Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
 
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 111			       (void __user *)regs->tpc, lvl);
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 205out:
 206	exception_exit(prev_state);
 207}
 208
 209void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 210{
 211	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 212		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 213		return;
 214
 215	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 216	spitfire_insn_access_exception(regs, sfsr, sfar);
 217}
 218
 219void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 220{
 221	unsigned short type = (type_ctx >> 16);
 222	unsigned short ctx  = (type_ctx & 0xffff);
 223
 224	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 225		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 226		return;
 227
 228	if (regs->tstate & TSTATE_PRIV) {
 229		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 230		       "CTX[%04x] TYPE[%04x], going.\n",
 231		       addr, ctx, type);
 232		die_if_kernel("Iax", regs);
 233	}
 234
 235	if (test_thread_flag(TIF_32BIT)) {
 236		regs->tpc &= 0xffffffff;
 237		regs->tnpc &= 0xffffffff;
 238	}
 239	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 240}
 241
 242void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 243{
 244	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 245		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 246		return;
 247
 248	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 249	sun4v_insn_access_exception(regs, addr, type_ctx);
 250}
 251
 252bool is_no_fault_exception(struct pt_regs *regs)
 253{
 254	unsigned char asi;
 255	u32 insn;
 256
 257	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 258		return false;
 259
 260	/*
 261	 * Must do a little instruction decoding here in order to
 262	 * decide on a course of action. The bits of interest are:
 263	 *  insn[31:30] = op, where 3 indicates the load/store group
 264	 *  insn[24:19] = op3, which identifies individual opcodes
 265	 *  insn[13] indicates an immediate offset
 266	 *  op3[4]=1 identifies alternate space instructions
 267	 *  op3[5:4]=3 identifies floating point instructions
 268	 *  op3[2]=1 identifies stores
 269	 * See "Opcode Maps" in the appendix of any Sparc V9
 270	 * architecture spec for full details.
 271	 */
 272	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 273		if (insn & 0x2000)		    /* immediate offset */
 274			asi = (regs->tstate >> 24); /* saved %asi       */
 275		else
 276			asi = (insn >> 5);	    /* immediate asi    */
 277		if ((asi & 0xf6) == ASI_PNF) {
 278			if (insn & 0x200000)        /* op3[2], stores   */
 279				return false;
 280			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 281				handle_ldf_stq(insn, regs);
 282			else
 283				handle_ld_nf(insn, regs);
 284			return true;
 285		}
 286	}
 287	return false;
 288}
 289
 290void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 291{
 292	enum ctx_state prev_state = exception_enter();
 293
 294	if (notify_die(DIE_TRAP, "data access exception", regs,
 295		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 296		goto out;
 297
 298	if (regs->tstate & TSTATE_PRIV) {
 299		/* Test if this comes from uaccess places. */
 300		const struct exception_table_entry *entry;
 301
 302		entry = search_exception_tables(regs->tpc);
 303		if (entry) {
 304			/* Ouch, somebody is trying VM hole tricks on us... */
 305#ifdef DEBUG_EXCEPTIONS
 306			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 307			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 308			       regs->tpc, entry->fixup);
 309#endif
 310			regs->tpc = entry->fixup;
 311			regs->tnpc = regs->tpc + 4;
 312			goto out;
 313		}
 314		/* Shit... */
 315		printk("spitfire_data_access_exception: SFSR[%016lx] "
 316		       "SFAR[%016lx], going.\n", sfsr, sfar);
 317		die_if_kernel("Dax", regs);
 318	}
 319
 320	if (is_no_fault_exception(regs))
 321		return;
 322
 323	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 324out:
 325	exception_exit(prev_state);
 326}
 327
 328void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 329{
 330	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 331		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 332		return;
 333
 334	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 335	spitfire_data_access_exception(regs, sfsr, sfar);
 336}
 337
 338void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 339{
 340	unsigned short type = (type_ctx >> 16);
 341	unsigned short ctx  = (type_ctx & 0xffff);
 342
 343	if (notify_die(DIE_TRAP, "data access exception", regs,
 344		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 345		return;
 346
 347	if (regs->tstate & TSTATE_PRIV) {
 348		/* Test if this comes from uaccess places. */
 349		const struct exception_table_entry *entry;
 350
 351		entry = search_exception_tables(regs->tpc);
 352		if (entry) {
 353			/* Ouch, somebody is trying VM hole tricks on us... */
 354#ifdef DEBUG_EXCEPTIONS
 355			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 356			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 357			       regs->tpc, entry->fixup);
 358#endif
 359			regs->tpc = entry->fixup;
 360			regs->tnpc = regs->tpc + 4;
 361			return;
 362		}
 363		printk("sun4v_data_access_exception: ADDR[%016lx] "
 364		       "CTX[%04x] TYPE[%04x], going.\n",
 365		       addr, ctx, type);
 366		die_if_kernel("Dax", regs);
 367	}
