Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/of_device.h>
  10#include <linux/delay.h>
  11#include <linux/mmc/mmc.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/pm_opp.h>
  14#include <linux/slab.h>
  15#include <linux/iopoll.h>
  16#include <linux/qcom_scm.h>
  17#include <linux/regulator/consumer.h>
  18#include <linux/interconnect.h>
 
  19#include <linux/pinctrl/consumer.h>
  20#include <linux/reset.h>
  21
 
 
  22#include "sdhci-cqhci.h"
  23#include "sdhci-pltfm.h"
  24#include "cqhci.h"
  25
  26#define CORE_MCI_VERSION		0x50
  27#define CORE_VERSION_MAJOR_SHIFT	28
  28#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  29#define CORE_VERSION_MINOR_MASK		0xff
  30
  31#define CORE_MCI_GENERICS		0x70
  32#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  33
  34#define HC_MODE_EN		0x1
  35#define CORE_POWER		0x0
  36#define CORE_SW_RST		BIT(7)
  37#define FF_CLK_SW_RST_DIS	BIT(13)
  38
  39#define CORE_PWRCTL_BUS_OFF	BIT(0)
  40#define CORE_PWRCTL_BUS_ON	BIT(1)
  41#define CORE_PWRCTL_IO_LOW	BIT(2)
  42#define CORE_PWRCTL_IO_HIGH	BIT(3)
  43#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  44#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  45#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  46#define CORE_PWRCTL_IO_FAIL     BIT(3)
  47#define REQ_BUS_OFF		BIT(0)
  48#define REQ_BUS_ON		BIT(1)
  49#define REQ_IO_LOW		BIT(2)
  50#define REQ_IO_HIGH		BIT(3)
  51#define INT_MASK		0xf
  52#define MAX_PHASES		16
  53#define CORE_DLL_LOCK		BIT(7)
  54#define CORE_DDR_DLL_LOCK	BIT(11)
  55#define CORE_DLL_EN		BIT(16)
  56#define CORE_CDR_EN		BIT(17)
  57#define CORE_CK_OUT_EN		BIT(18)
  58#define CORE_CDR_EXT_EN		BIT(19)
  59#define CORE_DLL_PDN		BIT(29)
  60#define CORE_DLL_RST		BIT(30)
  61#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  62
  63#define CORE_DDR_CAL_EN		BIT(0)
  64#define CORE_FLL_CYCLE_CNT	BIT(18)
  65#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  66
  67#define DLL_USR_CTL_POR_VAL	0x10800
  68#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  69#define FINE_TUNE_MODE_EN	BIT(27)
  70#define BIAS_OK_SIGNAL		BIT(29)
  71
  72#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  73#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  74
  75#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  76#define CORE_CLK_PWRSAVE	BIT(1)
  77#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  78#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  79#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  80#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  81#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  82#define CORE_HC_SELECT_IN_EN	BIT(18)
  83#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  84#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  85
  86#define CORE_3_0V_SUPPORT	BIT(25)
  87#define CORE_1_8V_SUPPORT	BIT(26)
  88#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  89
  90#define CORE_CSR_CDC_CTLR_CFG0		0x130
  91#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  92#define CORE_HW_AUTOCAL_ENA		BIT(17)
  93
  94#define CORE_CSR_CDC_CTLR_CFG1		0x134
  95#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  96#define CORE_TIMER_ENA			BIT(16)
  97
  98#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
  99#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
 100#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
 101#define CORE_CDC_OFFSET_CFG		0x14C
 102#define CORE_CSR_CDC_DELAY_CFG		0x150
 103#define CORE_CDC_SLAVE_DDA_CFG		0x160
 104#define CORE_CSR_CDC_STATUS0		0x164
 105#define CORE_CALIBRATION_DONE		BIT(0)
 106
 107#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 108
 109#define CORE_CSR_CDC_GEN_CFG		0x178
 110#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 111#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 112
 113#define CORE_CDC_T4_DLY_SEL		BIT(0)
 114#define CORE_CMDIN_RCLK_EN		BIT(1)
 115#define CORE_START_CDC_TRAFFIC		BIT(6)
 116
 117#define CORE_PWRSAVE_DLL	BIT(3)
 118
 119#define DDR_CONFIG_POR_VAL	0x80040873
 120
 121
 122#define INVALID_TUNING_PHASE	-1
 123#define SDHCI_MSM_MIN_CLOCK	400000
 124#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 125
 126#define CDR_SELEXT_SHIFT	20
 127#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 128#define CMUX_SHIFT_PHASE_SHIFT	24
 129#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 130
 131#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 132
 133/* Timeout value to avoid infinite waiting for pwr_irq */
 134#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 135
 
 
 
 136/* Max load for eMMC Vdd-io supply */
 137#define MMC_VQMMC_MAX_LOAD_UA	325000
 138
 
 
 
 
 
 
 139#define msm_host_readl(msm_host, host, offset) \
 140	msm_host->var_ops->msm_readl_relaxed(host, offset)
 141
 142#define msm_host_writel(msm_host, val, host, offset) \
 143	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 144
 145/* CQHCI vendor specific registers */
 146#define CQHCI_VENDOR_CFG1	0xA00
 147#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 148
 149struct sdhci_msm_offset {
 150	u32 core_hc_mode;
 151	u32 core_mci_data_cnt;
 152	u32 core_mci_status;
 153	u32 core_mci_fifo_cnt;
 154	u32 core_mci_version;
 155	u32 core_generics;
 156	u32 core_testbus_config;
 157	u32 core_testbus_sel2_bit;
 158	u32 core_testbus_ena;
 159	u32 core_testbus_sel2;
 160	u32 core_pwrctl_status;
 161	u32 core_pwrctl_mask;
 162	u32 core_pwrctl_clear;
 163	u32 core_pwrctl_ctl;
 164	u32 core_sdcc_debug_reg;
 165	u32 core_dll_config;
 166	u32 core_dll_status;
 167	u32 core_vendor_spec;
 168	u32 core_vendor_spec_adma_err_addr0;
 169	u32 core_vendor_spec_adma_err_addr1;
 170	u32 core_vendor_spec_func2;
 171	u32 core_vendor_spec_capabilities0;
 172	u32 core_ddr_200_cfg;
 173	u32 core_vendor_spec3;
 174	u32 core_dll_config_2;
 175	u32 core_dll_config_3;
 176	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 177	u32 core_ddr_config;
 178	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 179};
 180
 181static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 182	.core_mci_data_cnt = 0x35c,
 183	.core_mci_status = 0x324,
 184	.core_mci_fifo_cnt = 0x308,
 185	.core_mci_version = 0x318,
 186	.core_generics = 0x320,
 187	.core_testbus_config = 0x32c,
 188	.core_testbus_sel2_bit = 3,
 189	.core_testbus_ena = (1 << 31),
 190	.core_testbus_sel2 = (1 << 3),
 191	.core_pwrctl_status = 0x240,
 192	.core_pwrctl_mask = 0x244,
 193	.core_pwrctl_clear = 0x248,
 194	.core_pwrctl_ctl = 0x24c,
 195	.core_sdcc_debug_reg = 0x358,
 196	.core_dll_config = 0x200,
 197	.core_dll_status = 0x208,
 198	.core_vendor_spec = 0x20c,
 199	.core_vendor_spec_adma_err_addr0 = 0x214,
 200	.core_vendor_spec_adma_err_addr1 = 0x218,
 201	.core_vendor_spec_func2 = 0x210,
 202	.core_vendor_spec_capabilities0 = 0x21c,
 203	.core_ddr_200_cfg = 0x224,
 204	.core_vendor_spec3 = 0x250,
 205	.core_dll_config_2 = 0x254,
 206	.core_dll_config_3 = 0x258,
 207	.core_ddr_config = 0x25c,
 208	.core_dll_usr_ctl = 0x388,
 209};
 210
 211static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 212	.core_hc_mode = 0x78,
 213	.core_mci_data_cnt = 0x30,
 214	.core_mci_status = 0x34,
 215	.core_mci_fifo_cnt = 0x44,
 216	.core_mci_version = 0x050,
 217	.core_generics = 0x70,
 218	.core_testbus_config = 0x0cc,
 219	.core_testbus_sel2_bit = 4,
 220	.core_testbus_ena = (1 << 3),
 221	.core_testbus_sel2 = (1 << 4),
 222	.core_pwrctl_status = 0xdc,
 223	.core_pwrctl_mask = 0xe0,
 224	.core_pwrctl_clear = 0xe4,
 225	.core_pwrctl_ctl = 0xe8,
 226	.core_sdcc_debug_reg = 0x124,
 227	.core_dll_config = 0x100,
 228	.core_dll_status = 0x108,
 229	.core_vendor_spec = 0x10c,
 230	.core_vendor_spec_adma_err_addr0 = 0x114,
 231	.core_vendor_spec_adma_err_addr1 = 0x118,
 232	.core_vendor_spec_func2 = 0x110,
 233	.core_vendor_spec_capabilities0 = 0x11c,
 234	.core_ddr_200_cfg = 0x184,
 235	.core_vendor_spec3 = 0x1b0,
 236	.core_dll_config_2 = 0x1b4,
 237	.core_ddr_config_old = 0x1b8,
 238	.core_ddr_config = 0x1bc,
 239};
 240
 241struct sdhci_msm_variant_ops {
 242	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 243	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 244			u32 offset);
 245};
 246
 247/*
 248 * From V5, register spaces have changed. Wrap this info in a structure
 249 * and choose the data_structure based on version info mentioned in DT.
 250 */
 251struct sdhci_msm_variant_info {
 252	bool mci_removed;
 253	bool restore_dll_config;
 254	const struct sdhci_msm_variant_ops *var_ops;
 255	const struct sdhci_msm_offset *offset;
 256};
 257
 258struct sdhci_msm_host {
 259	struct platform_device *pdev;
 260	void __iomem *core_mem;	/* MSM SDCC mapped address */
 261	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
 262	int pwr_irq;		/* power irq */
 263	struct clk *bus_clk;	/* SDHC bus voter clock */
 264	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 265	/* core, iface, cal, sleep, and ice clocks */
 266	struct clk_bulk_data bulk_clks[5];
 
 
 
