Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Main bcache entry point - handle a read or a write request and decide what to
   4 * do with it; the make_request functions are called by the block layer.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/module.h>
  17#include <linux/hash.h>
  18#include <linux/random.h>
  19#include <linux/backing-dev.h>
  20
  21#include <trace/events/bcache.h>
  22
  23#define CUTOFF_CACHE_ADD	95
  24#define CUTOFF_CACHE_READA	90
  25
  26struct kmem_cache *bch_search_cache;
  27
  28static void bch_data_insert_start(struct closure *cl);
  29
  30static unsigned int cache_mode(struct cached_dev *dc)
  31{
  32	return BDEV_CACHE_MODE(&dc->sb);
  33}
  34
  35static bool verify(struct cached_dev *dc)
  36{
  37	return dc->verify;
  38}
  39
  40static void bio_csum(struct bio *bio, struct bkey *k)
  41{
  42	struct bio_vec bv;
  43	struct bvec_iter iter;
  44	uint64_t csum = 0;
  45
  46	bio_for_each_segment(bv, bio, iter) {
  47		void *d = bvec_kmap_local(&bv);
  48
  49		csum = crc64_be(csum, d, bv.bv_len);
  50		kunmap_local(d);
  51	}
  52
  53	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  54}
  55
  56/* Insert data into cache */
  57
  58static void bch_data_insert_keys(struct closure *cl)
  59{
  60	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  61	atomic_t *journal_ref = NULL;
  62	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  63	int ret;
  64
  65	if (!op->replace)
  66		journal_ref = bch_journal(op->c, &op->insert_keys,
  67					  op->flush_journal ? cl : NULL);
  68
  69	ret = bch_btree_insert(op->c, &op->insert_keys,
  70			       journal_ref, replace_key);
  71	if (ret == -ESRCH) {
  72		op->replace_collision = true;
  73	} else if (ret) {
  74		op->status		= BLK_STS_RESOURCE;
  75		op->insert_data_done	= true;
  76	}
  77
  78	if (journal_ref)
  79		atomic_dec_bug(journal_ref);
  80
  81	if (!op->insert_data_done) {
  82		continue_at(cl, bch_data_insert_start, op->wq);
  83		return;
  84	}
  85
  86	bch_keylist_free(&op->insert_keys);
  87	closure_return(cl);
  88}
  89
  90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
  91			       struct cache_set *c)
  92{
  93	size_t oldsize = bch_keylist_nkeys(l);
  94	size_t newsize = oldsize + u64s;
  95
  96	/*
  97	 * The journalling code doesn't handle the case where the keys to insert
  98	 * is bigger than an empty write: If we just return -ENOMEM here,
  99	 * bch_data_insert_keys() will insert the keys created so far
 100	 * and finish the rest when the keylist is empty.
 101	 */
 102	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
 103		return -ENOMEM;
 104
 105	return __bch_keylist_realloc(l, u64s);
 106}
 107
 108static void bch_data_invalidate(struct closure *cl)
 109{
 110	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 111	struct bio *bio = op->bio;
 112
 113	pr_debug("invalidating %i sectors from %llu\n",
 114		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 115
 116	while (bio_sectors(bio)) {
 117		unsigned int sectors = min(bio_sectors(bio),
 118				       1U << (KEY_SIZE_BITS - 1));
 119
 120		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 121			goto out;
 122
 123		bio->bi_iter.bi_sector	+= sectors;
 124		bio->bi_iter.bi_size	-= sectors << 9;
 125
 126		bch_keylist_add(&op->insert_keys,
 127				&KEY(op->inode,
 128				     bio->bi_iter.bi_sector,
 129				     sectors));
 130	}
 131
 132	op->insert_data_done = true;
 133	/* get in bch_data_insert() */
 134	bio_put(bio);
 135out:
 136	continue_at(cl, bch_data_insert_keys, op->wq);
 137}
 138
 139static void bch_data_insert_error(struct closure *cl)
 140{
 141	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 142
 143	/*
 144	 * Our data write just errored, which means we've got a bunch of keys to
 145	 * insert that point to data that wasn't successfully written.
 146	 *
 147	 * We don't have to insert those keys but we still have to invalidate
 148	 * that region of the cache - so, if we just strip off all the pointers
 149	 * from the keys we'll accomplish just that.
 150	 */
 151
 152	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 153
 154	while (src != op->insert_keys.top) {
 155		struct bkey *n = bkey_next(src);
 156
 157		SET_KEY_PTRS(src, 0);
 158		memmove(dst, src, bkey_bytes(src));
 159
 160		dst = bkey_next(dst);
 161		src = n;
 162	}
 163
 164	op->insert_keys.top = dst;
 165
 166	bch_data_insert_keys(cl);
 167}
 168
 169static void bch_data_insert_endio(struct bio *bio)
 170{
 171	struct closure *cl = bio->bi_private;
 172	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 173
 174	if (bio->bi_status) {
 175		/* TODO: We could try to recover from this. */
 176		if (op->writeback)
 177			op->status = bio->bi_status;
 178		else if (!op->replace)
 179			set_closure_fn(cl, bch_data_insert_error, op->wq);
 180		else
 181			set_closure_fn(cl, NULL, NULL);
 182	}
 183
 184	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 185}
 186
 187static void bch_data_insert_start(struct closure *cl)
 188{
 189	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 190	struct bio *bio = op->bio, *n;
 191
 192	if (op->bypass)
 193		return bch_data_invalidate(cl);
 194
 195	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 196		wake_up_gc(op->c);
 197
 198	/*
 199	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 200	 * flush, it'll wait on the journal write.
 201	 */
 202	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 203
 204	do {
 205		unsigned int i;
 206		struct bkey *k;
 207		struct bio_set *split = &op->c->bio_split;
 208
 209		/* 1 for the device pointer and 1 for the chksum */
 210		if (bch_keylist_realloc(&op->insert_keys,
 211					3 + (op->csum ? 1 : 0),
 212					op->c)) {
 213			continue_at(cl, bch_data_insert_keys, op->wq);
 214			return;
 215		}
 216
 217		k = op->insert_keys.top;
 218		bkey_init(k);
 219		SET_KEY_INODE(k, op->inode);
 220		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 221
 222		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 223				       op->write_point, op->write_prio,
 224				       op->writeback))
 225			goto err;
 226
 227		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 228
 229		n->bi_end_io	= bch_data_insert_endio;
 230		n->bi_private	= cl;
 231
 232		if (op->writeback) {
 233			SET_KEY_DIRTY(k, true);
 234
 235			for (i = 0; i < KEY_PTRS(k); i++)
 236				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 237					    GC_MARK_DIRTY);
 238		}
 239
 240		SET_KEY_CSUM(k, op->csum);
 241		if (KEY_CSUM(k))
 242			bio_csum(n, k);
 243
 244		trace_bcache_cache_insert(k);
 245		bch_keylist_push(&op->insert_keys);
 246
 247		n->bi_opf = REQ_OP_WRITE;
 248		bch_submit_bbio(n, op->c, k, 0);
 249	} while (n != bio);
 250
 251	op->insert_data_done = true;
 252	continue_at(cl, bch_data_insert_keys, op->wq);
 253	return;
 254err:
 255	/* bch_alloc_sectors() blocks if s->writeback = true */
 256	BUG_ON(op->writeback);
 257
 258	/*
 259	 * But if it's not a writeback write we'd rather just bail out if
 260	 * there aren't any buckets ready to write to - it might take awhile and
 261	 * we might be starving btree writes for gc or something.
 262	 */
 263
 264	if (!op->replace) {
 265		/*
 266		 * Writethrough write: We can't complete the write until we've
 267		 * updated the index. But we don't want to delay the write while
 268		 * we wait for buckets to be freed up, so just invalidate the
 269		 * rest of the write.
 270		 */
 271		op->bypass = true;
 272		return bch_data_invalidate(cl);
 273	} else {
 274		/*
 275		 * From a cache miss, we can just insert the keys for the data
 276		 * we have written or bail out if we didn't do anything.
 277		 */
 278		op->insert_data_done = true;
 279		bio_put(bio);
 280
 281		if (!bch_keylist_empty(&op->insert_keys))
 282			continue_at(cl, bch_data_insert_keys, op->wq);
 283		else
 284			closure_return(cl);
 285	}
 286}
 287
 288/**
 289 * bch_data_insert - stick some data in the cache
 290 * @cl: closure pointer.
 291 *
 292 * This is the starting point for any data to end up in a cache device; it could
 293 * be from a normal write, or a writeback write, or a write to a flash only
 294 * volume - it's also used by the moving garbage collector to compact data in
 295 * mostly empty buckets.
 296 *
 297 * It first writes the data to the cache, creating a list of keys to be inserted
 298 * (if the data had to be fragmented there will be multiple keys); after the
 299 * data is written it calls bch_journal, and after the keys have been added to
 300 * the next journal write they're inserted into the btree.
 301 *
 302 * It inserts the data in op->bio; bi_sector is used for the key offset,
 303 * and op->inode is used for the key inode.
 304 *
 305 * If op->bypass is true, instead of inserting the data it invalidates the
 306 * region of the cache represented by op->bio and op->inode.
 307 */
 308void bch_data_insert(struct closure *cl)
 309{
 310	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 311
 312	trace_bcache_write(op->c, op->inode, op->bio,
 313			   op->writeback, op->bypass);
 314
 315	bch_keylist_init(&op->insert_keys);
 316	bio_get(op->bio);
 317	bch_data_insert_start(cl);
 318}
 319
 320/*
 321 * Congested?  Return 0 (not congested) or the limit (in sectors)
 322 * beyond which we should bypass the cache due to congestion.