 368
 369	if (test_thread_flag(TIF_32BIT)) {
 370		regs->tpc &= 0xffffffff;
 371		regs->tnpc &= 0xffffffff;
 372	}
 373	if (is_no_fault_exception(regs))
 374		return;
 375
 376	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 377	 * is vectored thorugh data access exception trap with fault type
 378	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 379	 * Accessing an address with invalid ASI for the address, for
 380	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 381	 * when TTE.mcd is not set for the VA, is also vectored into
 382	 * kerbel by HV as data access exception with fault type set to
 383	 * HV_FAULT_TYPE_INV_ASI.
 384	 */
 385	switch (type) {
 386	case HV_FAULT_TYPE_INV_ASI:
 387		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 388		break;
 389	case HV_FAULT_TYPE_MCD_DIS:
 390		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 391		break;
 392	default:
 393		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 394		break;
 395	}
 396}
 397
 398void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 399{
 400	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 401		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 402		return;
 403
 404	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 405	sun4v_data_access_exception(regs, addr, type_ctx);
 406}
 407
 408#ifdef CONFIG_PCI
 409#include "pci_impl.h"
 410#endif
 411
 412/* When access exceptions happen, we must do this. */
 413static void spitfire_clean_and_reenable_l1_caches(void)
 414{
 415	unsigned long va;
 416
 417	if (tlb_type != spitfire)
 418		BUG();
 419
 420	/* Clean 'em. */
 421	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 422		spitfire_put_icache_tag(va, 0x0);
 423		spitfire_put_dcache_tag(va, 0x0);
 424	}
 425
 426	/* Re-enable in LSU. */
 427	__asm__ __volatile__("flush %%g6\n\t"
 428			     "membar #Sync\n\t"
 429			     "stxa %0, [%%g0] %1\n\t"
 430			     "membar #Sync"
 431			     : /* no outputs */
 432			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 433				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 434			     "i" (ASI_LSU_CONTROL)
 435			     : "memory");
 436}
 437
 438static void spitfire_enable_estate_errors(void)
 439{
 440	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 441			     "membar	#Sync"
 442			     : /* no outputs */
 443			     : "r" (ESTATE_ERR_ALL),
 444			       "i" (ASI_ESTATE_ERROR_EN));
 445}
 446
 447static char ecc_syndrome_table[] = {
 448	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 449	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 450	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 451	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 452	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 453	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 454	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 455	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 456	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 457	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 458	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 459	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 460	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 461	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 462	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 463	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 464	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 465	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 466	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 467	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 468	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 469	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 470	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 471	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 472	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 473	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 474	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 475	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 477	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 479	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 480};
 481
 482static char *syndrome_unknown = "<Unknown>";
 483
 484static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 485{
 486	unsigned short scode;
 487	char memmod_str[64], *p;
 488
 489	if (udbl & bit) {
 490		scode = ecc_syndrome_table[udbl & 0xff];
 491		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 492			p = syndrome_unknown;
 493		else
 494			p = memmod_str;
 495		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 496		       "Memory Module \"%s\"\n",
 497		       smp_processor_id(), scode, p);
 498	}
 499
 500	if (udbh & bit) {
 501		scode = ecc_syndrome_table[udbh & 0xff];
 502		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 503			p = syndrome_unknown;
 504		else
 505			p = memmod_str;
 506		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 507		       "Memory Module \"%s\"\n",
 508		       smp_processor_id(), scode, p);
 509	}
 510
 511}
 512
 513static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 514{
 515
 516	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 517	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 518	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 519
 520	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 521
 522	/* We always log it, even if someone is listening for this
 523	 * trap.