 267	unsigned long clk_rate;
 268	struct mmc_host *mmc;
 269	bool use_14lpp_dll_reset;
 270	bool tuning_done;
 271	bool calibration_done;
 272	u8 saved_tuning_phase;
 273	bool use_cdclp533;
 274	u32 curr_pwr_state;
 275	u32 curr_io_level;
 276	wait_queue_head_t pwr_irq_wait;
 277	bool pwr_irq_flag;
 278	u32 caps_0;
 279	bool mci_removed;
 280	bool restore_dll_config;
 281	const struct sdhci_msm_variant_ops *var_ops;
 282	const struct sdhci_msm_offset *offset;
 283	bool use_cdr;
 284	u32 transfer_mode;
 285	bool updated_ddr_cfg;
 286	bool uses_tassadar_dll;
 287	u32 dll_config;
 288	u32 ddr_config;
 289	bool vqmmc_enabled;
 290};
 291
 292static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 293{
 294	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 295	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 296
 297	return msm_host->offset;
 298}
 299
 300/*
 301 * APIs to read/write to vendor specific registers which were there in the
 302 * core_mem region before MCI was removed.
 303 */
 304static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 305		u32 offset)
 306{
 307	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 308	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 309
 310	return readl_relaxed(msm_host->core_mem + offset);
 311}
 312
 313static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 314		u32 offset)
 315{
 316	return readl_relaxed(host->ioaddr + offset);
 317}
 318
 319static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 320		struct sdhci_host *host, u32 offset)
 321{
 322	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 323	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 324
 325	writel_relaxed(val, msm_host->core_mem + offset);
 326}
 327
 328static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 329		struct sdhci_host *host, u32 offset)
 330{
 331	writel_relaxed(val, host->ioaddr + offset);
 332}
 333
 334static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
 335{
 336	struct mmc_ios ios = host->mmc->ios;
 337	/*
 338	 * The SDHC requires internal clock frequency to be double the
 339	 * actual clock that will be set for DDR mode. The controller
 340	 * uses the faster clock(100/400MHz) for some of its parts and
 341	 * send the actual required clock (50/200MHz) to the card.
 342	 */
 343	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 344	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 345	    ios.timing == MMC_TIMING_MMC_HS400 ||
 346	    host->flags & SDHCI_HS400_TUNING)
 347		return 2;
 348	return 1;
 349}
 350
 351static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 352					    unsigned int clock)
 353{
 354	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 355	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 356	struct mmc_ios curr_ios = host->mmc->ios;
 357	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 358	unsigned long achieved_rate;
 359	unsigned int desired_rate;
 360	unsigned int mult;
 361	int rc;
 362
 363	mult = msm_get_clock_mult_for_bus_mode(host);
 364	desired_rate = clock * mult;
 365	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
 366	if (rc) {
 367		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 368		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
 369		return;
 370	}
 371
 372	/*
 373	 * Qualcomm clock drivers by default round clock _up_ if they can't
 374	 * make the requested rate.  This is not good for SD.  Yell if we
 375	 * encounter it.
 376	 */
 377	achieved_rate = clk_get_rate(core_clk);
 378	if (achieved_rate > desired_rate)
 379		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
 380			mmc_hostname(host->mmc), desired_rate, achieved_rate);
 381	host->mmc->actual_clock = achieved_rate / mult;
 382
 383	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
 384	msm_host->clk_rate = desired_rate;
 385
 386	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 387		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
 388}
 389
 390/* Platform specific tuning */
 391static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 392{
 393	u32 wait_cnt = 50;
 394	u8 ck_out_en;
 395	struct mmc_host *mmc = host->mmc;
 396	const struct sdhci_msm_offset *msm_offset =
 397					sdhci_priv_msm_offset(host);
 398
 399	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 400	ck_out_en = !!(readl_relaxed(host->ioaddr +
 401			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 402
 403	while (ck_out_en != poll) {
 404		if (--wait_cnt == 0) {
 405			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 406			       mmc_hostname(mmc), poll);
 407			return -ETIMEDOUT;
 408		}
 409		udelay(1);
 410
 411		ck_out_en = !!(readl_relaxed(host->ioaddr +
 412			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 413	}
 414
 415	return 0;
 416}
 417
 418static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 419{
 420	int rc;
 421	static const u8 grey_coded_phase_table[] = {
 422		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 423		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 424	};
 425	unsigned long flags;
 426	u32 config;
 427	struct mmc_host *mmc = host->mmc;
 428	const struct sdhci_msm_offset *msm_offset =
 429					sdhci_priv_msm_offset(host);
 430
 431	if (phase > 0xf)
 432		return -EINVAL;
 433
 434	spin_lock_irqsave(&host->lock, flags);
 435
 436	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 437	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 438	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 439	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 440
 441	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 442	rc = msm_dll_poll_ck_out_en(host, 0);
 443	if (rc)
 444		goto err_out;
 445
 446	/*
 447	 * Write the selected DLL clock output phase (0 ... 15)
 448	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 449	 */
 450	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 451	config &= ~CDR_SELEXT_MASK;
 452	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 453	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 454
 455	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 456	config |= CORE_CK_OUT_EN;
 457	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 458
 459	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 460	rc = msm_dll_poll_ck_out_en(host, 1);
 461	if (rc)
 462		goto err_out;
 463
 464	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 465	config |= CORE_CDR_EN;
 466	config &= ~CORE_CDR_EXT_EN;
 467	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 468	goto out;
 469
 470err_out:
 471	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 472	       mmc_hostname(mmc), phase);
 473out:
 474	spin_unlock_irqrestore(&host->lock, flags);
 475	return rc;
 476}
 477
 478/*
 479 * Find out the greatest range of consecuitive selected
 480 * DLL clock output phases that can be used as sampling
 481 * setting for SD3.0 UHS-I card read operation (in SDR104
 482 * timing mode) or for eMMC4.5 card read operation (in
 483 * HS400/HS200 timing mode).
 484 * Select the 3/4 of the range and configure the DLL with the
 485 * selected DLL clock output phase.
 486 */
 487
 488static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 489					   u8 *phase_table, u8 total_phases)
 490{
 491	int ret;
 492	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 493	u8 phases_per_row[MAX_PHASES] = { 0 };
 494	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 495	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 496	bool phase_0_found = false, phase_15_found = false;
 497	struct mmc_host *mmc = host->mmc;
 498
 499	if (!total_phases || (total_phases > MAX_PHASES)) {
 500		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 501		       mmc_hostname(mmc), total_phases);
 502		return -EINVAL;
 503	}
 504
 505	for (cnt = 0; cnt < total_phases; cnt++) {
 506		ranges[row_index][col_index] = phase_table[cnt];
 507		phases_per_row[row_index] += 1;
 508		col_index++;
 509
 510		if ((cnt + 1) == total_phases) {
 511			continue;
 512		/* check if next phase in phase_table is consecutive or not */
 513		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 514			row_index++;
 515			col_index = 0;
 516		}
 517	}
 518
 519	if (row_index >= MAX_PHASES)
 520		return -EINVAL;
 521
 522	/* Check if phase-0 is present in first valid window? */
 523	if (!ranges[0][0]) {
 524		phase_0_found = true;
 525		phase_0_raw_index = 0;
 526		/* Check if cycle exist between 2 valid windows */
 527		for (cnt = 1; cnt <= row_index; cnt++) {
 528			if (phases_per_row[cnt]) {
 529				for (i = 0; i < phases_per_row[cnt]; i++) {
 530					if (ranges[cnt][i] == 15) {
 531						phase_15_found = true;
 532						phase_15_raw_index = cnt;
 533						break;
 534					}
 535				}
 536			}
 537		}
 538	}
 539
 540	/* If 2 valid windows form cycle then merge them as single window */
 541	if (phase_0_found && phase_15_found) {
 542		/* number of phases in raw where phase 0 is present */
 543		u8 phases_0 = phases_per_row[phase_0_raw_index];
 544		/* number of phases in raw where phase 15 is present */
 545		u8 phases_15 = phases_per_row[phase_15_raw_index];
 546
 547		if (phases_0 + phases_15 >= MAX_PHASES)
 548			/*
 549			 * If there are more than 1 phase windows then total
 550			 * number of phases in both the windows should not be
 551			 * more than or equal to MAX_PHASES.
 552			 */
 553			return -EINVAL;
 554
 555		/* Merge 2 cyclic windows */
 556		i = phases_15;
 557		for (cnt = 0; cnt < phases_0; cnt++) {
 558			ranges[phase_15_raw_index][i] =
 559			    ranges[phase_0_raw_index][cnt];
 560			if (++i >= MAX_PHASES)
 561				break;
 562		}
 563
 564		phases_per_row[phase_0_raw_index] = 0;
 565		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 566	}
 567
 568	for (cnt = 0; cnt <= row_index; cnt++) {
 569		if (phases_per_row[cnt] > curr_max) {
 570			curr_max = phases_per_row[cnt];
 571			selected_row_index = cnt;
 572		}
 573	}
 574
 575	i = (curr_max * 3) / 4;
 576	if (i)
 577		i--;
 578
 579	ret = ranges[selected_row_index][i];
 580
 581	if (ret >= MAX_PHASES) {
 582		ret = -EINVAL;
 583		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 584		       mmc_hostname(mmc), ret);
 585	}
 586
 587	return ret;
 588}
 589
 590static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 591{
 592	u32 mclk_freq = 0, config;
 593	const struct sdhci_msm_offset *msm_offset =
 594					sdhci_priv_msm_offset(host);
 595
 596	/* Program the MCLK value to MCLK_FREQ bit field */
 597	if (host->clock <= 112000000)
 598		mclk_freq = 0;
 599	else if (host->clock <= 125000000)
 600		mclk_freq = 1;
 601	else if (host->clock <= 137000000)
 602		mclk_freq = 2;
 603	else if (host->clock <= 150000000)
 604		mclk_freq = 3;
 605	else if (host->clock <= 162000000)
 606		mclk_freq = 4;
 607	else if (host->clock <= 175000000)
 608		mclk_freq = 5;
 609	else if (host->clock <= 187000000)
 610		mclk_freq = 6;
 611	else if (host->clock <= 200000000)
 612		mclk_freq = 7;
 613
 614	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 615	config &= ~CMUX_SHIFT_PHASE_MASK;
 616	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 617	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 618}
 619
 620/* Initialize the DLL (Programmable Delay Line) */
 621static int msm_init_cm_dll(struct sdhci_host *host)
 622{
 623	struct mmc_host *mmc = host->mmc;
 624	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 625	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 626	int wait_cnt = 50;
 627	unsigned long flags, xo_clk = 0;
 628	u32 config;
 629	const struct sdhci_msm_offset *msm_offset =
 630					msm_host->offset;
 631
 632	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 633		xo_clk = clk_get_rate(msm_host->xo_clk);
 634
 635	spin_lock_irqsave(&host->lock, flags);
 636
 637	/*
 638	 * Make sure that clock is always enabled when DLL
 639	 * tuning is in progress. Keeping PWRSAVE ON may
 640	 * turn off the clock.
 641	 */
 642	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 643	config &= ~CORE_CLK_PWRSAVE;
 644	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 645
 646	if (msm_host->dll_config)
 647		writel_relaxed(msm_host->dll_config,
 648				host->ioaddr + msm_offset->core_dll_config);
 649
 650	if (msm_host->use_14lpp_dll_reset) {
 651		config = readl_relaxed(host->ioaddr +
 652				msm_offset->core_dll_config);
 653		config &= ~CORE_CK_OUT_EN;
 654		writel_relaxed(config, host->ioaddr +
 655				msm_offset->core_dll_config);
 656
 657		config = readl_relaxed(host->ioaddr +
 658				msm_offset->core_dll_config_2);
 659		config |= CORE_DLL_CLOCK_DISABLE;
 660		writel_relaxed(config, host->ioaddr +
 661				msm_offset->core_dll_config_2);
 662	}
 663
 664	config = readl_relaxed(host->ioaddr +
 665			msm_offset->core_dll_config);
 666	config |= CORE_DLL_RST;
 667	writel_relaxed(config, host->ioaddr +
 668			msm_offset->core_dll_config);
 669
 670	config = readl_relaxed(host->ioaddr +
 671			msm_offset->core_dll_config);
 672	config |= CORE_DLL_PDN;
 673	writel_relaxed(config, host->ioaddr +
 674			msm_offset->core_dll_config);
 675
 676	if (!msm_host->dll_config)
 677		msm_cm_dll_set_freq(host);
 678
 679	if (msm_host->use_14lpp_dll_reset &&
 680	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 681		u32 mclk_freq = 0;
 682
 683		config = readl_relaxed(host->ioaddr +
 684				msm_offset->core_dll_config_2);
 685		config &= CORE_FLL_CYCLE_CNT;
 686		if (config)
 687			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 688					xo_clk);
 689		else
 690			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 691					xo_clk);
 692
 693		config = readl_relaxed(host->ioaddr +
 694				msm_offset->core_dll_config_2);
 695		config &= ~(0xFF << 10);
 696		config |= mclk_freq << 10;
 697
 698		writel_relaxed(config, host->ioaddr +
 699				msm_offset->core_dll_config_2);
 700		/* wait for 5us before enabling DLL clock */
 701		udelay(5);
 702	}
 703
 704	config = readl_relaxed(host->ioaddr +
 705			msm_offset->core_dll_config);
 706	config &= ~CORE_DLL_RST;
 707	writel_relaxed(config, host->ioaddr +
 708			msm_offset->core_dll_config);
 709
 710	config = readl_relaxed(host->ioaddr +
 711			msm_offset->core_dll_config);
 712	config &= ~CORE_DLL_PDN;
 713	writel_relaxed(config, host->ioaddr +
 714			msm_offset->core_dll_config);
 715
 716	if (msm_host->use_14lpp_dll_reset) {
 717		if (!msm_host->dll_config)
 718			msm_cm_dll_set_freq(host);
 719		config = readl_relaxed(host->ioaddr +
 720				msm_offset->core_dll_config_2);
 721		config &= ~CORE_DLL_CLOCK_DISABLE;
 722		writel_relaxed(config, host->ioaddr +
 723				msm_offset->core_dll_config_2);
 724	}
 725
 726	/*
 727	 * Configure DLL user control register to enable DLL status.
 728	 * This setting is applicable to SDCC v5.1 onwards only.
 729	 */
 730	if (msm_host->uses_tassadar_dll) {
 731		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 732			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 733		writel_relaxed(config, host->ioaddr +
 734				msm_offset->core_dll_usr_ctl);
 735
 736		config = readl_relaxed(host->ioaddr +
 737				msm_offset->core_dll_config_3);
 738		config &= ~0xFF;
 739		if (msm_host->clk_rate < 150000000)
 740			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 741		else
 742			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 743		writel_relaxed(config, host->ioaddr +
 744			msm_offset->core_dll_config_3);
 745	}
 746
 747	config = readl_relaxed(host->ioaddr +
 748			msm_offset->core_dll_config);
 749	config |= CORE_DLL_EN;
 750	writel_relaxed(config, host->ioaddr +
 751			msm_offset->core_dll_config);
 752
 753	config = readl_relaxed(host->ioaddr +
 754			msm_offset->core_dll_config);
 755	config |= CORE_CK_OUT_EN;
 756	writel_relaxed(config, host->ioaddr +
 757			msm_offset->core_dll_config);
 758
 759	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 760	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 761		 CORE_DLL_LOCK)) {
 762		/* max. wait for 50us sec for LOCK bit to be set */
 763		if (--wait_cnt == 0) {
 764			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 765			       mmc_hostname(mmc));
 766			spin_unlock_irqrestore(&host->lock, flags);
 767			return -ETIMEDOUT;
 768		}
 769		udelay(1);
 770	}
 771
 772	spin_unlock_irqrestore(&host->lock, flags);
 773	return 0;
 774}
 775
 776static void msm_hc_select_default(struct sdhci_host *host)
 777{
 778	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 779	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 780	u32 config;
 781	const struct sdhci_msm_offset *msm_offset =
 782					msm_host->offset;
 783
 784	if (!msm_host->use_cdclp533) {
 785		config = readl_relaxed(host->ioaddr +
 786				msm_offset->core_vendor_spec3);
 787		config &= ~CORE_PWRSAVE_DLL;
 788		writel_relaxed(config, host->ioaddr +
 789				msm_offset->core_vendor_spec3);
 790	}
 791
 792	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 793	config &= ~CORE_HC_MCLK_SEL_MASK;
 794	config |= CORE_HC_MCLK_SEL_DFLT;
 795	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 796
 797	/*
 798	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 799	 * configuration from Host Control2 register for all other
 800	 * modes.
 801	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 802	 * in VENDOR_SPEC_FUNC
 803	 */
 804	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 805	config &= ~CORE_HC_SELECT_IN_EN;
 806	config &= ~CORE_HC_SELECT_IN_MASK;
 807	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 808
 809	/*
 810	 * Make sure above writes impacting free running MCLK are completed
 811	 * before changing the clk_rate at GCC.
 812	 */
 813	wmb();
 814}
 815
 816static void msm_hc_select_hs400(struct sdhci_host *host)
 817{
 818	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 819	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 820	struct mmc_ios ios = host->mmc->ios;
 821	u32 config, dll_lock;
 822	int rc;
 823	const struct sdhci_msm_offset *msm_offset =
 824					msm_host->offset;
 825
 826	/* Select the divided clock (free running MCLK/2) */
 827	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 828	config &= ~CORE_HC_MCLK_SEL_MASK;
 829	config |= CORE_HC_MCLK_SEL_HS400;
 830
 831	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 832	/*
 833	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 834	 * register
 835	 */
 836	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 837	    !msm_host->calibration_done) {
 838		config = readl_relaxed(host->ioaddr +
 839				msm_offset->core_vendor_spec);
 840		config |= CORE_HC_SELECT_IN_HS400;
 841		config |= CORE_HC_SELECT_IN_EN;
 842		writel_relaxed(config, host->ioaddr +
 843				msm_offset->core_vendor_spec);
 844	}
 845	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 846		/*
 847		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 848		 * core_dll_status to be set. This should get set
 849		 * within 15 us at 200 MHz.
 850		 */
 851		rc = readl_relaxed_poll_timeout(host->ioaddr +
 852						msm_offset->core_dll_status,
 853						dll_lock,
 854						(dll_lock &
 855						(CORE_DLL_LOCK |
 856						CORE_DDR_DLL_LOCK)), 10,
 857						1000);
 858		if (rc == -ETIMEDOUT)
 859			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 860			       mmc_hostname(host->mmc), dll_lock);
 861	}
 862	/*
 863	 * Make sure above writes impacting free running MCLK are completed
 864	 * before changing the clk_rate at GCC.
 865	 */
 866	wmb();
 867}
 868
 869/*
 870 * sdhci_msm_hc_select_mode :- In general all timing modes are
 871 * controlled via UHS mode select in Host Control2 register.
 872 * eMMC specific HS200/HS400 doesn't have their respective modes
 873 * defined here, hence we use these values.
 874 *
 875 * HS200 - SDR104 (Since they both are equivalent in functionality)
 876 * HS400 - This involves multiple configurations
 877 *		Initially SDR104 - when tuning is required as HS200
 878 *		Then when switching to DDR @ 400MHz (HS400) we use
 879 *		the vendor specific HC_SELECT_IN to control the mode.
 880 *
 881 * In addition to controlling the modes we also need to select the
 882 * correct input clock for DLL depending on the mode.
 883 *
 884 * HS400 - divided clock (free running MCLK/2)
 885 * All other modes - default (free running MCLK)
 886 */
 887static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 888{
 889	struct mmc_ios ios = host->mmc->ios;
 890
 891	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 892	    host->flags & SDHCI_HS400_TUNING)
 893		msm_hc_select_hs400(host);
 894	else
 895		msm_hc_select_default(host);
 896}
 897
 898static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 899{
 900	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 901	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 902	u32 config, calib_done;
 903	int ret;
 904	const struct sdhci_msm_offset *msm_offset =
 905					msm_host->offset;
 906
 907	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 908
 909	/*
 910	 * Retuning in HS400 (DDR mode) will fail, just reset the
 911	 * tuning block and restore the saved tuning phase.
 912	 */
 913	ret = msm_init_cm_dll(host);
 914	if (ret)
 915		goto out;
 916
 917	/* Set the selected phase in delay line hw block */
 918	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 919	if (ret)
 920		goto out;
 921
 922	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 923	config |= CORE_CMD_DAT_TRACK_SEL;
 924	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 925
 926	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 927	config &= ~CORE_CDC_T4_DLY_SEL;
 928	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 929
 930	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 931	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 932	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 933
 934	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 935	config |= CORE_CDC_SWITCH_RC_EN;
 936	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 937
 938	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 939	config &= ~CORE_START_CDC_TRAFFIC;
 940	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 941
 942	/* Perform CDC Register Initialization Sequence */
 943
 944	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 945	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 946	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 947	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 948	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 949	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 950	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 951	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 952	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 953
 954	/* CDC HW Calibration */
 955
 956	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 957	config |= CORE_SW_TRIG_FULL_CALIB;
 958	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 959
 960	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 961	config &= ~CORE_SW_TRIG_FULL_CALIB;
 962	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 963
 964	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 965	config |= CORE_HW_AUTOCAL_ENA;
 966	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 967
 968	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 969	config |= CORE_TIMER_ENA;
 970	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 971
 972	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 973					 calib_done,
 974					 (calib_done & CORE_CALIBRATION_DONE),
 975					 1, 50);
 976
 977	if (ret == -ETIMEDOUT) {
 978		pr_err("%s: %s: CDC calibration was not completed\n",
 979		       mmc_hostname(host->mmc), __func__);
 980		goto out;
 981	}
 982
 983	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 984			& CORE_CDC_ERROR_CODE_MASK;
 985	if (ret) {
 986		pr_err("%s: %s: CDC error code %d\n",
 987		       mmc_hostname(host->mmc), __func__, ret);
 988		ret = -EINVAL;
 989		goto out;
 990	}
 991
 992	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 993	config |= CORE_START_CDC_TRAFFIC;
 994	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 995out:
 996	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
 997		 __func__, ret);
 998	return ret;
 999}
1000
1001static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002{
1003	struct mmc_host *mmc = host->mmc;
1004	u32 dll_status, config, ddr_cfg_offset;
1005	int ret;
1006	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008	const struct sdhci_msm_offset *msm_offset =
1009					sdhci_priv_msm_offset(host);
1010
1011	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012
1013	/*
1014	 * Currently the core_ddr_config register defaults to desired
1015	 * configuration on reset. Currently reprogramming the power on
1016	 * reset (POR) value in case it might have been modified by
1017	 * bootloaders. In the future, if this changes, then the desired
1018	 * values will need to be programmed appropriately.
1019	 */
1020	if (msm_host->updated_ddr_cfg)
1021		ddr_cfg_offset = msm_offset->core_ddr_config;
1022	else
1023		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025
1026	if (mmc->ios.enhanced_strobe) {
1027		config = readl_relaxed(host->ioaddr +
1028				msm_offset->core_ddr_200_cfg);
1029		config |= CORE_CMDIN_RCLK_EN;
1030		writel_relaxed(config, host->ioaddr +
1031				msm_offset->core_ddr_200_cfg);
1032	}
1033
1034	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035	config |= CORE_DDR_CAL_EN;
1036	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037
1038	ret = readl_relaxed_poll_timeout(host->ioaddr +
1039					msm_offset->core_dll_status,
1040					dll_status,
1041					(dll_status & CORE_DDR_DLL_LOCK),
1042					10, 1000);
1043
1044	if (ret == -ETIMEDOUT) {
1045		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046		       mmc_hostname(host->mmc), __func__);
1047		goto out;
1048	}
1049
1050	/*
1051	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053	 * and MCLK must be switched on for at-least 1us before DATA
1054	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055	 * guarantee above requirement. So PWRSAVE_DLL should not be
1056	 * turned on for host controllers using this DLL.
1057	 */
1058	if (!msm_host->use_14lpp_dll_reset) {
1059		config = readl_relaxed(host->ioaddr +
1060				msm_offset->core_vendor_spec3);
1061		config |= CORE_PWRSAVE_DLL;
1062		writel_relaxed(config, host->ioaddr +
1063				msm_offset->core_vendor_spec3);
1064	}
1065
1066	/*
1067	 * Drain writebuffer to ensure above DLL calibration
1068	 * and PWRSAVE DLL is enabled.
1069	 */
1070	wmb();
1071out:
1072	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073		 __func__, ret);
1074	return ret;
1075}
1076
1077static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078{
1079	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081	struct mmc_host *mmc = host->mmc;
1082	int ret;
1083	u32 config;
1084	const struct sdhci_msm_offset *msm_offset =
1085					msm_host->offset;
1086
1087	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088
1089	/*
1090	 * Retuning in HS400 (DDR mode) will fail, just reset the
1091	 * tuning block and restore the saved tuning phase.
1092	 */
1093	ret = msm_init_cm_dll(host);
1094	if (ret)
1095		goto out;
1096
1097	if (!mmc->ios.enhanced_strobe) {
1098		/* Set the selected phase in delay line hw block */
1099		ret = msm_config_cm_dll_phase(host,
1100					      msm_host->saved_tuning_phase);
1101		if (ret)
1102			goto out;
1103		config = readl_relaxed(host->ioaddr +
1104				msm_offset->core_dll_config);
1105		config |= CORE_CMD_DAT_TRACK_SEL;
1106		writel_relaxed(config, host->ioaddr +
1107				msm_offset->core_dll_config);
1108	}
1109
1110	if (msm_host->use_cdclp533)
1111		ret = sdhci_msm_cdclp533_calibration(host);
1112	else
1113		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114out:
1115	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116		 __func__, ret);
1117	return ret;
1118}
1119
1120static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121{
1122	struct mmc_ios *ios = &host->mmc->ios;
1123
1124	/*
1125	 * Tuning is required for SDR104, HS200 and HS400 cards and
1126	 * if clock frequency is greater than 100MHz in these modes.
1127	 */
1128	if (host->clock <= CORE_FREQ_100MHZ ||
1129	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130	    ios->timing == MMC_TIMING_MMC_HS200 ||
1131	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1132	    ios->enhanced_strobe)
1133		return false;
1134
1135	return true;
1136}
1137
1138static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139{
1140	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142	int ret;
1143
1144	/*
1145	 * SDR DLL comes into picture only for timing modes which needs
1146	 * tuning.
1147	 */
1148	if (!sdhci_msm_is_tuning_needed(host))
1149		return 0;
1150
1151	/* Reset the tuning block */
1152	ret = msm_init_cm_dll(host);
1153	if (ret)
1154		return ret;
1155
1156	/* Restore the tuning block */
1157	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158
1159	return ret;
1160}
1161
1162static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163{
1164	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166					      msm_offset->core_dll_config);
1167
1168	config = oldconfig;
1169	if (enable) {
1170		config |= CORE_CDR_EN;
1171		config &= ~CORE_CDR_EXT_EN;
1172	} else {
1173		config &= ~CORE_CDR_EN;
1174		config |= CORE_CDR_EXT_EN;
1175	}
1176
1177	if (config != oldconfig) {
1178		writel_relaxed(config, host->ioaddr +
1179			       msm_offset->core_dll_config);
1180	}
1181}
1182
1183static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184{
1185	struct sdhci_host *host = mmc_priv(mmc);
1186	int tuning_seq_cnt = 10;
1187	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188	int rc;
1189	struct mmc_ios ios = host->mmc->ios;
1190	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192
1193	if (!sdhci_msm_is_tuning_needed(host)) {
1194		msm_host->use_cdr = false;
1195		sdhci_msm_set_cdr(host, false);
1196		return 0;
1197	}
1198
1199	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200	msm_host->use_cdr = true;
1201
1202	/*
1203	 * Clear tuning_done flag before tuning to ensure proper
1204	 * HS400 settings.
1205	 */
1206	msm_host->tuning_done = 0;
1207
1208	/*
1209	 * For HS400 tuning in HS200 timing requires:
1210	 * - select MCLK/2 in VENDOR_SPEC
1211	 * - program MCLK to 400MHz (or nearest supported) in GCC
1212	 */
1213	if (host->flags & SDHCI_HS400_TUNING) {
1214		sdhci_msm_hc_select_mode(host);
1215		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216		host->flags &= ~SDHCI_HS400_TUNING;
1217	}
1218
1219retry:
1220	/* First of all reset the tuning block */
1221	rc = msm_init_cm_dll(host);
1222	if (rc)
1223		return rc;
1224
1225	phase = 0;
1226	do {
1227		/* Set the phase in delay line hw block */
1228		rc = msm_config_cm_dll_phase(host, phase);
1229		if (rc)
1230			return rc;
1231
1232		rc = mmc_send_tuning(mmc, opcode, NULL);
1233		if (!rc) {
1234			/* Tuning is successful at this tuning point */
1235			tuned_phases[tuned_phase_cnt++] = phase;
1236			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237				 mmc_hostname(mmc), phase);
1238		}
1239	} while (++phase < ARRAY_SIZE(tuned_phases));
1240
1241	if (tuned_phase_cnt) {
1242		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243			/*
1244			 * All phases valid is _almost_ as bad as no phases
1245			 * valid.  Probably all phases are not really reliable
1246			 * but we didn't detect where the unreliable place is.
1247			 * That means we'll essentially be guessing and hoping
1248			 * we get a good phase.  Better to try a few times.
1249			 */
1250			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251				mmc_hostname(mmc));
1252			if (--tuning_seq_cnt) {
1253				tuned_phase_cnt = 0;
1254				goto retry;
1255			}
1256		}
1257
1258		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259						     tuned_phase_cnt);
1260		if (rc < 0)
1261			return rc;
1262		else
1263			phase = rc;
1264
1265		/*
1266		 * Finally set the selected phase in delay
1267		 * line hw block.
1268		 */
1269		rc = msm_config_cm_dll_phase(host, phase);
1270		if (rc)
1271			return rc;
1272		msm_host->saved_tuning_phase = phase;
1273		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274			 mmc_hostname(mmc), phase);
1275	} else {
1276		if (--tuning_seq_cnt)
1277			goto retry;
1278		/* Tuning failed */
1279		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280		       mmc_hostname(mmc));
1281		rc = -EIO;
1282	}
1283
1284	if (!rc)
1285		msm_host->tuning_done = true;
1286	return rc;
1287}
1288
1289/*
1290 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291 * This needs to be done for both tuning and enhanced_strobe mode.
1292 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293 * fixed feedback clock is used.
1294 */
1295static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296{
1297	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299	int ret;
1300
1301	if (host->clock > CORE_FREQ_100MHZ &&
1302	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1303	    !msm_host->calibration_done) {
1304		ret = sdhci_msm_hs400_dll_calibration(host);
1305		if (!ret)
1306			msm_host->calibration_done = true;
1307		else
1308			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309			       mmc_hostname(host->mmc), ret);
1310	}
1311}
1312
1313static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314					unsigned int uhs)
1315{
1316	struct mmc_host *mmc = host->mmc;
1317	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319	u16 ctrl_2;
1320	u32 config;
1321	const struct sdhci_msm_offset *msm_offset =
1322					msm_host->offset;
1323
1324	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325	/* Select Bus Speed Mode for host */
1326	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327	switch (uhs) {
1328	case MMC_TIMING_UHS_SDR12:
1329		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330		break;
1331	case MMC_TIMING_UHS_SDR25:
1332		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333		break;
1334	case MMC_TIMING_UHS_SDR50:
1335		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336		break;
1337	case MMC_TIMING_MMC_HS400:
1338	case MMC_TIMING_MMC_HS200:
1339	case MMC_TIMING_UHS_SDR104:
1340		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341		break;
1342	case MMC_TIMING_UHS_DDR50:
1343	case MMC_TIMING_MMC_DDR52:
1344		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345		break;
1346	}
1347
1348	/*
1349	 * When clock frequency is less than 100MHz, the feedback clock must be
1350	 * provided and DLL must not be used so that tuning can be skipped. To
1351	 * provide feedback clock, the mode selection can be any value less
1352	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353	 */
1354	if (host->clock <= CORE_FREQ_100MHZ) {
1355		if (uhs == MMC_TIMING_MMC_HS400 ||
1356		    uhs == MMC_TIMING_MMC_HS200 ||
1357		    uhs == MMC_TIMING_UHS_SDR104)
1358			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359		/*
1360		 * DLL is not required for clock <= 100MHz
1361		 * Thus, make sure DLL it is disabled when not required
1362		 */
1363		config = readl_relaxed(host->ioaddr +
1364				msm_offset->core_dll_config);
1365		config |= CORE_DLL_RST;
1366		writel_relaxed(config, host->ioaddr +
1367				msm_offset->core_dll_config);
1368
1369		config = readl_relaxed(host->ioaddr +
1370				msm_offset->core_dll_config);
1371		config |= CORE_DLL_PDN;
1372		writel_relaxed(config, host->ioaddr +
1373				msm_offset->core_dll_config);
1374
1375		/*
1376		 * The DLL needs to be restored and CDCLP533 recalibrated
1377		 * when the clock frequency is set back to 400MHz.
1378		 */
1379		msm_host->calibration_done = false;
1380	}
1381
1382	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385
1386	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387		sdhci_msm_hs400(host, &mmc->ios);
1388}
1389
1390static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391{
1392	struct platform_device *pdev = msm_host->pdev;
1393	int ret;
1394
1395	if (level)
1396		ret = pinctrl_pm_select_default_state(&pdev->dev);
1397	else
1398		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399
1400	return ret;
1401}
1402
1403static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404{
1405	if (IS_ERR(mmc->supply.vmmc))
1406		return 0;
1407
 
