Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/sysctl.h>
  25#include <linux/sched/topology.h>
  26#include <linux/sched/signal.h>
  27#include <linux/delay.h>
  28#include <linux/crash_dump.h>
  29#include <linux/prefetch.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/part_stat.h>
 
  32
  33#include <trace/events/block.h>
  34
  35#include <linux/blk-mq.h>
  36#include <linux/t10-pi.h>
  37#include "blk.h"
  38#include "blk-mq.h"
  39#include "blk-mq-debugfs.h"
  40#include "blk-mq-tag.h"
  41#include "blk-pm.h"
  42#include "blk-stat.h"
  43#include "blk-mq-sched.h"
  44#include "blk-rq-qos.h"
  45#include "blk-ioprio.h"
  46
  47static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
 
 
  48
  49static void blk_mq_poll_stats_start(struct request_queue *q);
  50static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  51
  52static int blk_mq_poll_stats_bkt(const struct request *rq)
  53{
  54	int ddir, sectors, bucket;
  55
  56	ddir = rq_data_dir(rq);
  57	sectors = blk_rq_stats_sectors(rq);
  58
  59	bucket = ddir + 2 * ilog2(sectors);
  60
  61	if (bucket < 0)
  62		return -1;
  63	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  64		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  65
  66	return bucket;
  67}
  68
  69#define BLK_QC_T_SHIFT		16
  70#define BLK_QC_T_INTERNAL	(1U << 31)
  71
  72static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
  73		blk_qc_t qc)
  74{
  75	return xa_load(&q->hctx_table,
  76			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
  77}
  78
  79static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
  80		blk_qc_t qc)
  81{
  82	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
  83
  84	if (qc & BLK_QC_T_INTERNAL)
  85		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
  86	return blk_mq_tag_to_rq(hctx->tags, tag);
  87}
  88
  89static inline blk_qc_t blk_rq_to_qc(struct request *rq)
  90{
  91	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
  92		(rq->tag != -1 ?
  93		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
  94}
  95
  96/*
  97 * Check if any of the ctx, dispatch list or elevator
  98 * have pending work in this hardware queue.
  99 */
 100static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
 101{
 102	return !list_empty_careful(&hctx->dispatch) ||
 103		sbitmap_any_bit_set(&hctx->ctx_map) ||
 104			blk_mq_sched_has_work(hctx);
 105}
 106
 107/*
 108 * Mark this ctx as having pending work in this hardware queue
 109 */
 110static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
 111				     struct blk_mq_ctx *ctx)
 112{
 113	const int bit = ctx->index_hw[hctx->type];
 114
 115	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
 116		sbitmap_set_bit(&hctx->ctx_map, bit);
 117}
 118
 119static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
 120				      struct blk_mq_ctx *ctx)
 121{
 122	const int bit = ctx->index_hw[hctx->type];
 123
 124	sbitmap_clear_bit(&hctx->ctx_map, bit);
 125}
 126
 127struct mq_inflight {
 128	struct block_device *part;
 129	unsigned int inflight[2];
 130};
 131
 132static bool blk_mq_check_inflight(struct request *rq, void *priv)
 133{
 134	struct mq_inflight *mi = priv;
 135
 136	if (rq->part && blk_do_io_stat(rq) &&
 137	    (!mi->part->bd_partno || rq->part == mi->part) &&
 138	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
 139		mi->inflight[rq_data_dir(rq)]++;
 140
 141	return true;
 142}
 143
 144unsigned int blk_mq_in_flight(struct request_queue *q,
 145		struct block_device *part)
 146{
 147	struct mq_inflight mi = { .part = part };
 148
 149	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 150
 151	return mi.inflight[0] + mi.inflight[1];
 152}
 153
 154void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 155		unsigned int inflight[2])
 156{
 157	struct mq_inflight mi = { .part = part };
 158
 159	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 160	inflight[0] = mi.inflight[0];
 161	inflight[1] = mi.inflight[1];
 162}
 163
 164void blk_freeze_queue_start(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166	mutex_lock(&q->mq_freeze_lock);
 
 167	if (++q->mq_freeze_depth == 1) {
 168		percpu_ref_kill(&q->q_usage_counter);
 169		mutex_unlock(&q->mq_freeze_lock);
 170		if (queue_is_mq(q))
 171			blk_mq_run_hw_queues(q, false);
 172	} else {
 173		mutex_unlock(&q->mq_freeze_lock);
 174	}
 
 
 
 
 
 
 
 
 175}
 176EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 177
 178void blk_mq_freeze_queue_wait(struct request_queue *q)
 179{
 180	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 181}
 182EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 183
 184int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 185				     unsigned long timeout)
 186{
 187	return wait_event_timeout(q->mq_freeze_wq,
 188					percpu_ref_is_zero(&q->q_usage_counter),
 189					timeout);
 190}
 191EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 192
 193/*
 194 * Guarantee no request is in use, so we can change any data structure of
 195 * the queue afterward.
 196 */
 197void blk_freeze_queue(struct request_queue *q)
 198{
 199	/*
 200	 * In the !blk_mq case we are only calling this to kill the
 201	 * q_usage_counter, otherwise this increases the freeze depth
 202	 * and waits for it to return to zero.  For this reason there is
 203	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 204	 * exported to drivers as the only user for unfreeze is blk_mq.
 205	 */
 206	blk_freeze_queue_start(q);
 207	blk_mq_freeze_queue_wait(q);
 208}
 209
 210void blk_mq_freeze_queue(struct request_queue *q)
 211{
 212	/*
 213	 * ...just an alias to keep freeze and unfreeze actions balanced
 214	 * in the blk_mq_* namespace
 215	 */
 216	blk_freeze_queue(q);
 217}
 218EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 219
 220void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 221{
 
 
 222	mutex_lock(&q->mq_freeze_lock);
 223	if (force_atomic)
 224		q->q_usage_counter.data->force_atomic = true;
 225	q->mq_freeze_depth--;
 226	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 227	if (!q->mq_freeze_depth) {
 228		percpu_ref_resurrect(&q->q_usage_counter);
 229		wake_up_all(&q->mq_freeze_wq);
 230	}
 
 231	mutex_unlock(&q->mq_freeze_lock);
 
 
 232}
 233
 234void blk_mq_unfreeze_queue(struct request_queue *q)
 235{
 236	__blk_mq_unfreeze_queue(q, false);
 
 237}
 238EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 239
 240/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 242 * mpt3sas driver such that this function can be removed.
 243 */
 244void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 245{
 246	unsigned long flags;
 247
 248	spin_lock_irqsave(&q->queue_lock, flags);
 249	if (!q->quiesce_depth++)
 250		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 251	spin_unlock_irqrestore(&q->queue_lock, flags);
 252}
 253EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 254
 255/**
 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 257 * @set: tag_set to wait on
 258 *
 259 * Note: it is driver's responsibility for making sure that quiesce has
 260 * been started on or more of the request_queues of the tag_set.  This
 261 * function only waits for the quiesce on those request_queues that had
 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 263 */
 264void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 265{
 266	if (set->flags & BLK_MQ_F_BLOCKING)
 267		synchronize_srcu(set->srcu);
 268	else
 269		synchronize_rcu();
 270}
 271EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 272
 273/**
 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 275 * @q: request queue.
 276 *
 277 * Note: this function does not prevent that the struct request end_io()
 278 * callback function is invoked. Once this function is returned, we make
 279 * sure no dispatch can happen until the queue is unquiesced via
 280 * blk_mq_unquiesce_queue().
 281 */
 282void blk_mq_quiesce_queue(struct request_queue *q)
 283{
 284	blk_mq_quiesce_queue_nowait(q);
 285	/* nothing to wait for non-mq queues */
 286	if (queue_is_mq(q))
 287		blk_mq_wait_quiesce_done(q->tag_set);
 288}
 289EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 290
 291/*
 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 293 * @q: request queue.
 294 *
 295 * This function recovers queue into the state before quiescing
 296 * which is done by blk_mq_quiesce_queue.
 297 */
 298void blk_mq_unquiesce_queue(struct request_queue *q)
 299{
 300	unsigned long flags;
 301	bool run_queue = false;
 302
 303	spin_lock_irqsave(&q->queue_lock, flags);
 304	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 305		;
 306	} else if (!--q->quiesce_depth) {
 307		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 308		run_queue = true;
 309	}
 310	spin_unlock_irqrestore(&q->queue_lock, flags);
 311
 312	/* dispatch requests which are inserted during quiescing */
 313	if (run_queue)
 314		blk_mq_run_hw_queues(q, true);
 315}
 316EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 317
 318void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 319{
 320	struct request_queue *q;
 321
 322	mutex_lock(&set->tag_list_lock);
 323	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 324		if (!blk_queue_skip_tagset_quiesce(q))
 325			blk_mq_quiesce_queue_nowait(q);
 326	}
 327	blk_mq_wait_quiesce_done(set);
 328	mutex_unlock(&set->tag_list_lock);
 
 
 329}
 330EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 331
 332void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 333{
 334	struct request_queue *q;
 335
 336	mutex_lock(&set->tag_list_lock);
 337	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 338		if (!blk_queue_skip_tagset_quiesce(q))
 339			blk_mq_unquiesce_queue(q);
 340	}
 341	mutex_unlock(&set->tag_list_lock);
 342}
 343EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 344
 345void blk_mq_wake_waiters(struct request_queue *q)
 346{
 347	struct blk_mq_hw_ctx *hctx;
 348	unsigned long i;
 349
 350	queue_for_each_hw_ctx(q, hctx, i)
 351		if (blk_mq_hw_queue_mapped(hctx))
 352			blk_mq_tag_wakeup_all(hctx->tags, true);
 353}
 354
 355void blk_rq_init(struct request_queue *q, struct request *rq)
 356{
 357	memset(rq, 0, sizeof(*rq));
 358
 359	INIT_LIST_HEAD(&rq->queuelist);
 360	rq->q = q;
 361	rq->__sector = (sector_t) -1;
 362	INIT_HLIST_NODE(&rq->hash);
 363	RB_CLEAR_NODE(&rq->rb_node);
 364	rq->tag = BLK_MQ_NO_TAG;
 365	rq->internal_tag = BLK_MQ_NO_TAG;
 366	rq->start_time_ns = ktime_get_ns();
 367	rq->part = NULL;
 368	blk_crypto_rq_set_defaults(rq);
 369}
 370EXPORT_SYMBOL(blk_rq_init);
 371
 
 
 
 
 
 
 
 
 
 
 
 372static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 373		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
 374{
 375	struct blk_mq_ctx *ctx = data->ctx;
 376	struct blk_mq_hw_ctx *hctx = data->hctx;
 377	struct request_queue *q = data->q;
 378	struct request *rq = tags->static_rqs[tag];
 379
 380	rq->q = q;
 381	rq->mq_ctx = ctx;
 382	rq->mq_hctx = hctx;
 383	rq->cmd_flags = data->cmd_flags;
 384
 385	if (data->flags & BLK_MQ_REQ_PM)
 386		data->rq_flags |= RQF_PM;
 387	if (blk_queue_io_stat(q))
 388		data->rq_flags |= RQF_IO_STAT;
 389	rq->rq_flags = data->rq_flags;
 390
 391	if (!(data->rq_flags & RQF_ELV)) {
 392		rq->tag = tag;
 393		rq->internal_tag = BLK_MQ_NO_TAG;
 394	} else {
 395		rq->tag = BLK_MQ_NO_TAG;
 396		rq->internal_tag = tag;
 
 
 
 397	}
 398	rq->timeout = 0;
 399
 400	if (blk_mq_need_time_stamp(rq))
 401		rq->start_time_ns = ktime_get_ns();
 402	else
 403		rq->start_time_ns = 0;
 404	rq->part = NULL;
 405#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 406	rq->alloc_time_ns = alloc_time_ns;
 407#endif
 408	rq->io_start_time_ns = 0;
 409	rq->stats_sectors = 0;
 410	rq->nr_phys_segments = 0;
 411#if defined(CONFIG_BLK_DEV_INTEGRITY)
 412	rq->nr_integrity_segments = 0;
 413#endif
 414	rq->end_io = NULL;
 415	rq->end_io_data = NULL;
 416
 417	blk_crypto_rq_set_defaults(rq);
 418	INIT_LIST_HEAD(&rq->queuelist);
 419	/* tag was already set */
 420	WRITE_ONCE(rq->deadline, 0);
 421	req_ref_set(rq, 1);
 422
 423	if (rq->rq_flags & RQF_ELV) {
 424		struct elevator_queue *e = data->q->elevator;
 425
 426		INIT_HLIST_NODE(&rq->hash);
 427		RB_CLEAR_NODE(&rq->rb_node);
 428
 429		if (!op_is_flush(data->cmd_flags) &&
 430		    e->type->ops.prepare_request) {
 431			e->type->ops.prepare_request(rq);
 432			rq->rq_flags |= RQF_ELVPRIV;
 433		}
 434	}
 435
 436	return rq;
 437}
 438
 439static inline struct request *
 440__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
 441		u64 alloc_time_ns)
 442{
 443	unsigned int tag, tag_offset;
 444	struct blk_mq_tags *tags;
 445	struct request *rq;
 446	unsigned long tag_mask;
 447	int i, nr = 0;
 448
 449	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 450	if (unlikely(!tag_mask))
 451		return NULL;
 452
 453	tags = blk_mq_tags_from_data(data);
 454	for (i = 0; tag_mask; i++) {
 455		if (!(tag_mask & (1UL << i)))
 456			continue;
 457		tag = tag_offset + i;
 458		prefetch(tags->static_rqs[tag]);
 459		tag_mask &= ~(1UL << i);
 460		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
 461		rq_list_add(data->cached_rq, rq);
 462		nr++;
 463	}
 
 
 464	/* caller already holds a reference, add for remainder */
 465	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 466	data->nr_tags -= nr;
 467
 468	return rq_list_pop(data->cached_rq);
 469}
 470
 471static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 472{
 473	struct request_queue *q = data->q;
 474	u64 alloc_time_ns = 0;
 475	struct request *rq;
 476	unsigned int tag;
 477
 478	/* alloc_time includes depth and tag waits */
 479	if (blk_queue_rq_alloc_time(q))
 480		alloc_time_ns = ktime_get_ns();
 481
 482	if (data->cmd_flags & REQ_NOWAIT)
 483		data->flags |= BLK_MQ_REQ_NOWAIT;
 484
 485	if (q->elevator) {
 486		struct elevator_queue *e = q->elevator;
 
 487
 488		data->rq_flags |= RQF_ELV;
 
 
 
 
 
 489
 490		/*
 491		 * Flush/passthrough requests are special and go directly to the
 492		 * dispatch list. Don't include reserved tags in the
 493		 * limiting, as it isn't useful.
 494		 */
 495		if (!op_is_flush(data->cmd_flags) &&
 496		    !blk_op_is_passthrough(data->cmd_flags) &&
 497		    e->type->ops.limit_depth &&
 498		    !(data->flags & BLK_MQ_REQ_RESERVED))
 499			e->type->ops.limit_depth(data->cmd_flags, data);
 500	}
 501
 502retry:
 503	data->ctx = blk_mq_get_ctx(q);
 504	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 505	if (!(data->rq_flags & RQF_ELV))
 506		blk_mq_tag_busy(data->hctx);
 
 507
 508	if (data->flags & BLK_MQ_REQ_RESERVED)
 509		data->rq_flags |= RQF_RESV;
 510
 511	/*
 512	 * Try batched alloc if we want more than 1 tag.
 513	 */
 514	if (data->nr_tags > 1) {
 515		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
 516		if (rq)
 
 517			return rq;
 
 518		data->nr_tags = 1;
 519	}
 520
 521	/*
 522	 * Waiting allocations only fail because of an inactive hctx.  In that
 523	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 524	 * should have migrated us to an online CPU by now.
 525	 */
 526	tag = blk_mq_get_tag(data);
 527	if (tag == BLK_MQ_NO_TAG) {
 528		if (data->flags & BLK_MQ_REQ_NOWAIT)
 529			return NULL;
 530		/*
 531		 * Give up the CPU and sleep for a random short time to
 532		 * ensure that thread using a realtime scheduling class
 533		 * are migrated off the CPU, and thus off the hctx that
 534		 * is going away.
 535		 */
 536		msleep(3);
 537		goto retry;
 538	}
 539
 540	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
 541					alloc_time_ns);
 
 
 
 542}
 543
 544static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 545					    struct blk_plug *plug,
 546					    blk_opf_t opf,
 547					    blk_mq_req_flags_t flags)
 548{
 549	struct blk_mq_alloc_data data = {
 550		.q		= q,
 551		.flags		= flags,
 552		.cmd_flags	= opf,
 553		.nr_tags	= plug->nr_ios,
 554		.cached_rq	= &plug->cached_rq,
 555	};
 556	struct request *rq;
 557
 558	if (blk_queue_enter(q, flags))
 559		return NULL;
 560
 561	plug->nr_ios = 1;
 562
 563	rq = __blk_mq_alloc_requests(&data);
 564	if (unlikely(!rq))
 565		blk_queue_exit(q);
 566	return rq;
 567}
 568
 569static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 570						   blk_opf_t opf,
 571						   blk_mq_req_flags_t flags)
 572{
 573	struct blk_plug *plug = current->plug;
 574	struct request *rq;
 575
 576	if (!plug)
 577		return NULL;
 578
 579	if (rq_list_empty(plug->cached_rq)) {
 580		if (plug->nr_ios == 1)
 581			return NULL;
 582		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 583		if (!rq)
 584			return NULL;
 585	} else {
 586		rq = rq_list_peek(&plug->cached_rq);
 587		if (!rq || rq->q != q)
 588			return NULL;
 589
 590		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 591			return NULL;
 592		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 593			return NULL;
 594
 595		plug->cached_rq = rq_list_next(rq);
 
 596	}
 597
 598	rq->cmd_flags = opf;
 599	INIT_LIST_HEAD(&rq->queuelist);
 600	return rq;
 601}
 602
 603struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 604		blk_mq_req_flags_t flags)
 605{
 606	struct request *rq;
 607
 608	rq = blk_mq_alloc_cached_request(q, opf, flags);
 609	if (!rq) {
 610		struct blk_mq_alloc_data data = {
 611			.q		= q,
 612			.flags		= flags,
 613			.cmd_flags	= opf,
 614			.nr_tags	= 1,
 615		};
 616		int ret;
 617
 618		ret = blk_queue_enter(q, flags);
 619		if (ret)
 620			return ERR_PTR(ret);
 621
 622		rq = __blk_mq_alloc_requests(&data);
 623		if (!rq)
 624			goto out_queue_exit;
 625	}
 626	rq->__data_len = 0;
 627	rq->__sector = (sector_t) -1;
 628	rq->bio = rq->biotail = NULL;
 629	return rq;
 630out_queue_exit:
 631	blk_queue_exit(q);
 632	return ERR_PTR(-EWOULDBLOCK);
 633}
 634EXPORT_SYMBOL(blk_mq_alloc_request);
 635
 636struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 637	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 638{
 639	struct blk_mq_alloc_data data = {
 640		.q		= q,
 641		.flags		= flags,
 642		.cmd_flags	= opf,
 643		.nr_tags	= 1,
 644	};
 645	u64 alloc_time_ns = 0;
 646	struct request *rq;
 647	unsigned int cpu;
 648	unsigned int tag;
 649	int ret;
 650
 651	/* alloc_time includes depth and tag waits */
 652	if (blk_queue_rq_alloc_time(q))
 653		alloc_time_ns = ktime_get_ns();
 654
 655	/*
 656	 * If the tag allocator sleeps we could get an allocation for a
 657	 * different hardware context.  No need to complicate the low level
 658	 * allocator for this for the rare use case of a command tied to
 659	 * a specific queue.
 660	 */
 661	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 
 662		return ERR_PTR(-EINVAL);
 663
 664	if (hctx_idx >= q->nr_hw_queues)
 665		return ERR_PTR(-EIO);
 666
 667	ret = blk_queue_enter(q, flags);
 668	if (ret)
 669		return ERR_PTR(ret);
 670
 671	/*
 672	 * Check if the hardware context is actually mapped to anything.
 673	 * If not tell the caller that it should skip this queue.
 674	 */
 675	ret = -EXDEV;
 676	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 677	if (!blk_mq_hw_queue_mapped(data.hctx))
 678		goto out_queue_exit;
 679	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 680	if (cpu >= nr_cpu_ids)
 681		goto out_queue_exit;
 682	data.ctx = __blk_mq_get_ctx(q, cpu);
 683
 684	if (!q->elevator)
 685		blk_mq_tag_busy(data.hctx);
 686	else
 687		data.rq_flags |= RQF_ELV;
 688
 689	if (flags & BLK_MQ_REQ_RESERVED)
 690		data.rq_flags |= RQF_RESV;
 691
 692	ret = -EWOULDBLOCK;
 693	tag = blk_mq_get_tag(&data);
 694	if (tag == BLK_MQ_NO_TAG)
 695		goto out_queue_exit;
 696	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
 697					alloc_time_ns);
 
 
 698	rq->__data_len = 0;
 699	rq->__sector = (sector_t) -1;
 700	rq->bio = rq->biotail = NULL;
 701	return rq;
 702
 703out_queue_exit:
 704	blk_queue_exit(q);
 705	return ERR_PTR(ret);
 706}
 707EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709static void __blk_mq_free_request(struct request *rq)
 710{
 711	struct request_queue *q = rq->q;
 712	struct blk_mq_ctx *ctx = rq->mq_ctx;
 713	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 714	const int sched_tag = rq->internal_tag;
 715
 716	blk_crypto_free_request(rq);
 717	blk_pm_mark_last_busy(rq);
 718	rq->mq_hctx = NULL;
 719	if (rq->tag != BLK_MQ_NO_TAG)
 
 
 720		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 
 721	if (sched_tag != BLK_MQ_NO_TAG)
 722		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 723	blk_mq_sched_restart(hctx);
 724	blk_queue_exit(q);
 725}
 726
 727void blk_mq_free_request(struct request *rq)
 728{
 729	struct request_queue *q = rq->q;
 730	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 731
 732	if ((rq->rq_flags & RQF_ELVPRIV) &&
 733	    q->elevator->type->ops.finish_request)
 734		q->elevator->type->ops.finish_request(rq);
 735
 736	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 737		__blk_mq_dec_active_requests(hctx);
 738
 739	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 740		laptop_io_completion(q->disk->bdi);
 741
 742	rq_qos_done(q, rq);
 743
 744	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 745	if (req_ref_put_and_test(rq))
 746		__blk_mq_free_request(rq);
 747}
 748EXPORT_SYMBOL_GPL(blk_mq_free_request);
 749
 750void blk_mq_free_plug_rqs(struct blk_plug *plug)
 751{
 752	struct request *rq;
 753
 754	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 755		blk_mq_free_request(rq);
 756}
 757
 758void blk_dump_rq_flags(struct request *rq, char *msg)
 759{
 760	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 761		rq->q->disk ? rq->q->disk->disk_name : "?",
 762		(__force unsigned long long) rq->cmd_flags);
 763
 764	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 765	       (unsigned long long)blk_rq_pos(rq),
 766	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 767	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 768	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 769}
 770EXPORT_SYMBOL(blk_dump_rq_flags);
 771
 772static void req_bio_endio(struct request *rq, struct bio *bio,
 773			  unsigned int nbytes, blk_status_t error)
 774{
 775	if (unlikely(error)) {
 776		bio->bi_status = error;
 777	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 778		/*
 779		 * Partial zone append completions cannot be supported as the
 780		 * BIO fragments may end up not being written sequentially.
 781		 */
 782		if (bio->bi_iter.bi_size != nbytes)
 783			bio->bi_status = BLK_STS_IOERR;
 784		else
 785			bio->bi_iter.bi_sector = rq->__sector;
 786	}
 787
 788	bio_advance(bio, nbytes);
 789
 790	if (unlikely(rq->rq_flags & RQF_QUIET))
 791		bio_set_flag(bio, BIO_QUIET);
 792	/* don't actually finish bio if it's part of flush sequence */
 793	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 794		bio_endio(bio);
 795}
 796
 797static void blk_account_io_completion(struct request *req, unsigned int bytes)
 798{
 799	if (req->part && blk_do_io_stat(req)) {
 800		const int sgrp = op_stat_group(req_op(req));
 801
 802		part_stat_lock();
 803		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 804		part_stat_unlock();
 805	}
 806}
 807
 808static void blk_print_req_error(struct request *req, blk_status_t status)
 809{
 810	printk_ratelimited(KERN_ERR
 811		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 812		"phys_seg %u prio class %u\n",
 813		blk_status_to_str(status),
 814		req->q->disk ? req->q->disk->disk_name : "?",
 815		blk_rq_pos(req), (__force u32)req_op(req),
 816		blk_op_str(req_op(req)),
 817		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 818		req->nr_phys_segments,
 819		IOPRIO_PRIO_CLASS(req->ioprio));
 820}
 821
 822/*
 823 * Fully end IO on a request. Does not support partial completions, or
 824 * errors.
 825 */
 826static void blk_complete_request(struct request *req)
 827{
 828	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 829	int total_bytes = blk_rq_bytes(req);
 830	struct bio *bio = req->bio;
 831
 832	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 833
 834	if (!bio)
 835		return;
 836
 837#ifdef CONFIG_BLK_DEV_INTEGRITY
 838	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 839		req->q->integrity.profile->complete_fn(req, total_bytes);
 840#endif
 
 
 
 
 
 841
 842	blk_account_io_completion(req, total_bytes);
 843
 844	do {
 845		struct bio *next = bio->bi_next;
 846
 847		/* Completion has already been traced */
 848		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 849
 850		if (req_op(req) == REQ_OP_ZONE_APPEND)
 851			bio->bi_iter.bi_sector = req->__sector;
 852
 853		if (!is_flush)
 854			bio_endio(bio);
 855		bio = next;
 856	} while (bio);
 857
 858	/*
 859	 * Reset counters so that the request stacking driver
 860	 * can find how many bytes remain in the request
 861	 * later.
 862	 */
 863	if (!req->end_io) {
 864		req->bio = NULL;
 865		req->__data_len = 0;
 866	}
 867}
 868
 869/**
 870 * blk_update_request - Complete multiple bytes without completing the request
 871 * @req:      the request being processed
 872 * @error:    block status code
 873 * @nr_bytes: number of bytes to complete for @req
 874 *
 875 * Description:
 876 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 877 *     the request structure even if @req doesn't have leftover.
 878 *     If @req has leftover, sets it up for the next range of segments.
 879 *
 880 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 881 *     %false return from this function.
 882 *
 883 * Note:
 884 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 885 *      except in the consistency check at the end of this function.
 886 *
 887 * Return:
 888 *     %false - this request doesn't have any more data
 889 *     %true  - this request has more data
 890 **/
 891bool blk_update_request(struct request *req, blk_status_t error,
 892		unsigned int nr_bytes)
 893{
 
 
 894	int total_bytes;
 895
 896	trace_block_rq_complete(req, error, nr_bytes);
 897
 898	if (!req->bio)
 899		return false;
 900
 901#ifdef CONFIG_BLK_DEV_INTEGRITY
 902	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 903	    error == BLK_STS_OK)
 904		req->q->integrity.profile->complete_fn(req, nr_bytes);
 905#endif
 906
 907	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 908		     !(req->rq_flags & RQF_QUIET)) &&
 909		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 
 
 
 
 
 
 910		blk_print_req_error(req, error);
 911		trace_block_rq_error(req, error, nr_bytes);
 912	}
 913
 914	blk_account_io_completion(req, nr_bytes);
 915
 916	total_bytes = 0;
 917	while (req->bio) {
 918		struct bio *bio = req->bio;
 919		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 920
 921		if (bio_bytes == bio->bi_iter.bi_size)
 
 
 
 922			req->bio = bio->bi_next;
 
 
 
 
 
 
 
 
 923
 924		/* Completion has already been traced */
 925		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 926		req_bio_endio(req, bio, bio_bytes, error);
 
 
 
 
 
 
 
 
 
 
 927
 928		total_bytes += bio_bytes;
 929		nr_bytes -= bio_bytes;
 930
 931		if (!nr_bytes)
 932			break;
 933	}
 934
 935	/*
 936	 * completely done
 937	 */
 938	if (!req->bio) {
 939		/*
 940		 * Reset counters so that the request stacking driver
 941		 * can find how many bytes remain in the request
 942		 * later.
 943		 */
 944		req->__data_len = 0;
 945		return false;
 946	}
 947
 948	req->__data_len -= total_bytes;
 949
 950	/* update sector only for requests with clear definition of sector */
 951	if (!blk_rq_is_passthrough(req))
 952		req->__sector += total_bytes >> 9;
 953
 954	/* mixed attributes always follow the first bio */
 955	if (req->rq_flags & RQF_MIXED_MERGE) {
 956		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 957		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 958	}
 959
 960	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 961		/*
 962		 * If total number of sectors is less than the first segment
 963		 * size, something has gone terribly wrong.
 964		 */
 965		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 966			blk_dump_rq_flags(req, "request botched");
 967			req->__data_len = blk_rq_cur_bytes(req);
 968		}
 969
 970		/* recalculate the number of segments */
 971		req->nr_phys_segments = blk_recalc_rq_segments(req);
 972	}
 973
 974	return true;
 975}
 976EXPORT_SYMBOL_GPL(blk_update_request);
 977
 978static void __blk_account_io_done(struct request *req, u64 now)
 979{
 980	const int sgrp = op_stat_group(req_op(req));
 981
 982	part_stat_lock();
 983	update_io_ticks(req->part, jiffies, true);
 984	part_stat_inc(req->part, ios[sgrp]);
 985	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
 986	part_stat_unlock();
 987}
 988
 989static inline void blk_account_io_done(struct request *req, u64 now)
 990{
 
 
 991	/*
 992	 * Account IO completion.  flush_rq isn't accounted as a
 993	 * normal IO on queueing nor completion.  Accounting the
 994	 * containing request is enough.
 995	 */
 996	if (blk_do_io_stat(req) && req->part &&
 997	    !(req->rq_flags & RQF_FLUSH_SEQ))
 998		__blk_account_io_done(req, now);
 
 
 
 
 
 
 
 
 999}
1000
1001static void __blk_account_io_start(struct request *rq)
1002{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	/*
1004	 * All non-passthrough requests are created from a bio with one
1005	 * exception: when a flush command that is part of a flush sequence
1006	 * generated by the state machine in blk-flush.c is cloned onto the
1007	 * lower device by dm-multipath we can get here without a bio.
1008	 */
1009	if (rq->bio)
1010		rq->part = rq->bio->bi_bdev;
1011	else
1012		rq->part = rq->q->disk->part0;
1013
1014	part_stat_lock();
1015	update_io_ticks(rq->part, jiffies, false);
 
1016	part_stat_unlock();
1017}
1018
1019static inline void blk_account_io_start(struct request *req)
1020{
1021	if (blk_do_io_stat(req))
1022		__blk_account_io_start(req);
1023}
1024
1025static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026{
1027	if (rq->rq_flags & RQF_STATS) {
1028		blk_mq_poll_stats_start(rq->q);
1029		blk_stat_add(rq, now);
1030	}
1031
1032	blk_mq_sched_completed_request(rq, now);
1033	blk_account_io_done(rq, now);
1034}
1035
1036inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037{
1038	if (blk_mq_need_time_stamp(rq))
1039		__blk_mq_end_request_acct(rq, ktime_get_ns());
 
 
1040
1041	if (rq->end_io) {
1042		rq_qos_done(rq->q, rq);
1043		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044			blk_mq_free_request(rq);
1045	} else {
1046		blk_mq_free_request(rq);
1047	}
1048}
1049EXPORT_SYMBOL(__blk_mq_end_request);
1050
1051void blk_mq_end_request(struct request *rq, blk_status_t error)
1052{
1053	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054		BUG();
1055	__blk_mq_end_request(rq, error);
1056}
1057EXPORT_SYMBOL(blk_mq_end_request);
1058
1059#define TAG_COMP_BATCH		32
1060
1061static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062					  int *tag_array, int nr_tags)
1063{
1064	struct request_queue *q = hctx->queue;
1065
1066	/*
1067	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068	 * update hctx->nr_active in batch
1069	 */
1070	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071		__blk_mq_sub_active_requests(hctx, nr_tags);
1072
1073	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075}
1076
1077void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078{
1079	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081	struct request *rq;
1082	u64 now = 0;
1083
1084	if (iob->need_ts)
1085		now = ktime_get_ns();
1086
1087	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088		prefetch(rq->bio);
1089		prefetch(rq->rq_next);
1090
1091		blk_complete_request(rq);
1092		if (iob->need_ts)
1093			__blk_mq_end_request_acct(rq, now);
1094
 
 
1095		rq_qos_done(rq->q, rq);
1096
1097		/*
1098		 * If end_io handler returns NONE, then it still has
1099		 * ownership of the request.
1100		 */
1101		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102			continue;
1103
1104		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105		if (!req_ref_put_and_test(rq))
1106			continue;
1107
1108		blk_crypto_free_request(rq);
1109		blk_pm_mark_last_busy(rq);
1110
1111		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112			if (cur_hctx)
1113				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114			nr_tags = 0;
1115			cur_hctx = rq->mq_hctx;
1116		}
1117		tags[nr_tags++] = rq->tag;
1118	}
1119
1120	if (nr_tags)
1121		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122}
1123EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125static void blk_complete_reqs(struct llist_head *list)
1126{
1127	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128	struct request *rq, *next;
1129
1130	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131		rq->q->mq_ops->complete(rq);
1132}
1133
1134static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135{
1136	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137}
1138
1139static int blk_softirq_cpu_dead(unsigned int cpu)
1140{
1141	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142	return 0;
1143}
1144
1145static void __blk_mq_complete_request_remote(void *data)
1146{
1147	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148}
1149
1150static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151{
1152	int cpu = raw_smp_processor_id();
1153
1154	if (!IS_ENABLED(CONFIG_SMP) ||
1155	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156		return false;
1157	/*
1158	 * With force threaded interrupts enabled, raising softirq from an SMP
1159	 * function call will always result in waking the ksoftirqd thread.
1160	 * This is probably worse than completing the request on a different
1161	 * cache domain.
1162	 */
1163	if (force_irqthreads())
1164		return false;
1165
1166	/* same CPU or cache domain?  Complete locally */
1167	if (cpu == rq->mq_ctx->cpu ||
1168	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
 
1170		return false;
1171
1172	/* don't try to IPI to an offline CPU */
1173	return cpu_online(rq->mq_ctx->cpu);
1174}
1175
1176static void blk_mq_complete_send_ipi(struct request *rq)
1177{
1178	struct llist_head *list;
1179	unsigned int cpu;
1180
1181	cpu = rq->mq_ctx->cpu;
1182	list = &per_cpu(blk_cpu_done, cpu);
1183	if (llist_add(&rq->ipi_list, list)) {
1184		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185		smp_call_function_single_async(cpu, &rq->csd);
1186	}
1187}
1188
1189static void blk_mq_raise_softirq(struct request *rq)
1190{
1191	struct llist_head *list;
1192
1193	preempt_disable();
1194	list = this_cpu_ptr(&blk_cpu_done);
1195	if (llist_add(&rq->ipi_list, list))
1196		raise_softirq(BLOCK_SOFTIRQ);
1197	preempt_enable();
1198}
1199
1200bool blk_mq_complete_request_remote(struct request *rq)
1201{
1202	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204	/*
1205	 * For request which hctx has only one ctx mapping,
1206	 * or a polled request, always complete locally,
1207	 * it's pointless to redirect the completion.
1208	 */
1209	if (rq->mq_hctx->nr_ctx == 1 ||
1210		rq->cmd_flags & REQ_POLLED)
 
1211		return false;
1212
1213	if (blk_mq_complete_need_ipi(rq)) {
1214		blk_mq_complete_send_ipi(rq);
1215		return true;
1216	}
1217
1218	if (rq->q->nr_hw_queues == 1) {
1219		blk_mq_raise_softirq(rq);
1220		return true;
1221	}
1222	return false;
1223}
1224EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226/**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq:		the request being processed
1229 *
1230 * Description:
1231 *	Complete a request by scheduling the ->complete_rq operation.
1232 **/
1233void blk_mq_complete_request(struct request *rq)
1234{
1235	if (!blk_mq_complete_request_remote(rq))
1236		rq->q->mq_ops->complete(rq);
1237}
1238EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240/**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
1248void blk_mq_start_request(struct request *rq)
1249{
1250	struct request_queue *q = rq->q;
1251
1252	trace_block_rq_issue(rq);
1253
1254	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255		rq->io_start_time_ns = ktime_get_ns();
 
1256		rq->stats_sectors = blk_rq_sectors(rq);
1257		rq->rq_flags |= RQF_STATS;
1258		rq_qos_issue(q, rq);
1259	}
1260
1261	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263	blk_add_timer(rq);
1264	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 
1265
1266#ifdef CONFIG_BLK_DEV_INTEGRITY
1267	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268		q->integrity.profile->prepare_fn(rq);
1269#endif
1270	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272}
1273EXPORT_SYMBOL(blk_mq_start_request);
1274
1275/*
1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277 * queues. This is important for md arrays to benefit from merging
1278 * requests.
1279 */
1280static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281{
1282	if (plug->multiple_queues)
1283		return BLK_MAX_REQUEST_COUNT * 2;
1284	return BLK_MAX_REQUEST_COUNT;
1285}
1286
1287static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288{
1289	struct request *last = rq_list_peek(&plug->mq_list);
1290
1291	if (!plug->rq_count) {
1292		trace_block_plug(rq->q);
1293	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294		   (!blk_queue_nomerges(rq->q) &&
1295		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296		blk_mq_flush_plug_list(plug, false);
1297		last = NULL;
1298		trace_block_plug(rq->q);
1299	}
1300
1301	if (!plug->multiple_queues && last && last->q != rq->q)
1302		plug->multiple_queues = true;
1303	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
 
 
 
 
1304		plug->has_elevator = true;
1305	rq->rq_next = NULL;
1306	rq_list_add(&plug->mq_list, rq);
1307	plug->rq_count++;
1308}
1309
1310/**
1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312 * @rq:		request to insert
1313 * @at_head:    insert request at head or tail of queue
1314 *
1315 * Description:
1316 *    Insert a fully prepared request at the back of the I/O scheduler queue
1317 *    for execution.  Don't wait for completion.
1318 *
1319 * Note:
1320 *    This function will invoke @done directly if the queue is dead.
1321 */
1322void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323{
 
 
1324	WARN_ON(irqs_disabled());
1325	WARN_ON(!blk_rq_is_passthrough(rq));
1326
1327	blk_account_io_start(rq);
1328
1329	/*
1330	 * As plugging can be enabled for passthrough requests on a zoned
1331	 * device, directly accessing the plug instead of using blk_mq_plug()
1332	 * should not have any consequences.
1333	 */
1334	if (current->plug)
1335		blk_add_rq_to_plug(current->plug, rq);
1336	else
1337		blk_mq_sched_insert_request(rq, at_head, true, false);
 
 
 
1338}
1339EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341struct blk_rq_wait {
1342	struct completion done;
1343	blk_status_t ret;
1344};
1345
1346static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347{
1348	struct blk_rq_wait *wait = rq->end_io_data;
1349
1350	wait->ret = ret;
1351	complete(&wait->done);
1352	return RQ_END_IO_NONE;
1353}
1354
1355bool blk_rq_is_poll(struct request *rq)
1356{
1357	if (!rq->mq_hctx)
1358		return false;
1359	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360		return false;
1361	if (WARN_ON_ONCE(!rq->bio))
1362		return false;
1363	return true;
1364}
1365EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1366
1367static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1368{
1369	do {
1370		bio_poll(rq->bio, NULL, 0);
1371		cond_resched();
1372	} while (!completion_done(wait));
1373}
1374
1375/**
1376 * blk_execute_rq - insert a request into queue for execution
1377 * @rq:		request to insert
1378 * @at_head:    insert request at head or tail of queue
1379 *
1380 * Description:
1381 *    Insert a fully prepared request at the back of the I/O scheduler queue
1382 *    for execution and wait for completion.
1383 * Return: The blk_status_t result provided to blk_mq_end_request().
1384 */
1385blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1386{
 
1387	struct blk_rq_wait wait = {
1388		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1389	};
1390
1391	WARN_ON(irqs_disabled());
1392	WARN_ON(!blk_rq_is_passthrough(rq));
1393
1394	rq->end_io_data = &wait;
1395	rq->end_io = blk_end_sync_rq;
1396
1397	blk_account_io_start(rq);
1398	blk_mq_sched_insert_request(rq, at_head, true, false);
 
1399
1400	if (blk_rq_is_poll(rq)) {
1401		blk_rq_poll_completion(rq, &wait.done);
1402	} else {
1403		/*
1404		 * Prevent hang_check timer from firing at us during very long
1405		 * I/O
1406		 */
1407		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1408
1409		if (hang_check)
1410			while (!wait_for_completion_io_timeout(&wait.done,
1411					hang_check * (HZ/2)))
1412				;
1413		else
1414			wait_for_completion_io(&wait.done);
1415	}
1416
1417	return wait.ret;
1418}
1419EXPORT_SYMBOL(blk_execute_rq);
1420
1421static void __blk_mq_requeue_request(struct request *rq)
1422{
1423	struct request_queue *q = rq->q;
1424
1425	blk_mq_put_driver_tag(rq);
1426
1427	trace_block_rq_requeue(rq);
1428	rq_qos_requeue(q, rq);
1429
1430	if (blk_mq_request_started(rq)) {
1431		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432		rq->rq_flags &= ~RQF_TIMED_OUT;
1433	}
1434}
1435
1436void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437{
 
 
 
1438	__blk_mq_requeue_request(rq);
1439
1440	/* this request will be re-inserted to io scheduler queue */
1441	blk_mq_sched_requeue_request(rq);
1442
1443	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 
 
 
 
 
1444}
1445EXPORT_SYMBOL(blk_mq_requeue_request);
1446
1447static void blk_mq_requeue_work(struct work_struct *work)
1448{
1449	struct request_queue *q =
1450		container_of(work, struct request_queue, requeue_work.work);
1451	LIST_HEAD(rq_list);
1452	struct request *rq, *next;
 
1453
1454	spin_lock_irq(&q->requeue_lock);
1455	list_splice_init(&q->requeue_list, &rq_list);
 
1456	spin_unlock_irq(&q->requeue_lock);
1457
1458	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1460			continue;
1461
1462		rq->rq_flags &= ~RQF_SOFTBARRIER;
1463		list_del_init(&rq->queuelist);
1464		/*
1465		 * If RQF_DONTPREP, rq has contained some driver specific
1466		 * data, so insert it to hctx dispatch list to avoid any
1467		 * merge.
 
