Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * User-space Probes (UProbes) for sparc
  4 *
  5 * Copyright (C) 2013 Oracle Inc.
  6 *
  7 * Authors:
  8 *	Jose E. Marchesi <jose.marchesi@oracle.com>
  9 *	Eric Saint Etienne <eric.saint.etienne@oracle.com>
 10 */
 11
 12#include <linux/kernel.h>
 13#include <linux/highmem.h>
 14#include <linux/uprobes.h>
 15#include <linux/uaccess.h>
 16#include <linux/sched.h> /* For struct task_struct */
 17#include <linux/kdebug.h>
 18
 19#include <asm/cacheflush.h>
 20
 
 
 21/* Compute the address of the breakpoint instruction and return it.
 22 *
 23 * Note that uprobe_get_swbp_addr is defined as a weak symbol in
 24 * kernel/events/uprobe.c.
 25 */
 26unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
 27{
 28	return instruction_pointer(regs);
 29}
 30
 31static void copy_to_page(struct page *page, unsigned long vaddr,
 32			 const void *src, int len)
 33{
 34	void *kaddr = kmap_atomic(page);
 35
 36	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 37	kunmap_atomic(kaddr);
 38}
 39
 40/* Fill in the xol area with the probed instruction followed by the
 41 * single-step trap.  Some fixups in the copied instruction are
 42 * performed at this point.
 43 *
 44 * Note that uprobe_xol_copy is defined as a weak symbol in
 45 * kernel/events/uprobe.c.
 46 */
 47void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
 48			   void *src, unsigned long len)
 49{
 50	const u32 stp_insn = UPROBE_STP_INSN;
 51	u32 insn = *(u32 *) src;
 52
 53	/* Branches annulling their delay slot must be fixed to not do
 54	 * so.  Clearing the annul bit on these instructions we can be
 55	 * sure the single-step breakpoint in the XOL slot will be
 56	 * executed.
 57	 */
 58
 59	u32 op = (insn >> 30) & 0x3;
 60	u32 op2 = (insn >> 22) & 0x7;
 61
 62	if (op == 0 &&
 63	    (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
 64	    (insn & ANNUL_BIT) == ANNUL_BIT)
 65		insn &= ~ANNUL_BIT;
 66
 67	copy_to_page(page, vaddr, &insn, len);
 68	copy_to_page(page, vaddr+len, &stp_insn, 4);
 69}
 70
 71
 72/* Instruction analysis/validity.
 73 *
 74 * This function returns 0 on success or a -ve number on error.
 75 */
 76int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
 77			     struct mm_struct *mm, unsigned long addr)
 78{
 79	/* Any unsupported instruction?  Then return -EINVAL  */
 80	return 0;
 81}
 82
 83/* If INSN is a relative control transfer instruction, return the
 84 * corrected branch destination value.
 85 *
 86 * Note that regs->tpc and regs->tnpc still hold the values of the
 87 * program counters at the time of the single-step trap due to the
 88 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
 89 *
 90 */
 91static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
 92				     struct pt_regs *regs)
 93{
 94	/* Branch not taken, no mods necessary.  */
 95	if (regs->tnpc == regs->tpc + 0x4UL)
 96		return utask->autask.saved_tnpc + 0x4UL;
 97
 98	/* The three cases are call, branch w/prediction,
 99	 * and traditional branch.
100	 */
101	if ((insn & 0xc0000000) == 0x40000000 ||
102	    (insn & 0xc1c00000) == 0x00400000 ||
103	    (insn & 0xc1c00000) == 0x00800000) {
104		unsigned long real_pc = (unsigned long) utask->vaddr;
105		unsigned long ixol_addr = utask->xol_vaddr;
106
107		/* The instruction did all the work for us
108		 * already, just apply the offset to the correct
109		 * instruction location.
110		 */
111		return (real_pc + (regs->tnpc - ixol_addr));
112	}
113
114	/* It is jmpl or some other absolute PC modification instruction,
115	 * leave NPC as-is.
116	 */
117	return regs->tnpc;
118}
119
120/* If INSN is an instruction which writes its PC location
121 * into a destination register, fix that up.