 524	 */
 525	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 526		   0, TRAP_TYPE_CEE, SIGTRAP);
 527
 528	/* The Correctable ECC Error trap does not disable I/D caches.  So
 529	 * we only have to restore the ESTATE Error Enable register.
 530	 */
 531	spitfire_enable_estate_errors();
 532}
 533
 534static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 535{
 536	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 537	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 538	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 539
 540	/* XXX add more human friendly logging of the error status
 541	 * XXX as is implemented for cheetah
 542	 */
 543
 544	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 545
 546	/* We always log it, even if someone is listening for this
 547	 * trap.
 548	 */
 549	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 550		   0, tt, SIGTRAP);
 551
 552	if (regs->tstate & TSTATE_PRIV) {
 553		if (tl1)
 554			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 555		die_if_kernel("UE", regs);
 556	}
 557
 558	/* XXX need more intelligent processing here, such as is implemented
 559	 * XXX for cheetah errors, in fact if the E-cache still holds the
 560	 * XXX line with bad parity this will loop
 561	 */
 562
 563	spitfire_clean_and_reenable_l1_caches();
 564	spitfire_enable_estate_errors();
 565
 566	if (test_thread_flag(TIF_32BIT)) {
 567		regs->tpc &= 0xffffffff;
 568		regs->tnpc &= 0xffffffff;
 569	}
 570	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 571}
 572
 573void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 574{
 575	unsigned long afsr, tt, udbh, udbl;
 576	int tl1;
 577
 578	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 579	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 580	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 581	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 582	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 583
 584#ifdef CONFIG_PCI
 585	if (tt == TRAP_TYPE_DAE &&
 586	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 587		spitfire_clean_and_reenable_l1_caches();
 588		spitfire_enable_estate_errors();
 589
 590		pci_poke_faulted = 1;
 591		regs->tnpc = regs->tpc + 4;
 592		return;
 593	}
 594#endif
 595
 596	if (afsr & SFAFSR_UE)
 597		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 598
 599	if (tt == TRAP_TYPE_CEE) {
 600		/* Handle the case where we took a CEE trap, but ACK'd
 601		 * only the UE state in the UDB error registers.
 602		 */
 603		if (afsr & SFAFSR_UE) {
 604			if (udbh & UDBE_CE) {
 605				__asm__ __volatile__(
 606					"stxa	%0, [%1] %2\n\t"
 607					"membar	#Sync"
 608					: /* no outputs */
 609					: "r" (udbh & UDBE_CE),
 610					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 611			}
 612			if (udbl & UDBE_CE) {
 613				__asm__ __volatile__(
 614					"stxa	%0, [%1] %2\n\t"
 615					"membar	#Sync"
 616					: /* no outputs */
 617					: "r" (udbl & UDBE_CE),
 618					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 619			}
 620		}
 621
 622		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 623	}
 624}
 625
 626int cheetah_pcache_forced_on;
 627
 628void cheetah_enable_pcache(void)
 629{
 630	unsigned long dcr;
 631
 632	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 633	       smp_processor_id());
 634
 635	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 636			     : "=r" (dcr)
 637			     : "i" (ASI_DCU_CONTROL_REG));
 638	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 639	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 640			     "membar #Sync"
 641			     : /* no outputs */
 642			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 643}
 644
 645/* Cheetah error trap handling. */
 646static unsigned long ecache_flush_physbase;
 647static unsigned long ecache_flush_linesize;
 648static unsigned long ecache_flush_size;
 649
 650/* This table is ordered in priority of errors and matches the
 651 * AFAR overwrite policy as well.