1468		 */
1469		if (rq->rq_flags & RQF_DONTPREP)
1470			blk_mq_request_bypass_insert(rq, false, false);
1471		else
1472			blk_mq_sched_insert_request(rq, true, false, false);
1473	}
1474
1475	while (!list_empty(&rq_list)) {
1476		rq = list_entry(rq_list.next, struct request, queuelist);
1477		list_del_init(&rq->queuelist);
1478		blk_mq_sched_insert_request(rq, false, false, false);
1479	}
1480
1481	blk_mq_run_hw_queues(q, false);
1482}
1483
1484void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485				bool kick_requeue_list)
1486{
1487	struct request_queue *q = rq->q;
1488	unsigned long flags;
1489
1490	/*
1491	 * We abuse this flag that is otherwise used by the I/O scheduler to
1492	 * request head insertion from the workqueue.
1493	 */
1494	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1495
1496	spin_lock_irqsave(&q->requeue_lock, flags);
1497	if (at_head) {
1498		rq->rq_flags |= RQF_SOFTBARRIER;
1499		list_add(&rq->queuelist, &q->requeue_list);
1500	} else {
1501		list_add_tail(&rq->queuelist, &q->requeue_list);
1502	}
1503	spin_unlock_irqrestore(&q->requeue_lock, flags);
1504
1505	if (kick_requeue_list)
1506		blk_mq_kick_requeue_list(q);
1507}
1508
1509void blk_mq_kick_requeue_list(struct request_queue *q)
1510{
1511	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1512}
1513EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1514
1515void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516				    unsigned long msecs)
1517{
1518	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519				    msecs_to_jiffies(msecs));
1520}
1521EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1522
 
 
 
 
 
1523static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524{
1525	/*
1526	 * If we find a request that isn't idle we know the queue is busy
1527	 * as it's checked in the iter.
1528	 * Return false to stop the iteration.
1529	 */
1530	if (blk_mq_request_started(rq)) {
 
 
 
 
 
 
 
1531		bool *busy = priv;
1532
1533		*busy = true;
1534		return false;
1535	}
1536
1537	return true;
1538}
1539
1540bool blk_mq_queue_inflight(struct request_queue *q)
1541{
1542	bool busy = false;
1543
1544	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1545	return busy;
1546}
1547EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1548
1549static void blk_mq_rq_timed_out(struct request *req)
1550{
1551	req->rq_flags |= RQF_TIMED_OUT;
1552	if (req->q->mq_ops->timeout) {
1553		enum blk_eh_timer_return ret;
1554
1555		ret = req->q->mq_ops->timeout(req);
1556		if (ret == BLK_EH_DONE)
1557			return;
1558		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1559	}
1560
1561	blk_add_timer(req);
1562}
1563
1564struct blk_expired_data {
1565	bool has_timedout_rq;
1566	unsigned long next;
1567	unsigned long timeout_start;
1568};
1569
1570static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1571{
1572	unsigned long deadline;
1573
1574	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1575		return false;
1576	if (rq->rq_flags & RQF_TIMED_OUT)
1577		return false;
1578
1579	deadline = READ_ONCE(rq->deadline);
1580	if (time_after_eq(expired->timeout_start, deadline))
1581		return true;
1582
1583	if (expired->next == 0)
1584		expired->next = deadline;
1585	else if (time_after(expired->next, deadline))
1586		expired->next = deadline;
1587	return false;
1588}
1589
1590void blk_mq_put_rq_ref(struct request *rq)
1591{
1592	if (is_flush_rq(rq)) {
1593		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594			blk_mq_free_request(rq);
1595	} else if (req_ref_put_and_test(rq)) {
1596		__blk_mq_free_request(rq);
1597	}
1598}
1599
1600static bool blk_mq_check_expired(struct request *rq, void *priv)
1601{
1602	struct blk_expired_data *expired = priv;
1603
1604	/*
1605	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606	 * be reallocated underneath the timeout handler's processing, then
1607	 * the expire check is reliable. If the request is not expired, then
1608	 * it was completed and reallocated as a new request after returning
1609	 * from blk_mq_check_expired().
1610	 */
1611	if (blk_mq_req_expired(rq, expired)) {
1612		expired->has_timedout_rq = true;
1613		return false;
1614	}
1615	return true;
1616}
1617
1618static bool blk_mq_handle_expired(struct request *rq, void *priv)
1619{
1620	struct blk_expired_data *expired = priv;
1621
1622	if (blk_mq_req_expired(rq, expired))
1623		blk_mq_rq_timed_out(rq);
1624	return true;
1625}
1626
1627static void blk_mq_timeout_work(struct work_struct *work)
1628{
1629	struct request_queue *q =
1630		container_of(work, struct request_queue, timeout_work);
1631	struct blk_expired_data expired = {
1632		.timeout_start = jiffies,
1633	};
1634	struct blk_mq_hw_ctx *hctx;
1635	unsigned long i;
1636
1637	/* A deadlock might occur if a request is stuck requiring a
1638	 * timeout at the same time a queue freeze is waiting
1639	 * completion, since the timeout code would not be able to
1640	 * acquire the queue reference here.
1641	 *
1642	 * That's why we don't use blk_queue_enter here; instead, we use
1643	 * percpu_ref_tryget directly, because we need to be able to
1644	 * obtain a reference even in the short window between the queue
1645	 * starting to freeze, by dropping the first reference in
1646	 * blk_freeze_queue_start, and the moment the last request is
1647	 * consumed, marked by the instant q_usage_counter reaches
1648	 * zero.
1649	 */
1650	if (!percpu_ref_tryget(&q->q_usage_counter))
1651		return;
1652
1653	/* check if there is any timed-out request */
1654	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655	if (expired.has_timedout_rq) {
1656		/*
1657		 * Before walking tags, we must ensure any submit started
1658		 * before the current time has finished. Since the submit
1659		 * uses srcu or rcu, wait for a synchronization point to
1660		 * ensure all running submits have finished
1661		 */
1662		blk_mq_wait_quiesce_done(q->tag_set);
1663
1664		expired.next = 0;
1665		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1666	}
1667
1668	if (expired.next != 0) {
1669		mod_timer(&q->timeout, expired.next);
1670	} else {
1671		/*
1672		 * Request timeouts are handled as a forward rolling timer. If
1673		 * we end up here it means that no requests are pending and
1674		 * also that no request has been pending for a while. Mark
1675		 * each hctx as idle.
1676		 */
1677		queue_for_each_hw_ctx(q, hctx, i) {
1678			/* the hctx may be unmapped, so check it here */
1679			if (blk_mq_hw_queue_mapped(hctx))
1680				blk_mq_tag_idle(hctx);
1681		}
1682	}
1683	blk_queue_exit(q);
1684}
1685
1686struct flush_busy_ctx_data {
1687	struct blk_mq_hw_ctx *hctx;
1688	struct list_head *list;
1689};
1690
1691static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1692{
1693	struct flush_busy_ctx_data *flush_data = data;
1694	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696	enum hctx_type type = hctx->type;
1697
1698	spin_lock(&ctx->lock);
1699	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700	sbitmap_clear_bit(sb, bitnr);
1701	spin_unlock(&ctx->lock);
1702	return true;
1703}
1704
1705/*
1706 * Process software queues that have been marked busy, splicing them
1707 * to the for-dispatch
1708 */
1709void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1710{
1711	struct flush_busy_ctx_data data = {
1712		.hctx = hctx,
1713		.list = list,
1714	};
1715
1716	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1717}
1718EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1719
1720struct dispatch_rq_data {
1721	struct blk_mq_hw_ctx *hctx;
1722	struct request *rq;
1723};
1724
1725static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1726		void *data)
1727{
1728	struct dispatch_rq_data *dispatch_data = data;
1729	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731	enum hctx_type type = hctx->type;
1732
1733	spin_lock(&ctx->lock);
1734	if (!list_empty(&ctx->rq_lists[type])) {
1735		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736		list_del_init(&dispatch_data->rq->queuelist);
1737		if (list_empty(&ctx->rq_lists[type]))
1738			sbitmap_clear_bit(sb, bitnr);
1739	}
1740	spin_unlock(&ctx->lock);
1741
1742	return !dispatch_data->rq;
1743}
1744
1745struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746					struct blk_mq_ctx *start)
1747{
1748	unsigned off = start ? start->index_hw[hctx->type] : 0;
1749	struct dispatch_rq_data data = {
1750		.hctx = hctx,
1751		.rq   = NULL,
1752	};
1753
1754	__sbitmap_for_each_set(&hctx->ctx_map, off,
1755			       dispatch_rq_from_ctx, &data);
1756
1757	return data.rq;
1758}
1759
1760static bool __blk_mq_alloc_driver_tag(struct request *rq)
1761{
1762	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1764	int tag;
1765
1766	blk_mq_tag_busy(rq->mq_hctx);
1767
1768	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769		bt = &rq->mq_hctx->tags->breserved_tags;
1770		tag_offset = 0;
1771	} else {
1772		if (!hctx_may_queue(rq->mq_hctx, bt))
1773			return false;
1774	}
1775
1776	tag = __sbitmap_queue_get(bt);
1777	if (tag == BLK_MQ_NO_TAG)
1778		return false;
1779
1780	rq->tag = tag + tag_offset;
1781	return true;
1782}
1783
1784bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1785{
1786	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1787		return false;
1788
1789	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791		rq->rq_flags |= RQF_MQ_INFLIGHT;
1792		__blk_mq_inc_active_requests(hctx);
1793	}
1794	hctx->tags->rqs[rq->tag] = rq;
1795	return true;
1796}
1797
1798static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799				int flags, void *key)
1800{
1801	struct blk_mq_hw_ctx *hctx;
1802
1803	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1804
1805	spin_lock(&hctx->dispatch_wait_lock);
1806	if (!list_empty(&wait->entry)) {
1807		struct sbitmap_queue *sbq;
1808
1809		list_del_init(&wait->entry);
1810		sbq = &hctx->tags->bitmap_tags;
1811		atomic_dec(&sbq->ws_active);
1812	}
1813	spin_unlock(&hctx->dispatch_wait_lock);
1814
1815	blk_mq_run_hw_queue(hctx, true);
1816	return 1;
1817}
1818
1819/*
1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822 * restart. For both cases, take care to check the condition again after
1823 * marking us as waiting.
1824 */
1825static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1826				 struct request *rq)
1827{
1828	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829	struct wait_queue_head *wq;
1830	wait_queue_entry_t *wait;
1831	bool ret;
1832
1833	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
 
1834		blk_mq_sched_mark_restart_hctx(hctx);
1835
1836		/*
1837		 * It's possible that a tag was freed in the window between the
1838		 * allocation failure and adding the hardware queue to the wait
1839		 * queue.
1840		 *
1841		 * Don't clear RESTART here, someone else could have set it.
1842		 * At most this will cost an extra queue run.
1843		 */
1844		return blk_mq_get_driver_tag(rq);
1845	}
1846
1847	wait = &hctx->dispatch_wait;
1848	if (!list_empty_careful(&wait->entry))
1849		return false;
1850
 
 
 
 
1851	wq = &bt_wait_ptr(sbq, hctx)->wait;
1852
1853	spin_lock_irq(&wq->lock);
1854	spin_lock(&hctx->dispatch_wait_lock);
1855	if (!list_empty(&wait->entry)) {
1856		spin_unlock(&hctx->dispatch_wait_lock);
1857		spin_unlock_irq(&wq->lock);
1858		return false;
1859	}
1860
1861	atomic_inc(&sbq->ws_active);
1862	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863	__add_wait_queue(wq, wait);
1864
1865	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866	 * It's possible that a tag was freed in the window between the
1867	 * allocation failure and adding the hardware queue to the wait
1868	 * queue.
1869	 */
1870	ret = blk_mq_get_driver_tag(rq);
1871	if (!ret) {
1872		spin_unlock(&hctx->dispatch_wait_lock);
1873		spin_unlock_irq(&wq->lock);
1874		return false;
1875	}
1876
1877	/*
1878	 * We got a tag, remove ourselves from the wait queue to ensure
1879	 * someone else gets the wakeup.
1880	 */
1881	list_del_init(&wait->entry);
1882	atomic_dec(&sbq->ws_active);
1883	spin_unlock(&hctx->dispatch_wait_lock);
1884	spin_unlock_irq(&wq->lock);
1885
1886	return true;
1887}
1888
1889#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891/*
1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893 * - EWMA is one simple way to compute running average value
1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895 * - take 4 as factor for avoiding to get too small(0) result, and this
1896 *   factor doesn't matter because EWMA decreases exponentially
1897 */
1898static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899{
1900	unsigned int ewma;
1901
1902	ewma = hctx->dispatch_busy;
1903
1904	if (!ewma && !busy)
1905		return;
1906
1907	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908	if (busy)
1909		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912	hctx->dispatch_busy = ewma;
1913}
1914
1915#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916
1917static void blk_mq_handle_dev_resource(struct request *rq,
1918				       struct list_head *list)
1919{
1920	struct request *next =
1921		list_first_entry_or_null(list, struct request, queuelist);
1922
1923	/*
1924	 * If an I/O scheduler has been configured and we got a driver tag for
1925	 * the next request already, free it.
1926	 */
1927	if (next)
1928		blk_mq_put_driver_tag(next);
1929
1930	list_add(&rq->queuelist, list);
1931	__blk_mq_requeue_request(rq);
1932}
1933
1934static void blk_mq_handle_zone_resource(struct request *rq,
1935					struct list_head *zone_list)
1936{
1937	/*
1938	 * If we end up here it is because we cannot dispatch a request to a
1939	 * specific zone due to LLD level zone-write locking or other zone
1940	 * related resource not being available. In this case, set the request
1941	 * aside in zone_list for retrying it later.
1942	 */
1943	list_add(&rq->queuelist, zone_list);
1944	__blk_mq_requeue_request(rq);
1945}
1946
1947enum prep_dispatch {
1948	PREP_DISPATCH_OK,
1949	PREP_DISPATCH_NO_TAG,
1950	PREP_DISPATCH_NO_BUDGET,
1951};
1952
1953static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1954						  bool need_budget)
1955{
1956	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957	int budget_token = -1;
1958
1959	if (need_budget) {
1960		budget_token = blk_mq_get_dispatch_budget(rq->q);
1961		if (budget_token < 0) {
1962			blk_mq_put_driver_tag(rq);
1963			return PREP_DISPATCH_NO_BUDGET;
1964		}
1965		blk_mq_set_rq_budget_token(rq, budget_token);
1966	}
1967
1968	if (!blk_mq_get_driver_tag(rq)) {
1969		/*
1970		 * The initial allocation attempt failed, so we need to
1971		 * rerun the hardware queue when a tag is freed. The
1972		 * waitqueue takes care of that. If the queue is run
1973		 * before we add this entry back on the dispatch list,
1974		 * we'll re-run it below.
1975		 */
1976		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1977			/*
1978			 * All budgets not got from this function will be put
1979			 * together during handling partial dispatch
1980			 */
1981			if (need_budget)
1982				blk_mq_put_dispatch_budget(rq->q, budget_token);
1983			return PREP_DISPATCH_NO_TAG;
1984		}
1985	}
1986
1987	return PREP_DISPATCH_OK;
1988}
1989
1990/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991static void blk_mq_release_budgets(struct request_queue *q,
1992		struct list_head *list)
1993{
1994	struct request *rq;
1995
1996	list_for_each_entry(rq, list, queuelist) {
1997		int budget_token = blk_mq_get_rq_budget_token(rq);
1998
1999		if (budget_token >= 0)
2000			blk_mq_put_dispatch_budget(q, budget_token);
2001	}
2002}
2003
2004/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005 * Returns true if we did some work AND can potentially do more.
2006 */
2007bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008			     unsigned int nr_budgets)
2009{
2010	enum prep_dispatch prep;
2011	struct request_queue *q = hctx->queue;
2012	struct request *rq, *nxt;
2013	int errors, queued;
2014	blk_status_t ret = BLK_STS_OK;
2015	LIST_HEAD(zone_list);
2016	bool needs_resource = false;
2017
2018	if (list_empty(list))
2019		return false;
2020
2021	/*
2022	 * Now process all the entries, sending them to the driver.
2023	 */
2024	errors = queued = 0;
2025	do {
2026		struct blk_mq_queue_data bd;
2027
2028		rq = list_first_entry(list, struct request, queuelist);
2029
2030		WARN_ON_ONCE(hctx != rq->mq_hctx);
2031		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032		if (prep != PREP_DISPATCH_OK)
2033			break;
2034
2035		list_del_init(&rq->queuelist);
2036
2037		bd.rq = rq;
2038
2039		/*
2040		 * Flag last if we have no more requests, or if we have more
2041		 * but can't assign a driver tag to it.
2042		 */
2043		if (list_empty(list))
2044			bd.last = true;
2045		else {
2046			nxt = list_first_entry(list, struct request, queuelist);
2047			bd.last = !blk_mq_get_driver_tag(nxt);
2048		}
2049
2050		/*
2051		 * once the request is queued to lld, no need to cover the
2052		 * budget any more
2053		 */
2054		if (nr_budgets)
2055			nr_budgets--;
2056		ret = q->mq_ops->queue_rq(hctx, &bd);
2057		switch (ret) {
2058		case BLK_STS_OK:
2059			queued++;
2060			break;
2061		case BLK_STS_RESOURCE:
2062			needs_resource = true;
2063			fallthrough;
2064		case BLK_STS_DEV_RESOURCE:
2065			blk_mq_handle_dev_resource(rq, list);
2066			goto out;
2067		case BLK_STS_ZONE_RESOURCE:
2068			/*
2069			 * Move the request to zone_list and keep going through
2070			 * the dispatch list to find more requests the drive can
2071			 * accept.
2072			 */
2073			blk_mq_handle_zone_resource(rq, &zone_list);
2074			needs_resource = true;
2075			break;
2076		default:
2077			errors++;
2078			blk_mq_end_request(rq, ret);
2079		}
2080	} while (!list_empty(list));
2081out:
2082	if (!list_empty(&zone_list))
2083		list_splice_tail_init(&zone_list, list);
2084
2085	/* If we didn't flush the entire list, we could have told the driver
2086	 * there was more coming, but that turned out to be a lie.
2087	 */
2088	if ((!list_empty(list) || errors || needs_resource ||
2089	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090		q->mq_ops->commit_rqs(hctx);
2091	/*
2092	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093	 * that is where we will continue on next queue run.
2094	 */
2095	if (!list_empty(list)) {
2096		bool needs_restart;
2097		/* For non-shared tags, the RESTART check will suffice */
2098		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
 
2100
2101		if (nr_budgets)
2102			blk_mq_release_budgets(q, list);
2103
2104		spin_lock(&hctx->lock);
2105		list_splice_tail_init(list, &hctx->dispatch);
2106		spin_unlock(&hctx->lock);
2107
2108		/*
2109		 * Order adding requests to hctx->dispatch and checking
2110		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111		 * in blk_mq_sched_restart(). Avoid restart code path to
2112		 * miss the new added requests to hctx->dispatch, meantime
2113		 * SCHED_RESTART is observed here.
2114		 */
2115		smp_mb();
2116
2117		/*
2118		 * If SCHED_RESTART was set by the caller of this function and
2119		 * it is no longer set that means that it was cleared by another
2120		 * thread and hence that a queue rerun is needed.
2121		 *
2122		 * If 'no_tag' is set, that means that we failed getting
2123		 * a driver tag with an I/O scheduler attached. If our dispatch
2124		 * waitqueue is no longer active, ensure that we run the queue
2125		 * AFTER adding our entries back to the list.
2126		 *
2127		 * If no I/O scheduler has been configured it is possible that
2128		 * the hardware queue got stopped and restarted before requests
2129		 * were pushed back onto the dispatch list. Rerun the queue to
2130		 * avoid starvation. Notes:
2131		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2132		 *   been stopped before rerunning a queue.
2133		 * - Some but not all block drivers stop a queue before
2134		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2135		 *   and dm-rq.
2136		 *
2137		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138		 * bit is set, run queue after a delay to avoid IO stalls
2139		 * that could otherwise occur if the queue is idle.  We'll do
2140		 * similar if we couldn't get budget or couldn't lock a zone
2141		 * and SCHED_RESTART is set.
2142		 */
2143		needs_restart = blk_mq_sched_needs_restart(hctx);
2144		if (prep == PREP_DISPATCH_NO_BUDGET)
2145			needs_resource = true;
2146		if (!needs_restart ||
2147		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148			blk_mq_run_hw_queue(hctx, true);
2149		else if (needs_resource)
2150			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2151
2152		blk_mq_update_dispatch_busy(hctx, true);
2153		return false;
2154	} else
2155		blk_mq_update_dispatch_busy(hctx, false);
2156
2157	return (queued + errors) != 0;
2158}
2159
2160/**
2161 * __blk_mq_run_hw_queue - Run a hardware queue.
2162 * @hctx: Pointer to the hardware queue to run.
2163 *
2164 * Send pending requests to the hardware.
2165 */
2166static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2167{
2168	/*
2169	 * We can't run the queue inline with ints disabled. Ensure that
2170	 * we catch bad users of this early.
2171	 */
2172	WARN_ON_ONCE(in_interrupt());
2173
2174	blk_mq_run_dispatch_ops(hctx->queue,
2175			blk_mq_sched_dispatch_requests(hctx));
2176}
2177
2178static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2179{
2180	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2181
2182	if (cpu >= nr_cpu_ids)
2183		cpu = cpumask_first(hctx->cpumask);
2184	return cpu;
2185}
2186
2187/*
 
 
 
 
 
 
 
 
 
2188 * It'd be great if the workqueue API had a way to pass
2189 * in a mask and had some smarts for more clever placement.
2190 * For now we just round-robin here, switching for every
2191 * BLK_MQ_CPU_WORK_BATCH queued items.
2192 */
2193static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2194{
2195	bool tried = false;
2196	int next_cpu = hctx->next_cpu;
2197
2198	if (hctx->queue->nr_hw_queues == 1)
 
2199		return WORK_CPU_UNBOUND;
2200
2201	if (--hctx->next_cpu_batch <= 0) {
2202select_cpu:
2203		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2204				cpu_online_mask);
2205		if (next_cpu >= nr_cpu_ids)
2206			next_cpu = blk_mq_first_mapped_cpu(hctx);
2207		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2208	}
2209
2210	/*
2211	 * Do unbound schedule if we can't find a online CPU for this hctx,
2212	 * and it should only happen in the path of handling CPU DEAD.
2213	 */
2214	if (!cpu_online(next_cpu)) {
2215		if (!tried) {
2216			tried = true;
2217			goto select_cpu;
2218		}
2219
2220		/*
2221		 * Make sure to re-select CPU next time once after CPUs
2222		 * in hctx->cpumask become online again.
2223		 */
2224		hctx->next_cpu = next_cpu;
2225		hctx->next_cpu_batch = 1;
2226		return WORK_CPU_UNBOUND;
2227	}
2228
2229	hctx->next_cpu = next_cpu;
2230	return next_cpu;
2231}
2232
2233/**
2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235 * @hctx: Pointer to the hardware queue to run.
2236 * @async: If we want to run the queue asynchronously.
2237 * @msecs: Milliseconds of delay to wait before running the queue.
2238 *
2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240 * with a delay of @msecs.
2241 */
2242static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243					unsigned long msecs)
2244{
2245	if (unlikely(blk_mq_hctx_stopped(hctx)))
2246		return;
2247
2248	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250			__blk_mq_run_hw_queue(hctx);
2251			return;
2252		}
2253	}
2254
2255	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256				    msecs_to_jiffies(msecs));
2257}
 
2258
2259/**
2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261 * @hctx: Pointer to the hardware queue to run.
2262 * @msecs: Milliseconds of delay to wait before running the queue.
2263 *
2264 * Run a hardware queue asynchronously with a delay of @msecs.
2265 */
2266void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2267{
2268	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
 
 
 
 
 
 
 
 
 
 
 
 
 
2269}
2270EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2271
2272/**
2273 * blk_mq_run_hw_queue - Start to run a hardware queue.
2274 * @hctx: Pointer to the hardware queue to run.
2275 * @async: If we want to run the queue asynchronously.
2276 *
2277 * Check if the request queue is not in a quiesced state and if there are
2278 * pending requests to be sent. If this is true, run the queue to send requests
2279 * to hardware.
2280 */
2281void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2282{
2283	bool need_run;
2284
2285	/*
2286	 * When queue is quiesced, we may be switching io scheduler, or
2287	 * updating nr_hw_queues, or other things, and we can't run queue
2288	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2289	 *
2290	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2291	 * quiesced.
2292	 */
2293	__blk_mq_run_dispatch_ops(hctx->queue, false,
2294		need_run = !blk_queue_quiesced(hctx->queue) &&
2295		blk_mq_hctx_has_pending(hctx));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296
2297	if (need_run)
2298		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2299}
2300EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301
2302/*
2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304 * scheduler.
2305 */
2306static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307{
2308	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309	/*
2310	 * If the IO scheduler does not respect hardware queues when
2311	 * dispatching, we just don't bother with multiple HW queues and
2312	 * dispatch from hctx for the current CPU since running multiple queues
2313	 * just causes lock contention inside the scheduler and pointless cache
2314	 * bouncing.
2315	 */
2316	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317
2318	if (!blk_mq_hctx_stopped(hctx))
2319		return hctx;
2320	return NULL;
2321}
2322
2323/**
2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325 * @q: Pointer to the request queue to run.
2326 * @async: If we want to run the queue asynchronously.
2327 */
2328void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329{
2330	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331	unsigned long i;
2332
2333	sq_hctx = NULL;
2334	if (blk_queue_sq_sched(q))
2335		sq_hctx = blk_mq_get_sq_hctx(q);
2336	queue_for_each_hw_ctx(q, hctx, i) {
2337		if (blk_mq_hctx_stopped(hctx))
2338			continue;
2339		/*
2340		 * Dispatch from this hctx either if there's no hctx preferred
2341		 * by IO scheduler or if it has requests that bypass the
2342		 * scheduler.
2343		 */
2344		if (!sq_hctx || sq_hctx == hctx ||
2345		    !list_empty_careful(&hctx->dispatch))
2346			blk_mq_run_hw_queue(hctx, async);
2347	}
2348}
2349EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350
2351/**
2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353 * @q: Pointer to the request queue to run.
2354 * @msecs: Milliseconds of delay to wait before running the queues.
2355 */
2356void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357{
2358	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359	unsigned long i;
2360
2361	sq_hctx = NULL;
2362	if (blk_queue_sq_sched(q))
2363		sq_hctx = blk_mq_get_sq_hctx(q);
2364	queue_for_each_hw_ctx(q, hctx, i) {
2365		if (blk_mq_hctx_stopped(hctx))
2366			continue;
2367		/*
2368		 * If there is already a run_work pending, leave the
2369		 * pending delay untouched. Otherwise, a hctx can stall
2370		 * if another hctx is re-delaying the other's work
2371		 * before the work executes.
2372		 */
2373		if (delayed_work_pending(&hctx->run_work))
2374			continue;
2375		/*
2376		 * Dispatch from this hctx either if there's no hctx preferred
2377		 * by IO scheduler or if it has requests that bypass the
2378		 * scheduler.
2379		 */
2380		if (!sq_hctx || sq_hctx == hctx ||
2381		    !list_empty_careful(&hctx->dispatch))
2382			blk_mq_delay_run_hw_queue(hctx, msecs);
2383	}
2384}
2385EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386
2387/*
2388 * This function is often used for pausing .queue_rq() by driver when
2389 * there isn't enough resource or some conditions aren't satisfied, and
2390 * BLK_STS_RESOURCE is usually returned.
2391 *
2392 * We do not guarantee that dispatch can be drained or blocked
2393 * after blk_mq_stop_hw_queue() returns. Please use
2394 * blk_mq_quiesce_queue() for that requirement.
2395 */
2396void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397{
2398	cancel_delayed_work(&hctx->run_work);
2399
2400	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401}
2402EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403
2404/*
2405 * This function is often used for pausing .queue_rq() by driver when
2406 * there isn't enough resource or some conditions aren't satisfied, and
2407 * BLK_STS_RESOURCE is usually returned.
2408 *
2409 * We do not guarantee that dispatch can be drained or blocked
2410 * after blk_mq_stop_hw_queues() returns. Please use
2411 * blk_mq_quiesce_queue() for that requirement.
2412 */
2413void blk_mq_stop_hw_queues(struct request_queue *q)
2414{
2415	struct blk_mq_hw_ctx *hctx;
2416	unsigned long i;
2417
2418	queue_for_each_hw_ctx(q, hctx, i)
2419		blk_mq_stop_hw_queue(hctx);
2420}
2421EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422
2423void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424{
2425	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426
2427	blk_mq_run_hw_queue(hctx, false);
2428}
2429EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430
2431void blk_mq_start_hw_queues(struct request_queue *q)
2432{
2433	struct blk_mq_hw_ctx *hctx;
2434	unsigned long i;
2435
2436	queue_for_each_hw_ctx(q, hctx, i)
2437		blk_mq_start_hw_queue(hctx);
2438}
2439EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440
2441void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442{
2443	if (!blk_mq_hctx_stopped(hctx))
2444		return;
2445
2446	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 
 
 
 
 
 
2447	blk_mq_run_hw_queue(hctx, async);
2448}
2449EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450
2451void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452{
2453	struct blk_mq_hw_ctx *hctx;
2454	unsigned long i;
2455
2456	queue_for_each_hw_ctx(q, hctx, i)
2457		blk_mq_start_stopped_hw_queue(hctx, async);
 
2458}
2459EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460
2461static void blk_mq_run_work_fn(struct work_struct *work)
2462{
2463	struct blk_mq_hw_ctx *hctx;
2464
2465	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466
2467	/*
2468	 * If we are stopped, don't run the queue.
2469	 */
2470	if (blk_mq_hctx_stopped(hctx))
2471		return;
2472
2473	__blk_mq_run_hw_queue(hctx);
2474}
2475
2476static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2477					    struct request *rq,
2478					    bool at_head)
2479{
2480	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481	enum hctx_type type = hctx->type;
2482
2483	lockdep_assert_held(&ctx->lock);
2484
2485	trace_block_rq_insert(rq);
2486
2487	if (at_head)
2488		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2489	else
2490		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2491}
2492
2493void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2494			     bool at_head)
2495{
2496	struct blk_mq_ctx *ctx = rq->mq_ctx;
2497
2498	lockdep_assert_held(&ctx->lock);
2499
2500	__blk_mq_insert_req_list(hctx, rq, at_head);
2501	blk_mq_hctx_mark_pending(hctx, ctx);
2502}
2503
2504/**
2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506 * @rq: Pointer to request to be inserted.
2507 * @at_head: true if the request should be inserted at the head of the list.
2508 * @run_queue: If we should run the hardware queue after inserting the request.
2509 *
2510 * Should only be used carefully, when the caller knows we want to
2511 * bypass a potential IO scheduler on the target device.
2512 */
2513void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2514				  bool run_queue)
2515{
2516	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2517
2518	spin_lock(&hctx->lock);
2519	if (at_head)
2520		list_add(&rq->queuelist, &hctx->dispatch);
2521	else
2522		list_add_tail(&rq->queuelist, &hctx->dispatch);
2523	spin_unlock(&hctx->lock);
2524
2525	if (run_queue)
2526		blk_mq_run_hw_queue(hctx, false);
2527}
2528
2529void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530			    struct list_head *list)
2531
2532{
2533	struct request *rq;
2534	enum hctx_type type = hctx->type;
2535
2536	/*
 
 
 
 
 
 
 
 
 
 
 
2537	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538	 * offline now
2539	 */
2540	list_for_each_entry(rq, list, queuelist) {
2541		BUG_ON(rq->mq_ctx != ctx);
2542		trace_block_rq_insert(rq);
 
