027
1028 switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1029 case IWL_CFG_RF_TYPE_GF:
1030 case IWL_CFG_RF_TYPE_FM:
1031 case IWL_CFG_RF_TYPE_WH:
1032 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1033 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1034 if (!is_ap)
1035 iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1036 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1037 break;
1038 }
1039
1040 if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1041 iftype_data->eht_cap.has_eht) {
1042 iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1043 ~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1044 IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1045 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1046 ~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1047 IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1048 IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1049 IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1050 IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1051 IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1052 IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1053 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1054 ~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1055 IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1056 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1057 ~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1058 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1059 ~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1060 IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1061 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1062 IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1063 }
1064
1065 if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1066 iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1067 IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1068
1069 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1070 !is_ap) {
1071 iftype_data->vendor_elems.data = iwl_vendor_caps;
1072 iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1073 }
1074
1075 if (!trans->cfg->ht_params->stbc) {
1076 iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1077 ~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1078 iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1079 ~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1080 }
1081
1082 if (trans->step_urm) {
1083 iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1084 iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1085 }
1086
1087 if (trans->no_160)
1088 iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1089 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1090
1091 if (trans->reduced_cap_sku) {
1092 memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1093 sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1094 iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1095 iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1096 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1097 ~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1098 iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1099 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1100 }
1101}
1102
1103static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1104 struct iwl_nvm_data *data,
1105 struct ieee80211_supported_band *sband,
1106 u8 tx_chains, u8 rx_chains,
1107 const struct iwl_fw *fw)
1108{
1109 struct ieee80211_sband_iftype_data *iftype_data;
1110 int i;
1111
1112 BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1113 BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1114 BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1115
1116 switch (sband->band) {
1117 case NL80211_BAND_2GHZ:
1118 iftype_data = data->iftd.low;
1119 break;
1120 case NL80211_BAND_5GHZ:
1121 iftype_data = data->iftd.high;
1122 break;
1123 case NL80211_BAND_6GHZ:
1124 iftype_data = data->iftd.uhb;
1125 break;
1126 default:
1127 WARN_ON(1);
1128 return;
1129 }
1130
1131 memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1132
1133 _ieee80211_set_sband_iftype_data(sband, iftype_data,
1134 ARRAY_SIZE(iwl_he_eht_capa));
1135
1136 for (i = 0; i < sband->n_iftype_data; i++)
1137 iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1138 tx_chains, rx_chains, fw);
1139
1140 iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1141}
1142
1143void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1144 u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1145{
1146 struct ieee80211_supported_band *sband;
1147
1148 sband = &data->bands[NL80211_BAND_2GHZ];
1149 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1150 tx_chains, rx_chains);
1151
1152 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1153 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1154 fw);
1155
1156 sband = &data->bands[NL80211_BAND_5GHZ];
1157 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1158 tx_chains, rx_chains);
1159 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1160 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1161 tx_chains, rx_chains);
1162
1163 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1164 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1165 fw);
1166
1167 sband = &data->bands[NL80211_BAND_6GHZ];
1168 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1169 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1170 fw);
1171}
1172IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1173
1174static void iwl_init_sbands(struct iwl_trans *trans,
1175 struct iwl_nvm_data *data,
1176 const void *nvm_ch_flags, u8 tx_chains,
1177 u8 rx_chains, u32 sbands_flags, bool v4,
1178 const struct iwl_fw *fw)