 
1408	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409}
1410
1411static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412			      struct mmc_host *mmc, bool level)
1413{
1414	int ret;
1415	struct mmc_ios ios;
1416
1417	if (msm_host->vqmmc_enabled == level)
1418		return 0;
1419
 
 
1420	if (level) {
1421		/* Set the IO voltage regulator to default voltage level */
1422		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426
1427		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429			if (ret < 0) {
1430				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431					mmc_hostname(mmc), ret);
1432				goto out;
1433			}
1434		}
1435		ret = regulator_enable(mmc->supply.vqmmc);
1436	} else {
1437		ret = regulator_disable(mmc->supply.vqmmc);
1438	}
1439
1440	if (ret)
1441		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442			mmc_hostname(mmc), level ? "en":"dis", ret);
1443	else
1444		msm_host->vqmmc_enabled = level;
1445out:
1446	return ret;
1447}
1448
1449static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450			      struct mmc_host *mmc, bool hpm)
1451{
1452	int load, ret;
1453
1454	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455	ret = regulator_set_load(mmc->supply.vqmmc, load);
1456	if (ret)
1457		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458			mmc_hostname(mmc), ret);
1459	return ret;
1460}
1461
1462static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463			      struct mmc_host *mmc, bool level)
1464{
1465	int ret;
1466	bool always_on;
1467
1468	if (IS_ERR(mmc->supply.vqmmc) ||
1469			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470		return 0;
1471	/*
1472	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473	 * and HPM modes by setting the corresponding load.
1474	 *
1475	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478	 * Vqmmc should remain ON, So just set the load instead of turning it
1479	 * off/on.
1480	 */
1481	always_on = !mmc_card_is_removable(mmc) &&
1482			mmc->card && mmc_card_mmc(mmc->card);
1483
1484	if (always_on)
1485		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486	else
1487		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488
1489	return ret;
1490}
1491
1492static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493{
1494	init_waitqueue_head(&msm_host->pwr_irq_wait);
1495}
1496
1497static inline void sdhci_msm_complete_pwr_irq_wait(
1498		struct sdhci_msm_host *msm_host)
1499{
1500	wake_up(&msm_host->pwr_irq_wait);
1501}
1502
1503/*
1504 * sdhci_msm_check_power_status API should be called when registers writes
1505 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506 * To what state the register writes will change the IO lines should be passed
1507 * as the argument req_type. This API will check whether the IO line's state
1508 * is already the expected state and will wait for power irq only if
1509 * power irq is expected to be triggered based on the current IO line state
1510 * and expected IO line state.
1511 */
1512static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513{
1514	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516	bool done = false;
1517	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518	const struct sdhci_msm_offset *msm_offset =
1519					msm_host->offset;
1520
1521	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522			mmc_hostname(host->mmc), __func__, req_type,
1523			msm_host->curr_pwr_state, msm_host->curr_io_level);
1524
1525	/*
1526	 * The power interrupt will not be generated for signal voltage
1527	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529	 * it as always set.
1530	 */
1531	if (!msm_host->mci_removed)
1532		val = msm_host_readl(msm_host, host,
1533				msm_offset->core_generics);
1534	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536		return;
1537	}
1538
1539	/*
1540	 * The IRQ for request type IO High/LOW will be generated when -
1541	 * there is a state change in 1.8V enable bit (bit 3) of
1542	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544	 * to set it to 3.3V before card detection happens, the
1545	 * IRQ doesn't get triggered as there is no state change in this bit.
1546	 * The driver already handles this case by changing the IO voltage
1547	 * level to high as part of controller power up sequence. Hence, check
1548	 * for host->pwr to handle a case where IO voltage high request is
1549	 * issued even before controller power up.
1550	 */
1551	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553				mmc_hostname(host->mmc), req_type);
1554		return;
1555	}
1556	if ((req_type & msm_host->curr_pwr_state) ||
1557			(req_type & msm_host->curr_io_level))
1558		done = true;
1559	/*
1560	 * This is needed here to handle cases where register writes will
1561	 * not change the current bus state or io level of the controller.
1562	 * In this case, no power irq will be triggerred and we should
1563	 * not wait.
1564	 */
1565	if (!done) {
1566		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567				msm_host->pwr_irq_flag,
1568				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569			dev_warn(&msm_host->pdev->dev,
1570				 "%s: pwr_irq for req: (%d) timed out\n",
1571				 mmc_hostname(host->mmc), req_type);
1572	}
1573	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574			__func__, req_type);
1575}
1576
1577static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578{
1579	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581	const struct sdhci_msm_offset *msm_offset =
1582					msm_host->offset;
1583
1584	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585		mmc_hostname(host->mmc),
1586		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589}
1590
1591static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592{
1593	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595	struct mmc_host *mmc = host->mmc;
1596	u32 irq_status, irq_ack = 0;
1597	int retry = 10, ret;
1598	u32 pwr_state = 0, io_level = 0;
1599	u32 config;
1600	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601
1602	irq_status = msm_host_readl(msm_host, host,
1603			msm_offset->core_pwrctl_status);
1604	irq_status &= INT_MASK;
1605
1606	msm_host_writel(msm_host, irq_status, host,
1607			msm_offset->core_pwrctl_clear);
1608
1609	/*
1610	 * There is a rare HW scenario where the first clear pulse could be
1611	 * lost when actual reset and clear/read of status register is
1612	 * happening at a time. Hence, retry for at least 10 times to make
1613	 * sure status register is cleared. Otherwise, this will result in
1614	 * a spurious power IRQ resulting in system instability.
1615	 */
1616	while (irq_status & msm_host_readl(msm_host, host,
1617				msm_offset->core_pwrctl_status)) {
1618		if (retry == 0) {
1619			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620					mmc_hostname(host->mmc), irq_status);
1621			sdhci_msm_dump_pwr_ctrl_regs(host);
1622			WARN_ON(1);
1623			break;
1624		}
1625		msm_host_writel(msm_host, irq_status, host,
1626			msm_offset->core_pwrctl_clear);
1627		retry--;
1628		udelay(10);
1629	}
1630
1631	/* Handle BUS ON/OFF*/
1632	if (irq_status & CORE_PWRCTL_BUS_ON) {
1633		pwr_state = REQ_BUS_ON;
1634		io_level = REQ_IO_HIGH;
1635	}
1636	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637		pwr_state = REQ_BUS_OFF;
1638		io_level = REQ_IO_LOW;
1639	}
1640
1641	if (pwr_state) {
1642		ret = sdhci_msm_set_vmmc(mmc);
 
1643		if (!ret)
1644			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645					pwr_state & REQ_BUS_ON);
1646		if (!ret)
1647			ret = sdhci_msm_set_pincfg(msm_host,
1648					pwr_state & REQ_BUS_ON);
1649		if (!ret)
1650			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651		else
1652			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653	}
1654
1655	/* Handle IO LOW/HIGH */
1656	if (irq_status & CORE_PWRCTL_IO_LOW)
1657		io_level = REQ_IO_LOW;
1658
1659	if (irq_status & CORE_PWRCTL_IO_HIGH)
1660		io_level = REQ_IO_HIGH;
1661
1662	if (io_level)
1663		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664
1665	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667		if (ret < 0) {
1668			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669					mmc_hostname(mmc), ret,
1670					mmc->ios.signal_voltage, mmc->ios.vdd,
1671					irq_status);
1672			irq_ack |= CORE_PWRCTL_IO_FAIL;
1673		}
1674	}
1675
1676	/*
1677	 * The driver has to acknowledge the interrupt, switch voltages and
1678	 * report back if it succeded or not to this register. The voltage
1679	 * switches are handled by the sdhci core, so just report success.
1680	 */
1681	msm_host_writel(msm_host, irq_ack, host,
1682			msm_offset->core_pwrctl_ctl);
1683
1684	/*
1685	 * If we don't have info regarding the voltage levels supported by
1686	 * regulators, don't change the IO PAD PWR SWITCH.
1687	 */
1688	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689		u32 new_config;
1690		/*
1691		 * We should unset IO PAD PWR switch only if the register write
1692		 * can set IO lines high and the regulator also switches to 3 V.
1693		 * Else, we should keep the IO PAD PWR switch set.
1694		 * This is applicable to certain targets where eMMC vccq supply
1695		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696		 * IO PAD PWR switch must be kept set to reflect actual
1697		 * regulator voltage. This way, during initialization of
1698		 * controllers with only 1.8V, we will set the IO PAD bit
1699		 * without waiting for a REQ_IO_LOW.
1700		 */
1701		config = readl_relaxed(host->ioaddr +
1702				msm_offset->core_vendor_spec);
1703		new_config = config;
1704
1705		if ((io_level & REQ_IO_HIGH) &&
1706				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708		else if ((io_level & REQ_IO_LOW) ||
1709				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710			new_config |= CORE_IO_PAD_PWR_SWITCH;
1711
1712		if (config ^ new_config)
1713			writel_relaxed(new_config, host->ioaddr +
1714					msm_offset->core_vendor_spec);
1715	}
1716
1717	if (pwr_state)
1718		msm_host->curr_pwr_state = pwr_state;
1719	if (io_level)
1720		msm_host->curr_io_level = io_level;
1721
1722	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724		irq_ack);
1725}
1726
1727static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728{
1729	struct sdhci_host *host = (struct sdhci_host *)data;
1730	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732
1733	sdhci_msm_handle_pwr_irq(host, irq);
1734	msm_host->pwr_irq_flag = 1;
1735	sdhci_msm_complete_pwr_irq_wait(msm_host);
1736
1737
1738	return IRQ_HANDLED;
1739}
1740
1741static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742{
1743	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746
1747	return clk_round_rate(core_clk, ULONG_MAX);
1748}
1749
1750static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751{
1752	return SDHCI_MSM_MIN_CLOCK;
1753}
1754
1755/*
1756 * __sdhci_msm_set_clock - sdhci_msm clock control.
1757 *
1758 * Description:
1759 * MSM controller does not use internal divider and
1760 * instead directly control the GCC clock as per
1761 * HW recommendation.
1762 **/
1763static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764{
1765	u16 clk;
1766
1767	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768
1769	if (clock == 0)
1770		return;
1771
1772	/*
1773	 * MSM controller do not use clock divider.
1774	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775	 * clock with no divider value programmed.
1776	 */
1777	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778	sdhci_enable_clk(host, clk);
1779}
1780
1781/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783{
1784	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786
1787	if (!clock) {
1788		host->mmc->actual_clock = msm_host->clk_rate = 0;
1789		goto out;
1790	}
1791
1792	sdhci_msm_hc_select_mode(host);
1793
1794	msm_set_clock_rate_for_bus_mode(host, clock);
1795out:
1796	__sdhci_msm_set_clock(host, clock);
1797}
1798
1799/*****************************************************************************\
1800 *                                                                           *
1801 * Inline Crypto Engine (ICE) support                                        *
1802 *                                                                           *
1803\*****************************************************************************/
1804
1805#ifdef CONFIG_MMC_CRYPTO
1806
1807#define AES_256_XTS_KEY_SIZE			64
1808
1809/* QCOM ICE registers */
1810
1811#define QCOM_ICE_REG_VERSION			0x0008
1812
1813#define QCOM_ICE_REG_FUSE_SETTING		0x0010
1814#define QCOM_ICE_FUSE_SETTING_MASK		0x1
1815#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1816#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1817
1818#define QCOM_ICE_REG_BIST_STATUS		0x0070
1819#define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1820
1821#define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1822
1823#define sdhci_msm_ice_writel(host, val, reg)	\
1824	writel((val), (host)->ice_mem + (reg))
1825#define sdhci_msm_ice_readl(host, reg)	\
1826	readl((host)->ice_mem + (reg))
1827
1828static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829{
1830	struct device *dev = mmc_dev(msm_host->mmc);
1831	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832	int major = regval >> 24;
1833	int minor = (regval >> 16) & 0xFF;
1834	int step = regval & 0xFFFF;
1835
1836	/* For now this driver only supports ICE version 3. */
1837	if (major != 3) {
1838		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839			 major, minor, step);
1840		return false;
1841	}
1842
1843	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844		 major, minor, step);
1845
1846	/* If fuses are blown, ICE might not work in the standard way. */
1847	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852		return false;
1853	}
1854	return true;
1855}
1856
1857static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858{
1859	return devm_clk_get(dev, "ice");
1860}
1861
1862static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863			      struct cqhci_host *cq_host)
1864{
1865	struct mmc_host *mmc = msm_host->mmc;
1866	struct device *dev = mmc_dev(mmc);
1867	struct resource *res;
1868
1869	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870		return 0;
1871
1872	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873					   "ice");
1874	if (!res) {
1875		dev_warn(dev, "ICE registers not found\n");
1876		goto disable;
1877	}
1878
1879	if (!qcom_scm_ice_available()) {
1880		dev_warn(dev, "ICE SCM interface not found\n");
1881		goto disable;
1882	}
1883
1884	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885	if (IS_ERR(msm_host->ice_mem))
1886		return PTR_ERR(msm_host->ice_mem);
1887
1888	if (!sdhci_msm_ice_supported(msm_host))
1889		goto disable;
1890
 
1891	mmc->caps2 |= MMC_CAP2_CRYPTO;
1892	return 0;
1893
1894disable:
1895	dev_warn(dev, "Disabling inline encryption support\n");
1896	return 0;
1897}
1898
1899static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900{
1901	u32 regval;
1902
1903	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904	/*
1905	 * Enable low power mode sequence
1906	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907	 */
1908	regval |= 0x7000;
1909	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910}
1911
1912static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913{
1914	u32 regval;
1915
1916	/* ICE Optimizations Enable Sequence */
1917	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918	regval |= 0xD807100;
1919	/* ICE HPG requires delay before writing */
1920	udelay(5);
1921	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922	udelay(5);
1923}
1924
1925/*
1926 * Wait until the ICE BIST (built-in self-test) has completed.
1927 *
1928 * This may be necessary before ICE can be used.
1929 *
1930 * Note that we don't really care whether the BIST passed or failed; we really
1931 * just want to make sure that it isn't still running.  This is because (a) the
1932 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933 * documented to reject crypto requests if the BIST fails, so we needn't do it
1934 * in software too, and (c) properly testing storage encryption requires testing
1935 * the full storage stack anyway, and not relying on hardware-level self-tests.
1936 */
1937static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938{
1939	u32 regval;
1940	int err;
1941
1942	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944				 50, 5000);
1945	if (err)
1946		dev_err(mmc_dev(msm_host->mmc),
1947			"Timed out waiting for ICE self-test to complete\n");
1948	return err;
1949}
1950
1951static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952{
1953	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954		return;
1955	sdhci_msm_ice_low_power_mode_enable(msm_host);
1956	sdhci_msm_ice_optimization_enable(msm_host);
1957	sdhci_msm_ice_wait_bist_status(msm_host);
1958}
1959
1960static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961{
1962	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963		return 0;
1964	return sdhci_msm_ice_wait_bist_status(msm_host);
1965}
1966
1967/*
1968 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1969 * vendor-specific SCM calls for this; it doesn't support the standard way.
1970 */
1971static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972				 const union cqhci_crypto_cfg_entry *cfg,
1973				 int slot)
1974{
1975	struct device *dev = mmc_dev(cq_host->mmc);
 
 
1976	union cqhci_crypto_cap_entry cap;
1977	union {
1978		u8 bytes[AES_256_XTS_KEY_SIZE];
1979		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980	} key;
1981	int i;
1982	int err;
1983
1984	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985		return qcom_scm_ice_invalidate_key(slot);
1986
1987	/* Only AES-256-XTS has been tested so far. */
1988	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991		dev_err_ratelimited(dev,
1992				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993				    cap.algorithm_id, cap.key_size);
1994		return -EINVAL;
1995	}
1996
1997	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998
1999	/*
2000	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2001	 * do the same, in order for the final key be correct.
2002	 */
2003	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004		__cpu_to_be32s(&key.words[i]);
2005
2006	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008				   cfg->data_unit_size);
2009	memzero_explicit(&key, sizeof(key));
2010	return err;
2011}
 
2012#else /* CONFIG_MMC_CRYPTO */
2013static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014{
2015	return NULL;
2016}
2017
2018static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019				     struct cqhci_host *cq_host)
2020{
2021	return 0;
2022}
2023
2024static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025{
2026}
2027
2028static inline int __maybe_unused
2029sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030{
2031	return 0;
2032}
 
 
 
 
 