 
2543	}
2544
2545	spin_lock(&ctx->lock);
2546	list_splice_tail_init(list, &ctx->rq_lists[type]);
2547	blk_mq_hctx_mark_pending(hctx, ctx);
2548	spin_unlock(&ctx->lock);
 
 
2549}
2550
2551static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2552			      bool from_schedule)
2553{
2554	if (hctx->queue->mq_ops->commit_rqs) {
2555		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556		hctx->queue->mq_ops->commit_rqs(hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557	}
2558	*queued = 0;
2559}
2560
2561static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562		unsigned int nr_segs)
2563{
2564	int err;
2565
2566	if (bio->bi_opf & REQ_RAHEAD)
2567		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569	rq->__sector = bio->bi_iter.bi_sector;
2570	blk_rq_bio_prep(rq, bio, nr_segs);
 
 
 
2571
2572	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2574	WARN_ON_ONCE(err);
2575
2576	blk_account_io_start(rq);
2577}
2578
2579static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580					    struct request *rq, bool last)
2581{
2582	struct request_queue *q = rq->q;
2583	struct blk_mq_queue_data bd = {
2584		.rq = rq,
2585		.last = last,
2586	};
2587	blk_status_t ret;
2588
2589	/*
2590	 * For OK queue, we are done. For error, caller may kill it.
2591	 * Any other error (busy), just add it to our list as we
2592	 * previously would have done.
2593	 */
2594	ret = q->mq_ops->queue_rq(hctx, &bd);
2595	switch (ret) {
2596	case BLK_STS_OK:
2597		blk_mq_update_dispatch_busy(hctx, false);
2598		break;
2599	case BLK_STS_RESOURCE:
2600	case BLK_STS_DEV_RESOURCE:
2601		blk_mq_update_dispatch_busy(hctx, true);
2602		__blk_mq_requeue_request(rq);
2603		break;
2604	default:
2605		blk_mq_update_dispatch_busy(hctx, false);
2606		break;
2607	}
2608
2609	return ret;
2610}
2611
2612static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2613						struct request *rq,
2614						bool bypass_insert, bool last)
2615{
2616	struct request_queue *q = rq->q;
2617	bool run_queue = true;
2618	int budget_token;
2619
2620	/*
2621	 * RCU or SRCU read lock is needed before checking quiesced flag.
2622	 *
2623	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625	 * and avoid driver to try to dispatch again.
2626	 */
2627	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2628		run_queue = false;
2629		bypass_insert = false;
2630		goto insert;
2631	}
2632
2633	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2634		goto insert;
2635
2636	budget_token = blk_mq_get_dispatch_budget(q);
2637	if (budget_token < 0)
2638		goto insert;
2639
2640	blk_mq_set_rq_budget_token(rq, budget_token);
2641
2642	if (!blk_mq_get_driver_tag(rq)) {
2643		blk_mq_put_dispatch_budget(q, budget_token);
2644		goto insert;
2645	}
2646
2647	return __blk_mq_issue_directly(hctx, rq, last);
2648insert:
2649	if (bypass_insert)
2650		return BLK_STS_RESOURCE;
2651
2652	blk_mq_sched_insert_request(rq, false, run_queue, false);
2653
2654	return BLK_STS_OK;
2655}
2656
2657/**
2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659 * @hctx: Pointer of the associated hardware queue.
2660 * @rq: Pointer to request to be sent.
2661 *
2662 * If the device has enough resources to accept a new request now, send the
2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664 * we can try send it another time in the future. Requests inserted at this
2665 * queue have higher priority.
2666 */
2667static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2668		struct request *rq)
2669{
2670	blk_status_t ret =
2671		__blk_mq_try_issue_directly(hctx, rq, false, true);
 
 
 
 
 
 
 
 
 
 
 
2672
2673	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674		blk_mq_request_bypass_insert(rq, false, true);
2675	else if (ret != BLK_STS_OK)
 
 
 
 
 
 
 
2676		blk_mq_end_request(rq, ret);
 
 
2677}
2678
2679static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2680{
2681	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
 
 
 
 
 
 
 
 
 
 
2682}
2683
2684static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2685{
2686	struct blk_mq_hw_ctx *hctx = NULL;
2687	struct request *rq;
2688	int queued = 0;
2689	int errors = 0;
2690
2691	while ((rq = rq_list_pop(&plug->mq_list))) {
2692		bool last = rq_list_empty(plug->mq_list);
2693		blk_status_t ret;
2694
2695		if (hctx != rq->mq_hctx) {
2696			if (hctx)
2697				blk_mq_commit_rqs(hctx, &queued, from_schedule);
 
 
2698			hctx = rq->mq_hctx;
2699		}
2700
2701		ret = blk_mq_request_issue_directly(rq, last);
2702		switch (ret) {
2703		case BLK_STS_OK:
2704			queued++;
2705			break;
2706		case BLK_STS_RESOURCE:
2707		case BLK_STS_DEV_RESOURCE:
2708			blk_mq_request_bypass_insert(rq, false, true);
2709			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710			return;
2711		default:
2712			blk_mq_end_request(rq, ret);
2713			errors++;
2714			break;
2715		}
2716	}
2717
2718	/*
2719	 * If we didn't flush the entire list, we could have told the driver
2720	 * there was more coming, but that turned out to be a lie.
2721	 */
2722	if (errors)
2723		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2724}
2725
2726static void __blk_mq_flush_plug_list(struct request_queue *q,
2727				     struct blk_plug *plug)
2728{
2729	if (blk_queue_quiesced(q))
2730		return;
2731	q->mq_ops->queue_rqs(&plug->mq_list);
2732}
2733
2734static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735{
2736	struct blk_mq_hw_ctx *this_hctx = NULL;
2737	struct blk_mq_ctx *this_ctx = NULL;
2738	struct request *requeue_list = NULL;
2739	unsigned int depth = 0;
 
2740	LIST_HEAD(list);
2741
2742	do {
2743		struct request *rq = rq_list_pop(&plug->mq_list);
2744
2745		if (!this_hctx) {
2746			this_hctx = rq->mq_hctx;
2747			this_ctx = rq->mq_ctx;
2748		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749			rq_list_add(&requeue_list, rq);
 
 
2750			continue;
2751		}
2752		list_add_tail(&rq->queuelist, &list);
2753		depth++;
2754	} while (!rq_list_empty(plug->mq_list));
2755
2756	plug->mq_list = requeue_list;
2757	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759}
2760
2761void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2762{
2763	struct request *rq;
 
2764
2765	if (rq_list_empty(plug->mq_list))
 
 
 
 
 
 
 
2766		return;
 
2767	plug->rq_count = 0;
2768
2769	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770		struct request_queue *q;
2771
2772		rq = rq_list_peek(&plug->mq_list);
2773		q = rq->q;
 
2774
2775		/*
2776		 * Peek first request and see if we have a ->queue_rqs() hook.
2777		 * If we do, we can dispatch the whole plug list in one go. We
2778		 * already know at this point that all requests belong to the
2779		 * same queue, caller must ensure that's the case.
2780		 *
2781		 * Since we pass off the full list to the driver at this point,
2782		 * we do not increment the active request count for the queue.
2783		 * Bypass shared tags for now because of that.
2784		 */
2785		if (q->mq_ops->queue_rqs &&
2786		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787			blk_mq_run_dispatch_ops(q,
2788				__blk_mq_flush_plug_list(q, plug));
2789			if (rq_list_empty(plug->mq_list))
2790				return;
2791		}
2792
2793		blk_mq_run_dispatch_ops(q,
2794				blk_mq_plug_issue_direct(plug, false));
2795		if (rq_list_empty(plug->mq_list))
2796			return;
2797	}
2798
2799	do {
2800		blk_mq_dispatch_plug_list(plug, from_schedule);
2801	} while (!rq_list_empty(plug->mq_list));
2802}
2803
2804void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805		struct list_head *list)
2806{
2807	int queued = 0;
2808	int errors = 0;
2809
2810	while (!list_empty(list)) {
2811		blk_status_t ret;
2812		struct request *rq = list_first_entry(list, struct request,
2813				queuelist);
2814
2815		list_del_init(&rq->queuelist);
2816		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817		if (ret != BLK_STS_OK) {
2818			errors++;
2819			if (ret == BLK_STS_RESOURCE ||
2820					ret == BLK_STS_DEV_RESOURCE) {
2821				blk_mq_request_bypass_insert(rq, false,
2822							list_empty(list));
2823				break;
2824			}
2825			blk_mq_end_request(rq, ret);
2826		} else
2827			queued++;
 
 
 
 
 
 
 
 
 
 
 
2828	}
2829
2830	/*
2831	 * If we didn't flush the entire list, we could have told
2832	 * the driver there was more coming, but that turned out to
2833	 * be a lie.
2834	 */
2835	if ((!list_empty(list) || errors) &&
2836	     hctx->queue->mq_ops->commit_rqs && queued)
2837		hctx->queue->mq_ops->commit_rqs(hctx);
2838}
2839
2840static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841				     struct bio *bio, unsigned int nr_segs)
2842{
2843	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844		if (blk_attempt_plug_merge(q, bio, nr_segs))
2845			return true;
2846		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2847			return true;
2848	}
2849	return false;
2850}
2851
2852static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853					       struct blk_plug *plug,
2854					       struct bio *bio,
2855					       unsigned int nsegs)
2856{
2857	struct blk_mq_alloc_data data = {
2858		.q		= q,
2859		.nr_tags	= 1,
2860		.cmd_flags	= bio->bi_opf,
2861	};
2862	struct request *rq;
2863
2864	if (unlikely(bio_queue_enter(bio)))
2865		return NULL;
2866
2867	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868		goto queue_exit;
2869
2870	rq_qos_throttle(q, bio);
2871
2872	if (plug) {
2873		data.nr_tags = plug->nr_ios;
2874		plug->nr_ios = 1;
2875		data.cached_rq = &plug->cached_rq;
2876	}
2877
2878	rq = __blk_mq_alloc_requests(&data);
2879	if (rq)
2880		return rq;
2881	rq_qos_cleanup(q, bio);
2882	if (bio->bi_opf & REQ_NOWAIT)
2883		bio_wouldblock_error(bio);
2884queue_exit:
2885	blk_queue_exit(q);
2886	return NULL;
2887}
2888
2889static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
 
 
 
2891{
 
2892	struct request *rq;
2893	enum hctx_type type, hctx_type;
2894
2895	if (!plug)
2896		return NULL;
2897	rq = rq_list_peek(&plug->cached_rq);
2898	if (!rq || rq->q != q)
2899		return NULL;
2900
2901	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2902		*bio = NULL;
2903		return NULL;
2904	}
2905
2906	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2907	hctx_type = rq->mq_hctx->type;
2908	if (type != hctx_type &&
2909	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2910		return NULL;
2911	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2912		return NULL;
 
 
 
 
 
 
 
 
2913
2914	/*
2915	 * If any qos ->throttle() end up blocking, we will have flushed the
2916	 * plug and hence killed the cached_rq list as well. Pop this entry
2917	 * before we throttle.
2918	 */
2919	plug->cached_rq = rq_list_next(rq);
2920	rq_qos_throttle(q, *bio);
2921
2922	rq->cmd_flags = (*bio)->bi_opf;
 
2923	INIT_LIST_HEAD(&rq->queuelist);
2924	return rq;
2925}
2926
2927static void bio_set_ioprio(struct bio *bio)
2928{
2929	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2930	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2931		bio->bi_ioprio = get_current_ioprio();
2932	blkcg_set_ioprio(bio);
 
 
 
2933}
2934
2935/**
2936 * blk_mq_submit_bio - Create and send a request to block device.
2937 * @bio: Bio pointer.
2938 *
2939 * Builds up a request structure from @q and @bio and send to the device. The
2940 * request may not be queued directly to hardware if:
2941 * * This request can be merged with another one
2942 * * We want to place request at plug queue for possible future merging
2943 * * There is an IO scheduler active at this queue
2944 *
2945 * It will not queue the request if there is an error with the bio, or at the
2946 * request creation.
2947 */
2948void blk_mq_submit_bio(struct bio *bio)
2949{
2950	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951	struct blk_plug *plug = blk_mq_plug(bio);
2952	const int is_sync = op_is_sync(bio->bi_opf);
 
 
2953	struct request *rq;
2954	unsigned int nr_segs = 1;
2955	blk_status_t ret;
2956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957	bio = blk_queue_bounce(bio, q);
2958	if (bio_may_exceed_limits(bio, &q->limits)) {
2959		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2960		if (!bio)
 
 
 
 
2961			return;
2962	}
2963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964	if (!bio_integrity_prep(bio))
2965		return;
2966
2967	bio_set_ioprio(bio);
 
 
 
 
2968
2969	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2970	if (!rq) {
2971		if (!bio)
2972			return;
2973		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2974		if (unlikely(!rq))
2975			return;
 
 
2976	}
2977
2978	trace_block_getrq(bio);
2979
2980	rq_qos_track(q, rq, bio);
2981
2982	blk_mq_bio_to_request(rq, bio, nr_segs);
2983
2984	ret = blk_crypto_init_request(rq);
2985	if (ret != BLK_STS_OK) {
2986		bio->bi_status = ret;
2987		bio_endio(bio);
2988		blk_mq_free_request(rq);
2989		return;
2990	}
2991
2992	if (op_is_flush(bio->bi_opf)) {
2993		blk_insert_flush(rq);
 
 
2994		return;
2995	}
2996
2997	if (plug)
2998		blk_add_rq_to_plug(plug, rq);
2999	else if ((rq->rq_flags & RQF_ELV) ||
3000		 (rq->mq_hctx->dispatch_busy &&
3001		  (q->nr_hw_queues == 1 || !is_sync)))
3002		blk_mq_sched_insert_request(rq, false, true, true);
3003	else
3004		blk_mq_run_dispatch_ops(rq->q,
3005				blk_mq_try_issue_directly(rq->mq_hctx, rq));
 
 
 
 
 
 
 
 
 
 
 
 
 
3006}
3007
3008#ifdef CONFIG_BLK_MQ_STACKING
3009/**
3010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3011 * @rq: the request being queued
3012 */
3013blk_status_t blk_insert_cloned_request(struct request *rq)
3014{
3015	struct request_queue *q = rq->q;
3016	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
 
3017	blk_status_t ret;
3018
3019	if (blk_rq_sectors(rq) > max_sectors) {
3020		/*
3021		 * SCSI device does not have a good way to return if
3022		 * Write Same/Zero is actually supported. If a device rejects
3023		 * a non-read/write command (discard, write same,etc.) the
3024		 * low-level device driver will set the relevant queue limit to
3025		 * 0 to prevent blk-lib from issuing more of the offending
3026		 * operations. Commands queued prior to the queue limit being
3027		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3028		 * errors being propagated to upper layers.
3029		 */
3030		if (max_sectors == 0)
3031			return BLK_STS_NOTSUPP;
3032
3033		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3034			__func__, blk_rq_sectors(rq), max_sectors);
3035		return BLK_STS_IOERR;
3036	}
3037
3038	/*
3039	 * The queue settings related to segment counting may differ from the
3040	 * original queue.
3041	 */
3042	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3043	if (rq->nr_phys_segments > queue_max_segments(q)) {
3044		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3045			__func__, rq->nr_phys_segments, queue_max_segments(q));
3046		return BLK_STS_IOERR;
3047	}
3048
3049	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3050		return BLK_STS_IOERR;
3051
3052	if (blk_crypto_insert_cloned_request(rq))
3053		return BLK_STS_IOERR;
 
3054
3055	blk_account_io_start(rq);
3056
3057	/*
3058	 * Since we have a scheduler attached on the top device,
3059	 * bypass a potential scheduler on the bottom device for
3060	 * insert.
3061	 */
3062	blk_mq_run_dispatch_ops(q,
3063			ret = blk_mq_request_issue_directly(rq, true));
3064	if (ret)
3065		blk_account_io_done(rq, ktime_get_ns());
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3069
3070/**
3071 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3072 * @rq: the clone request to be cleaned up
3073 *
3074 * Description:
3075 *     Free all bios in @rq for a cloned request.
3076 */
3077void blk_rq_unprep_clone(struct request *rq)
3078{
3079	struct bio *bio;
3080
3081	while ((bio = rq->bio) != NULL) {
3082		rq->bio = bio->bi_next;
3083
3084		bio_put(bio);
3085	}
3086}
3087EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3088
3089/**
3090 * blk_rq_prep_clone - Helper function to setup clone request
3091 * @rq: the request to be setup
3092 * @rq_src: original request to be cloned
3093 * @bs: bio_set that bios for clone are allocated from
3094 * @gfp_mask: memory allocation mask for bio
3095 * @bio_ctr: setup function to be called for each clone bio.
3096 *           Returns %0 for success, non %0 for failure.
3097 * @data: private data to be passed to @bio_ctr
3098 *
3099 * Description:
3100 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3101 *     Also, pages which the original bios are pointing to are not copied
3102 *     and the cloned bios just point same pages.
3103 *     So cloned bios must be completed before original bios, which means
3104 *     the caller must complete @rq before @rq_src.
3105 */
3106int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3107		      struct bio_set *bs, gfp_t gfp_mask,
3108		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3109		      void *data)
3110{
3111	struct bio *bio, *bio_src;
3112
3113	if (!bs)
3114		bs = &fs_bio_set;
3115
3116	__rq_for_each_bio(bio_src, rq_src) {
3117		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3118				      bs);
3119		if (!bio)
3120			goto free_and_out;
3121
3122		if (bio_ctr && bio_ctr(bio, bio_src, data))
 
3123			goto free_and_out;
 
3124
3125		if (rq->bio) {
3126			rq->biotail->bi_next = bio;
3127			rq->biotail = bio;
3128		} else {
3129			rq->bio = rq->biotail = bio;
3130		}
3131		bio = NULL;
3132	}
3133
3134	/* Copy attributes of the original request to the clone request. */
3135	rq->__sector = blk_rq_pos(rq_src);
3136	rq->__data_len = blk_rq_bytes(rq_src);
3137	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3138		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3139		rq->special_vec = rq_src->special_vec;
3140	}
3141	rq->nr_phys_segments = rq_src->nr_phys_segments;
3142	rq->ioprio = rq_src->ioprio;
3143
3144	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3145		goto free_and_out;
3146
3147	return 0;
3148
3149free_and_out:
3150	if (bio)
3151		bio_put(bio);
3152	blk_rq_unprep_clone(rq);
3153
3154	return -ENOMEM;
3155}
3156EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3157#endif /* CONFIG_BLK_MQ_STACKING */
3158
3159/*
3160 * Steal bios from a request and add them to a bio list.
3161 * The request must not have been partially completed before.
3162 */
3163void blk_steal_bios(struct bio_list *list, struct request *rq)
3164{
3165	if (rq->bio) {
3166		if (list->tail)
3167			list->tail->bi_next = rq->bio;
3168		else
3169			list->head = rq->bio;
3170		list->tail = rq->biotail;
3171
3172		rq->bio = NULL;
3173		rq->biotail = NULL;
3174	}
3175
3176	rq->__data_len = 0;
3177}
3178EXPORT_SYMBOL_GPL(blk_steal_bios);
3179
3180static size_t order_to_size(unsigned int order)
3181{
3182	return (size_t)PAGE_SIZE << order;
3183}
3184
3185/* called before freeing request pool in @tags */
3186static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3187				    struct blk_mq_tags *tags)
3188{
3189	struct page *page;
3190	unsigned long flags;
3191
3192	/*
3193	 * There is no need to clear mapping if driver tags is not initialized
3194	 * or the mapping belongs to the driver tags.
3195	 */
3196	if (!drv_tags || drv_tags == tags)
3197		return;
3198
3199	list_for_each_entry(page, &tags->page_list, lru) {
3200		unsigned long start = (unsigned long)page_address(page);
3201		unsigned long end = start + order_to_size(page->private);
3202		int i;
3203
3204		for (i = 0; i < drv_tags->nr_tags; i++) {
3205			struct request *rq = drv_tags->rqs[i];
3206			unsigned long rq_addr = (unsigned long)rq;
3207
3208			if (rq_addr >= start && rq_addr < end) {
3209				WARN_ON_ONCE(req_ref_read(rq) != 0);
3210				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3211			}
3212		}
3213	}
3214
3215	/*
3216	 * Wait until all pending iteration is done.
3217	 *
3218	 * Request reference is cleared and it is guaranteed to be observed
3219	 * after the ->lock is released.
3220	 */
3221	spin_lock_irqsave(&drv_tags->lock, flags);
3222	spin_unlock_irqrestore(&drv_tags->lock, flags);
3223}
3224
3225void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3226		     unsigned int hctx_idx)
3227{
3228	struct blk_mq_tags *drv_tags;
3229	struct page *page;
3230
3231	if (list_empty(&tags->page_list))
3232		return;
3233
3234	if (blk_mq_is_shared_tags(set->flags))
3235		drv_tags = set->shared_tags;
3236	else
3237		drv_tags = set->tags[hctx_idx];
3238
3239	if (tags->static_rqs && set->ops->exit_request) {
3240		int i;
3241
3242		for (i = 0; i < tags->nr_tags; i++) {
3243			struct request *rq = tags->static_rqs[i];
3244
3245			if (!rq)
3246				continue;
3247			set->ops->exit_request(set, rq, hctx_idx);
3248			tags->static_rqs[i] = NULL;
3249		}
3250	}
3251
3252	blk_mq_clear_rq_mapping(drv_tags, tags);
3253
3254	while (!list_empty(&tags->page_list)) {
3255		page = list_first_entry(&tags->page_list, struct page, lru);
3256		list_del_init(&page->lru);
3257		/*
3258		 * Remove kmemleak object previously allocated in
3259		 * blk_mq_alloc_rqs().
3260		 */
3261		kmemleak_free(page_address(page));
3262		__free_pages(page, page->private);
3263	}
3264}
3265
3266void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3267{
3268	kfree(tags->rqs);
3269	tags->rqs = NULL;
3270	kfree(tags->static_rqs);
3271	tags->static_rqs = NULL;
3272
3273	blk_mq_free_tags(tags);
3274}
3275
3276static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3277		unsigned int hctx_idx)
3278{
3279	int i;
3280
3281	for (i = 0; i < set->nr_maps; i++) {
3282		unsigned int start = set->map[i].queue_offset;
3283		unsigned int end = start + set->map[i].nr_queues;
3284
3285		if (hctx_idx >= start && hctx_idx < end)
3286			break;
3287	}
3288
3289	if (i >= set->nr_maps)
3290		i = HCTX_TYPE_DEFAULT;
3291
3292	return i;
3293}
3294
3295static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3296		unsigned int hctx_idx)
3297{
3298	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3299
3300	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3301}
3302
3303static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3304					       unsigned int hctx_idx,
3305					       unsigned int nr_tags,
3306					       unsigned int reserved_tags)
3307{
3308	int node = blk_mq_get_hctx_node(set, hctx_idx);
3309	struct blk_mq_tags *tags;
3310
3311	if (node == NUMA_NO_NODE)
3312		node = set->numa_node;
3313
3314	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3315				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3316	if (!tags)
3317		return NULL;
3318
3319	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3320				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3321				 node);
3322	if (!tags->rqs)
3323		goto err_free_tags;
3324
3325	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3326					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3327					node);
3328	if (!tags->static_rqs)
3329		goto err_free_rqs;
3330
3331	return tags;
3332
3333err_free_rqs:
3334	kfree(tags->rqs);
3335err_free_tags:
3336	blk_mq_free_tags(tags);
3337	return NULL;
3338}
3339
3340static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3341			       unsigned int hctx_idx, int node)
3342{
3343	int ret;
3344
3345	if (set->ops->init_request) {
3346		ret = set->ops->init_request(set, rq, hctx_idx, node);
3347		if (ret)
3348			return ret;
3349	}
3350
3351	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3352	return 0;
3353}
3354
3355static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3356			    struct blk_mq_tags *tags,
3357			    unsigned int hctx_idx, unsigned int depth)
3358{
3359	unsigned int i, j, entries_per_page, max_order = 4;
3360	int node = blk_mq_get_hctx_node(set, hctx_idx);
3361	size_t rq_size, left;
3362
3363	if (node == NUMA_NO_NODE)
3364		node = set->numa_node;
3365
3366	INIT_LIST_HEAD(&tags->page_list);
3367
3368	/*
3369	 * rq_size is the size of the request plus driver payload, rounded
3370	 * to the cacheline size
3371	 */
3372	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3373				cache_line_size());
3374	left = rq_size * depth;
3375
3376	for (i = 0; i < depth; ) {
3377		int this_order = max_order;
3378		struct page *page;
3379		int to_do;
3380		void *p;
3381
3382		while (this_order && left < order_to_size(this_order - 1))
3383			this_order--;
3384
3385		do {
3386			page = alloc_pages_node(node,
3387				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3388				this_order);
3389			if (page)
3390				break;
3391			if (!this_order--)
3392				break;
3393			if (order_to_size(this_order) < rq_size)
3394				break;
3395		} while (1);
3396
3397		if (!page)
3398			goto fail;
3399
3400		page->private = this_order;
3401		list_add_tail(&page->lru, &tags->page_list);
3402
3403		p = page_address(page);
3404		/*
3405		 * Allow kmemleak to scan these pages as they contain pointers
3406		 * to additional allocations like via ops->init_request().
3407		 */
3408		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3409		entries_per_page = order_to_size(this_order) / rq_size;
3410		to_do = min(entries_per_page, depth - i);
3411		left -= to_do * rq_size;
3412		for (j = 0; j < to_do; j++) {
3413			struct request *rq = p;
3414
3415			tags->static_rqs[i] = rq;
3416			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3417				tags->static_rqs[i] = NULL;
3418				goto fail;
3419			}
3420
3421			p += rq_size;
3422			i++;
3423		}
3424	}
3425	return 0;
3426
3427fail:
3428	blk_mq_free_rqs(set, tags, hctx_idx);
3429	return -ENOMEM;
3430}
3431
3432struct rq_iter_data {
3433	struct blk_mq_hw_ctx *hctx;
3434	bool has_rq;
3435};
3436
3437static bool blk_mq_has_request(struct request *rq, void *data)
3438{
3439	struct rq_iter_data *iter_data = data;
3440
3441	if (rq->mq_hctx != iter_data->hctx)
3442		return true;
3443	iter_data->has_rq = true;
3444	return false;
3445}
3446
3447static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3448{
3449	struct blk_mq_tags *tags = hctx->sched_tags ?
3450			hctx->sched_tags : hctx->tags;
3451	struct rq_iter_data data = {
3452		.hctx	= hctx,
3453	};
3454
3455	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3456	return data.has_rq;
3457}
3458
3459static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3460		struct blk_mq_hw_ctx *hctx)
3461{
3462	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3463		return false;
3464	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3465		return false;
3466	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467}
3468
3469static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3470{
3471	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3472			struct blk_mq_hw_ctx, cpuhp_online);
3473
3474	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3475	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3476		return 0;
3477
3478	/*
3479	 * Prevent new request from being allocated on the current hctx.
3480	 *
3481	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3482	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3483	 * seen once we return from the tag allocator.
3484	 */
3485	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3486	smp_mb__after_atomic();
3487
3488	/*
3489	 * Try to grab a reference to the queue and wait for any outstanding
3490	 * requests.  If we could not grab a reference the queue has been
3491	 * frozen and there are no requests.
3492	 */
3493	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3494		while (blk_mq_hctx_has_requests(hctx))
3495			msleep(5);
3496		percpu_ref_put(&hctx->queue->q_usage_counter);
3497	}
3498
3499	return 0;
3500}
3501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3503{
3504	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3505			struct blk_mq_hw_ctx, cpuhp_online);
3506
3507	if (cpumask_test_cpu(cpu, hctx->cpumask))
3508		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3509	return 0;
3510}
3511
3512/*
3513 * 'cpu' is going away. splice any existing rq_list entries from this
3514 * software queue to the hw queue dispatch list, and ensure that it
3515 * gets run.
3516 */
3517static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3518{
3519	struct blk_mq_hw_ctx *hctx;
3520	struct blk_mq_ctx *ctx;
3521	LIST_HEAD(tmp);
3522	enum hctx_type type;
3523
3524	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3525	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3526		return 0;
3527
3528	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3529	type = hctx->type;
3530
3531	spin_lock(&ctx->lock);
3532	if (!list_empty(&ctx->rq_lists[type])) {
3533		list_splice_init(&ctx->rq_lists[type], &tmp);
3534		blk_mq_hctx_clear_pending(hctx, ctx);
3535	}
3536	spin_unlock(&ctx->lock);
3537
3538	if (list_empty(&tmp))
3539		return 0;
3540
3541	spin_lock(&hctx->lock);
3542	list_splice_tail_init(&tmp, &hctx->dispatch);
3543	spin_unlock(&hctx->lock);
3544
3545	blk_mq_run_hw_queue(hctx, true);
3546	return 0;
3547}
3548
3549static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3550{
3551	if (!(hctx->flags & BLK_MQ_F_STACKING))
 
 
 
3552		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3553						    &hctx->cpuhp_online);
3554	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3555					    &hctx->cpuhp_dead);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3556}
3557
3558/*
3559 * Before freeing hw queue, clearing the flush request reference in
3560 * tags->rqs[] for avoiding potential UAF.
3561 */
3562static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3563		unsigned int queue_depth, struct request *flush_rq)
3564{
3565	int i;
3566	unsigned long flags;
3567
3568	/* The hw queue may not be mapped yet */
3569	if (!tags)
3570		return;
3571
3572	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3573
3574	for (i = 0; i < queue_depth; i++)
3575		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3576
3577	/*
3578	 * Wait until all pending iteration is done.
3579	 *
3580	 * Request reference is cleared and it is guaranteed to be observed
3581	 * after the ->lock is released.
3582	 */
3583	spin_lock_irqsave(&tags->lock, flags);
3584	spin_unlock_irqrestore(&tags->lock, flags);
3585}
3586
3587/* hctx->ctxs will be freed in queue's release handler */
3588static void blk_mq_exit_hctx(struct request_queue *q,
3589		struct blk_mq_tag_set *set,
3590		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3591{
3592	struct request *flush_rq = hctx->fq->flush_rq;
3593
3594	if (blk_mq_hw_queue_mapped(hctx))
3595		blk_mq_tag_idle(hctx);
3596
3597	if (blk_queue_init_done(q))
3598		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3599				set->queue_depth, flush_rq);
3600	if (set->ops->exit_request)
3601		set->ops->exit_request(set, flush_rq, hctx_idx);
3602
3603	if (set->ops->exit_hctx)
3604		set->ops->exit_hctx(hctx, hctx_idx);
3605
3606	blk_mq_remove_cpuhp(hctx);
3607
3608	xa_erase(&q->hctx_table, hctx_idx);
3609
3610	spin_lock(&q->unused_hctx_lock);
3611	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3612	spin_unlock(&q->unused_hctx_lock);
3613}
3614
3615static void blk_mq_exit_hw_queues(struct request_queue *q,
3616		struct blk_mq_tag_set *set, int nr_queue)
3617{
3618	struct blk_mq_hw_ctx *hctx;
3619	unsigned long i;
3620
3621	queue_for_each_hw_ctx(q, hctx, i) {
3622		if (i == nr_queue)
3623			break;
 
3624		blk_mq_exit_hctx(q, set, hctx, i);
3625	}
3626}
3627
3628static int blk_mq_init_hctx(struct request_queue *q,
3629		struct blk_mq_tag_set *set,
3630		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3631{
3632	hctx->queue_num = hctx_idx;
3633
3634	if (!(hctx->flags & BLK_MQ_F_STACKING))
3635		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3636				&hctx->cpuhp_online);
3637	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3638
3639	hctx->tags = set->tags[hctx_idx];
3640
3641	if (set->ops->init_hctx &&
3642	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3643		goto unregister_cpu_notifier;
3644
3645	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3646				hctx->numa_node))
3647		goto exit_hctx;
3648
3649	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3650		goto exit_flush_rq;
3651
3652	return 0;
3653
3654 exit_flush_rq:
3655	if (set->ops->exit_request)
3656		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3657 exit_hctx:
3658	if (set->ops->exit_hctx)
3659		set->ops->exit_hctx(hctx, hctx_idx);
3660 unregister_cpu_notifier:
3661	blk_mq_remove_cpuhp(hctx);
3662	return -1;
3663}
3664
3665static struct blk_mq_hw_ctx *
3666blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3667		int node)
3668{
3669	struct blk_mq_hw_ctx *hctx;
3670	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3671
3672	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3673	if (!hctx)
3674		goto fail_alloc_hctx;
3675
3676	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3677		goto free_hctx;
3678
3679	atomic_set(&hctx->nr_active, 0);
3680	if (node == NUMA_NO_NODE)
3681		node = set->numa_node;
3682	hctx->numa_node = node;
3683
3684	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3685	spin_lock_init(&hctx->lock);
3686	INIT_LIST_HEAD(&hctx->dispatch);
 
 
3687	hctx->queue = q;
3688	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3689
3690	INIT_LIST_HEAD(&hctx->hctx_list);
3691
3692	/*
3693	 * Allocate space for all possible cpus to avoid allocation at
3694	 * runtime
3695	 */
3696	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3697			gfp, node);
3698	if (!hctx->ctxs)
3699		goto free_cpumask;
3700
3701	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3702				gfp, node, false, false))
3703		goto free_ctxs;
3704	hctx->nr_ctx = 0;
3705
3706	spin_lock_init(&hctx->dispatch_wait_lock);
3707	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3708	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3709
3710	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3711	if (!hctx->fq)
3712		goto free_bitmap;
3713
3714	blk_mq_hctx_kobj_init(hctx);
3715
3716	return hctx;
3717
3718 free_bitmap:
3719	sbitmap_free(&hctx->ctx_map);
3720 free_ctxs:
3721	kfree(hctx->ctxs);
3722 free_cpumask:
3723	free_cpumask_var(hctx->cpumask);
3724 free_hctx:
3725	kfree(hctx);
3726 fail_alloc_hctx:
3727	return NULL;
3728}
3729
3730static void blk_mq_init_cpu_queues(struct request_queue *q,
3731				   unsigned int nr_hw_queues)
3732{
3733	struct blk_mq_tag_set *set = q->tag_set;
3734	unsigned int i, j;
3735
3736	for_each_possible_cpu(i) {
3737		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3738		struct blk_mq_hw_ctx *hctx;
3739		int k;
3740
3741		__ctx->cpu = i;
3742		spin_lock_init(&__ctx->lock);
3743		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3744			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3745
3746		__ctx->queue = q;
3747
3748		/*
3749		 * Set local node, IFF we have more than one hw queue. If
3750		 * not, we remain on the home node of the device
3751		 */
3752		for (j = 0; j < set->nr_maps; j++) {
3753			hctx = blk_mq_map_queue_type(q, j, i);
3754			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3755				hctx->numa_node = cpu_to_node(i);
3756		}
3757	}
3758}
3759
3760struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3761					     unsigned int hctx_idx,
3762					     unsigned int depth)
3763{
3764	struct blk_mq_tags *tags;
3765	int ret;
3766
3767	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3768	if (!tags)
3769		return NULL;
3770
3771	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3772	if (ret) {
3773		blk_mq_free_rq_map(tags);
3774		return NULL;
3775	}
3776
3777	return tags;
3778}
3779
3780static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3781				       int hctx_idx)
3782{
3783	if (blk_mq_is_shared_tags(set->flags)) {
3784		set->tags[hctx_idx] = set->shared_tags;
3785
3786		return true;
3787	}
3788
3789	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3790						       set->queue_depth);
3791
3792	return set->tags[hctx_idx];
3793}
3794
3795void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3796			     struct blk_mq_tags *tags,
3797			     unsigned int hctx_idx)
3798{
3799	if (tags) {
3800		blk_mq_free_rqs(set, tags, hctx_idx);
3801		blk_mq_free_rq_map(tags);
3802	}
3803}
3804
3805static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806				      unsigned int hctx_idx)
3807{
3808	if (!blk_mq_is_shared_tags(set->flags))
3809		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3810
3811	set->tags[hctx_idx] = NULL;
3812}
3813
3814static void blk_mq_map_swqueue(struct request_queue *q)
3815{
3816	unsigned int j, hctx_idx;
3817	unsigned long i;
3818	struct blk_mq_hw_ctx *hctx;
3819	struct blk_mq_ctx *ctx;
3820	struct blk_mq_tag_set *set = q->tag_set;
3821
3822	queue_for_each_hw_ctx(q, hctx, i) {
3823		cpumask_clear(hctx->cpumask);
3824		hctx->nr_ctx = 0;
3825		hctx->dispatch_from = NULL;
3826	}
3827
3828	/*
3829	 * Map software to hardware queues.
3830	 *
3831	 * If the cpu isn't present, the cpu is mapped to first hctx.
3832	 */
3833	for_each_possible_cpu(i) {
3834
3835		ctx = per_cpu_ptr(q->queue_ctx, i);
3836		for (j = 0; j < set->nr_maps; j++) {
3837			if (!set->map[j].nr_queues) {
3838				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3839						HCTX_TYPE_DEFAULT, i);
3840				continue;
3841			}
3842			hctx_idx = set->map[j].mq_map[i];
3843			/* unmapped hw queue can be remapped after CPU topo changed */
3844			if (!set->tags[hctx_idx] &&
3845			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3846				/*
3847				 * If tags initialization fail for some hctx,
3848				 * that hctx won't be brought online.  In this
3849				 * case, remap the current ctx to hctx[0] which
3850				 * is guaranteed to always have tags allocated
3851				 */
3852				set->map[j].mq_map[i] = 0;
3853			}
3854
3855			hctx = blk_mq_map_queue_type(q, j, i);
3856			ctx->hctxs[j] = hctx;
3857			/*
3858			 * If the CPU is already set in the mask, then we've
3859			 * mapped this one already. This can happen if
3860			 * devices share queues across queue maps.
3861			 */
3862			if (cpumask_test_cpu(i, hctx->cpumask))
3863				continue;
3864
3865			cpumask_set_cpu(i, hctx->cpumask);
3866			hctx->type = j;
3867			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3868			hctx->ctxs[hctx->nr_ctx++] = ctx;
3869
3870			/*
3871			 * If the nr_ctx type overflows, we have exceeded the
3872			 * amount of sw queues we can support.
3873			 */
3874			BUG_ON(!hctx->nr_ctx);
3875		}
3876
3877		for (; j < HCTX_MAX_TYPES; j++)
3878			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3879					HCTX_TYPE_DEFAULT, i);
3880	}
3881
3882	queue_for_each_hw_ctx(q, hctx, i) {
 