 323 */
 324unsigned int bch_get_congested(const struct cache_set *c)
 325{
 326	int i;
 327
 328	if (!c->congested_read_threshold_us &&
 329	    !c->congested_write_threshold_us)
 330		return 0;
 331
 332	i = (local_clock_us() - c->congested_last_us) / 1024;
 333	if (i < 0)
 334		return 0;
 335
 336	i += atomic_read(&c->congested);
 337	if (i >= 0)
 338		return 0;
 339
 340	i += CONGESTED_MAX;
 341
 342	if (i > 0)
 343		i = fract_exp_two(i, 6);
 344
 345	i -= hweight32(get_random_u32());
 346
 347	return i > 0 ? i : 1;
 348}
 349
 350static void add_sequential(struct task_struct *t)
 351{
 352	ewma_add(t->sequential_io_avg,
 353		 t->sequential_io, 8, 0);
 354
 355	t->sequential_io = 0;
 356}
 357
 358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 359{
 360	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 361}
 362
 363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 364{
 365	struct cache_set *c = dc->disk.c;
 366	unsigned int mode = cache_mode(dc);
 367	unsigned int sectors, congested;
 368	struct task_struct *task = current;
 369	struct io *i;
 370
 371	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 372	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 373	    (bio_op(bio) == REQ_OP_DISCARD))
 374		goto skip;
 375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376	if (mode == CACHE_MODE_NONE ||
 377	    (mode == CACHE_MODE_WRITEAROUND &&
 378	     op_is_write(bio_op(bio))))
 379		goto skip;
 380
 381	/*
 382	 * If the bio is for read-ahead or background IO, bypass it or
 383	 * not depends on the following situations,
 384	 * - If the IO is for meta data, always cache it and no bypass
 385	 * - If the IO is not meta data, check dc->cache_reada_policy,
 386	 *      BCH_CACHE_READA_ALL: cache it and not bypass
 387	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
 388	 * That is, read-ahead request for metadata always get cached
 389	 * (eg, for gfs2 or xfs).
 390	 */
 391	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
 392		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 393		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
 394			goto skip;
 395	}
 396
 397	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
 398	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
 399		pr_debug("skipping unaligned io\n");
 400		goto skip;
 401	}
 402
 403	if (bypass_torture_test(dc)) {
 404		if (get_random_u32_below(4) == 3)
 405			goto skip;
 406		else
 407			goto rescale;
 408	}
 409
 410	congested = bch_get_congested(c);
 411	if (!congested && !dc->sequential_cutoff)
 412		goto rescale;
 413
 414	spin_lock(&dc->io_lock);
 415
 416	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 417		if (i->last == bio->bi_iter.bi_sector &&
 418		    time_before(jiffies, i->jiffies))
 419			goto found;
 420
 421	i = list_first_entry(&dc->io_lru, struct io, lru);
 422
 423	add_sequential(task);
 424	i->sequential = 0;
 425found:
 426	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 427		i->sequential	+= bio->bi_iter.bi_size;
 428
 429	i->last			 = bio_end_sector(bio);
 430	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 431	task->sequential_io	 = i->sequential;
 432
 433	hlist_del(&i->hash);
 434	hlist_add_head(&i->hash, iohash(dc, i->last));
 435	list_move_tail(&i->lru, &dc->io_lru);
 436
 437	spin_unlock(&dc->io_lock);
 438
 439	sectors = max(task->sequential_io,
 440		      task->sequential_io_avg) >> 9;
 441
 442	if (dc->sequential_cutoff &&
 443	    sectors >= dc->sequential_cutoff >> 9) {
 444		trace_bcache_bypass_sequential(bio);
 445		goto skip;
 446	}
 447
 448	if (congested && sectors >= congested) {
 449		trace_bcache_bypass_congested(bio);
 450		goto skip;
 451	}
 452
 453rescale:
 454	bch_rescale_priorities(c, bio_sectors(bio));
 455	return false;
 456skip:
 457	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 458	return true;
 459}
 460
 461/* Cache lookup */
 462
 463struct search {
 464	/* Stack frame for bio_complete */
 465	struct closure		cl;
 466
 467	struct bbio		bio;
 468	struct bio		*orig_bio;
 469	struct bio		*cache_miss;
 470	struct bcache_device	*d;
 471
 472	unsigned int		insert_bio_sectors;
 473	unsigned int		recoverable:1;
 474	unsigned int		write:1;
 475	unsigned int		read_dirty_data:1;
 476	unsigned int		cache_missed:1;
 477
 478	struct block_device	*orig_bdev;
 479	unsigned long		start_time;
 480
 481	struct btree_op		op;
 482	struct data_insert_op	iop;
 483};
 484
 485static void bch_cache_read_endio(struct bio *bio)
 486{
 487	struct bbio *b = container_of(bio, struct bbio, bio);
 488	struct closure *cl = bio->bi_private;
 489	struct search *s = container_of(cl, struct search, cl);
 490
 491	/*
 492	 * If the bucket was reused while our bio was in flight, we might have
 493	 * read the wrong data. Set s->error but not error so it doesn't get
 494	 * counted against the cache device, but we'll still reread the data
 495	 * from the backing device.
 496	 */
 497
 498	if (bio->bi_status)
 499		s->iop.status = bio->bi_status;
 500	else if (!KEY_DIRTY(&b->key) &&
 501		 ptr_stale(s->iop.c, &b->key, 0)) {
 502		atomic_long_inc(&s->iop.c->cache_read_races);
 503		s->iop.status = BLK_STS_IOERR;
 504	}
 505
 506	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 507}
 508
 509/*
 510 * Read from a single key, handling the initial cache miss if the key starts in
 511 * the middle of the bio
 512 */
 513static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 514{
 515	struct search *s = container_of(op, struct search, op);
 516	struct bio *n, *bio = &s->bio.bio;
 517	struct bkey *bio_key;
 518	unsigned int ptr;
 519
 520	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 521		return MAP_CONTINUE;
 522
 523	if (KEY_INODE(k) != s->iop.inode ||
 524	    KEY_START(k) > bio->bi_iter.bi_sector) {
 525		unsigned int bio_sectors = bio_sectors(bio);
 526		unsigned int sectors = KEY_INODE(k) == s->iop.inode
 527			? min_t(uint64_t, INT_MAX,
 528				KEY_START(k) - bio->bi_iter.bi_sector)
 529			: INT_MAX;
 530		int ret = s->d->cache_miss(b, s, bio, sectors);
 531
 532		if (ret != MAP_CONTINUE)
 533			return ret;
 534
 535		/* if this was a complete miss we shouldn't get here */
 536		BUG_ON(bio_sectors <= sectors);
 537	}
 538
 539	if (!KEY_SIZE(k))
 540		return MAP_CONTINUE;
 541
 542	/* XXX: figure out best pointer - for multiple cache devices */
 543	ptr = 0;
 544
 545	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 546
 547	if (KEY_DIRTY(k))
 548		s->read_dirty_data = true;
 549
 550	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 551				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 552			   GFP_NOIO, &s->d->bio_split);
 553
 554	bio_key = &container_of(n, struct bbio, bio)->key;
 555	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 556
 557	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 558	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 559
 560	n->bi_end_io	= bch_cache_read_endio;
 561	n->bi_private	= &s->cl;
 562
 563	/*
 564	 * The bucket we're reading from might be reused while our bio
 565	 * is in flight, and we could then end up reading the wrong
 566	 * data.
 567	 *
 568	 * We guard against this by checking (in cache_read_endio()) if
 569	 * the pointer is stale again; if so, we treat it as an error
 570	 * and reread from the backing device (but we don't pass that
 571	 * error up anywhere).
 572	 */
 573
 574	__bch_submit_bbio(n, b->c);
 575	return n == bio ? MAP_DONE : MAP_CONTINUE;
 576}
 577
 578static void cache_lookup(struct closure *cl)
 579{
 580	struct search *s = container_of(cl, struct search, iop.cl);
 581	struct bio *bio = &s->bio.bio;
 582	struct cached_dev *dc;
 583	int ret;
 584
 585	bch_btree_op_init(&s->op, -1);
 586
 587	ret = bch_btree_map_keys(&s->op, s->iop.c,
 588				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 589				 cache_lookup_fn, MAP_END_KEY);
 590	if (ret == -EAGAIN) {
 591		continue_at(cl, cache_lookup, bcache_wq);
 592		return;
 593	}
 594
 595	/*
 596	 * We might meet err when searching the btree, If that happens, we will
 597	 * get negative ret, in this scenario we should not recover data from
 598	 * backing device (when cache device is dirty) because we don't know
 599	 * whether bkeys the read request covered are all clean.
 600	 *
 601	 * And after that happened, s->iop.status is still its initial value
 602	 * before we submit s->bio.bio
 603	 */
 604	if (ret < 0) {
 605		BUG_ON(ret == -EINTR);
 606		if (s->d && s->d->c &&
 607				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 608			dc = container_of(s->d, struct cached_dev, disk);
 609			if (dc && atomic_read(&dc->has_dirty))
 610				s->recoverable = false;
 611		}
 612		if (!s->iop.status)
 613			s->iop.status = BLK_STS_IOERR;
 614	}
 615
 616	closure_return(cl);
 617}
 618
 619/* Common code for the make_request functions */
 620
 621static void request_endio(struct bio *bio)
 622{
 623	struct closure *cl = bio->bi_private;
 624
 625	if (bio->bi_status) {
 626		struct search *s = container_of(cl, struct search, cl);
 627
 628		s->iop.status = bio->bi_status;
 629		/* Only cache read errors are recoverable */
 630		s->recoverable = false;
 631	}
 632
 633	bio_put(bio);
 634	closure_put(cl);
 635}
 636
 637static void backing_request_endio(struct bio *bio)
 638{
 639	struct closure *cl = bio->bi_private;
 640
 641	if (bio->bi_status) {
 642		struct search *s = container_of(cl, struct search, cl);
 643		struct cached_dev *dc = container_of(s->d,
 644						     struct cached_dev, disk);
 645		/*
 646		 * If a bio has REQ_PREFLUSH for writeback mode, it is
 647		 * speically assembled in cached_dev_write() for a non-zero
 648		 * write request which has REQ_PREFLUSH. we don't set
 649		 * s->iop.status by this failure, the status will be decided
 650		 * by result of bch_data_insert() operation.