122 */
123static int retpc_fixup(struct pt_regs *regs, u32 insn,
124		       unsigned long real_pc)
125{
126	unsigned long *slot = NULL;
127	int rc = 0;
128
129	/* Simplest case is 'call', which always uses %o7 */
130	if ((insn & 0xc0000000) == 0x40000000)
131		slot = &regs->u_regs[UREG_I7];
132
133	/* 'jmpl' encodes the register inside of the opcode */
134	if ((insn & 0xc1f80000) == 0x81c00000) {
135		unsigned long rd = ((insn >> 25) & 0x1f);
136
137		if (rd <= 15) {
138			slot = &regs->u_regs[rd];
139		} else {
140			unsigned long fp = regs->u_regs[UREG_FP];
141			/* Hard case, it goes onto the stack. */
142			flushw_all();
143
144			rd -= 16;
145			if (test_thread_64bit_stack(fp)) {
146				unsigned long __user *uslot =
147			(unsigned long __user *) (fp + STACK_BIAS) + rd;
148				rc = __put_user(real_pc, uslot);
149			} else {
150				unsigned int __user *uslot = (unsigned int
151						__user *) fp + rd;
152				rc = __put_user((u32) real_pc, uslot);
153			}
154		}
155	}
156	if (slot != NULL)
157		*slot = real_pc;
158	return rc;
159}
160
161/* Single-stepping can be avoided for certain instructions: NOPs and
162 * instructions that can be emulated.  This function determines
163 * whether the instruction where the uprobe is installed falls in one
164 * of these cases and emulates it.
165 *
166 * This function returns true if the single-stepping can be skipped,
167 * false otherwise.
168 */
169bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
170{
171	/* We currently only emulate NOP instructions.
172	 */
173
174	if (auprobe->ixol == (1 << 24)) {
175		regs->tnpc += 4;
176		regs->tpc += 4;
177		return true;
178	}
179
180	return false;
181}
182
183/* Prepare to execute out of line.  At this point
184 * current->utask->xol_vaddr points to an allocated XOL slot properly
185 * initialized with the original instruction and the single-stepping
186 * trap instruction.
187 *
188 * This function returns 0 on success, any other number on error.
189 */
190int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
191{
192	struct uprobe_task *utask = current->utask;
193	struct arch_uprobe_task *autask = &current->utask->autask;
194
195	/* Save the current program counters so they can be restored
196	 * later.
197	 */
198	autask->saved_tpc = regs->tpc;
199	autask->saved_tnpc = regs->tnpc;
200
201	/* Adjust PC and NPC so the first instruction in the XOL slot
202	 * will be executed by the user task.
203	 */
204	instruction_pointer_set(regs, utask->xol_vaddr);
205
206	return 0;
207}
208
209/* Prepare to resume execution after the single-step.  Called after
210 * single-stepping. To avoid the SMP problems that can occur when we
211 * temporarily put back the original opcode to single-step, we
212 * single-stepped a copy of the instruction.
213 *
214 * This function returns 0 on success, any other number on error.
215 */
216int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
217{
218	struct uprobe_task *utask = current->utask;
219	struct arch_uprobe_task *autask = &utask->autask;
220	u32 insn = auprobe->ixol;
221	int rc = 0;
222
223	if (utask->state == UTASK_SSTEP_ACK) {
224		regs->tnpc = relbranch_fixup(insn, utask, regs);
225		regs->tpc = autask->saved_tnpc;
226		rc =  retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
227	} else {
228		regs->tnpc = utask->vaddr+4;
229		regs->tpc = autask->saved_tnpc+4;
230	}
231	return rc;
232}
233
234/* Handler for uprobe traps.  This is called from the traps table and
235 * triggers the proper die notification.
236 */
237asmlinkage void uprobe_trap(struct pt_regs *regs,
238			    unsigned long trap_level)
239{
240	BUG_ON(trap_level != 0x173 && trap_level != 0x174);
241
242	/* We are only interested in user-mode code.  Uprobe traps
243	 * shall not be present in kernel code.