 
2033#endif /* !CONFIG_MMC_CRYPTO */
2034
2035/*****************************************************************************\
2036 *                                                                           *
2037 * MSM Command Queue Engine (CQE)                                            *
2038 *                                                                           *
2039\*****************************************************************************/
2040
2041static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042{
2043	int cmd_error = 0;
2044	int data_error = 0;
2045
2046	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047		return intmask;
2048
2049	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050	return 0;
2051}
2052
2053static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054{
2055	struct sdhci_host *host = mmc_priv(mmc);
2056	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058
2059	sdhci_cqe_enable(mmc);
2060	sdhci_msm_ice_enable(msm_host);
2061}
2062
2063static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064{
2065	struct sdhci_host *host = mmc_priv(mmc);
2066	unsigned long flags;
2067	u32 ctrl;
2068
2069	/*
2070	 * When CQE is halted, the legacy SDHCI path operates only
2071	 * on 16-byte descriptors in 64bit mode.
2072	 */
2073	if (host->flags & SDHCI_USE_64_BIT_DMA)
2074		host->desc_sz = 16;
2075
2076	spin_lock_irqsave(&host->lock, flags);
2077
2078	/*
2079	 * During CQE command transfers, command complete bit gets latched.
2080	 * So s/w should clear command complete interrupt status when CQE is
2081	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082	 * interrupt gets triggered when CQE is halted/disabled.
2083	 */
2084	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085	ctrl |= SDHCI_INT_RESPONSE;
2086	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2087	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088
2089	spin_unlock_irqrestore(&host->lock, flags);
2090
2091	sdhci_cqe_disable(mmc, recovery);
2092}
2093
2094static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095{
2096	u32 count, start = 15;
2097
2098	__sdhci_set_timeout(host, cmd);
2099	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100	/*
2101	 * Update software timeout value if its value is less than hardware data
2102	 * timeout value. Qcom SoC hardware data timeout value was calculated
2103	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104	 */
2105	if (cmd && cmd->data && host->clock > 400000 &&
2106	    host->clock <= 50000000 &&
2107	    ((1 << (count + start)) > (10 * host->clock)))
2108		host->data_timeout = 22LL * NSEC_PER_SEC;
2109}
2110
2111static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112	.enable		= sdhci_msm_cqe_enable,
2113	.disable	= sdhci_msm_cqe_disable,
2114#ifdef CONFIG_MMC_CRYPTO
2115	.program_key	= sdhci_msm_program_key,
2116#endif
2117};
2118
2119static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120				struct platform_device *pdev)
2121{
2122	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124	struct cqhci_host *cq_host;
2125	bool dma64;
2126	u32 cqcfg;
2127	int ret;
2128
2129	/*
2130	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131	 * So ensure ADMA table is allocated for 16byte descriptors.
2132	 */
2133	if (host->caps & SDHCI_CAN_64BIT)
2134		host->alloc_desc_sz = 16;
2135
2136	ret = sdhci_setup_host(host);
2137	if (ret)
2138		return ret;
2139
2140	cq_host = cqhci_pltfm_init(pdev);
2141	if (IS_ERR(cq_host)) {
2142		ret = PTR_ERR(cq_host);
2143		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144		goto cleanup;
2145	}
2146
2147	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148	cq_host->ops = &sdhci_msm_cqhci_ops;
2149
2150	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151
2152	ret = sdhci_msm_ice_init(msm_host, cq_host);
2153	if (ret)
2154		goto cleanup;
2155
2156	ret = cqhci_init(cq_host, host->mmc, dma64);
2157	if (ret) {
2158		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159				mmc_hostname(host->mmc), ret);
2160		goto cleanup;
2161	}
2162
2163	/* Disable cqe reset due to cqe enable signal */
2164	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167
2168	/*
2169	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170	 * So limit desc_sz to 12 so that the data commands that are sent
2171	 * during card initialization (before CQE gets enabled) would
2172	 * get executed without any issues.
2173	 */
2174	if (host->flags & SDHCI_USE_64_BIT_DMA)
2175		host->desc_sz = 12;
2176
2177	ret = __sdhci_add_host(host);
2178	if (ret)
2179		goto cleanup;
2180
2181	dev_info(&pdev->dev, "%s: CQE init: success\n",
2182			mmc_hostname(host->mmc));
2183	return ret;
2184
2185cleanup:
2186	sdhci_cleanup_host(host);
2187	return ret;
2188}
2189
2190/*
2191 * Platform specific register write functions. This is so that, if any
2192 * register write needs to be followed up by platform specific actions,
2193 * they can be added here. These functions can go to sleep when writes
2194 * to certain registers are done.
2195 * These functions are relying on sdhci_set_ios not using spinlock.
2196 */
2197static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198{
2199	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201	u32 req_type = 0;
2202
2203	switch (reg) {
2204	case SDHCI_HOST_CONTROL2:
2205		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206			REQ_IO_HIGH;
2207		break;
2208	case SDHCI_SOFTWARE_RESET:
2209		if (host->pwr && (val & SDHCI_RESET_ALL))
2210			req_type = REQ_BUS_OFF;
2211		break;
2212	case SDHCI_POWER_CONTROL:
2213		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214		break;
2215	case SDHCI_TRANSFER_MODE:
2216		msm_host->transfer_mode = val;
2217		break;
2218	case SDHCI_COMMAND:
2219		if (!msm_host->use_cdr)
2220			break;
2221		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2223			sdhci_msm_set_cdr(host, true);
2224		else
2225			sdhci_msm_set_cdr(host, false);
2226		break;
2227	}
2228
2229	if (req_type) {
2230		msm_host->pwr_irq_flag = 0;
2231		/*
2232		 * Since this register write may trigger a power irq, ensure
2233		 * all previous register writes are complete by this point.
2234		 */
2235		mb();
2236	}
2237	return req_type;
2238}
2239
2240/* This function may sleep*/
2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242{
2243	u32 req_type = 0;
2244
2245	req_type = __sdhci_msm_check_write(host, val, reg);
2246	writew_relaxed(val, host->ioaddr + reg);
2247
2248	if (req_type)
2249		sdhci_msm_check_power_status(host, req_type);
2250}
2251
2252/* This function may sleep*/
2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254{
2255	u32 req_type = 0;
2256
2257	req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259	writeb_relaxed(val, host->ioaddr + reg);
2260
2261	if (req_type)
2262		sdhci_msm_check_power_status(host, req_type);
2263}
2264
2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266{
2267	struct mmc_host *mmc = msm_host->mmc;
2268	struct regulator *supply = mmc->supply.vqmmc;
2269	u32 caps = 0, config;
2270	struct sdhci_host *host = mmc_priv(mmc);
2271	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273	if (!IS_ERR(mmc->supply.vqmmc)) {
2274		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275			caps |= CORE_1_8V_SUPPORT;
2276		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277			caps |= CORE_3_0V_SUPPORT;
2278
2279		if (!caps)
2280			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281					mmc_hostname(mmc));
2282	}
2283
2284	if (caps) {
2285		/*
2286		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287		 * bit can be used as required later on.
2288		 */
2289		u32 io_level = msm_host->curr_io_level;
2290
2291		config = readl_relaxed(host->ioaddr +
2292				msm_offset->core_vendor_spec);
2293		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2296			config &= ~CORE_IO_PAD_PWR_SWITCH;
2297		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298			config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300		writel_relaxed(config,
2301				host->ioaddr + msm_offset->core_vendor_spec);
2302	}
2303	msm_host->caps_0 |= caps;
2304	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305}
2306
2307static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308{
2309	int ret;
2310
2311	ret = mmc_regulator_get_supply(msm_host->mmc);
2312	if (ret)
2313		return ret;
2314
2315	sdhci_msm_set_regulator_caps(msm_host);
2316
2317	return 0;
2318}
2319
2320static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321				      struct mmc_ios *ios)
2322{
2323	struct sdhci_host *host = mmc_priv(mmc);
2324	u16 ctrl, status;
2325
2326	/*
2327	 * Signal Voltage Switching is only applicable for Host Controllers
2328	 * v3.00 and above.
2329	 */
2330	if (host->version < SDHCI_SPEC_300)
2331		return 0;
2332
2333	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334
2335	switch (ios->signal_voltage) {
2336	case MMC_SIGNAL_VOLTAGE_330:
2337		if (!(host->flags & SDHCI_SIGNALING_330))
2338			return -EINVAL;
2339
2340		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341		ctrl &= ~SDHCI_CTRL_VDD_180;
2342		break;
2343	case MMC_SIGNAL_VOLTAGE_180:
2344		if (!(host->flags & SDHCI_SIGNALING_180))
2345			return -EINVAL;
2346
2347		/* Enable 1.8V Signal Enable in the Host Control2 register */
2348		ctrl |= SDHCI_CTRL_VDD_180;
2349		break;
2350
2351	default:
2352		return -EINVAL;
2353	}
2354
2355	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356
2357	/* Wait for 5ms */
2358	usleep_range(5000, 5500);
2359
2360	/* regulator output should be stable within 5 ms */
2361	status = ctrl & SDHCI_CTRL_VDD_180;
2362	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364		return 0;
2365
2366	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367		mmc_hostname(mmc));
2368
2369	return -EAGAIN;
2370}
2371
2372#define DRIVER_NAME "sdhci_msm"
2373#define SDHCI_MSM_DUMP(f, x...) \
2374	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375
2376static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377{
2378	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381
2382	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383
2384	SDHCI_MSM_DUMP(
2385			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2386		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389	SDHCI_MSM_DUMP(
2390			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2391		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394	SDHCI_MSM_DUMP(
2395			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397		readl_relaxed(host->ioaddr +
2398			msm_offset->core_vendor_spec_func2),
2399		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400}
2401
2402static const struct sdhci_msm_variant_ops mci_var_ops = {
2403	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405};
2406
2407static const struct sdhci_msm_variant_ops v5_var_ops = {
2408	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410};
2411
2412static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413	.var_ops = &mci_var_ops,
2414	.offset = &sdhci_msm_mci_offset,
2415};
2416
2417static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418	.mci_removed = true,
2419	.var_ops = &v5_var_ops,
2420	.offset = &sdhci_msm_v5_offset,
2421};
2422
2423static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424	.mci_removed = true,
2425	.restore_dll_config = true,
2426	.var_ops = &v5_var_ops,
2427	.offset = &sdhci_msm_v5_offset,
2428};
2429
2430static const struct of_device_id sdhci_msm_dt_match[] = {
2431	/*
2432	 * Do not add new variants to the driver which are compatible with
2433	 * generic ones, unless they need customization.
2434	 */
2435	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440	{},
2441};
2442
2443MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444
2445static const struct sdhci_ops sdhci_msm_ops = {
2446	.reset = sdhci_and_cqhci_reset,
2447	.set_clock = sdhci_msm_set_clock,
2448	.get_min_clock = sdhci_msm_get_min_clock,
2449	.get_max_clock = sdhci_msm_get_max_clock,
2450	.set_bus_width = sdhci_set_bus_width,
2451	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452	.write_w = sdhci_msm_writew,
2453	.write_b = sdhci_msm_writeb,
2454	.irq	= sdhci_msm_cqe_irq,
2455	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456	.set_power = sdhci_set_power_noreg,
2457	.set_timeout = sdhci_msm_set_timeout,
2458};
2459
2460static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465
2466	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467	.ops = &sdhci_msm_ops,
2468};
2469
2470static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471		struct sdhci_host *host)
2472{
2473	struct device_node *node = pdev->dev.of_node;
2474	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476
2477	if (of_property_read_u32(node, "qcom,ddr-config",
2478				&msm_host->ddr_config))
2479		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480
2481	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
 
 
 
2482}
2483
2484static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2485{
2486	struct reset_control *reset;
2487	int ret = 0;
2488
2489	reset = reset_control_get_optional_exclusive(dev, NULL);
2490	if (IS_ERR(reset))
2491		return dev_err_probe(dev, PTR_ERR(reset),
2492				"unable to acquire core_reset\n");
2493
2494	if (!reset)
2495		return ret;
2496
2497	ret = reset_control_assert(reset);
2498	if (ret) {
2499		reset_control_put(reset);
2500		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2501	}
2502
2503	/*
2504	 * The hardware requirement for delay between assert/deassert
2505	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2506	 * ~125us (4/32768). To be on the safe side add 200us delay.
2507	 */
2508	usleep_range(200, 210);
2509
2510	ret = reset_control_deassert(reset);
2511	if (ret) {
2512		reset_control_put(reset);
2513		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2514	}
2515
2516	usleep_range(200, 210);
2517	reset_control_put(reset);
2518
2519	return ret;
2520}
2521
2522static int sdhci_msm_probe(struct platform_device *pdev)
2523{
2524	struct sdhci_host *host;
2525	struct sdhci_pltfm_host *pltfm_host;
2526	struct sdhci_msm_host *msm_host;
2527	struct clk *clk;
2528	int ret;
2529	u16 host_version, core_minor;
2530	u32 core_version, config;
2531	u8 core_major;
2532	const struct sdhci_msm_offset *msm_offset;
2533	const struct sdhci_msm_variant_info *var_info;
2534	struct device_node *node = pdev->dev.of_node;
2535
2536	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2537	if (IS_ERR(host))
2538		return PTR_ERR(host);
2539
2540	host->sdma_boundary = 0;
2541	pltfm_host = sdhci_priv(host);
2542	msm_host = sdhci_pltfm_priv(pltfm_host);
2543	msm_host->mmc = host->mmc;
2544	msm_host->pdev = pdev;
2545
2546	ret = mmc_of_parse(host->mmc);
2547	if (ret)
2548		goto pltfm_free;
2549
2550	/*
2551	 * Based on the compatible string, load the required msm host info from
2552	 * the data associated with the version info.
2553	 */
2554	var_info = of_device_get_match_data(&pdev->dev);
2555
2556	msm_host->mci_removed = var_info->mci_removed;
2557	msm_host->restore_dll_config = var_info->restore_dll_config;
2558	msm_host->var_ops = var_info->var_ops;
2559	msm_host->offset = var_info->offset;
2560
2561	msm_offset = msm_host->offset;
2562
2563	sdhci_get_of_property(pdev);
2564	sdhci_msm_get_of_property(pdev, host);
2565
2566	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2567
2568	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2569	if (ret)
2570		goto pltfm_free;
2571
2572	/* Setup SDCC bus voter clock. */
2573	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2574	if (!IS_ERR(msm_host->bus_clk)) {
2575		/* Vote for max. clk rate for max. performance */
2576		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2577		if (ret)
2578			goto pltfm_free;
2579		ret = clk_prepare_enable(msm_host->bus_clk);
2580		if (ret)
2581			goto pltfm_free;
2582	}
2583
2584	/* Setup main peripheral bus clock */
2585	clk = devm_clk_get(&pdev->dev, "iface");
2586	if (IS_ERR(clk)) {
2587		ret = PTR_ERR(clk);
2588		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2589		goto bus_clk_disable;
2590	}
2591	msm_host->bulk_clks[1].clk = clk;
2592
2593	/* Setup SDC MMC clock */
2594	clk = devm_clk_get(&pdev->dev, "core");
2595	if (IS_ERR(clk)) {
2596		ret = PTR_ERR(clk);
2597		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2598		goto bus_clk_disable;
2599	}
2600	msm_host->bulk_clks[0].clk = clk;
2601
2602	 /* Check for optional interconnect paths */
2603	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2604	if (ret)
2605		goto bus_clk_disable;
2606
2607	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2608	if (ret)
2609		goto bus_clk_disable;
2610
2611	/* OPP table is optional */
2612	ret = devm_pm_opp_of_add_table(&pdev->dev);
2613	if (ret && ret != -ENODEV) {
2614		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2615		goto bus_clk_disable;
2616	}
2617
2618	/* Vote for maximum clock rate for maximum performance */
2619	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2620	if (ret)
2621		dev_warn(&pdev->dev, "core clock boost failed\n");
2622
2623	clk = devm_clk_get(&pdev->dev, "cal");
2624	if (IS_ERR(clk))
2625		clk = NULL;
2626	msm_host->bulk_clks[2].clk = clk;
2627
2628	clk = devm_clk_get(&pdev->dev, "sleep");
2629	if (IS_ERR(clk))
2630		clk = NULL;
2631	msm_host->bulk_clks[3].clk = clk;
2632
2633	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2634	if (IS_ERR(clk))
2635		clk = NULL;
2636	msm_host->bulk_clks[4].clk = clk;
2637
2638	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2639				      msm_host->bulk_clks);
2640	if (ret)
2641		goto bus_clk_disable;
2642
2643	/*
2644	 * xo clock is needed for FLL feature of cm_dll.
2645	 * In case if xo clock is not mentioned in DT, warn and proceed.
2646	 */
2647	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2648	if (IS_ERR(msm_host->xo_clk)) {
2649		ret = PTR_ERR(msm_host->xo_clk);
2650		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2651	}
2652
2653	if (!msm_host->mci_removed) {
2654		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2655		if (IS_ERR(msm_host->core_mem)) {
2656			ret = PTR_ERR(msm_host->core_mem);
2657			goto clk_disable;
2658		}
2659	}
2660
2661	/* Reset the vendor spec register to power on reset state */
2662	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2663			host->ioaddr + msm_offset->core_vendor_spec);
2664
2665	if (!msm_host->mci_removed) {
2666		/* Set HC_MODE_EN bit in HC_MODE register */
2667		msm_host_writel(msm_host, HC_MODE_EN, host,
2668				msm_offset->core_hc_mode);
2669		config = msm_host_readl(msm_host, host,
2670				msm_offset->core_hc_mode);
2671		config |= FF_CLK_SW_RST_DIS;
2672		msm_host_writel(msm_host, config, host,
2673				msm_offset->core_hc_mode);
2674	}
2675
2676	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2677	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2678		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2679			       SDHCI_VENDOR_VER_SHIFT));
2680
2681	core_version = msm_host_readl(msm_host, host,
2682			msm_offset->core_mci_version);
2683	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2684		      CORE_VERSION_MAJOR_SHIFT;
2685	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2686	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2687		core_version, core_major, core_minor);
2688
2689	if (core_major == 1 && core_minor >= 0x42)
2690		msm_host->use_14lpp_dll_reset = true;
2691
2692	/*
2693	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2694	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2695	 */
2696	if (core_major == 1 && core_minor < 0x34)
2697		msm_host->use_cdclp533 = true;
2698
2699	/*
2700	 * Support for some capabilities is not advertised by newer
2701	 * controller versions and must be explicitly enabled.
2702	 */
2703	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2704		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2705		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2706		writel_relaxed(config, host->ioaddr +
2707				msm_offset->core_vendor_spec_capabilities0);
2708	}
2709
2710	if (core_major == 1 && core_minor >= 0x49)
2711		msm_host->updated_ddr_cfg = true;
2712
2713	if (core_major == 1 && core_minor >= 0x71)
2714		msm_host->uses_tassadar_dll = true;
2715
2716	ret = sdhci_msm_register_vreg(msm_host);
2717	if (ret)
2718		goto clk_disable;
2719
2720	/*
2721	 * Power on reset state may trigger power irq if previous status of
2722	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2723	 * interrupt in GIC, any pending power irq interrupt should be
2724	 * acknowledged. Otherwise power irq interrupt handler would be
2725	 * fired prematurely.
2726	 */
2727	sdhci_msm_handle_pwr_irq(host, 0);
2728
2729	/*
2730	 * Ensure that above writes are propogated before interrupt enablement
2731	 * in GIC.
2732	 */
2733	mb();
2734
2735	/* Setup IRQ for handling power/voltage tasks with PMIC */
2736	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2737	if (msm_host->pwr_irq < 0) {
2738		ret = msm_host->pwr_irq;
2739		goto clk_disable;
2740	}
2741
2742	sdhci_msm_init_pwr_irq_wait(msm_host);
2743	/* Enable pwr irq interrupts */
2744	msm_host_writel(msm_host, INT_MASK, host,
2745		msm_offset->core_pwrctl_mask);
2746
2747	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2748					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2749					dev_name(&pdev->dev), host);
2750	if (ret) {
2751		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2752		goto clk_disable;
2753	}
2754
2755	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2756
2757	/* Set the timeout value to max possible */
2758	host->max_timeout_count = 0xF;
2759
2760	pm_runtime_get_noresume(&pdev->dev);
2761	pm_runtime_set_active(&pdev->dev);
2762	pm_runtime_enable(&pdev->dev);
2763	pm_runtime_set_autosuspend_delay(&pdev->dev,
2764					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2765	pm_runtime_use_autosuspend(&pdev->dev);
2766
2767	host->mmc_host_ops.start_signal_voltage_switch =
2768		sdhci_msm_start_signal_voltage_switch;
2769	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2770	if (of_property_read_bool(node, "supports-cqe"))
2771		ret = sdhci_msm_cqe_add_host(host, pdev);
2772	else
2773		ret = sdhci_add_host(host);
2774	if (ret)
2775		goto pm_runtime_disable;
2776
2777	pm_runtime_mark_last_busy(&pdev->dev);
2778	pm_runtime_put_autosuspend(&pdev->dev);
2779
2780	return 0;
2781
2782pm_runtime_disable:
2783	pm_runtime_disable(&pdev->dev);
2784	pm_runtime_set_suspended(&pdev->dev);
2785	pm_runtime_put_noidle(&pdev->dev);
2786clk_disable:
2787	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788				   msm_host->bulk_clks);
2789bus_clk_disable:
2790	if (!IS_ERR(msm_host->bus_clk))
2791		clk_disable_unprepare(msm_host->bus_clk);
2792pltfm_free:
2793	sdhci_pltfm_free(pdev);
2794	return ret;
2795}
2796
2797static int sdhci_msm_remove(struct platform_device *pdev)
2798{
2799	struct sdhci_host *host = platform_get_drvdata(pdev);
2800	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2801	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2802	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2803		    0xffffffff);
2804
2805	sdhci_remove_host(host, dead);
2806
2807	pm_runtime_get_sync(&pdev->dev);
2808	pm_runtime_disable(&pdev->dev);
2809	pm_runtime_put_noidle(&pdev->dev);
2810
2811	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812				   msm_host->bulk_clks);
2813	if (!IS_ERR(msm_host->bus_clk))
2814		clk_disable_unprepare(msm_host->bus_clk);
2815	sdhci_pltfm_free(pdev);
2816	return 0;
2817}
2818
2819static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2820{
2821	struct sdhci_host *host = dev_get_drvdata(dev);
2822	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 
 
 
 
 
2824
2825	/* Drop the performance vote */
2826	dev_pm_opp_set_rate(dev, 0);
2827	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2828				   msm_host->bulk_clks);
2829
2830	return 0;
2831}
2832
2833static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2834{
2835	struct sdhci_host *host = dev_get_drvdata(dev);
2836	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2837	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 
2838	int ret;
2839
2840	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2841				       msm_host->bulk_clks);
2842	if (ret)
2843		return ret;
2844	/*
2845	 * Whenever core-clock is gated dynamically, it's needed to
2846	 * restore the SDR DLL settings when the clock is ungated.
2847	 */
2848	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2849		ret = sdhci_msm_restore_sdr_dll_config(host);
2850		if (ret)
2851			return ret;
2852	}
2853
2854	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2855
2856	return sdhci_msm_ice_resume(msm_host);
 
 
 
 
 
 
 
 
2857}
2858
2859static const struct dev_pm_ops sdhci_msm_pm_ops = {
2860	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2861				pm_runtime_force_resume)
2862	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2863			   sdhci_msm_runtime_resume,
2864			   NULL)
2865};
2866
2867static struct platform_driver sdhci_msm_driver = {
2868	.probe = sdhci_msm_probe,
2869	.remove = sdhci_msm_remove,
2870	.driver = {
2871		   .name = "sdhci_msm",
2872		   .of_match_table = sdhci_msm_dt_match,
2873		   .pm = &sdhci_msm_pm_ops,
2874		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2875	},
2876};
2877
2878module_platform_driver(sdhci_msm_driver);
2879
2880MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2881MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
 
   9#include <linux/delay.h>
  10#include <linux/mmc/mmc.h>
  11#include <linux/pm_runtime.h>
  12#include <linux/pm_opp.h>
  13#include <linux/slab.h>
  14#include <linux/iopoll.h>
 
