Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/of_device.h>
10#include <linux/delay.h>
11#include <linux/mmc/mmc.h>
12#include <linux/pm_runtime.h>
13#include <linux/pm_opp.h>
14#include <linux/slab.h>
15#include <linux/iopoll.h>
16#include <linux/qcom_scm.h>
17#include <linux/regulator/consumer.h>
18#include <linux/interconnect.h>
19#include <linux/pinctrl/consumer.h>
20#include <linux/reset.h>
21
22#include "sdhci-cqhci.h"
23#include "sdhci-pltfm.h"
24#include "cqhci.h"
25
26#define CORE_MCI_VERSION 0x50
27#define CORE_VERSION_MAJOR_SHIFT 28
28#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
29#define CORE_VERSION_MINOR_MASK 0xff
30
31#define CORE_MCI_GENERICS 0x70
32#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
33
34#define HC_MODE_EN 0x1
35#define CORE_POWER 0x0
36#define CORE_SW_RST BIT(7)
37#define FF_CLK_SW_RST_DIS BIT(13)
38
39#define CORE_PWRCTL_BUS_OFF BIT(0)
40#define CORE_PWRCTL_BUS_ON BIT(1)
41#define CORE_PWRCTL_IO_LOW BIT(2)
42#define CORE_PWRCTL_IO_HIGH BIT(3)
43#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
44#define CORE_PWRCTL_BUS_FAIL BIT(1)
45#define CORE_PWRCTL_IO_SUCCESS BIT(2)
46#define CORE_PWRCTL_IO_FAIL BIT(3)
47#define REQ_BUS_OFF BIT(0)
48#define REQ_BUS_ON BIT(1)
49#define REQ_IO_LOW BIT(2)
50#define REQ_IO_HIGH BIT(3)
51#define INT_MASK 0xf
52#define MAX_PHASES 16
53#define CORE_DLL_LOCK BIT(7)
54#define CORE_DDR_DLL_LOCK BIT(11)
55#define CORE_DLL_EN BIT(16)
56#define CORE_CDR_EN BIT(17)
57#define CORE_CK_OUT_EN BIT(18)
58#define CORE_CDR_EXT_EN BIT(19)
59#define CORE_DLL_PDN BIT(29)
60#define CORE_DLL_RST BIT(30)
61#define CORE_CMD_DAT_TRACK_SEL BIT(0)
62
63#define CORE_DDR_CAL_EN BIT(0)
64#define CORE_FLL_CYCLE_CNT BIT(18)
65#define CORE_DLL_CLOCK_DISABLE BIT(21)
66
67#define DLL_USR_CTL_POR_VAL 0x10800
68#define ENABLE_DLL_LOCK_STATUS BIT(26)
69#define FINE_TUNE_MODE_EN BIT(27)
70#define BIAS_OK_SIGNAL BIT(29)
71
72#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
73#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
74
75#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
76#define CORE_CLK_PWRSAVE BIT(1)
77#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
78#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
79#define CORE_HC_MCLK_SEL_MASK (3 << 8)
80#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
81#define CORE_IO_PAD_PWR_SWITCH BIT(16)
82#define CORE_HC_SELECT_IN_EN BIT(18)
83#define CORE_HC_SELECT_IN_HS400 (6 << 19)
84#define CORE_HC_SELECT_IN_MASK (7 << 19)
85
86#define CORE_3_0V_SUPPORT BIT(25)
87#define CORE_1_8V_SUPPORT BIT(26)
88#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
89
90#define CORE_CSR_CDC_CTLR_CFG0 0x130
91#define CORE_SW_TRIG_FULL_CALIB BIT(16)
92#define CORE_HW_AUTOCAL_ENA BIT(17)
93
94#define CORE_CSR_CDC_CTLR_CFG1 0x134
95#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
96#define CORE_TIMER_ENA BIT(16)
97
98#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
99#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
100#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
101#define CORE_CDC_OFFSET_CFG 0x14C
102#define CORE_CSR_CDC_DELAY_CFG 0x150
103#define CORE_CDC_SLAVE_DDA_CFG 0x160
104#define CORE_CSR_CDC_STATUS0 0x164
105#define CORE_CALIBRATION_DONE BIT(0)
106
107#define CORE_CDC_ERROR_CODE_MASK 0x7000000
108
109#define CORE_CSR_CDC_GEN_CFG 0x178
110#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
111#define CORE_CDC_SWITCH_RC_EN BIT(1)
112
113#define CORE_CDC_T4_DLY_SEL BIT(0)
114#define CORE_CMDIN_RCLK_EN BIT(1)
115#define CORE_START_CDC_TRAFFIC BIT(6)
116
117#define CORE_PWRSAVE_DLL BIT(3)
118
119#define DDR_CONFIG_POR_VAL 0x80040873
120
121
122#define INVALID_TUNING_PHASE -1
123#define SDHCI_MSM_MIN_CLOCK 400000
124#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
125
126#define CDR_SELEXT_SHIFT 20
127#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
128#define CMUX_SHIFT_PHASE_SHIFT 24
129#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
130
131#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
132
133/* Timeout value to avoid infinite waiting for pwr_irq */
134#define MSM_PWR_IRQ_TIMEOUT_MS 5000
135
136/* Max load for eMMC Vdd-io supply */
137#define MMC_VQMMC_MAX_LOAD_UA 325000
138
139#define msm_host_readl(msm_host, host, offset) \
140 msm_host->var_ops->msm_readl_relaxed(host, offset)
141
142#define msm_host_writel(msm_host, val, host, offset) \
143 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
144
145/* CQHCI vendor specific registers */
146#define CQHCI_VENDOR_CFG1 0xA00
147#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
148
149struct sdhci_msm_offset {
150 u32 core_hc_mode;
151 u32 core_mci_data_cnt;
152 u32 core_mci_status;
153 u32 core_mci_fifo_cnt;
154 u32 core_mci_version;
155 u32 core_generics;
156 u32 core_testbus_config;
157 u32 core_testbus_sel2_bit;
158 u32 core_testbus_ena;
159 u32 core_testbus_sel2;
160 u32 core_pwrctl_status;
161 u32 core_pwrctl_mask;
162 u32 core_pwrctl_clear;
163 u32 core_pwrctl_ctl;
164 u32 core_sdcc_debug_reg;
165 u32 core_dll_config;
166 u32 core_dll_status;
167 u32 core_vendor_spec;
168 u32 core_vendor_spec_adma_err_addr0;
169 u32 core_vendor_spec_adma_err_addr1;
170 u32 core_vendor_spec_func2;
171 u32 core_vendor_spec_capabilities0;
172 u32 core_ddr_200_cfg;
173 u32 core_vendor_spec3;
174 u32 core_dll_config_2;
175 u32 core_dll_config_3;
176 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
177 u32 core_ddr_config;
178 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
179};
180
181static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
182 .core_mci_data_cnt = 0x35c,
183 .core_mci_status = 0x324,
184 .core_mci_fifo_cnt = 0x308,
185 .core_mci_version = 0x318,
186 .core_generics = 0x320,
187 .core_testbus_config = 0x32c,
188 .core_testbus_sel2_bit = 3,
189 .core_testbus_ena = (1 << 31),
190 .core_testbus_sel2 = (1 << 3),
191 .core_pwrctl_status = 0x240,
192 .core_pwrctl_mask = 0x244,
193 .core_pwrctl_clear = 0x248,
194 .core_pwrctl_ctl = 0x24c,
195 .core_sdcc_debug_reg = 0x358,
196 .core_dll_config = 0x200,
197 .core_dll_status = 0x208,
198 .core_vendor_spec = 0x20c,
199 .core_vendor_spec_adma_err_addr0 = 0x214,
200 .core_vendor_spec_adma_err_addr1 = 0x218,
201 .core_vendor_spec_func2 = 0x210,
202 .core_vendor_spec_capabilities0 = 0x21c,
203 .core_ddr_200_cfg = 0x224,
204 .core_vendor_spec3 = 0x250,
205 .core_dll_config_2 = 0x254,
206 .core_dll_config_3 = 0x258,
207 .core_ddr_config = 0x25c,
208 .core_dll_usr_ctl = 0x388,
209};
210
211static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
212 .core_hc_mode = 0x78,
213 .core_mci_data_cnt = 0x30,
214 .core_mci_status = 0x34,
215 .core_mci_fifo_cnt = 0x44,
216 .core_mci_version = 0x050,
217 .core_generics = 0x70,
218 .core_testbus_config = 0x0cc,
219 .core_testbus_sel2_bit = 4,
220 .core_testbus_ena = (1 << 3),
221 .core_testbus_sel2 = (1 << 4),
222 .core_pwrctl_status = 0xdc,
223 .core_pwrctl_mask = 0xe0,
224 .core_pwrctl_clear = 0xe4,
225 .core_pwrctl_ctl = 0xe8,
226 .core_sdcc_debug_reg = 0x124,
227 .core_dll_config = 0x100,
228 .core_dll_status = 0x108,
229 .core_vendor_spec = 0x10c,
230 .core_vendor_spec_adma_err_addr0 = 0x114,
231 .core_vendor_spec_adma_err_addr1 = 0x118,
232 .core_vendor_spec_func2 = 0x110,
233 .core_vendor_spec_capabilities0 = 0x11c,
234 .core_ddr_200_cfg = 0x184,
235 .core_vendor_spec3 = 0x1b0,
236 .core_dll_config_2 = 0x1b4,
237 .core_ddr_config_old = 0x1b8,
238 .core_ddr_config = 0x1bc,
239};
240
241struct sdhci_msm_variant_ops {
242 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
243 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
244 u32 offset);
245};
246
247/*
248 * From V5, register spaces have changed. Wrap this info in a structure
249 * and choose the data_structure based on version info mentioned in DT.
250 */
251struct sdhci_msm_variant_info {
252 bool mci_removed;
253 bool restore_dll_config;
254 const struct sdhci_msm_variant_ops *var_ops;
255 const struct sdhci_msm_offset *offset;
256};
257
258struct sdhci_msm_host {
259 struct platform_device *pdev;
260 void __iomem *core_mem; /* MSM SDCC mapped address */
261 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */
262 int pwr_irq; /* power irq */
263 struct clk *bus_clk; /* SDHC bus voter clock */
264 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
265 /* core, iface, cal, sleep, and ice clocks */
266 struct clk_bulk_data bulk_clks[5];
267 unsigned long clk_rate;
268 struct mmc_host *mmc;
269 bool use_14lpp_dll_reset;
270 bool tuning_done;
271 bool calibration_done;
272 u8 saved_tuning_phase;
273 bool use_cdclp533;
274 u32 curr_pwr_state;
275 u32 curr_io_level;
276 wait_queue_head_t pwr_irq_wait;
277 bool pwr_irq_flag;
278 u32 caps_0;
279 bool mci_removed;
280 bool restore_dll_config;
281 const struct sdhci_msm_variant_ops *var_ops;
282 const struct sdhci_msm_offset *offset;
283 bool use_cdr;
284 u32 transfer_mode;
285 bool updated_ddr_cfg;
286 bool uses_tassadar_dll;
287 u32 dll_config;
288 u32 ddr_config;
289 bool vqmmc_enabled;
290};
291
292static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
293{
294 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
295 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
296
297 return msm_host->offset;
298}
299
300/*
301 * APIs to read/write to vendor specific registers which were there in the
302 * core_mem region before MCI was removed.
303 */
304static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
305 u32 offset)
306{
307 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
308 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
309
310 return readl_relaxed(msm_host->core_mem + offset);
311}
312
313static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
314 u32 offset)
315{
316 return readl_relaxed(host->ioaddr + offset);
317}
318
319static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
320 struct sdhci_host *host, u32 offset)
321{
322 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
323 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
324
325 writel_relaxed(val, msm_host->core_mem + offset);
326}
327
328static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
329 struct sdhci_host *host, u32 offset)
330{
331 writel_relaxed(val, host->ioaddr + offset);
332}
333
334static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
335{
336 struct mmc_ios ios = host->mmc->ios;
337 /*
338 * The SDHC requires internal clock frequency to be double the
339 * actual clock that will be set for DDR mode. The controller
340 * uses the faster clock(100/400MHz) for some of its parts and
341 * send the actual required clock (50/200MHz) to the card.
342 */
343 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
344 ios.timing == MMC_TIMING_MMC_DDR52 ||
345 ios.timing == MMC_TIMING_MMC_HS400 ||
346 host->flags & SDHCI_HS400_TUNING)
347 return 2;
348 return 1;
349}
350
351static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
352 unsigned int clock)
353{
354 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
355 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
356 struct mmc_ios curr_ios = host->mmc->ios;
357 struct clk *core_clk = msm_host->bulk_clks[0].clk;
358 unsigned long achieved_rate;
359 unsigned int desired_rate;
360 unsigned int mult;
361 int rc;
362
363 mult = msm_get_clock_mult_for_bus_mode(host);
364 desired_rate = clock * mult;
365 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
366 if (rc) {
367 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
368 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
369 return;
370 }
371
372 /*
373 * Qualcomm clock drivers by default round clock _up_ if they can't
374 * make the requested rate. This is not good for SD. Yell if we
375 * encounter it.
376 */
377 achieved_rate = clk_get_rate(core_clk);
378 if (achieved_rate > desired_rate)
379 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
380 mmc_hostname(host->mmc), desired_rate, achieved_rate);
381 host->mmc->actual_clock = achieved_rate / mult;
382
383 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
384 msm_host->clk_rate = desired_rate;
385
386 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
387 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
388}
389
390/* Platform specific tuning */
391static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
392{
393 u32 wait_cnt = 50;
394 u8 ck_out_en;
395 struct mmc_host *mmc = host->mmc;
396 const struct sdhci_msm_offset *msm_offset =
397 sdhci_priv_msm_offset(host);
398
399 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
400 ck_out_en = !!(readl_relaxed(host->ioaddr +
401 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
402
403 while (ck_out_en != poll) {
404 if (--wait_cnt == 0) {
405 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
406 mmc_hostname(mmc), poll);
407 return -ETIMEDOUT;
408 }
409 udelay(1);
410
411 ck_out_en = !!(readl_relaxed(host->ioaddr +
412 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
413 }
414
415 return 0;
416}
417
418static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
419{
420 int rc;
421 static const u8 grey_coded_phase_table[] = {
422 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
423 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
424 };
425 unsigned long flags;
426 u32 config;
427 struct mmc_host *mmc = host->mmc;
428 const struct sdhci_msm_offset *msm_offset =
429 sdhci_priv_msm_offset(host);
430
431 if (phase > 0xf)
432 return -EINVAL;
433
434 spin_lock_irqsave(&host->lock, flags);
435
436 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
437 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
438 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
439 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
440
441 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
442 rc = msm_dll_poll_ck_out_en(host, 0);
443 if (rc)
444 goto err_out;
445
446 /*
447 * Write the selected DLL clock output phase (0 ... 15)
448 * to CDR_SELEXT bit field of DLL_CONFIG register.
449 */
450 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
451 config &= ~CDR_SELEXT_MASK;
452 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
453 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
454
455 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
456 config |= CORE_CK_OUT_EN;
457 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
458
459 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
460 rc = msm_dll_poll_ck_out_en(host, 1);
461 if (rc)
462 goto err_out;
463
464 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
465 config |= CORE_CDR_EN;
466 config &= ~CORE_CDR_EXT_EN;
467 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
468 goto out;
469
470err_out:
471 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
472 mmc_hostname(mmc), phase);
473out:
474 spin_unlock_irqrestore(&host->lock, flags);
475 return rc;
476}
477
478/*
479 * Find out the greatest range of consecuitive selected
480 * DLL clock output phases that can be used as sampling
481 * setting for SD3.0 UHS-I card read operation (in SDR104
482 * timing mode) or for eMMC4.5 card read operation (in
483 * HS400/HS200 timing mode).
484 * Select the 3/4 of the range and configure the DLL with the
485 * selected DLL clock output phase.
486 */
487
488static int msm_find_most_appropriate_phase(struct sdhci_host *host,
489 u8 *phase_table, u8 total_phases)
490{
491 int ret;
492 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
493 u8 phases_per_row[MAX_PHASES] = { 0 };
494 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
495 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
496 bool phase_0_found = false, phase_15_found = false;
497 struct mmc_host *mmc = host->mmc;
498
499 if (!total_phases || (total_phases > MAX_PHASES)) {
500 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
501 mmc_hostname(mmc), total_phases);
502 return -EINVAL;
503 }
504
505 for (cnt = 0; cnt < total_phases; cnt++) {
506 ranges[row_index][col_index] = phase_table[cnt];
507 phases_per_row[row_index] += 1;
508 col_index++;
509
510 if ((cnt + 1) == total_phases) {
511 continue;
512 /* check if next phase in phase_table is consecutive or not */
513 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
514 row_index++;
515 col_index = 0;
516 }
517 }
518
519 if (row_index >= MAX_PHASES)
520 return -EINVAL;
521
522 /* Check if phase-0 is present in first valid window? */
523 if (!ranges[0][0]) {
524 phase_0_found = true;
525 phase_0_raw_index = 0;
526 /* Check if cycle exist between 2 valid windows */
527 for (cnt = 1; cnt <= row_index; cnt++) {
528 if (phases_per_row[cnt]) {
529 for (i = 0; i < phases_per_row[cnt]; i++) {
530 if (ranges[cnt][i] == 15) {
531 phase_15_found = true;
532 phase_15_raw_index = cnt;
533 break;
534 }
535 }
536 }
537 }
538 }
539
540 /* If 2 valid windows form cycle then merge them as single window */
541 if (phase_0_found && phase_15_found) {
542 /* number of phases in raw where phase 0 is present */
543 u8 phases_0 = phases_per_row[phase_0_raw_index];
544 /* number of phases in raw where phase 15 is present */
545 u8 phases_15 = phases_per_row[phase_15_raw_index];
546
547 if (phases_0 + phases_15 >= MAX_PHASES)
548 /*
549 * If there are more than 1 phase windows then total
550 * number of phases in both the windows should not be
551 * more than or equal to MAX_PHASES.
552 */
553 return -EINVAL;
554
555 /* Merge 2 cyclic windows */
556 i = phases_15;
557 for (cnt = 0; cnt < phases_0; cnt++) {
558 ranges[phase_15_raw_index][i] =
559 ranges[phase_0_raw_index][cnt];
560 if (++i >= MAX_PHASES)
561 break;
562 }
563
564 phases_per_row[phase_0_raw_index] = 0;
565 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
566 }
567
568 for (cnt = 0; cnt <= row_index; cnt++) {
569 if (phases_per_row[cnt] > curr_max) {
570 curr_max = phases_per_row[cnt];
571 selected_row_index = cnt;
572 }
573 }
574
575 i = (curr_max * 3) / 4;
576 if (i)
577 i--;
578
579 ret = ranges[selected_row_index][i];
580
581 if (ret >= MAX_PHASES) {
582 ret = -EINVAL;
583 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
584 mmc_hostname(mmc), ret);
585 }
586
587 return ret;
588}
589
590static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
591{
592 u32 mclk_freq = 0, config;
593 const struct sdhci_msm_offset *msm_offset =
594 sdhci_priv_msm_offset(host);
595
596 /* Program the MCLK value to MCLK_FREQ bit field */
597 if (host->clock <= 112000000)
598 mclk_freq = 0;
599 else if (host->clock <= 125000000)
600 mclk_freq = 1;
601 else if (host->clock <= 137000000)
602 mclk_freq = 2;
603 else if (host->clock <= 150000000)
604 mclk_freq = 3;
605 else if (host->clock <= 162000000)
606 mclk_freq = 4;
607 else if (host->clock <= 175000000)
608 mclk_freq = 5;
609 else if (host->clock <= 187000000)
610 mclk_freq = 6;
611 else if (host->clock <= 200000000)
612 mclk_freq = 7;
613
614 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
615 config &= ~CMUX_SHIFT_PHASE_MASK;
616 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
617 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
618}
619
620/* Initialize the DLL (Programmable Delay Line) */
621static int msm_init_cm_dll(struct sdhci_host *host)
622{
623 struct mmc_host *mmc = host->mmc;
624 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
625 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
626 int wait_cnt = 50;
627 unsigned long flags, xo_clk = 0;
628 u32 config;
629 const struct sdhci_msm_offset *msm_offset =
630 msm_host->offset;
631
632 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
633 xo_clk = clk_get_rate(msm_host->xo_clk);
634
635 spin_lock_irqsave(&host->lock, flags);
636
637 /*
638 * Make sure that clock is always enabled when DLL
639 * tuning is in progress. Keeping PWRSAVE ON may
640 * turn off the clock.