1179{
1180 struct device *dev = trans->dev;
1181 int n_channels;
1182 int n_used = 0;
1183 struct ieee80211_supported_band *sband;
1184
1185 n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1186 sbands_flags, v4);
1187 sband = &data->bands[NL80211_BAND_2GHZ];
1188 sband->band = NL80211_BAND_2GHZ;
1189 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1190 sband->n_bitrates = N_RATES_24;
1191 n_used += iwl_init_sband_channels(data, sband, n_channels,
1192 NL80211_BAND_2GHZ);
1193 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1194 tx_chains, rx_chains);
1195
1196 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1197 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1198 fw);
1199
1200 sband = &data->bands[NL80211_BAND_5GHZ];
1201 sband->band = NL80211_BAND_5GHZ;
1202 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1203 sband->n_bitrates = N_RATES_52;
1204 n_used += iwl_init_sband_channels(data, sband, n_channels,
1205 NL80211_BAND_5GHZ);
1206 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1207 tx_chains, rx_chains);
1208 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1209 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1210 tx_chains, rx_chains);
1211
1212 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1213 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1214 fw);
1215
1216 /* 6GHz band. */
1217 sband = &data->bands[NL80211_BAND_6GHZ];
1218 sband->band = NL80211_BAND_6GHZ;
1219 /* use the same rates as 5GHz band */
1220 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1221 sband->n_bitrates = N_RATES_52;
1222 n_used += iwl_init_sband_channels(data, sband, n_channels,
1223 NL80211_BAND_6GHZ);
1224
1225 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1226 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1227 fw);
1228 else
1229 sband->n_channels = 0;
1230 if (n_channels != n_used)
1231 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1232 n_used, n_channels);
1233}
1234
1235static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1236 const __le16 *phy_sku)
1237{
1238 if (cfg->nvm_type != IWL_NVM_EXT)
1239 return le16_to_cpup(nvm_sw + SKU);
1240
1241 return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1242}
1243
1244static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1245{
1246 if (cfg->nvm_type != IWL_NVM_EXT)
1247 return le16_to_cpup(nvm_sw + NVM_VERSION);
1248 else
1249 return le32_to_cpup((const __le32 *)(nvm_sw +
1250 NVM_VERSION_EXT_NVM));
1251}
1252
1253static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1254 const __le16 *phy_sku)
1255{
1256 if (cfg->nvm_type != IWL_NVM_EXT)
1257 return le16_to_cpup(nvm_sw + RADIO_CFG);
1258
1259 return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1260
1261}
1262
1263static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1264{
1265 int n_hw_addr;
1266
1267 if (cfg->nvm_type != IWL_NVM_EXT)
1268 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1269
1270 n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1271
1272 return n_hw_addr & N_HW_ADDR_MASK;
1273}
1274
1275static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1276 struct iwl_nvm_data *data,
1277 u32 radio_cfg)
1278{
1279 if (cfg->nvm_type != IWL_NVM_EXT) {
1280 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1281 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1282 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1283 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1284 return;
1285 }
1286
1287 /* set the radio configuration for family 8000 */
1288 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1289 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1290 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1291 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1292 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1293 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1294}
1295
1296static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1297{
1298 const u8 *hw_addr;
1299
1300 hw_addr = (const u8 *)&mac_addr0;
1301 dest[0] = hw_addr[3];
1302 dest[1] = hw_addr[2];
1303 dest[2] = hw_addr[1];
1304 dest[3] = hw_addr[0];
1305
1306 hw_addr = (const u8 *)&mac_addr1;
1307 dest[4] = hw_addr[1];
1308 dest[5] = hw_addr[0];
1309}
1310
1311static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1312 struct iwl_nvm_data *data)
1313{
1314 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1315 CSR_MAC_ADDR0_STRAP(trans)));
1316 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1317 CSR_MAC_ADDR1_STRAP(trans)));
1318
1319 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1320 /*
1321 * If the OEM fused a valid address, use it instead of the one in the
1322 * OTP
1323 */
1324 if (is_valid_ether_addr(data->hw_addr))
1325 return;
1326
1327 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1328 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1329
1330 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1331}
1332
1333static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1334 const struct iwl_cfg *cfg,
1335 struct iwl_nvm_data *data,
1336 const __le16 *mac_override,
1337 const __be16 *nvm_hw)
1338{
1339 const u8 *hw_addr;
1340
1341 if (mac_override) {
1342 static const u8 reserved_mac[] = {
1343 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1344 };
1345
1346 hw_addr = (const u8 *)(mac_override +
1347 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1348
1349 /*
1350 * Store the MAC address from MAO section.
1351 * No byte swapping is required in MAO section
1352 */
1353 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1354
1355 /*
1356 * Force the use of the OTP MAC address in case of reserved MAC
1357 * address in the NVM, or if address is given but invalid.