  15#include <linux/regulator/consumer.h>
  16#include <linux/interconnect.h>
  17#include <linux/of.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/reset.h>
  20
  21#include <soc/qcom/ice.h>
  22
  23#include "sdhci-cqhci.h"
  24#include "sdhci-pltfm.h"
  25#include "cqhci.h"
  26
  27#define CORE_MCI_VERSION		0x50
  28#define CORE_VERSION_MAJOR_SHIFT	28
  29#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  30#define CORE_VERSION_MINOR_MASK		0xff
  31
  32#define CORE_MCI_GENERICS		0x70
  33#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  34
  35#define HC_MODE_EN		0x1
  36#define CORE_POWER		0x0
  37#define CORE_SW_RST		BIT(7)
  38#define FF_CLK_SW_RST_DIS	BIT(13)
  39
  40#define CORE_PWRCTL_BUS_OFF	BIT(0)
  41#define CORE_PWRCTL_BUS_ON	BIT(1)
  42#define CORE_PWRCTL_IO_LOW	BIT(2)
  43#define CORE_PWRCTL_IO_HIGH	BIT(3)
  44#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  45#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  46#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  47#define CORE_PWRCTL_IO_FAIL     BIT(3)
  48#define REQ_BUS_OFF		BIT(0)
  49#define REQ_BUS_ON		BIT(1)
  50#define REQ_IO_LOW		BIT(2)
  51#define REQ_IO_HIGH		BIT(3)
  52#define INT_MASK		0xf
  53#define MAX_PHASES		16
  54#define CORE_DLL_LOCK		BIT(7)
  55#define CORE_DDR_DLL_LOCK	BIT(11)
  56#define CORE_DLL_EN		BIT(16)
  57#define CORE_CDR_EN		BIT(17)
  58#define CORE_CK_OUT_EN		BIT(18)
  59#define CORE_CDR_EXT_EN		BIT(19)
  60#define CORE_DLL_PDN		BIT(29)
  61#define CORE_DLL_RST		BIT(30)
  62#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  63
  64#define CORE_DDR_CAL_EN		BIT(0)
  65#define CORE_FLL_CYCLE_CNT	BIT(18)
  66#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  67
  68#define DLL_USR_CTL_POR_VAL	0x10800
  69#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  70#define FINE_TUNE_MODE_EN	BIT(27)
  71#define BIAS_OK_SIGNAL		BIT(29)
  72
  73#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  74#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  75
  76#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  77#define CORE_CLK_PWRSAVE	BIT(1)
  78#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  79#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  80#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  81#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  82#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  83#define CORE_HC_SELECT_IN_EN	BIT(18)
  84#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  85#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  86
  87#define CORE_3_0V_SUPPORT	BIT(25)
  88#define CORE_1_8V_SUPPORT	BIT(26)
  89#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  90
  91#define CORE_CSR_CDC_CTLR_CFG0		0x130
  92#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  93#define CORE_HW_AUTOCAL_ENA		BIT(17)
  94
  95#define CORE_CSR_CDC_CTLR_CFG1		0x134
  96#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  97#define CORE_TIMER_ENA			BIT(16)
  98
  99#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
 100#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
 101#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
 102#define CORE_CDC_OFFSET_CFG		0x14C
 103#define CORE_CSR_CDC_DELAY_CFG		0x150
 104#define CORE_CDC_SLAVE_DDA_CFG		0x160
 105#define CORE_CSR_CDC_STATUS0		0x164
 106#define CORE_CALIBRATION_DONE		BIT(0)
 107
 108#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 109
 110#define CORE_CSR_CDC_GEN_CFG		0x178
 111#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 112#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 113
 114#define CORE_CDC_T4_DLY_SEL		BIT(0)
 115#define CORE_CMDIN_RCLK_EN		BIT(1)
 116#define CORE_START_CDC_TRAFFIC		BIT(6)
 117
 118#define CORE_PWRSAVE_DLL	BIT(3)
 119
 120#define DDR_CONFIG_POR_VAL	0x80040873
 121
 122
 123#define INVALID_TUNING_PHASE	-1
 124#define SDHCI_MSM_MIN_CLOCK	400000
 125#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 126
 127#define CDR_SELEXT_SHIFT	20
 128#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 129#define CMUX_SHIFT_PHASE_SHIFT	24
 130#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 131
 132#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 133
 134/* Timeout value to avoid infinite waiting for pwr_irq */
 135#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 136
 137/* Max load for eMMC Vdd supply */
 138#define MMC_VMMC_MAX_LOAD_UA	570000
 139
 140/* Max load for eMMC Vdd-io supply */
 141#define MMC_VQMMC_MAX_LOAD_UA	325000
 142
 143/* Max load for SD Vdd supply */
 144#define SD_VMMC_MAX_LOAD_UA	800000
 145
 146/* Max load for SD Vdd-io supply */
 147#define SD_VQMMC_MAX_LOAD_UA	22000
 148
 149#define msm_host_readl(msm_host, host, offset) \
 150	msm_host->var_ops->msm_readl_relaxed(host, offset)
 151
 152#define msm_host_writel(msm_host, val, host, offset) \
 153	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 154
 155/* CQHCI vendor specific registers */
 156#define CQHCI_VENDOR_CFG1	0xA00
 157#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 158
 159struct sdhci_msm_offset {
 160	u32 core_hc_mode;
 161	u32 core_mci_data_cnt;
 162	u32 core_mci_status;
 163	u32 core_mci_fifo_cnt;
 164	u32 core_mci_version;
 165	u32 core_generics;
 166	u32 core_testbus_config;
 167	u32 core_testbus_sel2_bit;
 168	u32 core_testbus_ena;
 169	u32 core_testbus_sel2;
 170	u32 core_pwrctl_status;
 171	u32 core_pwrctl_mask;
 172	u32 core_pwrctl_clear;
 173	u32 core_pwrctl_ctl;
 174	u32 core_sdcc_debug_reg;
 175	u32 core_dll_config;
 176	u32 core_dll_status;
 177	u32 core_vendor_spec;
 178	u32 core_vendor_spec_adma_err_addr0;
 179	u32 core_vendor_spec_adma_err_addr1;
 180	u32 core_vendor_spec_func2;
 181	u32 core_vendor_spec_capabilities0;
 182	u32 core_ddr_200_cfg;
 183	u32 core_vendor_spec3;
 184	u32 core_dll_config_2;
 185	u32 core_dll_config_3;
 186	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 187	u32 core_ddr_config;
 188	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 189};
 190
 191static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 192	.core_mci_data_cnt = 0x35c,
 193	.core_mci_status = 0x324,
 194	.core_mci_fifo_cnt = 0x308,
 195	.core_mci_version = 0x318,
 196	.core_generics = 0x320,
 197	.core_testbus_config = 0x32c,
 198	.core_testbus_sel2_bit = 3,
 199	.core_testbus_ena = (1 << 31),
 200	.core_testbus_sel2 = (1 << 3),
 201	.core_pwrctl_status = 0x240,
 202	.core_pwrctl_mask = 0x244,
 203	.core_pwrctl_clear = 0x248,
 204	.core_pwrctl_ctl = 0x24c,
 205	.core_sdcc_debug_reg = 0x358,
 206	.core_dll_config = 0x200,
 207	.core_dll_status = 0x208,
 208	.core_vendor_spec = 0x20c,
 209	.core_vendor_spec_adma_err_addr0 = 0x214,
 210	.core_vendor_spec_adma_err_addr1 = 0x218,
 211	.core_vendor_spec_func2 = 0x210,
 212	.core_vendor_spec_capabilities0 = 0x21c,
 213	.core_ddr_200_cfg = 0x224,
 214	.core_vendor_spec3 = 0x250,
 215	.core_dll_config_2 = 0x254,
 216	.core_dll_config_3 = 0x258,
 217	.core_ddr_config = 0x25c,
 218	.core_dll_usr_ctl = 0x388,
 219};
 220
 221static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 222	.core_hc_mode = 0x78,
 223	.core_mci_data_cnt = 0x30,
 224	.core_mci_status = 0x34,
 225	.core_mci_fifo_cnt = 0x44,
 226	.core_mci_version = 0x050,
 227	.core_generics = 0x70,
 228	.core_testbus_config = 0x0cc,
 229	.core_testbus_sel2_bit = 4,
 230	.core_testbus_ena = (1 << 3),
 231	.core_testbus_sel2 = (1 << 4),
 232	.core_pwrctl_status = 0xdc,
 233	.core_pwrctl_mask = 0xe0,
 234	.core_pwrctl_clear = 0xe4,
 235	.core_pwrctl_ctl = 0xe8,
 236	.core_sdcc_debug_reg = 0x124,
 237	.core_dll_config = 0x100,
 238	.core_dll_status = 0x108,
 239	.core_vendor_spec = 0x10c,
 240	.core_vendor_spec_adma_err_addr0 = 0x114,
 241	.core_vendor_spec_adma_err_addr1 = 0x118,
 242	.core_vendor_spec_func2 = 0x110,
 243	.core_vendor_spec_capabilities0 = 0x11c,
 244	.core_ddr_200_cfg = 0x184,
 245	.core_vendor_spec3 = 0x1b0,
 246	.core_dll_config_2 = 0x1b4,
 247	.core_ddr_config_old = 0x1b8,
 248	.core_ddr_config = 0x1bc,
 249};
 250
 251struct sdhci_msm_variant_ops {
 252	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 253	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 254			u32 offset);
 255};
 256
 257/*
 258 * From V5, register spaces have changed. Wrap this info in a structure
 259 * and choose the data_structure based on version info mentioned in DT.
 260 */
 261struct sdhci_msm_variant_info {
 262	bool mci_removed;
 263	bool restore_dll_config;
 264	const struct sdhci_msm_variant_ops *var_ops;
 265	const struct sdhci_msm_offset *offset;
 266};
 267
 268struct sdhci_msm_host {
 269	struct platform_device *pdev;
 270	void __iomem *core_mem;	/* MSM SDCC mapped address */
 