641 */
642 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
643 config &= ~CORE_CLK_PWRSAVE;
644 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
645
646 if (msm_host->dll_config)
647 writel_relaxed(msm_host->dll_config,
648 host->ioaddr + msm_offset->core_dll_config);
649
650 if (msm_host->use_14lpp_dll_reset) {
651 config = readl_relaxed(host->ioaddr +
652 msm_offset->core_dll_config);
653 config &= ~CORE_CK_OUT_EN;
654 writel_relaxed(config, host->ioaddr +
655 msm_offset->core_dll_config);
656
657 config = readl_relaxed(host->ioaddr +
658 msm_offset->core_dll_config_2);
659 config |= CORE_DLL_CLOCK_DISABLE;
660 writel_relaxed(config, host->ioaddr +
661 msm_offset->core_dll_config_2);
662 }
663
664 config = readl_relaxed(host->ioaddr +
665 msm_offset->core_dll_config);
666 config |= CORE_DLL_RST;
667 writel_relaxed(config, host->ioaddr +
668 msm_offset->core_dll_config);
669
670 config = readl_relaxed(host->ioaddr +
671 msm_offset->core_dll_config);
672 config |= CORE_DLL_PDN;
673 writel_relaxed(config, host->ioaddr +
674 msm_offset->core_dll_config);
675
676 if (!msm_host->dll_config)
677 msm_cm_dll_set_freq(host);
678
679 if (msm_host->use_14lpp_dll_reset &&
680 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
681 u32 mclk_freq = 0;
682
683 config = readl_relaxed(host->ioaddr +
684 msm_offset->core_dll_config_2);
685 config &= CORE_FLL_CYCLE_CNT;
686 if (config)
687 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
688 xo_clk);
689 else
690 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
691 xo_clk);
692
693 config = readl_relaxed(host->ioaddr +
694 msm_offset->core_dll_config_2);
695 config &= ~(0xFF << 10);
696 config |= mclk_freq << 10;
697
698 writel_relaxed(config, host->ioaddr +
699 msm_offset->core_dll_config_2);
700 /* wait for 5us before enabling DLL clock */
701 udelay(5);
702 }
703
704 config = readl_relaxed(host->ioaddr +
705 msm_offset->core_dll_config);
706 config &= ~CORE_DLL_RST;
707 writel_relaxed(config, host->ioaddr +
708 msm_offset->core_dll_config);
709
710 config = readl_relaxed(host->ioaddr +
711 msm_offset->core_dll_config);
712 config &= ~CORE_DLL_PDN;
713 writel_relaxed(config, host->ioaddr +
714 msm_offset->core_dll_config);
715
716 if (msm_host->use_14lpp_dll_reset) {
717 if (!msm_host->dll_config)
718 msm_cm_dll_set_freq(host);
719 config = readl_relaxed(host->ioaddr +
720 msm_offset->core_dll_config_2);
721 config &= ~CORE_DLL_CLOCK_DISABLE;
722 writel_relaxed(config, host->ioaddr +
723 msm_offset->core_dll_config_2);
724 }
725
726 /*
727 * Configure DLL user control register to enable DLL status.
728 * This setting is applicable to SDCC v5.1 onwards only.
729 */
730 if (msm_host->uses_tassadar_dll) {
731 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
732 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
733 writel_relaxed(config, host->ioaddr +
734 msm_offset->core_dll_usr_ctl);
735
736 config = readl_relaxed(host->ioaddr +
737 msm_offset->core_dll_config_3);
738 config &= ~0xFF;
739 if (msm_host->clk_rate < 150000000)
740 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
741 else
742 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
743 writel_relaxed(config, host->ioaddr +
744 msm_offset->core_dll_config_3);
745 }
746
747 config = readl_relaxed(host->ioaddr +
748 msm_offset->core_dll_config);
749 config |= CORE_DLL_EN;
750 writel_relaxed(config, host->ioaddr +
751 msm_offset->core_dll_config);
752
753 config = readl_relaxed(host->ioaddr +
754 msm_offset->core_dll_config);
755 config |= CORE_CK_OUT_EN;
756 writel_relaxed(config, host->ioaddr +
757 msm_offset->core_dll_config);
758
759 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
760 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
761 CORE_DLL_LOCK)) {
762 /* max. wait for 50us sec for LOCK bit to be set */
763 if (--wait_cnt == 0) {
764 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
765 mmc_hostname(mmc));
766 spin_unlock_irqrestore(&host->lock, flags);
767 return -ETIMEDOUT;
768 }
769 udelay(1);
770 }
771
772 spin_unlock_irqrestore(&host->lock, flags);
773 return 0;
774}
775
776static void msm_hc_select_default(struct sdhci_host *host)
777{
778 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
779 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
780 u32 config;
781 const struct sdhci_msm_offset *msm_offset =
782 msm_host->offset;
783
784 if (!msm_host->use_cdclp533) {
785 config = readl_relaxed(host->ioaddr +
786 msm_offset->core_vendor_spec3);
787 config &= ~CORE_PWRSAVE_DLL;
788 writel_relaxed(config, host->ioaddr +
789 msm_offset->core_vendor_spec3);
790 }
791
792 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
793 config &= ~CORE_HC_MCLK_SEL_MASK;
794 config |= CORE_HC_MCLK_SEL_DFLT;
795 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
796
797 /*
798 * Disable HC_SELECT_IN to be able to use the UHS mode select
799 * configuration from Host Control2 register for all other
800 * modes.
801 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
802 * in VENDOR_SPEC_FUNC
803 */
804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
805 config &= ~CORE_HC_SELECT_IN_EN;
806 config &= ~CORE_HC_SELECT_IN_MASK;
807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
808
809 /*
810 * Make sure above writes impacting free running MCLK are completed
811 * before changing the clk_rate at GCC.
812 */
813 wmb();
814}
815
816static void msm_hc_select_hs400(struct sdhci_host *host)
817{
818 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
819 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
820 struct mmc_ios ios = host->mmc->ios;
821 u32 config, dll_lock;
822 int rc;
823 const struct sdhci_msm_offset *msm_offset =
824 msm_host->offset;
825
826 /* Select the divided clock (free running MCLK/2) */
827 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
828 config &= ~CORE_HC_MCLK_SEL_MASK;
829 config |= CORE_HC_MCLK_SEL_HS400;
830
831 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
832 /*
833 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
834 * register
835 */
836 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
837 !msm_host->calibration_done) {
838 config = readl_relaxed(host->ioaddr +
839 msm_offset->core_vendor_spec);
840 config |= CORE_HC_SELECT_IN_HS400;
841 config |= CORE_HC_SELECT_IN_EN;
842 writel_relaxed(config, host->ioaddr +
843 msm_offset->core_vendor_spec);
844 }
845 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
846 /*
847 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
848 * core_dll_status to be set. This should get set
849 * within 15 us at 200 MHz.
850 */
851 rc = readl_relaxed_poll_timeout(host->ioaddr +
852 msm_offset->core_dll_status,
853 dll_lock,
854 (dll_lock &
855 (CORE_DLL_LOCK |
856 CORE_DDR_DLL_LOCK)), 10,
857 1000);
858 if (rc == -ETIMEDOUT)
859 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
860 mmc_hostname(host->mmc), dll_lock);
861 }
862 /*
863 * Make sure above writes impacting free running MCLK are completed
864 * before changing the clk_rate at GCC.
865 */
866 wmb();
867}
868
869/*
870 * sdhci_msm_hc_select_mode :- In general all timing modes are
871 * controlled via UHS mode select in Host Control2 register.
872 * eMMC specific HS200/HS400 doesn't have their respective modes
873 * defined here, hence we use these values.
874 *
875 * HS200 - SDR104 (Since they both are equivalent in functionality)
876 * HS400 - This involves multiple configurations
877 * Initially SDR104 - when tuning is required as HS200
878 * Then when switching to DDR @ 400MHz (HS400) we use
879 * the vendor specific HC_SELECT_IN to control the mode.
880 *
881 * In addition to controlling the modes we also need to select the
882 * correct input clock for DLL depending on the mode.
883 *
884 * HS400 - divided clock (free running MCLK/2)
885 * All other modes - default (free running MCLK)
886 */
887static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
888{
889 struct mmc_ios ios = host->mmc->ios;
890
891 if (ios.timing == MMC_TIMING_MMC_HS400 ||
892 host->flags & SDHCI_HS400_TUNING)
893 msm_hc_select_hs400(host);
894 else
895 msm_hc_select_default(host);
896}
897
898static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
899{
900 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
901 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
902 u32 config, calib_done;
903 int ret;
904 const struct sdhci_msm_offset *msm_offset =
905 msm_host->offset;
906
907 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
908
909 /*
910 * Retuning in HS400 (DDR mode) will fail, just reset the
911 * tuning block and restore the saved tuning phase.
912 */
913 ret = msm_init_cm_dll(host);
914 if (ret)
915 goto out;
916
917 /* Set the selected phase in delay line hw block */
918 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
919 if (ret)
920 goto out;
921
922 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
923 config |= CORE_CMD_DAT_TRACK_SEL;
924 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
925
926 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
927 config &= ~CORE_CDC_T4_DLY_SEL;
928 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
929
930 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
932 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933
934 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935 config |= CORE_CDC_SWITCH_RC_EN;
936 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
937
938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
939 config &= ~CORE_START_CDC_TRAFFIC;
940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
941
942 /* Perform CDC Register Initialization Sequence */
943
944 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
945 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
946 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
947 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
948 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
949 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
950 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
951 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
952 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
953
954 /* CDC HW Calibration */
955
956 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 config |= CORE_SW_TRIG_FULL_CALIB;
958 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959
960 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961 config &= ~CORE_SW_TRIG_FULL_CALIB;
962 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963
964 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965 config |= CORE_HW_AUTOCAL_ENA;
966 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
967
968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969 config |= CORE_TIMER_ENA;
970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
971
972 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
973 calib_done,
974 (calib_done & CORE_CALIBRATION_DONE),
975 1, 50);
976
977 if (ret == -ETIMEDOUT) {
978 pr_err("%s: %s: CDC calibration was not completed\n",
979 mmc_hostname(host->mmc), __func__);
980 goto out;
981 }
982
983 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
984 & CORE_CDC_ERROR_CODE_MASK;
985 if (ret) {
986 pr_err("%s: %s: CDC error code %d\n",
987 mmc_hostname(host->mmc), __func__, ret);
988 ret = -EINVAL;
989 goto out;
990 }
991
992 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
993 config |= CORE_START_CDC_TRAFFIC;
994 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
995out:
996 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
997 __func__, ret);
998 return ret;
999}
1000
1001static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002{
1003 struct mmc_host *mmc = host->mmc;
1004 u32 dll_status, config, ddr_cfg_offset;
1005 int ret;
1006 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008 const struct sdhci_msm_offset *msm_offset =
1009 sdhci_priv_msm_offset(host);
1010
1011 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012
1013 /*
1014 * Currently the core_ddr_config register defaults to desired
1015 * configuration on reset. Currently reprogramming the power on
1016 * reset (POR) value in case it might have been modified by
1017 * bootloaders. In the future, if this changes, then the desired
1018 * values will need to be programmed appropriately.
1019 */
1020 if (msm_host->updated_ddr_cfg)
1021 ddr_cfg_offset = msm_offset->core_ddr_config;
1022 else
1023 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025
1026 if (mmc->ios.enhanced_strobe) {
1027 config = readl_relaxed(host->ioaddr +
1028 msm_offset->core_ddr_200_cfg);
1029 config |= CORE_CMDIN_RCLK_EN;
1030 writel_relaxed(config, host->ioaddr +
1031 msm_offset->core_ddr_200_cfg);
1032 }
1033
1034 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035 config |= CORE_DDR_CAL_EN;
1036 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037
1038 ret = readl_relaxed_poll_timeout(host->ioaddr +
1039 msm_offset->core_dll_status,
1040 dll_status,
1041 (dll_status & CORE_DDR_DLL_LOCK),
1042 10, 1000);
1043
1044 if (ret == -ETIMEDOUT) {
1045 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046 mmc_hostname(host->mmc), __func__);
1047 goto out;
1048 }
1049
1050 /*
1051 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053 * and MCLK must be switched on for at-least 1us before DATA
1054 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055 * guarantee above requirement. So PWRSAVE_DLL should not be
1056 * turned on for host controllers using this DLL.
1057 */
1058 if (!msm_host->use_14lpp_dll_reset) {
1059 config = readl_relaxed(host->ioaddr +
1060 msm_offset->core_vendor_spec3);
1061 config |= CORE_PWRSAVE_DLL;
1062 writel_relaxed(config, host->ioaddr +
1063 msm_offset->core_vendor_spec3);
1064 }
1065
1066 /*
1067 * Drain writebuffer to ensure above DLL calibration
1068 * and PWRSAVE DLL is enabled.
1069 */
1070 wmb();
1071out:
1072 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073 __func__, ret);
1074 return ret;
1075}
1076
1077static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078{
1079 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081 struct mmc_host *mmc = host->mmc;
1082 int ret;
1083 u32 config;
1084 const struct sdhci_msm_offset *msm_offset =
1085 msm_host->offset;
1086
1087 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088
1089 /*
1090 * Retuning in HS400 (DDR mode) will fail, just reset the
1091 * tuning block and restore the saved tuning phase.
1092 */
1093 ret = msm_init_cm_dll(host);
1094 if (ret)
1095 goto out;
1096
1097 if (!mmc->ios.enhanced_strobe) {
1098 /* Set the selected phase in delay line hw block */
1099 ret = msm_config_cm_dll_phase(host,
1100 msm_host->saved_tuning_phase);
1101 if (ret)
1102 goto out;
1103 config = readl_relaxed(host->ioaddr +
1104 msm_offset->core_dll_config);
1105 config |= CORE_CMD_DAT_TRACK_SEL;
1106 writel_relaxed(config, host->ioaddr +
1107 msm_offset->core_dll_config);
1108 }
1109
1110 if (msm_host->use_cdclp533)
1111 ret = sdhci_msm_cdclp533_calibration(host);
1112 else
1113 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114out:
1115 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116 __func__, ret);
1117 return ret;
1118}
1119
1120static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121{
1122 struct mmc_ios *ios = &host->mmc->ios;
1123
1124 /*
1125 * Tuning is required for SDR104, HS200 and HS400 cards and
1126 * if clock frequency is greater than 100MHz in these modes.
1127 */
1128 if (host->clock <= CORE_FREQ_100MHZ ||
1129 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130 ios->timing == MMC_TIMING_MMC_HS200 ||
1131 ios->timing == MMC_TIMING_UHS_SDR104) ||
1132 ios->enhanced_strobe)
1133 return false;
1134
1135 return true;
1136}
1137
1138static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139{
1140 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142 int ret;
1143
1144 /*
1145 * SDR DLL comes into picture only for timing modes which needs
1146 * tuning.
1147 */
1148 if (!sdhci_msm_is_tuning_needed(host))
1149 return 0;
1150
1151 /* Reset the tuning block */
1152 ret = msm_init_cm_dll(host);
1153 if (ret)
1154 return ret;
1155
1156 /* Restore the tuning block */
1157 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158
1159 return ret;
1160}
1161
1162static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163{
1164 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166 msm_offset->core_dll_config);
1167
1168 config = oldconfig;
1169 if (enable) {
1170 config |= CORE_CDR_EN;
1171 config &= ~CORE_CDR_EXT_EN;
1172 } else {
1173 config &= ~CORE_CDR_EN;
1174 config |= CORE_CDR_EXT_EN;
1175 }
1176
1177 if (config != oldconfig) {
1178 writel_relaxed(config, host->ioaddr +
1179 msm_offset->core_dll_config);
1180 }
1181}
1182
1183static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184{
1185 struct sdhci_host *host = mmc_priv(mmc);
1186 int tuning_seq_cnt = 10;
1187 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188 int rc;
1189 struct mmc_ios ios = host->mmc->ios;
1190 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192
1193 if (!sdhci_msm_is_tuning_needed(host)) {
1194 msm_host->use_cdr = false;
1195 sdhci_msm_set_cdr(host, false);
1196 return 0;
1197 }
1198
1199 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200 msm_host->use_cdr = true;
1201
1202 /*
1203 * Clear tuning_done flag before tuning to ensure proper
1204 * HS400 settings.
1205 */
1206 msm_host->tuning_done = 0;
1207
1208 /*
1209 * For HS400 tuning in HS200 timing requires:
1210 * - select MCLK/2 in VENDOR_SPEC
1211 * - program MCLK to 400MHz (or nearest supported) in GCC
1212 */
1213 if (host->flags & SDHCI_HS400_TUNING) {
1214 sdhci_msm_hc_select_mode(host);
1215 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216 host->flags &= ~SDHCI_HS400_TUNING;
1217 }
1218
1219retry:
1220 /* First of all reset the tuning block */
1221 rc = msm_init_cm_dll(host);
1222 if (rc)
1223 return rc;
1224
1225 phase = 0;
1226 do {
1227 /* Set the phase in delay line hw block */
1228 rc = msm_config_cm_dll_phase(host, phase);
1229 if (rc)
1230 return rc;
1231
1232 rc = mmc_send_tuning(mmc, opcode, NULL);
1233 if (!rc) {
1234 /* Tuning is successful at this tuning point */
1235 tuned_phases[tuned_phase_cnt++] = phase;
1236 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237 mmc_hostname(mmc), phase);
1238 }
1239 } while (++phase < ARRAY_SIZE(tuned_phases));
1240
1241 if (tuned_phase_cnt) {
1242 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243 /*
1244 * All phases valid is _almost_ as bad as no phases
1245 * valid. Probably all phases are not really reliable
1246 * but we didn't detect where the unreliable place is.
1247 * That means we'll essentially be guessing and hoping
1248 * we get a good phase. Better to try a few times.
1249 */
1250 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251 mmc_hostname(mmc));
1252 if (--tuning_seq_cnt) {
1253 tuned_phase_cnt = 0;
1254 goto retry;
1255 }
1256 }
1257
1258 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259 tuned_phase_cnt);
1260 if (rc < 0)
1261 return rc;
1262 else
1263 phase = rc;
1264
1265 /*
1266 * Finally set the selected phase in delay
1267 * line hw block.
1268 */
1269 rc = msm_config_cm_dll_phase(host, phase);
1270 if (rc)
1271 return rc;
1272 msm_host->saved_tuning_phase = phase;
1273 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274 mmc_hostname(mmc), phase);
1275 } else {
1276 if (--tuning_seq_cnt)
1277 goto retry;
1278 /* Tuning failed */
1279 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280 mmc_hostname(mmc));
1281 rc = -EIO;
1282 }
1283
1284 if (!rc)
1285 msm_host->tuning_done = true;
1286 return rc;
1287}
1288
1289/*
1290 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291 * This needs to be done for both tuning and enhanced_strobe mode.
1292 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293 * fixed feedback clock is used.
1294 */
1295static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296{
1297 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299 int ret;
1300
1301 if (host->clock > CORE_FREQ_100MHZ &&
1302 (msm_host->tuning_done || ios->enhanced_strobe) &&
1303 !msm_host->calibration_done) {
1304 ret = sdhci_msm_hs400_dll_calibration(host);
1305 if (!ret)
1306 msm_host->calibration_done = true;
1307 else
1308 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309 mmc_hostname(host->mmc), ret);
1310 }
1311}
1312
1313static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314 unsigned int uhs)
1315{
1316 struct mmc_host *mmc = host->mmc;
1317 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319 u16 ctrl_2;
1320 u32 config;
1321 const struct sdhci_msm_offset *msm_offset =
1322 msm_host->offset;
1323
1324 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325 /* Select Bus Speed Mode for host */
1326 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327 switch (uhs) {
1328 case MMC_TIMING_UHS_SDR12:
1329 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330 break;
1331 case MMC_TIMING_UHS_SDR25:
1332 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333 break;
1334 case MMC_TIMING_UHS_SDR50:
1335 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336 break;
1337 case MMC_TIMING_MMC_HS400:
1338 case MMC_TIMING_MMC_HS200:
1339 case MMC_TIMING_UHS_SDR104:
1340 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341 break;
1342 case MMC_TIMING_UHS_DDR50:
1343 case MMC_TIMING_MMC_DDR52:
1344 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345 break;
1346 }
1347
1348 /*
1349 * When clock frequency is less than 100MHz, the feedback clock must be
1350 * provided and DLL must not be used so that tuning can be skipped. To
1351 * provide feedback clock, the mode selection can be any value less
1352 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353 */
1354 if (host->clock <= CORE_FREQ_100MHZ) {
1355 if (uhs == MMC_TIMING_MMC_HS400 ||
1356 uhs == MMC_TIMING_MMC_HS200 ||
1357 uhs == MMC_TIMING_UHS_SDR104)
1358 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359 /*
1360 * DLL is not required for clock <= 100MHz
1361 * Thus, make sure DLL it is disabled when not required
1362 */
1363 config = readl_relaxed(host->ioaddr +
1364 msm_offset->core_dll_config);
1365 config |= CORE_DLL_RST;
1366 writel_relaxed(config, host->ioaddr +
1367 msm_offset->core_dll_config);
1368
1369 config = readl_relaxed(host->ioaddr +
1370 msm_offset->core_dll_config);
1371 config |= CORE_DLL_PDN;
1372 writel_relaxed(config, host->ioaddr +
1373 msm_offset->core_dll_config);
1374
1375 /*
1376 * The DLL needs to be restored and CDCLP533 recalibrated
1377 * when the clock frequency is set back to 400MHz.