 
3883		/*
3884		 * If no software queues are mapped to this hardware queue,
3885		 * disable it and free the request entries.
3886		 */
3887		if (!hctx->nr_ctx) {
3888			/* Never unmap queue 0.  We need it as a
3889			 * fallback in case of a new remap fails
3890			 * allocation
3891			 */
3892			if (i)
3893				__blk_mq_free_map_and_rqs(set, i);
3894
3895			hctx->tags = NULL;
3896			continue;
3897		}
3898
3899		hctx->tags = set->tags[i];
3900		WARN_ON(!hctx->tags);
3901
3902		/*
3903		 * Set the map size to the number of mapped software queues.
3904		 * This is more accurate and more efficient than looping
3905		 * over all possibly mapped software queues.
3906		 */
3907		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3908
3909		/*
 
 
 
 
 
 
 
 
 
3910		 * Initialize batch roundrobin counts
3911		 */
3912		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3913		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3914	}
3915}
3916
3917/*
3918 * Caller needs to ensure that we're either frozen/quiesced, or that
3919 * the queue isn't live yet.
3920 */
3921static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3922{
3923	struct blk_mq_hw_ctx *hctx;
3924	unsigned long i;
3925
3926	queue_for_each_hw_ctx(q, hctx, i) {
3927		if (shared) {
3928			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3929		} else {
3930			blk_mq_tag_idle(hctx);
3931			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3932		}
3933	}
3934}
3935
3936static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3937					 bool shared)
3938{
3939	struct request_queue *q;
3940
3941	lockdep_assert_held(&set->tag_list_lock);
3942
3943	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3944		blk_mq_freeze_queue(q);
3945		queue_set_hctx_shared(q, shared);
3946		blk_mq_unfreeze_queue(q);
3947	}
3948}
3949
3950static void blk_mq_del_queue_tag_set(struct request_queue *q)
3951{
3952	struct blk_mq_tag_set *set = q->tag_set;
3953
3954	mutex_lock(&set->tag_list_lock);
3955	list_del(&q->tag_set_list);
3956	if (list_is_singular(&set->tag_list)) {
3957		/* just transitioned to unshared */
3958		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959		/* update existing queue */
3960		blk_mq_update_tag_set_shared(set, false);
3961	}
3962	mutex_unlock(&set->tag_list_lock);
3963	INIT_LIST_HEAD(&q->tag_set_list);
3964}
3965
3966static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3967				     struct request_queue *q)
3968{
3969	mutex_lock(&set->tag_list_lock);
3970
3971	/*
3972	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3973	 */
3974	if (!list_empty(&set->tag_list) &&
3975	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3976		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3977		/* update existing queue */
3978		blk_mq_update_tag_set_shared(set, true);
3979	}
3980	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3981		queue_set_hctx_shared(q, true);
3982	list_add_tail(&q->tag_set_list, &set->tag_list);
3983
3984	mutex_unlock(&set->tag_list_lock);
3985}
3986
3987/* All allocations will be freed in release handler of q->mq_kobj */
3988static int blk_mq_alloc_ctxs(struct request_queue *q)
3989{
3990	struct blk_mq_ctxs *ctxs;
3991	int cpu;
3992
3993	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3994	if (!ctxs)
3995		return -ENOMEM;
3996
3997	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3998	if (!ctxs->queue_ctx)
3999		goto fail;
4000
4001	for_each_possible_cpu(cpu) {
4002		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4003		ctx->ctxs = ctxs;
4004	}
4005
4006	q->mq_kobj = &ctxs->kobj;
4007	q->queue_ctx = ctxs->queue_ctx;
4008
4009	return 0;
4010 fail:
4011	kfree(ctxs);
4012	return -ENOMEM;
4013}
4014
4015/*
4016 * It is the actual release handler for mq, but we do it from
4017 * request queue's release handler for avoiding use-after-free
4018 * and headache because q->mq_kobj shouldn't have been introduced,
4019 * but we can't group ctx/kctx kobj without it.
4020 */
4021void blk_mq_release(struct request_queue *q)
4022{
4023	struct blk_mq_hw_ctx *hctx, *next;
4024	unsigned long i;
4025
4026	queue_for_each_hw_ctx(q, hctx, i)
4027		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4028
4029	/* all hctx are in .unused_hctx_list now */
4030	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4031		list_del_init(&hctx->hctx_list);
4032		kobject_put(&hctx->kobj);
4033	}
4034
4035	xa_destroy(&q->hctx_table);
4036
4037	/*
4038	 * release .mq_kobj and sw queue's kobject now because
4039	 * both share lifetime with request queue.
4040	 */
4041	blk_mq_sysfs_deinit(q);
4042}
4043
4044static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4045		void *queuedata)
4046{
 
4047	struct request_queue *q;
4048	int ret;
4049
4050	q = blk_alloc_queue(set->numa_node);
4051	if (!q)
4052		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
4053	q->queuedata = queuedata;
4054	ret = blk_mq_init_allocated_queue(set, q);
4055	if (ret) {
4056		blk_put_queue(q);
4057		return ERR_PTR(ret);
4058	}
4059	return q;
4060}
4061
4062struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4063{
4064	return blk_mq_init_queue_data(set, NULL);
4065}
4066EXPORT_SYMBOL(blk_mq_init_queue);
4067
4068/**
4069 * blk_mq_destroy_queue - shutdown a request queue
4070 * @q: request queue to shutdown
4071 *
4072 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4073 * requests will be failed with -ENODEV. The caller is responsible for dropping
4074 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4075 *
4076 * Context: can sleep
4077 */
4078void blk_mq_destroy_queue(struct request_queue *q)
4079{
4080	WARN_ON_ONCE(!queue_is_mq(q));
4081	WARN_ON_ONCE(blk_queue_registered(q));
4082
4083	might_sleep();
4084
4085	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4086	blk_queue_start_drain(q);
4087	blk_mq_freeze_queue_wait(q);
4088
4089	blk_sync_queue(q);
4090	blk_mq_cancel_work_sync(q);
4091	blk_mq_exit_queue(q);
4092}
4093EXPORT_SYMBOL(blk_mq_destroy_queue);
4094
4095struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
 
4096		struct lock_class_key *lkclass)
4097{
4098	struct request_queue *q;
4099	struct gendisk *disk;
4100
4101	q = blk_mq_init_queue_data(set, queuedata);
4102	if (IS_ERR(q))
4103		return ERR_CAST(q);
4104
4105	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4106	if (!disk) {
4107		blk_mq_destroy_queue(q);
4108		blk_put_queue(q);
4109		return ERR_PTR(-ENOMEM);
4110	}
4111	set_bit(GD_OWNS_QUEUE, &disk->state);
4112	return disk;
4113}
4114EXPORT_SYMBOL(__blk_mq_alloc_disk);
4115
4116struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4117		struct lock_class_key *lkclass)
4118{
4119	struct gendisk *disk;
4120
4121	if (!blk_get_queue(q))
4122		return NULL;
4123	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4124	if (!disk)
4125		blk_put_queue(q);
4126	return disk;
4127}
4128EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4129
 
 
 
 
 
 
 
 
 
4130static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4131		struct blk_mq_tag_set *set, struct request_queue *q,
4132		int hctx_idx, int node)
4133{
4134	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4135
4136	/* reuse dead hctx first */
4137	spin_lock(&q->unused_hctx_lock);
4138	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4139		if (tmp->numa_node == node) {
4140			hctx = tmp;
4141			break;
4142		}
4143	}
4144	if (hctx)
4145		list_del_init(&hctx->hctx_list);
4146	spin_unlock(&q->unused_hctx_lock);
4147
4148	if (!hctx)
4149		hctx = blk_mq_alloc_hctx(q, set, node);
4150	if (!hctx)
4151		goto fail;
4152
4153	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4154		goto free_hctx;
4155
4156	return hctx;
4157
4158 free_hctx:
4159	kobject_put(&hctx->kobj);
4160 fail:
4161	return NULL;
4162}
4163
4164static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4165						struct request_queue *q)
4166{
4167	struct blk_mq_hw_ctx *hctx;
4168	unsigned long i, j;
4169
4170	/* protect against switching io scheduler  */
4171	mutex_lock(&q->sysfs_lock);
4172	for (i = 0; i < set->nr_hw_queues; i++) {
4173		int old_node;
4174		int node = blk_mq_get_hctx_node(set, i);
4175		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4176
4177		if (old_hctx) {
4178			old_node = old_hctx->numa_node;
4179			blk_mq_exit_hctx(q, set, old_hctx, i);
4180		}
4181
4182		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4183			if (!old_hctx)
4184				break;
4185			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4186					node, old_node);
4187			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4188			WARN_ON_ONCE(!hctx);
4189		}
4190	}
4191	/*
4192	 * Increasing nr_hw_queues fails. Free the newly allocated
4193	 * hctxs and keep the previous q->nr_hw_queues.
4194	 */
4195	if (i != set->nr_hw_queues) {
4196		j = q->nr_hw_queues;
4197	} else {
4198		j = i;
4199		q->nr_hw_queues = set->nr_hw_queues;
4200	}
4201
4202	xa_for_each_start(&q->hctx_table, j, hctx, j)
4203		blk_mq_exit_hctx(q, set, hctx, j);
4204	mutex_unlock(&q->sysfs_lock);
4205}
4206
4207static void blk_mq_update_poll_flag(struct request_queue *q)
4208{
4209	struct blk_mq_tag_set *set = q->tag_set;
4210
4211	if (set->nr_maps > HCTX_TYPE_POLL &&
4212	    set->map[HCTX_TYPE_POLL].nr_queues)
4213		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4214	else
4215		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4216}
4217
4218int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4219		struct request_queue *q)
4220{
4221	/* mark the queue as mq asap */
4222	q->mq_ops = set->ops;
4223
4224	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4225					     blk_mq_poll_stats_bkt,
4226					     BLK_MQ_POLL_STATS_BKTS, q);
4227	if (!q->poll_cb)
4228		goto err_exit;
4229
4230	if (blk_mq_alloc_ctxs(q))
4231		goto err_poll;
4232
4233	/* init q->mq_kobj and sw queues' kobjects */
4234	blk_mq_sysfs_init(q);
4235
4236	INIT_LIST_HEAD(&q->unused_hctx_list);
4237	spin_lock_init(&q->unused_hctx_lock);
4238
4239	xa_init(&q->hctx_table);
4240
4241	blk_mq_realloc_hw_ctxs(set, q);
4242	if (!q->nr_hw_queues)
4243		goto err_hctxs;
4244
4245	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4246	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4247
4248	q->tag_set = set;
4249
4250	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4251	blk_mq_update_poll_flag(q);
4252
4253	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
 
4254	INIT_LIST_HEAD(&q->requeue_list);
4255	spin_lock_init(&q->requeue_lock);
4256
4257	q->nr_requests = set->queue_depth;
4258
4259	/*
4260	 * Default to classic polling
4261	 */
4262	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4263
4264	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265	blk_mq_add_queue_tag_set(set, q);
4266	blk_mq_map_swqueue(q);
4267	return 0;
4268
4269err_hctxs:
4270	blk_mq_release(q);
4271err_poll:
4272	blk_stat_free_callback(q->poll_cb);
4273	q->poll_cb = NULL;
4274err_exit:
4275	q->mq_ops = NULL;
4276	return -ENOMEM;
4277}
4278EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4279
4280/* tags can _not_ be used after returning from blk_mq_exit_queue */
4281void blk_mq_exit_queue(struct request_queue *q)
4282{
4283	struct blk_mq_tag_set *set = q->tag_set;
4284
4285	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4286	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4287	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4288	blk_mq_del_queue_tag_set(q);
4289}
4290
4291static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4292{
4293	int i;
4294
4295	if (blk_mq_is_shared_tags(set->flags)) {
4296		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4297						BLK_MQ_NO_HCTX_IDX,
4298						set->queue_depth);
4299		if (!set->shared_tags)
4300			return -ENOMEM;
4301	}
4302
4303	for (i = 0; i < set->nr_hw_queues; i++) {
4304		if (!__blk_mq_alloc_map_and_rqs(set, i))
4305			goto out_unwind;
4306		cond_resched();
4307	}
4308
4309	return 0;
4310
4311out_unwind:
4312	while (--i >= 0)
4313		__blk_mq_free_map_and_rqs(set, i);
4314
4315	if (blk_mq_is_shared_tags(set->flags)) {
4316		blk_mq_free_map_and_rqs(set, set->shared_tags,
4317					BLK_MQ_NO_HCTX_IDX);
4318	}
4319
4320	return -ENOMEM;
4321}
4322
4323/*
4324 * Allocate the request maps associated with this tag_set. Note that this
4325 * may reduce the depth asked for, if memory is tight. set->queue_depth
4326 * will be updated to reflect the allocated depth.
4327 */
4328static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4329{
4330	unsigned int depth;
4331	int err;
4332
4333	depth = set->queue_depth;
4334	do {
4335		err = __blk_mq_alloc_rq_maps(set);
4336		if (!err)
4337			break;
4338
4339		set->queue_depth >>= 1;
4340		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4341			err = -ENOMEM;
4342			break;
4343		}
4344	} while (set->queue_depth);
4345
4346	if (!set->queue_depth || err) {
4347		pr_err("blk-mq: failed to allocate request map\n");
4348		return -ENOMEM;
4349	}
4350
4351	if (depth != set->queue_depth)
4352		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4353						depth, set->queue_depth);
4354
4355	return 0;
4356}
4357
4358static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4359{
4360	/*
4361	 * blk_mq_map_queues() and multiple .map_queues() implementations
4362	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4363	 * number of hardware queues.
4364	 */
4365	if (set->nr_maps == 1)
4366		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4367
4368	if (set->ops->map_queues && !is_kdump_kernel()) {
4369		int i;
4370
4371		/*
4372		 * transport .map_queues is usually done in the following
4373		 * way:
4374		 *
4375		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4376		 * 	mask = get_cpu_mask(queue)
4377		 * 	for_each_cpu(cpu, mask)
4378		 * 		set->map[x].mq_map[cpu] = queue;
4379		 * }
4380		 *
4381		 * When we need to remap, the table has to be cleared for
4382		 * killing stale mapping since one CPU may not be mapped
4383		 * to any hw queue.
4384		 */
4385		for (i = 0; i < set->nr_maps; i++)
4386			blk_mq_clear_mq_map(&set->map[i]);
4387
4388		set->ops->map_queues(set);
4389	} else {
4390		BUG_ON(set->nr_maps > 1);
4391		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4392	}
4393}
4394
4395static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4396				       int new_nr_hw_queues)
4397{
4398	struct blk_mq_tags **new_tags;
 
4399
4400	if (set->nr_hw_queues >= new_nr_hw_queues)
4401		goto done;
4402
4403	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4404				GFP_KERNEL, set->numa_node);
4405	if (!new_tags)
4406		return -ENOMEM;
4407
4408	if (set->tags)
4409		memcpy(new_tags, set->tags, set->nr_hw_queues *
4410		       sizeof(*set->tags));
4411	kfree(set->tags);
4412	set->tags = new_tags;
 
 
 
 
 
 
 
 
 
 
4413done:
4414	set->nr_hw_queues = new_nr_hw_queues;
4415	return 0;
4416}
4417
4418/*
4419 * Alloc a tag set to be associated with one or more request queues.
4420 * May fail with EINVAL for various error conditions. May adjust the
4421 * requested depth down, if it's too large. In that case, the set
4422 * value will be stored in set->queue_depth.
4423 */
4424int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4425{
4426	int i, ret;
4427
4428	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4429
4430	if (!set->nr_hw_queues)
4431		return -EINVAL;
4432	if (!set->queue_depth)
4433		return -EINVAL;
4434	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4435		return -EINVAL;
4436
4437	if (!set->ops->queue_rq)
4438		return -EINVAL;
4439
4440	if (!set->ops->get_budget ^ !set->ops->put_budget)
4441		return -EINVAL;
4442
4443	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4444		pr_info("blk-mq: reduced tag depth to %u\n",
4445			BLK_MQ_MAX_DEPTH);
4446		set->queue_depth = BLK_MQ_MAX_DEPTH;
4447	}
4448
4449	if (!set->nr_maps)
4450		set->nr_maps = 1;
4451	else if (set->nr_maps > HCTX_MAX_TYPES)
4452		return -EINVAL;
4453
4454	/*
4455	 * If a crashdump is active, then we are potentially in a very
4456	 * memory constrained environment. Limit us to 1 queue and
4457	 * 64 tags to prevent using too much memory.
4458	 */
4459	if (is_kdump_kernel()) {
4460		set->nr_hw_queues = 1;
4461		set->nr_maps = 1;
4462		set->queue_depth = min(64U, set->queue_depth);
4463	}
4464	/*
4465	 * There is no use for more h/w queues than cpus if we just have
4466	 * a single map
4467	 */
4468	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4469		set->nr_hw_queues = nr_cpu_ids;
4470
4471	if (set->flags & BLK_MQ_F_BLOCKING) {
4472		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4473		if (!set->srcu)
4474			return -ENOMEM;
4475		ret = init_srcu_struct(set->srcu);
4476		if (ret)
4477			goto out_free_srcu;
4478	}
4479
4480	ret = -ENOMEM;
4481	set->tags = kcalloc_node(set->nr_hw_queues,
4482				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4483				 set->numa_node);
4484	if (!set->tags)
4485		goto out_cleanup_srcu;
4486
4487	for (i = 0; i < set->nr_maps; i++) {
4488		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4489						  sizeof(set->map[i].mq_map[0]),
4490						  GFP_KERNEL, set->numa_node);
4491		if (!set->map[i].mq_map)
4492			goto out_free_mq_map;
4493		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4494	}
4495
4496	blk_mq_update_queue_map(set);
4497
4498	ret = blk_mq_alloc_set_map_and_rqs(set);
4499	if (ret)
4500		goto out_free_mq_map;
4501
4502	mutex_init(&set->tag_list_lock);
4503	INIT_LIST_HEAD(&set->tag_list);
4504
4505	return 0;
4506
4507out_free_mq_map:
4508	for (i = 0; i < set->nr_maps; i++) {
4509		kfree(set->map[i].mq_map);
4510		set->map[i].mq_map = NULL;
4511	}
4512	kfree(set->tags);
4513	set->tags = NULL;
4514out_cleanup_srcu:
4515	if (set->flags & BLK_MQ_F_BLOCKING)
4516		cleanup_srcu_struct(set->srcu);
4517out_free_srcu:
4518	if (set->flags & BLK_MQ_F_BLOCKING)
4519		kfree(set->srcu);
4520	return ret;
4521}
4522EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4523
4524/* allocate and initialize a tagset for a simple single-queue device */
4525int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4526		const struct blk_mq_ops *ops, unsigned int queue_depth,
4527		unsigned int set_flags)
4528{
4529	memset(set, 0, sizeof(*set));
4530	set->ops = ops;
4531	set->nr_hw_queues = 1;
4532	set->nr_maps = 1;
4533	set->queue_depth = queue_depth;
4534	set->numa_node = NUMA_NO_NODE;
4535	set->flags = set_flags;
4536	return blk_mq_alloc_tag_set(set);
4537}
4538EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4539
4540void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4541{
4542	int i, j;
4543
4544	for (i = 0; i < set->nr_hw_queues; i++)
4545		__blk_mq_free_map_and_rqs(set, i);
4546
4547	if (blk_mq_is_shared_tags(set->flags)) {
4548		blk_mq_free_map_and_rqs(set, set->shared_tags,
4549					BLK_MQ_NO_HCTX_IDX);
4550	}
4551
4552	for (j = 0; j < set->nr_maps; j++) {
4553		kfree(set->map[j].mq_map);
4554		set->map[j].mq_map = NULL;
4555	}
4556
4557	kfree(set->tags);
4558	set->tags = NULL;
4559	if (set->flags & BLK_MQ_F_BLOCKING) {
4560		cleanup_srcu_struct(set->srcu);
4561		kfree(set->srcu);
4562	}
4563}
4564EXPORT_SYMBOL(blk_mq_free_tag_set);
4565
4566int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4567{
4568	struct blk_mq_tag_set *set = q->tag_set;
4569	struct blk_mq_hw_ctx *hctx;
4570	int ret;
4571	unsigned long i;
4572
 
 
 
4573	if (!set)
4574		return -EINVAL;
4575
4576	if (q->nr_requests == nr)
4577		return 0;
4578
4579	blk_mq_freeze_queue(q);
4580	blk_mq_quiesce_queue(q);
4581
4582	ret = 0;
4583	queue_for_each_hw_ctx(q, hctx, i) {
4584		if (!hctx->tags)
4585			continue;
4586		/*
4587		 * If we're using an MQ scheduler, just update the scheduler
4588		 * queue depth. This is similar to what the old code would do.
4589		 */
4590		if (hctx->sched_tags) {
4591			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4592						      nr, true);
4593		} else {
4594			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4595						      false);
4596		}
4597		if (ret)
4598			break;
4599		if (q->elevator && q->elevator->type->ops.depth_updated)
4600			q->elevator->type->ops.depth_updated(hctx);
4601	}
4602	if (!ret) {
4603		q->nr_requests = nr;
4604		if (blk_mq_is_shared_tags(set->flags)) {
4605			if (q->elevator)
4606				blk_mq_tag_update_sched_shared_tags(q);
4607			else
4608				blk_mq_tag_resize_shared_tags(set, nr);
4609		}
4610	}
4611
4612	blk_mq_unquiesce_queue(q);
4613	blk_mq_unfreeze_queue(q);
4614
4615	return ret;
4616}
4617
4618/*
4619 * request_queue and elevator_type pair.
4620 * It is just used by __blk_mq_update_nr_hw_queues to cache
4621 * the elevator_type associated with a request_queue.
4622 */
4623struct blk_mq_qe_pair {
4624	struct list_head node;
4625	struct request_queue *q;
4626	struct elevator_type *type;
4627};
4628
4629/*
4630 * Cache the elevator_type in qe pair list and switch the
4631 * io scheduler to 'none'
4632 */
4633static bool blk_mq_elv_switch_none(struct list_head *head,
4634		struct request_queue *q)
4635{
4636	struct blk_mq_qe_pair *qe;
4637
4638	if (!q->elevator)
4639		return true;
4640
4641	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4642	if (!qe)
4643		return false;
4644
4645	/* q->elevator needs protection from ->sysfs_lock */
4646	mutex_lock(&q->sysfs_lock);
4647
 
 
 
 
 
 
4648	INIT_LIST_HEAD(&qe->node);
4649	qe->q = q;
4650	qe->type = q->elevator->type;
4651	/* keep a reference to the elevator module as we'll switch back */
4652	__elevator_get(qe->type);
4653	list_add(&qe->node, head);
4654	elevator_disable(q);
 
4655	mutex_unlock(&q->sysfs_lock);
4656
4657	return true;
4658}
4659
4660static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4661						struct request_queue *q)
4662{
4663	struct blk_mq_qe_pair *qe;
4664
4665	list_for_each_entry(qe, head, node)
4666		if (qe->q == q)
4667			return qe;
4668
4669	return NULL;
4670}
4671
4672static void blk_mq_elv_switch_back(struct list_head *head,
4673				  struct request_queue *q)
4674{
4675	struct blk_mq_qe_pair *qe;
4676	struct elevator_type *t;
4677
4678	qe = blk_lookup_qe_pair(head, q);
4679	if (!qe)
4680		return;
4681	t = qe->type;
4682	list_del(&qe->node);
4683	kfree(qe);
4684
4685	mutex_lock(&q->sysfs_lock);
4686	elevator_switch(q, t);
4687	/* drop the reference acquired in blk_mq_elv_switch_none */
4688	elevator_put(t);
4689	mutex_unlock(&q->sysfs_lock);
4690}
4691
4692static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4693							int nr_hw_queues)
4694{
4695	struct request_queue *q;
4696	LIST_HEAD(head);
4697	int prev_nr_hw_queues;
 
4698
4699	lockdep_assert_held(&set->tag_list_lock);
4700
4701	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4702		nr_hw_queues = nr_cpu_ids;
4703	if (nr_hw_queues < 1)
4704		return;
4705	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4706		return;
4707
4708	list_for_each_entry(q, &set->tag_list, tag_set_list)
4709		blk_mq_freeze_queue(q);
4710	/*
4711	 * Switch IO scheduler to 'none', cleaning up the data associated
4712	 * with the previous scheduler. We will switch back once we are done
4713	 * updating the new sw to hw queue mappings.
4714	 */
4715	list_for_each_entry(q, &set->tag_list, tag_set_list)
4716		if (!blk_mq_elv_switch_none(&head, q))
4717			goto switch_back;
4718
4719	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4720		blk_mq_debugfs_unregister_hctxs(q);
4721		blk_mq_sysfs_unregister_hctxs(q);
4722	}
4723
4724	prev_nr_hw_queues = set->nr_hw_queues;
4725	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4726		goto reregister;
4727
4728fallback:
4729	blk_mq_update_queue_map(set);
4730	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4731		blk_mq_realloc_hw_ctxs(set, q);
4732		blk_mq_update_poll_flag(q);
4733		if (q->nr_hw_queues != set->nr_hw_queues) {
4734			int i = prev_nr_hw_queues;
4735
4736			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4737					nr_hw_queues, prev_nr_hw_queues);
4738			for (; i < set->nr_hw_queues; i++)
4739				__blk_mq_free_map_and_rqs(set, i);
4740
4741			set->nr_hw_queues = prev_nr_hw_queues;
4742			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4743			goto fallback;
4744		}
4745		blk_mq_map_swqueue(q);
4746	}
4747
4748reregister:
4749	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750		blk_mq_sysfs_register_hctxs(q);
4751		blk_mq_debugfs_register_hctxs(q);
4752	}
4753
4754switch_back:
4755	list_for_each_entry(q, &set->tag_list, tag_set_list)
4756		blk_mq_elv_switch_back(&head, q);
4757
4758	list_for_each_entry(q, &set->tag_list, tag_set_list)
4759		blk_mq_unfreeze_queue(q);
 
 
 
 
4760}
4761
4762void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4763{
4764	mutex_lock(&set->tag_list_lock);
4765	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4766	mutex_unlock(&set->tag_list_lock);
4767}
4768EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4769
4770/* Enable polling stats and return whether they were already enabled. */
4771static bool blk_poll_stats_enable(struct request_queue *q)
4772{
4773	if (q->poll_stat)
4774		return true;
4775
4776	return blk_stats_alloc_enable(q);
4777}
4778
4779static void blk_mq_poll_stats_start(struct request_queue *q)
4780{
4781	/*
4782	 * We don't arm the callback if polling stats are not enabled or the
4783	 * callback is already active.
4784	 */
4785	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4786		return;
4787
4788	blk_stat_activate_msecs(q->poll_cb, 100);
4789}
4790
4791static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4792{
4793	struct request_queue *q = cb->data;
4794	int bucket;
4795
4796	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4797		if (cb->stat[bucket].nr_samples)
4798			q->poll_stat[bucket] = cb->stat[bucket];
4799	}
4800}
4801
4802static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4803				       struct request *rq)
4804{
4805	unsigned long ret = 0;
4806	int bucket;
4807
4808	/*
4809	 * If stats collection isn't on, don't sleep but turn it on for
4810	 * future users
4811	 */
4812	if (!blk_poll_stats_enable(q))
4813		return 0;
4814
4815	/*
4816	 * As an optimistic guess, use half of the mean service time
4817	 * for this type of request. We can (and should) make this smarter.
4818	 * For instance, if the completion latencies are tight, we can
4819	 * get closer than just half the mean. This is especially
4820	 * important on devices where the completion latencies are longer
4821	 * than ~10 usec. We do use the stats for the relevant IO size
4822	 * if available which does lead to better estimates.
4823	 */
4824	bucket = blk_mq_poll_stats_bkt(rq);
4825	if (bucket < 0)
4826		return ret;
4827
4828	if (q->poll_stat[bucket].nr_samples)
4829		ret = (q->poll_stat[bucket].mean + 1) / 2;
4830
4831	return ret;
4832}
4833
4834static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4835{
4836	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4837	struct request *rq = blk_qc_to_rq(hctx, qc);
4838	struct hrtimer_sleeper hs;
4839	enum hrtimer_mode mode;
4840	unsigned int nsecs;
4841	ktime_t kt;
4842
4843	/*
4844	 * If a request has completed on queue that uses an I/O scheduler, we
4845	 * won't get back a request from blk_qc_to_rq.
4846	 */
4847	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4848		return false;
4849
4850	/*
4851	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4852	 *
4853	 *  0:	use half of prev avg
4854	 * >0:	use this specific value
4855	 */
4856	if (q->poll_nsec > 0)
4857		nsecs = q->poll_nsec;
4858	else
4859		nsecs = blk_mq_poll_nsecs(q, rq);
4860
4861	if (!nsecs)
4862		return false;
4863
4864	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4865
4866	/*
4867	 * This will be replaced with the stats tracking code, using
4868	 * 'avg_completion_time / 2' as the pre-sleep target.
4869	 */
4870	kt = nsecs;
4871
4872	mode = HRTIMER_MODE_REL;
4873	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4874	hrtimer_set_expires(&hs.timer, kt);
4875
4876	do {
4877		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4878			break;
4879		set_current_state(TASK_UNINTERRUPTIBLE);
4880		hrtimer_sleeper_start_expires(&hs, mode);
4881		if (hs.task)
4882			io_schedule();
4883		hrtimer_cancel(&hs.timer);
4884		mode = HRTIMER_MODE_ABS;
4885	} while (hs.task && !signal_pending(current));
4886
4887	__set_current_state(TASK_RUNNING);
4888	destroy_hrtimer_on_stack(&hs.timer);
4889
4890	/*
4891	 * If we sleep, have the caller restart the poll loop to reset the
4892	 * state.  Like for the other success return cases, the caller is
4893	 * responsible for checking if the IO completed.  If the IO isn't
4894	 * complete, we'll get called again and will go straight to the busy
4895	 * poll loop.
4896	 */
4897	return true;
4898}
4899
4900static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4901			       struct io_comp_batch *iob, unsigned int flags)
4902{
4903	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4904	long state = get_current_state();
4905	int ret;
4906
4907	do {
4908		ret = q->mq_ops->poll(hctx, iob);
4909		if (ret > 0) {
4910			__set_current_state(TASK_RUNNING);
4911			return ret;
4912		}
4913
4914		if (signal_pending_state(state, current))
4915			__set_current_state(TASK_RUNNING);
4916		if (task_is_running(current))
4917			return 1;
4918
4919		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4920			break;
4921		cpu_relax();
4922	} while (!need_resched());
4923
4924	__set_current_state(TASK_RUNNING);
4925	return 0;
4926}
4927
4928int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4929		unsigned int flags)
4930{
4931	if (!(flags & BLK_POLL_NOSLEEP) &&
4932	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4933		if (blk_mq_poll_hybrid(q, cookie))
4934			return 1;
4935	}
4936	return blk_mq_poll_classic(q, cookie, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4937}
 
4938
4939unsigned int blk_mq_rq_cpu(struct request *rq)
4940{
4941	return rq->mq_ctx->cpu;
4942}
4943EXPORT_SYMBOL(blk_mq_rq_cpu);
4944
4945void blk_mq_cancel_work_sync(struct request_queue *q)
4946{
4947	struct blk_mq_hw_ctx *hctx;
4948	unsigned long i;
4949
4950	cancel_delayed_work_sync(&q->requeue_work);
4951
4952	queue_for_each_hw_ctx(q, hctx, i)
4953		cancel_delayed_work_sync(&hctx->run_work);
4954}
4955
4956static int __init blk_mq_init(void)
4957{
4958	int i;
4959
4960	for_each_possible_cpu(i)
4961		init_llist_head(&per_cpu(blk_cpu_done, i));
 
 
 
4962	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4963
4964	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4965				  "block/softirq:dead", NULL,
4966				  blk_softirq_cpu_dead);
4967	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4968				blk_mq_hctx_notify_dead);
4969	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4970				blk_mq_hctx_notify_online,
4971				blk_mq_hctx_notify_offline);
4972	return 0;
4973}
4974subsys_initcall(blk_mq_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
 
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30#include <linux/part_stat.h>
  31#include <linux/sched/isolation.h>
  32
  33#include <trace/events/block.h>
  34
 
  35#include <linux/t10-pi.h>
  36#include "blk.h"
  37#include "blk-mq.h"
  38#include "blk-mq-debugfs.h"
 
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
 
  43
  44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  45static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
  46static DEFINE_MUTEX(blk_mq_cpuhp_lock);
  47
  48static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
  49static void blk_mq_request_bypass_insert(struct request *rq,
  50		blk_insert_t flags);
  51static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
  52		struct list_head *list);
  53static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
  54			 struct io_comp_batch *iob, unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56/*
  57 * Check if any of the ctx, dispatch list or elevator
  58 * have pending work in this hardware queue.
  59 */
  60static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  61{
  62	return !list_empty_careful(&hctx->dispatch) ||
  63		sbitmap_any_bit_set(&hctx->ctx_map) ||
  64			blk_mq_sched_has_work(hctx);
  65}
  66
  67/*
  68 * Mark this ctx as having pending work in this hardware queue
  69 */
  70static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  71				     struct blk_mq_ctx *ctx)
  72{
  73	const int bit = ctx->index_hw[hctx->type];
  74
  75	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  76		sbitmap_set_bit(&hctx->ctx_map, bit);
  77}
  78
  79static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  80				      struct blk_mq_ctx *ctx)
  81{
  82	const int bit = ctx->index_hw[hctx->type];
  83
  84	sbitmap_clear_bit(&hctx->ctx_map, bit);
  85}
  86
  87struct mq_inflight {
  88	struct block_device *part;
  89	unsigned int inflight[2];
  90};
  91
  92static bool blk_mq_check_inflight(struct request *rq, void *priv)
  93{
  94	struct mq_inflight *mi = priv;
  95
  96	if (rq->rq_flags & RQF_IO_STAT &&
  97	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
  98	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
  99		mi->inflight[rq_data_dir(rq)]++;
 100
 101	return true;
 102}
 103
 104unsigned int blk_mq_in_flight(struct request_queue *q,
 105		struct block_device *part)
 106{
 107	struct mq_inflight mi = { .part = part };
 108
 109	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 110
 111	return mi.inflight[0] + mi.inflight[1];
 112}
 113
 114void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 115		unsigned int inflight[2])
 116{
 117	struct mq_inflight mi = { .part = part };
 118
 119	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 120	inflight[0] = mi.inflight[0];
 121	inflight[1] = mi.inflight[1];
 122}
 123
 124#ifdef CONFIG_LOCKDEP
 125static bool blk_freeze_set_owner(struct request_queue *q,
 126				 struct task_struct *owner)
 127{
 128	if (!owner)
 129		return false;
 130
 131	if (!q->mq_freeze_depth) {
 132		q->mq_freeze_owner = owner;
 133		q->mq_freeze_owner_depth = 1;
 134		return true;
 135	}
 136
 137	if (owner == q->mq_freeze_owner)
 138		q->mq_freeze_owner_depth += 1;
 139	return false;
 140}
 141
 142/* verify the last unfreeze in owner context */
 143static bool blk_unfreeze_check_owner(struct request_queue *q)
 144{
 145	if (!q->mq_freeze_owner)
 146		return false;
 147	if (q->mq_freeze_owner != current)
 148		return false;
 149	if (--q->mq_freeze_owner_depth == 0) {
 150		q->mq_freeze_owner = NULL;
 151		return true;
 152	}
 153	return false;
 154}
 155
 156#else
 157
 158static bool blk_freeze_set_owner(struct request_queue *q,
 159				 struct task_struct *owner)
 160{
 161	return false;
 162}
 163
 164static bool blk_unfreeze_check_owner(struct request_queue *q)
 165{
 166	return false;
 167}
 168#endif
 169
 170bool __blk_freeze_queue_start(struct request_queue *q,
 171			      struct task_struct *owner)
 172{
 173	bool freeze;
 174
 175	mutex_lock(&q->mq_freeze_lock);
 176	freeze = blk_freeze_set_owner(q, owner);
 177	if (++q->mq_freeze_depth == 1) {
 178		percpu_ref_kill(&q->q_usage_counter);
 179		mutex_unlock(&q->mq_freeze_lock);
 180		if (queue_is_mq(q))
 181			blk_mq_run_hw_queues(q, false);
 182	} else {
 183		mutex_unlock(&q->mq_freeze_lock);
 184	}
 185
 186	return freeze;
 187}
 188
 189void blk_freeze_queue_start(struct request_queue *q)
 190{
 191	if (__blk_freeze_queue_start(q, current))
 192		blk_freeze_acquire_lock(q, false, false);
 193}
 194EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 195
 196void blk_mq_freeze_queue_wait(struct request_queue *q)
 197{
 198	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 201
 202int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 203				     unsigned long timeout)
 204{
 205	return wait_event_timeout(q->mq_freeze_wq,
 206					percpu_ref_is_zero(&q->q_usage_counter),
 207					timeout);
 208}
 209EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 210
 211void blk_mq_freeze_queue(struct request_queue *q)
 