244	 */
245	if (!user_mode(regs)) {
246		local_irq_enable();
247		bad_trap(regs, trap_level);
248		return;
249	}
250
251	/* trap_level == 0x173 --> ta 0x73
252	 * trap_level == 0x174 --> ta 0x74
253	 */
254	if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
255				(trap_level == 0x173) ? "bpt" : "sstep",
256				regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
257		bad_trap(regs, trap_level);
258}
259
260/* Callback routine for handling die notifications.
261*/
262int arch_uprobe_exception_notify(struct notifier_block *self,
263				 unsigned long val, void *data)
264{
265	int ret = NOTIFY_DONE;
266	struct die_args *args = (struct die_args *)data;
267
268	/* We are only interested in userspace traps */
269	if (args->regs && !user_mode(args->regs))
270		return NOTIFY_DONE;
271
272	switch (val) {
273	case DIE_BPT:
274		if (uprobe_pre_sstep_notifier(args->regs))
275			ret = NOTIFY_STOP;
276		break;
277
278	case DIE_SSTEP:
279		if (uprobe_post_sstep_notifier(args->regs))
280			ret = NOTIFY_STOP;
281
282	default:
283		break;
284	}
285
286	return ret;
287}
288
289/* This function gets called when a XOL instruction either gets
290 * trapped or the thread has a fatal signal, so reset the instruction
291 * pointer to its probed address.
292 */
293void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
294{
295	struct uprobe_task *utask = current->utask;
296
297	instruction_pointer_set(regs, utask->vaddr);
298}
299
300/* If xol insn itself traps and generates a signal(Say,
301 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
302 * instruction jumps back to its own address.
303 */
304bool arch_uprobe_xol_was_trapped(struct task_struct *t)
305{
306	return false;
307}
308
309unsigned long
310arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
311				  struct pt_regs *regs)
312{
313	unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
314
315	regs->u_regs[UREG_I7] = trampoline_vaddr-8;
316
317	return orig_ret_vaddr + 8;
318}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * User-space Probes (UProbes) for sparc
  4 *
  5 * Copyright (C) 2013 Oracle Inc.
  6 *
  7 * Authors:
  8 *	Jose E. Marchesi <jose.marchesi@oracle.com>
  9 *	Eric Saint Etienne <eric.saint.etienne@oracle.com>
 10 */
 11
 12#include <linux/kernel.h>
 13#include <linux/highmem.h>
 14#include <linux/uprobes.h>
 15#include <linux/uaccess.h>
 16#include <linux/sched.h> /* For struct task_struct */
 17#include <linux/kdebug.h>
 18
 19#include <asm/cacheflush.h>
 20
 21#include "kernel.h"
 22
 23/* Compute the address of the breakpoint instruction and return it.
 24 *
 25 * Note that uprobe_get_swbp_addr is defined as a weak symbol in
 26 * kernel/events/uprobe.c.
 27 */
 28unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
 29{
 30	return instruction_pointer(regs);
 31}
 32
 33static void copy_to_page(struct page *page, unsigned long vaddr,
 34			 const void *src, int len)
 35{
 36	void *kaddr = kmap_atomic(page);
 37
 38	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 39	kunmap_atomic(kaddr);
 40}
 41
 42/* Fill in the xol area with the probed instruction followed by the
 43 * single-step trap.  Some fixups in the copied instruction are
 44 * performed at this point.
 45 *
 46 * Note that uprobe_xol_copy is defined as a weak symbol in
 47 * kernel/events/uprobe.c.
 48 */
 49void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
 50			   void *src, unsigned long len)
 51{
 52	const u32 stp_insn = UPROBE_STP_INSN;
 53	u32 insn = *(u32 *) src;
 54
 55	/* Branches annulling their delay slot must be fixed to not do
 56	 * so.  Clearing the annul bit on these instructions we can be
 57	 * sure the single-step breakpoint in the XOL slot will be
 58	 * executed.