1358 */
1359 if (is_valid_ether_addr(data->hw_addr) &&
1360 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1361 return;
1362
1363 IWL_ERR(trans,
1364 "mac address from nvm override section is not valid\n");
1365 }
1366
1367 if (nvm_hw) {
1368 /* read the mac address from WFMP registers */
1369 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1370 WFMP_MAC_ADDR_0));
1371 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1372 WFMP_MAC_ADDR_1));
1373
1374 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1375
1376 return;
1377 }
1378
1379 IWL_ERR(trans, "mac address is not found\n");
1380}
1381
1382static int iwl_set_hw_address(struct iwl_trans *trans,
1383 const struct iwl_cfg *cfg,
1384 struct iwl_nvm_data *data, const __be16 *nvm_hw,
1385 const __le16 *mac_override)
1386{
1387 if (cfg->mac_addr_from_csr) {
1388 iwl_set_hw_address_from_csr(trans, data);
1389 } else if (cfg->nvm_type != IWL_NVM_EXT) {
1390 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1391
1392 /* The byte order is little endian 16 bit, meaning 214365 */
1393 data->hw_addr[0] = hw_addr[1];
1394 data->hw_addr[1] = hw_addr[0];
1395 data->hw_addr[2] = hw_addr[3];
1396 data->hw_addr[3] = hw_addr[2];
1397 data->hw_addr[4] = hw_addr[5];
1398 data->hw_addr[5] = hw_addr[4];
1399 } else {
1400 iwl_set_hw_address_family_8000(trans, cfg, data,
1401 mac_override, nvm_hw);
1402 }
1403
1404 if (!is_valid_ether_addr(data->hw_addr)) {
1405 IWL_ERR(trans, "no valid mac address was found\n");
1406 return -EINVAL;
1407 }
1408
1409 if (!trans->csme_own)
1410 IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1411 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1412
1413 return 0;
1414}
1415
1416static bool
1417iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1418 const __be16 *nvm_hw)
1419{
1420 /*
1421 * Workaround a bug in Indonesia SKUs where the regulatory in
1422 * some 7000-family OTPs erroneously allow wide channels in
1423 * 5GHz. To check for Indonesia, we take the SKU value from
1424 * bits 1-4 in the subsystem ID and check if it is either 5 or
1425 * 9. In those cases, we need to force-disable wide channels
1426 * in 5GHz otherwise the FW will throw a sysassert when we try
1427 * to use them.
1428 */
1429 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1430 /*
1431 * Unlike the other sections in the NVM, the hw
1432 * section uses big-endian.
1433 */
1434 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1435 u8 sku = (subsystem_id & 0x1e) >> 1;
1436
1437 if (sku == 5 || sku == 9) {
1438 IWL_DEBUG_EEPROM(trans->dev,
1439 "disabling wide channels in 5GHz (0x%0x %d)\n",
1440 subsystem_id, sku);
1441 return true;
1442 }
1443 }
1444
1445 return false;
1446}
1447
1448struct iwl_nvm_data *
1449iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1450 const struct iwl_mei_nvm *mei_nvm,
1451 const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1452{
1453 struct iwl_nvm_data *data;
1454 u32 sbands_flags = 0;
1455 u8 rx_chains = fw->valid_rx_ant;
1456 u8 tx_chains = fw->valid_rx_ant;
1457
1458 if (cfg->uhb_supported)
1459 data = kzalloc(struct_size(data, channels,
1460 IWL_NVM_NUM_CHANNELS_UHB),
1461 GFP_KERNEL);
1462 else
1463 data = kzalloc(struct_size(data, channels,
1464 IWL_NVM_NUM_CHANNELS_EXT),
1465 GFP_KERNEL);
1466 if (!data)
1467 return NULL;
1468
1469 BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1470 IWL_NVM_NUM_CHANNELS_UHB);
1471 data->nvm_version = mei_nvm->nvm_version;
1472
1473 iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1474 if (data->valid_tx_ant)
1475 tx_chains &= data->valid_tx_ant;
1476 if (data->valid_rx_ant)
1477 rx_chains &= data->valid_rx_ant;
1478 if (tx_ant)
1479 tx_chains &= tx_ant;
1480 if (rx_ant)
1481 rx_chains &= rx_ant;
1482
1483 data->sku_cap_mimo_disabled = false;
1484 data->sku_cap_band_24ghz_enable = true;
1485 data->sku_cap_band_52ghz_enable = true;
1486 data->sku_cap_11n_enable =
1487 !(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1488 data->sku_cap_11ac_enable = true;
1489 data->sku_cap_11ax_enable =
1490 mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1491
1492 data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1493
1494 data->n_hw_addrs = mei_nvm->n_hw_addrs;
1495 /* If no valid mac address was found - bail out */
1496 if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1497 kfree(data);
1498 return NULL;
1499 }
1500
1501 if (data->lar_enabled &&
1502 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1503 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1504
1505 iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1506 sbands_flags, true, fw);
1507