 651		 */
 652		if (unlikely(s->iop.writeback &&
 653			     bio->bi_opf & REQ_PREFLUSH)) {
 654			pr_err("Can't flush %pg: returned bi_status %i\n",
 655				dc->bdev, bio->bi_status);
 656		} else {
 657			/* set to orig_bio->bi_status in bio_complete() */
 658			s->iop.status = bio->bi_status;
 659		}
 660		s->recoverable = false;
 661		/* should count I/O error for backing device here */
 662		bch_count_backing_io_errors(dc, bio);
 663	}
 664
 665	bio_put(bio);
 666	closure_put(cl);
 667}
 668
 669static void bio_complete(struct search *s)
 670{
 671	if (s->orig_bio) {
 672		/* Count on bcache device */
 673		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
 674					 s->orig_bdev);
 675		trace_bcache_request_end(s->d, s->orig_bio);
 676		s->orig_bio->bi_status = s->iop.status;
 677		bio_endio(s->orig_bio);
 678		s->orig_bio = NULL;
 679	}
 680}
 681
 682static void do_bio_hook(struct search *s,
 683			struct bio *orig_bio,
 684			bio_end_io_t *end_io_fn)
 685{
 686	struct bio *bio = &s->bio.bio;
 687
 688	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
 689	/*
 690	 * bi_end_io can be set separately somewhere else, e.g. the
 691	 * variants in,
 692	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
 693	 * - n->bi_end_io from cache_lookup_fn()
 694	 */
 695	bio->bi_end_io		= end_io_fn;
 696	bio->bi_private		= &s->cl;
 697
 698	bio_cnt_set(bio, 3);
 699}
 700
 701static void search_free(struct closure *cl)
 702{
 703	struct search *s = container_of(cl, struct search, cl);
 704
 705	atomic_dec(&s->iop.c->search_inflight);
 706
 707	if (s->iop.bio)
 708		bio_put(s->iop.bio);
 709
 710	bio_complete(s);
 711	closure_debug_destroy(cl);
 712	mempool_free(s, &s->iop.c->search);
 713}
 714
 715static inline struct search *search_alloc(struct bio *bio,
 716		struct bcache_device *d, struct block_device *orig_bdev,
 717		unsigned long start_time)
 718{
 719	struct search *s;
 720
 721	s = mempool_alloc(&d->c->search, GFP_NOIO);
 722
 723	closure_init(&s->cl, NULL);
 724	do_bio_hook(s, bio, request_endio);
 725	atomic_inc(&d->c->search_inflight);
 726
 727	s->orig_bio		= bio;
 728	s->cache_miss		= NULL;
 729	s->cache_missed		= 0;
 730	s->d			= d;
 731	s->recoverable		= 1;
 732	s->write		= op_is_write(bio_op(bio));
 733	s->read_dirty_data	= 0;
 734	/* Count on the bcache device */
 735	s->orig_bdev		= orig_bdev;
 736	s->start_time		= start_time;
 737	s->iop.c		= d->c;
 738	s->iop.bio		= NULL;
 739	s->iop.inode		= d->id;
 740	s->iop.write_point	= hash_long((unsigned long) current, 16);
 741	s->iop.write_prio	= 0;
 742	s->iop.status		= 0;
 743	s->iop.flags		= 0;
 744	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
 745	s->iop.wq		= bcache_wq;
 746
 747	return s;
 748}
 749
 750/* Cached devices */
 751
 752static void cached_dev_bio_complete(struct closure *cl)
 753{
 754	struct search *s = container_of(cl, struct search, cl);
 755	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 756
 757	cached_dev_put(dc);
 758	search_free(cl);
 759}
 760
 761/* Process reads */
 762
 763static void cached_dev_read_error_done(struct closure *cl)
 764{
 765	struct search *s = container_of(cl, struct search, cl);
 766
 767	if (s->iop.replace_collision)
 768		bch_mark_cache_miss_collision(s->iop.c, s->d);
 769
 770	if (s->iop.bio)
 771		bio_free_pages(s->iop.bio);
 772
 773	cached_dev_bio_complete(cl);
 774}
 775
 776static void cached_dev_read_error(struct closure *cl)
 777{
 778	struct search *s = container_of(cl, struct search, cl);
 779	struct bio *bio = &s->bio.bio;
 780
 781	/*
 782	 * If read request hit dirty data (s->read_dirty_data is true),
 783	 * then recovery a failed read request from cached device may
 784	 * get a stale data back. So read failure recovery is only
 785	 * permitted when read request hit clean data in cache device,
 786	 * or when cache read race happened.
 787	 */
 788	if (s->recoverable && !s->read_dirty_data) {
 789		/* Retry from the backing device: */
 790		trace_bcache_read_retry(s->orig_bio);
 791
 792		s->iop.status = 0;
 793		do_bio_hook(s, s->orig_bio, backing_request_endio);
 794
 795		/* XXX: invalidate cache */
 796
 797		/* I/O request sent to backing device */
 798		closure_bio_submit(s->iop.c, bio, cl);
 799	}
 800
 801	continue_at(cl, cached_dev_read_error_done, NULL);
 802}
 803
 804static void cached_dev_cache_miss_done(struct closure *cl)
 805{
 806	struct search *s = container_of(cl, struct search, cl);
 807	struct bcache_device *d = s->d;
 808
 809	if (s->iop.replace_collision)
 810		bch_mark_cache_miss_collision(s->iop.c, s->d);
 811
 812	if (s->iop.bio)
 813		bio_free_pages(s->iop.bio);
 814
 815	cached_dev_bio_complete(cl);
 816	closure_put(&d->cl);
 817}
 818
 819static void cached_dev_read_done(struct closure *cl)
 820{
 821	struct search *s = container_of(cl, struct search, cl);
 822	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 823
 824	/*
 825	 * We had a cache miss; cache_bio now contains data ready to be inserted
 826	 * into the cache.
 827	 *
 828	 * First, we copy the data we just read from cache_bio's bounce buffers
 829	 * to the buffers the original bio pointed to:
 830	 */
 831
 832	if (s->iop.bio) {
 833		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
 834		s->iop.bio->bi_iter.bi_sector =
 835			s->cache_miss->bi_iter.bi_sector;
 836		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 837		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
 838		bch_bio_map(s->iop.bio, NULL);
 839
 840		bio_copy_data(s->cache_miss, s->iop.bio);
 841
 842		bio_put(s->cache_miss);
 843		s->cache_miss = NULL;
 844	}
 845
 846	if (verify(dc) && s->recoverable && !s->read_dirty_data)
 847		bch_data_verify(dc, s->orig_bio);
 848
 849	closure_get(&dc->disk.cl);
 850	bio_complete(s);
 851
 852	if (s->iop.bio &&
 853	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 854		BUG_ON(!s->iop.replace);
 855		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 856	}
 857
 858	continue_at(cl, cached_dev_cache_miss_done, NULL);
 859}
 860
 861static void cached_dev_read_done_bh(struct closure *cl)
 862{
 863	struct search *s = container_of(cl, struct search, cl);
 864	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 865
 866	bch_mark_cache_accounting(s->iop.c, s->d,
 867				  !s->cache_missed, s->iop.bypass);
 868	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
 869
 870	if (s->iop.status)
 871		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 872	else if (s->iop.bio || verify(dc))
 873		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 874	else
 875		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 876}
 877
 878static int cached_dev_cache_miss(struct btree *b, struct search *s,
 879				 struct bio *bio, unsigned int sectors)
 880{
 881	int ret = MAP_CONTINUE;
 882	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 883	struct bio *miss, *cache_bio;
 884	unsigned int size_limit;
 885
 886	s->cache_missed = 1;
 887
 888	if (s->cache_miss || s->iop.bypass) {
 889		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 890		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 891		goto out_submit;
 892	}
 893
 894	/* Limitation for valid replace key size and cache_bio bvecs number */
 895	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
 896			   (1 << KEY_SIZE_BITS) - 1);
 897	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
 898
 899	s->iop.replace_key = KEY(s->iop.inode,
 900				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 901				 s->insert_bio_sectors);
 902
 903	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 904	if (ret)
 905		return ret;
 906
 907	s->iop.replace = true;
 908
 909	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
 910			      &s->d->bio_split);
 911
 912	/* btree_search_recurse()'s btree iterator is no good anymore */
 913	ret = miss == bio ? MAP_DONE : -EINTR;
 914
 915	cache_bio = bio_alloc_bioset(miss->bi_bdev,
 916			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 917			0, GFP_NOWAIT, &dc->disk.bio_split);
 918	if (!cache_bio)
 919		goto out_submit;
 920
 921	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 922	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 923
 924	cache_bio->bi_end_io	= backing_request_endio;
 925	cache_bio->bi_private	= &s->cl;
 926
 927	bch_bio_map(cache_bio, NULL);
 928	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 929		goto out_put;
 930
 931	s->cache_miss	= miss;
 932	s->iop.bio	= cache_bio;
 933	bio_get(cache_bio);
 934	/* I/O request sent to backing device */
 935	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 936
 937	return ret;
 938out_put:
 939	bio_put(cache_bio);
 940out_submit:
 941	miss->bi_end_io		= backing_request_endio;
 942	miss->bi_private	= &s->cl;
 943	/* I/O request sent to backing device */
 944	closure_bio_submit(s->iop.c, miss, &s->cl);
 945	return ret;
 946}
 947
 948static void cached_dev_read(struct cached_dev *dc, struct search *s)
 949{
 950	struct closure *cl = &s->cl;
 951
 952	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 953	continue_at(cl, cached_dev_read_done_bh, NULL);
 954}
 955
 956/* Process writes */
 957
 958static void cached_dev_write_complete(struct closure *cl)
 959{
 960	struct search *s = container_of(cl, struct search, cl);
 961	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 962
 963	up_read_non_owner(&dc->writeback_lock);
 964	cached_dev_bio_complete(cl);
 965}
 966
 967static void cached_dev_write(struct cached_dev *dc, struct search *s)
 968{
 969	struct closure *cl = &s->cl;
 970	struct bio *bio = &s->bio.bio;
 971	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 972	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 973
 974	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 975
 976	down_read_non_owner(&dc->writeback_lock);
 977	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 978		/*
 979		 * We overlap with some dirty data undergoing background
 980		 * writeback, force this write to writeback
 981		 */
 982		s->iop.bypass = false;
 983		s->iop.writeback = true;
 984	}
 985
 986	/*
 987	 * Discards aren't _required_ to do anything, so skipping if
 988	 * check_overlapping returned true is ok
 989	 *
 990	 * But check_overlapping drops dirty keys for which io hasn't started,
 991	 * so we still want to call it.
 992	 */
 993	if (bio_op(bio) == REQ_OP_DISCARD)
 994		s->iop.bypass = true;
 995
 996	if (should_writeback(dc, s->orig_bio,
 997			     cache_mode(dc),
 998			     s->iop.bypass)) {
 999		s->iop.bypass = false;
1000		s->iop.writeback = true;
1001	}
1002
1003	if (s->iop.bypass) {
1004		s->iop.bio = s->orig_bio;
1005		bio_get(s->iop.bio);
1006
1007		if (bio_op(bio) == REQ_OP_DISCARD &&
1008		    !bdev_max_discard_sectors(dc->bdev))
1009			goto insert_data;
1010
1011		/* I/O request sent to backing device */
1012		bio->bi_end_io = backing_request_endio;
1013		closure_bio_submit(s->iop.c, bio, cl);
1014
1015	} else if (s->iop.writeback) {
1016		bch_writeback_add(dc);
1017		s->iop.bio = bio;
1018
1019		if (bio->bi_opf & REQ_PREFLUSH) {
1020			/*
1021			 * Also need to send a flush to the backing
1022			 * device.