 271	int pwr_irq;		/* power irq */
 272	struct clk *bus_clk;	/* SDHC bus voter clock */
 273	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 274	/* core, iface, cal and sleep clocks */
 275	struct clk_bulk_data bulk_clks[4];
 276#ifdef CONFIG_MMC_CRYPTO
 277	struct qcom_ice *ice;
 278#endif
 279	unsigned long clk_rate;
 280	struct mmc_host *mmc;
 281	bool use_14lpp_dll_reset;
 282	bool tuning_done;
 283	bool calibration_done;
 284	u8 saved_tuning_phase;
 285	bool use_cdclp533;
 286	u32 curr_pwr_state;
 287	u32 curr_io_level;
 288	wait_queue_head_t pwr_irq_wait;
 289	bool pwr_irq_flag;
 290	u32 caps_0;
 291	bool mci_removed;
 292	bool restore_dll_config;
 293	const struct sdhci_msm_variant_ops *var_ops;
 294	const struct sdhci_msm_offset *offset;
 295	bool use_cdr;
 296	u32 transfer_mode;
 297	bool updated_ddr_cfg;
 298	bool uses_tassadar_dll;
 299	u32 dll_config;
 300	u32 ddr_config;
 301	bool vqmmc_enabled;
 302};
 303
 304static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 305{
 306	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 307	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 308
 309	return msm_host->offset;
 310}
 311
 312/*
 313 * APIs to read/write to vendor specific registers which were there in the
 314 * core_mem region before MCI was removed.
 315 */
 316static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 317		u32 offset)
 318{
 319	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 320	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 321
 322	return readl_relaxed(msm_host->core_mem + offset);
 323}
 324
 325static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 326		u32 offset)
 327{
 328	return readl_relaxed(host->ioaddr + offset);
 329}
 330
 331static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 332		struct sdhci_host *host, u32 offset)
 333{
 334	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 335	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 336
 337	writel_relaxed(val, msm_host->core_mem + offset);
 338}
 339
 340static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 341		struct sdhci_host *host, u32 offset)
 342{
 343	writel_relaxed(val, host->ioaddr + offset);
 344}
 345
 346static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
 347{
 348	struct mmc_ios ios = host->mmc->ios;
 349	/*
 350	 * The SDHC requires internal clock frequency to be double the
 351	 * actual clock that will be set for DDR mode. The controller
 352	 * uses the faster clock(100/400MHz) for some of its parts and
 353	 * send the actual required clock (50/200MHz) to the card.
 354	 */
 355	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 356	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 357	    ios.timing == MMC_TIMING_MMC_HS400 ||
 358	    host->flags & SDHCI_HS400_TUNING)
 359		return 2;
 360	return 1;
 361}
 362
 363static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 364					    unsigned int clock)
 365{
 366	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 367	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 368	struct mmc_ios curr_ios = host->mmc->ios;
 369	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 370	unsigned long achieved_rate;
 371	unsigned int desired_rate;
 372	unsigned int mult;
 373	int rc;
 374
 375	mult = msm_get_clock_mult_for_bus_mode(host);
 376	desired_rate = clock * mult;
 377	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
 378	if (rc) {
 379		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 380		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
 381		return;
 382	}
 383
 384	/*
 385	 * Qualcomm clock drivers by default round clock _up_ if they can't
 386	 * make the requested rate.  This is not good for SD.  Yell if we
 387	 * encounter it.
 388	 */
 389	achieved_rate = clk_get_rate(core_clk);
 390	if (achieved_rate > desired_rate)
 391		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
 392			mmc_hostname(host->mmc), desired_rate, achieved_rate);
 393	host->mmc->actual_clock = achieved_rate / mult;
 394
 395	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
 396	msm_host->clk_rate = desired_rate;
 397
 398	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 399		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
 400}
 401
 402/* Platform specific tuning */
 403static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 404{
 405	u32 wait_cnt = 50;
 406	u8 ck_out_en;
 407	struct mmc_host *mmc = host->mmc;
 408	const struct sdhci_msm_offset *msm_offset =
 409					sdhci_priv_msm_offset(host);
 410
 411	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 412	ck_out_en = !!(readl_relaxed(host->ioaddr +
 413			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 414
 415	while (ck_out_en != poll) {
 416		if (--wait_cnt == 0) {
 417			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 418			       mmc_hostname(mmc), poll);
 419			return -ETIMEDOUT;
 420		}
 421		udelay(1);
 422
 423		ck_out_en = !!(readl_relaxed(host->ioaddr +
 424			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 425	}
 426
 427	return 0;
 428}
 429
 430static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 431{
 432	int rc;
 433	static const u8 grey_coded_phase_table[] = {
 434		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 435		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 436	};
 437	unsigned long flags;
 438	u32 config;
 439	struct mmc_host *mmc = host->mmc;
 440	const struct sdhci_msm_offset *msm_offset =
 441					sdhci_priv_msm_offset(host);
 442
 443	if (phase > 0xf)
 444		return -EINVAL;
 445
 446	spin_lock_irqsave(&host->lock, flags);
 447
 448	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 449	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 450	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 451	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 452
 453	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 454	rc = msm_dll_poll_ck_out_en(host, 0);
 455	if (rc)
 456		goto err_out;
 457
 458	/*
 459	 * Write the selected DLL clock output phase (0 ... 15)
 460	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 461	 */
 462	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 463	config &= ~CDR_SELEXT_MASK;
 464	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 465	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 466
 467	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 468	config |= CORE_CK_OUT_EN;
 469	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 470
 471	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 472	rc = msm_dll_poll_ck_out_en(host, 1);
 473	if (rc)
 474		goto err_out;
 475
 476	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 477	config |= CORE_CDR_EN;
 478	config &= ~CORE_CDR_EXT_EN;
 479	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 480	goto out;
 481
 482err_out:
 483	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 484	       mmc_hostname(mmc), phase);
 485out:
 486	spin_unlock_irqrestore(&host->lock, flags);
 487	return rc;
 488}
 489
 490/*
 491 * Find out the greatest range of consecuitive selected
 492 * DLL clock output phases that can be used as sampling
 493 * setting for SD3.0 UHS-I card read operation (in SDR104
 494 * timing mode) or for eMMC4.5 card read operation (in
 495 * HS400/HS200 timing mode).
 496 * Select the 3/4 of the range and configure the DLL with the
 497 * selected DLL clock output phase.
 498 */
 499
 500static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 501					   u8 *phase_table, u8 total_phases)
 502{
 503	int ret;
 504	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 505	u8 phases_per_row[MAX_PHASES] = { 0 };
 506	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 507	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 508	bool phase_0_found = false, phase_15_found = false;
 509	struct mmc_host *mmc = host->mmc;
 510
 511	if (!total_phases || (total_phases > MAX_PHASES)) {
 512		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 513		       mmc_hostname(mmc), total_phases);
 514		return -EINVAL;
 515	}
 516
 517	for (cnt = 0; cnt < total_phases; cnt++) {
 518		ranges[row_index][col_index] = phase_table[cnt];
 519		phases_per_row[row_index] += 1;
 520		col_index++;
 521
 522		if ((cnt + 1) == total_phases) {
 523			continue;
 524		/* check if next phase in phase_table is consecutive or not */
 525		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 526			row_index++;
 527			col_index = 0;
 528		}
 529	}
 530
 531	if (row_index >= MAX_PHASES)
 532		return -EINVAL;
 533
 534	/* Check if phase-0 is present in first valid window? */
 535	if (!ranges[0][0]) {
 536		phase_0_found = true;
 537		phase_0_raw_index = 0;
 538		/* Check if cycle exist between 2 valid windows */
 539		for (cnt = 1; cnt <= row_index; cnt++) {
 540			if (phases_per_row[cnt]) {
 541				for (i = 0; i < phases_per_row[cnt]; i++) {
 542					if (ranges[cnt][i] == 15) {
 543						phase_15_found = true;
 544						phase_15_raw_index = cnt;
 545						break;
 546					}
 547				}
 548			}
 549		}
 550	}
 551
 552	/* If 2 valid windows form cycle then merge them as single window */
 553	if (phase_0_found && phase_15_found) {
 554		/* number of phases in raw where phase 0 is present */
 555		u8 phases_0 = phases_per_row[phase_0_raw_index];
 556		/* number of phases in raw where phase 15 is present */
 557		u8 phases_15 = phases_per_row[phase_15_raw_index];
 558
 559		if (phases_0 + phases_15 >= MAX_PHASES)
 560			/*
 561			 * If there are more than 1 phase windows then total
 562			 * number of phases in both the windows should not be
 563			 * more than or equal to MAX_PHASES.
 564			 */
 565			return -EINVAL;
 566
 567		/* Merge 2 cyclic windows */
 568		i = phases_15;
 569		for (cnt = 0; cnt < phases_0; cnt++) {
 570			ranges[phase_15_raw_index][i] =
 571			    ranges[phase_0_raw_index][cnt];
 572			if (++i >= MAX_PHASES)
 573				break;
 574		}
 575
 576		phases_per_row[phase_0_raw_index] = 0;
 577		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 578	}
 579
 580	for (cnt = 0; cnt <= row_index; cnt++) {
 581		if (phases_per_row[cnt] > curr_max) {
 582			curr_max = phases_per_row[cnt];
 583			selected_row_index = cnt;
 584		}
 585	}
 586
 587	i = (curr_max * 3) / 4;
 588	if (i)
 589		i--;
 590
 591	ret = ranges[selected_row_index][i];
 592
 593	if (ret >= MAX_PHASES) {
 594		ret = -EINVAL;
 595		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 596		       mmc_hostname(mmc), ret);
 597	}
 598
 599	return ret;
 600}
 601
 602static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 603{
 604	u32 mclk_freq = 0, config;
 605	const struct sdhci_msm_offset *msm_offset =
 606					sdhci_priv_msm_offset(host);
 607
 608	/* Program the MCLK value to MCLK_FREQ bit field */
 609	if (host->clock <= 112000000)
 610		mclk_freq = 0;
 611	else if (host->clock <= 125000000)
 612		mclk_freq = 1;
 613	else if (host->clock <= 137000000)
 614		mclk_freq = 2;
 615	else if (host->clock <= 150000000)
 616		mclk_freq = 3;
 617	else if (host->clock <= 162000000)
 618		mclk_freq = 4;
 619	else if (host->clock <= 175000000)
 620		mclk_freq = 5;
 621	else if (host->clock <= 187000000)
 622		mclk_freq = 6;
 623	else if (host->clock <= 200000000)
 624		mclk_freq = 7;
 625
 626	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 627	config &= ~CMUX_SHIFT_PHASE_MASK;
 628	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 629	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 630}
 631
 632/* Initialize the DLL (Programmable Delay Line) */
 633static int msm_init_cm_dll(struct sdhci_host *host)
 634{
 635	struct mmc_host *mmc = host->mmc;
 636	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 637	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 638	int wait_cnt = 50;
 639	unsigned long flags, xo_clk = 0;
 640	u32 config;
 641	const struct sdhci_msm_offset *msm_offset =
 642					msm_host->offset;
 643
 644	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 645		xo_clk = clk_get_rate(msm_host->xo_clk);
 646
 647	spin_lock_irqsave(&host->lock, flags);
 648
 649	/*
 650	 * Make sure that clock is always enabled when DLL
 651	 * tuning is in progress. Keeping PWRSAVE ON may
 652	 * turn off the clock.
 653	 */
 654	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 655	config &= ~CORE_CLK_PWRSAVE;
 656	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 657
 658	if (msm_host->dll_config)
 659		writel_relaxed(msm_host->dll_config,
 660				host->ioaddr + msm_offset->core_dll_config);
 661
 662	if (msm_host->use_14lpp_dll_reset) {
 663		config = readl_relaxed(host->ioaddr +
 664				msm_offset->core_dll_config);
 665		config &= ~CORE_CK_OUT_EN;
 666		writel_relaxed(config, host->ioaddr +
 667				msm_offset->core_dll_config);
 668
 669		config = readl_relaxed(host->ioaddr +
 670				msm_offset->core_dll_config_2);
 671		config |= CORE_DLL_CLOCK_DISABLE;
 672		writel_relaxed(config, host->ioaddr +
 673				msm_offset->core_dll_config_2);
 674	}
 675
 676	config = readl_relaxed(host->ioaddr +
 677			msm_offset->core_dll_config);
 678	config |= CORE_DLL_RST;
 679	writel_relaxed(config, host->ioaddr +
 680			msm_offset->core_dll_config);
 681
 682	config = readl_relaxed(host->ioaddr +
 683			msm_offset->core_dll_config);
 684	config |= CORE_DLL_PDN;
 685	writel_relaxed(config, host->ioaddr +
 686			msm_offset->core_dll_config);
 687
 688	if (!msm_host->dll_config)
 689		msm_cm_dll_set_freq(host);
 690
 691	if (msm_host->use_14lpp_dll_reset &&
 692	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 693		u32 mclk_freq = 0;
 694
 695		config = readl_relaxed(host->ioaddr +
 696				msm_offset->core_dll_config_2);
 697		config &= CORE_FLL_CYCLE_CNT;
 698		if (config)
 699			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 700					xo_clk);
 701		else
 702			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 703					xo_clk);
 704
 705		config = readl_relaxed(host->ioaddr +
 706				msm_offset->core_dll_config_2);
 707		config &= ~(0xFF << 10);
 708		config |= mclk_freq << 10;
 709
 710		writel_relaxed(config, host->ioaddr +
 711				msm_offset->core_dll_config_2);
 712		/* wait for 5us before enabling DLL clock */
 713		udelay(5);
 714	}
 715
 716	config = readl_relaxed(host->ioaddr +
 717			msm_offset->core_dll_config);
 718	config &= ~CORE_DLL_RST;
 719	writel_relaxed(config, host->ioaddr +
 720			msm_offset->core_dll_config);
 721
 722	config = readl_relaxed(host->ioaddr +
 723			msm_offset->core_dll_config);
 724	config &= ~CORE_DLL_PDN;
 725	writel_relaxed(config, host->ioaddr +
 726			msm_offset->core_dll_config);
 727
 728	if (msm_host->use_14lpp_dll_reset) {
 729		if (!msm_host->dll_config)
 730			msm_cm_dll_set_freq(host);
 731		config = readl_relaxed(host->ioaddr +
 732				msm_offset->core_dll_config_2);
 733		config &= ~CORE_DLL_CLOCK_DISABLE;
 734		writel_relaxed(config, host->ioaddr +
 735				msm_offset->core_dll_config_2);
 736	}
 737
 738	/*
 739	 * Configure DLL user control register to enable DLL status.
 740	 * This setting is applicable to SDCC v5.1 onwards only.
 741	 */
 742	if (msm_host->uses_tassadar_dll) {
 743		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 744			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 745		writel_relaxed(config, host->ioaddr +
 746				msm_offset->core_dll_usr_ctl);
 747
 748		config = readl_relaxed(host->ioaddr +
 749				msm_offset->core_dll_config_3);
 750		config &= ~0xFF;
 751		if (msm_host->clk_rate < 150000000)
 752			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 753		else
 754			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 755		writel_relaxed(config, host->ioaddr +
 756			msm_offset->core_dll_config_3);
 757	}
 758
 759	config = readl_relaxed(host->ioaddr +
 760			msm_offset->core_dll_config);
 761	config |= CORE_DLL_EN;
 762	writel_relaxed(config, host->ioaddr +
 763			msm_offset->core_dll_config);
 764
 765	config = readl_relaxed(host->ioaddr +
 766			msm_offset->core_dll_config);
 767	config |= CORE_CK_OUT_EN;
 768	writel_relaxed(config, host->ioaddr +
 769			msm_offset->core_dll_config);
 770
 771	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 772	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 773		 CORE_DLL_LOCK)) {
 774		/* max. wait for 50us sec for LOCK bit to be set */
 775		if (--wait_cnt == 0) {
 776			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 777			       mmc_hostname(mmc));
 778			spin_unlock_irqrestore(&host->lock, flags);
 779			return -ETIMEDOUT;
 780		}
 781		udelay(1);
 782	}
 783
 784	spin_unlock_irqrestore(&host->lock, flags);
 785	return 0;
 786}
 787
 788static void msm_hc_select_default(struct sdhci_host *host)
 789{
 790	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 791	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 792	u32 config;
 793	const struct sdhci_msm_offset *msm_offset =
 794					msm_host->offset;
 795
 796	if (!msm_host->use_cdclp533) {
 797		config = readl_relaxed(host->ioaddr +
 798				msm_offset->core_vendor_spec3);
 799		config &= ~CORE_PWRSAVE_DLL;
 800		writel_relaxed(config, host->ioaddr +
 801				msm_offset->core_vendor_spec3);
 802	}
 803
 804	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 805	config &= ~CORE_HC_MCLK_SEL_MASK;
 806	config |= CORE_HC_MCLK_SEL_DFLT;
 807	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 808
 809	/*
 810	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 811	 * configuration from Host Control2 register for all other
 812	 * modes.
 813	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 814	 * in VENDOR_SPEC_FUNC
 815	 */
 816	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 817	config &= ~CORE_HC_SELECT_IN_EN;
 818	config &= ~CORE_HC_SELECT_IN_MASK;
 819	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 820
 821	/*
 822	 * Make sure above writes impacting free running MCLK are completed
 823	 * before changing the clk_rate at GCC.
 824	 */
 825	wmb();
 826}
 827
 828static void msm_hc_select_hs400(struct sdhci_host *host)
 829{
 830	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 831	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 832	struct mmc_ios ios = host->mmc->ios;
 833	u32 config, dll_lock;
 834	int rc;
 835	const struct sdhci_msm_offset *msm_offset =
 836					msm_host->offset;
 837
 838	/* Select the divided clock (free running MCLK/2) */
 839	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 840	config &= ~CORE_HC_MCLK_SEL_MASK;
 841	config |= CORE_HC_MCLK_SEL_HS400;
 842
 843	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 844	/*
 845	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 846	 * register
 847	 */
 848	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 849	    !msm_host->calibration_done) {
 850		config = readl_relaxed(host->ioaddr +
 851				msm_offset->core_vendor_spec);
 852		config |= CORE_HC_SELECT_IN_HS400;
 853		config |= CORE_HC_SELECT_IN_EN;
 854		writel_relaxed(config, host->ioaddr +
 855				msm_offset->core_vendor_spec);
 856	}
 857	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 858		/*
 859		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 860		 * core_dll_status to be set. This should get set
 861		 * within 15 us at 200 MHz.
 862		 */
 863		rc = readl_relaxed_poll_timeout(host->ioaddr +
 864						msm_offset->core_dll_status,
 865						dll_lock,
 866						(dll_lock &
 867						(CORE_DLL_LOCK |
 868						CORE_DDR_DLL_LOCK)), 10,
 869						1000);
 870		if (rc == -ETIMEDOUT)
 871			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 872			       mmc_hostname(host->mmc), dll_lock);
 873	}
 874	/*
 875	 * Make sure above writes impacting free running MCLK are completed
 876	 * before changing the clk_rate at GCC.
 877	 */
 878	wmb();
 879}
 880
 881/*
 882 * sdhci_msm_hc_select_mode :- In general all timing modes are
 883 * controlled via UHS mode select in Host Control2 register.
 884 * eMMC specific HS200/HS400 doesn't have their respective modes
 885 * defined here, hence we use these values.
 886 *
 887 * HS200 - SDR104 (Since they both are equivalent in functionality)
 888 * HS400 - This involves multiple configurations
 889 *		Initially SDR104 - when tuning is required as HS200
 890 *		Then when switching to DDR @ 400MHz (HS400) we use
 891 *		the vendor specific HC_SELECT_IN to control the mode.
 892 *
 893 * In addition to controlling the modes we also need to select the
 894 * correct input clock for DLL depending on the mode.
 895 *
 896 * HS400 - divided clock (free running MCLK/2)
 897 * All other modes - default (free running MCLK)
 898 */
 899static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 900{
 901	struct mmc_ios ios = host->mmc->ios;
 902
 903	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 904	    host->flags & SDHCI_HS400_TUNING)
 905		msm_hc_select_hs400(host);
 906	else
 907		msm_hc_select_default(host);
 908}
 909
 910static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 911{
 912	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 913	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 914	u32 config, calib_done;
 915	int ret;
 916	const struct sdhci_msm_offset *msm_offset =
 917					msm_host->offset;
 918
 919	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 920
 921	/*
 922	 * Retuning in HS400 (DDR mode) will fail, just reset the
 923	 * tuning block and restore the saved tuning phase.
 924	 */
 925	ret = msm_init_cm_dll(host);
 926	if (ret)
 927		goto out;
 928
 929	/* Set the selected phase in delay line hw block */
 930	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 931	if (ret)
 932		goto out;
 933
 934	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 935	config |= CORE_CMD_DAT_TRACK_SEL;
 936	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 937
 938	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 939	config &= ~CORE_CDC_T4_DLY_SEL;
 940	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 941
 942	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 943	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 944	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 945
 946	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 947	config |= CORE_CDC_SWITCH_RC_EN;
 948	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 949
 950	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 951	config &= ~CORE_START_CDC_TRAFFIC;
 952	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 953
 954	/* Perform CDC Register Initialization Sequence */
 955
 956	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 957	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 958	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 959	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 960	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 961	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 962	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 963	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 964	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 965
 966	/* CDC HW Calibration */
 967
 968	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 969	config |= CORE_SW_TRIG_FULL_CALIB;
 970	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 971
 972	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 973	config &= ~CORE_SW_TRIG_FULL_CALIB;
 974	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 975
 976	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 977	config |= CORE_HW_AUTOCAL_ENA;
 978	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 979
 980	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 981	config |= CORE_TIMER_ENA;
 982	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 983
 984	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 985					 calib_done,
 986					 (calib_done & CORE_CALIBRATION_DONE),
 987					 1, 50);
 988
 989	if (ret == -ETIMEDOUT) {
 990		pr_err("%s: %s: CDC calibration was not completed\n",
 991		       mmc_hostname(host->mmc), __func__);
 992		goto out;
 993	}
 994
 995	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 996			& CORE_CDC_ERROR_CODE_MASK;
 997	if (ret) {
 998		pr_err("%s: %s: CDC error code %d\n",
 999		       mmc_hostname(host->mmc), __func__, ret);
1000		ret = -EINVAL;
1001		goto out;
1002	}
1003
1004	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
1005	config |= CORE_START_CDC_TRAFFIC;
1006	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
1007out:
1008	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1009		 __func__, ret);
1010	return ret;
1011}
1012
1013static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1014{
1015	struct mmc_host *mmc = host->mmc;
1016	u32 dll_status, config, ddr_cfg_offset;
1017	int ret;
1018	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1019	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1020	const struct sdhci_msm_offset *msm_offset =
1021					sdhci_priv_msm_offset(host);
1022
1023	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1024
1025	/*
1026	 * Currently the core_ddr_config register defaults to desired
1027	 * configuration on reset. Currently reprogramming the power on
1028	 * reset (POR) value in case it might have been modified by
1029	 * bootloaders. In the future, if this changes, then the desired
1030	 * values will need to be programmed appropriately.
1031	 */
1032	if (msm_host->updated_ddr_cfg)
1033		ddr_cfg_offset = msm_offset->core_ddr_config;
1034	else
1035		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1036	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1037
1038	if (mmc->ios.enhanced_strobe) {
1039		config = readl_relaxed(host->ioaddr +
1040				msm_offset->core_ddr_200_cfg);
1041		config |= CORE_CMDIN_RCLK_EN;
1042		writel_relaxed(config, host->ioaddr +
1043				msm_offset->core_ddr_200_cfg);
1044	}
1045
1046	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1047	config |= CORE_DDR_CAL_EN;
1048	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1049
1050	ret = readl_relaxed_poll_timeout(host->ioaddr +
1051					msm_offset->core_dll_status,
1052					dll_status,
1053					(dll_status & CORE_DDR_DLL_LOCK),
1054					10, 1000);
1055
1056	if (ret == -ETIMEDOUT) {
1057		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1058		       mmc_hostname(host->mmc), __func__);
1059		goto out;
1060	}
1061
1062	/*
1063	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1064	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1065	 * and MCLK must be switched on for at-least 1us before DATA
1066	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1067	 * guarantee above requirement. So PWRSAVE_DLL should not be
1068	 * turned on for host controllers using this DLL.
1069	 */
1070	if (!msm_host->use_14lpp_dll_reset) {
1071		config = readl_relaxed(host->ioaddr +
1072				msm_offset->core_vendor_spec3);
1073		config |= CORE_PWRSAVE_DLL;
1074		writel_relaxed(config, host->ioaddr +
1075				msm_offset->core_vendor_spec3);
1076	}
1077
1078	/*
1079	 * Drain writebuffer to ensure above DLL calibration
1080	 * and PWRSAVE DLL is enabled.
1081	 */
1082	wmb();
1083out:
1084	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1085		 __func__, ret);
1086	return ret;
1087}
1088
1089static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1090{
1091	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1092	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1093	struct mmc_host *mmc = host->mmc;
1094	int ret;
1095	u32 config;
1096	const struct sdhci_msm_offset *msm_offset =
1097					msm_host->offset;
1098
1099	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1100
1101	/*
1102	 * Retuning in HS400 (DDR mode) will fail, just reset the
1103	 * tuning block and restore the saved tuning phase.
1104	 */
1105	ret = msm_init_cm_dll(host);
1106	if (ret)
1107		goto out;
1108
1109	if (!mmc->ios.enhanced_strobe) {
1110		/* Set the selected phase in delay line hw block */
1111		ret = msm_config_cm_dll_phase(host,
1112					      msm_host->saved_tuning_phase);
1113		if (ret)
1114			goto out;
1115		config = readl_relaxed(host->ioaddr +
1116				msm_offset->core_dll_config);
1117		config |= CORE_CMD_DAT_TRACK_SEL;
1118		writel_relaxed(config, host->ioaddr +
1119				msm_offset->core_dll_config);
1120	}
1121
1122	if (msm_host->use_cdclp533)
1123		ret = sdhci_msm_cdclp533_calibration(host);
1124	else
1125		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1126out:
1127	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1128		 __func__, ret);
1129	return ret;
1130}
1131
1132static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1133{
1134	struct mmc_ios *ios = &host->mmc->ios;
1135
1136	/*
1137	 * Tuning is required for SDR104, HS200 and HS400 cards and
1138	 * if clock frequency is greater than 100MHz in these modes.
1139	 */
1140	if (host->clock <= CORE_FREQ_100MHZ ||
1141	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1142	    ios->timing == MMC_TIMING_MMC_HS200 ||
1143	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1144	    ios->enhanced_strobe)
1145		return false;
1146
1147	return true;
1148}
1149
1150static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1151{
1152	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1153	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1154	int ret;
1155
1156	/*
1157	 * SDR DLL comes into picture only for timing modes which needs
1158	 * tuning.
1159	 */
1160	if (!sdhci_msm_is_tuning_needed(host))
1161		return 0;
1162
1163	/* Reset the tuning block */
1164	ret = msm_init_cm_dll(host);
1165	if (ret)
1166		return ret;
1167
1168	/* Restore the tuning block */
1169	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1170
1171	return ret;
1172}
1173
1174static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1175{
1176	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1177	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1178					      msm_offset->core_dll_config);
1179
1180	config = oldconfig;
1181	if (enable) {
1182		config |= CORE_CDR_EN;
1183		config &= ~CORE_CDR_EXT_EN;
1184	} else {
1185		config &= ~CORE_CDR_EN;
1186		config |= CORE_CDR_EXT_EN;
1187	}
1188
1189	if (config != oldconfig) {
1190		writel_relaxed(config, host->ioaddr +
1191			       msm_offset->core_dll_config);
1192	}
1193}
1194
1195static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1196{
1197	struct sdhci_host *host = mmc_priv(mmc);
1198	int tuning_seq_cnt = 10;
1199	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1200	int rc;
1201	struct mmc_ios ios = host->mmc->ios;
1202	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1203	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1204
1205	if (!sdhci_msm_is_tuning_needed(host)) {
1206		msm_host->use_cdr = false;
1207		sdhci_msm_set_cdr(host, false);
1208		return 0;
1209	}
1210
1211	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1212	msm_host->use_cdr = true;
1213
1214	/*
1215	 * Clear tuning_done flag before tuning to ensure proper
1216	 * HS400 settings.
1217	 */
1218	msm_host->tuning_done = 0;
1219
1220	/*
1221	 * For HS400 tuning in HS200 timing requires:
1222	 * - select MCLK/2 in VENDOR_SPEC
1223	 * - program MCLK to 400MHz (or nearest supported) in GCC
1224	 */
1225	if (host->flags & SDHCI_HS400_TUNING) {
1226		sdhci_msm_hc_select_mode(host);
1227		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1228		host->flags &= ~SDHCI_HS400_TUNING;
1229	}
1230
1231retry:
1232	/* First of all reset the tuning block */
1233	rc = msm_init_cm_dll(host);
1234	if (rc)
1235		return rc;
1236
1237	phase = 0;
1238	do {
1239		/* Set the phase in delay line hw block */
1240		rc = msm_config_cm_dll_phase(host, phase);
1241		if (rc)
1242			return rc;
1243
1244		rc = mmc_send_tuning(mmc, opcode, NULL);
1245		if (!rc) {
1246			/* Tuning is successful at this tuning point */
1247			tuned_phases[tuned_phase_cnt++] = phase;
1248			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1249				 mmc_hostname(mmc), phase);
1250		}
1251	} while (++phase < ARRAY_SIZE(tuned_phases));
1252
1253	if (tuned_phase_cnt) {
1254		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1255			/*
1256			 * All phases valid is _almost_ as bad as no phases
1257			 * valid.  Probably all phases are not really reliable
1258			 * but we didn't detect where the unreliable place is.
1259			 * That means we'll essentially be guessing and hoping
1260			 * we get a good phase.  Better to try a few times.
1261			 */
1262			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1263				mmc_hostname(mmc));
1264			if (--tuning_seq_cnt) {
1265				tuned_phase_cnt = 0;
1266				goto retry;
1267			}
1268		}
1269
1270		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1271						     tuned_phase_cnt);
1272		if (rc < 0)
1273			return rc;
1274		else
1275			phase = rc;
1276
1277		/*
1278		 * Finally set the selected phase in delay
1279		 * line hw block.
1280		 */
1281		rc = msm_config_cm_dll_phase(host, phase);
1282		if (rc)
1283			return rc;
1284		msm_host->saved_tuning_phase = phase;
1285		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1286			 mmc_hostname(mmc), phase);
1287	} else {
1288		if (--tuning_seq_cnt)
1289			goto retry;
1290		/* Tuning failed */
1291		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1292		       mmc_hostname(mmc));
1293		rc = -EIO;
1294	}
1295
1296	if (!rc)
1297		msm_host->tuning_done = true;
1298	return rc;
1299}
1300
1301/*
1302 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1303 * This needs to be done for both tuning and enhanced_strobe mode.
1304 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1305 * fixed feedback clock is used.
1306 */
1307static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1308{
1309	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1310	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1311	int ret;
1312
1313	if (host->clock > CORE_FREQ_100MHZ &&
1314	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1315	    !msm_host->calibration_done) {
1316		ret = sdhci_msm_hs400_dll_calibration(host);
1317		if (!ret)
1318			msm_host->calibration_done = true;
1319		else
1320			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1321			       mmc_hostname(host->mmc), ret);
1322	}
1323}
1324
1325static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1326					unsigned int uhs)
1327{
1328	struct mmc_host *mmc = host->mmc;
1329	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1330	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1331	u16 ctrl_2;
1332	u32 config;
1333	const struct sdhci_msm_offset *msm_offset =
1334					msm_host->offset;
1335
1336	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1337	/* Select Bus Speed Mode for host */
1338	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1339	switch (uhs) {
1340	case MMC_TIMING_UHS_SDR12:
1341		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1342		break;
1343	case MMC_TIMING_UHS_SDR25:
1344		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1345		break;
1346	case MMC_TIMING_UHS_SDR50:
1347		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1348		break;
1349	case MMC_TIMING_MMC_HS400:
1350	case MMC_TIMING_MMC_HS200:
1351	case MMC_TIMING_UHS_SDR104:
1352		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1353		break;
1354	case MMC_TIMING_UHS_DDR50:
1355	case MMC_TIMING_MMC_DDR52:
1356		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1357		break;
1358	}
1359
1360	/*
1361	 * When clock frequency is less than 100MHz, the feedback clock must be
1362	 * provided and DLL must not be used so that tuning can be skipped. To
1363	 * provide feedback clock, the mode selection can be any value less
1364	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1365	 */
1366	if (host->clock <= CORE_FREQ_100MHZ) {
1367		if (uhs == MMC_TIMING_MMC_HS400 ||
1368		    uhs == MMC_TIMING_MMC_HS200 ||
1369		    uhs == MMC_TIMING_UHS_SDR104)
1370			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1371		/*
1372		 * DLL is not required for clock <= 100MHz
1373		 * Thus, make sure DLL it is disabled when not required
1374		 */
1375		config = readl_relaxed(host->ioaddr +
1376				msm_offset->core_dll_config);
1377		config |= CORE_DLL_RST;
1378		writel_relaxed(config, host->ioaddr +
1379				msm_offset->core_dll_config);
1380
1381		config = readl_relaxed(host->ioaddr +
1382				msm_offset->core_dll_config);
1383		config |= CORE_DLL_PDN;
1384		writel_relaxed(config, host->ioaddr +
1385				msm_offset->core_dll_config);
1386
1387		/*
1388		 * The DLL needs to be restored and CDCLP533 recalibrated
1389		 * when the clock frequency is set back to 400MHz.
1390		 */
1391		msm_host->calibration_done = false;
1392	}
1393
1394	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1395		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1396	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1397
1398	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1399		sdhci_msm_hs400(host, &mmc->ios);
1400}
1401
1402static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1403{
1404	struct platform_device *pdev = msm_host->pdev;
1405	int ret;
1406
1407	if (level)
1408		ret = pinctrl_pm_select_default_state(&pdev->dev);
1409	else
1410		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1411
1412	return ret;
1413}
1414
1415static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm)
1416{
1417	int load;
1418
1419	if (!hpm)
1420		load = 0;
1421	else if (!mmc->card)
1422		load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA);
1423	else if (mmc_card_mmc(mmc->card))
1424		load = MMC_VMMC_MAX_LOAD_UA;
1425	else if (mmc_card_sd(mmc->card))
1426		load = SD_VMMC_MAX_LOAD_UA;
1427	else
1428		return;
1429
1430	regulator_set_load(mmc->supply.vmmc, load);
1431}
1432
1433static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm)
1434{
1435	int load;
1436
1437	if (!hpm)
1438		load = 0;
1439	else if (!mmc->card)
1440		load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA);
1441	else if (mmc_card_sd(mmc->card))
1442		load = SD_VQMMC_MAX_LOAD_UA;
1443	else
1444		return;
1445
1446	regulator_set_load(mmc->supply.vqmmc, load);
1447}
1448
1449static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host,
1450			      struct mmc_host *mmc, bool hpm)
1451{
1452	if (IS_ERR(mmc->supply.vmmc))
1453		return 0;
1454
1455	msm_config_vmmc_regulator(mmc, hpm);
1456
1457	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1458}
1459
1460static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1461			      struct mmc_host *mmc, bool level)
1462{
1463	int ret;
1464	struct mmc_ios ios;
1465
1466	if (msm_host->vqmmc_enabled == level)
1467		return 0;
1468
1469	msm_config_vqmmc_regulator(mmc, level);
1470
1471	if (level) {
1472		/* Set the IO voltage regulator to default voltage level */
1473		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1474			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1475		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1476			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1477
1478		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1479			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1480			if (ret < 0) {
1481				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1482					mmc_hostname(mmc), ret);
1483				goto out;
1484			}
1485		}
1486		ret = regulator_enable(mmc->supply.vqmmc);
1487	} else {
1488		ret = regulator_disable(mmc->supply.vqmmc);
1489	}
1490
1491	if (ret)
1492		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1493			mmc_hostname(mmc), level ? "en":"dis", ret);
1494	else
1495		msm_host->vqmmc_enabled = level;
1496out:
1497	return ret;
1498}
1499
1500static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1501			      struct mmc_host *mmc, bool hpm)
1502{
1503	int load, ret;
1504
1505	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1506	ret = regulator_set_load(mmc->supply.vqmmc, load);
1507	if (ret)
1508		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1509			mmc_hostname(mmc), ret);
1510	return ret;
1511}
1512
1513static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1514			      struct mmc_host *mmc, bool level)
1515{
1516	int ret;
1517	bool always_on;
1518
1519	if (IS_ERR(mmc->supply.vqmmc) ||
1520			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1521		return 0;
1522	/*
1523	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1524	 * and HPM modes by setting the corresponding load.
1525	 *
1526	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1527	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1528	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1529	 * Vqmmc should remain ON, So just set the load instead of turning it
1530	 * off/on.
1531	 */
1532	always_on = !mmc_card_is_removable(mmc) &&
1533			mmc->card && mmc_card_mmc(mmc->card);
1534
1535	if (always_on)
1536		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1537	else
1538		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1539
1540	return ret;
1541}
1542
1543static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1544{
1545	init_waitqueue_head(&msm_host->pwr_irq_wait);
1546}
1547
1548static inline void sdhci_msm_complete_pwr_irq_wait(
1549		struct sdhci_msm_host *msm_host)
1550{
1551	wake_up(&msm_host->pwr_irq_wait);
1552}
1553
1554/*
1555 * sdhci_msm_check_power_status API should be called when registers writes
1556 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1557 * To what state the register writes will change the IO lines should be passed
1558 * as the argument req_type. This API will check whether the IO line's state
1559 * is already the expected state and will wait for power irq only if
1560 * power irq is expected to be triggered based on the current IO line state
1561 * and expected IO line state.
1562 */
1563static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1564{
1565	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1566	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1567	bool done = false;
1568	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1569	const struct sdhci_msm_offset *msm_offset =
1570					msm_host->offset;
1571
1572	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1573			mmc_hostname(host->mmc), __func__, req_type,
1574			msm_host->curr_pwr_state, msm_host->curr_io_level);
1575
1576	/*
1577	 * The power interrupt will not be generated for signal voltage
1578	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1579	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1580	 * it as always set.
1581	 */
1582	if (!msm_host->mci_removed)
1583		val = msm_host_readl(msm_host, host,
1584				msm_offset->core_generics);
1585	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1586	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1587		return;
1588	}
1589
1590	/*
1591	 * The IRQ for request type IO High/LOW will be generated when -
1592	 * there is a state change in 1.8V enable bit (bit 3) of
1593	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1594	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1595	 * to set it to 3.3V before card detection happens, the
1596	 * IRQ doesn't get triggered as there is no state change in this bit.
1597	 * The driver already handles this case by changing the IO voltage
1598	 * level to high as part of controller power up sequence. Hence, check
1599	 * for host->pwr to handle a case where IO voltage high request is
1600	 * issued even before controller power up.
1601	 */
1602	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1603		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1604				mmc_hostname(host->mmc), req_type);
1605		return;
1606	}
1607	if ((req_type & msm_host->curr_pwr_state) ||
1608			(req_type & msm_host->curr_io_level))
1609		done = true;
1610	/*
1611	 * This is needed here to handle cases where register writes will
1612	 * not change the current bus state or io level of the controller.
1613	 * In this case, no power irq will be triggerred and we should
1614	 * not wait.
1615	 */
1616	if (!done) {
1617		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1618				msm_host->pwr_irq_flag,
1619				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1620			dev_warn(&msm_host->pdev->dev,
1621				 "%s: pwr_irq for req: (%d) timed out\n",
1622				 mmc_hostname(host->mmc), req_type);
1623	}
1624	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1625			__func__, req_type);
1626}
1627
1628static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1629{
1630	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1631	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1632	const struct sdhci_msm_offset *msm_offset =
1633					msm_host->offset;
1634
1635	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1636		mmc_hostname(host->mmc),
1637		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1638		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1639		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1640}
1641
1642static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1643{
1644	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1645	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1646	struct mmc_host *mmc = host->mmc;
1647	u32 irq_status, irq_ack = 0;
1648	int retry = 10, ret;
1649	u32 pwr_state = 0, io_level = 0;
1650	u32 config;
1651	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1652
1653	irq_status = msm_host_readl(msm_host, host,
1654			msm_offset->core_pwrctl_status);
1655	irq_status &= INT_MASK;
1656
1657	msm_host_writel(msm_host, irq_status, host,
1658			msm_offset->core_pwrctl_clear);
1659
1660	/*
1661	 * There is a rare HW scenario where the first clear pulse could be
1662	 * lost when actual reset and clear/read of status register is
1663	 * happening at a time. Hence, retry for at least 10 times to make
1664	 * sure status register is cleared. Otherwise, this will result in
1665	 * a spurious power IRQ resulting in system instability.
1666	 */
1667	while (irq_status & msm_host_readl(msm_host, host,
1668				msm_offset->core_pwrctl_status)) {
1669		if (retry == 0) {
1670			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1671					mmc_hostname(host->mmc), irq_status);
1672			sdhci_msm_dump_pwr_ctrl_regs(host);
1673			WARN_ON(1);
1674			break;
1675		}
1676		msm_host_writel(msm_host, irq_status, host,
1677			msm_offset->core_pwrctl_clear);
1678		retry--;
1679		udelay(10);
1680	}
1681
1682	/* Handle BUS ON/OFF*/
1683	if (irq_status & CORE_PWRCTL_BUS_ON) {
1684		pwr_state = REQ_BUS_ON;
1685		io_level = REQ_IO_HIGH;
1686	}
1687	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1688		pwr_state = REQ_BUS_OFF;
1689		io_level = REQ_IO_LOW;
1690	}
1691
1692	if (pwr_state) {
1693		ret = sdhci_msm_set_vmmc(msm_host, mmc,
1694					 pwr_state & REQ_BUS_ON);
1695		if (!ret)
1696			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1697					pwr_state & REQ_BUS_ON);
1698		if (!ret)
1699			ret = sdhci_msm_set_pincfg(msm_host,
1700					pwr_state & REQ_BUS_ON);
1701		if (!ret)
1702			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1703		else
1704			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1705	}
1706
1707	/* Handle IO LOW/HIGH */
1708	if (irq_status & CORE_PWRCTL_IO_LOW)
1709		io_level = REQ_IO_LOW;
1710
1711	if (irq_status & CORE_PWRCTL_IO_HIGH)
1712		io_level = REQ_IO_HIGH;
1713
1714	if (io_level)
1715		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1716
1717	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1718		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1719		if (ret < 0) {
1720			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1721					mmc_hostname(mmc), ret,
1722					mmc->ios.signal_voltage, mmc->ios.vdd,
1723					irq_status);
1724			irq_ack |= CORE_PWRCTL_IO_FAIL;
1725		}
1726	}
1727
1728	/*
1729	 * The driver has to acknowledge the interrupt, switch voltages and
1730	 * report back if it succeded or not to this register. The voltage
1731	 * switches are handled by the sdhci core, so just report success.
1732	 */
1733	msm_host_writel(msm_host, irq_ack, host,
1734			msm_offset->core_pwrctl_ctl);
1735
1736	/*
1737	 * If we don't have info regarding the voltage levels supported by
1738	 * regulators, don't change the IO PAD PWR SWITCH.
1739	 */
1740	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1741		u32 new_config;
1742		/*
1743		 * We should unset IO PAD PWR switch only if the register write
1744		 * can set IO lines high and the regulator also switches to 3 V.
1745		 * Else, we should keep the IO PAD PWR switch set.
1746		 * This is applicable to certain targets where eMMC vccq supply
1747		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1748		 * IO PAD PWR switch must be kept set to reflect actual
1749		 * regulator voltage. This way, during initialization of
1750		 * controllers with only 1.8V, we will set the IO PAD bit
1751		 * without waiting for a REQ_IO_LOW.
1752		 */
1753		config = readl_relaxed(host->ioaddr +
1754				msm_offset->core_vendor_spec);
1755		new_config = config;
1756
1757		if ((io_level & REQ_IO_HIGH) &&
1758				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1759			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1760		else if ((io_level & REQ_IO_LOW) ||
1761				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1762			new_config |= CORE_IO_PAD_PWR_SWITCH;
1763
1764		if (config ^ new_config)
1765			writel_relaxed(new_config, host->ioaddr +
1766					msm_offset->core_vendor_spec);
1767	}
1768
1769	if (pwr_state)
1770		msm_host->curr_pwr_state = pwr_state;
1771	if (io_level)
1772		msm_host->curr_io_level = io_level;
1773
1774	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1775		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1776		irq_ack);
1777}
1778
1779static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1780{
1781	struct sdhci_host *host = (struct sdhci_host *)data;
1782	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784
1785	sdhci_msm_handle_pwr_irq(host, irq);
1786	msm_host->pwr_irq_flag = 1;
1787	sdhci_msm_complete_pwr_irq_wait(msm_host);
1788
1789
1790	return IRQ_HANDLED;
1791}
1792
1793static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1794{
1795	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1796	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1797	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1798
1799	return clk_round_rate(core_clk, ULONG_MAX);
1800}
1801
1802static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1803{
1804	return SDHCI_MSM_MIN_CLOCK;
1805}
1806
1807/*
1808 * __sdhci_msm_set_clock - sdhci_msm clock control.
1809 *
1810 * Description:
1811 * MSM controller does not use internal divider and
1812 * instead directly control the GCC clock as per
1813 * HW recommendation.
1814 **/
1815static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1816{
1817	u16 clk;
1818
1819	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1820
1821	if (clock == 0)
1822		return;
1823
1824	/*
1825	 * MSM controller do not use clock divider.
1826	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1827	 * clock with no divider value programmed.
1828	 */
1829	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1830	sdhci_enable_clk(host, clk);
1831}
1832
1833/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1834static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1835{
1836	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1837	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1838
1839	if (!clock) {
1840		host->mmc->actual_clock = msm_host->clk_rate = 0;
1841		goto out;
1842	}
1843
1844	sdhci_msm_hc_select_mode(host);
1845
1846	msm_set_clock_rate_for_bus_mode(host, clock);
1847out:
1848	__sdhci_msm_set_clock(host, clock);
1849}
1850
1851/*****************************************************************************\
1852 *                                                                           *
1853 * Inline Crypto Engine (ICE) support                                        *
1854 *                                                                           *
1855\*****************************************************************************/
1856
1857#ifdef CONFIG_MMC_CRYPTO
1858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1860			      struct cqhci_host *cq_host)
1861{
1862	struct mmc_host *mmc = msm_host->mmc;
1863	struct device *dev = mmc_dev(mmc);
1864	struct qcom_ice *ice;
1865
1866	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1867		return 0;
1868
1869	ice = of_qcom_ice_get(dev);
1870	if (ice == ERR_PTR(-EOPNOTSUPP)) {
1871		dev_warn(dev, "Disabling inline encryption support\n");
1872		ice = NULL;
 