1508 return data;
1509}
1510IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1511
1512struct iwl_nvm_data *
1513iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1514 const struct iwl_fw *fw,
1515 const __be16 *nvm_hw, const __le16 *nvm_sw,
1516 const __le16 *nvm_calib, const __le16 *regulatory,
1517 const __le16 *mac_override, const __le16 *phy_sku,
1518 u8 tx_chains, u8 rx_chains)
1519{
1520 struct iwl_nvm_data *data;
1521 bool lar_enabled;
1522 u32 sku, radio_cfg;
1523 u32 sbands_flags = 0;
1524 u16 lar_config;
1525 const __le16 *ch_section;
1526
1527 if (cfg->uhb_supported)
1528 data = kzalloc(struct_size(data, channels,
1529 IWL_NVM_NUM_CHANNELS_UHB),
1530 GFP_KERNEL);
1531 else if (cfg->nvm_type != IWL_NVM_EXT)
1532 data = kzalloc(struct_size(data, channels,
1533 IWL_NVM_NUM_CHANNELS),
1534 GFP_KERNEL);
1535 else
1536 data = kzalloc(struct_size(data, channels,
1537 IWL_NVM_NUM_CHANNELS_EXT),
1538 GFP_KERNEL);
1539 if (!data)
1540 return NULL;
1541
1542 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1543
1544 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1545 iwl_set_radio_cfg(cfg, data, radio_cfg);
1546 if (data->valid_tx_ant)
1547 tx_chains &= data->valid_tx_ant;
1548 if (data->valid_rx_ant)
1549 rx_chains &= data->valid_rx_ant;
1550
1551 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1552 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1553 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1554 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1555 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1556 data->sku_cap_11n_enable = false;
1557 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1558 (sku & NVM_SKU_CAP_11AC_ENABLE);
1559 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1560
1561 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1562
1563 if (cfg->nvm_type != IWL_NVM_EXT) {
1564 /* Checking for required sections */
1565 if (!nvm_calib) {
1566 IWL_ERR(trans,
1567 "Can't parse empty Calib NVM sections\n");
1568 kfree(data);
1569 return NULL;
1570 }
1571
1572 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1573 ®ulatory[NVM_CHANNELS_SDP] :
1574 &nvm_sw[NVM_CHANNELS];
1575
1576 lar_enabled = true;
1577 } else {
1578 u16 lar_offset = data->nvm_version < 0xE39 ?
1579 NVM_LAR_OFFSET_OLD :
1580 NVM_LAR_OFFSET;
1581
1582 lar_config = le16_to_cpup(regulatory + lar_offset);
1583 data->lar_enabled = !!(lar_config &
1584 NVM_LAR_ENABLED);
1585 lar_enabled = data->lar_enabled;
1586 ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
1587 }
1588
1589 /* If no valid mac address was found - bail out */
1590 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1591 kfree(data);
1592 return NULL;
1593 }
1594
1595 if (lar_enabled &&
1596 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1597 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1598
1599 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1600 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1601
1602 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1603 sbands_flags, false, fw);
1604 data->calib_version = 255;
1605
1606 return data;
1607}
1608IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1609
1610static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1611 int ch_idx, u16 nvm_flags,
1612 struct iwl_reg_capa reg_capa,
1613 const struct iwl_cfg *cfg)
1614{
1615 u32 flags = NL80211_RRF_NO_HT40;
1616
1617 if (ch_idx < NUM_2GHZ_CHANNELS &&
1618 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1619 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1620 flags &= ~NL80211_RRF_NO_HT40PLUS;
1621 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1622 flags &= ~NL80211_RRF_NO_HT40MINUS;
1623 } else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1624 nvm_flags & NVM_CHANNEL_40MHZ) {
1625 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1626 flags &= ~NL80211_RRF_NO_HT40PLUS;
1627 else
1628 flags &= ~NL80211_RRF_NO_HT40MINUS;
1629 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1630 flags &= ~NL80211_RRF_NO_HT40PLUS;
1631 flags &= ~NL80211_RRF_NO_HT40MINUS;
1632 }
1633
1634 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1635 flags |= NL80211_RRF_NO_80MHZ;
1636 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1637 flags |= NL80211_RRF_NO_160MHZ;
1638
1639 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1640 flags |= NL80211_RRF_NO_IR;
1641
1642 if (nvm_flags & NVM_CHANNEL_RADAR)
1643 flags |= NL80211_RRF_DFS;
1644
1645 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1646 flags |= NL80211_RRF_NO_OUTDOOR;
1647
1648 /* Set the GO concurrent flag only in case that NO_IR is set.