 59	 */
 60
 61	u32 op = (insn >> 30) & 0x3;
 62	u32 op2 = (insn >> 22) & 0x7;
 63
 64	if (op == 0 &&
 65	    (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
 66	    (insn & ANNUL_BIT) == ANNUL_BIT)
 67		insn &= ~ANNUL_BIT;
 68
 69	copy_to_page(page, vaddr, &insn, len);
 70	copy_to_page(page, vaddr+len, &stp_insn, 4);
 71}
 72
 73
 74/* Instruction analysis/validity.
 75 *
 76 * This function returns 0 on success or a -ve number on error.
 77 */
 78int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
 79			     struct mm_struct *mm, unsigned long addr)
 80{
 81	/* Any unsupported instruction?  Then return -EINVAL  */
 82	return 0;
 83}
 84
 85/* If INSN is a relative control transfer instruction, return the
 86 * corrected branch destination value.
 87 *
 88 * Note that regs->tpc and regs->tnpc still hold the values of the
 89 * program counters at the time of the single-step trap due to the
 90 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
 91 *
 92 */
 93static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
 94				     struct pt_regs *regs)
 95{
 96	/* Branch not taken, no mods necessary.  */
 97	if (regs->tnpc == regs->tpc + 0x4UL)
 98		return utask->autask.saved_tnpc + 0x4UL;
 99
100	/* The three cases are call, branch w/prediction,
101	 * and traditional branch.
102	 */
103	if ((insn & 0xc0000000) == 0x40000000 ||
104	    (insn & 0xc1c00000) == 0x00400000 ||
105	    (insn & 0xc1c00000) == 0x00800000) {
106		unsigned long real_pc = (unsigned long) utask->vaddr;
107		unsigned long ixol_addr = utask->xol_vaddr;
108
109		/* The instruction did all the work for us
110		 * already, just apply the offset to the correct
111		 * instruction location.
112		 */
113		return (real_pc + (regs->tnpc - ixol_addr));
114	}
115
116	/* It is jmpl or some other absolute PC modification instruction,
117	 * leave NPC as-is.
118	 */
119	return regs->tnpc;
120}
121
122/* If INSN is an instruction which writes its PC location
123 * into a destination register, fix that up.
124 */
125static int retpc_fixup(struct pt_regs *regs, u32 insn,
126		       unsigned long real_pc)
127{
128	unsigned long *slot = NULL;
129	int rc = 0;
130
131	/* Simplest case is 'call', which always uses %o7 */
132	if ((insn & 0xc0000000) == 0x40000000)
133		slot = &regs->u_regs[UREG_I7];
134
135	/* 'jmpl' encodes the register inside of the opcode */
136	if ((insn & 0xc1f80000) == 0x81c00000) {
137		unsigned long rd = ((insn >> 25) & 0x1f);
138
139		if (rd <= 15) {
140			slot = &regs->u_regs[rd];
141		} else {
142			unsigned long fp = regs->u_regs[UREG_FP];
143			/* Hard case, it goes onto the stack. */
144			flushw_all();
145
146			rd -= 16;
147			if (test_thread_64bit_stack(fp)) {
148				unsigned long __user *uslot =
149			(unsigned long __user *) (fp + STACK_BIAS) + rd;
150				rc = __put_user(real_pc, uslot);
151			} else {
152				unsigned int __user *uslot = (unsigned int
153						__user *) fp + rd;
154				rc = __put_user((u32) real_pc, uslot);
155			}
156		}
157	}
158	if (slot != NULL)
159		*slot = real_pc;
160	return rc;
161}
162
163/* Single-stepping can be avoided for certain instructions: NOPs and
164 * instructions that can be emulated.  This function determines
165 * whether the instruction where the uprobe is installed falls in one
166 * of these cases and emulates it.
167 *
168 * This function returns true if the single-stepping can be skipped,
169 * false otherwise.
170 */
171bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
172{
173	/* We currently only emulate NOP instructions.
174	 */
175
176	if (auprobe->ixol == (1 << 24)) {
177		regs->tnpc += 4;
178		regs->tpc += 4;
179		return true;
180	}
181
182	return false;
183}
184
185/* Prepare to execute out of line.  At this point
186 * current->utask->xol_vaddr points to an allocated XOL slot properly
187 * initialized with the original instruction and the single-stepping
188 * trap instruction.