1873	}
1874
1875	if (IS_ERR_OR_NULL(ice))
1876		return PTR_ERR_OR_ZERO(ice);
 
 
 
 
 
 
 
 
 
1877
1878	msm_host->ice = ice;
1879	mmc->caps2 |= MMC_CAP2_CRYPTO;
 
1880
 
 
1881	return 0;
1882}
1883
1884static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
 
 
 
 
 
 
 
 
 
 
 
 
 
1885{
1886	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1887		qcom_ice_enable(msm_host->ice);
 
 
 
 
 
 
 
1888}
1889
1890static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
 
 
 
 
 
 
 
 
 
 
 
 
1891{
1892	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1893		return qcom_ice_resume(msm_host->ice);
1894
1895	return 0;
 
 
 
 
 
 
1896}
1897
1898static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1899{
1900	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1901		return qcom_ice_suspend(msm_host->ice);
 
 
 
 
1902
1903	return 0;
 
 
 
 
1904}
1905
1906/*
1907 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1908 * vendor-specific SCM calls for this; it doesn't support the standard way.
1909 */
1910static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1911				 const union cqhci_crypto_cfg_entry *cfg,
1912				 int slot)
1913{
1914	struct sdhci_host *host = mmc_priv(cq_host->mmc);
1915	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1916	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1917	union cqhci_crypto_cap_entry cap;
 
 
 
 
 
 
1918
1919	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1920		return qcom_ice_evict_key(msm_host->ice, slot);
1921
1922	/* Only AES-256-XTS has been tested so far. */
1923	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1924	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1925		cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
 
 
 
1926		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
1927
1928	return qcom_ice_program_key(msm_host->ice,
1929				    QCOM_ICE_CRYPTO_ALG_AES_XTS,
1930				    QCOM_ICE_CRYPTO_KEY_SIZE_256,
1931				    cfg->crypto_key,
1932				    cfg->data_unit_size, slot);
1933}
1934
1935#else /* CONFIG_MMC_CRYPTO */
 
 
 