 
 
 
 212{
 
 
 
 
 
 
 
 213	blk_freeze_queue_start(q);
 214	blk_mq_freeze_queue_wait(q);
 215}
 
 
 
 
 
 
 
 
 
 216EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 217
 218bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 219{
 220	bool unfreeze;
 221
 222	mutex_lock(&q->mq_freeze_lock);
 223	if (force_atomic)
 224		q->q_usage_counter.data->force_atomic = true;
 225	q->mq_freeze_depth--;
 226	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 227	if (!q->mq_freeze_depth) {
 228		percpu_ref_resurrect(&q->q_usage_counter);
 229		wake_up_all(&q->mq_freeze_wq);
 230	}
 231	unfreeze = blk_unfreeze_check_owner(q);
 232	mutex_unlock(&q->mq_freeze_lock);
 233
 234	return unfreeze;
 235}
 236
 237void blk_mq_unfreeze_queue(struct request_queue *q)
 238{
 239	if (__blk_mq_unfreeze_queue(q, false))
 240		blk_unfreeze_release_lock(q, false, false);
 241}
 242EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 243
 244/*
 245 * non_owner variant of blk_freeze_queue_start
 246 *
 247 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
 248 * by the same task.  This is fragile and should not be used if at all
 249 * possible.
 250 */
 251void blk_freeze_queue_start_non_owner(struct request_queue *q)
 252{
 253	__blk_freeze_queue_start(q, NULL);
 254}
 255EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
 256
 257/* non_owner variant of blk_mq_unfreeze_queue */
 258void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
 259{
 260	__blk_mq_unfreeze_queue(q, false);
 261}
 262EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
 263
 264/*
 265 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 266 * mpt3sas driver such that this function can be removed.
 267 */
 268void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 269{
 270	unsigned long flags;
 271
 272	spin_lock_irqsave(&q->queue_lock, flags);
 273	if (!q->quiesce_depth++)
 274		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 275	spin_unlock_irqrestore(&q->queue_lock, flags);
 276}
 277EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 278
 279/**
 280 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 281 * @set: tag_set to wait on
 282 *
 283 * Note: it is driver's responsibility for making sure that quiesce has
 284 * been started on or more of the request_queues of the tag_set.  This
 285 * function only waits for the quiesce on those request_queues that had
 286 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 287 */
 288void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 289{
 290	if (set->flags & BLK_MQ_F_BLOCKING)
 291		synchronize_srcu(set->srcu);
 292	else
 293		synchronize_rcu();
 294}
 295EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 296
 297/**
 298 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 299 * @q: request queue.
 300 *
 301 * Note: this function does not prevent that the struct request end_io()
 302 * callback function is invoked. Once this function is returned, we make
 303 * sure no dispatch can happen until the queue is unquiesced via
 304 * blk_mq_unquiesce_queue().
 305 */
 306void blk_mq_quiesce_queue(struct request_queue *q)
 307{
 308	blk_mq_quiesce_queue_nowait(q);
 309	/* nothing to wait for non-mq queues */
 310	if (queue_is_mq(q))
 311		blk_mq_wait_quiesce_done(q->tag_set);
 312}
 313EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 314
 315/*
 316 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 317 * @q: request queue.
 318 *
 319 * This function recovers queue into the state before quiescing
 320 * which is done by blk_mq_quiesce_queue.
 321 */
 322void blk_mq_unquiesce_queue(struct request_queue *q)
 323{
 324	unsigned long flags;
 325	bool run_queue = false;
 326
 327	spin_lock_irqsave(&q->queue_lock, flags);
 328	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 329		;
 330	} else if (!--q->quiesce_depth) {
 331		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 332		run_queue = true;
 333	}
 334	spin_unlock_irqrestore(&q->queue_lock, flags);
 335
 336	/* dispatch requests which are inserted during quiescing */
 337	if (run_queue)
 338		blk_mq_run_hw_queues(q, true);
 339}
 340EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 341
 342void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 343{
 344	struct request_queue *q;
 345
 346	mutex_lock(&set->tag_list_lock);
 347	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 348		if (!blk_queue_skip_tagset_quiesce(q))
 349			blk_mq_quiesce_queue_nowait(q);
 350	}
 
 351	mutex_unlock(&set->tag_list_lock);
 352
 353	blk_mq_wait_quiesce_done(set);
 354}
 355EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 356
 357void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 358{
 359	struct request_queue *q;
 360
 361	mutex_lock(&set->tag_list_lock);
 362	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 363		if (!blk_queue_skip_tagset_quiesce(q))
 364			blk_mq_unquiesce_queue(q);
 365	}
 366	mutex_unlock(&set->tag_list_lock);
 367}
 368EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 369
 370void blk_mq_wake_waiters(struct request_queue *q)
 371{
 372	struct blk_mq_hw_ctx *hctx;
 373	unsigned long i;
 374
 375	queue_for_each_hw_ctx(q, hctx, i)
 376		if (blk_mq_hw_queue_mapped(hctx))
 377			blk_mq_tag_wakeup_all(hctx->tags, true);
 378}
 379
 380void blk_rq_init(struct request_queue *q, struct request *rq)
 381{
 382	memset(rq, 0, sizeof(*rq));
 383
 384	INIT_LIST_HEAD(&rq->queuelist);
 385	rq->q = q;
 386	rq->__sector = (sector_t) -1;
 387	INIT_HLIST_NODE(&rq->hash);
 388	RB_CLEAR_NODE(&rq->rb_node);
 389	rq->tag = BLK_MQ_NO_TAG;
 390	rq->internal_tag = BLK_MQ_NO_TAG;
 391	rq->start_time_ns = blk_time_get_ns();
 
 392	blk_crypto_rq_set_defaults(rq);
 393}
 394EXPORT_SYMBOL(blk_rq_init);
 395
 396/* Set start and alloc time when the allocated request is actually used */
 397static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
 398{
 399#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 400	if (blk_queue_rq_alloc_time(rq->q))
 401		rq->alloc_time_ns = alloc_time_ns;
 402	else
 403		rq->alloc_time_ns = 0;
 404#endif
 405}
 406
 407static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 408		struct blk_mq_tags *tags, unsigned int tag)
 409{
 410	struct blk_mq_ctx *ctx = data->ctx;
 411	struct blk_mq_hw_ctx *hctx = data->hctx;
 412	struct request_queue *q = data->q;
 413	struct request *rq = tags->static_rqs[tag];
 414
 415	rq->q = q;
 416	rq->mq_ctx = ctx;
 417	rq->mq_hctx = hctx;
 418	rq->cmd_flags = data->cmd_flags;
 419
 420	if (data->flags & BLK_MQ_REQ_PM)
 421		data->rq_flags |= RQF_PM;
 
 
 422	rq->rq_flags = data->rq_flags;
 423
 424	if (data->rq_flags & RQF_SCHED_TAGS) {
 
 
 
 425		rq->tag = BLK_MQ_NO_TAG;
 426		rq->internal_tag = tag;
 427	} else {
 428		rq->tag = tag;
 429		rq->internal_tag = BLK_MQ_NO_TAG;
 430	}
 431	rq->timeout = 0;
 432
 
 
 
 
 433	rq->part = NULL;
 
 
 
 434	rq->io_start_time_ns = 0;
 435	rq->stats_sectors = 0;
 436	rq->nr_phys_segments = 0;
 
 437	rq->nr_integrity_segments = 0;
 
 438	rq->end_io = NULL;
 439	rq->end_io_data = NULL;
 440
 441	blk_crypto_rq_set_defaults(rq);
 442	INIT_LIST_HEAD(&rq->queuelist);
 443	/* tag was already set */
 444	WRITE_ONCE(rq->deadline, 0);
 445	req_ref_set(rq, 1);
 446
 447	if (rq->rq_flags & RQF_USE_SCHED) {
 448		struct elevator_queue *e = data->q->elevator;
 449
 450		INIT_HLIST_NODE(&rq->hash);
 451		RB_CLEAR_NODE(&rq->rb_node);
 452
 453		if (e->type->ops.prepare_request)
 
 454			e->type->ops.prepare_request(rq);
 
 
 455	}
 456
 457	return rq;
 458}
 459
 460static inline struct request *
 461__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
 
 462{
 463	unsigned int tag, tag_offset;
 464	struct blk_mq_tags *tags;
 465	struct request *rq;
 466	unsigned long tag_mask;
 467	int i, nr = 0;
 468
 469	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 470	if (unlikely(!tag_mask))
 471		return NULL;
 472
 473	tags = blk_mq_tags_from_data(data);
 474	for (i = 0; tag_mask; i++) {
 475		if (!(tag_mask & (1UL << i)))
 476			continue;
 477		tag = tag_offset + i;
 478		prefetch(tags->static_rqs[tag]);
 479		tag_mask &= ~(1UL << i);
 480		rq = blk_mq_rq_ctx_init(data, tags, tag);
 481		rq_list_add_head(data->cached_rqs, rq);
 482		nr++;
 483	}
 484	if (!(data->rq_flags & RQF_SCHED_TAGS))
 485		blk_mq_add_active_requests(data->hctx, nr);
 486	/* caller already holds a reference, add for remainder */
 487	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 488	data->nr_tags -= nr;
 489
 490	return rq_list_pop(data->cached_rqs);
 491}
 492
 493static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 494{
 495	struct request_queue *q = data->q;
 496	u64 alloc_time_ns = 0;
 497	struct request *rq;
 498	unsigned int tag;
 499
 500	/* alloc_time includes depth and tag waits */
 501	if (blk_queue_rq_alloc_time(q))
 502		alloc_time_ns = blk_time_get_ns();
 503
 504	if (data->cmd_flags & REQ_NOWAIT)
 505		data->flags |= BLK_MQ_REQ_NOWAIT;
 506
 507retry:
 508	data->ctx = blk_mq_get_ctx(q);
 509	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 510
 511	if (q->elevator) {
 512		/*
 513		 * All requests use scheduler tags when an I/O scheduler is
 514		 * enabled for the queue.
 515		 */
 516		data->rq_flags |= RQF_SCHED_TAGS;
 517
 518		/*
 519		 * Flush/passthrough requests are special and go directly to the
 520		 * dispatch list.
 
 521		 */
 522		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
 523		    !blk_op_is_passthrough(data->cmd_flags)) {
 524			struct elevator_mq_ops *ops = &q->elevator->type->ops;
 525
 526			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
 527
 528			data->rq_flags |= RQF_USE_SCHED;
 529			if (ops->limit_depth)
 530				ops->limit_depth(data->cmd_flags, data);
 531		}
 532	} else {
 533		blk_mq_tag_busy(data->hctx);
 534	}
 535
 536	if (data->flags & BLK_MQ_REQ_RESERVED)
 537		data->rq_flags |= RQF_RESV;
 538
 539	/*
 540	 * Try batched alloc if we want more than 1 tag.
 541	 */
 542	if (data->nr_tags > 1) {
 543		rq = __blk_mq_alloc_requests_batch(data);
 544		if (rq) {
 545			blk_mq_rq_time_init(rq, alloc_time_ns);
 546			return rq;
 547		}
 548		data->nr_tags = 1;
 549	}
 550
 551	/*
 552	 * Waiting allocations only fail because of an inactive hctx.  In that
 553	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 554	 * should have migrated us to an online CPU by now.
 555	 */
 556	tag = blk_mq_get_tag(data);
 557	if (tag == BLK_MQ_NO_TAG) {
 558		if (data->flags & BLK_MQ_REQ_NOWAIT)
 559			return NULL;
 560		/*
 561		 * Give up the CPU and sleep for a random short time to
 562		 * ensure that thread using a realtime scheduling class
 563		 * are migrated off the CPU, and thus off the hctx that
 564		 * is going away.
 565		 */
 566		msleep(3);
 567		goto retry;
 568	}
 569
 570	if (!(data->rq_flags & RQF_SCHED_TAGS))
 571		blk_mq_inc_active_requests(data->hctx);
 572	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
 573	blk_mq_rq_time_init(rq, alloc_time_ns);
 574	return rq;
 575}
 576
 577static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 578					    struct blk_plug *plug,
 579					    blk_opf_t opf,
 580					    blk_mq_req_flags_t flags)
 581{
 582	struct blk_mq_alloc_data data = {
 583		.q		= q,
 584		.flags		= flags,
 585		.cmd_flags	= opf,
 586		.nr_tags	= plug->nr_ios,
 587		.cached_rqs	= &plug->cached_rqs,
 588	};
 589	struct request *rq;
 590
 591	if (blk_queue_enter(q, flags))
 592		return NULL;
 593
 594	plug->nr_ios = 1;
 595
 596	rq = __blk_mq_alloc_requests(&data);
 597	if (unlikely(!rq))
 598		blk_queue_exit(q);
 599	return rq;
 600}
 601
 602static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 603						   blk_opf_t opf,
 604						   blk_mq_req_flags_t flags)
 605{
 606	struct blk_plug *plug = current->plug;
 607	struct request *rq;
 608
 609	if (!plug)
 610		return NULL;
 611
 612	if (rq_list_empty(&plug->cached_rqs)) {
 613		if (plug->nr_ios == 1)
 614			return NULL;
 615		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 616		if (!rq)
 617			return NULL;
 618	} else {
 619		rq = rq_list_peek(&plug->cached_rqs);
 620		if (!rq || rq->q != q)
 621			return NULL;
 622
 623		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 624			return NULL;
 625		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 626			return NULL;
 627
 628		rq_list_pop(&plug->cached_rqs);
 629		blk_mq_rq_time_init(rq, blk_time_get_ns());
 630	}
 631
 632	rq->cmd_flags = opf;
 633	INIT_LIST_HEAD(&rq->queuelist);
 634	return rq;
 635}
 636
 637struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 638		blk_mq_req_flags_t flags)
 639{
 640	struct request *rq;
 641
 642	rq = blk_mq_alloc_cached_request(q, opf, flags);
 643	if (!rq) {
 644		struct blk_mq_alloc_data data = {
 645			.q		= q,
 646			.flags		= flags,
 647			.cmd_flags	= opf,
 648			.nr_tags	= 1,
 649		};
 650		int ret;
 651
 652		ret = blk_queue_enter(q, flags);
 653		if (ret)
 654			return ERR_PTR(ret);
 655
 656		rq = __blk_mq_alloc_requests(&data);
 657		if (!rq)
 658			goto out_queue_exit;
 659	}
 660	rq->__data_len = 0;
 661	rq->__sector = (sector_t) -1;
 662	rq->bio = rq->biotail = NULL;
 663	return rq;
 664out_queue_exit:
 665	blk_queue_exit(q);
 666	return ERR_PTR(-EWOULDBLOCK);
 667}
 668EXPORT_SYMBOL(blk_mq_alloc_request);
 669
 670struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 671	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 672{
 673	struct blk_mq_alloc_data data = {
 674		.q		= q,
 675		.flags		= flags,
 676		.cmd_flags	= opf,
 677		.nr_tags	= 1,
 678	};
 679	u64 alloc_time_ns = 0;
 680	struct request *rq;
 681	unsigned int cpu;
 682	unsigned int tag;
 683	int ret;
 684
 685	/* alloc_time includes depth and tag waits */
 686	if (blk_queue_rq_alloc_time(q))
 687		alloc_time_ns = blk_time_get_ns();
 688
 689	/*
 690	 * If the tag allocator sleeps we could get an allocation for a
 691	 * different hardware context.  No need to complicate the low level
 692	 * allocator for this for the rare use case of a command tied to
 693	 * a specific queue.
 694	 */
 695	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
 696	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
 697		return ERR_PTR(-EINVAL);
 698
 699	if (hctx_idx >= q->nr_hw_queues)
 700		return ERR_PTR(-EIO);
 701
 702	ret = blk_queue_enter(q, flags);
 703	if (ret)
 704		return ERR_PTR(ret);
 705
 706	/*
 707	 * Check if the hardware context is actually mapped to anything.
 708	 * If not tell the caller that it should skip this queue.
 709	 */
 710	ret = -EXDEV;
 711	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 712	if (!blk_mq_hw_queue_mapped(data.hctx))
 713		goto out_queue_exit;
 714	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 715	if (cpu >= nr_cpu_ids)
 716		goto out_queue_exit;
 717	data.ctx = __blk_mq_get_ctx(q, cpu);
 718
 719	if (q->elevator)
 720		data.rq_flags |= RQF_SCHED_TAGS;
 721	else
 722		blk_mq_tag_busy(data.hctx);
 723
 724	if (flags & BLK_MQ_REQ_RESERVED)
 725		data.rq_flags |= RQF_RESV;
 726
 727	ret = -EWOULDBLOCK;
 728	tag = blk_mq_get_tag(&data);
 729	if (tag == BLK_MQ_NO_TAG)
 730		goto out_queue_exit;
 731	if (!(data.rq_flags & RQF_SCHED_TAGS))
 732		blk_mq_inc_active_requests(data.hctx);
 733	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
 734	blk_mq_rq_time_init(rq, alloc_time_ns);
 735	rq->__data_len = 0;
 736	rq->__sector = (sector_t) -1;
 737	rq->bio = rq->biotail = NULL;
 738	return rq;
 739
 740out_queue_exit:
 741	blk_queue_exit(q);
 742	return ERR_PTR(ret);
 743}
 744EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 745
 746static void blk_mq_finish_request(struct request *rq)
 747{
 748	struct request_queue *q = rq->q;
 749
 750	blk_zone_finish_request(rq);
 751
 752	if (rq->rq_flags & RQF_USE_SCHED) {
 753		q->elevator->type->ops.finish_request(rq);
 754		/*
 755		 * For postflush request that may need to be
 756		 * completed twice, we should clear this flag
 757		 * to avoid double finish_request() on the rq.
 758		 */
 759		rq->rq_flags &= ~RQF_USE_SCHED;
 760	}
 761}
 762
 763static void __blk_mq_free_request(struct request *rq)
 764{
 765	struct request_queue *q = rq->q;
 766	struct blk_mq_ctx *ctx = rq->mq_ctx;
 767	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 768	const int sched_tag = rq->internal_tag;
 769
 770	blk_crypto_free_request(rq);
 771	blk_pm_mark_last_busy(rq);
 772	rq->mq_hctx = NULL;
 773
 774	if (rq->tag != BLK_MQ_NO_TAG) {
 775		blk_mq_dec_active_requests(hctx);
 776		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 777	}
 778	if (sched_tag != BLK_MQ_NO_TAG)
 779		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 780	blk_mq_sched_restart(hctx);
 781	blk_queue_exit(q);
 782}
 783
 784void blk_mq_free_request(struct request *rq)
 785{
 786	struct request_queue *q = rq->q;
 
 
 
 
 
 787
 788	blk_mq_finish_request(rq);
 
 789
 790	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 791		laptop_io_completion(q->disk->bdi);
 792
 793	rq_qos_done(q, rq);
 794
 795	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 796	if (req_ref_put_and_test(rq))
 797		__blk_mq_free_request(rq);
 798}
 799EXPORT_SYMBOL_GPL(blk_mq_free_request);
 800
 801void blk_mq_free_plug_rqs(struct blk_plug *plug)
 802{
 803	struct request *rq;
 804
 805	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
 806		blk_mq_free_request(rq);
 807}
 808
 809void blk_dump_rq_flags(struct request *rq, char *msg)
 810{
 811	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 812		rq->q->disk ? rq->q->disk->disk_name : "?",
 813		(__force unsigned long long) rq->cmd_flags);
 814
 815	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 816	       (unsigned long long)blk_rq_pos(rq),
 817	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 818	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 819	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 820}
 821EXPORT_SYMBOL(blk_dump_rq_flags);
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823static void blk_account_io_completion(struct request *req, unsigned int bytes)
 824{
 825	if (req->rq_flags & RQF_IO_STAT) {
 826		const int sgrp = op_stat_group(req_op(req));
 827
 828		part_stat_lock();
 829		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 830		part_stat_unlock();
 831	}
 832}
 833
 834static void blk_print_req_error(struct request *req, blk_status_t status)
 835{
 836	printk_ratelimited(KERN_ERR
 837		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 838		"phys_seg %u prio class %u\n",
 839		blk_status_to_str(status),
 840		req->q->disk ? req->q->disk->disk_name : "?",
 841		blk_rq_pos(req), (__force u32)req_op(req),
 842		blk_op_str(req_op(req)),
 843		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 844		req->nr_phys_segments,
 845		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
 846}
 847
 848/*
 849 * Fully end IO on a request. Does not support partial completions, or
 850 * errors.
 851 */
 852static void blk_complete_request(struct request *req)
 853{
 854	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 855	int total_bytes = blk_rq_bytes(req);
 856	struct bio *bio = req->bio;
 857
 858	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 859
 860	if (!bio)
 861		return;
 862
 
 863	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 864		blk_integrity_complete(req, total_bytes);
 865
 866	/*
 867	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 868	 * bio_endio().  Therefore, the keyslot must be released before that.
 869	 */
 870	blk_crypto_rq_put_keyslot(req);
 871
 872	blk_account_io_completion(req, total_bytes);
 873
 874	do {
 875		struct bio *next = bio->bi_next;
 876
 877		/* Completion has already been traced */
 878		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 879
 880		blk_zone_update_request_bio(req, bio);
 
 881
 882		if (!is_flush)
 883			bio_endio(bio);
 884		bio = next;
 885	} while (bio);
 886
 887	/*
 888	 * Reset counters so that the request stacking driver
 889	 * can find how many bytes remain in the request
 890	 * later.
 891	 */
 892	if (!req->end_io) {
 893		req->bio = NULL;
 894		req->__data_len = 0;
 895	}
 896}
 897
 898/**
 899 * blk_update_request - Complete multiple bytes without completing the request
 900 * @req:      the request being processed
 901 * @error:    block status code
 902 * @nr_bytes: number of bytes to complete for @req
 903 *
 904 * Description:
 905 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 906 *     the request structure even if @req doesn't have leftover.
 907 *     If @req has leftover, sets it up for the next range of segments.
 908 *
 909 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 910 *     %false return from this function.
 911 *
 912 * Note:
 913 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 914 *      except in the consistency check at the end of this function.
 915 *
 916 * Return:
 917 *     %false - this request doesn't have any more data
 918 *     %true  - this request has more data
 919 **/
 920bool blk_update_request(struct request *req, blk_status_t error,
 921		unsigned int nr_bytes)
 922{
 923	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
 924	bool quiet = req->rq_flags & RQF_QUIET;
 925	int total_bytes;
 926
 927	trace_block_rq_complete(req, error, nr_bytes);
 928
 929	if (!req->bio)
 930		return false;
 931
 
 932	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 933	    error == BLK_STS_OK)
 934		blk_integrity_complete(req, nr_bytes);
 
 935
 936	/*
 937	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 938	 * bio_endio().  Therefore, the keyslot must be released before that.
 939	 */
 940	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
 941		__blk_crypto_rq_put_keyslot(req);
 942
 943	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
 944	    !test_bit(GD_DEAD, &req->q->disk->state)) {
 945		blk_print_req_error(req, error);
 946		trace_block_rq_error(req, error, nr_bytes);
 947	}
 948
 949	blk_account_io_completion(req, nr_bytes);
 950
 951	total_bytes = 0;
 952	while (req->bio) {
 953		struct bio *bio = req->bio;
 954		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 955
 956		if (unlikely(error))
 957			bio->bi_status = error;
 958
 959		if (bio_bytes == bio->bi_iter.bi_size) {
 960			req->bio = bio->bi_next;
 961		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
 962			/*
 963			 * Partial zone append completions cannot be supported
 964			 * as the BIO fragments may end up not being written
 965			 * sequentially.
 966			 */
 967			bio->bi_status = BLK_STS_IOERR;
 968		}
 969
 970		/* Completion has already been traced */
 971		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 972		if (unlikely(quiet))
 973			bio_set_flag(bio, BIO_QUIET);
 974
 975		bio_advance(bio, bio_bytes);
 976
 977		/* Don't actually finish bio if it's part of flush sequence */
 978		if (!bio->bi_iter.bi_size) {
 979			blk_zone_update_request_bio(req, bio);
 980			if (!is_flush)
 981				bio_endio(bio);
 982		}
 983
 984		total_bytes += bio_bytes;
 985		nr_bytes -= bio_bytes;
 986
 987		if (!nr_bytes)
 988			break;
 989	}
 990
 991	/*
 992	 * completely done
 993	 */
 994	if (!req->bio) {
 995		/*
 996		 * Reset counters so that the request stacking driver
 997		 * can find how many bytes remain in the request
 998		 * later.
 999		 */
1000		req->__data_len = 0;
1001		return false;
1002	}
1003
1004	req->__data_len -= total_bytes;
1005
1006	/* update sector only for requests with clear definition of sector */
1007	if (!blk_rq_is_passthrough(req))
1008		req->__sector += total_bytes >> 9;
1009
1010	/* mixed attributes always follow the first bio */
1011	if (req->rq_flags & RQF_MIXED_MERGE) {
1012		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1013		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1014	}
1015
1016	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1017		/*
1018		 * If total number of sectors is less than the first segment
1019		 * size, something has gone terribly wrong.
1020		 */
1021		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1022			blk_dump_rq_flags(req, "request botched");
1023			req->__data_len = blk_rq_cur_bytes(req);
1024		}
1025
1026		/* recalculate the number of segments */
1027		req->nr_phys_segments = blk_recalc_rq_segments(req);
1028	}
1029
1030	return true;
1031}
1032EXPORT_SYMBOL_GPL(blk_update_request);
1033
 
 
 
 
 
 
 
 
 
 
 
1034static inline void blk_account_io_done(struct request *req, u64 now)
1035{
1036	trace_block_io_done(req);
1037
1038	/*
1039	 * Account IO completion.  flush_rq isn't accounted as a
1040	 * normal IO on queueing nor completion.  Accounting the
1041	 * containing request is enough.
1042	 */
1043	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1044		const int sgrp = op_stat_group(req_op(req));
1045
1046		part_stat_lock();
1047		update_io_ticks(req->part, jiffies, true);
1048		part_stat_inc(req->part, ios[sgrp]);
1049		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1050		part_stat_local_dec(req->part,
1051				    in_flight[op_is_write(req_op(req))]);
1052		part_stat_unlock();
1053	}
1054}
1055
1056static inline bool blk_rq_passthrough_stats(struct request *req)
1057{
1058	struct bio *bio = req->bio;
1059
1060	if (!blk_queue_passthrough_stat(req->q))
1061		return false;
1062
1063	/* Requests without a bio do not transfer data. */
1064	if (!bio)
1065		return false;
1066
1067	/*
1068	 * Stats are accumulated in the bdev, so must have one attached to a
1069	 * bio to track stats. Most drivers do not set the bdev for passthrough
1070	 * requests, but nvme is one that will set it.
1071	 */
1072	if (!bio->bi_bdev)
1073		return false;
1074
1075	/*
1076	 * We don't know what a passthrough command does, but we know the
1077	 * payload size and data direction. Ensuring the size is aligned to the
1078	 * block size filters out most commands with payloads that don't
1079	 * represent sector access.
1080	 */
1081	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1082		return false;
1083	return true;
1084}
1085
1086static inline void blk_account_io_start(struct request *req)
1087{
1088	trace_block_io_start(req);
1089
1090	if (!blk_queue_io_stat(req->q))
1091		return;
1092	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1093		return;
1094
1095	req->rq_flags |= RQF_IO_STAT;
1096	req->start_time_ns = blk_time_get_ns();
1097
1098	/*
1099	 * All non-passthrough requests are created from a bio with one
1100	 * exception: when a flush command that is part of a flush sequence
1101	 * generated by the state machine in blk-flush.c is cloned onto the
1102	 * lower device by dm-multipath we can get here without a bio.
1103	 */
1104	if (req->bio)
1105		req->part = req->bio->bi_bdev;
1106	else
1107		req->part = req->q->disk->part0;
1108
1109	part_stat_lock();
1110	update_io_ticks(req->part, jiffies, false);
1111	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1112	part_stat_unlock();
1113}
1114
 
 
 
 
 
 
1115static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1116{
1117	if (rq->rq_flags & RQF_STATS)
 
1118		blk_stat_add(rq, now);
 
1119
1120	blk_mq_sched_completed_request(rq, now);
1121	blk_account_io_done(rq, now);
1122}
1123
1124inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1125{
1126	if (blk_mq_need_time_stamp(rq))
1127		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1128
1129	blk_mq_finish_request(rq);
1130
1131	if (rq->end_io) {
1132		rq_qos_done(rq->q, rq);
1133		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1134			blk_mq_free_request(rq);
1135	} else {
1136		blk_mq_free_request(rq);
1137	}
1138}
1139EXPORT_SYMBOL(__blk_mq_end_request);
1140
1141void blk_mq_end_request(struct request *rq, blk_status_t error)
1142{
1143	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1144		BUG();
1145	__blk_mq_end_request(rq, error);
1146}
1147EXPORT_SYMBOL(blk_mq_end_request);
1148
1149#define TAG_COMP_BATCH		32
1150
1151static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1152					  int *tag_array, int nr_tags)
1153{
1154	struct request_queue *q = hctx->queue;
1155
1156	blk_mq_sub_active_requests(hctx, nr_tags);
 
 
 
 
 
1157
1158	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1159	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1160}
1161
1162void blk_mq_end_request_batch(struct io_comp_batch *iob)
1163{
1164	int tags[TAG_COMP_BATCH], nr_tags = 0;
1165	struct blk_mq_hw_ctx *cur_hctx = NULL;
1166	struct request *rq;
1167	u64 now = 0;
1168
1169	if (iob->need_ts)
1170		now = blk_time_get_ns();
1171
1172	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1173		prefetch(rq->bio);
1174		prefetch(rq->rq_next);
1175
1176		blk_complete_request(rq);
1177		if (iob->need_ts)
1178			__blk_mq_end_request_acct(rq, now);
1179
1180		blk_mq_finish_request(rq);
1181
1182		rq_qos_done(rq->q, rq);
1183
1184		/*
1185		 * If end_io handler returns NONE, then it still has
1186		 * ownership of the request.
1187		 */
1188		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1189			continue;
1190
1191		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1192		if (!req_ref_put_and_test(rq))
1193			continue;
1194
1195		blk_crypto_free_request(rq);
1196		blk_pm_mark_last_busy(rq);
1197
1198		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1199			if (cur_hctx)
1200				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1201			nr_tags = 0;
1202			cur_hctx = rq->mq_hctx;
1203		}
1204		tags[nr_tags++] = rq->tag;
1205	}
1206
1207	if (nr_tags)
1208		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1209}
1210EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1211
1212static void blk_complete_reqs(struct llist_head *list)
1213{
1214	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1215	struct request *rq, *next;
1216
1217	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1218		rq->q->mq_ops->complete(rq);
1219}
1220
1221static __latent_entropy void blk_done_softirq(void)
1222{
1223	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1224}
1225
1226static int blk_softirq_cpu_dead(unsigned int cpu)
1227{
1228	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1229	return 0;
1230}
1231
1232static void __blk_mq_complete_request_remote(void *data)
1233{
1234	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1235}
1236
1237static inline bool blk_mq_complete_need_ipi(struct request *rq)
1238{
1239	int cpu = raw_smp_processor_id();
1240
1241	if (!IS_ENABLED(CONFIG_SMP) ||
1242	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1243		return false;
1244	/*
1245	 * With force threaded interrupts enabled, raising softirq from an SMP
1246	 * function call will always result in waking the ksoftirqd thread.
1247	 * This is probably worse than completing the request on a different
1248	 * cache domain.
1249	 */
1250	if (force_irqthreads())
1251		return false;
1252
1253	/* same CPU or cache domain and capacity?  Complete locally */
1254	if (cpu == rq->mq_ctx->cpu ||
1255	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1256	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1257	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1258		return false;
1259
1260	/* don't try to IPI to an offline CPU */
1261	return cpu_online(rq->mq_ctx->cpu);
1262}
1263
1264static void blk_mq_complete_send_ipi(struct request *rq)
1265{
 
1266	unsigned int cpu;
1267
1268	cpu = rq->mq_ctx->cpu;
1269	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1270		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
 
 
 
1271}
1272
1273static void blk_mq_raise_softirq(struct request *rq)
1274{
1275	struct llist_head *list;
1276
1277	preempt_disable();
1278	list = this_cpu_ptr(&blk_cpu_done);
1279	if (llist_add(&rq->ipi_list, list))
1280		raise_softirq(BLOCK_SOFTIRQ);
1281	preempt_enable();
1282}
1283
1284bool blk_mq_complete_request_remote(struct request *rq)
1285{
1286	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1287
1288	/*
1289	 * For request which hctx has only one ctx mapping,
1290	 * or a polled request, always complete locally,
1291	 * it's pointless to redirect the completion.
1292	 */
1293	if ((rq->mq_hctx->nr_ctx == 1 &&
1294	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1295	     rq->cmd_flags & REQ_POLLED)
1296		return false;
1297
1298	if (blk_mq_complete_need_ipi(rq)) {
1299		blk_mq_complete_send_ipi(rq);
1300		return true;
1301	}
1302
1303	if (rq->q->nr_hw_queues == 1) {
1304		blk_mq_raise_softirq(rq);
1305		return true;
1306	}
1307	return false;
1308}
1309EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1310
1311/**
1312 * blk_mq_complete_request - end I/O on a request
1313 * @rq:		the request being processed
1314 *
1315 * Description:
1316 *	Complete a request by scheduling the ->complete_rq operation.
1317 **/
1318void blk_mq_complete_request(struct request *rq)
1319{
1320	if (!blk_mq_complete_request_remote(rq))
1321		rq->q->mq_ops->complete(rq);
1322}
1323EXPORT_SYMBOL(blk_mq_complete_request);
1324
1325/**
1326 * blk_mq_start_request - Start processing a request
1327 * @rq: Pointer to request to be started
1328 *
1329 * Function used by device drivers to notify the block layer that a request
1330 * is going to be processed now, so blk layer can do proper initializations
1331 * such as starting the timeout timer.
1332 */
1333void blk_mq_start_request(struct request *rq)
1334{
1335	struct request_queue *q = rq->q;
1336
1337	trace_block_rq_issue(rq);
1338
1339	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1340	    !blk_rq_is_passthrough(rq)) {
1341		rq->io_start_time_ns = blk_time_get_ns();
1342		rq->stats_sectors = blk_rq_sectors(rq);
1343		rq->rq_flags |= RQF_STATS;
1344		rq_qos_issue(q, rq);
1345	}
1346
1347	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1348
1349	blk_add_timer(rq);
1350	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1351	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1352
 
1353	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1354		blk_integrity_prepare(rq);
1355
1356	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1357	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1358}
1359EXPORT_SYMBOL(blk_mq_start_request);
1360
1361/*
1362 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1363 * queues. This is important for md arrays to benefit from merging
1364 * requests.
1365 */
1366static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1367{
1368	if (plug->multiple_queues)
1369		return BLK_MAX_REQUEST_COUNT * 2;
1370	return BLK_MAX_REQUEST_COUNT;
1371}
1372
1373static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1374{
1375	struct request *last = rq_list_peek(&plug->mq_list);
1376
1377	if (!plug->rq_count) {
1378		trace_block_plug(rq->q);
1379	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1380		   (!blk_queue_nomerges(rq->q) &&
1381		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1382		blk_mq_flush_plug_list(plug, false);
1383		last = NULL;
1384		trace_block_plug(rq->q);
1385	}
1386
1387	if (!plug->multiple_queues && last && last->q != rq->q)
1388		plug->multiple_queues = true;
1389	/*
1390	 * Any request allocated from sched tags can't be issued to
1391	 * ->queue_rqs() directly
1392	 */
1393	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1394		plug->has_elevator = true;
1395	rq_list_add_tail(&plug->mq_list, rq);
 