1378 */
1379 msm_host->calibration_done = false;
1380 }
1381
1382 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385
1386 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387 sdhci_msm_hs400(host, &mmc->ios);
1388}
1389
1390static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391{
1392 struct platform_device *pdev = msm_host->pdev;
1393 int ret;
1394
1395 if (level)
1396 ret = pinctrl_pm_select_default_state(&pdev->dev);
1397 else
1398 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399
1400 return ret;
1401}
1402
1403static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1404{
1405 if (IS_ERR(mmc->supply.vmmc))
1406 return 0;
1407
1408 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409}
1410
1411static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412 struct mmc_host *mmc, bool level)
1413{
1414 int ret;
1415 struct mmc_ios ios;
1416
1417 if (msm_host->vqmmc_enabled == level)
1418 return 0;
1419
1420 if (level) {
1421 /* Set the IO voltage regulator to default voltage level */
1422 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426
1427 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429 if (ret < 0) {
1430 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431 mmc_hostname(mmc), ret);
1432 goto out;
1433 }
1434 }
1435 ret = regulator_enable(mmc->supply.vqmmc);
1436 } else {
1437 ret = regulator_disable(mmc->supply.vqmmc);
1438 }
1439
1440 if (ret)
1441 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442 mmc_hostname(mmc), level ? "en":"dis", ret);
1443 else
1444 msm_host->vqmmc_enabled = level;
1445out:
1446 return ret;
1447}
1448
1449static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450 struct mmc_host *mmc, bool hpm)
1451{
1452 int load, ret;
1453
1454 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455 ret = regulator_set_load(mmc->supply.vqmmc, load);
1456 if (ret)
1457 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458 mmc_hostname(mmc), ret);
1459 return ret;
1460}
1461
1462static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463 struct mmc_host *mmc, bool level)
1464{
1465 int ret;
1466 bool always_on;
1467
1468 if (IS_ERR(mmc->supply.vqmmc) ||
1469 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470 return 0;
1471 /*
1472 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473 * and HPM modes by setting the corresponding load.
1474 *
1475 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478 * Vqmmc should remain ON, So just set the load instead of turning it
1479 * off/on.
1480 */
1481 always_on = !mmc_card_is_removable(mmc) &&
1482 mmc->card && mmc_card_mmc(mmc->card);
1483
1484 if (always_on)
1485 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486 else
1487 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488
1489 return ret;
1490}
1491
1492static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493{
1494 init_waitqueue_head(&msm_host->pwr_irq_wait);
1495}
1496
1497static inline void sdhci_msm_complete_pwr_irq_wait(
1498 struct sdhci_msm_host *msm_host)
1499{
1500 wake_up(&msm_host->pwr_irq_wait);
1501}
1502
1503/*
1504 * sdhci_msm_check_power_status API should be called when registers writes
1505 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506 * To what state the register writes will change the IO lines should be passed
1507 * as the argument req_type. This API will check whether the IO line's state
1508 * is already the expected state and will wait for power irq only if
1509 * power irq is expected to be triggered based on the current IO line state
1510 * and expected IO line state.
1511 */
1512static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513{
1514 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516 bool done = false;
1517 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518 const struct sdhci_msm_offset *msm_offset =
1519 msm_host->offset;
1520
1521 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522 mmc_hostname(host->mmc), __func__, req_type,
1523 msm_host->curr_pwr_state, msm_host->curr_io_level);
1524
1525 /*
1526 * The power interrupt will not be generated for signal voltage
1527 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529 * it as always set.
1530 */
1531 if (!msm_host->mci_removed)
1532 val = msm_host_readl(msm_host, host,
1533 msm_offset->core_generics);
1534 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536 return;
1537 }
1538
1539 /*
1540 * The IRQ for request type IO High/LOW will be generated when -
1541 * there is a state change in 1.8V enable bit (bit 3) of
1542 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544 * to set it to 3.3V before card detection happens, the
1545 * IRQ doesn't get triggered as there is no state change in this bit.
1546 * The driver already handles this case by changing the IO voltage
1547 * level to high as part of controller power up sequence. Hence, check
1548 * for host->pwr to handle a case where IO voltage high request is
1549 * issued even before controller power up.
1550 */
1551 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553 mmc_hostname(host->mmc), req_type);
1554 return;
1555 }
1556 if ((req_type & msm_host->curr_pwr_state) ||
1557 (req_type & msm_host->curr_io_level))
1558 done = true;
1559 /*
1560 * This is needed here to handle cases where register writes will
1561 * not change the current bus state or io level of the controller.
1562 * In this case, no power irq will be triggerred and we should
1563 * not wait.
1564 */
1565 if (!done) {
1566 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567 msm_host->pwr_irq_flag,
1568 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569 dev_warn(&msm_host->pdev->dev,
1570 "%s: pwr_irq for req: (%d) timed out\n",
1571 mmc_hostname(host->mmc), req_type);
1572 }
1573 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574 __func__, req_type);
1575}
1576
1577static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578{
1579 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581 const struct sdhci_msm_offset *msm_offset =
1582 msm_host->offset;
1583
1584 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585 mmc_hostname(host->mmc),
1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589}
1590
1591static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592{
1593 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595 struct mmc_host *mmc = host->mmc;
1596 u32 irq_status, irq_ack = 0;
1597 int retry = 10, ret;
1598 u32 pwr_state = 0, io_level = 0;
1599 u32 config;
1600 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601
1602 irq_status = msm_host_readl(msm_host, host,
1603 msm_offset->core_pwrctl_status);
1604 irq_status &= INT_MASK;
1605
1606 msm_host_writel(msm_host, irq_status, host,
1607 msm_offset->core_pwrctl_clear);
1608
1609 /*
1610 * There is a rare HW scenario where the first clear pulse could be
1611 * lost when actual reset and clear/read of status register is
1612 * happening at a time. Hence, retry for at least 10 times to make
1613 * sure status register is cleared. Otherwise, this will result in
1614 * a spurious power IRQ resulting in system instability.
1615 */
1616 while (irq_status & msm_host_readl(msm_host, host,
1617 msm_offset->core_pwrctl_status)) {
1618 if (retry == 0) {
1619 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620 mmc_hostname(host->mmc), irq_status);
1621 sdhci_msm_dump_pwr_ctrl_regs(host);
1622 WARN_ON(1);
1623 break;
1624 }
1625 msm_host_writel(msm_host, irq_status, host,
1626 msm_offset->core_pwrctl_clear);
1627 retry--;
1628 udelay(10);
1629 }
1630
1631 /* Handle BUS ON/OFF*/
1632 if (irq_status & CORE_PWRCTL_BUS_ON) {
1633 pwr_state = REQ_BUS_ON;
1634 io_level = REQ_IO_HIGH;
1635 }
1636 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637 pwr_state = REQ_BUS_OFF;
1638 io_level = REQ_IO_LOW;
1639 }
1640
1641 if (pwr_state) {
1642 ret = sdhci_msm_set_vmmc(mmc);
1643 if (!ret)
1644 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645 pwr_state & REQ_BUS_ON);
1646 if (!ret)
1647 ret = sdhci_msm_set_pincfg(msm_host,
1648 pwr_state & REQ_BUS_ON);
1649 if (!ret)
1650 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651 else
1652 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653 }
1654
1655 /* Handle IO LOW/HIGH */
1656 if (irq_status & CORE_PWRCTL_IO_LOW)
1657 io_level = REQ_IO_LOW;
1658
1659 if (irq_status & CORE_PWRCTL_IO_HIGH)
1660 io_level = REQ_IO_HIGH;
1661
1662 if (io_level)
1663 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664
1665 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667 if (ret < 0) {
1668 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669 mmc_hostname(mmc), ret,
1670 mmc->ios.signal_voltage, mmc->ios.vdd,
1671 irq_status);
1672 irq_ack |= CORE_PWRCTL_IO_FAIL;
1673 }
1674 }
1675
1676 /*
1677 * The driver has to acknowledge the interrupt, switch voltages and
1678 * report back if it succeded or not to this register. The voltage
1679 * switches are handled by the sdhci core, so just report success.
1680 */
1681 msm_host_writel(msm_host, irq_ack, host,
1682 msm_offset->core_pwrctl_ctl);
1683
1684 /*
1685 * If we don't have info regarding the voltage levels supported by
1686 * regulators, don't change the IO PAD PWR SWITCH.
1687 */
1688 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689 u32 new_config;
1690 /*
1691 * We should unset IO PAD PWR switch only if the register write
1692 * can set IO lines high and the regulator also switches to 3 V.
1693 * Else, we should keep the IO PAD PWR switch set.
1694 * This is applicable to certain targets where eMMC vccq supply
1695 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696 * IO PAD PWR switch must be kept set to reflect actual
1697 * regulator voltage. This way, during initialization of
1698 * controllers with only 1.8V, we will set the IO PAD bit
1699 * without waiting for a REQ_IO_LOW.
1700 */
1701 config = readl_relaxed(host->ioaddr +
1702 msm_offset->core_vendor_spec);
1703 new_config = config;
1704
1705 if ((io_level & REQ_IO_HIGH) &&
1706 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708 else if ((io_level & REQ_IO_LOW) ||
1709 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710 new_config |= CORE_IO_PAD_PWR_SWITCH;
1711
1712 if (config ^ new_config)
1713 writel_relaxed(new_config, host->ioaddr +
1714 msm_offset->core_vendor_spec);
1715 }
1716
1717 if (pwr_state)
1718 msm_host->curr_pwr_state = pwr_state;
1719 if (io_level)
1720 msm_host->curr_io_level = io_level;
1721
1722 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724 irq_ack);
1725}
1726
1727static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728{
1729 struct sdhci_host *host = (struct sdhci_host *)data;
1730 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732
1733 sdhci_msm_handle_pwr_irq(host, irq);
1734 msm_host->pwr_irq_flag = 1;
1735 sdhci_msm_complete_pwr_irq_wait(msm_host);
1736
1737
1738 return IRQ_HANDLED;
1739}
1740
1741static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742{
1743 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746
1747 return clk_round_rate(core_clk, ULONG_MAX);
1748}
1749
1750static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751{
1752 return SDHCI_MSM_MIN_CLOCK;
1753}
1754
1755/*
1756 * __sdhci_msm_set_clock - sdhci_msm clock control.
1757 *
1758 * Description:
1759 * MSM controller does not use internal divider and
1760 * instead directly control the GCC clock as per
1761 * HW recommendation.
1762 **/
1763static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764{
1765 u16 clk;
1766
1767 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768
1769 if (clock == 0)
1770 return;
1771
1772 /*
1773 * MSM controller do not use clock divider.
1774 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775 * clock with no divider value programmed.
1776 */
1777 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778 sdhci_enable_clk(host, clk);
1779}
1780
1781/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783{
1784 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786
1787 if (!clock) {
1788 host->mmc->actual_clock = msm_host->clk_rate = 0;
1789 goto out;
1790 }
1791
1792 sdhci_msm_hc_select_mode(host);
1793
1794 msm_set_clock_rate_for_bus_mode(host, clock);
1795out:
1796 __sdhci_msm_set_clock(host, clock);
1797}
1798
1799/*****************************************************************************\
1800 * *
1801 * Inline Crypto Engine (ICE) support *
1802 * *
1803\*****************************************************************************/
1804
1805#ifdef CONFIG_MMC_CRYPTO
1806
1807#define AES_256_XTS_KEY_SIZE 64
1808
1809/* QCOM ICE registers */
1810
1811#define QCOM_ICE_REG_VERSION 0x0008
1812
1813#define QCOM_ICE_REG_FUSE_SETTING 0x0010
1814#define QCOM_ICE_FUSE_SETTING_MASK 0x1
1815#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
1816#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
1817
1818#define QCOM_ICE_REG_BIST_STATUS 0x0070
1819#define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
1820
1821#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
1822
1823#define sdhci_msm_ice_writel(host, val, reg) \
1824 writel((val), (host)->ice_mem + (reg))
1825#define sdhci_msm_ice_readl(host, reg) \
1826 readl((host)->ice_mem + (reg))
1827
1828static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829{
1830 struct device *dev = mmc_dev(msm_host->mmc);
1831 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832 int major = regval >> 24;
1833 int minor = (regval >> 16) & 0xFF;
1834 int step = regval & 0xFFFF;
1835
1836 /* For now this driver only supports ICE version 3. */
1837 if (major != 3) {
1838 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839 major, minor, step);
1840 return false;
1841 }
1842
1843 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844 major, minor, step);
1845
1846 /* If fuses are blown, ICE might not work in the standard way. */
1847 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848 if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851 dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852 return false;
1853 }
1854 return true;
1855}
1856
1857static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858{
1859 return devm_clk_get(dev, "ice");
1860}
1861
1862static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863 struct cqhci_host *cq_host)
1864{
1865 struct mmc_host *mmc = msm_host->mmc;
1866 struct device *dev = mmc_dev(mmc);
1867 struct resource *res;
1868
1869 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870 return 0;
1871
1872 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873 "ice");
1874 if (!res) {
1875 dev_warn(dev, "ICE registers not found\n");
1876 goto disable;
1877 }
1878
1879 if (!qcom_scm_ice_available()) {
1880 dev_warn(dev, "ICE SCM interface not found\n");
1881 goto disable;
1882 }
1883
1884 msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885 if (IS_ERR(msm_host->ice_mem))
1886 return PTR_ERR(msm_host->ice_mem);
1887
1888 if (!sdhci_msm_ice_supported(msm_host))
1889 goto disable;
1890
1891 mmc->caps2 |= MMC_CAP2_CRYPTO;
1892 return 0;
1893
1894disable:
1895 dev_warn(dev, "Disabling inline encryption support\n");
1896 return 0;
1897}
1898
1899static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900{
1901 u32 regval;
1902
1903 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904 /*
1905 * Enable low power mode sequence
1906 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907 */
1908 regval |= 0x7000;
1909 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910}
1911
1912static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913{
1914 u32 regval;
1915
1916 /* ICE Optimizations Enable Sequence */
1917 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918 regval |= 0xD807100;
1919 /* ICE HPG requires delay before writing */
1920 udelay(5);
1921 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922 udelay(5);
1923}
1924
1925/*
1926 * Wait until the ICE BIST (built-in self-test) has completed.
1927 *
1928 * This may be necessary before ICE can be used.
1929 *
1930 * Note that we don't really care whether the BIST passed or failed; we really
1931 * just want to make sure that it isn't still running. This is because (a) the
1932 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933 * documented to reject crypto requests if the BIST fails, so we needn't do it
1934 * in software too, and (c) properly testing storage encryption requires testing
1935 * the full storage stack anyway, and not relying on hardware-level self-tests.
1936 */
1937static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938{
1939 u32 regval;
1940 int err;
1941
1942 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944 50, 5000);
1945 if (err)
1946 dev_err(mmc_dev(msm_host->mmc),
1947 "Timed out waiting for ICE self-test to complete\n");
1948 return err;
1949}
1950
1951static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952{
1953 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954 return;
1955 sdhci_msm_ice_low_power_mode_enable(msm_host);
1956 sdhci_msm_ice_optimization_enable(msm_host);
1957 sdhci_msm_ice_wait_bist_status(msm_host);
1958}
1959
1960static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961{
1962 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963 return 0;
1964 return sdhci_msm_ice_wait_bist_status(msm_host);
1965}
1966
1967/*
1968 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1969 * vendor-specific SCM calls for this; it doesn't support the standard way.
1970 */
1971static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972 const union cqhci_crypto_cfg_entry *cfg,
1973 int slot)
1974{
1975 struct device *dev = mmc_dev(cq_host->mmc);
1976 union cqhci_crypto_cap_entry cap;
1977 union {
1978 u8 bytes[AES_256_XTS_KEY_SIZE];
1979 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980 } key;
1981 int i;
1982 int err;
1983
1984 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985 return qcom_scm_ice_invalidate_key(slot);
1986
1987 /* Only AES-256-XTS has been tested so far. */
1988 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991 dev_err_ratelimited(dev,
1992 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993 cap.algorithm_id, cap.key_size);
1994 return -EINVAL;
1995 }
1996
1997 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998
1999 /*
2000 * The SCM call byte-swaps the 32-bit words of the key. So we have to
2001 * do the same, in order for the final key be correct.
2002 */
2003 for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004 __cpu_to_be32s(&key.words[i]);
2005
2006 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007 QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008 cfg->data_unit_size);
2009 memzero_explicit(&key, sizeof(key));
2010 return err;
2011}
2012#else /* CONFIG_MMC_CRYPTO */
2013static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014{
2015 return NULL;
2016}
2017
2018static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019 struct cqhci_host *cq_host)
2020{
2021 return 0;
2022}
2023
2024static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025{
2026}
2027
2028static inline int __maybe_unused
2029sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030{
2031 return 0;
2032}
2033#endif /* !CONFIG_MMC_CRYPTO */
2034
2035/*****************************************************************************\
2036 * *
2037 * MSM Command Queue Engine (CQE) *
2038 * *
2039\*****************************************************************************/
2040
2041static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042{
2043 int cmd_error = 0;
2044 int data_error = 0;
2045
2046 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047 return intmask;
2048
2049 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050 return 0;
2051}
2052
2053static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054{
2055 struct sdhci_host *host = mmc_priv(mmc);
2056 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058
2059 sdhci_cqe_enable(mmc);
2060 sdhci_msm_ice_enable(msm_host);
2061}
2062
2063static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064{
2065 struct sdhci_host *host = mmc_priv(mmc);
2066 unsigned long flags;
2067 u32 ctrl;
2068
2069 /*
2070 * When CQE is halted, the legacy SDHCI path operates only
2071 * on 16-byte descriptors in 64bit mode.
2072 */
2073 if (host->flags & SDHCI_USE_64_BIT_DMA)
2074 host->desc_sz = 16;
2075
2076 spin_lock_irqsave(&host->lock, flags);
2077
2078 /*
2079 * During CQE command transfers, command complete bit gets latched.
2080 * So s/w should clear command complete interrupt status when CQE is
2081 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082 * interrupt gets triggered when CQE is halted/disabled.
2083 */
2084 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085 ctrl |= SDHCI_INT_RESPONSE;
2086 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2087 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088
2089 spin_unlock_irqrestore(&host->lock, flags);
2090
2091 sdhci_cqe_disable(mmc, recovery);
2092}
2093
2094static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095{
2096 u32 count, start = 15;
2097
2098 __sdhci_set_timeout(host, cmd);
2099 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100 /*
2101 * Update software timeout value if its value is less than hardware data
2102 * timeout value. Qcom SoC hardware data timeout value was calculated
2103 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104 */
2105 if (cmd && cmd->data && host->clock > 400000 &&
2106 host->clock <= 50000000 &&
2107 ((1 << (count + start)) > (10 * host->clock)))
2108 host->data_timeout = 22LL * NSEC_PER_SEC;
2109}
2110
2111static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112 .enable = sdhci_msm_cqe_enable,
2113 .disable = sdhci_msm_cqe_disable,
2114#ifdef CONFIG_MMC_CRYPTO
2115 .program_key = sdhci_msm_program_key,
2116#endif
2117};
2118
2119static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120 struct platform_device *pdev)
2121{
2122 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124 struct cqhci_host *cq_host;
2125 bool dma64;
2126 u32 cqcfg;
2127 int ret;
2128
2129 /*
2130 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131 * So ensure ADMA table is allocated for 16byte descriptors.
2132 */
2133 if (host->caps & SDHCI_CAN_64BIT)
2134 host->alloc_desc_sz = 16;
2135
2136 ret = sdhci_setup_host(host);
2137 if (ret)
2138 return ret;
2139
2140 cq_host = cqhci_pltfm_init(pdev);
2141 if (IS_ERR(cq_host)) {
2142 ret = PTR_ERR(cq_host);
2143 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144 goto cleanup;
2145 }
2146
2147 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148 cq_host->ops = &sdhci_msm_cqhci_ops;
2149
2150 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151
2152 ret = sdhci_msm_ice_init(msm_host, cq_host);
2153 if (ret)
2154 goto cleanup;
2155
2156 ret = cqhci_init(cq_host, host->mmc, dma64);
2157 if (ret) {
2158 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159 mmc_hostname(host->mmc), ret);
2160 goto cleanup;
2161 }
2162
2163 /* Disable cqe reset due to cqe enable signal */
2164 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167
2168 /*
2169 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170 * So limit desc_sz to 12 so that the data commands that are sent
2171 * during card initialization (before CQE gets enabled) would
2172 * get executed without any issues.