1649 * Otherwise it is meaningless
1650 */
1651 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1652 if (flags & NL80211_RRF_NO_IR)
1653 flags |= NL80211_RRF_GO_CONCURRENT;
1654 if (flags & NL80211_RRF_DFS) {
1655 flags |= NL80211_RRF_DFS_CONCURRENT;
1656 /* Our device doesn't set active bit for DFS channels
1657 * however, once marked as DFS no-ir is not needed.
1658 */
1659 flags &= ~NL80211_RRF_NO_IR;
1660 }
1661 }
1662
1663 /* Set the AP type for the UHB case. */
1664 if (nvm_flags & NVM_CHANNEL_VLP)
1665 flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1666 else
1667 flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1668
1669 if (!(nvm_flags & NVM_CHANNEL_AFC))
1670 flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1671
1672 /*
1673 * reg_capa is per regulatory domain so apply it for every channel
1674 */
1675 if (ch_idx >= NUM_2GHZ_CHANNELS) {
1676 if (!reg_capa.allow_40mhz)
1677 flags |= NL80211_RRF_NO_HT40;
1678
1679 if (!reg_capa.allow_80mhz)
1680 flags |= NL80211_RRF_NO_80MHZ;
1681
1682 if (!reg_capa.allow_160mhz)
1683 flags |= NL80211_RRF_NO_160MHZ;
1684
1685 if (!reg_capa.allow_320mhz)
1686 flags |= NL80211_RRF_NO_320MHZ;
1687 }
1688
1689 if (reg_capa.disable_11ax)
1690 flags |= NL80211_RRF_NO_HE;
1691
1692 if (reg_capa.disable_11be)
1693 flags |= NL80211_RRF_NO_EHT;
1694
1695 return flags;
1696}
1697
1698static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1699{
1700 struct iwl_reg_capa reg_capa = {};
1701
1702 if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1703 reg_capa.allow_40mhz = true;
1704 reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1705 reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1706 reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1707 reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1708 reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1709 } else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1710 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1711 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1712 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1713 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1714 } else {
1715 reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1716 reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1717 reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1718 reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1719 }
1720 return reg_capa;
1721}
1722
1723struct ieee80211_regdomain *
1724iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1725 int num_of_ch, __le32 *channels, u16 fw_mcc,
1726 u16 geo_info, u32 cap, u8 resp_ver)
1727{
1728 int ch_idx;
1729 u16 ch_flags;
1730 u32 reg_rule_flags, prev_reg_rule_flags = 0;
1731 const u16 *nvm_chan;
1732 struct ieee80211_regdomain *regd, *copy_rd;
1733 struct ieee80211_reg_rule *rule;
1734 int center_freq, prev_center_freq = 0;
1735 int valid_rules = 0;
1736 bool new_rule;
1737 int max_num_ch;
1738 struct iwl_reg_capa reg_capa;
1739
1740 if (cfg->uhb_supported) {
1741 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1742 nvm_chan = iwl_uhb_nvm_channels;
1743 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1744 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1745 nvm_chan = iwl_ext_nvm_channels;
1746 } else {
1747 max_num_ch = IWL_NVM_NUM_CHANNELS;
1748 nvm_chan = iwl_nvm_channels;
1749 }
1750
1751 if (num_of_ch > max_num_ch) {