1023			 */
1024			struct bio *flush;
1025
1026			flush = bio_alloc_bioset(bio->bi_bdev, 0,
1027						 REQ_OP_WRITE | REQ_PREFLUSH,
1028						 GFP_NOIO, &dc->disk.bio_split);
1029			if (!flush) {
1030				s->iop.status = BLK_STS_RESOURCE;
1031				goto insert_data;
1032			}
1033			flush->bi_end_io = backing_request_endio;
1034			flush->bi_private = cl;
1035			/* I/O request sent to backing device */
1036			closure_bio_submit(s->iop.c, flush, cl);
1037		}
1038	} else {
1039		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1040					     &dc->disk.bio_split);
1041		/* I/O request sent to backing device */
1042		bio->bi_end_io = backing_request_endio;
1043		closure_bio_submit(s->iop.c, bio, cl);
1044	}
1045
1046insert_data:
1047	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1048	continue_at(cl, cached_dev_write_complete, NULL);
1049}
1050
1051static void cached_dev_nodata(struct closure *cl)
1052{
1053	struct search *s = container_of(cl, struct search, cl);
1054	struct bio *bio = &s->bio.bio;
1055
1056	if (s->iop.flush_journal)
1057		bch_journal_meta(s->iop.c, cl);
1058
1059	/* If it's a flush, we send the flush to the backing device too */
1060	bio->bi_end_io = backing_request_endio;
1061	closure_bio_submit(s->iop.c, bio, cl);
1062
1063	continue_at(cl, cached_dev_bio_complete, NULL);
1064}
1065
1066struct detached_dev_io_private {
1067	struct bcache_device	*d;
1068	unsigned long		start_time;
1069	bio_end_io_t		*bi_end_io;
1070	void			*bi_private;
1071	struct block_device	*orig_bdev;
1072};
1073
1074static void detached_dev_end_io(struct bio *bio)
1075{
1076	struct detached_dev_io_private *ddip;
1077
1078	ddip = bio->bi_private;
1079	bio->bi_end_io = ddip->bi_end_io;
1080	bio->bi_private = ddip->bi_private;
1081
1082	/* Count on the bcache device */
1083	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1084
1085	if (bio->bi_status) {
1086		struct cached_dev *dc = container_of(ddip->d,
1087						     struct cached_dev, disk);
1088		/* should count I/O error for backing device here */
1089		bch_count_backing_io_errors(dc, bio);
1090	}
1091
1092	kfree(ddip);
1093	bio->bi_end_io(bio);
1094}
1095
1096static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1097		struct block_device *orig_bdev, unsigned long start_time)
1098{
1099	struct detached_dev_io_private *ddip;
1100	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1101
1102	/*
1103	 * no need to call closure_get(&dc->disk.cl),
1104	 * because upper layer had already opened bcache device,
1105	 * which would call closure_get(&dc->disk.cl)
1106	 */
1107	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1108	if (!ddip) {
1109		bio->bi_status = BLK_STS_RESOURCE;
1110		bio->bi_end_io(bio);
1111		return;
1112	}
1113
1114	ddip->d = d;
1115	/* Count on the bcache device */
1116	ddip->orig_bdev = orig_bdev;
1117	ddip->start_time = start_time;
1118	ddip->bi_end_io = bio->bi_end_io;
1119	ddip->bi_private = bio->bi_private;
1120	bio->bi_end_io = detached_dev_end_io;
1121	bio->bi_private = ddip;
1122
1123	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1124	    !bdev_max_discard_sectors(dc->bdev))
1125		bio->bi_end_io(bio);
1126	else
1127		submit_bio_noacct(bio);
1128}
1129
1130static void quit_max_writeback_rate(struct cache_set *c,
1131				    struct cached_dev *this_dc)
1132{
1133	int i;
1134	struct bcache_device *d;
1135	struct cached_dev *dc;
1136
1137	/*
1138	 * mutex bch_register_lock may compete with other parallel requesters,
1139	 * or attach/detach operations on other backing device. Waiting to
1140	 * the mutex lock may increase I/O request latency for seconds or more.
1141	 * To avoid such situation, if mutext_trylock() failed, only writeback
1142	 * rate of current cached device is set to 1, and __update_write_back()
1143	 * will decide writeback rate of other cached devices (remember now
1144	 * c->idle_counter is 0 already).
1145	 */
1146	if (mutex_trylock(&bch_register_lock)) {
1147		for (i = 0; i < c->devices_max_used; i++) {
1148			if (!c->devices[i])
1149				continue;
1150
1151			if (UUID_FLASH_ONLY(&c->uuids[i]))
1152				continue;
1153
1154			d = c->devices[i];
1155			dc = container_of(d, struct cached_dev, disk);
1156			/*
1157			 * set writeback rate to default minimum value,
1158			 * then let update_writeback_rate() to decide the
1159			 * upcoming rate.
1160			 */
1161			atomic_long_set(&dc->writeback_rate.rate, 1);
1162		}
1163		mutex_unlock(&bch_register_lock);
1164	} else
1165		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1166}
1167
1168/* Cached devices - read & write stuff */
1169
1170void cached_dev_submit_bio(struct bio *bio)
1171{
1172	struct search *s;
1173	struct block_device *orig_bdev = bio->bi_bdev;
1174	struct bcache_device *d = orig_bdev->bd_disk->private_data;
1175	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1176	unsigned long start_time;
1177	int rw = bio_data_dir(bio);
1178
1179	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1180		     dc->io_disable)) {
1181		bio->bi_status = BLK_STS_IOERR;
1182		bio_endio(bio);
1183		return;
1184	}
1185
1186	if (likely(d->c)) {
1187		if (atomic_read(&d->c->idle_counter))
1188			atomic_set(&d->c->idle_counter, 0);
1189		/*
1190		 * If at_max_writeback_rate of cache set is true and new I/O
1191		 * comes, quit max writeback rate of all cached devices
1192		 * attached to this cache set, and set at_max_writeback_rate
1193		 * to false.
1194		 */
1195		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1196			atomic_set(&d->c->at_max_writeback_rate, 0);
1197			quit_max_writeback_rate(d->c, dc);
1198		}
1199	}
1200
1201	start_time = bio_start_io_acct(bio);
1202
1203	bio_set_dev(bio, dc->bdev);
1204	bio->bi_iter.bi_sector += dc->sb.data_offset;
1205
1206	if (cached_dev_get(dc)) {
1207		s = search_alloc(bio, d, orig_bdev, start_time);
1208		trace_bcache_request_start(s->d, bio);
1209
1210		if (!bio->bi_iter.bi_size) {
1211			/*
1212			 * can't call bch_journal_meta from under
1213			 * submit_bio_noacct
1214			 */
1215			continue_at_nobarrier(&s->cl,
1216					      cached_dev_nodata,
1217					      bcache_wq);
1218		} else {
1219			s->iop.bypass = check_should_bypass(dc, bio);
1220
1221			if (rw)
1222				cached_dev_write(dc, s);
1223			else
1224				cached_dev_read(dc, s);
1225		}
1226	} else
1227		/* I/O request sent to backing device */
1228		detached_dev_do_request(d, bio, orig_bdev, start_time);
1229}
1230
1231static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1232			    unsigned int cmd, unsigned long arg)
1233{
1234	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1235
1236	if (dc->io_disable)
1237		return -EIO;
1238	if (!dc->bdev->bd_disk->fops->ioctl)
1239		return -ENOTTY;
1240	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1241}
1242
1243void bch_cached_dev_request_init(struct cached_dev *dc)
1244{
1245	dc->disk.cache_miss			= cached_dev_cache_miss;
1246	dc->disk.ioctl				= cached_dev_ioctl;
1247}
1248
1249/* Flash backed devices */
1250
1251static int flash_dev_cache_miss(struct btree *b, struct search *s,
1252				struct bio *bio, unsigned int sectors)
1253{
1254	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1255
1256	swap(bio->bi_iter.bi_size, bytes);
1257	zero_fill_bio(bio);
1258	swap(bio->bi_iter.bi_size, bytes);
1259
1260	bio_advance(bio, bytes);
1261
1262	if (!bio->bi_iter.bi_size)
1263		return MAP_DONE;
1264
1265	return MAP_CONTINUE;
1266}
1267
1268static void flash_dev_nodata(struct closure *cl)
1269{
1270	struct search *s = container_of(cl, struct search, cl);
1271
1272	if (s->iop.flush_journal)
1273		bch_journal_meta(s->iop.c, cl);
1274
1275	continue_at(cl, search_free, NULL);
1276}
1277
1278void flash_dev_submit_bio(struct bio *bio)
1279{
1280	struct search *s;
1281	struct closure *cl;
1282	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1283
1284	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1285		bio->bi_status = BLK_STS_IOERR;
1286		bio_endio(bio);
1287		return;
1288	}
1289
1290	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1291	cl = &s->cl;
1292	bio = &s->bio.bio;
1293
1294	trace_bcache_request_start(s->d, bio);
1295
1296	if (!bio->bi_iter.bi_size) {
1297		/*
1298		 * can't call bch_journal_meta from under submit_bio_noacct
1299		 */
1300		continue_at_nobarrier(&s->cl,
1301				      flash_dev_nodata,
1302				      bcache_wq);
1303		return;
1304	} else if (bio_data_dir(bio)) {
1305		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1306					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1307					&KEY(d->id, bio_end_sector(bio), 0));
1308
1309		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1310		s->iop.writeback	= true;
1311		s->iop.bio		= bio;
1312
1313		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1314	} else {
1315		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1316	}
1317
1318	continue_at(cl, search_free, NULL);
1319}
1320
1321static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1322			   unsigned int cmd, unsigned long arg)
1323{
1324	return -ENOTTY;
1325}
1326
1327void bch_flash_dev_request_init(struct bcache_device *d)
1328{
1329	d->cache_miss				= flash_dev_cache_miss;
1330	d->ioctl				= flash_dev_ioctl;
1331}
1332
1333void bch_request_exit(void)
1334{
1335	kmem_cache_destroy(bch_search_cache);
1336}
1337
1338int __init bch_request_init(void)
1339{
1340	bch_search_cache = KMEM_CACHE(search, 0);
1341	if (!bch_search_cache)
1342		return -ENOMEM;
1343
1344	return 0;
1345}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Main bcache entry point - handle a read or a write request and decide what to
   4 * do with it; the make_request functions are called by the block layer.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/module.h>
  17#include <linux/hash.h>
  18#include <linux/random.h>
  19#include <linux/backing-dev.h>
  20
  21#include <trace/events/bcache.h>
  22
  23#define CUTOFF_CACHE_ADD	95
  24#define CUTOFF_CACHE_READA	90
  25
  26struct kmem_cache *bch_search_cache;
  27
  28static CLOSURE_CALLBACK(bch_data_insert_start);
  29
  30static unsigned int cache_mode(struct cached_dev *dc)
  31{
  32	return BDEV_CACHE_MODE(&dc->sb);
  33}
  34
  35static bool verify(struct cached_dev *dc)
  36{
  37	return dc->verify;
  38}
  39
  40static void bio_csum(struct bio *bio, struct bkey *k)
  41{
  42	struct bio_vec bv;
  43	struct bvec_iter iter;
  44	uint64_t csum = 0;
  45
  46	bio_for_each_segment(bv, bio, iter) {
  47		void *d = bvec_kmap_local(&bv);
  48
  49		csum = crc64_be(csum, d, bv.bv_len);
  50		kunmap_local(d);
  51	}
  52
  53	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  54}
  55
  56/* Insert data into cache */
  57
  58static CLOSURE_CALLBACK(bch_data_insert_keys)
  59{
  60	closure_type(op, struct data_insert_op, cl);
  61	atomic_t *journal_ref = NULL;
  62	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  63	int ret;
  64
  65	if (!op->replace)
  66		journal_ref = bch_journal(op->c, &op->insert_keys,
  67					  op->flush_journal ? cl : NULL);
  68
  69	ret = bch_btree_insert(op->c, &op->insert_keys,
  70			       journal_ref, replace_key);
  71	if (ret == -ESRCH) {
  72		op->replace_collision = true;
  73	} else if (ret) {
  74		op->status		= BLK_STS_RESOURCE;
  75		op->insert_data_done	= true;
  76	}
  77
  78	if (journal_ref)
  79		atomic_dec_bug(journal_ref);
  80
  81	if (!op->insert_data_done) {
  82		continue_at(cl, bch_data_insert_start, op->wq);
  83		return;
  84	}
  85
  86	bch_keylist_free(&op->insert_keys);
  87	closure_return(cl);
  88}
  89
  90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
  91			       struct cache_set *c)
  92{
  93	size_t oldsize = bch_keylist_nkeys(l);
  94	size_t newsize = oldsize + u64s;
  95
  96	/*
  97	 * The journalling code doesn't handle the case where the keys to insert
  98	 * is bigger than an empty write: If we just return -ENOMEM here,
  99	 * bch_data_insert_keys() will insert the keys created so far
 100	 * and finish the rest when the keylist is empty.