 652 */
 653
 654struct afsr_error_table {
 655	unsigned long mask;
 656	const char *name;
 657};
 658
 659static const char CHAFSR_PERR_msg[] =
 660	"System interface protocol error";
 661static const char CHAFSR_IERR_msg[] =
 662	"Internal processor error";
 663static const char CHAFSR_ISAP_msg[] =
 664	"System request parity error on incoming address";
 665static const char CHAFSR_UCU_msg[] =
 666	"Uncorrectable E-cache ECC error for ifetch/data";
 667static const char CHAFSR_UCC_msg[] =
 668	"SW Correctable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UE_msg[] =
 670	"Uncorrectable system bus data ECC error for read";
 671static const char CHAFSR_EDU_msg[] =
 672	"Uncorrectable E-cache ECC error for stmerge/blkld";
 673static const char CHAFSR_EMU_msg[] =
 674	"Uncorrectable system bus MTAG error";
 675static const char CHAFSR_WDU_msg[] =
 676	"Uncorrectable E-cache ECC error for writeback";
 677static const char CHAFSR_CPU_msg[] =
 678	"Uncorrectable ECC error for copyout";
 679static const char CHAFSR_CE_msg[] =
 680	"HW corrected system bus data ECC error for read";
 681static const char CHAFSR_EDC_msg[] =
 682	"HW corrected E-cache ECC error for stmerge/blkld";
 683static const char CHAFSR_EMC_msg[] =
 684	"HW corrected system bus MTAG ECC error";
 685static const char CHAFSR_WDC_msg[] =
 686	"HW corrected E-cache ECC error for writeback";
 687static const char CHAFSR_CPC_msg[] =
 688	"HW corrected ECC error for copyout";
 689static const char CHAFSR_TO_msg[] =
 690	"Unmapped error from system bus";
 691static const char CHAFSR_BERR_msg[] =
 692	"Bus error response from system bus";
 693static const char CHAFSR_IVC_msg[] =
 694	"HW corrected system bus data ECC error for ivec read";
 695static const char CHAFSR_IVU_msg[] =
 696	"Uncorrectable system bus data ECC error for ivec read";
 697static struct afsr_error_table __cheetah_error_table[] = {
 698	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 699	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 700	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 701	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 702	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 703	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 704	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 705	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 706	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 707	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 708	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 709	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 710	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 711	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 712	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 713	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 714	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 715	/* These two do not update the AFAR. */
 716	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 717	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 718	{	0,		NULL			},
 719};
 720static const char CHPAFSR_DTO_msg[] =
 721	"System bus unmapped error for prefetch/storequeue-read";
 722static const char CHPAFSR_DBERR_msg[] =
 723	"System bus error for prefetch/storequeue-read";
 724static const char CHPAFSR_THCE_msg[] =
 725	"Hardware corrected E-cache Tag ECC error";
 726static const char CHPAFSR_TSCE_msg[] =
 727	"SW handled correctable E-cache Tag ECC error";
 728static const char CHPAFSR_TUE_msg[] =
 729	"Uncorrectable E-cache Tag ECC error";
 730static const char CHPAFSR_DUE_msg[] =
 731	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 732static struct afsr_error_table __cheetah_plus_error_table[] = {
 733	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 734	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 735	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 736	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 737	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 738	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 739	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 740	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 741	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 742	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 743	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 744	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 745	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 746	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 747	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 748	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 749	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 750	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 751	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 752	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 753	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 754	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 755	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 756	/* These two do not update the AFAR. */
 757	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 758	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 759	{	0,		NULL			},
 760};
 761static const char JPAFSR_JETO_msg[] =
 762	"System interface protocol error, hw timeout caused";
 763static const char JPAFSR_SCE_msg[] =
 764	"Parity error on system snoop results";
 765static const char JPAFSR_JEIC_msg[] =
 766	"System interface protocol error, illegal command detected";
 767static const char JPAFSR_JEIT_msg[] =
 768	"System interface protocol error, illegal ADTYPE detected";