1752 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1753 "Num of channels (%d) is greater than expected. Truncating to %d\n",
1754 num_of_ch, max_num_ch);
1755 num_of_ch = max_num_ch;
1756 }
1757
1758 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1759 return ERR_PTR(-EINVAL);
1760
1761 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1762 num_of_ch);
1763
1764 /* build a regdomain rule for every valid channel */
1765 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1766 if (!regd)
1767 return ERR_PTR(-ENOMEM);
1768
1769 /* set alpha2 from FW. */
1770 regd->alpha2[0] = fw_mcc >> 8;
1771 regd->alpha2[1] = fw_mcc & 0xff;
1772
1773 /* parse regulatory capability flags */
1774 reg_capa = iwl_get_reg_capa(cap, resp_ver);
1775
1776 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1777 enum nl80211_band band =
1778 iwl_nl80211_band_from_channel_idx(ch_idx);
1779
1780 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1781 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1782 band);
1783 new_rule = false;
1784
1785 if (!(ch_flags & NVM_CHANNEL_VALID)) {
1786 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1787 nvm_chan[ch_idx], ch_flags);
1788 continue;
1789 }
1790
1791 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1792 ch_flags, reg_capa,
1793 cfg);
1794
1795 /* we can't continue the same rule */
1796 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1797 center_freq - prev_center_freq > 20) {
1798 valid_rules++;
1799 new_rule = true;
1800 }
1801
1802 rule = ®d->reg_rules[valid_rules - 1];
1803
1804 if (new_rule)
1805 rule->freq_range.start_freq_khz =
1806 MHZ_TO_KHZ(center_freq - 10);
1807
1808 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1809
1810 /* this doesn't matter - not used by FW */
1811 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1812 rule->power_rule.max_eirp =
1813 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1814
1815 rule->flags = reg_rule_flags;
1816
1817 /* rely on auto-calculation to merge BW of contiguous chans */
1818 rule->flags |= NL80211_RRF_AUTO_BW;
1819 rule->freq_range.max_bandwidth_khz = 0;
1820
1821 prev_center_freq = center_freq;
1822 prev_reg_rule_flags = reg_rule_flags;
1823
1824 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1825 nvm_chan[ch_idx], ch_flags);
1826
1827 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1828 band == NL80211_BAND_2GHZ)
1829 continue;
1830
1831 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1832 }
1833
1834 /*
1835 * Certain firmware versions might report no valid channels
1836 * if booted in RF-kill, i.e. not all calibrations etc. are
1837 * running. We'll get out of this situation later when the
1838 * rfkill is removed and we update the regdomain again, but
1839 * since cfg80211 doesn't accept an empty regdomain, add a
1840 * dummy (unusable) rule here in this case so we can init.
1841 */
1842 if (!valid_rules) {
1843 valid_rules = 1;
1844 rule = ®d->reg_rules[valid_rules - 1];
1845 rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1846 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1847 rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1848 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1849 rule->power_rule.max_eirp =
1850 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1851 }
1852
1853 regd->n_reg_rules = valid_rules;
1854
1855 /*
1856 * Narrow down regdom for unused regulatory rules to prevent hole
1857 * between reg rules to wmm rules.