2173 */
2174 if (host->flags & SDHCI_USE_64_BIT_DMA)
2175 host->desc_sz = 12;
2176
2177 ret = __sdhci_add_host(host);
2178 if (ret)
2179 goto cleanup;
2180
2181 dev_info(&pdev->dev, "%s: CQE init: success\n",
2182 mmc_hostname(host->mmc));
2183 return ret;
2184
2185cleanup:
2186 sdhci_cleanup_host(host);
2187 return ret;
2188}
2189
2190/*
2191 * Platform specific register write functions. This is so that, if any
2192 * register write needs to be followed up by platform specific actions,
2193 * they can be added here. These functions can go to sleep when writes
2194 * to certain registers are done.
2195 * These functions are relying on sdhci_set_ios not using spinlock.
2196 */
2197static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198{
2199 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201 u32 req_type = 0;
2202
2203 switch (reg) {
2204 case SDHCI_HOST_CONTROL2:
2205 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206 REQ_IO_HIGH;
2207 break;
2208 case SDHCI_SOFTWARE_RESET:
2209 if (host->pwr && (val & SDHCI_RESET_ALL))
2210 req_type = REQ_BUS_OFF;
2211 break;
2212 case SDHCI_POWER_CONTROL:
2213 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214 break;
2215 case SDHCI_TRANSFER_MODE:
2216 msm_host->transfer_mode = val;
2217 break;
2218 case SDHCI_COMMAND:
2219 if (!msm_host->use_cdr)
2220 break;
2221 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222 !mmc_op_tuning(SDHCI_GET_CMD(val)))
2223 sdhci_msm_set_cdr(host, true);
2224 else
2225 sdhci_msm_set_cdr(host, false);
2226 break;
2227 }
2228
2229 if (req_type) {
2230 msm_host->pwr_irq_flag = 0;
2231 /*
2232 * Since this register write may trigger a power irq, ensure
2233 * all previous register writes are complete by this point.
2234 */
2235 mb();
2236 }
2237 return req_type;
2238}
2239
2240/* This function may sleep*/
2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242{
2243 u32 req_type = 0;
2244
2245 req_type = __sdhci_msm_check_write(host, val, reg);
2246 writew_relaxed(val, host->ioaddr + reg);
2247
2248 if (req_type)
2249 sdhci_msm_check_power_status(host, req_type);
2250}
2251
2252/* This function may sleep*/
2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254{
2255 u32 req_type = 0;
2256
2257 req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259 writeb_relaxed(val, host->ioaddr + reg);
2260
2261 if (req_type)
2262 sdhci_msm_check_power_status(host, req_type);
2263}
2264
2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266{
2267 struct mmc_host *mmc = msm_host->mmc;
2268 struct regulator *supply = mmc->supply.vqmmc;
2269 u32 caps = 0, config;
2270 struct sdhci_host *host = mmc_priv(mmc);
2271 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273 if (!IS_ERR(mmc->supply.vqmmc)) {
2274 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275 caps |= CORE_1_8V_SUPPORT;
2276 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277 caps |= CORE_3_0V_SUPPORT;
2278
2279 if (!caps)
2280 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281 mmc_hostname(mmc));
2282 }
2283
2284 if (caps) {
2285 /*
2286 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287 * bit can be used as required later on.
2288 */
2289 u32 io_level = msm_host->curr_io_level;
2290
2291 config = readl_relaxed(host->ioaddr +
2292 msm_offset->core_vendor_spec);
2293 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2296 config &= ~CORE_IO_PAD_PWR_SWITCH;
2297 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298 config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300 writel_relaxed(config,
2301 host->ioaddr + msm_offset->core_vendor_spec);
2302 }
2303 msm_host->caps_0 |= caps;
2304 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305}
2306
2307static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308{
2309 int ret;
2310
2311 ret = mmc_regulator_get_supply(msm_host->mmc);
2312 if (ret)
2313 return ret;
2314
2315 sdhci_msm_set_regulator_caps(msm_host);
2316
2317 return 0;
2318}
2319
2320static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321 struct mmc_ios *ios)
2322{
2323 struct sdhci_host *host = mmc_priv(mmc);
2324 u16 ctrl, status;
2325
2326 /*
2327 * Signal Voltage Switching is only applicable for Host Controllers
2328 * v3.00 and above.
2329 */
2330 if (host->version < SDHCI_SPEC_300)
2331 return 0;
2332
2333 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334
2335 switch (ios->signal_voltage) {
2336 case MMC_SIGNAL_VOLTAGE_330:
2337 if (!(host->flags & SDHCI_SIGNALING_330))
2338 return -EINVAL;
2339
2340 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341 ctrl &= ~SDHCI_CTRL_VDD_180;
2342 break;
2343 case MMC_SIGNAL_VOLTAGE_180:
2344 if (!(host->flags & SDHCI_SIGNALING_180))
2345 return -EINVAL;
2346
2347 /* Enable 1.8V Signal Enable in the Host Control2 register */
2348 ctrl |= SDHCI_CTRL_VDD_180;
2349 break;
2350
2351 default:
2352 return -EINVAL;
2353 }
2354
2355 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356
2357 /* Wait for 5ms */
2358 usleep_range(5000, 5500);
2359
2360 /* regulator output should be stable within 5 ms */
2361 status = ctrl & SDHCI_CTRL_VDD_180;
2362 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364 return 0;
2365
2366 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367 mmc_hostname(mmc));
2368
2369 return -EAGAIN;
2370}
2371
2372#define DRIVER_NAME "sdhci_msm"
2373#define SDHCI_MSM_DUMP(f, x...) \
2374 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375
2376static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377{
2378 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381
2382 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383
2384 SDHCI_MSM_DUMP(
2385 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2386 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389 SDHCI_MSM_DUMP(
2390 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2391 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394 SDHCI_MSM_DUMP(
2395 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397 readl_relaxed(host->ioaddr +
2398 msm_offset->core_vendor_spec_func2),
2399 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400}
2401
2402static const struct sdhci_msm_variant_ops mci_var_ops = {
2403 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405};
2406
2407static const struct sdhci_msm_variant_ops v5_var_ops = {
2408 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410};
2411
2412static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413 .var_ops = &mci_var_ops,
2414 .offset = &sdhci_msm_mci_offset,
2415};
2416
2417static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418 .mci_removed = true,
2419 .var_ops = &v5_var_ops,
2420 .offset = &sdhci_msm_v5_offset,
2421};
2422
2423static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424 .mci_removed = true,
2425 .restore_dll_config = true,
2426 .var_ops = &v5_var_ops,
2427 .offset = &sdhci_msm_v5_offset,
2428};
2429
2430static const struct of_device_id sdhci_msm_dt_match[] = {
2431 /*
2432 * Do not add new variants to the driver which are compatible with
2433 * generic ones, unless they need customization.
2434 */
2435 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440 {},
2441};
2442
2443MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444
2445static const struct sdhci_ops sdhci_msm_ops = {
2446 .reset = sdhci_and_cqhci_reset,
2447 .set_clock = sdhci_msm_set_clock,
2448 .get_min_clock = sdhci_msm_get_min_clock,
2449 .get_max_clock = sdhci_msm_get_max_clock,
2450 .set_bus_width = sdhci_set_bus_width,
2451 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452 .write_w = sdhci_msm_writew,
2453 .write_b = sdhci_msm_writeb,
2454 .irq = sdhci_msm_cqe_irq,
2455 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456 .set_power = sdhci_set_power_noreg,
2457 .set_timeout = sdhci_msm_set_timeout,
2458};
2459
2460static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465
2466 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467 .ops = &sdhci_msm_ops,
2468};
2469
2470static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471 struct sdhci_host *host)
2472{
2473 struct device_node *node = pdev->dev.of_node;
2474 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476
2477 if (of_property_read_u32(node, "qcom,ddr-config",
2478 &msm_host->ddr_config))
2479 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480
2481 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2482}
2483
2484static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2485{
2486 struct reset_control *reset;
2487 int ret = 0;
2488
2489 reset = reset_control_get_optional_exclusive(dev, NULL);
2490 if (IS_ERR(reset))
2491 return dev_err_probe(dev, PTR_ERR(reset),
2492 "unable to acquire core_reset\n");
2493
2494 if (!reset)
2495 return ret;
2496
2497 ret = reset_control_assert(reset);
2498 if (ret) {
2499 reset_control_put(reset);
2500 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2501 }
2502
2503 /*
2504 * The hardware requirement for delay between assert/deassert
2505 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2506 * ~125us (4/32768). To be on the safe side add 200us delay.
2507 */
2508 usleep_range(200, 210);
2509
2510 ret = reset_control_deassert(reset);
2511 if (ret) {
2512 reset_control_put(reset);
2513 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2514 }
2515
2516 usleep_range(200, 210);
2517 reset_control_put(reset);
2518
2519 return ret;
2520}
2521
2522static int sdhci_msm_probe(struct platform_device *pdev)
2523{
2524 struct sdhci_host *host;
2525 struct sdhci_pltfm_host *pltfm_host;
2526 struct sdhci_msm_host *msm_host;
2527 struct clk *clk;
2528 int ret;
2529 u16 host_version, core_minor;
2530 u32 core_version, config;
2531 u8 core_major;
2532 const struct sdhci_msm_offset *msm_offset;
2533 const struct sdhci_msm_variant_info *var_info;
2534 struct device_node *node = pdev->dev.of_node;
2535
2536 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2537 if (IS_ERR(host))
2538 return PTR_ERR(host);
2539
2540 host->sdma_boundary = 0;
2541 pltfm_host = sdhci_priv(host);
2542 msm_host = sdhci_pltfm_priv(pltfm_host);
2543 msm_host->mmc = host->mmc;
2544 msm_host->pdev = pdev;
2545
2546 ret = mmc_of_parse(host->mmc);
2547 if (ret)
2548 goto pltfm_free;
2549
2550 /*
2551 * Based on the compatible string, load the required msm host info from
2552 * the data associated with the version info.
2553 */
2554 var_info = of_device_get_match_data(&pdev->dev);
2555
2556 msm_host->mci_removed = var_info->mci_removed;
2557 msm_host->restore_dll_config = var_info->restore_dll_config;
2558 msm_host->var_ops = var_info->var_ops;
2559 msm_host->offset = var_info->offset;
2560
2561 msm_offset = msm_host->offset;
2562
2563 sdhci_get_of_property(pdev);
2564 sdhci_msm_get_of_property(pdev, host);
2565
2566 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2567
2568 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2569 if (ret)
2570 goto pltfm_free;
2571
2572 /* Setup SDCC bus voter clock. */
2573 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2574 if (!IS_ERR(msm_host->bus_clk)) {
2575 /* Vote for max. clk rate for max. performance */
2576 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2577 if (ret)
2578 goto pltfm_free;
2579 ret = clk_prepare_enable(msm_host->bus_clk);
2580 if (ret)
2581 goto pltfm_free;
2582 }
2583
2584 /* Setup main peripheral bus clock */
2585 clk = devm_clk_get(&pdev->dev, "iface");
2586 if (IS_ERR(clk)) {
2587 ret = PTR_ERR(clk);
2588 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2589 goto bus_clk_disable;
2590 }
2591 msm_host->bulk_clks[1].clk = clk;
2592
2593 /* Setup SDC MMC clock */
2594 clk = devm_clk_get(&pdev->dev, "core");
2595 if (IS_ERR(clk)) {
2596 ret = PTR_ERR(clk);
2597 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2598 goto bus_clk_disable;
2599 }
2600 msm_host->bulk_clks[0].clk = clk;
2601
2602 /* Check for optional interconnect paths */
2603 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2604 if (ret)
2605 goto bus_clk_disable;
2606
2607 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2608 if (ret)
2609 goto bus_clk_disable;
2610
2611 /* OPP table is optional */
2612 ret = devm_pm_opp_of_add_table(&pdev->dev);
2613 if (ret && ret != -ENODEV) {
2614 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2615 goto bus_clk_disable;
2616 }
2617
2618 /* Vote for maximum clock rate for maximum performance */
2619 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2620 if (ret)
2621 dev_warn(&pdev->dev, "core clock boost failed\n");
2622
2623 clk = devm_clk_get(&pdev->dev, "cal");
2624 if (IS_ERR(clk))
2625 clk = NULL;
2626 msm_host->bulk_clks[2].clk = clk;
2627
2628 clk = devm_clk_get(&pdev->dev, "sleep");
2629 if (IS_ERR(clk))
2630 clk = NULL;
2631 msm_host->bulk_clks[3].clk = clk;
2632
2633 clk = sdhci_msm_ice_get_clk(&pdev->dev);
2634 if (IS_ERR(clk))
2635 clk = NULL;
2636 msm_host->bulk_clks[4].clk = clk;
2637
2638 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2639 msm_host->bulk_clks);
2640 if (ret)
2641 goto bus_clk_disable;
2642
2643 /*
2644 * xo clock is needed for FLL feature of cm_dll.
2645 * In case if xo clock is not mentioned in DT, warn and proceed.
2646 */
2647 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2648 if (IS_ERR(msm_host->xo_clk)) {
2649 ret = PTR_ERR(msm_host->xo_clk);
2650 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2651 }
2652
2653 if (!msm_host->mci_removed) {
2654 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2655 if (IS_ERR(msm_host->core_mem)) {
2656 ret = PTR_ERR(msm_host->core_mem);
2657 goto clk_disable;
2658 }
2659 }
2660
2661 /* Reset the vendor spec register to power on reset state */
2662 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2663 host->ioaddr + msm_offset->core_vendor_spec);
2664
2665 if (!msm_host->mci_removed) {
2666 /* Set HC_MODE_EN bit in HC_MODE register */
2667 msm_host_writel(msm_host, HC_MODE_EN, host,
2668 msm_offset->core_hc_mode);
2669 config = msm_host_readl(msm_host, host,
2670 msm_offset->core_hc_mode);
2671 config |= FF_CLK_SW_RST_DIS;
2672 msm_host_writel(msm_host, config, host,
2673 msm_offset->core_hc_mode);
2674 }
2675
2676 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2677 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2678 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2679 SDHCI_VENDOR_VER_SHIFT));
2680
2681 core_version = msm_host_readl(msm_host, host,
2682 msm_offset->core_mci_version);
2683 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2684 CORE_VERSION_MAJOR_SHIFT;
2685 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2686 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2687 core_version, core_major, core_minor);
2688
2689 if (core_major == 1 && core_minor >= 0x42)
2690 msm_host->use_14lpp_dll_reset = true;
2691
2692 /*
2693 * SDCC 5 controller with major version 1, minor version 0x34 and later
2694 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2695 */
2696 if (core_major == 1 && core_minor < 0x34)
2697 msm_host->use_cdclp533 = true;
2698
2699 /*
2700 * Support for some capabilities is not advertised by newer
2701 * controller versions and must be explicitly enabled.
2702 */
2703 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2704 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2705 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2706 writel_relaxed(config, host->ioaddr +
2707 msm_offset->core_vendor_spec_capabilities0);
2708 }
2709
2710 if (core_major == 1 && core_minor >= 0x49)
2711 msm_host->updated_ddr_cfg = true;
2712
2713 if (core_major == 1 && core_minor >= 0x71)
2714 msm_host->uses_tassadar_dll = true;
2715
2716 ret = sdhci_msm_register_vreg(msm_host);
2717 if (ret)
2718 goto clk_disable;
2719
2720 /*
2721 * Power on reset state may trigger power irq if previous status of
2722 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2723 * interrupt in GIC, any pending power irq interrupt should be
2724 * acknowledged. Otherwise power irq interrupt handler would be
2725 * fired prematurely.
2726 */
2727 sdhci_msm_handle_pwr_irq(host, 0);
2728
2729 /*
2730 * Ensure that above writes are propogated before interrupt enablement
2731 * in GIC.
2732 */
2733 mb();
2734
2735 /* Setup IRQ for handling power/voltage tasks with PMIC */
2736 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2737 if (msm_host->pwr_irq < 0) {
2738 ret = msm_host->pwr_irq;
2739 goto clk_disable;
2740 }
2741
2742 sdhci_msm_init_pwr_irq_wait(msm_host);
2743 /* Enable pwr irq interrupts */
2744 msm_host_writel(msm_host, INT_MASK, host,
2745 msm_offset->core_pwrctl_mask);
2746
2747 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2748 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2749 dev_name(&pdev->dev), host);
2750 if (ret) {
2751 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2752 goto clk_disable;
2753 }
2754
2755 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2756
2757 /* Set the timeout value to max possible */
2758 host->max_timeout_count = 0xF;
2759
2760 pm_runtime_get_noresume(&pdev->dev);
2761 pm_runtime_set_active(&pdev->dev);
2762 pm_runtime_enable(&pdev->dev);
2763 pm_runtime_set_autosuspend_delay(&pdev->dev,
2764 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2765 pm_runtime_use_autosuspend(&pdev->dev);
2766
2767 host->mmc_host_ops.start_signal_voltage_switch =
2768 sdhci_msm_start_signal_voltage_switch;
2769 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2770 if (of_property_read_bool(node, "supports-cqe"))
2771 ret = sdhci_msm_cqe_add_host(host, pdev);
2772 else
2773 ret = sdhci_add_host(host);
2774 if (ret)
2775 goto pm_runtime_disable;
2776
2777 pm_runtime_mark_last_busy(&pdev->dev);
2778 pm_runtime_put_autosuspend(&pdev->dev);
2779
2780 return 0;
2781
2782pm_runtime_disable:
2783 pm_runtime_disable(&pdev->dev);
2784 pm_runtime_set_suspended(&pdev->dev);
2785 pm_runtime_put_noidle(&pdev->dev);
2786clk_disable:
2787 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788 msm_host->bulk_clks);
2789bus_clk_disable:
2790 if (!IS_ERR(msm_host->bus_clk))
2791 clk_disable_unprepare(msm_host->bus_clk);
2792pltfm_free:
2793 sdhci_pltfm_free(pdev);
2794 return ret;
2795}
2796
2797static int sdhci_msm_remove(struct platform_device *pdev)
2798{
2799 struct sdhci_host *host = platform_get_drvdata(pdev);
2800 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2801 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2802 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2803 0xffffffff);
2804
2805 sdhci_remove_host(host, dead);
2806
2807 pm_runtime_get_sync(&pdev->dev);
2808 pm_runtime_disable(&pdev->dev);
2809 pm_runtime_put_noidle(&pdev->dev);
2810
2811 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812 msm_host->bulk_clks);
2813 if (!IS_ERR(msm_host->bus_clk))
2814 clk_disable_unprepare(msm_host->bus_clk);
2815 sdhci_pltfm_free(pdev);
2816 return 0;
2817}
2818
2819static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2820{
2821 struct sdhci_host *host = dev_get_drvdata(dev);
2822 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2824
2825 /* Drop the performance vote */
2826 dev_pm_opp_set_rate(dev, 0);
2827 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2828 msm_host->bulk_clks);
2829
2830 return 0;
2831}
2832
2833static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2834{
2835 struct sdhci_host *host = dev_get_drvdata(dev);
2836 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2837 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2838 int ret;
2839
2840 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2841 msm_host->bulk_clks);
2842 if (ret)
2843 return ret;
2844 /*
2845 * Whenever core-clock is gated dynamically, it's needed to
2846 * restore the SDR DLL settings when the clock is ungated.