 769static const char JPAFSR_OM_msg[] =
 770	"Out of range memory error has occurred";
 771static const char JPAFSR_ETP_msg[] =
 772	"Parity error on L2 cache tag SRAM";
 773static const char JPAFSR_UMS_msg[] =
 774	"Error due to unsupported store";
 775static const char JPAFSR_RUE_msg[] =
 776	"Uncorrectable ECC error from remote cache/memory";
 777static const char JPAFSR_RCE_msg[] =
 778	"Correctable ECC error from remote cache/memory";
 779static const char JPAFSR_BP_msg[] =
 780	"JBUS parity error on returned read data";
 781static const char JPAFSR_WBP_msg[] =
 782	"JBUS parity error on data for writeback or block store";
 783static const char JPAFSR_FRC_msg[] =
 784	"Foreign read to DRAM incurring correctable ECC error";
 785static const char JPAFSR_FRU_msg[] =
 786	"Foreign read to DRAM incurring uncorrectable ECC error";
 787static struct afsr_error_table __jalapeno_error_table[] = {
 788	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 789	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 790	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 791	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 792	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 793	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 794	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 795	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 796	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 797	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 798	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 799	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 800	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 801	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 802	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 803	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 804	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 805	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 806	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 807	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 808	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 809	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 810	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 811	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 812	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 813	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 814	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 815	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 816	/* These two do not update the AFAR. */
 817	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 818	{	0,		NULL			},
 819};
 820static struct afsr_error_table *cheetah_error_table;
 821static unsigned long cheetah_afsr_errors;
 822
 823struct cheetah_err_info *cheetah_error_log;
 824
 825static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 826{
 827	struct cheetah_err_info *p;
 828	int cpu = smp_processor_id();
 829
 830	if (!cheetah_error_log)
 831		return NULL;
 832
 833	p = cheetah_error_log + (cpu * 2);
 834	if ((afsr & CHAFSR_TL1) != 0UL)
 835		p++;
 836
 837	return p;
 838}
 839
 840extern unsigned int tl0_icpe[], tl1_icpe[];
 841extern unsigned int tl0_dcpe[], tl1_dcpe[];
 842extern unsigned int tl0_fecc[], tl1_fecc[];
 843extern unsigned int tl0_cee[], tl1_cee[];
 844extern unsigned int tl0_iae[], tl1_iae[];
 845extern unsigned int tl0_dae[], tl1_dae[];
 846extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 847extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 848extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 849extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 850extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 851
 852void __init cheetah_ecache_flush_init(void)
 853{
 854	unsigned long largest_size, smallest_linesize, order, ver;
 855	int i, sz;
 856
 857	/* Scan all cpu device tree nodes, note two values:
 858	 * 1) largest E-cache size
 859	 * 2) smallest E-cache line size
 860	 */
 861	largest_size = 0UL;
 862	smallest_linesize = ~0UL;
 863
 864	for (i = 0; i < NR_CPUS; i++) {
 865		unsigned long val;
 866
 867		val = cpu_data(i).ecache_size;
 868		if (!val)
 869			continue;
 870
 871		if (val > largest_size)
 872			largest_size = val;
 873
 874		val = cpu_data(i).ecache_line_size;
 875		if (val < smallest_linesize)
 876			smallest_linesize = val;
 877
 878	}
 879
 880	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 881		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 882			    "parameters.\n");
 883		prom_halt();
 884	}
 885
 886	ecache_flush_size = (2 * largest_size);
 887	ecache_flush_linesize = smallest_linesize;
 888
 889	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 890
 891	if (ecache_flush_physbase == ~0UL) {
 892		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 893			    "contiguous physical memory.\n",
 894			    ecache_flush_size);
 895		prom_halt();
 896	}
 897
 898	/* Now allocate error trap reporting scoreboard. */
 899	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 900	for (order = 0; order < MAX_ORDER; order++) {
 901		if ((PAGE_SIZE << order) >= sz)
 902			break;
 903	}
 904	cheetah_error_log = (struct cheetah_err_info *)
 905		__get_free_pages(GFP_KERNEL, order);
 906	if (!cheetah_error_log) {
 907		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 908			    "error logging scoreboard (%d bytes).\n", sz);
 909		prom_halt();
 910	}
 911	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 912
 913	/* Mark all AFSRs as invalid so that the trap handler will
 914	 * log new new information there.