1858 */
1859 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1860 GFP_KERNEL);
1861 if (!copy_rd)
1862 copy_rd = ERR_PTR(-ENOMEM);
1863
1864 kfree(regd);
1865 return copy_rd;
1866}
1867IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1868
1869#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1870#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1871#define MAX_NVM_FILE_LEN 16384
1872
1873void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1874 unsigned int len)
1875{
1876#define IWL_4165_DEVICE_ID 0x5501
1877#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1878
1879 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1880 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1881 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1882 /* OTP 0x52 bug work around: it's a 1x1 device */
1883 data[3] = ANT_B | (ANT_B << 4);
1884}
1885IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1886
1887/*
1888 * Reads external NVM from a file into mvm->nvm_sections
1889 *
1890 * HOW TO CREATE THE NVM FILE FORMAT:
1891 * ------------------------------
1892 * 1. create hex file, format:
1893 * 3800 -> header
1894 * 0000 -> header
1895 * 5a40 -> data
1896 *
1897 * rev - 6 bit (word1)
1898 * len - 10 bit (word1)
1899 * id - 4 bit (word2)
1900 * rsv - 12 bit (word2)
1901 *
1902 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1903 *
1904 * 3. create binary file from the hex file
1905 *
1906 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1907 */
1908int iwl_read_external_nvm(struct iwl_trans *trans,
1909 const char *nvm_file_name,
1910 struct iwl_nvm_section *nvm_sections)
1911{
1912 int ret, section_size;
1913 u16 section_id;
1914 const struct firmware *fw_entry;
1915 const struct {
1916 __le16 word1;
1917 __le16 word2;
1918 u8 data[];
1919 } *file_sec;
1920 const u8 *eof;
1921 u8 *temp;
1922 int max_section_size;
1923 const __le32 *dword_buff;
1924
1925#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1926#define NVM_WORD2_ID(x) (x >> 12)
1927#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1928#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1929#define NVM_HEADER_0 (0x2A504C54)
1930#define NVM_HEADER_1 (0x4E564D2A)
1931#define NVM_HEADER_SIZE (4 * sizeof(u32))
1932
1933 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1934
1935 /* Maximal size depends on NVM version */
1936 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1937 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1938 else
1939 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1940
1941 /*
1942 * Obtain NVM image via request_firmware. Since we already used
1943 * request_firmware_nowait() for the firmware binary load and only
1944 * get here after that we assume the NVM request can be satisfied
1945 * synchronously.
1946 */
1947 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1948 if (ret) {
1949 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1950 nvm_file_name, ret);
1951 return ret;
1952 }
1953
1954 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1955 nvm_file_name, fw_entry->size);
1956
1957 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1958 IWL_ERR(trans, "NVM file too large\n");
1959 ret = -EINVAL;
1960 goto out;
1961 }
1962
1963 eof = fw_entry->data + fw_entry->size;
1964 dword_buff = (const __le32 *)fw_entry->data;
1965
1966 /* some NVM file will contain a header.
1967 * The header is identified by 2 dwords header as follow:
1968 * dword[0] = 0x2A504C54
1969 * dword[1] = 0x4E564D2A
1970 *
1971 * This header must be skipped when providing the NVM data to the FW.
1972 */
1973 if (fw_entry->size > NVM_HEADER_SIZE &&
1974 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1975 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1976 file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1977 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1978 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1979 le32_to_cpu(dword_buff[3]));
1980
1981 /* nvm file validation, dword_buff[2] holds the file version */
1982 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1983 trans->hw_rev_step == SILICON_C_STEP &&
1984 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1985 ret = -EFAULT;
1986 goto out;
1987 }
1988 } else {
1989 file_sec = (const void *)fw_entry->data;
1990 }
1991
1992 while (true) {
1993 if (file_sec->data > eof) {
1994 IWL_ERR(trans,
1995 "ERROR - NVM file too short for section header\n");
1996 ret = -EINVAL;
1997 break;
1998 }
1999
2000 /* check for EOF marker */
2001 if (!file_sec->word1 && !file_sec->word2) {
2002 ret = 0;
2003 break;
2004 }
2005
2006 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2007 section_size =
2008 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2009 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2010 } else {
2011 section_size = 2 * EXT_NVM_WORD2_LEN(
2012 le16_to_cpu(file_sec->word2));
2013 section_id = EXT_NVM_WORD1_ID(
2014 le16_to_cpu(file_sec->word1));
2015 }
2016
2017 if (section_size > max_section_size) {
2018 IWL_ERR(trans, "ERROR - section too large (%d)\n",
2019 section_size);
2020 ret = -EINVAL;
2021 break;
2022 }