1396	plug->rq_count++;
1397}
1398
1399/**
1400 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1401 * @rq:		request to insert
1402 * @at_head:    insert request at head or tail of queue
1403 *
1404 * Description:
1405 *    Insert a fully prepared request at the back of the I/O scheduler queue
1406 *    for execution.  Don't wait for completion.
1407 *
1408 * Note:
1409 *    This function will invoke @done directly if the queue is dead.
1410 */
1411void blk_execute_rq_nowait(struct request *rq, bool at_head)
1412{
1413	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1414
1415	WARN_ON(irqs_disabled());
1416	WARN_ON(!blk_rq_is_passthrough(rq));
1417
1418	blk_account_io_start(rq);
1419
1420	if (current->plug && !at_head) {
 
 
 
 
 
1421		blk_add_rq_to_plug(current->plug, rq);
1422		return;
1423	}
1424
1425	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1426	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1427}
1428EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1429
1430struct blk_rq_wait {
1431	struct completion done;
1432	blk_status_t ret;
1433};
1434
1435static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1436{
1437	struct blk_rq_wait *wait = rq->end_io_data;
1438
1439	wait->ret = ret;
1440	complete(&wait->done);
1441	return RQ_END_IO_NONE;
1442}
1443
1444bool blk_rq_is_poll(struct request *rq)
1445{
1446	if (!rq->mq_hctx)
1447		return false;
1448	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1449		return false;
 
 
1450	return true;
1451}
1452EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1453
1454static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1455{
1456	do {
1457		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1458		cond_resched();
1459	} while (!completion_done(wait));
1460}
1461
1462/**
1463 * blk_execute_rq - insert a request into queue for execution
1464 * @rq:		request to insert
1465 * @at_head:    insert request at head or tail of queue
1466 *
1467 * Description:
1468 *    Insert a fully prepared request at the back of the I/O scheduler queue
1469 *    for execution and wait for completion.
1470 * Return: The blk_status_t result provided to blk_mq_end_request().
1471 */
1472blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1473{
1474	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1475	struct blk_rq_wait wait = {
1476		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1477	};
1478
1479	WARN_ON(irqs_disabled());
1480	WARN_ON(!blk_rq_is_passthrough(rq));
1481
1482	rq->end_io_data = &wait;
1483	rq->end_io = blk_end_sync_rq;
1484
1485	blk_account_io_start(rq);
1486	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1487	blk_mq_run_hw_queue(hctx, false);
1488
1489	if (blk_rq_is_poll(rq))
1490		blk_rq_poll_completion(rq, &wait.done);
1491	else
1492		blk_wait_io(&wait.done);
 
 
 
 
 
 
 
 
 
 
 
 
1493
1494	return wait.ret;
1495}
1496EXPORT_SYMBOL(blk_execute_rq);
1497
1498static void __blk_mq_requeue_request(struct request *rq)
1499{
1500	struct request_queue *q = rq->q;
1501
1502	blk_mq_put_driver_tag(rq);
1503
1504	trace_block_rq_requeue(rq);
1505	rq_qos_requeue(q, rq);
1506
1507	if (blk_mq_request_started(rq)) {
1508		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1509		rq->rq_flags &= ~RQF_TIMED_OUT;
1510	}
1511}
1512
1513void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1514{
1515	struct request_queue *q = rq->q;
1516	unsigned long flags;
1517
1518	__blk_mq_requeue_request(rq);
1519
1520	/* this request will be re-inserted to io scheduler queue */
1521	blk_mq_sched_requeue_request(rq);
1522
1523	spin_lock_irqsave(&q->requeue_lock, flags);
1524	list_add_tail(&rq->queuelist, &q->requeue_list);
1525	spin_unlock_irqrestore(&q->requeue_lock, flags);
1526
1527	if (kick_requeue_list)
1528		blk_mq_kick_requeue_list(q);
1529}
1530EXPORT_SYMBOL(blk_mq_requeue_request);
1531
1532static void blk_mq_requeue_work(struct work_struct *work)
1533{
1534	struct request_queue *q =
1535		container_of(work, struct request_queue, requeue_work.work);
1536	LIST_HEAD(rq_list);
1537	LIST_HEAD(flush_list);
1538	struct request *rq;
1539
1540	spin_lock_irq(&q->requeue_lock);
1541	list_splice_init(&q->requeue_list, &rq_list);
1542	list_splice_init(&q->flush_list, &flush_list);
1543	spin_unlock_irq(&q->requeue_lock);
1544
1545	while (!list_empty(&rq_list)) {
1546		rq = list_entry(rq_list.next, struct request, queuelist);
 
 
 
1547		list_del_init(&rq->queuelist);
1548		/*
1549		 * If RQF_DONTPREP is set, the request has been started by the
1550		 * driver already and might have driver-specific data allocated
1551		 * already.  Insert it into the hctx dispatch list to avoid
1552		 * block layer merges for the request.
1553		 */
1554		if (rq->rq_flags & RQF_DONTPREP)
1555			blk_mq_request_bypass_insert(rq, 0);
1556		else
1557			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1558	}
1559
1560	while (!list_empty(&flush_list)) {
1561		rq = list_entry(flush_list.next, struct request, queuelist);
1562		list_del_init(&rq->queuelist);
1563		blk_mq_insert_request(rq, 0);
1564	}
1565
1566	blk_mq_run_hw_queues(q, false);
1567}
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569void blk_mq_kick_requeue_list(struct request_queue *q)
1570{
1571	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1572}
1573EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1574
1575void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1576				    unsigned long msecs)
1577{
1578	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1579				    msecs_to_jiffies(msecs));
1580}
1581EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1582
1583static bool blk_is_flush_data_rq(struct request *rq)
1584{
1585	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1586}
1587
1588static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1589{
1590	/*
1591	 * If we find a request that isn't idle we know the queue is busy
1592	 * as it's checked in the iter.
1593	 * Return false to stop the iteration.
1594	 *
1595	 * In case of queue quiesce, if one flush data request is completed,
1596	 * don't count it as inflight given the flush sequence is suspended,
1597	 * and the original flush data request is invisible to driver, just
1598	 * like other pending requests because of quiesce
1599	 */
1600	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1601				blk_is_flush_data_rq(rq) &&
1602				blk_mq_request_completed(rq))) {
1603		bool *busy = priv;
1604
1605		*busy = true;
1606		return false;
1607	}
1608
1609	return true;
1610}
1611
1612bool blk_mq_queue_inflight(struct request_queue *q)
1613{
1614	bool busy = false;
1615
1616	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1617	return busy;
1618}
1619EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1620
1621static void blk_mq_rq_timed_out(struct request *req)
1622{
1623	req->rq_flags |= RQF_TIMED_OUT;
1624	if (req->q->mq_ops->timeout) {
1625		enum blk_eh_timer_return ret;
1626
1627		ret = req->q->mq_ops->timeout(req);
1628		if (ret == BLK_EH_DONE)
1629			return;
1630		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1631	}
1632
1633	blk_add_timer(req);
1634}
1635
1636struct blk_expired_data {
1637	bool has_timedout_rq;
1638	unsigned long next;
1639	unsigned long timeout_start;
1640};
1641
1642static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1643{
1644	unsigned long deadline;
1645
1646	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1647		return false;
1648	if (rq->rq_flags & RQF_TIMED_OUT)
1649		return false;
1650
1651	deadline = READ_ONCE(rq->deadline);
1652	if (time_after_eq(expired->timeout_start, deadline))
1653		return true;
1654
1655	if (expired->next == 0)
1656		expired->next = deadline;
1657	else if (time_after(expired->next, deadline))
1658		expired->next = deadline;
1659	return false;
1660}
1661
1662void blk_mq_put_rq_ref(struct request *rq)
1663{
1664	if (is_flush_rq(rq)) {
1665		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1666			blk_mq_free_request(rq);
1667	} else if (req_ref_put_and_test(rq)) {
1668		__blk_mq_free_request(rq);
1669	}
1670}
1671
1672static bool blk_mq_check_expired(struct request *rq, void *priv)
1673{
1674	struct blk_expired_data *expired = priv;
1675
1676	/*
1677	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1678	 * be reallocated underneath the timeout handler's processing, then
1679	 * the expire check is reliable. If the request is not expired, then
1680	 * it was completed and reallocated as a new request after returning
1681	 * from blk_mq_check_expired().
1682	 */
1683	if (blk_mq_req_expired(rq, expired)) {
1684		expired->has_timedout_rq = true;
1685		return false;
1686	}
1687	return true;
1688}
1689
1690static bool blk_mq_handle_expired(struct request *rq, void *priv)
1691{
1692	struct blk_expired_data *expired = priv;
1693
1694	if (blk_mq_req_expired(rq, expired))
1695		blk_mq_rq_timed_out(rq);
1696	return true;
1697}
1698
1699static void blk_mq_timeout_work(struct work_struct *work)
1700{
1701	struct request_queue *q =
1702		container_of(work, struct request_queue, timeout_work);
1703	struct blk_expired_data expired = {
1704		.timeout_start = jiffies,
1705	};
1706	struct blk_mq_hw_ctx *hctx;
1707	unsigned long i;
1708
1709	/* A deadlock might occur if a request is stuck requiring a
1710	 * timeout at the same time a queue freeze is waiting
1711	 * completion, since the timeout code would not be able to
1712	 * acquire the queue reference here.
1713	 *
1714	 * That's why we don't use blk_queue_enter here; instead, we use
1715	 * percpu_ref_tryget directly, because we need to be able to
1716	 * obtain a reference even in the short window between the queue
1717	 * starting to freeze, by dropping the first reference in
1718	 * blk_freeze_queue_start, and the moment the last request is
1719	 * consumed, marked by the instant q_usage_counter reaches
1720	 * zero.
1721	 */
1722	if (!percpu_ref_tryget(&q->q_usage_counter))
1723		return;
1724
1725	/* check if there is any timed-out request */
1726	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1727	if (expired.has_timedout_rq) {
1728		/*
1729		 * Before walking tags, we must ensure any submit started
1730		 * before the current time has finished. Since the submit
1731		 * uses srcu or rcu, wait for a synchronization point to
1732		 * ensure all running submits have finished
1733		 */
1734		blk_mq_wait_quiesce_done(q->tag_set);
1735
1736		expired.next = 0;
1737		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1738	}
1739
1740	if (expired.next != 0) {
1741		mod_timer(&q->timeout, expired.next);
1742	} else {
1743		/*
1744		 * Request timeouts are handled as a forward rolling timer. If
1745		 * we end up here it means that no requests are pending and
1746		 * also that no request has been pending for a while. Mark
1747		 * each hctx as idle.
1748		 */
1749		queue_for_each_hw_ctx(q, hctx, i) {
1750			/* the hctx may be unmapped, so check it here */
1751			if (blk_mq_hw_queue_mapped(hctx))
1752				blk_mq_tag_idle(hctx);
1753		}
1754	}
1755	blk_queue_exit(q);
1756}
1757
1758struct flush_busy_ctx_data {
1759	struct blk_mq_hw_ctx *hctx;
1760	struct list_head *list;
1761};
1762
1763static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1764{
1765	struct flush_busy_ctx_data *flush_data = data;
1766	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1767	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1768	enum hctx_type type = hctx->type;
1769
1770	spin_lock(&ctx->lock);
1771	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1772	sbitmap_clear_bit(sb, bitnr);
1773	spin_unlock(&ctx->lock);
1774	return true;
1775}
1776
1777/*
1778 * Process software queues that have been marked busy, splicing them
1779 * to the for-dispatch
1780 */
1781void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1782{
1783	struct flush_busy_ctx_data data = {
1784		.hctx = hctx,
1785		.list = list,
1786	};
1787
1788	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1789}
 
1790
1791struct dispatch_rq_data {
1792	struct blk_mq_hw_ctx *hctx;
1793	struct request *rq;
1794};
1795
1796static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1797		void *data)
1798{
1799	struct dispatch_rq_data *dispatch_data = data;
1800	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1801	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1802	enum hctx_type type = hctx->type;
1803
1804	spin_lock(&ctx->lock);
1805	if (!list_empty(&ctx->rq_lists[type])) {
1806		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1807		list_del_init(&dispatch_data->rq->queuelist);
1808		if (list_empty(&ctx->rq_lists[type]))
1809			sbitmap_clear_bit(sb, bitnr);
1810	}
1811	spin_unlock(&ctx->lock);
1812
1813	return !dispatch_data->rq;
1814}
1815
1816struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1817					struct blk_mq_ctx *start)
1818{
1819	unsigned off = start ? start->index_hw[hctx->type] : 0;
1820	struct dispatch_rq_data data = {
1821		.hctx = hctx,
1822		.rq   = NULL,
1823	};
1824
1825	__sbitmap_for_each_set(&hctx->ctx_map, off,
1826			       dispatch_rq_from_ctx, &data);
1827
1828	return data.rq;
1829}
1830
1831bool __blk_mq_alloc_driver_tag(struct request *rq)
1832{
1833	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1834	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1835	int tag;
1836
1837	blk_mq_tag_busy(rq->mq_hctx);
1838
1839	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1840		bt = &rq->mq_hctx->tags->breserved_tags;
1841		tag_offset = 0;
1842	} else {
1843		if (!hctx_may_queue(rq->mq_hctx, bt))
1844			return false;
1845	}
1846
1847	tag = __sbitmap_queue_get(bt);
1848	if (tag == BLK_MQ_NO_TAG)
1849		return false;
1850
1851	rq->tag = tag + tag_offset;
1852	blk_mq_inc_active_requests(rq->mq_hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1853	return true;
1854}
1855
1856static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1857				int flags, void *key)
1858{
1859	struct blk_mq_hw_ctx *hctx;
1860
1861	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1862
1863	spin_lock(&hctx->dispatch_wait_lock);
1864	if (!list_empty(&wait->entry)) {
1865		struct sbitmap_queue *sbq;
1866
1867		list_del_init(&wait->entry);
1868		sbq = &hctx->tags->bitmap_tags;
1869		atomic_dec(&sbq->ws_active);
1870	}
1871	spin_unlock(&hctx->dispatch_wait_lock);
1872
1873	blk_mq_run_hw_queue(hctx, true);
1874	return 1;
1875}
1876
1877/*
1878 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1879 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1880 * restart. For both cases, take care to check the condition again after
1881 * marking us as waiting.
1882 */
1883static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1884				 struct request *rq)
1885{
1886	struct sbitmap_queue *sbq;
1887	struct wait_queue_head *wq;
1888	wait_queue_entry_t *wait;
1889	bool ret;
1890
1891	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1892	    !(blk_mq_is_shared_tags(hctx->flags))) {
1893		blk_mq_sched_mark_restart_hctx(hctx);
1894
1895		/*
1896		 * It's possible that a tag was freed in the window between the
1897		 * allocation failure and adding the hardware queue to the wait
1898		 * queue.
1899		 *
1900		 * Don't clear RESTART here, someone else could have set it.
1901		 * At most this will cost an extra queue run.
1902		 */
1903		return blk_mq_get_driver_tag(rq);
1904	}
1905
1906	wait = &hctx->dispatch_wait;
1907	if (!list_empty_careful(&wait->entry))
1908		return false;
1909
1910	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1911		sbq = &hctx->tags->breserved_tags;
1912	else
1913		sbq = &hctx->tags->bitmap_tags;
1914	wq = &bt_wait_ptr(sbq, hctx)->wait;
1915
1916	spin_lock_irq(&wq->lock);
1917	spin_lock(&hctx->dispatch_wait_lock);
1918	if (!list_empty(&wait->entry)) {
1919		spin_unlock(&hctx->dispatch_wait_lock);
1920		spin_unlock_irq(&wq->lock);
1921		return false;
1922	}
1923
1924	atomic_inc(&sbq->ws_active);
1925	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1926	__add_wait_queue(wq, wait);
1927
1928	/*
1929	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1930	 * not imply barrier in case of failure.
1931	 *
1932	 * Order adding us to wait queue and allocating driver tag.
1933	 *
1934	 * The pair is the one implied in sbitmap_queue_wake_up() which
1935	 * orders clearing sbitmap tag bits and waitqueue_active() in
1936	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1937	 *
1938	 * Otherwise, re-order of adding wait queue and getting driver tag
1939	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1940	 * the waitqueue_active() may not observe us in wait queue.
1941	 */
1942	smp_mb();
1943
1944	/*
1945	 * It's possible that a tag was freed in the window between the
1946	 * allocation failure and adding the hardware queue to the wait
1947	 * queue.
1948	 */
1949	ret = blk_mq_get_driver_tag(rq);
1950	if (!ret) {
1951		spin_unlock(&hctx->dispatch_wait_lock);
1952		spin_unlock_irq(&wq->lock);
1953		return false;
1954	}
1955
1956	/*
1957	 * We got a tag, remove ourselves from the wait queue to ensure
1958	 * someone else gets the wakeup.
1959	 */
1960	list_del_init(&wait->entry);
1961	atomic_dec(&sbq->ws_active);
1962	spin_unlock(&hctx->dispatch_wait_lock);
1963	spin_unlock_irq(&wq->lock);
1964
1965	return true;
1966}
1967
1968#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1969#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1970/*
1971 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1972 * - EWMA is one simple way to compute running average value
1973 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1974 * - take 4 as factor for avoiding to get too small(0) result, and this
1975 *   factor doesn't matter because EWMA decreases exponentially
1976 */
1977static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1978{
1979	unsigned int ewma;
1980
1981	ewma = hctx->dispatch_busy;
1982
1983	if (!ewma && !busy)
1984		return;
1985
1986	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1987	if (busy)
1988		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1989	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1990
1991	hctx->dispatch_busy = ewma;
1992}
1993
1994#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1995
1996static void blk_mq_handle_dev_resource(struct request *rq,
1997				       struct list_head *list)
1998{
 
 
 
 
 
 
 
 
 
 
1999	list_add(&rq->queuelist, list);
2000	__blk_mq_requeue_request(rq);
2001}
2002
 
 
 
 
 
 
 
 
 
 
 
 
 
2003enum prep_dispatch {
2004	PREP_DISPATCH_OK,
2005	PREP_DISPATCH_NO_TAG,
2006	PREP_DISPATCH_NO_BUDGET,
2007};
2008
2009static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2010						  bool need_budget)
2011{
2012	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2013	int budget_token = -1;
2014
2015	if (need_budget) {
2016		budget_token = blk_mq_get_dispatch_budget(rq->q);
2017		if (budget_token < 0) {
2018			blk_mq_put_driver_tag(rq);
2019			return PREP_DISPATCH_NO_BUDGET;
2020		}
2021		blk_mq_set_rq_budget_token(rq, budget_token);
2022	}
2023
2024	if (!blk_mq_get_driver_tag(rq)) {
2025		/*
2026		 * The initial allocation attempt failed, so we need to
2027		 * rerun the hardware queue when a tag is freed. The
2028		 * waitqueue takes care of that. If the queue is run
2029		 * before we add this entry back on the dispatch list,
2030		 * we'll re-run it below.
2031		 */
2032		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2033			/*
2034			 * All budgets not got from this function will be put
2035			 * together during handling partial dispatch
2036			 */
2037			if (need_budget)
2038				blk_mq_put_dispatch_budget(rq->q, budget_token);
2039			return PREP_DISPATCH_NO_TAG;
2040		}
2041	}
2042
2043	return PREP_DISPATCH_OK;
2044}
2045
2046/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2047static void blk_mq_release_budgets(struct request_queue *q,
2048		struct list_head *list)
2049{
2050	struct request *rq;
2051
2052	list_for_each_entry(rq, list, queuelist) {
2053		int budget_token = blk_mq_get_rq_budget_token(rq);
2054
2055		if (budget_token >= 0)
2056			blk_mq_put_dispatch_budget(q, budget_token);
2057	}
2058}
2059
2060/*
2061 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2062 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2063 * details)
2064 * Attention, we should explicitly call this in unusual cases:
2065 *  1) did not queue everything initially scheduled to queue
2066 *  2) the last attempt to queue a request failed
2067 */
2068static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2069			      bool from_schedule)
2070{
2071	if (hctx->queue->mq_ops->commit_rqs && queued) {
2072		trace_block_unplug(hctx->queue, queued, !from_schedule);
2073		hctx->queue->mq_ops->commit_rqs(hctx);
2074	}
2075}
2076
2077/*
2078 * Returns true if we did some work AND can potentially do more.
2079 */
2080bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2081			     unsigned int nr_budgets)
2082{
2083	enum prep_dispatch prep;
2084	struct request_queue *q = hctx->queue;
2085	struct request *rq;
2086	int queued;
2087	blk_status_t ret = BLK_STS_OK;
 
2088	bool needs_resource = false;
2089
2090	if (list_empty(list))
2091		return false;
2092
2093	/*
2094	 * Now process all the entries, sending them to the driver.
2095	 */
2096	queued = 0;
2097	do {
2098		struct blk_mq_queue_data bd;
2099
2100		rq = list_first_entry(list, struct request, queuelist);
2101
2102		WARN_ON_ONCE(hctx != rq->mq_hctx);
2103		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2104		if (prep != PREP_DISPATCH_OK)
2105			break;
2106
2107		list_del_init(&rq->queuelist);
2108
2109		bd.rq = rq;
2110		bd.last = list_empty(list);
 
 
 
 
 
 
 
 
 
 
2111
2112		/*
2113		 * once the request is queued to lld, no need to cover the
2114		 * budget any more
2115		 */
2116		if (nr_budgets)
2117			nr_budgets--;
2118		ret = q->mq_ops->queue_rq(hctx, &bd);
2119		switch (ret) {
2120		case BLK_STS_OK:
2121			queued++;
2122			break;
2123		case BLK_STS_RESOURCE:
2124			needs_resource = true;
2125			fallthrough;
2126		case BLK_STS_DEV_RESOURCE:
2127			blk_mq_handle_dev_resource(rq, list);
2128			goto out;
 
 
 
 
 
 
 
 
 
2129		default:
 
2130			blk_mq_end_request(rq, ret);
2131		}
2132	} while (!list_empty(list));
2133out:
 
 
 
2134	/* If we didn't flush the entire list, we could have told the driver
2135	 * there was more coming, but that turned out to be a lie.
2136	 */
2137	if (!list_empty(list) || ret != BLK_STS_OK)
2138		blk_mq_commit_rqs(hctx, queued, false);
2139
2140	/*
2141	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2142	 * that is where we will continue on next queue run.
2143	 */
2144	if (!list_empty(list)) {
2145		bool needs_restart;
2146		/* For non-shared tags, the RESTART check will suffice */
2147		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2148			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2149			blk_mq_is_shared_tags(hctx->flags));
2150
2151		if (nr_budgets)
2152			blk_mq_release_budgets(q, list);
2153
2154		spin_lock(&hctx->lock);
2155		list_splice_tail_init(list, &hctx->dispatch);
2156		spin_unlock(&hctx->lock);
2157
2158		/*
2159		 * Order adding requests to hctx->dispatch and checking
2160		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2161		 * in blk_mq_sched_restart(). Avoid restart code path to
2162		 * miss the new added requests to hctx->dispatch, meantime
2163		 * SCHED_RESTART is observed here.
2164		 */
2165		smp_mb();
2166
2167		/*
2168		 * If SCHED_RESTART was set by the caller of this function and
2169		 * it is no longer set that means that it was cleared by another
2170		 * thread and hence that a queue rerun is needed.
2171		 *
2172		 * If 'no_tag' is set, that means that we failed getting
2173		 * a driver tag with an I/O scheduler attached. If our dispatch
2174		 * waitqueue is no longer active, ensure that we run the queue
2175		 * AFTER adding our entries back to the list.
2176		 *
2177		 * If no I/O scheduler has been configured it is possible that
2178		 * the hardware queue got stopped and restarted before requests
2179		 * were pushed back onto the dispatch list. Rerun the queue to
2180		 * avoid starvation. Notes:
2181		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2182		 *   been stopped before rerunning a queue.
2183		 * - Some but not all block drivers stop a queue before
2184		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2185		 *   and dm-rq.
2186		 *
2187		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2188		 * bit is set, run queue after a delay to avoid IO stalls
2189		 * that could otherwise occur if the queue is idle.  We'll do
2190		 * similar if we couldn't get budget or couldn't lock a zone
2191		 * and SCHED_RESTART is set.
2192		 */
2193		needs_restart = blk_mq_sched_needs_restart(hctx);
2194		if (prep == PREP_DISPATCH_NO_BUDGET)
2195			needs_resource = true;
2196		if (!needs_restart ||
2197		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2198			blk_mq_run_hw_queue(hctx, true);
2199		else if (needs_resource)
2200			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2201
2202		blk_mq_update_dispatch_busy(hctx, true);
2203		return false;
2204	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205
2206	blk_mq_update_dispatch_busy(hctx, false);
2207	return true;
2208}
2209
2210static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2211{
2212	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2213
2214	if (cpu >= nr_cpu_ids)
2215		cpu = cpumask_first(hctx->cpumask);
2216	return cpu;
2217}
2218
2219/*
2220 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2221 * it for speeding up the check
2222 */
2223static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2224{
2225        return hctx->next_cpu >= nr_cpu_ids;
2226}
2227
2228/*
2229 * It'd be great if the workqueue API had a way to pass
2230 * in a mask and had some smarts for more clever placement.
2231 * For now we just round-robin here, switching for every
2232 * BLK_MQ_CPU_WORK_BATCH queued items.
2233 */
2234static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2235{
2236	bool tried = false;
2237	int next_cpu = hctx->next_cpu;
2238
2239	/* Switch to unbound if no allowable CPUs in this hctx */
2240	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2241		return WORK_CPU_UNBOUND;
2242
2243	if (--hctx->next_cpu_batch <= 0) {
2244select_cpu:
2245		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2246				cpu_online_mask);
2247		if (next_cpu >= nr_cpu_ids)
2248			next_cpu = blk_mq_first_mapped_cpu(hctx);
2249		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2250	}
2251
2252	/*
2253	 * Do unbound schedule if we can't find a online CPU for this hctx,
2254	 * and it should only happen in the path of handling CPU DEAD.
2255	 */
2256	if (!cpu_online(next_cpu)) {
2257		if (!tried) {
2258			tried = true;
2259			goto select_cpu;
2260		}
2261
2262		/*
2263		 * Make sure to re-select CPU next time once after CPUs
2264		 * in hctx->cpumask become online again.
2265		 */
2266		hctx->next_cpu = next_cpu;
2267		hctx->next_cpu_batch = 1;
2268		return WORK_CPU_UNBOUND;
2269	}
2270
2271	hctx->next_cpu = next_cpu;
2272	return next_cpu;
2273}
2274
2275/**
2276 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2277 * @hctx: Pointer to the hardware queue to run.
 
2278 * @msecs: Milliseconds of delay to wait before running the queue.
2279 *
2280 * Run a hardware queue asynchronously with a delay of @msecs.
 
2281 */
2282void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
 
2283{
2284	if (unlikely(blk_mq_hctx_stopped(hctx)))
2285		return;
 
 
 
 
 
 
 
 
2286	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2287				    msecs_to_jiffies(msecs));
2288}
2289EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2290
2291static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
 
2292{
2293	bool need_run;
2294
2295	/*
2296	 * When queue is quiesced, we may be switching io scheduler, or
2297	 * updating nr_hw_queues, or other things, and we can't run queue
2298	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2299	 *
2300	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2301	 * quiesced.
2302	 */
2303	__blk_mq_run_dispatch_ops(hctx->queue, false,
2304		need_run = !blk_queue_quiesced(hctx->queue) &&
2305		blk_mq_hctx_has_pending(hctx));
2306	return need_run;
2307}
 
2308
2309/**
2310 * blk_mq_run_hw_queue - Start to run a hardware queue.
2311 * @hctx: Pointer to the hardware queue to run.
2312 * @async: If we want to run the queue asynchronously.
2313 *
2314 * Check if the request queue is not in a quiesced state and if there are
2315 * pending requests to be sent. If this is true, run the queue to send requests
2316 * to hardware.
2317 */
2318void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2319{
2320	bool need_run;
2321
2322	/*
2323	 * We can't run the queue inline with interrupts disabled.
 
 
 
 
 
2324	 */
2325	WARN_ON_ONCE(!async && in_interrupt());
2326
2327	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2328
2329	need_run = blk_mq_hw_queue_need_run(hctx);
2330	if (!need_run) {
2331		unsigned long flags;
2332
2333		/*
2334		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2335		 * if hw queue is quiesced locklessly above, we need the use
2336		 * ->queue_lock to make sure we see the up-to-date status to
2337		 * not miss rerunning the hw queue.
2338		 */
2339		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2340		need_run = blk_mq_hw_queue_need_run(hctx);
2341		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2342
2343		if (!need_run)
2344			return;
2345	}
2346
2347	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2348		blk_mq_delay_run_hw_queue(hctx, 0);
2349		return;
2350	}
2351
2352	blk_mq_run_dispatch_ops(hctx->queue,
2353				blk_mq_sched_dispatch_requests(hctx));
2354}
2355EXPORT_SYMBOL(blk_mq_run_hw_queue);
2356
2357/*
2358 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2359 * scheduler.
2360 */
2361static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2362{
2363	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2364	/*
2365	 * If the IO scheduler does not respect hardware queues when
2366	 * dispatching, we just don't bother with multiple HW queues and
2367	 * dispatch from hctx for the current CPU since running multiple queues
2368	 * just causes lock contention inside the scheduler and pointless cache
2369	 * bouncing.
2370	 */
2371	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2372
2373	if (!blk_mq_hctx_stopped(hctx))
2374		return hctx;
2375	return NULL;
2376}
2377
2378/**
2379 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2380 * @q: Pointer to the request queue to run.
2381 * @async: If we want to run the queue asynchronously.
2382 */
2383void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2384{
2385	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2386	unsigned long i;
2387
2388	sq_hctx = NULL;
2389	if (blk_queue_sq_sched(q))
2390		sq_hctx = blk_mq_get_sq_hctx(q);
2391	queue_for_each_hw_ctx(q, hctx, i) {
2392		if (blk_mq_hctx_stopped(hctx))
2393			continue;
2394		/*
2395		 * Dispatch from this hctx either if there's no hctx preferred
2396		 * by IO scheduler or if it has requests that bypass the
2397		 * scheduler.
2398		 */
2399		if (!sq_hctx || sq_hctx == hctx ||
2400		    !list_empty_careful(&hctx->dispatch))
2401			blk_mq_run_hw_queue(hctx, async);
2402	}
2403}
2404EXPORT_SYMBOL(blk_mq_run_hw_queues);
2405
2406/**
2407 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2408 * @q: Pointer to the request queue to run.
2409 * @msecs: Milliseconds of delay to wait before running the queues.
2410 */
2411void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2412{
2413	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2414	unsigned long i;
2415
2416	sq_hctx = NULL;
2417	if (blk_queue_sq_sched(q))
2418		sq_hctx = blk_mq_get_sq_hctx(q);
2419	queue_for_each_hw_ctx(q, hctx, i) {
2420		if (blk_mq_hctx_stopped(hctx))
2421			continue;
2422		/*
2423		 * If there is already a run_work pending, leave the
2424		 * pending delay untouched. Otherwise, a hctx can stall
2425		 * if another hctx is re-delaying the other's work
2426		 * before the work executes.
2427		 */
2428		if (delayed_work_pending(&hctx->run_work))
2429			continue;
2430		/*
2431		 * Dispatch from this hctx either if there's no hctx preferred
2432		 * by IO scheduler or if it has requests that bypass the
2433		 * scheduler.
2434		 */
2435		if (!sq_hctx || sq_hctx == hctx ||
2436		    !list_empty_careful(&hctx->dispatch))
2437			blk_mq_delay_run_hw_queue(hctx, msecs);
2438	}
2439}
2440EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2441
2442/*
2443 * This function is often used for pausing .queue_rq() by driver when
2444 * there isn't enough resource or some conditions aren't satisfied, and
2445 * BLK_STS_RESOURCE is usually returned.
2446 *
2447 * We do not guarantee that dispatch can be drained or blocked
2448 * after blk_mq_stop_hw_queue() returns. Please use
2449 * blk_mq_quiesce_queue() for that requirement.
2450 */
2451void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2452{
2453	cancel_delayed_work(&hctx->run_work);
2454
2455	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2456}
2457EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2458
2459/*
2460 * This function is often used for pausing .queue_rq() by driver when
2461 * there isn't enough resource or some conditions aren't satisfied, and
2462 * BLK_STS_RESOURCE is usually returned.
2463 *
2464 * We do not guarantee that dispatch can be drained or blocked
2465 * after blk_mq_stop_hw_queues() returns. Please use
2466 * blk_mq_quiesce_queue() for that requirement.
2467 */
2468void blk_mq_stop_hw_queues(struct request_queue *q)
2469{
2470	struct blk_mq_hw_ctx *hctx;
2471	unsigned long i;
2472
2473	queue_for_each_hw_ctx(q, hctx, i)
2474		blk_mq_stop_hw_queue(hctx);
2475}
2476EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2477
2478void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2479{
2480	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2481
2482	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2483}
2484EXPORT_SYMBOL(blk_mq_start_hw_queue);
2485
2486void blk_mq_start_hw_queues(struct request_queue *q)
2487{
2488	struct blk_mq_hw_ctx *hctx;
2489	unsigned long i;
2490
2491	queue_for_each_hw_ctx(q, hctx, i)
2492		blk_mq_start_hw_queue(hctx);
2493}
2494EXPORT_SYMBOL(blk_mq_start_hw_queues);
2495
2496void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2497{
2498	if (!blk_mq_hctx_stopped(hctx))
2499		return;
2500
2501	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2502	/*
2503	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2504	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2505	 * list in the subsequent routine.
2506	 */
2507	smp_mb__after_atomic();
2508	blk_mq_run_hw_queue(hctx, async);
2509}
2510EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2511
2512void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2513{
2514	struct blk_mq_hw_ctx *hctx;
2515	unsigned long i;
2516
2517	queue_for_each_hw_ctx(q, hctx, i)
2518		blk_mq_start_stopped_hw_queue(hctx, async ||
2519					(hctx->flags & BLK_MQ_F_BLOCKING));
2520}
2521EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2522
2523static void blk_mq_run_work_fn(struct work_struct *work)
2524{
2525	struct blk_mq_hw_ctx *hctx =
2526		container_of(work, struct blk_mq_hw_ctx, run_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528	blk_mq_run_dispatch_ops(hctx->queue,
2529				blk_mq_sched_dispatch_requests(hctx));
 
 
2530}
2531
2532/**
2533 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2534 * @rq: Pointer to request to be inserted.
2535 * @flags: BLK_MQ_INSERT_*
 
2536 *
2537 * Should only be used carefully, when the caller knows we want to
2538 * bypass a potential IO scheduler on the target device.
2539 */
2540static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
 
2541{
2542	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2543
2544	spin_lock(&hctx->lock);
2545	if (flags & BLK_MQ_INSERT_AT_HEAD)
2546		list_add(&rq->queuelist, &hctx->dispatch);
2547	else
2548		list_add_tail(&rq->queuelist, &hctx->dispatch);
2549	spin_unlock(&hctx->lock);
 
 
 
2550}
2551
2552static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2553		struct blk_mq_ctx *ctx, struct list_head *list,
2554		bool run_queue_async)
2555{
2556	struct request *rq;
2557	enum hctx_type type = hctx->type;
2558
2559	/*
2560	 * Try to issue requests directly if the hw queue isn't busy to save an
2561	 * extra enqueue & dequeue to the sw queue.
2562	 */
2563	if (!hctx->dispatch_busy && !run_queue_async) {
2564		blk_mq_run_dispatch_ops(hctx->queue,
2565			blk_mq_try_issue_list_directly(hctx, list));
2566		if (list_empty(list))
2567			goto out;
2568	}
2569
2570	/*
2571	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2572	 * offline now
2573	 */
2574	list_for_each_entry(rq, list, queuelist) {
2575		BUG_ON(rq->mq_ctx != ctx);
2576		trace_block_rq_insert(rq);
2577		if (rq->cmd_flags & REQ_NOWAIT)
2578			run_queue_async = true;
2579	}
2580
2581	spin_lock(&ctx->lock);
2582	list_splice_tail_init(list, &ctx->rq_lists[type]);
2583	blk_mq_hctx_mark_pending(hctx, ctx);
2584	spin_unlock(&ctx->lock);
2585out:
2586	blk_mq_run_hw_queue(hctx, run_queue_async);
2587}
2588
2589static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
 