2847 */
2848 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2849 ret = sdhci_msm_restore_sdr_dll_config(host);
2850 if (ret)
2851 return ret;
2852 }
2853
2854 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2855
2856 return sdhci_msm_ice_resume(msm_host);
2857}
2858
2859static const struct dev_pm_ops sdhci_msm_pm_ops = {
2860 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2861 pm_runtime_force_resume)
2862 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2863 sdhci_msm_runtime_resume,
2864 NULL)
2865};
2866
2867static struct platform_driver sdhci_msm_driver = {
2868 .probe = sdhci_msm_probe,
2869 .remove = sdhci_msm_remove,
2870 .driver = {
2871 .name = "sdhci_msm",
2872 .of_match_table = sdhci_msm_dt_match,
2873 .pm = &sdhci_msm_pm_ops,
2874 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2875 },
2876};
2877
2878module_platform_driver(sdhci_msm_driver);
2879
2880MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2881MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/delay.h>
10#include <linux/mmc/mmc.h>
11#include <linux/pm_runtime.h>
12#include <linux/pm_opp.h>
13#include <linux/slab.h>
14#include <linux/iopoll.h>
15#include <linux/regulator/consumer.h>
16#include <linux/interconnect.h>
17#include <linux/of.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/reset.h>
20
21#include <soc/qcom/ice.h>
22
23#include "sdhci-cqhci.h"
24#include "sdhci-pltfm.h"
25#include "cqhci.h"
26
27#define CORE_MCI_VERSION 0x50
28#define CORE_VERSION_MAJOR_SHIFT 28
29#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
30#define CORE_VERSION_MINOR_MASK 0xff
31
32#define CORE_MCI_GENERICS 0x70
33#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
34
35#define HC_MODE_EN 0x1
36#define CORE_POWER 0x0
37#define CORE_SW_RST BIT(7)
38#define FF_CLK_SW_RST_DIS BIT(13)
39
40#define CORE_PWRCTL_BUS_OFF BIT(0)
41#define CORE_PWRCTL_BUS_ON BIT(1)
42#define CORE_PWRCTL_IO_LOW BIT(2)
43#define CORE_PWRCTL_IO_HIGH BIT(3)
44#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45#define CORE_PWRCTL_BUS_FAIL BIT(1)
46#define CORE_PWRCTL_IO_SUCCESS BIT(2)
47#define CORE_PWRCTL_IO_FAIL BIT(3)
48#define REQ_BUS_OFF BIT(0)
49#define REQ_BUS_ON BIT(1)
50#define REQ_IO_LOW BIT(2)
51#define REQ_IO_HIGH BIT(3)
52#define INT_MASK 0xf
53#define MAX_PHASES 16
54#define CORE_DLL_LOCK BIT(7)
55#define CORE_DDR_DLL_LOCK BIT(11)
56#define CORE_DLL_EN BIT(16)
57#define CORE_CDR_EN BIT(17)
58#define CORE_CK_OUT_EN BIT(18)
59#define CORE_CDR_EXT_EN BIT(19)
60#define CORE_DLL_PDN BIT(29)
61#define CORE_DLL_RST BIT(30)
62#define CORE_CMD_DAT_TRACK_SEL BIT(0)
63
64#define CORE_DDR_CAL_EN BIT(0)
65#define CORE_FLL_CYCLE_CNT BIT(18)
66#define CORE_DLL_CLOCK_DISABLE BIT(21)
67
68#define DLL_USR_CTL_POR_VAL 0x10800
69#define ENABLE_DLL_LOCK_STATUS BIT(26)
70#define FINE_TUNE_MODE_EN BIT(27)
71#define BIAS_OK_SIGNAL BIT(29)
72
73#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
74#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
75
76#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77#define CORE_CLK_PWRSAVE BIT(1)
78#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
79#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
80#define CORE_HC_MCLK_SEL_MASK (3 << 8)
81#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
82#define CORE_IO_PAD_PWR_SWITCH BIT(16)
83#define CORE_HC_SELECT_IN_EN BIT(18)
84#define CORE_HC_SELECT_IN_HS400 (6 << 19)
85#define CORE_HC_SELECT_IN_MASK (7 << 19)
86
87#define CORE_3_0V_SUPPORT BIT(25)
88#define CORE_1_8V_SUPPORT BIT(26)
89#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90
91#define CORE_CSR_CDC_CTLR_CFG0 0x130
92#define CORE_SW_TRIG_FULL_CALIB BIT(16)
93#define CORE_HW_AUTOCAL_ENA BIT(17)
94
95#define CORE_CSR_CDC_CTLR_CFG1 0x134
96#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
97#define CORE_TIMER_ENA BIT(16)
98
99#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
100#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
101#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
102#define CORE_CDC_OFFSET_CFG 0x14C
103#define CORE_CSR_CDC_DELAY_CFG 0x150
104#define CORE_CDC_SLAVE_DDA_CFG 0x160
105#define CORE_CSR_CDC_STATUS0 0x164
106#define CORE_CALIBRATION_DONE BIT(0)
107
108#define CORE_CDC_ERROR_CODE_MASK 0x7000000
109
110#define CORE_CSR_CDC_GEN_CFG 0x178
111#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
112#define CORE_CDC_SWITCH_RC_EN BIT(1)
113
114#define CORE_CDC_T4_DLY_SEL BIT(0)
115#define CORE_CMDIN_RCLK_EN BIT(1)
116#define CORE_START_CDC_TRAFFIC BIT(6)
117
118#define CORE_PWRSAVE_DLL BIT(3)
119
120#define DDR_CONFIG_POR_VAL 0x80040873
121
122
123#define INVALID_TUNING_PHASE -1
124#define SDHCI_MSM_MIN_CLOCK 400000
125#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
126
127#define CDR_SELEXT_SHIFT 20
128#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
129#define CMUX_SHIFT_PHASE_SHIFT 24
130#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
131
132#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
133
134/* Timeout value to avoid infinite waiting for pwr_irq */
135#define MSM_PWR_IRQ_TIMEOUT_MS 5000
136
137/* Max load for eMMC Vdd supply */
138#define MMC_VMMC_MAX_LOAD_UA 570000
139
140/* Max load for eMMC Vdd-io supply */
141#define MMC_VQMMC_MAX_LOAD_UA 325000
142
143/* Max load for SD Vdd supply */
144#define SD_VMMC_MAX_LOAD_UA 800000
145
146/* Max load for SD Vdd-io supply */
147#define SD_VQMMC_MAX_LOAD_UA 22000
148
149#define msm_host_readl(msm_host, host, offset) \
150 msm_host->var_ops->msm_readl_relaxed(host, offset)
151
152#define msm_host_writel(msm_host, val, host, offset) \
153 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
154
155/* CQHCI vendor specific registers */
156#define CQHCI_VENDOR_CFG1 0xA00
157#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
158
159struct sdhci_msm_offset {
160 u32 core_hc_mode;
161 u32 core_mci_data_cnt;
162 u32 core_mci_status;
163 u32 core_mci_fifo_cnt;
164 u32 core_mci_version;
165 u32 core_generics;
166 u32 core_testbus_config;
167 u32 core_testbus_sel2_bit;
168 u32 core_testbus_ena;
169 u32 core_testbus_sel2;
170 u32 core_pwrctl_status;
171 u32 core_pwrctl_mask;
172 u32 core_pwrctl_clear;
173 u32 core_pwrctl_ctl;
174 u32 core_sdcc_debug_reg;
175 u32 core_dll_config;
176 u32 core_dll_status;
177 u32 core_vendor_spec;
178 u32 core_vendor_spec_adma_err_addr0;
179 u32 core_vendor_spec_adma_err_addr1;
180 u32 core_vendor_spec_func2;
181 u32 core_vendor_spec_capabilities0;
182 u32 core_ddr_200_cfg;
183 u32 core_vendor_spec3;
184 u32 core_dll_config_2;
185 u32 core_dll_config_3;
186 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
187 u32 core_ddr_config;
188 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
189};
190
191static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
192 .core_mci_data_cnt = 0x35c,
193 .core_mci_status = 0x324,
194 .core_mci_fifo_cnt = 0x308,
195 .core_mci_version = 0x318,
196 .core_generics = 0x320,
197 .core_testbus_config = 0x32c,
198 .core_testbus_sel2_bit = 3,
199 .core_testbus_ena = (1 << 31),
200 .core_testbus_sel2 = (1 << 3),
201 .core_pwrctl_status = 0x240,
202 .core_pwrctl_mask = 0x244,
203 .core_pwrctl_clear = 0x248,
204 .core_pwrctl_ctl = 0x24c,
205 .core_sdcc_debug_reg = 0x358,
206 .core_dll_config = 0x200,
207 .core_dll_status = 0x208,
208 .core_vendor_spec = 0x20c,
209 .core_vendor_spec_adma_err_addr0 = 0x214,
210 .core_vendor_spec_adma_err_addr1 = 0x218,
211 .core_vendor_spec_func2 = 0x210,
212 .core_vendor_spec_capabilities0 = 0x21c,
213 .core_ddr_200_cfg = 0x224,
214 .core_vendor_spec3 = 0x250,
215 .core_dll_config_2 = 0x254,
216 .core_dll_config_3 = 0x258,
217 .core_ddr_config = 0x25c,
218 .core_dll_usr_ctl = 0x388,
219};
220
221static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
222 .core_hc_mode = 0x78,
223 .core_mci_data_cnt = 0x30,
224 .core_mci_status = 0x34,
225 .core_mci_fifo_cnt = 0x44,
226 .core_mci_version = 0x050,
227 .core_generics = 0x70,
228 .core_testbus_config = 0x0cc,
229 .core_testbus_sel2_bit = 4,
230 .core_testbus_ena = (1 << 3),
231 .core_testbus_sel2 = (1 << 4),
232 .core_pwrctl_status = 0xdc,
233 .core_pwrctl_mask = 0xe0,
234 .core_pwrctl_clear = 0xe4,
235 .core_pwrctl_ctl = 0xe8,
236 .core_sdcc_debug_reg = 0x124,
237 .core_dll_config = 0x100,
238 .core_dll_status = 0x108,
239 .core_vendor_spec = 0x10c,
240 .core_vendor_spec_adma_err_addr0 = 0x114,
241 .core_vendor_spec_adma_err_addr1 = 0x118,
242 .core_vendor_spec_func2 = 0x110,
243 .core_vendor_spec_capabilities0 = 0x11c,
244 .core_ddr_200_cfg = 0x184,
245 .core_vendor_spec3 = 0x1b0,
246 .core_dll_config_2 = 0x1b4,
247 .core_ddr_config_old = 0x1b8,
248 .core_ddr_config = 0x1bc,
249};
250
251struct sdhci_msm_variant_ops {
252 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
253 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
254 u32 offset);
255};
256
257/*
258 * From V5, register spaces have changed. Wrap this info in a structure
259 * and choose the data_structure based on version info mentioned in DT.
260 */
261struct sdhci_msm_variant_info {
262 bool mci_removed;
263 bool restore_dll_config;
264 const struct sdhci_msm_variant_ops *var_ops;
265 const struct sdhci_msm_offset *offset;
266};
267
268struct sdhci_msm_host {
269 struct platform_device *pdev;
270 void __iomem *core_mem; /* MSM SDCC mapped address */
271 int pwr_irq; /* power irq */
272 struct clk *bus_clk; /* SDHC bus voter clock */
273 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
274 /* core, iface, cal and sleep clocks */
275 struct clk_bulk_data bulk_clks[4];
276#ifdef CONFIG_MMC_CRYPTO
277 struct qcom_ice *ice;
278#endif
279 unsigned long clk_rate;
280 struct mmc_host *mmc;
281 bool use_14lpp_dll_reset;
282 bool tuning_done;
283 bool calibration_done;
284 u8 saved_tuning_phase;
285 bool use_cdclp533;
286 u32 curr_pwr_state;
287 u32 curr_io_level;
288 wait_queue_head_t pwr_irq_wait;
289 bool pwr_irq_flag;
290 u32 caps_0;
291 bool mci_removed;
292 bool restore_dll_config;
293 const struct sdhci_msm_variant_ops *var_ops;
294 const struct sdhci_msm_offset *offset;
295 bool use_cdr;
296 u32 transfer_mode;
297 bool updated_ddr_cfg;
298 bool uses_tassadar_dll;
299 u32 dll_config;
300 u32 ddr_config;
301 bool vqmmc_enabled;
302};
303
304static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
305{
306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
308
309 return msm_host->offset;
310}
311
312/*
313 * APIs to read/write to vendor specific registers which were there in the
314 * core_mem region before MCI was removed.
315 */
316static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
317 u32 offset)
318{
319 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
320 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
321
322 return readl_relaxed(msm_host->core_mem + offset);
323}
324
325static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
326 u32 offset)
327{
328 return readl_relaxed(host->ioaddr + offset);
329}
330
331static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
332 struct sdhci_host *host, u32 offset)
333{
334 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
335 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
336
337 writel_relaxed(val, msm_host->core_mem + offset);
338}
339
340static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
341 struct sdhci_host *host, u32 offset)
342{
343 writel_relaxed(val, host->ioaddr + offset);
344}
345
346static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
347{
348 struct mmc_ios ios = host->mmc->ios;
349 /*
350 * The SDHC requires internal clock frequency to be double the
351 * actual clock that will be set for DDR mode. The controller
352 * uses the faster clock(100/400MHz) for some of its parts and
353 * send the actual required clock (50/200MHz) to the card.
354 */
355 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
356 ios.timing == MMC_TIMING_MMC_DDR52 ||
357 ios.timing == MMC_TIMING_MMC_HS400 ||
358 host->flags & SDHCI_HS400_TUNING)
359 return 2;
360 return 1;
361}
362
363static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
364 unsigned int clock)
365{
366 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
367 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
368 struct mmc_ios curr_ios = host->mmc->ios;
369 struct clk *core_clk = msm_host->bulk_clks[0].clk;
370 unsigned long achieved_rate;
371 unsigned int desired_rate;
372 unsigned int mult;
373 int rc;
374
375 mult = msm_get_clock_mult_for_bus_mode(host);
376 desired_rate = clock * mult;
377 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
378 if (rc) {
379 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
380 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
381 return;
382 }
383
384 /*
385 * Qualcomm clock drivers by default round clock _up_ if they can't
386 * make the requested rate. This is not good for SD. Yell if we
387 * encounter it.
388 */
389 achieved_rate = clk_get_rate(core_clk);
390 if (achieved_rate > desired_rate)
391 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
392 mmc_hostname(host->mmc), desired_rate, achieved_rate);
393 host->mmc->actual_clock = achieved_rate / mult;
394
395 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
396 msm_host->clk_rate = desired_rate;
397
398 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
399 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
400}
401
402/* Platform specific tuning */
403static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
404{
405 u32 wait_cnt = 50;
406 u8 ck_out_en;
407 struct mmc_host *mmc = host->mmc;
408 const struct sdhci_msm_offset *msm_offset =
409 sdhci_priv_msm_offset(host);
410
411 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
412 ck_out_en = !!(readl_relaxed(host->ioaddr +
413 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
414
415 while (ck_out_en != poll) {
416 if (--wait_cnt == 0) {
417 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
418 mmc_hostname(mmc), poll);
419 return -ETIMEDOUT;
420 }
421 udelay(1);
422
423 ck_out_en = !!(readl_relaxed(host->ioaddr +
424 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
425 }
426
427 return 0;
428}
429
430static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
431{
432 int rc;
433 static const u8 grey_coded_phase_table[] = {
434 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
435 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
436 };
437 unsigned long flags;
438 u32 config;
439 struct mmc_host *mmc = host->mmc;
440 const struct sdhci_msm_offset *msm_offset =
441 sdhci_priv_msm_offset(host);
442
443 if (phase > 0xf)
444 return -EINVAL;
445
446 spin_lock_irqsave(&host->lock, flags);
447
448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
449 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
450 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
452
453 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
454 rc = msm_dll_poll_ck_out_en(host, 0);
455 if (rc)
456 goto err_out;
457
458 /*
459 * Write the selected DLL clock output phase (0 ... 15)
460 * to CDR_SELEXT bit field of DLL_CONFIG register.
461 */
462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
463 config &= ~CDR_SELEXT_MASK;
464 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
466
467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
468 config |= CORE_CK_OUT_EN;
469 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
470
471 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
472 rc = msm_dll_poll_ck_out_en(host, 1);
473 if (rc)
474 goto err_out;
475
476 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
477 config |= CORE_CDR_EN;
478 config &= ~CORE_CDR_EXT_EN;
479 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
480 goto out;
481
482err_out:
483 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
484 mmc_hostname(mmc), phase);
485out:
486 spin_unlock_irqrestore(&host->lock, flags);
487 return rc;
488}
489
490/*
491 * Find out the greatest range of consecuitive selected
492 * DLL clock output phases that can be used as sampling
493 * setting for SD3.0 UHS-I card read operation (in SDR104
494 * timing mode) or for eMMC4.5 card read operation (in
495 * HS400/HS200 timing mode).
496 * Select the 3/4 of the range and configure the DLL with the
497 * selected DLL clock output phase.
498 */
499
500static int msm_find_most_appropriate_phase(struct sdhci_host *host,
501 u8 *phase_table, u8 total_phases)
502{
503 int ret;
504 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
505 u8 phases_per_row[MAX_PHASES] = { 0 };
506 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
507 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
508 bool phase_0_found = false, phase_15_found = false;
509 struct mmc_host *mmc = host->mmc;
510
511 if (!total_phases || (total_phases > MAX_PHASES)) {
512 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
513 mmc_hostname(mmc), total_phases);
514 return -EINVAL;
515 }
516
517 for (cnt = 0; cnt < total_phases; cnt++) {
518 ranges[row_index][col_index] = phase_table[cnt];
519 phases_per_row[row_index] += 1;
520 col_index++;
521
522 if ((cnt + 1) == total_phases) {
523 continue;
524 /* check if next phase in phase_table is consecutive or not */
525 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
526 row_index++;
527 col_index = 0;
528 }
529 }
530
531 if (row_index >= MAX_PHASES)
532 return -EINVAL;
533
534 /* Check if phase-0 is present in first valid window? */
535 if (!ranges[0][0]) {
536 phase_0_found = true;
537 phase_0_raw_index = 0;
538 /* Check if cycle exist between 2 valid windows */
539 for (cnt = 1; cnt <= row_index; cnt++) {
540 if (phases_per_row[cnt]) {
541 for (i = 0; i < phases_per_row[cnt]; i++) {
542 if (ranges[cnt][i] == 15) {
543 phase_15_found = true;
544 phase_15_raw_index = cnt;
545 break;
546 }
547 }
548 }
549 }
550 }
551
552 /* If 2 valid windows form cycle then merge them as single window */
553 if (phase_0_found && phase_15_found) {
554 /* number of phases in raw where phase 0 is present */
555 u8 phases_0 = phases_per_row[phase_0_raw_index];
556 /* number of phases in raw where phase 15 is present */
557 u8 phases_15 = phases_per_row[phase_15_raw_index];
558
559 if (phases_0 + phases_15 >= MAX_PHASES)
560 /*
561 * If there are more than 1 phase windows then total
562 * number of phases in both the windows should not be
563 * more than or equal to MAX_PHASES.
564 */
565 return -EINVAL;
566
567 /* Merge 2 cyclic windows */
568 i = phases_15;
569 for (cnt = 0; cnt < phases_0; cnt++) {
570 ranges[phase_15_raw_index][i] =
571 ranges[phase_0_raw_index][cnt];
572 if (++i >= MAX_PHASES)
573 break;
574 }
575
576 phases_per_row[phase_0_raw_index] = 0;
577 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
578 }
579
580 for (cnt = 0; cnt <= row_index; cnt++) {
581 if (phases_per_row[cnt] > curr_max) {
582 curr_max = phases_per_row[cnt];
583 selected_row_index = cnt;
584 }
585 }
586
587 i = (curr_max * 3) / 4;
588 if (i)
589 i--;
590
591 ret = ranges[selected_row_index][i];
592
593 if (ret >= MAX_PHASES) {
594 ret = -EINVAL;
595 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
596 mmc_hostname(mmc), ret);
597 }
598
599 return ret;
600}
601
602static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
603{
604 u32 mclk_freq = 0, config;
605 const struct sdhci_msm_offset *msm_offset =
606 sdhci_priv_msm_offset(host);
607
608 /* Program the MCLK value to MCLK_FREQ bit field */
609 if (host->clock <= 112000000)
610 mclk_freq = 0;
611 else if (host->clock <= 125000000)
612 mclk_freq = 1;
613 else if (host->clock <= 137000000)
614 mclk_freq = 2;
615 else if (host->clock <= 150000000)
616 mclk_freq = 3;
617 else if (host->clock <= 162000000)
618 mclk_freq = 4;
619 else if (host->clock <= 175000000)
620 mclk_freq = 5;
621 else if (host->clock <= 187000000)
622 mclk_freq = 6;
623 else if (host->clock <= 200000000)
624 mclk_freq = 7;
625
626 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
627 config &= ~CMUX_SHIFT_PHASE_MASK;
628 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
629 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
630}
631
632/* Initialize the DLL (Programmable Delay Line) */
633static int msm_init_cm_dll(struct sdhci_host *host)
634{
635 struct mmc_host *mmc = host->mmc;
636 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
637 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
638 int wait_cnt = 50;
639 unsigned long flags, xo_clk = 0;
640 u32 config;
641 const struct sdhci_msm_offset *msm_offset =
642 msm_host->offset;
643
644 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
645 xo_clk = clk_get_rate(msm_host->xo_clk);
646
647 spin_lock_irqsave(&host->lock, flags);
648
649 /*
650 * Make sure that clock is always enabled when DLL
651 * tuning is in progress. Keeping PWRSAVE ON may
652 * turn off the clock.