2023
2024 if (!section_size) {
2025 IWL_ERR(trans, "ERROR - section empty\n");
2026 ret = -EINVAL;
2027 break;
2028 }
2029
2030 if (file_sec->data + section_size > eof) {
2031 IWL_ERR(trans,
2032 "ERROR - NVM file too short for section (%d bytes)\n",
2033 section_size);
2034 ret = -EINVAL;
2035 break;
2036 }
2037
2038 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2039 "Invalid NVM section ID %d\n", section_id)) {
2040 ret = -EINVAL;
2041 break;
2042 }
2043
2044 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2045 if (!temp) {
2046 ret = -ENOMEM;
2047 break;
2048 }
2049
2050 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2051
2052 kfree(nvm_sections[section_id].data);
2053 nvm_sections[section_id].data = temp;
2054 nvm_sections[section_id].length = section_size;
2055
2056 /* advance to the next section */
2057 file_sec = (const void *)(file_sec->data + section_size);
2058 }
2059out:
2060 release_firmware(fw_entry);
2061 return ret;
2062}
2063IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2064
2065struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2066 const struct iwl_fw *fw,
2067 u8 set_tx_ant, u8 set_rx_ant)
2068{
2069 struct iwl_nvm_get_info cmd = {};
2070 struct iwl_nvm_data *nvm;
2071 struct iwl_host_cmd hcmd = {
2072 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2073 .data = { &cmd, },
2074 .len = { sizeof(cmd) },
2075 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2076 };
2077 int ret;
2078 bool empty_otp;
2079 u32 mac_flags;
2080 u32 sbands_flags = 0;
2081 u8 tx_ant;
2082 u8 rx_ant;
2083
2084 /*
2085 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2086 * in v3, except for the channel profile part of the
2087 * regulatory. So we can just access the new struct, with the
2088 * exception of the latter.
2089 */
2090 struct iwl_nvm_get_info_rsp *rsp;
2091 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2092 bool v4 = fw_has_api(&fw->ucode_capa,
2093 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2094 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2095 void *channel_profile;
2096
2097 ret = iwl_trans_send_cmd(trans, &hcmd);
2098 if (ret)
2099 return ERR_PTR(ret);
2100
2101 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2102 "Invalid payload len in NVM response from FW %d",
2103 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2104 ret = -EINVAL;
2105 goto out;
2106 }
2107
2108 rsp = (void *)hcmd.resp_pkt->data;
2109 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2110 NVM_GENERAL_FLAGS_EMPTY_OTP);
2111 if (empty_otp)
2112 IWL_INFO(trans, "OTP is empty\n");
2113
2114 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2115 if (!nvm) {
2116 ret = -ENOMEM;
2117 goto out;
2118 }
2119
2120 iwl_set_hw_address_from_csr(trans, nvm);
2121 /* TODO: if platform NVM has MAC address - override it here */
2122
2123 if (!is_valid_ether_addr(nvm->hw_addr)) {
2124 IWL_ERR(trans, "no valid mac address was found\n");
2125 ret = -EINVAL;
2126 goto err_free;
2127 }
2128
2129 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2130
2131 /* Initialize general data */
2132 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2133 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2134 if (nvm->n_hw_addrs == 0)
2135 IWL_WARN(trans,
2136 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2137 empty_otp);
2138
2139 /* Initialize MAC sku data */
2140 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2141 nvm->sku_cap_11ac_enable =
2142 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2143 nvm->sku_cap_11n_enable =
2144 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2145 nvm->sku_cap_11ax_enable =
2146 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2147 nvm->sku_cap_band_24ghz_enable =
2148 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2149 nvm->sku_cap_band_52ghz_enable =
2150 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2151 nvm->sku_cap_mimo_disabled =
2152 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2153 if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2154 nvm->sku_cap_11be_enable = true;
2155
2156 /* Initialize PHY sku data */
2157 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2158 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2159
2160 if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2161 fw_has_capa(&fw->ucode_capa,
2162 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2163 nvm->lar_enabled = true;
2164 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2165 }
2166
2167 rsp_v3 = (void *)rsp;
2168 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2169 (void *)rsp_v3->regulatory.channel_profile;
2170
2171 tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2172 rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2173
2174 if (set_tx_ant)
2175 tx_ant &= set_tx_ant;
2176 if (set_rx_ant)
2177 rx_ant &= set_rx_ant;
2178
2179 iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2180 sbands_flags, v4, fw);
2181
2182 iwl_free_resp(&hcmd);
2183 return nvm;
2184
2185err_free:
2186 kfree(nvm);
2187out:
2188 iwl_free_resp(&hcmd);
2189 return ERR_PTR(ret);
2190}
2191IWL_EXPORT_SYMBOL(iwl_get_nvm);