 
1936
1937static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1938				     struct cqhci_host *cq_host)
1939{
1940	return 0;
1941}
1942
1943static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1944{
1945}
1946
1947static inline __maybe_unused int
1948sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1949{
1950	return 0;
1951}
1952
1953static inline __maybe_unused int
1954sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1955{
1956	return 0;
1957}
1958#endif /* !CONFIG_MMC_CRYPTO */
1959
1960/*****************************************************************************\
1961 *                                                                           *
1962 * MSM Command Queue Engine (CQE)                                            *
1963 *                                                                           *
1964\*****************************************************************************/
1965
1966static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1967{
1968	int cmd_error = 0;
1969	int data_error = 0;
1970
1971	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1972		return intmask;
1973
1974	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1975	return 0;
1976}
1977
1978static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1979{
1980	struct sdhci_host *host = mmc_priv(mmc);
1981	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1982	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1983
1984	sdhci_cqe_enable(mmc);
1985	sdhci_msm_ice_enable(msm_host);
1986}
1987
1988static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1989{
1990	struct sdhci_host *host = mmc_priv(mmc);
1991	unsigned long flags;
1992	u32 ctrl;
1993
1994	/*
1995	 * When CQE is halted, the legacy SDHCI path operates only
1996	 * on 16-byte descriptors in 64bit mode.
1997	 */
1998	if (host->flags & SDHCI_USE_64_BIT_DMA)
1999		host->desc_sz = 16;
2000
2001	spin_lock_irqsave(&host->lock, flags);
2002
2003	/*
2004	 * During CQE command transfers, command complete bit gets latched.
2005	 * So s/w should clear command complete interrupt status when CQE is
2006	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2007	 * interrupt gets triggered when CQE is halted/disabled.
2008	 */
2009	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2010	ctrl |= SDHCI_INT_RESPONSE;
2011	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2012	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2013
2014	spin_unlock_irqrestore(&host->lock, flags);
2015
2016	sdhci_cqe_disable(mmc, recovery);
2017}
2018
2019static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2020{
2021	u32 count, start = 15;
2022
2023	__sdhci_set_timeout(host, cmd);
2024	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2025	/*
2026	 * Update software timeout value if its value is less than hardware data
2027	 * timeout value. Qcom SoC hardware data timeout value was calculated
2028	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2029	 */
2030	if (cmd && cmd->data && host->clock > 400000 &&
2031	    host->clock <= 50000000 &&
2032	    ((1 << (count + start)) > (10 * host->clock)))
2033		host->data_timeout = 22LL * NSEC_PER_SEC;
2034}
2035
2036static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2037	.enable		= sdhci_msm_cqe_enable,
2038	.disable	= sdhci_msm_cqe_disable,
2039#ifdef CONFIG_MMC_CRYPTO
2040	.program_key	= sdhci_msm_program_key,
2041#endif
2042};
2043
2044static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2045				struct platform_device *pdev)
2046{
2047	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2048	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2049	struct cqhci_host *cq_host;
2050	bool dma64;
2051	u32 cqcfg;
2052	int ret;
2053
2054	/*
2055	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2056	 * So ensure ADMA table is allocated for 16byte descriptors.
2057	 */
2058	if (host->caps & SDHCI_CAN_64BIT)
2059		host->alloc_desc_sz = 16;
2060
2061	ret = sdhci_setup_host(host);
2062	if (ret)
2063		return ret;
2064
2065	cq_host = cqhci_pltfm_init(pdev);
2066	if (IS_ERR(cq_host)) {
2067		ret = PTR_ERR(cq_host);
2068		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2069		goto cleanup;
2070	}
2071
2072	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2073	cq_host->ops = &sdhci_msm_cqhci_ops;
2074
2075	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2076
2077	ret = sdhci_msm_ice_init(msm_host, cq_host);
2078	if (ret)
2079		goto cleanup;
2080
2081	ret = cqhci_init(cq_host, host->mmc, dma64);
2082	if (ret) {
2083		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2084				mmc_hostname(host->mmc), ret);
2085		goto cleanup;
2086	}
2087
2088	/* Disable cqe reset due to cqe enable signal */
2089	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2090	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2091	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2092
2093	/*
2094	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2095	 * So limit desc_sz to 12 so that the data commands that are sent
2096	 * during card initialization (before CQE gets enabled) would
2097	 * get executed without any issues.
2098	 */
2099	if (host->flags & SDHCI_USE_64_BIT_DMA)
2100		host->desc_sz = 12;
2101
2102	ret = __sdhci_add_host(host);
2103	if (ret)
2104		goto cleanup;
2105
2106	dev_info(&pdev->dev, "%s: CQE init: success\n",
2107			mmc_hostname(host->mmc));
2108	return ret;
2109
2110cleanup:
2111	sdhci_cleanup_host(host);
2112	return ret;
2113}
2114
2115/*
2116 * Platform specific register write functions. This is so that, if any
2117 * register write needs to be followed up by platform specific actions,
2118 * they can be added here. These functions can go to sleep when writes
2119 * to certain registers are done.
2120 * These functions are relying on sdhci_set_ios not using spinlock.
2121 */
2122static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2123{
2124	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2125	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2126	u32 req_type = 0;
2127
2128	switch (reg) {
2129	case SDHCI_HOST_CONTROL2:
2130		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2131			REQ_IO_HIGH;
2132		break;
2133	case SDHCI_SOFTWARE_RESET:
2134		if (host->pwr && (val & SDHCI_RESET_ALL))
2135			req_type = REQ_BUS_OFF;
2136		break;
2137	case SDHCI_POWER_CONTROL:
2138		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2139		break;
2140	case SDHCI_TRANSFER_MODE:
2141		msm_host->transfer_mode = val;
2142		break;
2143	case SDHCI_COMMAND:
2144		if (!msm_host->use_cdr)
2145			break;
2146		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2147		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2148			sdhci_msm_set_cdr(host, true);
2149		else
2150			sdhci_msm_set_cdr(host, false);
2151		break;
2152	}
2153
2154	if (req_type) {
2155		msm_host->pwr_irq_flag = 0;
2156		/*
2157		 * Since this register write may trigger a power irq, ensure
2158		 * all previous register writes are complete by this point.
2159		 */
2160		mb();
2161	}
2162	return req_type;
2163}
2164
2165/* This function may sleep*/
2166static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2167{
2168	u32 req_type = 0;
2169
2170	req_type = __sdhci_msm_check_write(host, val, reg);
2171	writew_relaxed(val, host->ioaddr + reg);
2172
2173	if (req_type)
2174		sdhci_msm_check_power_status(host, req_type);
2175}
2176
2177/* This function may sleep*/
2178static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2179{
2180	u32 req_type = 0;
2181
2182	req_type = __sdhci_msm_check_write(host, val, reg);
2183
2184	writeb_relaxed(val, host->ioaddr + reg);
2185
2186	if (req_type)
2187		sdhci_msm_check_power_status(host, req_type);
2188}
2189
2190static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2191{
2192	struct mmc_host *mmc = msm_host->mmc;
2193	struct regulator *supply = mmc->supply.vqmmc;
2194	u32 caps = 0, config;
2195	struct sdhci_host *host = mmc_priv(mmc);
2196	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2197
2198	if (!IS_ERR(mmc->supply.vqmmc)) {
2199		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2200			caps |= CORE_1_8V_SUPPORT;
2201		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2202			caps |= CORE_3_0V_SUPPORT;
2203
2204		if (!caps)
2205			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2206					mmc_hostname(mmc));
2207	}
2208
2209	if (caps) {
2210		/*
2211		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2212		 * bit can be used as required later on.
2213		 */
2214		u32 io_level = msm_host->curr_io_level;
2215
2216		config = readl_relaxed(host->ioaddr +
2217				msm_offset->core_vendor_spec);
2218		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2219
2220		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2221			config &= ~CORE_IO_PAD_PWR_SWITCH;
2222		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2223			config |= CORE_IO_PAD_PWR_SWITCH;
2224
2225		writel_relaxed(config,
2226				host->ioaddr + msm_offset->core_vendor_spec);
2227	}
2228	msm_host->caps_0 |= caps;
2229	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2230}
2231
2232static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2233{
2234	int ret;
2235
2236	ret = mmc_regulator_get_supply(msm_host->mmc);
2237	if (ret)
2238		return ret;
2239
2240	sdhci_msm_set_regulator_caps(msm_host);
2241
2242	return 0;
2243}
2244
2245static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2246				      struct mmc_ios *ios)
2247{
2248	struct sdhci_host *host = mmc_priv(mmc);
2249	u16 ctrl, status;
2250
2251	/*
2252	 * Signal Voltage Switching is only applicable for Host Controllers
2253	 * v3.00 and above.
2254	 */
2255	if (host->version < SDHCI_SPEC_300)
2256		return 0;
2257
2258	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2259
2260	switch (ios->signal_voltage) {
2261	case MMC_SIGNAL_VOLTAGE_330:
2262		if (!(host->flags & SDHCI_SIGNALING_330))
2263			return -EINVAL;
2264
2265		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2266		ctrl &= ~SDHCI_CTRL_VDD_180;
2267		break;
2268	case MMC_SIGNAL_VOLTAGE_180:
2269		if (!(host->flags & SDHCI_SIGNALING_180))
2270			return -EINVAL;
2271
2272		/* Enable 1.8V Signal Enable in the Host Control2 register */
2273		ctrl |= SDHCI_CTRL_VDD_180;
2274		break;
2275
2276	default:
2277		return -EINVAL;
2278	}
2279
2280	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2281
2282	/* Wait for 5ms */
2283	usleep_range(5000, 5500);
2284
2285	/* regulator output should be stable within 5 ms */
2286	status = ctrl & SDHCI_CTRL_VDD_180;
2287	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2288	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2289		return 0;
2290
2291	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2292		mmc_hostname(mmc));
2293
2294	return -EAGAIN;
2295}
2296
2297#define DRIVER_NAME "sdhci_msm"
2298#define SDHCI_MSM_DUMP(f, x...) \
2299	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2300
2301static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2302{
2303	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2304	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2305	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2306
2307	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2308
2309	SDHCI_MSM_DUMP(
2310			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2311		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2312		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2313		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2314	SDHCI_MSM_DUMP(
2315			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2316		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2317		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2318		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2319	SDHCI_MSM_DUMP(
2320			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2321		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2322		readl_relaxed(host->ioaddr +
2323			msm_offset->core_vendor_spec_func2),
2324		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2325}
2326
2327static const struct sdhci_msm_variant_ops mci_var_ops = {
2328	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2329	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2330};
2331
2332static const struct sdhci_msm_variant_ops v5_var_ops = {
2333	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2334	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2335};
2336
2337static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2338	.var_ops = &mci_var_ops,
2339	.offset = &sdhci_msm_mci_offset,
2340};
2341
2342static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2343	.mci_removed = true,
2344	.var_ops = &v5_var_ops,
2345	.offset = &sdhci_msm_v5_offset,
2346};
2347
2348static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2349	.mci_removed = true,
2350	.restore_dll_config = true,
2351	.var_ops = &v5_var_ops,
2352	.offset = &sdhci_msm_v5_offset,
2353};
2354
2355static const struct of_device_id sdhci_msm_dt_match[] = {
2356	/*
2357	 * Do not add new variants to the driver which are compatible with
2358	 * generic ones, unless they need customization.
2359	 */
2360	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2361	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2362	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2363	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2364	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2365	{},
2366};
2367
2368MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2369
2370static const struct sdhci_ops sdhci_msm_ops = {
2371	.reset = sdhci_and_cqhci_reset,
2372	.set_clock = sdhci_msm_set_clock,
2373	.get_min_clock = sdhci_msm_get_min_clock,
2374	.get_max_clock = sdhci_msm_get_max_clock,
2375	.set_bus_width = sdhci_set_bus_width,
2376	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2377	.write_w = sdhci_msm_writew,
2378	.write_b = sdhci_msm_writeb,
2379	.irq	= sdhci_msm_cqe_irq,
2380	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2381	.set_power = sdhci_set_power_noreg,
2382	.set_timeout = sdhci_msm_set_timeout,
2383};
2384
2385static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2386	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2387		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2388		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2389		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2390
2391	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2392	.ops = &sdhci_msm_ops,
2393};
2394
2395static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2396		struct sdhci_host *host)
2397{
2398	struct device_node *node = pdev->dev.of_node;
2399	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2400	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2401
2402	if (of_property_read_u32(node, "qcom,ddr-config",
2403				&msm_host->ddr_config))
2404		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2405
2406	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2407
2408	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2409		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2410}
2411
2412static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2413{
2414	struct reset_control *reset;
2415	int ret = 0;
2416
2417	reset = reset_control_get_optional_exclusive(dev, NULL);
2418	if (IS_ERR(reset))
2419		return dev_err_probe(dev, PTR_ERR(reset),
2420				"unable to acquire core_reset\n");
2421
2422	if (!reset)
2423		return ret;
2424
2425	ret = reset_control_assert(reset);
2426	if (ret) {
2427		reset_control_put(reset);
2428		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2429	}
2430
2431	/*
2432	 * The hardware requirement for delay between assert/deassert
2433	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2434	 * ~125us (4/32768). To be on the safe side add 200us delay.
2435	 */
2436	usleep_range(200, 210);
2437
2438	ret = reset_control_deassert(reset);
2439	if (ret) {
2440		reset_control_put(reset);
2441		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2442	}
2443
2444	usleep_range(200, 210);
2445	reset_control_put(reset);
2446
2447	return ret;
2448}
2449
2450static int sdhci_msm_probe(struct platform_device *pdev)
2451{
2452	struct sdhci_host *host;
2453	struct sdhci_pltfm_host *pltfm_host;
2454	struct sdhci_msm_host *msm_host;
2455	struct clk *clk;
2456	int ret;
2457	u16 host_version, core_minor;
2458	u32 core_version, config;
2459	u8 core_major;
2460	const struct sdhci_msm_offset *msm_offset;
2461	const struct sdhci_msm_variant_info *var_info;
2462	struct device_node *node = pdev->dev.of_node;
2463
2464	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2465	if (IS_ERR(host))
2466		return PTR_ERR(host);
2467
2468	host->sdma_boundary = 0;
2469	pltfm_host = sdhci_priv(host);
2470	msm_host = sdhci_pltfm_priv(pltfm_host);
2471	msm_host->mmc = host->mmc;
2472	msm_host->pdev = pdev;
2473
2474	ret = mmc_of_parse(host->mmc);
2475	if (ret)
2476		goto pltfm_free;
2477
2478	/*
2479	 * Based on the compatible string, load the required msm host info from
2480	 * the data associated with the version info.
2481	 */
2482	var_info = of_device_get_match_data(&pdev->dev);
2483
2484	msm_host->mci_removed = var_info->mci_removed;
2485	msm_host->restore_dll_config = var_info->restore_dll_config;
2486	msm_host->var_ops = var_info->var_ops;
2487	msm_host->offset = var_info->offset;
2488
2489	msm_offset = msm_host->offset;
2490
2491	sdhci_get_of_property(pdev);
2492	sdhci_msm_get_of_property(pdev, host);
2493
2494	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2495
2496	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2497	if (ret)
2498		goto pltfm_free;
2499
2500	/* Setup SDCC bus voter clock. */
2501	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2502	if (!IS_ERR(msm_host->bus_clk)) {
2503		/* Vote for max. clk rate for max. performance */
2504		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2505		if (ret)
2506			goto pltfm_free;
2507		ret = clk_prepare_enable(msm_host->bus_clk);
2508		if (ret)
2509			goto pltfm_free;
2510	}
2511
2512	/* Setup main peripheral bus clock */
2513	clk = devm_clk_get(&pdev->dev, "iface");
2514	if (IS_ERR(clk)) {
2515		ret = PTR_ERR(clk);
2516		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2517		goto bus_clk_disable;
2518	}
2519	msm_host->bulk_clks[1].clk = clk;
2520
2521	/* Setup SDC MMC clock */
2522	clk = devm_clk_get(&pdev->dev, "core");
2523	if (IS_ERR(clk)) {
2524		ret = PTR_ERR(clk);
2525		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2526		goto bus_clk_disable;
2527	}
2528	msm_host->bulk_clks[0].clk = clk;
2529
2530	 /* Check for optional interconnect paths */
2531	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2532	if (ret)
2533		goto bus_clk_disable;
2534
2535	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2536	if (ret)
2537		goto bus_clk_disable;
2538
2539	/* OPP table is optional */
2540	ret = devm_pm_opp_of_add_table(&pdev->dev);
2541	if (ret && ret != -ENODEV) {
2542		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2543		goto bus_clk_disable;
2544	}
2545
2546	/* Vote for maximum clock rate for maximum performance */
2547	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2548	if (ret)
2549		dev_warn(&pdev->dev, "core clock boost failed\n");
2550
2551	clk = devm_clk_get(&pdev->dev, "cal");
2552	if (IS_ERR(clk))
2553		clk = NULL;
2554	msm_host->bulk_clks[2].clk = clk;
2555
2556	clk = devm_clk_get(&pdev->dev, "sleep");
2557	if (IS_ERR(clk))
2558		clk = NULL;
2559	msm_host->bulk_clks[3].clk = clk;
2560
 
 
 
 
 
2561	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2562				      msm_host->bulk_clks);
2563	if (ret)
2564		goto bus_clk_disable;
2565
2566	/*
2567	 * xo clock is needed for FLL feature of cm_dll.
2568	 * In case if xo clock is not mentioned in DT, warn and proceed.
2569	 */
2570	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2571	if (IS_ERR(msm_host->xo_clk)) {
2572		ret = PTR_ERR(msm_host->xo_clk);
2573		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2574	}
2575
2576	if (!msm_host->mci_removed) {
2577		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2578		if (IS_ERR(msm_host->core_mem)) {
2579			ret = PTR_ERR(msm_host->core_mem);
2580			goto clk_disable;
2581		}
2582	}
2583
2584	/* Reset the vendor spec register to power on reset state */
2585	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2586			host->ioaddr + msm_offset->core_vendor_spec);
2587
2588	if (!msm_host->mci_removed) {
2589		/* Set HC_MODE_EN bit in HC_MODE register */
2590		msm_host_writel(msm_host, HC_MODE_EN, host,
2591				msm_offset->core_hc_mode);
2592		config = msm_host_readl(msm_host, host,
2593				msm_offset->core_hc_mode);
2594		config |= FF_CLK_SW_RST_DIS;
2595		msm_host_writel(msm_host, config, host,
2596				msm_offset->core_hc_mode);
2597	}
2598
2599	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2600	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2601		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2602			       SDHCI_VENDOR_VER_SHIFT));
2603
2604	core_version = msm_host_readl(msm_host, host,
2605			msm_offset->core_mci_version);
2606	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2607		      CORE_VERSION_MAJOR_SHIFT;
2608	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2609	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2610		core_version, core_major, core_minor);
2611
2612	if (core_major == 1 && core_minor >= 0x42)
2613		msm_host->use_14lpp_dll_reset = true;
2614
2615	/*
2616	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2617	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2618	 */
2619	if (core_major == 1 && core_minor < 0x34)
2620		msm_host->use_cdclp533 = true;
2621
2622	/*
2623	 * Support for some capabilities is not advertised by newer
2624	 * controller versions and must be explicitly enabled.
2625	 */
2626	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2627		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2628		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2629		writel_relaxed(config, host->ioaddr +
2630				msm_offset->core_vendor_spec_capabilities0);
2631	}
2632
2633	if (core_major == 1 && core_minor >= 0x49)
2634		msm_host->updated_ddr_cfg = true;
2635
2636	if (core_major == 1 && core_minor >= 0x71)
2637		msm_host->uses_tassadar_dll = true;
2638
2639	ret = sdhci_msm_register_vreg(msm_host);
2640	if (ret)
2641		goto clk_disable;
2642
2643	/*
2644	 * Power on reset state may trigger power irq if previous status of
2645	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2646	 * interrupt in GIC, any pending power irq interrupt should be
2647	 * acknowledged. Otherwise power irq interrupt handler would be
2648	 * fired prematurely.
2649	 */
2650	sdhci_msm_handle_pwr_irq(host, 0);
2651
2652	/*
2653	 * Ensure that above writes are propagated before interrupt enablement
2654	 * in GIC.
2655	 */
2656	mb();
2657
2658	/* Setup IRQ for handling power/voltage tasks with PMIC */
2659	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2660	if (msm_host->pwr_irq < 0) {
2661		ret = msm_host->pwr_irq;
2662		goto clk_disable;
2663	}
2664
2665	sdhci_msm_init_pwr_irq_wait(msm_host);
2666	/* Enable pwr irq interrupts */
2667	msm_host_writel(msm_host, INT_MASK, host,
2668		msm_offset->core_pwrctl_mask);
2669
2670	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2671					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2672					dev_name(&pdev->dev), host);
2673	if (ret) {
2674		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2675		goto clk_disable;
2676	}
2677
2678	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2679
2680	/* Set the timeout value to max possible */
2681	host->max_timeout_count = 0xF;
2682
2683	pm_runtime_get_noresume(&pdev->dev);
2684	pm_runtime_set_active(&pdev->dev);
2685	pm_runtime_enable(&pdev->dev);
2686	pm_runtime_set_autosuspend_delay(&pdev->dev,
2687					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2688	pm_runtime_use_autosuspend(&pdev->dev);
2689
2690	host->mmc_host_ops.start_signal_voltage_switch =
2691		sdhci_msm_start_signal_voltage_switch;
2692	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2693	if (of_property_read_bool(node, "supports-cqe"))
2694		ret = sdhci_msm_cqe_add_host(host, pdev);
2695	else
2696		ret = sdhci_add_host(host);
2697	if (ret)
2698		goto pm_runtime_disable;
2699
2700	pm_runtime_mark_last_busy(&pdev->dev);
2701	pm_runtime_put_autosuspend(&pdev->dev);
2702
2703	return 0;
2704
2705pm_runtime_disable:
2706	pm_runtime_disable(&pdev->dev);
2707	pm_runtime_set_suspended(&pdev->dev);
2708	pm_runtime_put_noidle(&pdev->dev);
2709clk_disable:
2710	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2711				   msm_host->bulk_clks);
2712bus_clk_disable:
2713	if (!IS_ERR(msm_host->bus_clk))
2714		clk_disable_unprepare(msm_host->bus_clk);
2715pltfm_free:
2716	sdhci_pltfm_free(pdev);
2717	return ret;
2718}
2719
2720static void sdhci_msm_remove(struct platform_device *pdev)
2721{
2722	struct sdhci_host *host = platform_get_drvdata(pdev);
2723	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2724	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2725	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2726		    0xffffffff);
2727
2728	sdhci_remove_host(host, dead);
2729
2730	pm_runtime_get_sync(&pdev->dev);
2731	pm_runtime_disable(&pdev->dev);
2732	pm_runtime_put_noidle(&pdev->dev);
2733
2734	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2735				   msm_host->bulk_clks);
2736	if (!IS_ERR(msm_host->bus_clk))
2737		clk_disable_unprepare(msm_host->bus_clk);
2738	sdhci_pltfm_free(pdev);
 
2739}
2740
2741static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2742{
2743	struct sdhci_host *host = dev_get_drvdata(dev);
2744	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2745	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2746	unsigned long flags;
2747
2748	spin_lock_irqsave(&host->lock, flags);
2749	host->runtime_suspended = true;
2750	spin_unlock_irqrestore(&host->lock, flags);
2751
2752	/* Drop the performance vote */
2753	dev_pm_opp_set_rate(dev, 0);
2754	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2755				   msm_host->bulk_clks);
2756
2757	return sdhci_msm_ice_suspend(msm_host);
2758}
2759
2760static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2761{
2762	struct sdhci_host *host = dev_get_drvdata(dev);
2763	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2764	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2765	unsigned long flags;
2766	int ret;
2767
2768	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2769				       msm_host->bulk_clks);
2770	if (ret)
2771		return ret;
2772	/*
2773	 * Whenever core-clock is gated dynamically, it's needed to
2774	 * restore the SDR DLL settings when the clock is ungated.
2775	 */
2776	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2777		ret = sdhci_msm_restore_sdr_dll_config(host);
2778		if (ret)
2779			return ret;
2780	}
2781
2782	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2783
2784	ret = sdhci_msm_ice_resume(msm_host);
2785	if (ret)
2786		return ret;
2787
2788	spin_lock_irqsave(&host->lock, flags);
2789	host->runtime_suspended = false;
2790	spin_unlock_irqrestore(&host->lock, flags);
2791
2792	return ret;
2793}
2794
2795static const struct dev_pm_ops sdhci_msm_pm_ops = {
2796	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2797				pm_runtime_force_resume)
2798	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2799			   sdhci_msm_runtime_resume,
2800			   NULL)
2801};
2802
2803static struct platform_driver sdhci_msm_driver = {
2804	.probe = sdhci_msm_probe,
2805	.remove = sdhci_msm_remove,
2806	.driver = {
2807		   .name = "sdhci_msm",
2808		   .of_match_table = sdhci_msm_dt_match,
2809		   .pm = &sdhci_msm_pm_ops,
2810		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2811	},
2812};
2813
2814module_platform_driver(sdhci_msm_driver);
2815
2816MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2817MODULE_LICENSE("GPL v2");