653 */
654 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
655 config &= ~CORE_CLK_PWRSAVE;
656 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
657
658 if (msm_host->dll_config)
659 writel_relaxed(msm_host->dll_config,
660 host->ioaddr + msm_offset->core_dll_config);
661
662 if (msm_host->use_14lpp_dll_reset) {
663 config = readl_relaxed(host->ioaddr +
664 msm_offset->core_dll_config);
665 config &= ~CORE_CK_OUT_EN;
666 writel_relaxed(config, host->ioaddr +
667 msm_offset->core_dll_config);
668
669 config = readl_relaxed(host->ioaddr +
670 msm_offset->core_dll_config_2);
671 config |= CORE_DLL_CLOCK_DISABLE;
672 writel_relaxed(config, host->ioaddr +
673 msm_offset->core_dll_config_2);
674 }
675
676 config = readl_relaxed(host->ioaddr +
677 msm_offset->core_dll_config);
678 config |= CORE_DLL_RST;
679 writel_relaxed(config, host->ioaddr +
680 msm_offset->core_dll_config);
681
682 config = readl_relaxed(host->ioaddr +
683 msm_offset->core_dll_config);
684 config |= CORE_DLL_PDN;
685 writel_relaxed(config, host->ioaddr +
686 msm_offset->core_dll_config);
687
688 if (!msm_host->dll_config)
689 msm_cm_dll_set_freq(host);
690
691 if (msm_host->use_14lpp_dll_reset &&
692 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
693 u32 mclk_freq = 0;
694
695 config = readl_relaxed(host->ioaddr +
696 msm_offset->core_dll_config_2);
697 config &= CORE_FLL_CYCLE_CNT;
698 if (config)
699 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
700 xo_clk);
701 else
702 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
703 xo_clk);
704
705 config = readl_relaxed(host->ioaddr +
706 msm_offset->core_dll_config_2);
707 config &= ~(0xFF << 10);
708 config |= mclk_freq << 10;
709
710 writel_relaxed(config, host->ioaddr +
711 msm_offset->core_dll_config_2);
712 /* wait for 5us before enabling DLL clock */
713 udelay(5);
714 }
715
716 config = readl_relaxed(host->ioaddr +
717 msm_offset->core_dll_config);
718 config &= ~CORE_DLL_RST;
719 writel_relaxed(config, host->ioaddr +
720 msm_offset->core_dll_config);
721
722 config = readl_relaxed(host->ioaddr +
723 msm_offset->core_dll_config);
724 config &= ~CORE_DLL_PDN;
725 writel_relaxed(config, host->ioaddr +
726 msm_offset->core_dll_config);
727
728 if (msm_host->use_14lpp_dll_reset) {
729 if (!msm_host->dll_config)
730 msm_cm_dll_set_freq(host);
731 config = readl_relaxed(host->ioaddr +
732 msm_offset->core_dll_config_2);
733 config &= ~CORE_DLL_CLOCK_DISABLE;
734 writel_relaxed(config, host->ioaddr +
735 msm_offset->core_dll_config_2);
736 }
737
738 /*
739 * Configure DLL user control register to enable DLL status.
740 * This setting is applicable to SDCC v5.1 onwards only.
741 */
742 if (msm_host->uses_tassadar_dll) {
743 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
744 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
745 writel_relaxed(config, host->ioaddr +
746 msm_offset->core_dll_usr_ctl);
747
748 config = readl_relaxed(host->ioaddr +
749 msm_offset->core_dll_config_3);
750 config &= ~0xFF;
751 if (msm_host->clk_rate < 150000000)
752 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
753 else
754 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
755 writel_relaxed(config, host->ioaddr +
756 msm_offset->core_dll_config_3);
757 }
758
759 config = readl_relaxed(host->ioaddr +
760 msm_offset->core_dll_config);
761 config |= CORE_DLL_EN;
762 writel_relaxed(config, host->ioaddr +
763 msm_offset->core_dll_config);
764
765 config = readl_relaxed(host->ioaddr +
766 msm_offset->core_dll_config);
767 config |= CORE_CK_OUT_EN;
768 writel_relaxed(config, host->ioaddr +
769 msm_offset->core_dll_config);
770
771 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
772 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
773 CORE_DLL_LOCK)) {
774 /* max. wait for 50us sec for LOCK bit to be set */
775 if (--wait_cnt == 0) {
776 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
777 mmc_hostname(mmc));
778 spin_unlock_irqrestore(&host->lock, flags);
779 return -ETIMEDOUT;
780 }
781 udelay(1);
782 }
783
784 spin_unlock_irqrestore(&host->lock, flags);
785 return 0;
786}
787
788static void msm_hc_select_default(struct sdhci_host *host)
789{
790 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
791 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
792 u32 config;
793 const struct sdhci_msm_offset *msm_offset =
794 msm_host->offset;
795
796 if (!msm_host->use_cdclp533) {
797 config = readl_relaxed(host->ioaddr +
798 msm_offset->core_vendor_spec3);
799 config &= ~CORE_PWRSAVE_DLL;
800 writel_relaxed(config, host->ioaddr +
801 msm_offset->core_vendor_spec3);
802 }
803
804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
805 config &= ~CORE_HC_MCLK_SEL_MASK;
806 config |= CORE_HC_MCLK_SEL_DFLT;
807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
808
809 /*
810 * Disable HC_SELECT_IN to be able to use the UHS mode select
811 * configuration from Host Control2 register for all other
812 * modes.
813 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
814 * in VENDOR_SPEC_FUNC
815 */
816 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
817 config &= ~CORE_HC_SELECT_IN_EN;
818 config &= ~CORE_HC_SELECT_IN_MASK;
819 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
820
821 /*
822 * Make sure above writes impacting free running MCLK are completed
823 * before changing the clk_rate at GCC.
824 */
825 wmb();
826}
827
828static void msm_hc_select_hs400(struct sdhci_host *host)
829{
830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
832 struct mmc_ios ios = host->mmc->ios;
833 u32 config, dll_lock;
834 int rc;
835 const struct sdhci_msm_offset *msm_offset =
836 msm_host->offset;
837
838 /* Select the divided clock (free running MCLK/2) */
839 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
840 config &= ~CORE_HC_MCLK_SEL_MASK;
841 config |= CORE_HC_MCLK_SEL_HS400;
842
843 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
844 /*
845 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
846 * register
847 */
848 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
849 !msm_host->calibration_done) {
850 config = readl_relaxed(host->ioaddr +
851 msm_offset->core_vendor_spec);
852 config |= CORE_HC_SELECT_IN_HS400;
853 config |= CORE_HC_SELECT_IN_EN;
854 writel_relaxed(config, host->ioaddr +
855 msm_offset->core_vendor_spec);
856 }
857 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
858 /*
859 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
860 * core_dll_status to be set. This should get set
861 * within 15 us at 200 MHz.
862 */
863 rc = readl_relaxed_poll_timeout(host->ioaddr +
864 msm_offset->core_dll_status,
865 dll_lock,
866 (dll_lock &
867 (CORE_DLL_LOCK |
868 CORE_DDR_DLL_LOCK)), 10,
869 1000);
870 if (rc == -ETIMEDOUT)
871 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
872 mmc_hostname(host->mmc), dll_lock);
873 }
874 /*
875 * Make sure above writes impacting free running MCLK are completed
876 * before changing the clk_rate at GCC.
877 */
878 wmb();
879}
880
881/*
882 * sdhci_msm_hc_select_mode :- In general all timing modes are
883 * controlled via UHS mode select in Host Control2 register.
884 * eMMC specific HS200/HS400 doesn't have their respective modes
885 * defined here, hence we use these values.
886 *
887 * HS200 - SDR104 (Since they both are equivalent in functionality)
888 * HS400 - This involves multiple configurations
889 * Initially SDR104 - when tuning is required as HS200
890 * Then when switching to DDR @ 400MHz (HS400) we use
891 * the vendor specific HC_SELECT_IN to control the mode.
892 *
893 * In addition to controlling the modes we also need to select the
894 * correct input clock for DLL depending on the mode.
895 *
896 * HS400 - divided clock (free running MCLK/2)
897 * All other modes - default (free running MCLK)
898 */
899static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
900{
901 struct mmc_ios ios = host->mmc->ios;
902
903 if (ios.timing == MMC_TIMING_MMC_HS400 ||
904 host->flags & SDHCI_HS400_TUNING)
905 msm_hc_select_hs400(host);
906 else
907 msm_hc_select_default(host);
908}
909
910static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
911{
912 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
913 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
914 u32 config, calib_done;
915 int ret;
916 const struct sdhci_msm_offset *msm_offset =
917 msm_host->offset;
918
919 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
920
921 /*
922 * Retuning in HS400 (DDR mode) will fail, just reset the
923 * tuning block and restore the saved tuning phase.
924 */
925 ret = msm_init_cm_dll(host);
926 if (ret)
927 goto out;
928
929 /* Set the selected phase in delay line hw block */
930 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
931 if (ret)
932 goto out;
933
934 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
935 config |= CORE_CMD_DAT_TRACK_SEL;
936 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
937
938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
939 config &= ~CORE_CDC_T4_DLY_SEL;
940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
941
942 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
943 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
944 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
945
946 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
947 config |= CORE_CDC_SWITCH_RC_EN;
948 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
949
950 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
951 config &= ~CORE_START_CDC_TRAFFIC;
952 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
953
954 /* Perform CDC Register Initialization Sequence */
955
956 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
958 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
959 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
960 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
961 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
962 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
963 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
964 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
965
966 /* CDC HW Calibration */
967
968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
969 config |= CORE_SW_TRIG_FULL_CALIB;
970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
971
972 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
973 config &= ~CORE_SW_TRIG_FULL_CALIB;
974 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
975
976 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
977 config |= CORE_HW_AUTOCAL_ENA;
978 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
979
980 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
981 config |= CORE_TIMER_ENA;
982 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
983
984 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
985 calib_done,
986 (calib_done & CORE_CALIBRATION_DONE),
987 1, 50);
988
989 if (ret == -ETIMEDOUT) {
990 pr_err("%s: %s: CDC calibration was not completed\n",
991 mmc_hostname(host->mmc), __func__);
992 goto out;
993 }
994
995 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
996 & CORE_CDC_ERROR_CODE_MASK;
997 if (ret) {
998 pr_err("%s: %s: CDC error code %d\n",
999 mmc_hostname(host->mmc), __func__, ret);
1000 ret = -EINVAL;
1001 goto out;
1002 }
1003
1004 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
1005 config |= CORE_START_CDC_TRAFFIC;
1006 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
1007out:
1008 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1009 __func__, ret);
1010 return ret;
1011}
1012
1013static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1014{
1015 struct mmc_host *mmc = host->mmc;
1016 u32 dll_status, config, ddr_cfg_offset;
1017 int ret;
1018 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1019 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1020 const struct sdhci_msm_offset *msm_offset =
1021 sdhci_priv_msm_offset(host);
1022
1023 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1024
1025 /*
1026 * Currently the core_ddr_config register defaults to desired
1027 * configuration on reset. Currently reprogramming the power on
1028 * reset (POR) value in case it might have been modified by
1029 * bootloaders. In the future, if this changes, then the desired
1030 * values will need to be programmed appropriately.
1031 */
1032 if (msm_host->updated_ddr_cfg)
1033 ddr_cfg_offset = msm_offset->core_ddr_config;
1034 else
1035 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1036 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1037
1038 if (mmc->ios.enhanced_strobe) {
1039 config = readl_relaxed(host->ioaddr +
1040 msm_offset->core_ddr_200_cfg);
1041 config |= CORE_CMDIN_RCLK_EN;
1042 writel_relaxed(config, host->ioaddr +
1043 msm_offset->core_ddr_200_cfg);
1044 }
1045
1046 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1047 config |= CORE_DDR_CAL_EN;
1048 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1049
1050 ret = readl_relaxed_poll_timeout(host->ioaddr +
1051 msm_offset->core_dll_status,
1052 dll_status,
1053 (dll_status & CORE_DDR_DLL_LOCK),
1054 10, 1000);
1055
1056 if (ret == -ETIMEDOUT) {
1057 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1058 mmc_hostname(host->mmc), __func__);
1059 goto out;
1060 }
1061
1062 /*
1063 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1064 * When MCLK is gated OFF, it is not gated for less than 0.5us
1065 * and MCLK must be switched on for at-least 1us before DATA
1066 * starts coming. Controllers with 14lpp and later tech DLL cannot
1067 * guarantee above requirement. So PWRSAVE_DLL should not be
1068 * turned on for host controllers using this DLL.
1069 */
1070 if (!msm_host->use_14lpp_dll_reset) {
1071 config = readl_relaxed(host->ioaddr +
1072 msm_offset->core_vendor_spec3);
1073 config |= CORE_PWRSAVE_DLL;
1074 writel_relaxed(config, host->ioaddr +
1075 msm_offset->core_vendor_spec3);
1076 }
1077
1078 /*
1079 * Drain writebuffer to ensure above DLL calibration
1080 * and PWRSAVE DLL is enabled.
1081 */
1082 wmb();
1083out:
1084 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1085 __func__, ret);
1086 return ret;
1087}
1088
1089static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1090{
1091 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1092 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1093 struct mmc_host *mmc = host->mmc;
1094 int ret;
1095 u32 config;
1096 const struct sdhci_msm_offset *msm_offset =
1097 msm_host->offset;
1098
1099 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1100
1101 /*
1102 * Retuning in HS400 (DDR mode) will fail, just reset the
1103 * tuning block and restore the saved tuning phase.
1104 */
1105 ret = msm_init_cm_dll(host);
1106 if (ret)
1107 goto out;
1108
1109 if (!mmc->ios.enhanced_strobe) {
1110 /* Set the selected phase in delay line hw block */
1111 ret = msm_config_cm_dll_phase(host,
1112 msm_host->saved_tuning_phase);
1113 if (ret)
1114 goto out;
1115 config = readl_relaxed(host->ioaddr +
1116 msm_offset->core_dll_config);
1117 config |= CORE_CMD_DAT_TRACK_SEL;
1118 writel_relaxed(config, host->ioaddr +
1119 msm_offset->core_dll_config);
1120 }
1121
1122 if (msm_host->use_cdclp533)
1123 ret = sdhci_msm_cdclp533_calibration(host);
1124 else
1125 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1126out:
1127 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1128 __func__, ret);
1129 return ret;
1130}
1131
1132static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1133{
1134 struct mmc_ios *ios = &host->mmc->ios;
1135
1136 /*
1137 * Tuning is required for SDR104, HS200 and HS400 cards and
1138 * if clock frequency is greater than 100MHz in these modes.
1139 */
1140 if (host->clock <= CORE_FREQ_100MHZ ||
1141 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1142 ios->timing == MMC_TIMING_MMC_HS200 ||
1143 ios->timing == MMC_TIMING_UHS_SDR104) ||
1144 ios->enhanced_strobe)
1145 return false;
1146
1147 return true;
1148}
1149
1150static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1151{
1152 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1153 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1154 int ret;
1155
1156 /*
1157 * SDR DLL comes into picture only for timing modes which needs
1158 * tuning.
1159 */
1160 if (!sdhci_msm_is_tuning_needed(host))
1161 return 0;
1162
1163 /* Reset the tuning block */
1164 ret = msm_init_cm_dll(host);
1165 if (ret)
1166 return ret;
1167
1168 /* Restore the tuning block */
1169 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1170
1171 return ret;
1172}
1173
1174static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1175{
1176 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1177 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1178 msm_offset->core_dll_config);
1179
1180 config = oldconfig;
1181 if (enable) {
1182 config |= CORE_CDR_EN;
1183 config &= ~CORE_CDR_EXT_EN;
1184 } else {
1185 config &= ~CORE_CDR_EN;
1186 config |= CORE_CDR_EXT_EN;
1187 }
1188
1189 if (config != oldconfig) {
1190 writel_relaxed(config, host->ioaddr +
1191 msm_offset->core_dll_config);
1192 }
1193}
1194
1195static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1196{
1197 struct sdhci_host *host = mmc_priv(mmc);
1198 int tuning_seq_cnt = 10;
1199 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1200 int rc;
1201 struct mmc_ios ios = host->mmc->ios;
1202 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1203 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1204
1205 if (!sdhci_msm_is_tuning_needed(host)) {
1206 msm_host->use_cdr = false;
1207 sdhci_msm_set_cdr(host, false);
1208 return 0;
1209 }
1210
1211 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1212 msm_host->use_cdr = true;
1213
1214 /*
1215 * Clear tuning_done flag before tuning to ensure proper
1216 * HS400 settings.
1217 */
1218 msm_host->tuning_done = 0;
1219
1220 /*
1221 * For HS400 tuning in HS200 timing requires:
1222 * - select MCLK/2 in VENDOR_SPEC
1223 * - program MCLK to 400MHz (or nearest supported) in GCC
1224 */
1225 if (host->flags & SDHCI_HS400_TUNING) {
1226 sdhci_msm_hc_select_mode(host);
1227 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1228 host->flags &= ~SDHCI_HS400_TUNING;
1229 }
1230
1231retry:
1232 /* First of all reset the tuning block */
1233 rc = msm_init_cm_dll(host);
1234 if (rc)
1235 return rc;
1236
1237 phase = 0;
1238 do {
1239 /* Set the phase in delay line hw block */
1240 rc = msm_config_cm_dll_phase(host, phase);
1241 if (rc)
1242 return rc;
1243
1244 rc = mmc_send_tuning(mmc, opcode, NULL);
1245 if (!rc) {
1246 /* Tuning is successful at this tuning point */
1247 tuned_phases[tuned_phase_cnt++] = phase;
1248 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1249 mmc_hostname(mmc), phase);
1250 }
1251 } while (++phase < ARRAY_SIZE(tuned_phases));
1252
1253 if (tuned_phase_cnt) {
1254 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1255 /*
1256 * All phases valid is _almost_ as bad as no phases
1257 * valid. Probably all phases are not really reliable
1258 * but we didn't detect where the unreliable place is.
1259 * That means we'll essentially be guessing and hoping
1260 * we get a good phase. Better to try a few times.
1261 */
1262 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1263 mmc_hostname(mmc));
1264 if (--tuning_seq_cnt) {
1265 tuned_phase_cnt = 0;
1266 goto retry;
1267 }
1268 }
1269
1270 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1271 tuned_phase_cnt);
1272 if (rc < 0)
1273 return rc;
1274 else
1275 phase = rc;
1276
1277 /*
1278 * Finally set the selected phase in delay
1279 * line hw block.
1280 */
1281 rc = msm_config_cm_dll_phase(host, phase);
1282 if (rc)
1283 return rc;
1284 msm_host->saved_tuning_phase = phase;
1285 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1286 mmc_hostname(mmc), phase);
1287 } else {
1288 if (--tuning_seq_cnt)
1289 goto retry;
1290 /* Tuning failed */
1291 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1292 mmc_hostname(mmc));
1293 rc = -EIO;
1294 }
1295
1296 if (!rc)
1297 msm_host->tuning_done = true;
1298 return rc;
1299}
1300
1301/*
1302 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1303 * This needs to be done for both tuning and enhanced_strobe mode.
1304 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1305 * fixed feedback clock is used.
1306 */
1307static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1308{
1309 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1310 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1311 int ret;
1312
1313 if (host->clock > CORE_FREQ_100MHZ &&
1314 (msm_host->tuning_done || ios->enhanced_strobe) &&
1315 !msm_host->calibration_done) {
1316 ret = sdhci_msm_hs400_dll_calibration(host);
1317 if (!ret)
1318 msm_host->calibration_done = true;
1319 else
1320 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1321 mmc_hostname(host->mmc), ret);
1322 }
1323}
1324
1325static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1326 unsigned int uhs)
1327{
1328 struct mmc_host *mmc = host->mmc;
1329 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1330 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1331 u16 ctrl_2;
1332 u32 config;
1333 const struct sdhci_msm_offset *msm_offset =
1334 msm_host->offset;
1335
1336 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1337 /* Select Bus Speed Mode for host */
1338 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1339 switch (uhs) {
1340 case MMC_TIMING_UHS_SDR12:
1341 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1342 break;
1343 case MMC_TIMING_UHS_SDR25:
1344 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1345 break;
1346 case MMC_TIMING_UHS_SDR50:
1347 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1348 break;
1349 case MMC_TIMING_MMC_HS400:
1350 case MMC_TIMING_MMC_HS200:
1351 case MMC_TIMING_UHS_SDR104:
1352 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1353 break;
1354 case MMC_TIMING_UHS_DDR50:
1355 case MMC_TIMING_MMC_DDR52:
1356 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1357 break;
1358 }
1359
1360 /*
1361 * When clock frequency is less than 100MHz, the feedback clock must be
1362 * provided and DLL must not be used so that tuning can be skipped. To
1363 * provide feedback clock, the mode selection can be any value less
1364 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1365 */
1366 if (host->clock <= CORE_FREQ_100MHZ) {
1367 if (uhs == MMC_TIMING_MMC_HS400 ||
1368 uhs == MMC_TIMING_MMC_HS200 ||
1369 uhs == MMC_TIMING_UHS_SDR104)
1370 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1371 /*
1372 * DLL is not required for clock <= 100MHz
1373 * Thus, make sure DLL it is disabled when not required
1374 */
1375 config = readl_relaxed(host->ioaddr +
1376 msm_offset->core_dll_config);
1377 config |= CORE_DLL_RST;
1378 writel_relaxed(config, host->ioaddr +
1379 msm_offset->core_dll_config);
1380
1381 config = readl_relaxed(host->ioaddr +
1382 msm_offset->core_dll_config);
1383 config |= CORE_DLL_PDN;
1384 writel_relaxed(config, host->ioaddr +
1385 msm_offset->core_dll_config);
1386
1387 /*
1388 * The DLL needs to be restored and CDCLP533 recalibrated
1389 * when the clock frequency is set back to 400MHz.