 101	 */
 102	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
 103		return -ENOMEM;
 104
 105	return __bch_keylist_realloc(l, u64s);
 106}
 107
 108static void bch_data_invalidate(struct closure *cl)
 109{
 110	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 111	struct bio *bio = op->bio;
 112
 113	pr_debug("invalidating %i sectors from %llu\n",
 114		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 115
 116	while (bio_sectors(bio)) {
 117		unsigned int sectors = min(bio_sectors(bio),
 118				       1U << (KEY_SIZE_BITS - 1));
 119
 120		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 121			goto out;
 122
 123		bio->bi_iter.bi_sector	+= sectors;
 124		bio->bi_iter.bi_size	-= sectors << 9;
 125
 126		bch_keylist_add(&op->insert_keys,
 127				&KEY(op->inode,
 128				     bio->bi_iter.bi_sector,
 129				     sectors));
 130	}
 131
 132	op->insert_data_done = true;
 133	/* get in bch_data_insert() */
 134	bio_put(bio);
 135out:
 136	continue_at(cl, bch_data_insert_keys, op->wq);
 137}
 138
 139static CLOSURE_CALLBACK(bch_data_insert_error)
 140{
 141	closure_type(op, struct data_insert_op, cl);
 142
 143	/*
 144	 * Our data write just errored, which means we've got a bunch of keys to
 145	 * insert that point to data that wasn't successfully written.
 146	 *
 147	 * We don't have to insert those keys but we still have to invalidate
 148	 * that region of the cache - so, if we just strip off all the pointers
 149	 * from the keys we'll accomplish just that.
 150	 */
 151
 152	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 153
 154	while (src != op->insert_keys.top) {
 155		struct bkey *n = bkey_next(src);
 156
 157		SET_KEY_PTRS(src, 0);
 158		memmove(dst, src, bkey_bytes(src));
 159
 160		dst = bkey_next(dst);
 161		src = n;
 162	}
 163
 164	op->insert_keys.top = dst;
 165
 166	bch_data_insert_keys(&cl->work);
 167}
 168
 169static void bch_data_insert_endio(struct bio *bio)
 170{
 171	struct closure *cl = bio->bi_private;
 172	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 173
 174	if (bio->bi_status) {
 175		/* TODO: We could try to recover from this. */
 176		if (op->writeback)
 177			op->status = bio->bi_status;
 178		else if (!op->replace)
 179			set_closure_fn(cl, bch_data_insert_error, op->wq);
 180		else
 181			set_closure_fn(cl, NULL, NULL);
 182	}
 183
 184	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 185}
 186
 187static CLOSURE_CALLBACK(bch_data_insert_start)
 188{
 189	closure_type(op, struct data_insert_op, cl);
 190	struct bio *bio = op->bio, *n;
 191
 192	if (op->bypass)
 193		return bch_data_invalidate(cl);
 194
 195	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 196		wake_up_gc(op->c);
 197
 198	/*
 199	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
 200	 * flush, it'll wait on the journal write.
 201	 */
 202	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 203
 204	do {
 205		unsigned int i;
 206		struct bkey *k;
 207		struct bio_set *split = &op->c->bio_split;
 208
 209		/* 1 for the device pointer and 1 for the chksum */
 210		if (bch_keylist_realloc(&op->insert_keys,
 211					3 + (op->csum ? 1 : 0),
 212					op->c)) {
 213			continue_at(cl, bch_data_insert_keys, op->wq);
 214			return;
 215		}
 216
 217		k = op->insert_keys.top;
 218		bkey_init(k);
 219		SET_KEY_INODE(k, op->inode);
 220		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 221
 222		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 223				       op->write_point, op->write_prio,
 224				       op->writeback))
 225			goto err;
 226
 227		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 228
 229		n->bi_end_io	= bch_data_insert_endio;
 230		n->bi_private	= cl;
 231
 232		if (op->writeback) {
 233			SET_KEY_DIRTY(k, true);
 234
 235			for (i = 0; i < KEY_PTRS(k); i++)
 236				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 237					    GC_MARK_DIRTY);
 238		}
 239
 240		SET_KEY_CSUM(k, op->csum);
 241		if (KEY_CSUM(k))
 242			bio_csum(n, k);
 243
 244		trace_bcache_cache_insert(k);
 245		bch_keylist_push(&op->insert_keys);
 246
 247		n->bi_opf = REQ_OP_WRITE;
 248		bch_submit_bbio(n, op->c, k, 0);
 249	} while (n != bio);
 250
 251	op->insert_data_done = true;
 252	continue_at(cl, bch_data_insert_keys, op->wq);
 253	return;
 254err:
 255	/* bch_alloc_sectors() blocks if s->writeback = true */
 256	BUG_ON(op->writeback);
 257
 258	/*
 259	 * But if it's not a writeback write we'd rather just bail out if
 260	 * there aren't any buckets ready to write to - it might take awhile and
 261	 * we might be starving btree writes for gc or something.
 262	 */
 263
 264	if (!op->replace) {
 265		/*
 266		 * Writethrough write: We can't complete the write until we've
 267		 * updated the index. But we don't want to delay the write while
 268		 * we wait for buckets to be freed up, so just invalidate the
 269		 * rest of the write.
 270		 */
 271		op->bypass = true;
 272		return bch_data_invalidate(cl);
 273	} else {
 274		/*
 275		 * From a cache miss, we can just insert the keys for the data
 276		 * we have written or bail out if we didn't do anything.
 277		 */
 278		op->insert_data_done = true;
 279		bio_put(bio);
 280
 281		if (!bch_keylist_empty(&op->insert_keys))
 282			continue_at(cl, bch_data_insert_keys, op->wq);
 283		else
 284			closure_return(cl);
 285	}
 286}
 287
 288/**
 289 * bch_data_insert - stick some data in the cache
 290 * @cl: closure pointer.
 291 *
 292 * This is the starting point for any data to end up in a cache device; it could
 293 * be from a normal write, or a writeback write, or a write to a flash only
 294 * volume - it's also used by the moving garbage collector to compact data in
 295 * mostly empty buckets.
 296 *
 297 * It first writes the data to the cache, creating a list of keys to be inserted
 298 * (if the data had to be fragmented there will be multiple keys); after the
 299 * data is written it calls bch_journal, and after the keys have been added to
 300 * the next journal write they're inserted into the btree.
 301 *
 302 * It inserts the data in op->bio; bi_sector is used for the key offset,
 303 * and op->inode is used for the key inode.
 304 *
 305 * If op->bypass is true, instead of inserting the data it invalidates the
 306 * region of the cache represented by op->bio and op->inode.
 307 */
 308CLOSURE_CALLBACK(bch_data_insert)
 309{
 310	closure_type(op, struct data_insert_op, cl);
 311
 312	trace_bcache_write(op->c, op->inode, op->bio,
 313			   op->writeback, op->bypass);
 314
 315	bch_keylist_init(&op->insert_keys);
 316	bio_get(op->bio);
 317	bch_data_insert_start(&cl->work);
 318}
 319
 320/*
 321 * Congested?  Return 0 (not congested) or the limit (in sectors)
 322 * beyond which we should bypass the cache due to congestion.
 323 */
 324unsigned int bch_get_congested(const struct cache_set *c)
 325{
 326	int i;
 327
 328	if (!c->congested_read_threshold_us &&
 329	    !c->congested_write_threshold_us)
 330		return 0;
 331
 332	i = (local_clock_us() - c->congested_last_us) / 1024;
 333	if (i < 0)
 334		return 0;
 335
 336	i += atomic_read(&c->congested);
 337	if (i >= 0)
 338		return 0;
 339
 340	i += CONGESTED_MAX;
 341
 342	if (i > 0)
 343		i = fract_exp_two(i, 6);
 344
 345	i -= hweight32(get_random_u32());
 346
 347	return i > 0 ? i : 1;
 348}
 349
 350static void add_sequential(struct task_struct *t)
 351{
 352	ewma_add(t->sequential_io_avg,
 353		 t->sequential_io, 8, 0);
 354
 355	t->sequential_io = 0;
 356}
 357
 358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 359{
 360	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 361}
 362
 363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 364{
 365	struct cache_set *c = dc->disk.c;
 366	unsigned int mode = cache_mode(dc);
 367	unsigned int sectors, congested;
 368	struct task_struct *task = current;
 369	struct io *i;
 370
 371	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 
 372	    (bio_op(bio) == REQ_OP_DISCARD))
 373		goto skip;
 374
 375	if (c->gc_stats.in_use > CUTOFF_CACHE_ADD) {
 376		/*
 377		 * If cached buckets are all clean now, 'true' will be
 378		 * returned and all requests will bypass the cache device.