 915	 */
 916	for (i = 0; i < 2 * NR_CPUS; i++)
 917		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 918
 919	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 920	if ((ver >> 32) == __JALAPENO_ID ||
 921	    (ver >> 32) == __SERRANO_ID) {
 922		cheetah_error_table = &__jalapeno_error_table[0];
 923		cheetah_afsr_errors = JPAFSR_ERRORS;
 924	} else if ((ver >> 32) == 0x003e0015) {
 925		cheetah_error_table = &__cheetah_plus_error_table[0];
 926		cheetah_afsr_errors = CHPAFSR_ERRORS;
 927	} else {
 928		cheetah_error_table = &__cheetah_error_table[0];
 929		cheetah_afsr_errors = CHAFSR_ERRORS;
 930	}
 931
 932	/* Now patch trap tables. */
 933	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 934	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 935	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 936	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 938	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	if (tlb_type == cheetah_plus) {
 942		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 943		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 944		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 945		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 946	}
 947	flushi(PAGE_OFFSET);
 948}
 949
 950static void cheetah_flush_ecache(void)
 951{
 952	unsigned long flush_base = ecache_flush_physbase;
 953	unsigned long flush_linesize = ecache_flush_linesize;
 954	unsigned long flush_size = ecache_flush_size;
 955
 956	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 957			     "   bne,pt	%%xcc, 1b\n\t"
 958			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 959			     : "=&r" (flush_size)
 960			     : "0" (flush_size), "r" (flush_base),
 961			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 962}
 963
 964static void cheetah_flush_ecache_line(unsigned long physaddr)
 965{
 966	unsigned long alias;
 967
 968	physaddr &= ~(8UL - 1UL);
 969	physaddr = (ecache_flush_physbase +
 970		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 971	alias = physaddr + (ecache_flush_size >> 1UL);
 972	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 973			     "ldxa [%1] %2, %%g0\n\t"
 974			     "membar #Sync"
 975			     : /* no outputs */
 976			     : "r" (physaddr), "r" (alias),
 977			       "i" (ASI_PHYS_USE_EC));
 978}
 979
 980/* Unfortunately, the diagnostic access to the I-cache tags we need to
 981 * use to clear the thing interferes with I-cache coherency transactions.
 982 *
 983 * So we must only flush the I-cache when it is disabled.
 984 */
 985static void __cheetah_flush_icache(void)
 986{
 987	unsigned int icache_size, icache_line_size;
 988	unsigned long addr;
 989
 990	icache_size = local_cpu_data().icache_size;
 991	icache_line_size = local_cpu_data().icache_line_size;
 992
 993	/* Clear the valid bits in all the tags. */
 994	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 995		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 996				     "membar #Sync"
 997				     : /* no outputs */
 998				     : "r" (addr | (2 << 3)),
 999				       "i" (ASI_IC_TAG));
1000	}
1001}
1002
1003static void cheetah_flush_icache(void)
1004{
1005	unsigned long dcu_save;
1006
1007	/* Save current DCU, disable I-cache. */
1008	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1009			     "or %0, %2, %%g1\n\t"
1010			     "stxa %%g1, [%%g0] %1\n\t"
1011			     "membar #Sync"
1012			     : "=r" (dcu_save)
1013			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1014			     : "g1");
1015
1016	__cheetah_flush_icache();
1017
1018	/* Restore DCU register */
1019	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1020			     "membar #Sync"
1021			     : /* no outputs */
1022			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1023}
1024
1025static void cheetah_flush_dcache(void)
1026{
1027	unsigned int dcache_size, dcache_line_size;
1028	unsigned long addr;
1029
1030	dcache_size = local_cpu_data().dcache_size;
1031	dcache_line_size = local_cpu_data().dcache_line_size;
1032
1033	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1034		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1035				     "membar #Sync"
1036				     : /* no outputs */
1037				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1038	}
1039}
1040
1041/* In order to make the even parity correct we must do two things.
1042 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1043 * Next, we clear out all 32-bytes of data for that line.  Data of
1044 * all-zero + tag parity value of zero == correct parity.