1390 */
1391 msm_host->calibration_done = false;
1392 }
1393
1394 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1395 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1396 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1397
1398 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1399 sdhci_msm_hs400(host, &mmc->ios);
1400}
1401
1402static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1403{
1404 struct platform_device *pdev = msm_host->pdev;
1405 int ret;
1406
1407 if (level)
1408 ret = pinctrl_pm_select_default_state(&pdev->dev);
1409 else
1410 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1411
1412 return ret;
1413}
1414
1415static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm)
1416{
1417 int load;
1418
1419 if (!hpm)
1420 load = 0;
1421 else if (!mmc->card)
1422 load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA);
1423 else if (mmc_card_mmc(mmc->card))
1424 load = MMC_VMMC_MAX_LOAD_UA;
1425 else if (mmc_card_sd(mmc->card))
1426 load = SD_VMMC_MAX_LOAD_UA;
1427 else
1428 return;
1429
1430 regulator_set_load(mmc->supply.vmmc, load);
1431}
1432
1433static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm)
1434{
1435 int load;
1436
1437 if (!hpm)
1438 load = 0;
1439 else if (!mmc->card)
1440 load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA);
1441 else if (mmc_card_sd(mmc->card))
1442 load = SD_VQMMC_MAX_LOAD_UA;
1443 else
1444 return;
1445
1446 regulator_set_load(mmc->supply.vqmmc, load);
1447}
1448
1449static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host,
1450 struct mmc_host *mmc, bool hpm)
1451{
1452 if (IS_ERR(mmc->supply.vmmc))
1453 return 0;
1454
1455 msm_config_vmmc_regulator(mmc, hpm);
1456
1457 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1458}
1459
1460static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1461 struct mmc_host *mmc, bool level)
1462{
1463 int ret;
1464 struct mmc_ios ios;
1465
1466 if (msm_host->vqmmc_enabled == level)
1467 return 0;
1468
1469 msm_config_vqmmc_regulator(mmc, level);
1470
1471 if (level) {
1472 /* Set the IO voltage regulator to default voltage level */
1473 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1474 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1475 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1476 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1477
1478 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1479 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1480 if (ret < 0) {
1481 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1482 mmc_hostname(mmc), ret);
1483 goto out;
1484 }
1485 }
1486 ret = regulator_enable(mmc->supply.vqmmc);
1487 } else {
1488 ret = regulator_disable(mmc->supply.vqmmc);
1489 }
1490
1491 if (ret)
1492 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1493 mmc_hostname(mmc), level ? "en":"dis", ret);
1494 else
1495 msm_host->vqmmc_enabled = level;
1496out:
1497 return ret;
1498}
1499
1500static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1501 struct mmc_host *mmc, bool hpm)
1502{
1503 int load, ret;
1504
1505 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1506 ret = regulator_set_load(mmc->supply.vqmmc, load);
1507 if (ret)
1508 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1509 mmc_hostname(mmc), ret);
1510 return ret;
1511}
1512
1513static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1514 struct mmc_host *mmc, bool level)
1515{
1516 int ret;
1517 bool always_on;
1518
1519 if (IS_ERR(mmc->supply.vqmmc) ||
1520 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1521 return 0;
1522 /*
1523 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1524 * and HPM modes by setting the corresponding load.
1525 *
1526 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1527 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1528 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1529 * Vqmmc should remain ON, So just set the load instead of turning it
1530 * off/on.
1531 */
1532 always_on = !mmc_card_is_removable(mmc) &&
1533 mmc->card && mmc_card_mmc(mmc->card);
1534
1535 if (always_on)
1536 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1537 else
1538 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1539
1540 return ret;
1541}
1542
1543static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1544{
1545 init_waitqueue_head(&msm_host->pwr_irq_wait);
1546}
1547
1548static inline void sdhci_msm_complete_pwr_irq_wait(
1549 struct sdhci_msm_host *msm_host)
1550{
1551 wake_up(&msm_host->pwr_irq_wait);
1552}
1553
1554/*
1555 * sdhci_msm_check_power_status API should be called when registers writes
1556 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1557 * To what state the register writes will change the IO lines should be passed
1558 * as the argument req_type. This API will check whether the IO line's state
1559 * is already the expected state and will wait for power irq only if
1560 * power irq is expected to be triggered based on the current IO line state
1561 * and expected IO line state.
1562 */
1563static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1564{
1565 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1566 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1567 bool done = false;
1568 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1569 const struct sdhci_msm_offset *msm_offset =
1570 msm_host->offset;
1571
1572 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1573 mmc_hostname(host->mmc), __func__, req_type,
1574 msm_host->curr_pwr_state, msm_host->curr_io_level);
1575
1576 /*
1577 * The power interrupt will not be generated for signal voltage
1578 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1579 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1580 * it as always set.
1581 */
1582 if (!msm_host->mci_removed)
1583 val = msm_host_readl(msm_host, host,
1584 msm_offset->core_generics);
1585 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1586 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1587 return;
1588 }
1589
1590 /*
1591 * The IRQ for request type IO High/LOW will be generated when -
1592 * there is a state change in 1.8V enable bit (bit 3) of
1593 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1594 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1595 * to set it to 3.3V before card detection happens, the
1596 * IRQ doesn't get triggered as there is no state change in this bit.
1597 * The driver already handles this case by changing the IO voltage
1598 * level to high as part of controller power up sequence. Hence, check
1599 * for host->pwr to handle a case where IO voltage high request is
1600 * issued even before controller power up.
1601 */
1602 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1603 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1604 mmc_hostname(host->mmc), req_type);
1605 return;
1606 }
1607 if ((req_type & msm_host->curr_pwr_state) ||
1608 (req_type & msm_host->curr_io_level))
1609 done = true;
1610 /*
1611 * This is needed here to handle cases where register writes will
1612 * not change the current bus state or io level of the controller.
1613 * In this case, no power irq will be triggerred and we should
1614 * not wait.
1615 */
1616 if (!done) {
1617 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1618 msm_host->pwr_irq_flag,
1619 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1620 dev_warn(&msm_host->pdev->dev,
1621 "%s: pwr_irq for req: (%d) timed out\n",
1622 mmc_hostname(host->mmc), req_type);
1623 }
1624 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1625 __func__, req_type);
1626}
1627
1628static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1629{
1630 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1631 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1632 const struct sdhci_msm_offset *msm_offset =
1633 msm_host->offset;
1634
1635 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1636 mmc_hostname(host->mmc),
1637 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1638 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1639 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1640}
1641
1642static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1643{
1644 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1645 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1646 struct mmc_host *mmc = host->mmc;
1647 u32 irq_status, irq_ack = 0;
1648 int retry = 10, ret;
1649 u32 pwr_state = 0, io_level = 0;
1650 u32 config;
1651 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1652
1653 irq_status = msm_host_readl(msm_host, host,
1654 msm_offset->core_pwrctl_status);
1655 irq_status &= INT_MASK;
1656
1657 msm_host_writel(msm_host, irq_status, host,
1658 msm_offset->core_pwrctl_clear);
1659
1660 /*
1661 * There is a rare HW scenario where the first clear pulse could be
1662 * lost when actual reset and clear/read of status register is
1663 * happening at a time. Hence, retry for at least 10 times to make
1664 * sure status register is cleared. Otherwise, this will result in
1665 * a spurious power IRQ resulting in system instability.
1666 */
1667 while (irq_status & msm_host_readl(msm_host, host,
1668 msm_offset->core_pwrctl_status)) {
1669 if (retry == 0) {
1670 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1671 mmc_hostname(host->mmc), irq_status);
1672 sdhci_msm_dump_pwr_ctrl_regs(host);
1673 WARN_ON(1);
1674 break;
1675 }
1676 msm_host_writel(msm_host, irq_status, host,
1677 msm_offset->core_pwrctl_clear);
1678 retry--;
1679 udelay(10);
1680 }
1681
1682 /* Handle BUS ON/OFF*/
1683 if (irq_status & CORE_PWRCTL_BUS_ON) {
1684 pwr_state = REQ_BUS_ON;
1685 io_level = REQ_IO_HIGH;
1686 }
1687 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1688 pwr_state = REQ_BUS_OFF;
1689 io_level = REQ_IO_LOW;
1690 }
1691
1692 if (pwr_state) {
1693 ret = sdhci_msm_set_vmmc(msm_host, mmc,
1694 pwr_state & REQ_BUS_ON);
1695 if (!ret)
1696 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1697 pwr_state & REQ_BUS_ON);
1698 if (!ret)
1699 ret = sdhci_msm_set_pincfg(msm_host,
1700 pwr_state & REQ_BUS_ON);
1701 if (!ret)
1702 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1703 else
1704 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1705 }
1706
1707 /* Handle IO LOW/HIGH */
1708 if (irq_status & CORE_PWRCTL_IO_LOW)
1709 io_level = REQ_IO_LOW;
1710
1711 if (irq_status & CORE_PWRCTL_IO_HIGH)
1712 io_level = REQ_IO_HIGH;
1713
1714 if (io_level)
1715 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1716
1717 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1718 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1719 if (ret < 0) {
1720 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1721 mmc_hostname(mmc), ret,
1722 mmc->ios.signal_voltage, mmc->ios.vdd,
1723 irq_status);
1724 irq_ack |= CORE_PWRCTL_IO_FAIL;
1725 }
1726 }
1727
1728 /*
1729 * The driver has to acknowledge the interrupt, switch voltages and
1730 * report back if it succeded or not to this register. The voltage
1731 * switches are handled by the sdhci core, so just report success.
1732 */
1733 msm_host_writel(msm_host, irq_ack, host,
1734 msm_offset->core_pwrctl_ctl);
1735
1736 /*
1737 * If we don't have info regarding the voltage levels supported by
1738 * regulators, don't change the IO PAD PWR SWITCH.
1739 */
1740 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1741 u32 new_config;
1742 /*
1743 * We should unset IO PAD PWR switch only if the register write
1744 * can set IO lines high and the regulator also switches to 3 V.
1745 * Else, we should keep the IO PAD PWR switch set.
1746 * This is applicable to certain targets where eMMC vccq supply
1747 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1748 * IO PAD PWR switch must be kept set to reflect actual
1749 * regulator voltage. This way, during initialization of
1750 * controllers with only 1.8V, we will set the IO PAD bit
1751 * without waiting for a REQ_IO_LOW.
1752 */
1753 config = readl_relaxed(host->ioaddr +
1754 msm_offset->core_vendor_spec);
1755 new_config = config;
1756
1757 if ((io_level & REQ_IO_HIGH) &&
1758 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1759 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1760 else if ((io_level & REQ_IO_LOW) ||
1761 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1762 new_config |= CORE_IO_PAD_PWR_SWITCH;
1763
1764 if (config ^ new_config)
1765 writel_relaxed(new_config, host->ioaddr +
1766 msm_offset->core_vendor_spec);
1767 }
1768
1769 if (pwr_state)
1770 msm_host->curr_pwr_state = pwr_state;
1771 if (io_level)
1772 msm_host->curr_io_level = io_level;
1773
1774 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1775 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1776 irq_ack);
1777}
1778
1779static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1780{
1781 struct sdhci_host *host = (struct sdhci_host *)data;
1782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784
1785 sdhci_msm_handle_pwr_irq(host, irq);
1786 msm_host->pwr_irq_flag = 1;
1787 sdhci_msm_complete_pwr_irq_wait(msm_host);
1788
1789
1790 return IRQ_HANDLED;
1791}
1792
1793static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1794{
1795 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1796 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1797 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1798
1799 return clk_round_rate(core_clk, ULONG_MAX);
1800}
1801
1802static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1803{
1804 return SDHCI_MSM_MIN_CLOCK;
1805}
1806
1807/*
1808 * __sdhci_msm_set_clock - sdhci_msm clock control.
1809 *
1810 * Description:
1811 * MSM controller does not use internal divider and
1812 * instead directly control the GCC clock as per
1813 * HW recommendation.
1814 **/
1815static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1816{
1817 u16 clk;
1818
1819 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1820
1821 if (clock == 0)
1822 return;
1823
1824 /*
1825 * MSM controller do not use clock divider.
1826 * Thus read SDHCI_CLOCK_CONTROL and only enable
1827 * clock with no divider value programmed.
1828 */
1829 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1830 sdhci_enable_clk(host, clk);
1831}
1832
1833/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1834static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1835{
1836 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1837 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1838
1839 if (!clock) {
1840 host->mmc->actual_clock = msm_host->clk_rate = 0;
1841 goto out;
1842 }
1843
1844 sdhci_msm_hc_select_mode(host);
1845
1846 msm_set_clock_rate_for_bus_mode(host, clock);
1847out:
1848 __sdhci_msm_set_clock(host, clock);
1849}
1850
1851/*****************************************************************************\
1852 * *
1853 * Inline Crypto Engine (ICE) support *
1854 * *
1855\*****************************************************************************/
1856
1857#ifdef CONFIG_MMC_CRYPTO
1858
1859static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1860 struct cqhci_host *cq_host)
1861{
1862 struct mmc_host *mmc = msm_host->mmc;
1863 struct device *dev = mmc_dev(mmc);
1864 struct qcom_ice *ice;
1865
1866 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1867 return 0;
1868
1869 ice = of_qcom_ice_get(dev);
1870 if (ice == ERR_PTR(-EOPNOTSUPP)) {
1871 dev_warn(dev, "Disabling inline encryption support\n");
1872 ice = NULL;
1873 }
1874
1875 if (IS_ERR_OR_NULL(ice))
1876 return PTR_ERR_OR_ZERO(ice);
1877
1878 msm_host->ice = ice;
1879 mmc->caps2 |= MMC_CAP2_CRYPTO;
1880
1881 return 0;
1882}
1883
1884static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1885{
1886 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1887 qcom_ice_enable(msm_host->ice);
1888}
1889
1890static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1891{
1892 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1893 return qcom_ice_resume(msm_host->ice);
1894
1895 return 0;
1896}
1897
1898static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1899{
1900 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1901 return qcom_ice_suspend(msm_host->ice);
1902
1903 return 0;
1904}
1905
1906/*
1907 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1908 * vendor-specific SCM calls for this; it doesn't support the standard way.
1909 */
1910static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1911 const union cqhci_crypto_cfg_entry *cfg,
1912 int slot)
1913{
1914 struct sdhci_host *host = mmc_priv(cq_host->mmc);
1915 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1916 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1917 union cqhci_crypto_cap_entry cap;
1918
1919 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1920 return qcom_ice_evict_key(msm_host->ice, slot);
1921
1922 /* Only AES-256-XTS has been tested so far. */
1923 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1924 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1925 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
1926 return -EINVAL;
1927
1928 return qcom_ice_program_key(msm_host->ice,
1929 QCOM_ICE_CRYPTO_ALG_AES_XTS,
1930 QCOM_ICE_CRYPTO_KEY_SIZE_256,
1931 cfg->crypto_key,
1932 cfg->data_unit_size, slot);
1933}
1934
1935#else /* CONFIG_MMC_CRYPTO */
1936
1937static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1938 struct cqhci_host *cq_host)
1939{
1940 return 0;
1941}
1942
1943static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1944{
1945}
1946
1947static inline __maybe_unused int
1948sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1949{
1950 return 0;
1951}
1952
1953static inline __maybe_unused int
1954sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1955{
1956 return 0;
1957}
1958#endif /* !CONFIG_MMC_CRYPTO */
1959
1960/*****************************************************************************\
1961 * *
1962 * MSM Command Queue Engine (CQE) *
1963 * *
1964\*****************************************************************************/
1965
1966static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1967{
1968 int cmd_error = 0;
1969 int data_error = 0;
1970
1971 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1972 return intmask;
1973
1974 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1975 return 0;
1976}
1977
1978static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1979{
1980 struct sdhci_host *host = mmc_priv(mmc);
1981 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1982 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1983
1984 sdhci_cqe_enable(mmc);
1985 sdhci_msm_ice_enable(msm_host);
1986}
1987
1988static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1989{
1990 struct sdhci_host *host = mmc_priv(mmc);
1991 unsigned long flags;
1992 u32 ctrl;
1993
1994 /*
1995 * When CQE is halted, the legacy SDHCI path operates only
1996 * on 16-byte descriptors in 64bit mode.
1997 */
1998 if (host->flags & SDHCI_USE_64_BIT_DMA)
1999 host->desc_sz = 16;
2000
2001 spin_lock_irqsave(&host->lock, flags);
2002
2003 /*
2004 * During CQE command transfers, command complete bit gets latched.
2005 * So s/w should clear command complete interrupt status when CQE is
2006 * either halted or disabled. Otherwise unexpected SDCHI legacy
2007 * interrupt gets triggered when CQE is halted/disabled.
2008 */
2009 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2010 ctrl |= SDHCI_INT_RESPONSE;
2011 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2012 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2013
2014 spin_unlock_irqrestore(&host->lock, flags);
2015
2016 sdhci_cqe_disable(mmc, recovery);
2017}
2018
2019static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2020{
2021 u32 count, start = 15;
2022
2023 __sdhci_set_timeout(host, cmd);
2024 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2025 /*
2026 * Update software timeout value if its value is less than hardware data
2027 * timeout value. Qcom SoC hardware data timeout value was calculated
2028 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2029 */
2030 if (cmd && cmd->data && host->clock > 400000 &&
2031 host->clock <= 50000000 &&
2032 ((1 << (count + start)) > (10 * host->clock)))
2033 host->data_timeout = 22LL * NSEC_PER_SEC;
2034}
2035
2036static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2037 .enable = sdhci_msm_cqe_enable,
2038 .disable = sdhci_msm_cqe_disable,
2039#ifdef CONFIG_MMC_CRYPTO
2040 .program_key = sdhci_msm_program_key,
2041#endif
2042};
2043
2044static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2045 struct platform_device *pdev)
2046{
2047 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2048 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2049 struct cqhci_host *cq_host;
2050 bool dma64;
2051 u32 cqcfg;
2052 int ret;
2053
2054 /*
2055 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2056 * So ensure ADMA table is allocated for 16byte descriptors.
2057 */
2058 if (host->caps & SDHCI_CAN_64BIT)
2059 host->alloc_desc_sz = 16;
2060
2061 ret = sdhci_setup_host(host);
2062 if (ret)
2063 return ret;
2064
2065 cq_host = cqhci_pltfm_init(pdev);
2066 if (IS_ERR(cq_host)) {
2067 ret = PTR_ERR(cq_host);
2068 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2069 goto cleanup;
2070 }
2071
2072 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2073 cq_host->ops = &sdhci_msm_cqhci_ops;
2074
2075 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2076
2077 ret = sdhci_msm_ice_init(msm_host, cq_host);
2078 if (ret)
2079 goto cleanup;
2080
2081 ret = cqhci_init(cq_host, host->mmc, dma64);
2082 if (ret) {
2083 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2084 mmc_hostname(host->mmc), ret);
2085 goto cleanup;
2086 }
2087
2088 /* Disable cqe reset due to cqe enable signal */
2089 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2090 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2091 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2092
2093 /*
2094 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2095 * So limit desc_sz to 12 so that the data commands that are sent
2096 * during card initialization (before CQE gets enabled) would
2097 * get executed without any issues.