2590{
2591	struct request_queue *q = rq->q;
2592	struct blk_mq_ctx *ctx = rq->mq_ctx;
2593	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2594
2595	if (blk_rq_is_passthrough(rq)) {
2596		/*
2597		 * Passthrough request have to be added to hctx->dispatch
2598		 * directly.  The device may be in a situation where it can't
2599		 * handle FS request, and always returns BLK_STS_RESOURCE for
2600		 * them, which gets them added to hctx->dispatch.
2601		 *
2602		 * If a passthrough request is required to unblock the queues,
2603		 * and it is added to the scheduler queue, there is no chance to
2604		 * dispatch it given we prioritize requests in hctx->dispatch.
2605		 */
2606		blk_mq_request_bypass_insert(rq, flags);
2607	} else if (req_op(rq) == REQ_OP_FLUSH) {
2608		/*
2609		 * Firstly normal IO request is inserted to scheduler queue or
2610		 * sw queue, meantime we add flush request to dispatch queue(
2611		 * hctx->dispatch) directly and there is at most one in-flight
2612		 * flush request for each hw queue, so it doesn't matter to add
2613		 * flush request to tail or front of the dispatch queue.
2614		 *
2615		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2616		 * command, and queueing it will fail when there is any
2617		 * in-flight normal IO request(NCQ command). When adding flush
2618		 * rq to the front of hctx->dispatch, it is easier to introduce
2619		 * extra time to flush rq's latency because of S_SCHED_RESTART
2620		 * compared with adding to the tail of dispatch queue, then
2621		 * chance of flush merge is increased, and less flush requests
2622		 * will be issued to controller. It is observed that ~10% time
2623		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2624		 * drive when adding flush rq to the front of hctx->dispatch.
2625		 *
2626		 * Simply queue flush rq to the front of hctx->dispatch so that
2627		 * intensive flush workloads can benefit in case of NCQ HW.
2628		 */
2629		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2630	} else if (q->elevator) {
2631		LIST_HEAD(list);
2632
2633		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2634
2635		list_add(&rq->queuelist, &list);
2636		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2637	} else {
2638		trace_block_rq_insert(rq);
2639
2640		spin_lock(&ctx->lock);
2641		if (flags & BLK_MQ_INSERT_AT_HEAD)
2642			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2643		else
2644			list_add_tail(&rq->queuelist,
2645				      &ctx->rq_lists[hctx->type]);
2646		blk_mq_hctx_mark_pending(hctx, ctx);
2647		spin_unlock(&ctx->lock);
2648	}
 
2649}
2650
2651static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2652		unsigned int nr_segs)
2653{
2654	int err;
2655
2656	if (bio->bi_opf & REQ_RAHEAD)
2657		rq->cmd_flags |= REQ_FAILFAST_MASK;
2658
2659	rq->__sector = bio->bi_iter.bi_sector;
2660	blk_rq_bio_prep(rq, bio, nr_segs);
2661	if (bio_integrity(bio))
2662		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2663								      bio);
2664
2665	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2666	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2667	WARN_ON_ONCE(err);
2668
2669	blk_account_io_start(rq);
2670}
2671
2672static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2673					    struct request *rq, bool last)
2674{
2675	struct request_queue *q = rq->q;
2676	struct blk_mq_queue_data bd = {
2677		.rq = rq,
2678		.last = last,
2679	};
2680	blk_status_t ret;
2681
2682	/*
2683	 * For OK queue, we are done. For error, caller may kill it.
2684	 * Any other error (busy), just add it to our list as we
2685	 * previously would have done.
2686	 */
2687	ret = q->mq_ops->queue_rq(hctx, &bd);
2688	switch (ret) {
2689	case BLK_STS_OK:
2690		blk_mq_update_dispatch_busy(hctx, false);
2691		break;
2692	case BLK_STS_RESOURCE:
2693	case BLK_STS_DEV_RESOURCE:
2694		blk_mq_update_dispatch_busy(hctx, true);
2695		__blk_mq_requeue_request(rq);
2696		break;
2697	default:
2698		blk_mq_update_dispatch_busy(hctx, false);
2699		break;
2700	}
2701
2702	return ret;
2703}
2704
2705static bool blk_mq_get_budget_and_tag(struct request *rq)
 
 
2706{
 
 
2707	int budget_token;
2708
2709	budget_token = blk_mq_get_dispatch_budget(rq->q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710	if (budget_token < 0)
2711		return false;
 
2712	blk_mq_set_rq_budget_token(rq, budget_token);
 
2713	if (!blk_mq_get_driver_tag(rq)) {
2714		blk_mq_put_dispatch_budget(rq->q, budget_token);
2715		return false;
2716	}
2717	return true;
 
 
 
 
 
 
 
 
2718}
2719
2720/**
2721 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2722 * @hctx: Pointer of the associated hardware queue.
2723 * @rq: Pointer to request to be sent.
2724 *
2725 * If the device has enough resources to accept a new request now, send the
2726 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2727 * we can try send it another time in the future. Requests inserted at this
2728 * queue have higher priority.
2729 */
2730static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2731		struct request *rq)
2732{
2733	blk_status_t ret;
2734
2735	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2736		blk_mq_insert_request(rq, 0);
2737		blk_mq_run_hw_queue(hctx, false);
2738		return;
2739	}
2740
2741	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2742		blk_mq_insert_request(rq, 0);
2743		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2744		return;
2745	}
2746
2747	ret = __blk_mq_issue_directly(hctx, rq, true);
2748	switch (ret) {
2749	case BLK_STS_OK:
2750		break;
2751	case BLK_STS_RESOURCE:
2752	case BLK_STS_DEV_RESOURCE:
2753		blk_mq_request_bypass_insert(rq, 0);
2754		blk_mq_run_hw_queue(hctx, false);
2755		break;
2756	default:
2757		blk_mq_end_request(rq, ret);
2758		break;
2759	}
2760}
2761
2762static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2763{
2764	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2765
2766	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2767		blk_mq_insert_request(rq, 0);
2768		blk_mq_run_hw_queue(hctx, false);
2769		return BLK_STS_OK;
2770	}
2771
2772	if (!blk_mq_get_budget_and_tag(rq))
2773		return BLK_STS_RESOURCE;
2774	return __blk_mq_issue_directly(hctx, rq, last);
2775}
2776
2777static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2778{
2779	struct blk_mq_hw_ctx *hctx = NULL;
2780	struct request *rq;
2781	int queued = 0;
2782	blk_status_t ret = BLK_STS_OK;
2783
2784	while ((rq = rq_list_pop(&plug->mq_list))) {
2785		bool last = rq_list_empty(&plug->mq_list);
 
2786
2787		if (hctx != rq->mq_hctx) {
2788			if (hctx) {
2789				blk_mq_commit_rqs(hctx, queued, false);
2790				queued = 0;
2791			}
2792			hctx = rq->mq_hctx;
2793		}
2794
2795		ret = blk_mq_request_issue_directly(rq, last);
2796		switch (ret) {
2797		case BLK_STS_OK:
2798			queued++;
2799			break;
2800		case BLK_STS_RESOURCE:
2801		case BLK_STS_DEV_RESOURCE:
2802			blk_mq_request_bypass_insert(rq, 0);
2803			blk_mq_run_hw_queue(hctx, false);
2804			goto out;
2805		default:
2806			blk_mq_end_request(rq, ret);
 
2807			break;
2808		}
2809	}
2810
2811out:
2812	if (ret != BLK_STS_OK)
2813		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
2814}
2815
2816static void __blk_mq_flush_plug_list(struct request_queue *q,
2817				     struct blk_plug *plug)
2818{
2819	if (blk_queue_quiesced(q))
2820		return;
2821	q->mq_ops->queue_rqs(&plug->mq_list);
2822}
2823
2824static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2825{
2826	struct blk_mq_hw_ctx *this_hctx = NULL;
2827	struct blk_mq_ctx *this_ctx = NULL;
2828	struct rq_list requeue_list = {};
2829	unsigned int depth = 0;
2830	bool is_passthrough = false;
2831	LIST_HEAD(list);
2832
2833	do {
2834		struct request *rq = rq_list_pop(&plug->mq_list);
2835
2836		if (!this_hctx) {
2837			this_hctx = rq->mq_hctx;
2838			this_ctx = rq->mq_ctx;
2839			is_passthrough = blk_rq_is_passthrough(rq);
2840		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2841			   is_passthrough != blk_rq_is_passthrough(rq)) {
2842			rq_list_add_tail(&requeue_list, rq);
2843			continue;
2844		}
2845		list_add_tail(&rq->queuelist, &list);
2846		depth++;
2847	} while (!rq_list_empty(&plug->mq_list));
2848
2849	plug->mq_list = requeue_list;
2850	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2851
2852	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2853	/* passthrough requests should never be issued to the I/O scheduler */
2854	if (is_passthrough) {
2855		spin_lock(&this_hctx->lock);
2856		list_splice_tail_init(&list, &this_hctx->dispatch);
2857		spin_unlock(&this_hctx->lock);
2858		blk_mq_run_hw_queue(this_hctx, from_sched);
2859	} else if (this_hctx->queue->elevator) {
2860		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2861				&list, 0);
2862		blk_mq_run_hw_queue(this_hctx, from_sched);
2863	} else {
2864		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2865	}
2866	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2867}
2868
2869void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2870{
2871	struct request *rq;
2872	unsigned int depth;
2873
2874	/*
2875	 * We may have been called recursively midway through handling
2876	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2877	 * To avoid mq_list changing under our feet, clear rq_count early and
2878	 * bail out specifically if rq_count is 0 rather than checking
2879	 * whether the mq_list is empty.
2880	 */
2881	if (plug->rq_count == 0)
2882		return;
2883	depth = plug->rq_count;
2884	plug->rq_count = 0;
2885
2886	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2887		struct request_queue *q;
2888
2889		rq = rq_list_peek(&plug->mq_list);
2890		q = rq->q;
2891		trace_block_unplug(q, depth, true);
2892
2893		/*
2894		 * Peek first request and see if we have a ->queue_rqs() hook.
2895		 * If we do, we can dispatch the whole plug list in one go. We
2896		 * already know at this point that all requests belong to the
2897		 * same queue, caller must ensure that's the case.
 
 
 
 
2898		 */
2899		if (q->mq_ops->queue_rqs) {
 
2900			blk_mq_run_dispatch_ops(q,
2901				__blk_mq_flush_plug_list(q, plug));
2902			if (rq_list_empty(&plug->mq_list))
2903				return;
2904		}
2905
2906		blk_mq_run_dispatch_ops(q,
2907				blk_mq_plug_issue_direct(plug));
2908		if (rq_list_empty(&plug->mq_list))
2909			return;
2910	}
2911
2912	do {
2913		blk_mq_dispatch_plug_list(plug, from_schedule);
2914	} while (!rq_list_empty(&plug->mq_list));
2915}
2916
2917static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2918		struct list_head *list)
2919{
2920	int queued = 0;
2921	blk_status_t ret = BLK_STS_OK;
2922
2923	while (!list_empty(list)) {
 
2924		struct request *rq = list_first_entry(list, struct request,
2925				queuelist);
2926
2927		list_del_init(&rq->queuelist);
2928		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2929		switch (ret) {
2930		case BLK_STS_OK:
 
 
 
 
 
 
 
 
2931			queued++;
2932			break;
2933		case BLK_STS_RESOURCE:
2934		case BLK_STS_DEV_RESOURCE:
2935			blk_mq_request_bypass_insert(rq, 0);
2936			if (list_empty(list))
2937				blk_mq_run_hw_queue(hctx, false);
2938			goto out;
2939		default:
2940			blk_mq_end_request(rq, ret);
2941			break;
2942		}
2943	}
2944
2945out:
2946	if (ret != BLK_STS_OK)
2947		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
 
 
2948}
2949
2950static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2951				     struct bio *bio, unsigned int nr_segs)
2952{
2953	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2954		if (blk_attempt_plug_merge(q, bio, nr_segs))
2955			return true;
2956		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2957			return true;
2958	}
2959	return false;
2960}
2961
2962static struct request *blk_mq_get_new_requests(struct request_queue *q,
2963					       struct blk_plug *plug,
2964					       struct bio *bio,
2965					       unsigned int nsegs)
2966{
2967	struct blk_mq_alloc_data data = {
2968		.q		= q,
2969		.nr_tags	= 1,
2970		.cmd_flags	= bio->bi_opf,
2971	};
2972	struct request *rq;
2973
 
 
 
 
 
 
2974	rq_qos_throttle(q, bio);
2975
2976	if (plug) {
2977		data.nr_tags = plug->nr_ios;
2978		plug->nr_ios = 1;
2979		data.cached_rqs = &plug->cached_rqs;
2980	}
2981
2982	rq = __blk_mq_alloc_requests(&data);
2983	if (rq)
2984		return rq;
2985	rq_qos_cleanup(q, bio);
2986	if (bio->bi_opf & REQ_NOWAIT)
2987		bio_wouldblock_error(bio);
 
 
2988	return NULL;
2989}
2990
2991/*
2992 * Check if there is a suitable cached request and return it.
2993 */
2994static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2995		struct request_queue *q, blk_opf_t opf)
2996{
2997	enum hctx_type type = blk_mq_get_hctx_type(opf);
2998	struct request *rq;
 
2999
3000	if (!plug)
3001		return NULL;
3002	rq = rq_list_peek(&plug->cached_rqs);
3003	if (!rq || rq->q != q)
3004		return NULL;
3005	if (type != rq->mq_hctx->type &&
3006	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
 
 
 
 
 
 
 
 
3007		return NULL;
3008	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3009		return NULL;
3010	return rq;
3011}
3012
3013static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3014		struct bio *bio)
3015{
3016	if (rq_list_pop(&plug->cached_rqs) != rq)
3017		WARN_ON_ONCE(1);
3018
3019	/*
3020	 * If any qos ->throttle() end up blocking, we will have flushed the
3021	 * plug and hence killed the cached_rq list as well. Pop this entry
3022	 * before we throttle.
3023	 */
3024	rq_qos_throttle(rq->q, bio);
 
3025
3026	blk_mq_rq_time_init(rq, blk_time_get_ns());
3027	rq->cmd_flags = bio->bi_opf;
3028	INIT_LIST_HEAD(&rq->queuelist);
 
3029}
3030
3031static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3032{
3033	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3034
3035	/* .bi_sector of any zero sized bio need to be initialized */
3036	if ((bio->bi_iter.bi_size & bs_mask) ||
3037	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3038		return true;
3039	return false;
3040}
3041
3042/**
3043 * blk_mq_submit_bio - Create and send a request to block device.
3044 * @bio: Bio pointer.
3045 *
3046 * Builds up a request structure from @q and @bio and send to the device. The
3047 * request may not be queued directly to hardware if:
3048 * * This request can be merged with another one
3049 * * We want to place request at plug queue for possible future merging
3050 * * There is an IO scheduler active at this queue
3051 *
3052 * It will not queue the request if there is an error with the bio, or at the
3053 * request creation.
3054 */
3055void blk_mq_submit_bio(struct bio *bio)
3056{
3057	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3058	struct blk_plug *plug = current->plug;
3059	const int is_sync = op_is_sync(bio->bi_opf);
3060	struct blk_mq_hw_ctx *hctx;
3061	unsigned int nr_segs;
3062	struct request *rq;
 
3063	blk_status_t ret;
3064
3065	/*
3066	 * If the plug has a cached request for this queue, try to use it.
3067	 */
3068	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3069
3070	/*
3071	 * A BIO that was released from a zone write plug has already been
3072	 * through the preparation in this function, already holds a reference
3073	 * on the queue usage counter, and is the only write BIO in-flight for
3074	 * the target zone. Go straight to preparing a request for it.
3075	 */
3076	if (bio_zone_write_plugging(bio)) {
3077		nr_segs = bio->__bi_nr_segments;
3078		if (rq)
3079			blk_queue_exit(q);
3080		goto new_request;
3081	}
3082
3083	bio = blk_queue_bounce(bio, q);
3084
3085	/*
3086	 * The cached request already holds a q_usage_counter reference and we
3087	 * don't have to acquire a new one if we use it.
3088	 */
3089	if (!rq) {
3090		if (unlikely(bio_queue_enter(bio)))
3091			return;
3092	}
3093
3094	/*
3095	 * Device reconfiguration may change logical block size or reduce the
3096	 * number of poll queues, so the checks for alignment and poll support
3097	 * have to be done with queue usage counter held.
3098	 */
3099	if (unlikely(bio_unaligned(bio, q))) {
3100		bio_io_error(bio);
3101		goto queue_exit;
3102	}
3103
3104	if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3105		bio->bi_status = BLK_STS_NOTSUPP;
3106		bio_endio(bio);
3107		goto queue_exit;
3108	}
3109
3110	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3111	if (!bio)
3112		goto queue_exit;
3113
3114	if (!bio_integrity_prep(bio))
3115		goto queue_exit;
3116
3117	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3118		goto queue_exit;
3119
3120	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3121		goto queue_exit;
3122
3123new_request:
3124	if (!rq) {
 
 
3125		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3126		if (unlikely(!rq))
3127			goto queue_exit;
3128	} else {
3129		blk_mq_use_cached_rq(rq, plug, bio);
3130	}
3131
3132	trace_block_getrq(bio);
3133
3134	rq_qos_track(q, rq, bio);
3135
3136	blk_mq_bio_to_request(rq, bio, nr_segs);
3137
3138	ret = blk_crypto_rq_get_keyslot(rq);
3139	if (ret != BLK_STS_OK) {
3140		bio->bi_status = ret;
3141		bio_endio(bio);
3142		blk_mq_free_request(rq);
3143		return;
3144	}
3145
3146	if (bio_zone_write_plugging(bio))
3147		blk_zone_write_plug_init_request(rq);
3148
3149	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3150		return;
 
3151
3152	if (plug) {
3153		blk_add_rq_to_plug(plug, rq);
3154		return;
3155	}
3156
3157	hctx = rq->mq_hctx;
3158	if ((rq->rq_flags & RQF_USE_SCHED) ||
3159	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3160		blk_mq_insert_request(rq, 0);
3161		blk_mq_run_hw_queue(hctx, true);
3162	} else {
3163		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3164	}
3165	return;
3166
3167queue_exit:
3168	/*
3169	 * Don't drop the queue reference if we were trying to use a cached
3170	 * request and thus didn't acquire one.
3171	 */
3172	if (!rq)
3173		blk_queue_exit(q);
3174}
3175
3176#ifdef CONFIG_BLK_MQ_STACKING
3177/**
3178 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3179 * @rq: the request being queued
3180 */
3181blk_status_t blk_insert_cloned_request(struct request *rq)
3182{
3183	struct request_queue *q = rq->q;
3184	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3185	unsigned int max_segments = blk_rq_get_max_segments(rq);
3186	blk_status_t ret;
3187
3188	if (blk_rq_sectors(rq) > max_sectors) {
3189		/*
3190		 * SCSI device does not have a good way to return if
3191		 * Write Same/Zero is actually supported. If a device rejects
3192		 * a non-read/write command (discard, write same,etc.) the
3193		 * low-level device driver will set the relevant queue limit to
3194		 * 0 to prevent blk-lib from issuing more of the offending
3195		 * operations. Commands queued prior to the queue limit being
3196		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3197		 * errors being propagated to upper layers.
3198		 */
3199		if (max_sectors == 0)
3200			return BLK_STS_NOTSUPP;
3201
3202		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3203			__func__, blk_rq_sectors(rq), max_sectors);
3204		return BLK_STS_IOERR;
3205	}
3206
3207	/*
3208	 * The queue settings related to segment counting may differ from the
3209	 * original queue.
3210	 */
3211	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3212	if (rq->nr_phys_segments > max_segments) {
3213		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3214			__func__, rq->nr_phys_segments, max_segments);
3215		return BLK_STS_IOERR;
3216	}
3217
3218	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3219		return BLK_STS_IOERR;
3220
3221	ret = blk_crypto_rq_get_keyslot(rq);
3222	if (ret != BLK_STS_OK)
3223		return ret;
3224
3225	blk_account_io_start(rq);
3226
3227	/*
3228	 * Since we have a scheduler attached on the top device,
3229	 * bypass a potential scheduler on the bottom device for
3230	 * insert.
3231	 */
3232	blk_mq_run_dispatch_ops(q,
3233			ret = blk_mq_request_issue_directly(rq, true));
3234	if (ret)
3235		blk_account_io_done(rq, blk_time_get_ns());
3236	return ret;
3237}
3238EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3239
3240/**
3241 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3242 * @rq: the clone request to be cleaned up
3243 *
3244 * Description:
3245 *     Free all bios in @rq for a cloned request.
3246 */
3247void blk_rq_unprep_clone(struct request *rq)
3248{
3249	struct bio *bio;
3250
3251	while ((bio = rq->bio) != NULL) {
3252		rq->bio = bio->bi_next;
3253
3254		bio_put(bio);
3255	}
3256}
3257EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3258
3259/**
3260 * blk_rq_prep_clone - Helper function to setup clone request
3261 * @rq: the request to be setup
3262 * @rq_src: original request to be cloned
3263 * @bs: bio_set that bios for clone are allocated from
3264 * @gfp_mask: memory allocation mask for bio
3265 * @bio_ctr: setup function to be called for each clone bio.
3266 *           Returns %0 for success, non %0 for failure.
3267 * @data: private data to be passed to @bio_ctr
3268 *
3269 * Description:
3270 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3271 *     Also, pages which the original bios are pointing to are not copied
3272 *     and the cloned bios just point same pages.
3273 *     So cloned bios must be completed before original bios, which means
3274 *     the caller must complete @rq before @rq_src.
3275 */
3276int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3277		      struct bio_set *bs, gfp_t gfp_mask,
3278		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3279		      void *data)
3280{
3281	struct bio *bio_src;
3282
3283	if (!bs)
3284		bs = &fs_bio_set;
3285
3286	__rq_for_each_bio(bio_src, rq_src) {
3287		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3288					gfp_mask, bs);
3289		if (!bio)
3290			goto free_and_out;
3291
3292		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3293			bio_put(bio);
3294			goto free_and_out;
3295		}
3296
3297		if (rq->bio) {
3298			rq->biotail->bi_next = bio;
3299			rq->biotail = bio;
3300		} else {
3301			rq->bio = rq->biotail = bio;
3302		}
 
3303	}
3304
3305	/* Copy attributes of the original request to the clone request. */
3306	rq->__sector = blk_rq_pos(rq_src);
3307	rq->__data_len = blk_rq_bytes(rq_src);
3308	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3309		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3310		rq->special_vec = rq_src->special_vec;
3311	}
3312	rq->nr_phys_segments = rq_src->nr_phys_segments;
 
3313
3314	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3315		goto free_and_out;
3316
3317	return 0;
3318
3319free_and_out:
 
 
3320	blk_rq_unprep_clone(rq);
3321
3322	return -ENOMEM;
3323}
3324EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3325#endif /* CONFIG_BLK_MQ_STACKING */
3326
3327/*
3328 * Steal bios from a request and add them to a bio list.
3329 * The request must not have been partially completed before.
3330 */
3331void blk_steal_bios(struct bio_list *list, struct request *rq)
3332{
3333	if (rq->bio) {
3334		if (list->tail)
3335			list->tail->bi_next = rq->bio;
3336		else
3337			list->head = rq->bio;
3338		list->tail = rq->biotail;
3339
3340		rq->bio = NULL;
3341		rq->biotail = NULL;
3342	}
3343
3344	rq->__data_len = 0;
3345}
3346EXPORT_SYMBOL_GPL(blk_steal_bios);
3347
3348static size_t order_to_size(unsigned int order)
3349{
3350	return (size_t)PAGE_SIZE << order;
3351}
3352
3353/* called before freeing request pool in @tags */
3354static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3355				    struct blk_mq_tags *tags)
3356{
3357	struct page *page;
3358	unsigned long flags;
3359
3360	/*
3361	 * There is no need to clear mapping if driver tags is not initialized
3362	 * or the mapping belongs to the driver tags.
3363	 */
3364	if (!drv_tags || drv_tags == tags)
3365		return;
3366
3367	list_for_each_entry(page, &tags->page_list, lru) {
3368		unsigned long start = (unsigned long)page_address(page);
3369		unsigned long end = start + order_to_size(page->private);
3370		int i;
3371
3372		for (i = 0; i < drv_tags->nr_tags; i++) {
3373			struct request *rq = drv_tags->rqs[i];
3374			unsigned long rq_addr = (unsigned long)rq;
3375
3376			if (rq_addr >= start && rq_addr < end) {
3377				WARN_ON_ONCE(req_ref_read(rq) != 0);
3378				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3379			}
3380		}
3381	}
3382
3383	/*
3384	 * Wait until all pending iteration is done.
3385	 *
3386	 * Request reference is cleared and it is guaranteed to be observed
3387	 * after the ->lock is released.
3388	 */
3389	spin_lock_irqsave(&drv_tags->lock, flags);
3390	spin_unlock_irqrestore(&drv_tags->lock, flags);
3391}
3392
3393void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3394		     unsigned int hctx_idx)
3395{
3396	struct blk_mq_tags *drv_tags;
3397	struct page *page;
3398
3399	if (list_empty(&tags->page_list))
3400		return;
3401
3402	if (blk_mq_is_shared_tags(set->flags))
3403		drv_tags = set->shared_tags;
3404	else
3405		drv_tags = set->tags[hctx_idx];
3406
3407	if (tags->static_rqs && set->ops->exit_request) {
3408		int i;
3409
3410		for (i = 0; i < tags->nr_tags; i++) {
3411			struct request *rq = tags->static_rqs[i];
3412
3413			if (!rq)
3414				continue;
3415			set->ops->exit_request(set, rq, hctx_idx);
3416			tags->static_rqs[i] = NULL;
3417		}
3418	}
3419
3420	blk_mq_clear_rq_mapping(drv_tags, tags);
3421
3422	while (!list_empty(&tags->page_list)) {
3423		page = list_first_entry(&tags->page_list, struct page, lru);
3424		list_del_init(&page->lru);
3425		/*
3426		 * Remove kmemleak object previously allocated in
3427		 * blk_mq_alloc_rqs().
3428		 */
3429		kmemleak_free(page_address(page));
3430		__free_pages(page, page->private);
3431	}
3432}
3433
3434void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3435{
3436	kfree(tags->rqs);
3437	tags->rqs = NULL;
3438	kfree(tags->static_rqs);
3439	tags->static_rqs = NULL;
3440
3441	blk_mq_free_tags(tags);
3442}
3443
3444static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3445		unsigned int hctx_idx)
3446{
3447	int i;
3448
3449	for (i = 0; i < set->nr_maps; i++) {
3450		unsigned int start = set->map[i].queue_offset;
3451		unsigned int end = start + set->map[i].nr_queues;
3452
3453		if (hctx_idx >= start && hctx_idx < end)
3454			break;
3455	}
3456
3457	if (i >= set->nr_maps)
3458		i = HCTX_TYPE_DEFAULT;
3459
3460	return i;
3461}
3462
3463static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3464		unsigned int hctx_idx)
3465{
3466	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3467
3468	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3469}
3470
3471static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3472					       unsigned int hctx_idx,
3473					       unsigned int nr_tags,
3474					       unsigned int reserved_tags)
3475{
3476	int node = blk_mq_get_hctx_node(set, hctx_idx);
3477	struct blk_mq_tags *tags;
3478
3479	if (node == NUMA_NO_NODE)
3480		node = set->numa_node;
3481
3482	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3483				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3484	if (!tags)
3485		return NULL;
3486
3487	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3488				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3489				 node);
3490	if (!tags->rqs)
3491		goto err_free_tags;
3492
3493	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3494					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3495					node);
3496	if (!tags->static_rqs)
3497		goto err_free_rqs;
3498
3499	return tags;
3500
3501err_free_rqs:
3502	kfree(tags->rqs);
3503err_free_tags:
3504	blk_mq_free_tags(tags);
3505	return NULL;
3506}
3507
3508static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3509			       unsigned int hctx_idx, int node)
3510{
3511	int ret;
3512
3513	if (set->ops->init_request) {
3514		ret = set->ops->init_request(set, rq, hctx_idx, node);
3515		if (ret)
3516			return ret;
3517	}
3518
3519	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3520	return 0;
3521}
3522
3523static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3524			    struct blk_mq_tags *tags,
3525			    unsigned int hctx_idx, unsigned int depth)
3526{
3527	unsigned int i, j, entries_per_page, max_order = 4;
3528	int node = blk_mq_get_hctx_node(set, hctx_idx);
3529	size_t rq_size, left;
3530
3531	if (node == NUMA_NO_NODE)
3532		node = set->numa_node;
3533
3534	INIT_LIST_HEAD(&tags->page_list);
3535
3536	/*
3537	 * rq_size is the size of the request plus driver payload, rounded
3538	 * to the cacheline size
3539	 */
3540	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3541				cache_line_size());
3542	left = rq_size * depth;
3543
3544	for (i = 0; i < depth; ) {
3545		int this_order = max_order;
3546		struct page *page;
3547		int to_do;
3548		void *p;
3549
3550		while (this_order && left < order_to_size(this_order - 1))
3551			this_order--;
3552
3553		do {
3554			page = alloc_pages_node(node,
3555				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3556				this_order);
3557			if (page)
3558				break;
3559			if (!this_order--)
3560				break;
3561			if (order_to_size(this_order) < rq_size)
3562				break;
3563		} while (1);
3564
3565		if (!page)
3566			goto fail;
3567
3568		page->private = this_order;
3569		list_add_tail(&page->lru, &tags->page_list);
3570
3571		p = page_address(page);
3572		/*
3573		 * Allow kmemleak to scan these pages as they contain pointers
3574		 * to additional allocations like via ops->init_request().
3575		 */
3576		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3577		entries_per_page = order_to_size(this_order) / rq_size;
3578		to_do = min(entries_per_page, depth - i);
3579		left -= to_do * rq_size;
3580		for (j = 0; j < to_do; j++) {
3581			struct request *rq = p;
3582
3583			tags->static_rqs[i] = rq;
3584			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3585				tags->static_rqs[i] = NULL;
3586				goto fail;
3587			}
3588
3589			p += rq_size;
3590			i++;
3591		}
3592	}
3593	return 0;
3594
3595fail:
3596	blk_mq_free_rqs(set, tags, hctx_idx);
3597	return -ENOMEM;
3598}
3599
3600struct rq_iter_data {
3601	struct blk_mq_hw_ctx *hctx;
3602	bool has_rq;
3603};
3604
3605static bool blk_mq_has_request(struct request *rq, void *data)
3606{
3607	struct rq_iter_data *iter_data = data;
3608
3609	if (rq->mq_hctx != iter_data->hctx)
3610		return true;
3611	iter_data->has_rq = true;
3612	return false;
3613}
3614
3615static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3616{
3617	struct blk_mq_tags *tags = hctx->sched_tags ?
3618			hctx->sched_tags : hctx->tags;
3619	struct rq_iter_data data = {
3620		.hctx	= hctx,
3621	};
3622
3623	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3624	return data.has_rq;
3625}
3626
3627static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3628		unsigned int this_cpu)
3629{
3630	enum hctx_type type = hctx->type;
3631	int cpu;
3632
3633	/*
3634	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3635	 * might submit IOs on these isolated CPUs, so use the queue map to
3636	 * check if all CPUs mapped to this hctx are offline
3637	 */
3638	for_each_online_cpu(cpu) {
3639		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3640				type, cpu);
3641
3642		if (h != hctx)
3643			continue;
3644
3645		/* this hctx has at least one online CPU */
3646		if (this_cpu != cpu)
3647			return true;
3648	}
3649
3650	return false;
3651}
3652
3653static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3654{
3655	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3656			struct blk_mq_hw_ctx, cpuhp_online);
3657
3658	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
 
3659		return 0;
3660
3661	/*
3662	 * Prevent new request from being allocated on the current hctx.
3663	 *
3664	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3665	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3666	 * seen once we return from the tag allocator.
3667	 */
3668	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3669	smp_mb__after_atomic();
3670
3671	/*
3672	 * Try to grab a reference to the queue and wait for any outstanding
3673	 * requests.  If we could not grab a reference the queue has been
3674	 * frozen and there are no requests.
3675	 */
3676	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3677		while (blk_mq_hctx_has_requests(hctx))
3678			msleep(5);
3679		percpu_ref_put(&hctx->queue->q_usage_counter);
3680	}
3681
3682	return 0;
3683}
3684
3685/*
3686 * Check if one CPU is mapped to the specified hctx
3687 *
3688 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3689 * to be used for scheduling kworker only. For other usage, please call this
3690 * helper for checking if one CPU belongs to the specified hctx
3691 */
3692static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3693		const struct blk_mq_hw_ctx *hctx)
3694{
3695	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3696			hctx->type, cpu);
3697
3698	return mapped_hctx == hctx;
3699}
3700
3701static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3702{
3703	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3704			struct blk_mq_hw_ctx, cpuhp_online);
3705
3706	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3707		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3708	return 0;
3709}
3710
3711/*
3712 * 'cpu' is going away. splice any existing rq_list entries from this
3713 * software queue to the hw queue dispatch list, and ensure that it
3714 * gets run.
3715 */
3716static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3717{
3718	struct blk_mq_hw_ctx *hctx;
3719	struct blk_mq_ctx *ctx;
3720	LIST_HEAD(tmp);
3721	enum hctx_type type;
3722
3723	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3724	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3725		return 0;
3726
3727	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3728	type = hctx->type;
3729
3730	spin_lock(&ctx->lock);
3731	if (!list_empty(&ctx->rq_lists[type])) {
3732		list_splice_init(&ctx->rq_lists[type], &tmp);
3733		blk_mq_hctx_clear_pending(hctx, ctx);
3734	}
3735	spin_unlock(&ctx->lock);
3736
3737	if (list_empty(&tmp))
3738		return 0;
3739
3740	spin_lock(&hctx->lock);
3741	list_splice_tail_init(&tmp, &hctx->dispatch);
3742	spin_unlock(&hctx->lock);
3743
3744	blk_mq_run_hw_queue(hctx, true);
3745	return 0;
3746}
3747
3748static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3749{
3750	lockdep_assert_held(&blk_mq_cpuhp_lock);
3751
3752	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3753	    !hlist_unhashed(&hctx->cpuhp_online)) {
3754		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3755						    &hctx->cpuhp_online);
3756		INIT_HLIST_NODE(&hctx->cpuhp_online);
3757	}
3758
3759	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3760		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3761						    &hctx->cpuhp_dead);
3762		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3763	}
3764}
3765
3766static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3767{
3768	mutex_lock(&blk_mq_cpuhp_lock);
3769	__blk_mq_remove_cpuhp(hctx);
3770	mutex_unlock(&blk_mq_cpuhp_lock);
3771}
3772
3773static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3774{
3775	lockdep_assert_held(&blk_mq_cpuhp_lock);
3776
3777	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3778	    hlist_unhashed(&hctx->cpuhp_online))
3779		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3780				&hctx->cpuhp_online);
3781
3782	if (hlist_unhashed(&hctx->cpuhp_dead))
3783		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3784				&hctx->cpuhp_dead);
3785}
3786
3787static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3788{
3789	struct blk_mq_hw_ctx *hctx;
3790
3791	lockdep_assert_held(&blk_mq_cpuhp_lock);
3792
3793	list_for_each_entry(hctx, head, hctx_list)
3794		__blk_mq_remove_cpuhp(hctx);
3795}
3796
3797/*
3798 * Unregister cpuhp callbacks from exited hw queues
3799 *
3800 * Safe to call if this `request_queue` is live
3801 */
3802static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3803{
3804	LIST_HEAD(hctx_list);
3805
3806	spin_lock(&q->unused_hctx_lock);
3807	list_splice_init(&q->unused_hctx_list, &hctx_list);
3808	spin_unlock(&q->unused_hctx_lock);
3809
3810	mutex_lock(&blk_mq_cpuhp_lock);
3811	__blk_mq_remove_cpuhp_list(&hctx_list);
3812	mutex_unlock(&blk_mq_cpuhp_lock);
3813
3814	spin_lock(&q->unused_hctx_lock);
3815	list_splice(&hctx_list, &q->unused_hctx_list);
3816	spin_unlock(&q->unused_hctx_lock);
3817}
3818
3819/*
3820 * Register cpuhp callbacks from all hw queues
3821 *
3822 * Safe to call if this `request_queue` is live
3823 */
3824static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3825{
3826	struct blk_mq_hw_ctx *hctx;
3827	unsigned long i;
3828
3829	mutex_lock(&blk_mq_cpuhp_lock);
3830	queue_for_each_hw_ctx(q, hctx, i)
3831		__blk_mq_add_cpuhp(hctx);
3832	mutex_unlock(&blk_mq_cpuhp_lock);
3833}
3834
3835/*
3836 * Before freeing hw queue, clearing the flush request reference in
3837 * tags->rqs[] for avoiding potential UAF.
3838 */
3839static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3840		unsigned int queue_depth, struct request *flush_rq)
3841{
3842	int i;
3843	unsigned long flags;
3844
3845	/* The hw queue may not be mapped yet */
3846	if (!tags)
3847		return;
3848
3849	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3850
3851	for (i = 0; i < queue_depth; i++)
3852		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3853
3854	/*
3855	 * Wait until all pending iteration is done.
3856	 *
3857	 * Request reference is cleared and it is guaranteed to be observed
3858	 * after the ->lock is released.
3859	 */
3860	spin_lock_irqsave(&tags->lock, flags);
3861	spin_unlock_irqrestore(&tags->lock, flags);
3862}
3863
3864/* hctx->ctxs will be freed in queue's release handler */
3865static void blk_mq_exit_hctx(struct request_queue *q,
3866		struct blk_mq_tag_set *set,
3867		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3868{
3869	struct request *flush_rq = hctx->fq->flush_rq;
3870
3871	if (blk_mq_hw_queue_mapped(hctx))
3872		blk_mq_tag_idle(hctx);
3873
3874	if (blk_queue_init_done(q))
3875		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3876				set->queue_depth, flush_rq);
3877	if (set->ops->exit_request)
3878		set->ops->exit_request(set, flush_rq, hctx_idx);
3879
3880	if (set->ops->exit_hctx)
3881		set->ops->exit_hctx(hctx, hctx_idx);
3882
 