1045 */
1046static void cheetah_plus_zap_dcache_parity(void)
1047{
1048	unsigned int dcache_size, dcache_line_size;
1049	unsigned long addr;
1050
1051	dcache_size = local_cpu_data().dcache_size;
1052	dcache_line_size = local_cpu_data().dcache_line_size;
1053
1054	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1055		unsigned long tag = (addr >> 14);
1056		unsigned long line;
1057
1058		__asm__ __volatile__("membar	#Sync\n\t"
1059				     "stxa	%0, [%1] %2\n\t"
1060				     "membar	#Sync"
1061				     : /* no outputs */
1062				     : "r" (tag), "r" (addr),
1063				       "i" (ASI_DCACHE_UTAG));
1064		for (line = addr; line < addr + dcache_line_size; line += 8)
1065			__asm__ __volatile__("membar	#Sync\n\t"
1066					     "stxa	%%g0, [%0] %1\n\t"
1067					     "membar	#Sync"
1068					     : /* no outputs */
1069					     : "r" (line),
1070					       "i" (ASI_DCACHE_DATA));
1071	}
1072}
1073
1074/* Conversion tables used to frob Cheetah AFSR syndrome values into
1075 * something palatable to the memory controller driver get_unumber
1076 * routine.
1077 */
1078#define MT0	137
1079#define MT1	138
1080#define MT2	139
1081#define NONE	254
1082#define MTC0	140
1083#define MTC1	141
1084#define MTC2	142
1085#define MTC3	143
1086#define C0	128
1087#define C1	129
1088#define C2	130
1089#define C3	131
1090#define C4	132
1091#define C5	133
1092#define C6	134
1093#define C7	135
1094#define C8	136
1095#define M2	144
1096#define M3	145
1097#define M4	146
1098#define M	147
1099static unsigned char cheetah_ecc_syntab[] = {
1100/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1101/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1102/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1103/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1104/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1105/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1106/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1107/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1108/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1109/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1110/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1111/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1112/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1113/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1114/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1115/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1116/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1117/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1118/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1119/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1120/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1121/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1122/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1123/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1124/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1125/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1126/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1127/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1128/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1129/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1130/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1131/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1132};
1133static unsigned char cheetah_mtag_syntab[] = {
1134       NONE, MTC0,
1135       MTC1, NONE,
1136       MTC2, NONE,
1137       NONE, MT0,
1138       MTC3, NONE,
1139       NONE, MT1,
1140       NONE, MT2,
1141       NONE, NONE
1142};
1143
1144/* Return the highest priority error conditon mentioned. */
1145static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1146{
1147	unsigned long tmp = 0;
1148	int i;
1149
1150	for (i = 0; cheetah_error_table[i].mask; i++) {
1151		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1152			return tmp;
1153	}
1154	return tmp;
1155}
1156
1157static const char *cheetah_get_string(unsigned long bit)
1158{
1159	int i;
1160
1161	for (i = 0; cheetah_error_table[i].mask; i++) {
1162		if ((bit & cheetah_error_table[i].mask) != 0UL)
1163			return cheetah_error_table[i].name;
1164	}
1165	return "???";
1166}
1167
1168static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1169			       unsigned long afsr, unsigned long afar, int recoverable)
1170{
1171	unsigned long hipri;
1172	char unum[256];
1173
1174	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1175	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1176	       afsr, afar,
1177	       (afsr & CHAFSR_TL1) ? 1 : 0);
1178	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1179	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1181	printk("%s" "ERROR(%d): ",
1182	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1183	printk("TPC<%pS>\n", (void *) regs->tpc);
1184	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1185	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1186	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1187	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1189	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1190	hipri = cheetah_get_hipri(afsr);
1191	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1192	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193	       hipri, cheetah_get_string(hipri));
1194
1195	/* Try to get unumber if relevant. */
1196#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1197			 CHAFSR_CPC | CHAFSR_CPU | \
1198			 CHAFSR_UE  | CHAFSR_CE  | \