 379		 * Then c->sectors_to_gc has no chance to be negative, and
 380		 * gc thread won't wake up and caching won't work forever.
 381		 * Here call force_wake_up_gc() to avoid such aftermath.
 382		 */
 383		if (BDEV_STATE(&dc->sb) == BDEV_STATE_CLEAN &&
 384		    c->gc_mark_valid)
 385			force_wake_up_gc(c);
 386
 387		goto skip;
 388	}
 389
 390	if (mode == CACHE_MODE_NONE ||
 391	    (mode == CACHE_MODE_WRITEAROUND &&
 392	     op_is_write(bio_op(bio))))
 393		goto skip;
 394
 395	/*
 396	 * If the bio is for read-ahead or background IO, bypass it or
 397	 * not depends on the following situations,
 398	 * - If the IO is for meta data, always cache it and no bypass
 399	 * - If the IO is not meta data, check dc->cache_reada_policy,
 400	 *      BCH_CACHE_READA_ALL: cache it and not bypass
 401	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
 402	 * That is, read-ahead request for metadata always get cached
 403	 * (eg, for gfs2 or xfs).
 404	 */
 405	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
 406		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 407		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
 408			goto skip;
 409	}
 410
 411	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
 412	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
 413		pr_debug("skipping unaligned io\n");
 414		goto skip;
 415	}
 416
 417	if (bypass_torture_test(dc)) {
 418		if (get_random_u32_below(4) == 3)
 419			goto skip;
 420		else
 421			goto rescale;
 422	}
 423
 424	congested = bch_get_congested(c);
 425	if (!congested && !dc->sequential_cutoff)
 426		goto rescale;
 427
 428	spin_lock(&dc->io_lock);
 429
 430	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 431		if (i->last == bio->bi_iter.bi_sector &&
 432		    time_before(jiffies, i->jiffies))
 433			goto found;
 434
 435	i = list_first_entry(&dc->io_lru, struct io, lru);
 436
 437	add_sequential(task);
 438	i->sequential = 0;
 439found:
 440	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 441		i->sequential	+= bio->bi_iter.bi_size;
 442
 443	i->last			 = bio_end_sector(bio);
 444	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
 445	task->sequential_io	 = i->sequential;
 446
 447	hlist_del(&i->hash);
 448	hlist_add_head(&i->hash, iohash(dc, i->last));
 449	list_move_tail(&i->lru, &dc->io_lru);
 450
 451	spin_unlock(&dc->io_lock);
 452
 453	sectors = max(task->sequential_io,
 454		      task->sequential_io_avg) >> 9;
 455
 456	if (dc->sequential_cutoff &&
 457	    sectors >= dc->sequential_cutoff >> 9) {
 458		trace_bcache_bypass_sequential(bio);
 459		goto skip;
 460	}
 461
 462	if (congested && sectors >= congested) {
 463		trace_bcache_bypass_congested(bio);
 464		goto skip;
 465	}
 466
 467rescale:
 468	bch_rescale_priorities(c, bio_sectors(bio));
 469	return false;
 470skip:
 471	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 472	return true;
 473}
 474
 475/* Cache lookup */
 476
 477struct search {
 478	/* Stack frame for bio_complete */
 479	struct closure		cl;
 480
 481	struct bbio		bio;
 482	struct bio		*orig_bio;
 483	struct bio		*cache_miss;
 484	struct bcache_device	*d;
 485
 486	unsigned int		insert_bio_sectors;
 487	unsigned int		recoverable:1;
 488	unsigned int		write:1;
 489	unsigned int		read_dirty_data:1;
 490	unsigned int		cache_missed:1;
 491
 492	struct block_device	*orig_bdev;
 493	unsigned long		start_time;
 494
 495	struct btree_op		op;
 496	struct data_insert_op	iop;
 497};
 498
 499static void bch_cache_read_endio(struct bio *bio)
 500{
 501	struct bbio *b = container_of(bio, struct bbio, bio);
 502	struct closure *cl = bio->bi_private;
 503	struct search *s = container_of(cl, struct search, cl);
 504
 505	/*
 506	 * If the bucket was reused while our bio was in flight, we might have
 507	 * read the wrong data. Set s->error but not error so it doesn't get
 508	 * counted against the cache device, but we'll still reread the data
 509	 * from the backing device.
 510	 */
 511
 512	if (bio->bi_status)
 513		s->iop.status = bio->bi_status;
 514	else if (!KEY_DIRTY(&b->key) &&
 515		 ptr_stale(s->iop.c, &b->key, 0)) {
 516		atomic_long_inc(&s->iop.c->cache_read_races);
 517		s->iop.status = BLK_STS_IOERR;
 518	}
 519
 520	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 521}
 522
 523/*
 524 * Read from a single key, handling the initial cache miss if the key starts in
 525 * the middle of the bio
 526 */
 527static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 528{
 529	struct search *s = container_of(op, struct search, op);
 530	struct bio *n, *bio = &s->bio.bio;
 531	struct bkey *bio_key;
 532	unsigned int ptr;
 533
 534	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 535		return MAP_CONTINUE;
 536
 537	if (KEY_INODE(k) != s->iop.inode ||
 538	    KEY_START(k) > bio->bi_iter.bi_sector) {
 539		unsigned int bio_sectors = bio_sectors(bio);
 540		unsigned int sectors = KEY_INODE(k) == s->iop.inode
 541			? min_t(uint64_t, INT_MAX,
 542				KEY_START(k) - bio->bi_iter.bi_sector)
 543			: INT_MAX;
 544		int ret = s->d->cache_miss(b, s, bio, sectors);
 545
 546		if (ret != MAP_CONTINUE)
 547			return ret;
 548
 549		/* if this was a complete miss we shouldn't get here */
 550		BUG_ON(bio_sectors <= sectors);
 551	}
 552
 553	if (!KEY_SIZE(k))
 554		return MAP_CONTINUE;
 555
 556	/* XXX: figure out best pointer - for multiple cache devices */
 557	ptr = 0;
 558
 559	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 560
 561	if (KEY_DIRTY(k))
 562		s->read_dirty_data = true;
 563
 564	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 565				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 566			   GFP_NOIO, &s->d->bio_split);
 567
 568	bio_key = &container_of(n, struct bbio, bio)->key;
 569	bch_bkey_copy_single_ptr(bio_key, k, ptr);
 570
 571	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 572	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 573
 574	n->bi_end_io	= bch_cache_read_endio;
 575	n->bi_private	= &s->cl;
 576
 577	/*
 578	 * The bucket we're reading from might be reused while our bio
 579	 * is in flight, and we could then end up reading the wrong
 580	 * data.
 581	 *
 582	 * We guard against this by checking (in cache_read_endio()) if
 583	 * the pointer is stale again; if so, we treat it as an error
 584	 * and reread from the backing device (but we don't pass that
 585	 * error up anywhere).
 586	 */
 587
 588	__bch_submit_bbio(n, b->c);
 589	return n == bio ? MAP_DONE : MAP_CONTINUE;
 590}
 591
 592static CLOSURE_CALLBACK(cache_lookup)
 593{
 594	closure_type(s, struct search, iop.cl);
 595	struct bio *bio = &s->bio.bio;
 596	struct cached_dev *dc;
 597	int ret;
 598
 599	bch_btree_op_init(&s->op, -1);
 600
 601	ret = bch_btree_map_keys(&s->op, s->iop.c,
 602				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 603				 cache_lookup_fn, MAP_END_KEY);
 604	if (ret == -EAGAIN) {
 605		continue_at(cl, cache_lookup, bcache_wq);
 606		return;
 607	}
 608
 609	/*
 610	 * We might meet err when searching the btree, If that happens, we will
 611	 * get negative ret, in this scenario we should not recover data from
 612	 * backing device (when cache device is dirty) because we don't know
 613	 * whether bkeys the read request covered are all clean.
 614	 *
 615	 * And after that happened, s->iop.status is still its initial value
 616	 * before we submit s->bio.bio
 617	 */
 618	if (ret < 0) {
 619		BUG_ON(ret == -EINTR);
 620		if (s->d && s->d->c &&
 621				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 622			dc = container_of(s->d, struct cached_dev, disk);
 623			if (dc && atomic_read(&dc->has_dirty))
 624				s->recoverable = false;
 625		}
 626		if (!s->iop.status)
 627			s->iop.status = BLK_STS_IOERR;
 628	}
 629
 630	closure_return(cl);
 631}
 632
 633/* Common code for the make_request functions */
 634
 635static void request_endio(struct bio *bio)
 636{
 637	struct closure *cl = bio->bi_private;
 638
 639	if (bio->bi_status) {
 640		struct search *s = container_of(cl, struct search, cl);
 641
 642		s->iop.status = bio->bi_status;
 643		/* Only cache read errors are recoverable */
 644		s->recoverable = false;
 645	}
 646
 647	bio_put(bio);
 648	closure_put(cl);
 649}
 650
 651static void backing_request_endio(struct bio *bio)
 652{
 653	struct closure *cl = bio->bi_private;
 654
 655	if (bio->bi_status) {
 656		struct search *s = container_of(cl, struct search, cl);
 657		struct cached_dev *dc = container_of(s->d,
 658						     struct cached_dev, disk);
 659		/*
 660		 * If a bio has REQ_PREFLUSH for writeback mode, it is
 661		 * speically assembled in cached_dev_write() for a non-zero
 662		 * write request which has REQ_PREFLUSH. we don't set
 663		 * s->iop.status by this failure, the status will be decided
 664		 * by result of bch_data_insert() operation.