 
3883	xa_erase(&q->hctx_table, hctx_idx);
3884
3885	spin_lock(&q->unused_hctx_lock);
3886	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3887	spin_unlock(&q->unused_hctx_lock);
3888}
3889
3890static void blk_mq_exit_hw_queues(struct request_queue *q,
3891		struct blk_mq_tag_set *set, int nr_queue)
3892{
3893	struct blk_mq_hw_ctx *hctx;
3894	unsigned long i;
3895
3896	queue_for_each_hw_ctx(q, hctx, i) {
3897		if (i == nr_queue)
3898			break;
3899		blk_mq_remove_cpuhp(hctx);
3900		blk_mq_exit_hctx(q, set, hctx, i);
3901	}
3902}
3903
3904static int blk_mq_init_hctx(struct request_queue *q,
3905		struct blk_mq_tag_set *set,
3906		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3907{
3908	hctx->queue_num = hctx_idx;
3909
 
 
 
 
 
3910	hctx->tags = set->tags[hctx_idx];
3911
3912	if (set->ops->init_hctx &&
3913	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3914		goto fail;
3915
3916	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3917				hctx->numa_node))
3918		goto exit_hctx;
3919
3920	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3921		goto exit_flush_rq;
3922
3923	return 0;
3924
3925 exit_flush_rq:
3926	if (set->ops->exit_request)
3927		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3928 exit_hctx:
3929	if (set->ops->exit_hctx)
3930		set->ops->exit_hctx(hctx, hctx_idx);
3931 fail:
 
3932	return -1;
3933}
3934
3935static struct blk_mq_hw_ctx *
3936blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3937		int node)
3938{
3939	struct blk_mq_hw_ctx *hctx;
3940	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3941
3942	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3943	if (!hctx)
3944		goto fail_alloc_hctx;
3945
3946	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3947		goto free_hctx;
3948
3949	atomic_set(&hctx->nr_active, 0);
3950	if (node == NUMA_NO_NODE)
3951		node = set->numa_node;
3952	hctx->numa_node = node;
3953
3954	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3955	spin_lock_init(&hctx->lock);
3956	INIT_LIST_HEAD(&hctx->dispatch);
3957	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3958	INIT_HLIST_NODE(&hctx->cpuhp_online);
3959	hctx->queue = q;
3960	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3961
3962	INIT_LIST_HEAD(&hctx->hctx_list);
3963
3964	/*
3965	 * Allocate space for all possible cpus to avoid allocation at
3966	 * runtime
3967	 */
3968	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3969			gfp, node);
3970	if (!hctx->ctxs)
3971		goto free_cpumask;
3972
3973	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3974				gfp, node, false, false))
3975		goto free_ctxs;
3976	hctx->nr_ctx = 0;
3977
3978	spin_lock_init(&hctx->dispatch_wait_lock);
3979	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3980	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3981
3982	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3983	if (!hctx->fq)
3984		goto free_bitmap;
3985
3986	blk_mq_hctx_kobj_init(hctx);
3987
3988	return hctx;
3989
3990 free_bitmap:
3991	sbitmap_free(&hctx->ctx_map);
3992 free_ctxs:
3993	kfree(hctx->ctxs);
3994 free_cpumask:
3995	free_cpumask_var(hctx->cpumask);
3996 free_hctx:
3997	kfree(hctx);
3998 fail_alloc_hctx:
3999	return NULL;
4000}
4001
4002static void blk_mq_init_cpu_queues(struct request_queue *q,
4003				   unsigned int nr_hw_queues)
4004{
4005	struct blk_mq_tag_set *set = q->tag_set;
4006	unsigned int i, j;
4007
4008	for_each_possible_cpu(i) {
4009		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4010		struct blk_mq_hw_ctx *hctx;
4011		int k;
4012
4013		__ctx->cpu = i;
4014		spin_lock_init(&__ctx->lock);
4015		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4016			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4017
4018		__ctx->queue = q;
4019
4020		/*
4021		 * Set local node, IFF we have more than one hw queue. If
4022		 * not, we remain on the home node of the device
4023		 */
4024		for (j = 0; j < set->nr_maps; j++) {
4025			hctx = blk_mq_map_queue_type(q, j, i);
4026			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4027				hctx->numa_node = cpu_to_node(i);
4028		}
4029	}
4030}
4031
4032struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4033					     unsigned int hctx_idx,
4034					     unsigned int depth)
4035{
4036	struct blk_mq_tags *tags;
4037	int ret;
4038
4039	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4040	if (!tags)
4041		return NULL;
4042
4043	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4044	if (ret) {
4045		blk_mq_free_rq_map(tags);
4046		return NULL;
4047	}
4048
4049	return tags;
4050}
4051
4052static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4053				       int hctx_idx)
4054{
4055	if (blk_mq_is_shared_tags(set->flags)) {
4056		set->tags[hctx_idx] = set->shared_tags;
4057
4058		return true;
4059	}
4060
4061	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4062						       set->queue_depth);
4063
4064	return set->tags[hctx_idx];
4065}
4066
4067void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4068			     struct blk_mq_tags *tags,
4069			     unsigned int hctx_idx)
4070{
4071	if (tags) {
4072		blk_mq_free_rqs(set, tags, hctx_idx);
4073		blk_mq_free_rq_map(tags);
4074	}
4075}
4076
4077static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4078				      unsigned int hctx_idx)
4079{
4080	if (!blk_mq_is_shared_tags(set->flags))
4081		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4082
4083	set->tags[hctx_idx] = NULL;
4084}
4085
4086static void blk_mq_map_swqueue(struct request_queue *q)
4087{
4088	unsigned int j, hctx_idx;
4089	unsigned long i;
4090	struct blk_mq_hw_ctx *hctx;
4091	struct blk_mq_ctx *ctx;
4092	struct blk_mq_tag_set *set = q->tag_set;
4093
4094	queue_for_each_hw_ctx(q, hctx, i) {
4095		cpumask_clear(hctx->cpumask);
4096		hctx->nr_ctx = 0;
4097		hctx->dispatch_from = NULL;
4098	}
4099
4100	/*
4101	 * Map software to hardware queues.
4102	 *
4103	 * If the cpu isn't present, the cpu is mapped to first hctx.
4104	 */
4105	for_each_possible_cpu(i) {
4106
4107		ctx = per_cpu_ptr(q->queue_ctx, i);
4108		for (j = 0; j < set->nr_maps; j++) {
4109			if (!set->map[j].nr_queues) {
4110				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4111						HCTX_TYPE_DEFAULT, i);
4112				continue;
4113			}
4114			hctx_idx = set->map[j].mq_map[i];
4115			/* unmapped hw queue can be remapped after CPU topo changed */
4116			if (!set->tags[hctx_idx] &&
4117			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4118				/*
4119				 * If tags initialization fail for some hctx,
4120				 * that hctx won't be brought online.  In this
4121				 * case, remap the current ctx to hctx[0] which
4122				 * is guaranteed to always have tags allocated
4123				 */
4124				set->map[j].mq_map[i] = 0;
4125			}
4126
4127			hctx = blk_mq_map_queue_type(q, j, i);
4128			ctx->hctxs[j] = hctx;
4129			/*
4130			 * If the CPU is already set in the mask, then we've
4131			 * mapped this one already. This can happen if
4132			 * devices share queues across queue maps.
4133			 */
4134			if (cpumask_test_cpu(i, hctx->cpumask))
4135				continue;
4136
4137			cpumask_set_cpu(i, hctx->cpumask);
4138			hctx->type = j;
4139			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4140			hctx->ctxs[hctx->nr_ctx++] = ctx;
4141
4142			/*
4143			 * If the nr_ctx type overflows, we have exceeded the
4144			 * amount of sw queues we can support.
4145			 */
4146			BUG_ON(!hctx->nr_ctx);
4147		}
4148
4149		for (; j < HCTX_MAX_TYPES; j++)
4150			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4151					HCTX_TYPE_DEFAULT, i);
4152	}
4153
4154	queue_for_each_hw_ctx(q, hctx, i) {
4155		int cpu;
4156
4157		/*
4158		 * If no software queues are mapped to this hardware queue,
4159		 * disable it and free the request entries.
4160		 */
4161		if (!hctx->nr_ctx) {
4162			/* Never unmap queue 0.  We need it as a
4163			 * fallback in case of a new remap fails
4164			 * allocation
4165			 */
4166			if (i)
4167				__blk_mq_free_map_and_rqs(set, i);
4168
4169			hctx->tags = NULL;
4170			continue;
4171		}
4172
4173		hctx->tags = set->tags[i];
4174		WARN_ON(!hctx->tags);
4175
4176		/*
4177		 * Set the map size to the number of mapped software queues.
4178		 * This is more accurate and more efficient than looping
4179		 * over all possibly mapped software queues.
4180		 */
4181		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4182
4183		/*
4184		 * Rule out isolated CPUs from hctx->cpumask to avoid
4185		 * running block kworker on isolated CPUs
4186		 */
4187		for_each_cpu(cpu, hctx->cpumask) {
4188			if (cpu_is_isolated(cpu))
4189				cpumask_clear_cpu(cpu, hctx->cpumask);
4190		}
4191
4192		/*
4193		 * Initialize batch roundrobin counts
4194		 */
4195		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4196		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4197	}
4198}
4199
4200/*
4201 * Caller needs to ensure that we're either frozen/quiesced, or that
4202 * the queue isn't live yet.
4203 */
4204static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4205{
4206	struct blk_mq_hw_ctx *hctx;
4207	unsigned long i;
4208
4209	queue_for_each_hw_ctx(q, hctx, i) {
4210		if (shared) {
4211			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4212		} else {
4213			blk_mq_tag_idle(hctx);
4214			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4215		}
4216	}
4217}
4218
4219static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4220					 bool shared)
4221{
4222	struct request_queue *q;
4223
4224	lockdep_assert_held(&set->tag_list_lock);
4225
4226	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4227		blk_mq_freeze_queue(q);
4228		queue_set_hctx_shared(q, shared);
4229		blk_mq_unfreeze_queue(q);
4230	}
4231}
4232
4233static void blk_mq_del_queue_tag_set(struct request_queue *q)
4234{
4235	struct blk_mq_tag_set *set = q->tag_set;
4236
4237	mutex_lock(&set->tag_list_lock);
4238	list_del(&q->tag_set_list);
4239	if (list_is_singular(&set->tag_list)) {
4240		/* just transitioned to unshared */
4241		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4242		/* update existing queue */
4243		blk_mq_update_tag_set_shared(set, false);
4244	}
4245	mutex_unlock(&set->tag_list_lock);
4246	INIT_LIST_HEAD(&q->tag_set_list);
4247}
4248
4249static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4250				     struct request_queue *q)
4251{
4252	mutex_lock(&set->tag_list_lock);
4253
4254	/*
4255	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4256	 */
4257	if (!list_empty(&set->tag_list) &&
4258	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4259		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4260		/* update existing queue */
4261		blk_mq_update_tag_set_shared(set, true);
4262	}
4263	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4264		queue_set_hctx_shared(q, true);
4265	list_add_tail(&q->tag_set_list, &set->tag_list);
4266
4267	mutex_unlock(&set->tag_list_lock);
4268}
4269
4270/* All allocations will be freed in release handler of q->mq_kobj */
4271static int blk_mq_alloc_ctxs(struct request_queue *q)
4272{
4273	struct blk_mq_ctxs *ctxs;
4274	int cpu;
4275
4276	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4277	if (!ctxs)
4278		return -ENOMEM;
4279
4280	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4281	if (!ctxs->queue_ctx)
4282		goto fail;
4283
4284	for_each_possible_cpu(cpu) {
4285		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4286		ctx->ctxs = ctxs;
4287	}
4288
4289	q->mq_kobj = &ctxs->kobj;
4290	q->queue_ctx = ctxs->queue_ctx;
4291
4292	return 0;
4293 fail:
4294	kfree(ctxs);
4295	return -ENOMEM;
4296}
4297
4298/*
4299 * It is the actual release handler for mq, but we do it from
4300 * request queue's release handler for avoiding use-after-free
4301 * and headache because q->mq_kobj shouldn't have been introduced,
4302 * but we can't group ctx/kctx kobj without it.
4303 */
4304void blk_mq_release(struct request_queue *q)
4305{
4306	struct blk_mq_hw_ctx *hctx, *next;
4307	unsigned long i;
4308
4309	queue_for_each_hw_ctx(q, hctx, i)
4310		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4311
4312	/* all hctx are in .unused_hctx_list now */
4313	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4314		list_del_init(&hctx->hctx_list);
4315		kobject_put(&hctx->kobj);
4316	}
4317
4318	xa_destroy(&q->hctx_table);
4319
4320	/*
4321	 * release .mq_kobj and sw queue's kobject now because
4322	 * both share lifetime with request queue.
4323	 */
4324	blk_mq_sysfs_deinit(q);
4325}
4326
4327struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4328		struct queue_limits *lim, void *queuedata)
4329{
4330	struct queue_limits default_lim = { };
4331	struct request_queue *q;
4332	int ret;
4333
4334	if (!lim)
4335		lim = &default_lim;
4336	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4337	if (set->nr_maps > HCTX_TYPE_POLL)
4338		lim->features |= BLK_FEAT_POLL;
4339
4340	q = blk_alloc_queue(lim, set->numa_node);
4341	if (IS_ERR(q))
4342		return q;
4343	q->queuedata = queuedata;
4344	ret = blk_mq_init_allocated_queue(set, q);
4345	if (ret) {
4346		blk_put_queue(q);
4347		return ERR_PTR(ret);
4348	}
4349	return q;
4350}
4351EXPORT_SYMBOL(blk_mq_alloc_queue);
 
 
 
 
 
4352
4353/**
4354 * blk_mq_destroy_queue - shutdown a request queue
4355 * @q: request queue to shutdown
4356 *
4357 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4358 * requests will be failed with -ENODEV. The caller is responsible for dropping
4359 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4360 *
4361 * Context: can sleep
4362 */
4363void blk_mq_destroy_queue(struct request_queue *q)
4364{
4365	WARN_ON_ONCE(!queue_is_mq(q));
4366	WARN_ON_ONCE(blk_queue_registered(q));
4367
4368	might_sleep();
4369
4370	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4371	blk_queue_start_drain(q);
4372	blk_mq_freeze_queue_wait(q);
4373
4374	blk_sync_queue(q);
4375	blk_mq_cancel_work_sync(q);
4376	blk_mq_exit_queue(q);
4377}
4378EXPORT_SYMBOL(blk_mq_destroy_queue);
4379
4380struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4381		struct queue_limits *lim, void *queuedata,
4382		struct lock_class_key *lkclass)
4383{
4384	struct request_queue *q;
4385	struct gendisk *disk;
4386
4387	q = blk_mq_alloc_queue(set, lim, queuedata);
4388	if (IS_ERR(q))
4389		return ERR_CAST(q);
4390
4391	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4392	if (!disk) {
4393		blk_mq_destroy_queue(q);
4394		blk_put_queue(q);
4395		return ERR_PTR(-ENOMEM);
4396	}
4397	set_bit(GD_OWNS_QUEUE, &disk->state);
4398	return disk;
4399}
4400EXPORT_SYMBOL(__blk_mq_alloc_disk);
4401
4402struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4403		struct lock_class_key *lkclass)
4404{
4405	struct gendisk *disk;
4406
4407	if (!blk_get_queue(q))
4408		return NULL;
4409	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4410	if (!disk)
4411		blk_put_queue(q);
4412	return disk;
4413}
4414EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4415
4416/*
4417 * Only hctx removed from cpuhp list can be reused
4418 */
4419static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4420{
4421	return hlist_unhashed(&hctx->cpuhp_online) &&
4422		hlist_unhashed(&hctx->cpuhp_dead);
4423}
4424
4425static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4426		struct blk_mq_tag_set *set, struct request_queue *q,
4427		int hctx_idx, int node)
4428{
4429	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4430
4431	/* reuse dead hctx first */
4432	spin_lock(&q->unused_hctx_lock);
4433	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4434		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4435			hctx = tmp;
4436			break;
4437		}
4438	}
4439	if (hctx)
4440		list_del_init(&hctx->hctx_list);
4441	spin_unlock(&q->unused_hctx_lock);
4442
4443	if (!hctx)
4444		hctx = blk_mq_alloc_hctx(q, set, node);
4445	if (!hctx)
4446		goto fail;
4447
4448	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4449		goto free_hctx;
4450
4451	return hctx;
4452
4453 free_hctx:
4454	kobject_put(&hctx->kobj);
4455 fail:
4456	return NULL;
4457}
4458
4459static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4460						struct request_queue *q)
4461{
4462	struct blk_mq_hw_ctx *hctx;
4463	unsigned long i, j;
4464
4465	/* protect against switching io scheduler  */
4466	mutex_lock(&q->sysfs_lock);
4467	for (i = 0; i < set->nr_hw_queues; i++) {
4468		int old_node;
4469		int node = blk_mq_get_hctx_node(set, i);
4470		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4471
4472		if (old_hctx) {
4473			old_node = old_hctx->numa_node;
4474			blk_mq_exit_hctx(q, set, old_hctx, i);
4475		}
4476
4477		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4478			if (!old_hctx)
4479				break;
4480			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4481					node, old_node);
4482			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4483			WARN_ON_ONCE(!hctx);
4484		}
4485	}
4486	/*
4487	 * Increasing nr_hw_queues fails. Free the newly allocated
4488	 * hctxs and keep the previous q->nr_hw_queues.
4489	 */
4490	if (i != set->nr_hw_queues) {
4491		j = q->nr_hw_queues;
4492	} else {
4493		j = i;
4494		q->nr_hw_queues = set->nr_hw_queues;
4495	}
4496
4497	xa_for_each_start(&q->hctx_table, j, hctx, j)
4498		blk_mq_exit_hctx(q, set, hctx, j);
4499	mutex_unlock(&q->sysfs_lock);
 
4500
4501	/* unregister cpuhp callbacks for exited hctxs */
4502	blk_mq_remove_hw_queues_cpuhp(q);
 
4503
4504	/* register cpuhp for new initialized hctxs */
4505	blk_mq_add_hw_queues_cpuhp(q);
 
 
 
4506}
4507
4508int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4509		struct request_queue *q)
4510{
4511	/* mark the queue as mq asap */
4512	q->mq_ops = set->ops;
4513
4514	/*
4515	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4516	 * handler needs it for checking queue mapping
4517	 */
4518	q->tag_set = set;
4519
4520	if (blk_mq_alloc_ctxs(q))
4521		goto err_exit;
4522
4523	/* init q->mq_kobj and sw queues' kobjects */
4524	blk_mq_sysfs_init(q);
4525
4526	INIT_LIST_HEAD(&q->unused_hctx_list);
4527	spin_lock_init(&q->unused_hctx_lock);
4528
4529	xa_init(&q->hctx_table);
4530
4531	blk_mq_realloc_hw_ctxs(set, q);
4532	if (!q->nr_hw_queues)
4533		goto err_hctxs;
4534
4535	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4536	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4537
 
 
4538	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
 
4539
4540	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4541	INIT_LIST_HEAD(&q->flush_list);
4542	INIT_LIST_HEAD(&q->requeue_list);
4543	spin_lock_init(&q->requeue_lock);
4544
4545	q->nr_requests = set->queue_depth;
4546
 
 
 
 
 
4547	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4548	blk_mq_add_queue_tag_set(set, q);
4549	blk_mq_map_swqueue(q);
4550	return 0;
4551
4552err_hctxs:
4553	blk_mq_release(q);
 
 
 
4554err_exit:
4555	q->mq_ops = NULL;
4556	return -ENOMEM;
4557}
4558EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4559
4560/* tags can _not_ be used after returning from blk_mq_exit_queue */
4561void blk_mq_exit_queue(struct request_queue *q)
4562{
4563	struct blk_mq_tag_set *set = q->tag_set;
4564
4565	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4566	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4567	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4568	blk_mq_del_queue_tag_set(q);
4569}
4570
4571static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4572{
4573	int i;
4574
4575	if (blk_mq_is_shared_tags(set->flags)) {
4576		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4577						BLK_MQ_NO_HCTX_IDX,
4578						set->queue_depth);
4579		if (!set->shared_tags)
4580			return -ENOMEM;
4581	}
4582
4583	for (i = 0; i < set->nr_hw_queues; i++) {
4584		if (!__blk_mq_alloc_map_and_rqs(set, i))
4585			goto out_unwind;
4586		cond_resched();
4587	}
4588
4589	return 0;
4590
4591out_unwind:
4592	while (--i >= 0)
4593		__blk_mq_free_map_and_rqs(set, i);
4594
4595	if (blk_mq_is_shared_tags(set->flags)) {
4596		blk_mq_free_map_and_rqs(set, set->shared_tags,
4597					BLK_MQ_NO_HCTX_IDX);
4598	}
4599
4600	return -ENOMEM;
4601}
4602
4603/*
4604 * Allocate the request maps associated with this tag_set. Note that this
4605 * may reduce the depth asked for, if memory is tight. set->queue_depth
4606 * will be updated to reflect the allocated depth.
4607 */
4608static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4609{
4610	unsigned int depth;
4611	int err;
4612
4613	depth = set->queue_depth;
4614	do {
4615		err = __blk_mq_alloc_rq_maps(set);
4616		if (!err)
4617			break;
4618
4619		set->queue_depth >>= 1;
4620		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4621			err = -ENOMEM;
4622			break;
4623		}
4624	} while (set->queue_depth);
4625
4626	if (!set->queue_depth || err) {
4627		pr_err("blk-mq: failed to allocate request map\n");
4628		return -ENOMEM;
4629	}
4630
4631	if (depth != set->queue_depth)
4632		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4633						depth, set->queue_depth);
4634
4635	return 0;
4636}
4637
4638static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4639{
4640	/*
4641	 * blk_mq_map_queues() and multiple .map_queues() implementations
4642	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4643	 * number of hardware queues.
4644	 */
4645	if (set->nr_maps == 1)
4646		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4647
4648	if (set->ops->map_queues) {
4649		int i;
4650
4651		/*
4652		 * transport .map_queues is usually done in the following
4653		 * way:
4654		 *
4655		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4656		 * 	mask = get_cpu_mask(queue)
4657		 * 	for_each_cpu(cpu, mask)
4658		 * 		set->map[x].mq_map[cpu] = queue;
4659		 * }
4660		 *
4661		 * When we need to remap, the table has to be cleared for
4662		 * killing stale mapping since one CPU may not be mapped
4663		 * to any hw queue.
4664		 */
4665		for (i = 0; i < set->nr_maps; i++)
4666			blk_mq_clear_mq_map(&set->map[i]);
4667
4668		set->ops->map_queues(set);
4669	} else {
4670		BUG_ON(set->nr_maps > 1);
4671		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4672	}
4673}
4674
4675static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4676				       int new_nr_hw_queues)
4677{
4678	struct blk_mq_tags **new_tags;
4679	int i;
4680
4681	if (set->nr_hw_queues >= new_nr_hw_queues)
4682		goto done;
4683
4684	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4685				GFP_KERNEL, set->numa_node);
4686	if (!new_tags)
4687		return -ENOMEM;
4688
4689	if (set->tags)
4690		memcpy(new_tags, set->tags, set->nr_hw_queues *
4691		       sizeof(*set->tags));
4692	kfree(set->tags);
4693	set->tags = new_tags;
4694
4695	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4696		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4697			while (--i >= set->nr_hw_queues)
4698				__blk_mq_free_map_and_rqs(set, i);
4699			return -ENOMEM;
4700		}
4701		cond_resched();
4702	}
4703
4704done:
4705	set->nr_hw_queues = new_nr_hw_queues;
4706	return 0;
4707}
4708
4709/*
4710 * Alloc a tag set to be associated with one or more request queues.
4711 * May fail with EINVAL for various error conditions. May adjust the
4712 * requested depth down, if it's too large. In that case, the set
4713 * value will be stored in set->queue_depth.
4714 */
4715int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4716{
4717	int i, ret;
4718
4719	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4720
4721	if (!set->nr_hw_queues)
4722		return -EINVAL;
4723	if (!set->queue_depth)
4724		return -EINVAL;
4725	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4726		return -EINVAL;
4727
4728	if (!set->ops->queue_rq)
4729		return -EINVAL;
4730
4731	if (!set->ops->get_budget ^ !set->ops->put_budget)
4732		return -EINVAL;
4733
4734	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4735		pr_info("blk-mq: reduced tag depth to %u\n",
4736			BLK_MQ_MAX_DEPTH);
4737		set->queue_depth = BLK_MQ_MAX_DEPTH;
4738	}
4739
4740	if (!set->nr_maps)
4741		set->nr_maps = 1;
4742	else if (set->nr_maps > HCTX_MAX_TYPES)
4743		return -EINVAL;
4744
4745	/*
4746	 * If a crashdump is active, then we are potentially in a very
4747	 * memory constrained environment. Limit us to  64 tags to prevent
4748	 * using too much memory.
4749	 */
4750	if (is_kdump_kernel())
 
 
4751		set->queue_depth = min(64U, set->queue_depth);
4752
4753	/*
4754	 * There is no use for more h/w queues than cpus if we just have
4755	 * a single map
4756	 */
4757	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4758		set->nr_hw_queues = nr_cpu_ids;
4759
4760	if (set->flags & BLK_MQ_F_BLOCKING) {
4761		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4762		if (!set->srcu)
4763			return -ENOMEM;
4764		ret = init_srcu_struct(set->srcu);
4765		if (ret)
4766			goto out_free_srcu;
4767	}
4768
4769	ret = -ENOMEM;
4770	set->tags = kcalloc_node(set->nr_hw_queues,
4771				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4772				 set->numa_node);
4773	if (!set->tags)
4774		goto out_cleanup_srcu;
4775
4776	for (i = 0; i < set->nr_maps; i++) {
4777		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4778						  sizeof(set->map[i].mq_map[0]),
4779						  GFP_KERNEL, set->numa_node);
4780		if (!set->map[i].mq_map)
4781			goto out_free_mq_map;
4782		set->map[i].nr_queues = set->nr_hw_queues;
4783	}
4784
4785	blk_mq_update_queue_map(set);
4786
4787	ret = blk_mq_alloc_set_map_and_rqs(set);
4788	if (ret)
4789		goto out_free_mq_map;
4790
4791	mutex_init(&set->tag_list_lock);
4792	INIT_LIST_HEAD(&set->tag_list);
4793
4794	return 0;
4795
4796out_free_mq_map:
4797	for (i = 0; i < set->nr_maps; i++) {
4798		kfree(set->map[i].mq_map);
4799		set->map[i].mq_map = NULL;
4800	}
4801	kfree(set->tags);
4802	set->tags = NULL;
4803out_cleanup_srcu:
4804	if (set->flags & BLK_MQ_F_BLOCKING)
4805		cleanup_srcu_struct(set->srcu);
4806out_free_srcu:
4807	if (set->flags & BLK_MQ_F_BLOCKING)
4808		kfree(set->srcu);
4809	return ret;
4810}
4811EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4812
4813/* allocate and initialize a tagset for a simple single-queue device */
4814int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4815		const struct blk_mq_ops *ops, unsigned int queue_depth,
4816		unsigned int set_flags)
4817{
4818	memset(set, 0, sizeof(*set));
4819	set->ops = ops;
4820	set->nr_hw_queues = 1;
4821	set->nr_maps = 1;
4822	set->queue_depth = queue_depth;
4823	set->numa_node = NUMA_NO_NODE;
4824	set->flags = set_flags;
4825	return blk_mq_alloc_tag_set(set);
4826}
4827EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4828
4829void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4830{
4831	int i, j;
4832
4833	for (i = 0; i < set->nr_hw_queues; i++)
4834		__blk_mq_free_map_and_rqs(set, i);
4835
4836	if (blk_mq_is_shared_tags(set->flags)) {
4837		blk_mq_free_map_and_rqs(set, set->shared_tags,
4838					BLK_MQ_NO_HCTX_IDX);
4839	}
4840
4841	for (j = 0; j < set->nr_maps; j++) {
4842		kfree(set->map[j].mq_map);
4843		set->map[j].mq_map = NULL;
4844	}
4845
4846	kfree(set->tags);
4847	set->tags = NULL;
4848	if (set->flags & BLK_MQ_F_BLOCKING) {
4849		cleanup_srcu_struct(set->srcu);
4850		kfree(set->srcu);
4851	}
4852}
4853EXPORT_SYMBOL(blk_mq_free_tag_set);
4854
4855int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4856{
4857	struct blk_mq_tag_set *set = q->tag_set;
4858	struct blk_mq_hw_ctx *hctx;
4859	int ret;
4860	unsigned long i;
4861
4862	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4863		return -EINVAL;
4864
4865	if (!set)
4866		return -EINVAL;
4867
4868	if (q->nr_requests == nr)
4869		return 0;
4870
 
4871	blk_mq_quiesce_queue(q);
4872
4873	ret = 0;
4874	queue_for_each_hw_ctx(q, hctx, i) {
4875		if (!hctx->tags)
4876			continue;
4877		/*
4878		 * If we're using an MQ scheduler, just update the scheduler
4879		 * queue depth. This is similar to what the old code would do.
4880		 */
4881		if (hctx->sched_tags) {
4882			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4883						      nr, true);
4884		} else {
4885			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4886						      false);
4887		}
4888		if (ret)
4889			break;
4890		if (q->elevator && q->elevator->type->ops.depth_updated)
4891			q->elevator->type->ops.depth_updated(hctx);
4892	}
4893	if (!ret) {
4894		q->nr_requests = nr;
4895		if (blk_mq_is_shared_tags(set->flags)) {
4896			if (q->elevator)
4897				blk_mq_tag_update_sched_shared_tags(q);
4898			else
4899				blk_mq_tag_resize_shared_tags(set, nr);
4900		}
4901	}
4902
4903	blk_mq_unquiesce_queue(q);
 
4904
4905	return ret;
4906}
4907
4908/*
4909 * request_queue and elevator_type pair.
4910 * It is just used by __blk_mq_update_nr_hw_queues to cache
4911 * the elevator_type associated with a request_queue.
4912 */
4913struct blk_mq_qe_pair {
4914	struct list_head node;
4915	struct request_queue *q;
4916	struct elevator_type *type;
4917};
4918
4919/*
4920 * Cache the elevator_type in qe pair list and switch the
4921 * io scheduler to 'none'
4922 */
4923static bool blk_mq_elv_switch_none(struct list_head *head,
4924		struct request_queue *q)
4925{
4926	struct blk_mq_qe_pair *qe;
4927
 
 
 
4928	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4929	if (!qe)
4930		return false;
4931
4932	/* q->elevator needs protection from ->sysfs_lock */
4933	mutex_lock(&q->sysfs_lock);
4934
4935	/* the check has to be done with holding sysfs_lock */
4936	if (!q->elevator) {
4937		kfree(qe);
4938		goto unlock;
4939	}
4940
4941	INIT_LIST_HEAD(&qe->node);
4942	qe->q = q;
4943	qe->type = q->elevator->type;
4944	/* keep a reference to the elevator module as we'll switch back */
4945	__elevator_get(qe->type);
4946	list_add(&qe->node, head);
4947	elevator_disable(q);
4948unlock:
4949	mutex_unlock(&q->sysfs_lock);
4950
4951	return true;
4952}
4953
4954static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4955						struct request_queue *q)
4956{
4957	struct blk_mq_qe_pair *qe;
4958
4959	list_for_each_entry(qe, head, node)
4960		if (qe->q == q)
4961			return qe;
4962
4963	return NULL;
4964}
4965
4966static void blk_mq_elv_switch_back(struct list_head *head,
4967				  struct request_queue *q)
4968{
4969	struct blk_mq_qe_pair *qe;
4970	struct elevator_type *t;
4971
4972	qe = blk_lookup_qe_pair(head, q);
4973	if (!qe)
4974		return;
4975	t = qe->type;
4976	list_del(&qe->node);
4977	kfree(qe);
4978
4979	mutex_lock(&q->sysfs_lock);
4980	elevator_switch(q, t);
4981	/* drop the reference acquired in blk_mq_elv_switch_none */
4982	elevator_put(t);
4983	mutex_unlock(&q->sysfs_lock);
4984}
4985
4986static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4987							int nr_hw_queues)
4988{
4989	struct request_queue *q;
4990	LIST_HEAD(head);
4991	int prev_nr_hw_queues = set->nr_hw_queues;
4992	int i;
4993
4994	lockdep_assert_held(&set->tag_list_lock);
4995
4996	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4997		nr_hw_queues = nr_cpu_ids;
4998	if (nr_hw_queues < 1)
4999		return;
5000	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5001		return;
5002
5003	list_for_each_entry(q, &set->tag_list, tag_set_list)
5004		blk_mq_freeze_queue(q);
5005	/*
5006	 * Switch IO scheduler to 'none', cleaning up the data associated
5007	 * with the previous scheduler. We will switch back once we are done
5008	 * updating the new sw to hw queue mappings.
5009	 */
5010	list_for_each_entry(q, &set->tag_list, tag_set_list)
5011		if (!blk_mq_elv_switch_none(&head, q))
5012			goto switch_back;
5013
5014	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5015		blk_mq_debugfs_unregister_hctxs(q);
5016		blk_mq_sysfs_unregister_hctxs(q);
5017	}
5018
 
5019	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5020		goto reregister;
5021
5022fallback:
5023	blk_mq_update_queue_map(set);
5024	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5025		blk_mq_realloc_hw_ctxs(set, q);
5026
5027		if (q->nr_hw_queues != set->nr_hw_queues) {
5028			int i = prev_nr_hw_queues;
5029
5030			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5031					nr_hw_queues, prev_nr_hw_queues);
5032			for (; i < set->nr_hw_queues; i++)
5033				__blk_mq_free_map_and_rqs(set, i);
5034
5035			set->nr_hw_queues = prev_nr_hw_queues;
 
5036			goto fallback;
5037		}
5038		blk_mq_map_swqueue(q);
5039	}
5040
5041reregister:
5042	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5043		blk_mq_sysfs_register_hctxs(q);
5044		blk_mq_debugfs_register_hctxs(q);
5045	}
5046
5047switch_back:
5048	list_for_each_entry(q, &set->tag_list, tag_set_list)
5049		blk_mq_elv_switch_back(&head, q);
5050
5051	list_for_each_entry(q, &set->tag_list, tag_set_list)
5052		blk_mq_unfreeze_queue(q);
5053
5054	/* Free the excess tags when nr_hw_queues shrink. */
5055	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5056		__blk_mq_free_map_and_rqs(set, i);
5057}
5058
5059void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5060{
5061	mutex_lock(&set->tag_list_lock);
5062	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5063	mutex_unlock(&set->tag_list_lock);
5064}
5065EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5066
5067static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5068			 struct io_comp_batch *iob, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5069{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070	long state = get_current_state();
5071	int ret;
5072
5073	do {
5074		ret = q->mq_ops->poll(hctx, iob);
5075		if (ret > 0) {
5076			__set_current_state(TASK_RUNNING);
5077			return ret;
5078		}
5079
5080		if (signal_pending_state(state, current))
5081			__set_current_state(TASK_RUNNING);
5082		if (task_is_running(current))
5083			return 1;
5084
5085		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5086			break;
5087		cpu_relax();
5088	} while (!need_resched());
5089
5090	__set_current_state(TASK_RUNNING);
5091	return 0;
5092}
5093
5094int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5095		struct io_comp_batch *iob, unsigned int flags)
5096{
5097	if (!blk_mq_can_poll(q))
5098		return 0;
5099	return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5100}
5101
5102int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5103		unsigned int poll_flags)
5104{
5105	struct request_queue *q = rq->q;
5106	int ret;
5107
5108	if (!blk_rq_is_poll(rq))
5109		return 0;
5110	if (!percpu_ref_tryget(&q->q_usage_counter))
5111		return 0;
5112
5113	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5114	blk_queue_exit(q);
5115
5116	return ret;
5117}
5118EXPORT_SYMBOL_GPL(blk_rq_poll);
5119
5120unsigned int blk_mq_rq_cpu(struct request *rq)
5121{
5122	return rq->mq_ctx->cpu;
5123}
5124EXPORT_SYMBOL(blk_mq_rq_cpu);
5125
5126void blk_mq_cancel_work_sync(struct request_queue *q)
5127{
5128	struct blk_mq_hw_ctx *hctx;
5129	unsigned long i;
5130
5131	cancel_delayed_work_sync(&q->requeue_work);
5132
5133	queue_for_each_hw_ctx(q, hctx, i)
5134		cancel_delayed_work_sync(&hctx->run_work);
5135}
5136
5137static int __init blk_mq_init(void)
5138{
5139	int i;
5140
5141	for_each_possible_cpu(i)
5142		init_llist_head(&per_cpu(blk_cpu_done, i));
5143	for_each_possible_cpu(i)
5144		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5145			 __blk_mq_complete_request_remote, NULL);
5146	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5147
5148	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5149				  "block/softirq:dead", NULL,
5150				  blk_softirq_cpu_dead);
5151	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5152				blk_mq_hctx_notify_dead);
5153	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5154				blk_mq_hctx_notify_online,
5155				blk_mq_hctx_notify_offline);
5156	return 0;
5157}
5158subsys_initcall(blk_mq_init);