189 *
190 * This function returns 0 on success, any other number on error.
191 */
192int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
193{
194	struct uprobe_task *utask = current->utask;
195	struct arch_uprobe_task *autask = &current->utask->autask;
196
197	/* Save the current program counters so they can be restored
198	 * later.
199	 */
200	autask->saved_tpc = regs->tpc;
201	autask->saved_tnpc = regs->tnpc;
202
203	/* Adjust PC and NPC so the first instruction in the XOL slot
204	 * will be executed by the user task.
205	 */
206	instruction_pointer_set(regs, utask->xol_vaddr);
207
208	return 0;
209}
210
211/* Prepare to resume execution after the single-step.  Called after
212 * single-stepping. To avoid the SMP problems that can occur when we
213 * temporarily put back the original opcode to single-step, we
214 * single-stepped a copy of the instruction.
215 *
216 * This function returns 0 on success, any other number on error.
217 */
218int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
219{
220	struct uprobe_task *utask = current->utask;
221	struct arch_uprobe_task *autask = &utask->autask;
222	u32 insn = auprobe->ixol;
223	int rc = 0;
224
225	if (utask->state == UTASK_SSTEP_ACK) {
226		regs->tnpc = relbranch_fixup(insn, utask, regs);
227		regs->tpc = autask->saved_tnpc;
228		rc =  retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
229	} else {
230		regs->tnpc = utask->vaddr+4;
231		regs->tpc = autask->saved_tnpc+4;
232	}
233	return rc;
234}
235
236/* Handler for uprobe traps.  This is called from the traps table and
237 * triggers the proper die notification.
238 */
239asmlinkage void uprobe_trap(struct pt_regs *regs,
240			    unsigned long trap_level)
241{
242	BUG_ON(trap_level != 0x173 && trap_level != 0x174);
243
244	/* We are only interested in user-mode code.  Uprobe traps
245	 * shall not be present in kernel code.
246	 */
247	if (!user_mode(regs)) {
248		local_irq_enable();
249		bad_trap(regs, trap_level);
250		return;
251	}
252
253	/* trap_level == 0x173 --> ta 0x73
254	 * trap_level == 0x174 --> ta 0x74
255	 */
256	if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
257				(trap_level == 0x173) ? "bpt" : "sstep",
258				regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
259		bad_trap(regs, trap_level);
260}
261
262/* Callback routine for handling die notifications.
263*/
264int arch_uprobe_exception_notify(struct notifier_block *self,
265				 unsigned long val, void *data)
266{
267	int ret = NOTIFY_DONE;
268	struct die_args *args = (struct die_args *)data;
269
270	/* We are only interested in userspace traps */
271	if (args->regs && !user_mode(args->regs))
272		return NOTIFY_DONE;
273
274	switch (val) {
275	case DIE_BPT:
276		if (uprobe_pre_sstep_notifier(args->regs))
277			ret = NOTIFY_STOP;
278		break;
279
280	case DIE_SSTEP:
281		if (uprobe_post_sstep_notifier(args->regs))
282			ret = NOTIFY_STOP;
283
284	default:
285		break;
286	}
287
288	return ret;
289}
290
291/* This function gets called when a XOL instruction either gets
292 * trapped or the thread has a fatal signal, so reset the instruction
293 * pointer to its probed address.
294 */
295void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
296{
297	struct uprobe_task *utask = current->utask;
298
299	instruction_pointer_set(regs, utask->vaddr);
300}
301
302/* If xol insn itself traps and generates a signal(Say,
303 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
304 * instruction jumps back to its own address.
305 */
306bool arch_uprobe_xol_was_trapped(struct task_struct *t)
307{
308	return false;
309}
310
311unsigned long
312arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
313				  struct pt_regs *regs)
314{
315	unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
316
317	regs->u_regs[UREG_I7] = trampoline_vaddr-8;
318
319	return orig_ret_vaddr + 8;
320}