 665		 */
 666		if (unlikely(s->iop.writeback &&
 667			     bio->bi_opf & REQ_PREFLUSH)) {
 668			pr_err("Can't flush %pg: returned bi_status %i\n",
 669				dc->bdev, bio->bi_status);
 670		} else {
 671			/* set to orig_bio->bi_status in bio_complete() */
 672			s->iop.status = bio->bi_status;
 673		}
 674		s->recoverable = false;
 675		/* should count I/O error for backing device here */
 676		bch_count_backing_io_errors(dc, bio);
 677	}
 678
 679	bio_put(bio);
 680	closure_put(cl);
 681}
 682
 683static void bio_complete(struct search *s)
 684{
 685	if (s->orig_bio) {
 686		/* Count on bcache device */
 687		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
 688					 s->orig_bdev);
 689		trace_bcache_request_end(s->d, s->orig_bio);
 690		s->orig_bio->bi_status = s->iop.status;
 691		bio_endio(s->orig_bio);
 692		s->orig_bio = NULL;
 693	}
 694}
 695
 696static void do_bio_hook(struct search *s,
 697			struct bio *orig_bio,
 698			bio_end_io_t *end_io_fn)
 699{
 700	struct bio *bio = &s->bio.bio;
 701
 702	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
 703	/*
 704	 * bi_end_io can be set separately somewhere else, e.g. the
 705	 * variants in,
 706	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
 707	 * - n->bi_end_io from cache_lookup_fn()
 708	 */
 709	bio->bi_end_io		= end_io_fn;
 710	bio->bi_private		= &s->cl;
 711
 712	bio_cnt_set(bio, 3);
 713}
 714
 715static CLOSURE_CALLBACK(search_free)
 716{
 717	closure_type(s, struct search, cl);
 718
 719	atomic_dec(&s->iop.c->search_inflight);
 720
 721	if (s->iop.bio)
 722		bio_put(s->iop.bio);
 723
 724	bio_complete(s);
 725	closure_debug_destroy(cl);
 726	mempool_free(s, &s->iop.c->search);
 727}
 728
 729static inline struct search *search_alloc(struct bio *bio,
 730		struct bcache_device *d, struct block_device *orig_bdev,
 731		unsigned long start_time)
 732{
 733	struct search *s;
 734
 735	s = mempool_alloc(&d->c->search, GFP_NOIO);
 736
 737	closure_init(&s->cl, NULL);
 738	do_bio_hook(s, bio, request_endio);
 739	atomic_inc(&d->c->search_inflight);
 740
 741	s->orig_bio		= bio;
 742	s->cache_miss		= NULL;
 743	s->cache_missed		= 0;
 744	s->d			= d;
 745	s->recoverable		= 1;
 746	s->write		= op_is_write(bio_op(bio));
 747	s->read_dirty_data	= 0;
 748	/* Count on the bcache device */
 749	s->orig_bdev		= orig_bdev;
 750	s->start_time		= start_time;
 751	s->iop.c		= d->c;
 752	s->iop.bio		= NULL;
 753	s->iop.inode		= d->id;
 754	s->iop.write_point	= hash_long((unsigned long) current, 16);
 755	s->iop.write_prio	= 0;
 756	s->iop.status		= 0;
 757	s->iop.flags		= 0;
 758	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
 759	s->iop.wq		= bcache_wq;
 760
 761	return s;
 762}
 763
 764/* Cached devices */
 765
 766static CLOSURE_CALLBACK(cached_dev_bio_complete)
 767{
 768	closure_type(s, struct search, cl);
 769	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 770
 771	cached_dev_put(dc);
 772	search_free(&cl->work);
 773}
 774
 775/* Process reads */
 776
 777static CLOSURE_CALLBACK(cached_dev_read_error_done)
 778{
 779	closure_type(s, struct search, cl);
 780
 781	if (s->iop.replace_collision)
 782		bch_mark_cache_miss_collision(s->iop.c, s->d);
 783
 784	if (s->iop.bio)
 785		bio_free_pages(s->iop.bio);
 786
 787	cached_dev_bio_complete(&cl->work);
 788}
 789
 790static CLOSURE_CALLBACK(cached_dev_read_error)
 791{
 792	closure_type(s, struct search, cl);
 793	struct bio *bio = &s->bio.bio;
 794
 795	/*
 796	 * If read request hit dirty data (s->read_dirty_data is true),
 797	 * then recovery a failed read request from cached device may
 798	 * get a stale data back. So read failure recovery is only
 799	 * permitted when read request hit clean data in cache device,
 800	 * or when cache read race happened.
 801	 */
 802	if (s->recoverable && !s->read_dirty_data) {
 803		/* Retry from the backing device: */
 804		trace_bcache_read_retry(s->orig_bio);
 805
 806		s->iop.status = 0;
 807		do_bio_hook(s, s->orig_bio, backing_request_endio);
 808
 809		/* XXX: invalidate cache */
 810
 811		/* I/O request sent to backing device */
 812		closure_bio_submit(s->iop.c, bio, cl);
 813	}
 814
 815	continue_at(cl, cached_dev_read_error_done, NULL);
 816}
 817
 818static CLOSURE_CALLBACK(cached_dev_cache_miss_done)
 819{
 820	closure_type(s, struct search, cl);
 821	struct bcache_device *d = s->d;
 822
 823	if (s->iop.replace_collision)
 824		bch_mark_cache_miss_collision(s->iop.c, s->d);
 825
 826	if (s->iop.bio)
 827		bio_free_pages(s->iop.bio);
 828
 829	cached_dev_bio_complete(&cl->work);
 830	closure_put(&d->cl);
 831}
 832
 833static CLOSURE_CALLBACK(cached_dev_read_done)
 834{
 835	closure_type(s, struct search, cl);
 836	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 837
 838	/*
 839	 * We had a cache miss; cache_bio now contains data ready to be inserted
 840	 * into the cache.
 841	 *
 842	 * First, we copy the data we just read from cache_bio's bounce buffers
 843	 * to the buffers the original bio pointed to:
 844	 */
 845
 846	if (s->iop.bio) {
 847		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
 848		s->iop.bio->bi_iter.bi_sector =
 849			s->cache_miss->bi_iter.bi_sector;
 850		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 851		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
 852		bch_bio_map(s->iop.bio, NULL);
 853
 854		bio_copy_data(s->cache_miss, s->iop.bio);
 855
 856		bio_put(s->cache_miss);
 857		s->cache_miss = NULL;
 858	}
 859
 860	if (verify(dc) && s->recoverable && !s->read_dirty_data)
 861		bch_data_verify(dc, s->orig_bio);
 862
 863	closure_get(&dc->disk.cl);
 864	bio_complete(s);
 865
 866	if (s->iop.bio &&
 867	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 868		BUG_ON(!s->iop.replace);
 869		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 870	}
 871
 872	continue_at(cl, cached_dev_cache_miss_done, NULL);
 873}
 874
 875static CLOSURE_CALLBACK(cached_dev_read_done_bh)
 876{
 877	closure_type(s, struct search, cl);
 878	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 879
 880	bch_mark_cache_accounting(s->iop.c, s->d,
 881				  !s->cache_missed, s->iop.bypass);
 882	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
 883
 884	if (s->iop.status)
 885		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 886	else if (s->iop.bio || verify(dc))
 887		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 888	else
 889		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 890}
 891
 892static int cached_dev_cache_miss(struct btree *b, struct search *s,
 893				 struct bio *bio, unsigned int sectors)
 894{
 895	int ret = MAP_CONTINUE;
 896	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 897	struct bio *miss, *cache_bio;
 898	unsigned int size_limit;
 899
 900	s->cache_missed = 1;
 901
 902	if (s->cache_miss || s->iop.bypass) {
 903		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 904		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 905		goto out_submit;
 906	}
 907
 908	/* Limitation for valid replace key size and cache_bio bvecs number */
 909	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
 910			   (1 << KEY_SIZE_BITS) - 1);
 911	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
 912
 913	s->iop.replace_key = KEY(s->iop.inode,
 914				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 915				 s->insert_bio_sectors);
 916
 917	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 918	if (ret)
 919		return ret;
 920
 921	s->iop.replace = true;
 922
 923	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
 924			      &s->d->bio_split);
 925
 926	/* btree_search_recurse()'s btree iterator is no good anymore */
 927	ret = miss == bio ? MAP_DONE : -EINTR;
 928
 929	cache_bio = bio_alloc_bioset(miss->bi_bdev,
 930			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 931			0, GFP_NOWAIT, &dc->disk.bio_split);
 932	if (!cache_bio)
 933		goto out_submit;
 934
 935	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
 936	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
 937
 938	cache_bio->bi_end_io	= backing_request_endio;
 939	cache_bio->bi_private	= &s->cl;
 940
 941	bch_bio_map(cache_bio, NULL);
 942	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 943		goto out_put;
 944
 945	s->cache_miss	= miss;
 946	s->iop.bio	= cache_bio;
 947	bio_get(cache_bio);
 948	/* I/O request sent to backing device */
 949	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 950
 951	return ret;
 952out_put:
 953	bio_put(cache_bio);
 954out_submit:
 955	miss->bi_end_io		= backing_request_endio;
 956	miss->bi_private	= &s->cl;
 957	/* I/O request sent to backing device */
 958	closure_bio_submit(s->iop.c, miss, &s->cl);
 959	return ret;
 960}
 961
 962static void cached_dev_read(struct cached_dev *dc, struct search *s)
 963{
 964	struct closure *cl = &s->cl;
 965
 966	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 967	continue_at(cl, cached_dev_read_done_bh, NULL);
 968}
 969
 970/* Process writes */
 971
 972static CLOSURE_CALLBACK(cached_dev_write_complete)
 973{
 974	closure_type(s, struct search, cl);
 975	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 976
 977	up_read_non_owner(&dc->writeback_lock);
 978	cached_dev_bio_complete(&cl->work);
 979}
 980
 981static void cached_dev_write(struct cached_dev *dc, struct search *s)
 982{
 983	struct closure *cl = &s->cl;
 984	struct bio *bio = &s->bio.bio;
 985	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 986	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 987
 988	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 989
 990	down_read_non_owner(&dc->writeback_lock);
 991	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 992		/*
 993		 * We overlap with some dirty data undergoing background
 994		 * writeback, force this write to writeback
 995		 */
 996		s->iop.bypass = false;
 997		s->iop.writeback = true;
 998	}
 999
1000	/*
1001	 * Discards aren't _required_ to do anything, so skipping if
1002	 * check_overlapping returned true is ok
1003	 *
1004	 * But check_overlapping drops dirty keys for which io hasn't started,
1005	 * so we still want to call it.
1006	 */
1007	if (bio_op(bio) == REQ_OP_DISCARD)
1008		s->iop.bypass = true;
1009
1010	if (should_writeback(dc, s->orig_bio,
1011			     cache_mode(dc),
1012			     s->iop.bypass)) {
1013		s->iop.bypass = false;
1014		s->iop.writeback = true;
1015	}
1016
1017	if (s->iop.bypass) {
1018		s->iop.bio = s->orig_bio;
1019		bio_get(s->iop.bio);
1020
1021		if (bio_op(bio) == REQ_OP_DISCARD &&
1022		    !bdev_max_discard_sectors(dc->bdev))
1023			goto insert_data;
1024
1025		/* I/O request sent to backing device */
1026		bio->bi_end_io = backing_request_endio;
1027		closure_bio_submit(s->iop.c, bio, cl);
1028
1029	} else if (s->iop.writeback) {
1030		bch_writeback_add(dc);
1031		s->iop.bio = bio;
1032
1033		if (bio->bi_opf & REQ_PREFLUSH) {
1034			/*
1035			 * Also need to send a flush to the backing
1036			 * device.