2098 */
2099 if (host->flags & SDHCI_USE_64_BIT_DMA)
2100 host->desc_sz = 12;
2101
2102 ret = __sdhci_add_host(host);
2103 if (ret)
2104 goto cleanup;
2105
2106 dev_info(&pdev->dev, "%s: CQE init: success\n",
2107 mmc_hostname(host->mmc));
2108 return ret;
2109
2110cleanup:
2111 sdhci_cleanup_host(host);
2112 return ret;
2113}
2114
2115/*
2116 * Platform specific register write functions. This is so that, if any
2117 * register write needs to be followed up by platform specific actions,
2118 * they can be added here. These functions can go to sleep when writes
2119 * to certain registers are done.
2120 * These functions are relying on sdhci_set_ios not using spinlock.
2121 */
2122static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2123{
2124 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2125 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2126 u32 req_type = 0;
2127
2128 switch (reg) {
2129 case SDHCI_HOST_CONTROL2:
2130 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2131 REQ_IO_HIGH;
2132 break;
2133 case SDHCI_SOFTWARE_RESET:
2134 if (host->pwr && (val & SDHCI_RESET_ALL))
2135 req_type = REQ_BUS_OFF;
2136 break;
2137 case SDHCI_POWER_CONTROL:
2138 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2139 break;
2140 case SDHCI_TRANSFER_MODE:
2141 msm_host->transfer_mode = val;
2142 break;
2143 case SDHCI_COMMAND:
2144 if (!msm_host->use_cdr)
2145 break;
2146 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2147 !mmc_op_tuning(SDHCI_GET_CMD(val)))
2148 sdhci_msm_set_cdr(host, true);
2149 else
2150 sdhci_msm_set_cdr(host, false);
2151 break;
2152 }
2153
2154 if (req_type) {
2155 msm_host->pwr_irq_flag = 0;
2156 /*
2157 * Since this register write may trigger a power irq, ensure
2158 * all previous register writes are complete by this point.
2159 */
2160 mb();
2161 }
2162 return req_type;
2163}
2164
2165/* This function may sleep*/
2166static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2167{
2168 u32 req_type = 0;
2169
2170 req_type = __sdhci_msm_check_write(host, val, reg);
2171 writew_relaxed(val, host->ioaddr + reg);
2172
2173 if (req_type)
2174 sdhci_msm_check_power_status(host, req_type);
2175}
2176
2177/* This function may sleep*/
2178static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2179{
2180 u32 req_type = 0;
2181
2182 req_type = __sdhci_msm_check_write(host, val, reg);
2183
2184 writeb_relaxed(val, host->ioaddr + reg);
2185
2186 if (req_type)
2187 sdhci_msm_check_power_status(host, req_type);
2188}
2189
2190static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2191{
2192 struct mmc_host *mmc = msm_host->mmc;
2193 struct regulator *supply = mmc->supply.vqmmc;
2194 u32 caps = 0, config;
2195 struct sdhci_host *host = mmc_priv(mmc);
2196 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2197
2198 if (!IS_ERR(mmc->supply.vqmmc)) {
2199 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2200 caps |= CORE_1_8V_SUPPORT;
2201 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2202 caps |= CORE_3_0V_SUPPORT;
2203
2204 if (!caps)
2205 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2206 mmc_hostname(mmc));
2207 }
2208
2209 if (caps) {
2210 /*
2211 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2212 * bit can be used as required later on.
2213 */
2214 u32 io_level = msm_host->curr_io_level;
2215
2216 config = readl_relaxed(host->ioaddr +
2217 msm_offset->core_vendor_spec);
2218 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2219
2220 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2221 config &= ~CORE_IO_PAD_PWR_SWITCH;
2222 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2223 config |= CORE_IO_PAD_PWR_SWITCH;
2224
2225 writel_relaxed(config,
2226 host->ioaddr + msm_offset->core_vendor_spec);
2227 }
2228 msm_host->caps_0 |= caps;
2229 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2230}
2231
2232static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2233{
2234 int ret;
2235
2236 ret = mmc_regulator_get_supply(msm_host->mmc);
2237 if (ret)
2238 return ret;
2239
2240 sdhci_msm_set_regulator_caps(msm_host);
2241
2242 return 0;
2243}
2244
2245static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2246 struct mmc_ios *ios)
2247{
2248 struct sdhci_host *host = mmc_priv(mmc);
2249 u16 ctrl, status;
2250
2251 /*
2252 * Signal Voltage Switching is only applicable for Host Controllers
2253 * v3.00 and above.
2254 */
2255 if (host->version < SDHCI_SPEC_300)
2256 return 0;
2257
2258 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2259
2260 switch (ios->signal_voltage) {
2261 case MMC_SIGNAL_VOLTAGE_330:
2262 if (!(host->flags & SDHCI_SIGNALING_330))
2263 return -EINVAL;
2264
2265 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2266 ctrl &= ~SDHCI_CTRL_VDD_180;
2267 break;
2268 case MMC_SIGNAL_VOLTAGE_180:
2269 if (!(host->flags & SDHCI_SIGNALING_180))
2270 return -EINVAL;
2271
2272 /* Enable 1.8V Signal Enable in the Host Control2 register */
2273 ctrl |= SDHCI_CTRL_VDD_180;
2274 break;
2275
2276 default:
2277 return -EINVAL;
2278 }
2279
2280 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2281
2282 /* Wait for 5ms */
2283 usleep_range(5000, 5500);
2284
2285 /* regulator output should be stable within 5 ms */
2286 status = ctrl & SDHCI_CTRL_VDD_180;
2287 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2288 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2289 return 0;
2290
2291 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2292 mmc_hostname(mmc));
2293
2294 return -EAGAIN;
2295}
2296
2297#define DRIVER_NAME "sdhci_msm"
2298#define SDHCI_MSM_DUMP(f, x...) \
2299 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2300
2301static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2302{
2303 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2304 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2305 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2306
2307 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2308
2309 SDHCI_MSM_DUMP(
2310 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2311 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2312 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2313 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2314 SDHCI_MSM_DUMP(
2315 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2316 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2317 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2318 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2319 SDHCI_MSM_DUMP(
2320 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2321 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2322 readl_relaxed(host->ioaddr +
2323 msm_offset->core_vendor_spec_func2),
2324 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2325}
2326
2327static const struct sdhci_msm_variant_ops mci_var_ops = {
2328 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2329 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2330};
2331
2332static const struct sdhci_msm_variant_ops v5_var_ops = {
2333 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2334 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2335};
2336
2337static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2338 .var_ops = &mci_var_ops,
2339 .offset = &sdhci_msm_mci_offset,
2340};
2341
2342static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2343 .mci_removed = true,
2344 .var_ops = &v5_var_ops,
2345 .offset = &sdhci_msm_v5_offset,
2346};
2347
2348static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2349 .mci_removed = true,
2350 .restore_dll_config = true,
2351 .var_ops = &v5_var_ops,
2352 .offset = &sdhci_msm_v5_offset,
2353};
2354
2355static const struct of_device_id sdhci_msm_dt_match[] = {
2356 /*
2357 * Do not add new variants to the driver which are compatible with
2358 * generic ones, unless they need customization.
2359 */
2360 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2361 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2362 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2363 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2364 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2365 {},
2366};
2367
2368MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2369
2370static const struct sdhci_ops sdhci_msm_ops = {
2371 .reset = sdhci_and_cqhci_reset,
2372 .set_clock = sdhci_msm_set_clock,
2373 .get_min_clock = sdhci_msm_get_min_clock,
2374 .get_max_clock = sdhci_msm_get_max_clock,
2375 .set_bus_width = sdhci_set_bus_width,
2376 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2377 .write_w = sdhci_msm_writew,
2378 .write_b = sdhci_msm_writeb,
2379 .irq = sdhci_msm_cqe_irq,
2380 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2381 .set_power = sdhci_set_power_noreg,
2382 .set_timeout = sdhci_msm_set_timeout,
2383};
2384
2385static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2386 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2387 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2388 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2389 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2390
2391 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2392 .ops = &sdhci_msm_ops,
2393};
2394
2395static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2396 struct sdhci_host *host)
2397{
2398 struct device_node *node = pdev->dev.of_node;
2399 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2400 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2401
2402 if (of_property_read_u32(node, "qcom,ddr-config",
2403 &msm_host->ddr_config))
2404 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2405
2406 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2407
2408 if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2409 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2410}
2411
2412static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2413{
2414 struct reset_control *reset;
2415 int ret = 0;
2416
2417 reset = reset_control_get_optional_exclusive(dev, NULL);
2418 if (IS_ERR(reset))
2419 return dev_err_probe(dev, PTR_ERR(reset),
2420 "unable to acquire core_reset\n");
2421
2422 if (!reset)
2423 return ret;
2424
2425 ret = reset_control_assert(reset);
2426 if (ret) {
2427 reset_control_put(reset);
2428 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2429 }
2430
2431 /*
2432 * The hardware requirement for delay between assert/deassert
2433 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2434 * ~125us (4/32768). To be on the safe side add 200us delay.
2435 */
2436 usleep_range(200, 210);
2437
2438 ret = reset_control_deassert(reset);
2439 if (ret) {
2440 reset_control_put(reset);
2441 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2442 }
2443
2444 usleep_range(200, 210);
2445 reset_control_put(reset);
2446
2447 return ret;
2448}
2449
2450static int sdhci_msm_probe(struct platform_device *pdev)
2451{
2452 struct sdhci_host *host;
2453 struct sdhci_pltfm_host *pltfm_host;
2454 struct sdhci_msm_host *msm_host;
2455 struct clk *clk;
2456 int ret;
2457 u16 host_version, core_minor;
2458 u32 core_version, config;
2459 u8 core_major;
2460 const struct sdhci_msm_offset *msm_offset;
2461 const struct sdhci_msm_variant_info *var_info;
2462 struct device_node *node = pdev->dev.of_node;
2463
2464 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2465 if (IS_ERR(host))
2466 return PTR_ERR(host);
2467
2468 host->sdma_boundary = 0;
2469 pltfm_host = sdhci_priv(host);
2470 msm_host = sdhci_pltfm_priv(pltfm_host);
2471 msm_host->mmc = host->mmc;
2472 msm_host->pdev = pdev;
2473
2474 ret = mmc_of_parse(host->mmc);
2475 if (ret)
2476 goto pltfm_free;
2477
2478 /*
2479 * Based on the compatible string, load the required msm host info from
2480 * the data associated with the version info.
2481 */
2482 var_info = of_device_get_match_data(&pdev->dev);
2483
2484 msm_host->mci_removed = var_info->mci_removed;
2485 msm_host->restore_dll_config = var_info->restore_dll_config;
2486 msm_host->var_ops = var_info->var_ops;
2487 msm_host->offset = var_info->offset;
2488
2489 msm_offset = msm_host->offset;
2490
2491 sdhci_get_of_property(pdev);
2492 sdhci_msm_get_of_property(pdev, host);
2493
2494 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2495
2496 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2497 if (ret)
2498 goto pltfm_free;
2499
2500 /* Setup SDCC bus voter clock. */
2501 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2502 if (!IS_ERR(msm_host->bus_clk)) {
2503 /* Vote for max. clk rate for max. performance */
2504 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2505 if (ret)
2506 goto pltfm_free;
2507 ret = clk_prepare_enable(msm_host->bus_clk);
2508 if (ret)
2509 goto pltfm_free;
2510 }
2511
2512 /* Setup main peripheral bus clock */
2513 clk = devm_clk_get(&pdev->dev, "iface");
2514 if (IS_ERR(clk)) {
2515 ret = PTR_ERR(clk);
2516 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2517 goto bus_clk_disable;
2518 }
2519 msm_host->bulk_clks[1].clk = clk;
2520
2521 /* Setup SDC MMC clock */
2522 clk = devm_clk_get(&pdev->dev, "core");
2523 if (IS_ERR(clk)) {
2524 ret = PTR_ERR(clk);
2525 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2526 goto bus_clk_disable;
2527 }
2528 msm_host->bulk_clks[0].clk = clk;
2529
2530 /* Check for optional interconnect paths */
2531 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2532 if (ret)
2533 goto bus_clk_disable;
2534
2535 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2536 if (ret)
2537 goto bus_clk_disable;
2538
2539 /* OPP table is optional */
2540 ret = devm_pm_opp_of_add_table(&pdev->dev);
2541 if (ret && ret != -ENODEV) {
2542 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2543 goto bus_clk_disable;
2544 }
2545
2546 /* Vote for maximum clock rate for maximum performance */
2547 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2548 if (ret)
2549 dev_warn(&pdev->dev, "core clock boost failed\n");
2550
2551 clk = devm_clk_get(&pdev->dev, "cal");
2552 if (IS_ERR(clk))
2553 clk = NULL;
2554 msm_host->bulk_clks[2].clk = clk;
2555
2556 clk = devm_clk_get(&pdev->dev, "sleep");
2557 if (IS_ERR(clk))
2558 clk = NULL;
2559 msm_host->bulk_clks[3].clk = clk;
2560
2561 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2562 msm_host->bulk_clks);
2563 if (ret)
2564 goto bus_clk_disable;
2565
2566 /*
2567 * xo clock is needed for FLL feature of cm_dll.
2568 * In case if xo clock is not mentioned in DT, warn and proceed.
2569 */
2570 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2571 if (IS_ERR(msm_host->xo_clk)) {
2572 ret = PTR_ERR(msm_host->xo_clk);
2573 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2574 }
2575
2576 if (!msm_host->mci_removed) {
2577 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2578 if (IS_ERR(msm_host->core_mem)) {
2579 ret = PTR_ERR(msm_host->core_mem);
2580 goto clk_disable;
2581 }
2582 }
2583
2584 /* Reset the vendor spec register to power on reset state */
2585 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2586 host->ioaddr + msm_offset->core_vendor_spec);
2587
2588 if (!msm_host->mci_removed) {
2589 /* Set HC_MODE_EN bit in HC_MODE register */
2590 msm_host_writel(msm_host, HC_MODE_EN, host,
2591 msm_offset->core_hc_mode);
2592 config = msm_host_readl(msm_host, host,
2593 msm_offset->core_hc_mode);
2594 config |= FF_CLK_SW_RST_DIS;
2595 msm_host_writel(msm_host, config, host,
2596 msm_offset->core_hc_mode);
2597 }
2598
2599 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2600 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2601 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2602 SDHCI_VENDOR_VER_SHIFT));
2603
2604 core_version = msm_host_readl(msm_host, host,
2605 msm_offset->core_mci_version);
2606 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2607 CORE_VERSION_MAJOR_SHIFT;
2608 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2609 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2610 core_version, core_major, core_minor);
2611
2612 if (core_major == 1 && core_minor >= 0x42)
2613 msm_host->use_14lpp_dll_reset = true;
2614
2615 /*
2616 * SDCC 5 controller with major version 1, minor version 0x34 and later
2617 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2618 */
2619 if (core_major == 1 && core_minor < 0x34)
2620 msm_host->use_cdclp533 = true;
2621
2622 /*
2623 * Support for some capabilities is not advertised by newer
2624 * controller versions and must be explicitly enabled.
2625 */
2626 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2627 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2628 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2629 writel_relaxed(config, host->ioaddr +
2630 msm_offset->core_vendor_spec_capabilities0);
2631 }
2632
2633 if (core_major == 1 && core_minor >= 0x49)
2634 msm_host->updated_ddr_cfg = true;
2635
2636 if (core_major == 1 && core_minor >= 0x71)
2637 msm_host->uses_tassadar_dll = true;
2638
2639 ret = sdhci_msm_register_vreg(msm_host);
2640 if (ret)
2641 goto clk_disable;
2642
2643 /*
2644 * Power on reset state may trigger power irq if previous status of
2645 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2646 * interrupt in GIC, any pending power irq interrupt should be
2647 * acknowledged. Otherwise power irq interrupt handler would be
2648 * fired prematurely.
2649 */
2650 sdhci_msm_handle_pwr_irq(host, 0);
2651
2652 /*
2653 * Ensure that above writes are propagated before interrupt enablement
2654 * in GIC.
2655 */
2656 mb();
2657
2658 /* Setup IRQ for handling power/voltage tasks with PMIC */
2659 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2660 if (msm_host->pwr_irq < 0) {
2661 ret = msm_host->pwr_irq;
2662 goto clk_disable;
2663 }
2664
2665 sdhci_msm_init_pwr_irq_wait(msm_host);
2666 /* Enable pwr irq interrupts */
2667 msm_host_writel(msm_host, INT_MASK, host,
2668 msm_offset->core_pwrctl_mask);
2669
2670 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2671 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2672 dev_name(&pdev->dev), host);
2673 if (ret) {
2674 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2675 goto clk_disable;
2676 }
2677
2678 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2679
2680 /* Set the timeout value to max possible */
2681 host->max_timeout_count = 0xF;
2682
2683 pm_runtime_get_noresume(&pdev->dev);
2684 pm_runtime_set_active(&pdev->dev);
2685 pm_runtime_enable(&pdev->dev);
2686 pm_runtime_set_autosuspend_delay(&pdev->dev,
2687 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2688 pm_runtime_use_autosuspend(&pdev->dev);
2689
2690 host->mmc_host_ops.start_signal_voltage_switch =
2691 sdhci_msm_start_signal_voltage_switch;
2692 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2693 if (of_property_read_bool(node, "supports-cqe"))
2694 ret = sdhci_msm_cqe_add_host(host, pdev);
2695 else
2696 ret = sdhci_add_host(host);
2697 if (ret)
2698 goto pm_runtime_disable;
2699
2700 pm_runtime_mark_last_busy(&pdev->dev);
2701 pm_runtime_put_autosuspend(&pdev->dev);
2702
2703 return 0;
2704
2705pm_runtime_disable:
2706 pm_runtime_disable(&pdev->dev);
2707 pm_runtime_set_suspended(&pdev->dev);
2708 pm_runtime_put_noidle(&pdev->dev);
2709clk_disable:
2710 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2711 msm_host->bulk_clks);
2712bus_clk_disable:
2713 if (!IS_ERR(msm_host->bus_clk))
2714 clk_disable_unprepare(msm_host->bus_clk);
2715pltfm_free:
2716 sdhci_pltfm_free(pdev);
2717 return ret;
2718}
2719
2720static void sdhci_msm_remove(struct platform_device *pdev)
2721{
2722 struct sdhci_host *host = platform_get_drvdata(pdev);
2723 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2724 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2725 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2726 0xffffffff);
2727
2728 sdhci_remove_host(host, dead);
2729
2730 pm_runtime_get_sync(&pdev->dev);
2731 pm_runtime_disable(&pdev->dev);
2732 pm_runtime_put_noidle(&pdev->dev);
2733
2734 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2735 msm_host->bulk_clks);
2736 if (!IS_ERR(msm_host->bus_clk))
2737 clk_disable_unprepare(msm_host->bus_clk);
2738 sdhci_pltfm_free(pdev);
2739}
2740
2741static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2742{
2743 struct sdhci_host *host = dev_get_drvdata(dev);
2744 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2745 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2746 unsigned long flags;
2747
2748 spin_lock_irqsave(&host->lock, flags);
2749 host->runtime_suspended = true;
2750 spin_unlock_irqrestore(&host->lock, flags);
2751
2752 /* Drop the performance vote */
2753 dev_pm_opp_set_rate(dev, 0);
2754 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2755 msm_host->bulk_clks);
2756
2757 return sdhci_msm_ice_suspend(msm_host);
2758}
2759
2760static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2761{
2762 struct sdhci_host *host = dev_get_drvdata(dev);
2763 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2764 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2765 unsigned long flags;
2766 int ret;
2767
2768 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2769 msm_host->bulk_clks);
2770 if (ret)
2771 return ret;
2772 /*
2773 * Whenever core-clock is gated dynamically, it's needed to
2774 * restore the SDR DLL settings when the clock is ungated.
2775 */
2776 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2777 ret = sdhci_msm_restore_sdr_dll_config(host);
2778 if (ret)
2779 return ret;
2780 }
2781
2782 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2783
2784 ret = sdhci_msm_ice_resume(msm_host);
2785 if (ret)
2786 return ret;
2787
2788 spin_lock_irqsave(&host->lock, flags);
2789 host->runtime_suspended = false;
2790 spin_unlock_irqrestore(&host->lock, flags);
2791
2792 return ret;
2793}
2794
2795static const struct dev_pm_ops sdhci_msm_pm_ops = {
2796 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2797 pm_runtime_force_resume)
2798 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2799 sdhci_msm_runtime_resume,
2800 NULL)
2801};
2802
2803static struct platform_driver sdhci_msm_driver = {
2804 .probe = sdhci_msm_probe,
2805 .remove = sdhci_msm_remove,
2806 .driver = {
2807 .name = "sdhci_msm",
2808 .of_match_table = sdhci_msm_dt_match,
2809 .pm = &sdhci_msm_pm_ops,
2810 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2811 },
2812};
2813
2814module_platform_driver(sdhci_msm_driver);
2815
2816MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2817MODULE_LICENSE("GPL v2");