1037			 */
1038			struct bio *flush;
1039
1040			flush = bio_alloc_bioset(bio->bi_bdev, 0,
1041						 REQ_OP_WRITE | REQ_PREFLUSH,
1042						 GFP_NOIO, &dc->disk.bio_split);
1043			if (!flush) {
1044				s->iop.status = BLK_STS_RESOURCE;
1045				goto insert_data;
1046			}
1047			flush->bi_end_io = backing_request_endio;
1048			flush->bi_private = cl;
1049			/* I/O request sent to backing device */
1050			closure_bio_submit(s->iop.c, flush, cl);
1051		}
1052	} else {
1053		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1054					     &dc->disk.bio_split);
1055		/* I/O request sent to backing device */
1056		bio->bi_end_io = backing_request_endio;
1057		closure_bio_submit(s->iop.c, bio, cl);
1058	}
1059
1060insert_data:
1061	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1062	continue_at(cl, cached_dev_write_complete, NULL);
1063}
1064
1065static CLOSURE_CALLBACK(cached_dev_nodata)
1066{
1067	closure_type(s, struct search, cl);
1068	struct bio *bio = &s->bio.bio;
1069
1070	if (s->iop.flush_journal)
1071		bch_journal_meta(s->iop.c, cl);
1072
1073	/* If it's a flush, we send the flush to the backing device too */
1074	bio->bi_end_io = backing_request_endio;
1075	closure_bio_submit(s->iop.c, bio, cl);
1076
1077	continue_at(cl, cached_dev_bio_complete, NULL);
1078}
1079
1080struct detached_dev_io_private {
1081	struct bcache_device	*d;
1082	unsigned long		start_time;
1083	bio_end_io_t		*bi_end_io;
1084	void			*bi_private;
1085	struct block_device	*orig_bdev;
1086};
1087
1088static void detached_dev_end_io(struct bio *bio)
1089{
1090	struct detached_dev_io_private *ddip;
1091
1092	ddip = bio->bi_private;
1093	bio->bi_end_io = ddip->bi_end_io;
1094	bio->bi_private = ddip->bi_private;
1095
1096	/* Count on the bcache device */
1097	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1098
1099	if (bio->bi_status) {
1100		struct cached_dev *dc = container_of(ddip->d,
1101						     struct cached_dev, disk);
1102		/* should count I/O error for backing device here */
1103		bch_count_backing_io_errors(dc, bio);
1104	}
1105
1106	kfree(ddip);
1107	bio->bi_end_io(bio);
1108}
1109
1110static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1111		struct block_device *orig_bdev, unsigned long start_time)
1112{
1113	struct detached_dev_io_private *ddip;
1114	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1115
1116	/*
1117	 * no need to call closure_get(&dc->disk.cl),
1118	 * because upper layer had already opened bcache device,
1119	 * which would call closure_get(&dc->disk.cl)
1120	 */
1121	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1122	if (!ddip) {
1123		bio->bi_status = BLK_STS_RESOURCE;
1124		bio->bi_end_io(bio);
1125		return;
1126	}
1127
1128	ddip->d = d;
1129	/* Count on the bcache device */
1130	ddip->orig_bdev = orig_bdev;
1131	ddip->start_time = start_time;
1132	ddip->bi_end_io = bio->bi_end_io;
1133	ddip->bi_private = bio->bi_private;
1134	bio->bi_end_io = detached_dev_end_io;
1135	bio->bi_private = ddip;
1136
1137	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1138	    !bdev_max_discard_sectors(dc->bdev))
1139		bio->bi_end_io(bio);
1140	else
1141		submit_bio_noacct(bio);
1142}
1143
1144static void quit_max_writeback_rate(struct cache_set *c,
1145				    struct cached_dev *this_dc)
1146{
1147	int i;
1148	struct bcache_device *d;
1149	struct cached_dev *dc;
1150
1151	/*
1152	 * mutex bch_register_lock may compete with other parallel requesters,
1153	 * or attach/detach operations on other backing device. Waiting to
1154	 * the mutex lock may increase I/O request latency for seconds or more.
1155	 * To avoid such situation, if mutext_trylock() failed, only writeback
1156	 * rate of current cached device is set to 1, and __update_write_back()
1157	 * will decide writeback rate of other cached devices (remember now
1158	 * c->idle_counter is 0 already).
1159	 */
1160	if (mutex_trylock(&bch_register_lock)) {
1161		for (i = 0; i < c->devices_max_used; i++) {
1162			if (!c->devices[i])
1163				continue;
1164
1165			if (UUID_FLASH_ONLY(&c->uuids[i]))
1166				continue;
1167
1168			d = c->devices[i];
1169			dc = container_of(d, struct cached_dev, disk);
1170			/*
1171			 * set writeback rate to default minimum value,
1172			 * then let update_writeback_rate() to decide the
1173			 * upcoming rate.
1174			 */
1175			atomic_long_set(&dc->writeback_rate.rate, 1);
1176		}
1177		mutex_unlock(&bch_register_lock);
1178	} else
1179		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1180}
1181
1182/* Cached devices - read & write stuff */
1183
1184void cached_dev_submit_bio(struct bio *bio)
1185{
1186	struct search *s;
1187	struct block_device *orig_bdev = bio->bi_bdev;
1188	struct bcache_device *d = orig_bdev->bd_disk->private_data;
1189	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1190	unsigned long start_time;
1191	int rw = bio_data_dir(bio);
1192
1193	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1194		     dc->io_disable)) {
1195		bio->bi_status = BLK_STS_IOERR;
1196		bio_endio(bio);
1197		return;
1198	}
1199
1200	if (likely(d->c)) {
1201		if (atomic_read(&d->c->idle_counter))
1202			atomic_set(&d->c->idle_counter, 0);
1203		/*
1204		 * If at_max_writeback_rate of cache set is true and new I/O
1205		 * comes, quit max writeback rate of all cached devices
1206		 * attached to this cache set, and set at_max_writeback_rate
1207		 * to false.
1208		 */
1209		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1210			atomic_set(&d->c->at_max_writeback_rate, 0);
1211			quit_max_writeback_rate(d->c, dc);
1212		}
1213	}
1214
1215	start_time = bio_start_io_acct(bio);
1216
1217	bio_set_dev(bio, dc->bdev);
1218	bio->bi_iter.bi_sector += dc->sb.data_offset;
1219
1220	if (cached_dev_get(dc)) {
1221		s = search_alloc(bio, d, orig_bdev, start_time);
1222		trace_bcache_request_start(s->d, bio);
1223
1224		if (!bio->bi_iter.bi_size) {
1225			/*
1226			 * can't call bch_journal_meta from under
1227			 * submit_bio_noacct
1228			 */
1229			continue_at_nobarrier(&s->cl,
1230					      cached_dev_nodata,
1231					      bcache_wq);
1232		} else {
1233			s->iop.bypass = check_should_bypass(dc, bio);
1234
1235			if (rw)
1236				cached_dev_write(dc, s);
1237			else
1238				cached_dev_read(dc, s);
1239		}
1240	} else
1241		/* I/O request sent to backing device */
1242		detached_dev_do_request(d, bio, orig_bdev, start_time);
1243}
1244
1245static int cached_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1246			    unsigned int cmd, unsigned long arg)
1247{
1248	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1249
1250	if (dc->io_disable)
1251		return -EIO;
1252	if (!dc->bdev->bd_disk->fops->ioctl)
1253		return -ENOTTY;
1254	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1255}
1256
1257void bch_cached_dev_request_init(struct cached_dev *dc)
1258{
1259	dc->disk.cache_miss			= cached_dev_cache_miss;
1260	dc->disk.ioctl				= cached_dev_ioctl;
1261}
1262
1263/* Flash backed devices */
1264
1265static int flash_dev_cache_miss(struct btree *b, struct search *s,
1266				struct bio *bio, unsigned int sectors)
1267{
1268	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1269
1270	swap(bio->bi_iter.bi_size, bytes);
1271	zero_fill_bio(bio);
1272	swap(bio->bi_iter.bi_size, bytes);
1273
1274	bio_advance(bio, bytes);
1275
1276	if (!bio->bi_iter.bi_size)
1277		return MAP_DONE;
1278
1279	return MAP_CONTINUE;
1280}
1281
1282static CLOSURE_CALLBACK(flash_dev_nodata)
1283{
1284	closure_type(s, struct search, cl);
1285
1286	if (s->iop.flush_journal)
1287		bch_journal_meta(s->iop.c, cl);
1288
1289	continue_at(cl, search_free, NULL);
1290}
1291
1292void flash_dev_submit_bio(struct bio *bio)
1293{
1294	struct search *s;
1295	struct closure *cl;
1296	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1297
1298	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1299		bio->bi_status = BLK_STS_IOERR;
1300		bio_endio(bio);
1301		return;
1302	}
1303
1304	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1305	cl = &s->cl;
1306	bio = &s->bio.bio;
1307
1308	trace_bcache_request_start(s->d, bio);
1309
1310	if (!bio->bi_iter.bi_size) {
1311		/*
1312		 * can't call bch_journal_meta from under submit_bio_noacct
1313		 */
1314		continue_at_nobarrier(&s->cl,
1315				      flash_dev_nodata,
1316				      bcache_wq);
1317		return;
1318	} else if (bio_data_dir(bio)) {
1319		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1320					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1321					&KEY(d->id, bio_end_sector(bio), 0));
1322
1323		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1324		s->iop.writeback	= true;
1325		s->iop.bio		= bio;
1326
1327		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1328	} else {
1329		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1330	}
1331
1332	continue_at(cl, search_free, NULL);
1333}
1334
1335static int flash_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1336			   unsigned int cmd, unsigned long arg)
1337{
1338	return -ENOTTY;
1339}
1340
1341void bch_flash_dev_request_init(struct bcache_device *d)
1342{
1343	d->cache_miss				= flash_dev_cache_miss;
1344	d->ioctl				= flash_dev_ioctl;
1345}
1346
1347void bch_request_exit(void)
1348{
1349	kmem_cache_destroy(bch_search_cache);
1350}
1351
1352int __init bch_request_init(void)
1353{
1354	bch_search_cache = KMEM_CACHE(search, 0);
1355	if (!bch_search_cache)
1356		return -ENOMEM;
1357
1358	return 0;
1359}