1199			 CHAFSR_EDC | CHAFSR_EDU  | \
1200			 CHAFSR_UCC | CHAFSR_UCU  | \
1201			 CHAFSR_WDU | CHAFSR_WDC)
1202#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1203	if (afsr & ESYND_ERRORS) {
1204		int syndrome;
1205		int ret;
1206
1207		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1208		syndrome = cheetah_ecc_syntab[syndrome];
1209		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1210		if (ret != -1)
1211			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1212			       (recoverable ? KERN_WARNING : KERN_CRIT),
1213			       smp_processor_id(), unum);
1214	} else if (afsr & MSYND_ERRORS) {
1215		int syndrome;
1216		int ret;
1217
1218		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1219		syndrome = cheetah_mtag_syntab[syndrome];
1220		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1221		if (ret != -1)
1222			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1223			       (recoverable ? KERN_WARNING : KERN_CRIT),
1224			       smp_processor_id(), unum);
1225	}
1226
1227	/* Now dump the cache snapshots. */
1228	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1229	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1230	       (int) info->dcache_index,
1231	       info->dcache_tag,
1232	       info->dcache_utag,
1233	       info->dcache_stag);
1234	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1235	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1236	       info->dcache_data[0],
1237	       info->dcache_data[1],
1238	       info->dcache_data[2],
1239	       info->dcache_data[3]);
1240	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1241	       "u[%016llx] l[%016llx]\n",
1242	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1243	       (int) info->icache_index,
1244	       info->icache_tag,
1245	       info->icache_utag,
1246	       info->icache_stag,
1247	       info->icache_upper,
1248	       info->icache_lower);
1249	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1250	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1251	       info->icache_data[0],
1252	       info->icache_data[1],
1253	       info->icache_data[2],
1254	       info->icache_data[3]);
1255	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1256	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1257	       info->icache_data[4],
1258	       info->icache_data[5],
1259	       info->icache_data[6],
1260	       info->icache_data[7]);
1261	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->ecache_index, info->ecache_tag);
1264	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1265	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1266	       info->ecache_data[0],
1267	       info->ecache_data[1],
1268	       info->ecache_data[2],
1269	       info->ecache_data[3]);
1270
1271	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1272	while (afsr != 0UL) {
1273		unsigned long bit = cheetah_get_hipri(afsr);
1274
1275		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1276		       (recoverable ? KERN_WARNING : KERN_CRIT),
1277		       bit, cheetah_get_string(bit));
1278
1279		afsr &= ~bit;
1280	}
1281
1282	if (!recoverable)
1283		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1284}
1285
1286static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1287{
1288	unsigned long afsr, afar;
1289	int ret = 0;
1290
1291	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1292			     : "=r" (afsr)
1293			     : "i" (ASI_AFSR));
1294	if ((afsr & cheetah_afsr_errors) != 0) {
1295		if (logp != NULL) {
1296			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297					     : "=r" (afar)
1298					     : "i" (ASI_AFAR));
1299			logp->afsr = afsr;
1300			logp->afar = afar;
1301		}
1302		ret = 1;
1303	}
1304	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1305			     "membar #Sync\n\t"
1306			     : : "r" (afsr), "i" (ASI_AFSR));
1307
1308	return ret;
1309}
1310
1311void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1312{
1313	struct cheetah_err_info local_snapshot, *p;
1314	int recoverable;
1315
1316	/* Flush E-cache */
1317	cheetah_flush_ecache();
1318
1319	p = cheetah_get_error_log(afsr);
1320	if (!p) {
1321		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1322			    afsr, afar);
1323		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1324			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1325		prom_halt();
1326	}
1327
1328	/* Grab snapshot of logged error. */
1329	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1330
1331	/* If the current trap snapshot does not match what the
1332	 * trap handler passed along into our args, big trouble.
1333	 * In such a case, mark the local copy as invalid.
1334	 *
1335	 * Else, it matches and we mark the afsr in the non-local
1336	 * copy as invalid so we may log new error traps there.
1337	 */
1338	if (p->afsr != afsr || p->afar != afar)
1339		local_snapshot.afsr = CHAFSR_INVALID;
1340	else
1341		p->afsr = CHAFSR_INVALID;
1342
1343	cheetah_flush_icache();
1344	cheetah_flush_dcache();
1345
1346	/* Re-enable I-cache/D-cache */
1347	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1348			     "or %%g1, %1, %%g1\n\t"
1349			     "stxa %%g1, [%%g0] %0\n\t"
1350			     "membar #Sync"
1351			     : /* no outputs */
1352			     : "i" (ASI_DCU_CONTROL_REG),
1353			       "i" (DCU_DC | DCU_IC)
1354			     : "g1");
1355
1356	/* Re-enable error reporting */
1357	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1358			     "or %%g1, %1, %%g1\n\t"
1359			     "stxa %%g1, [%%g0] %0\n\t"
1360			     "membar #Sync"
1361			     : /* no outputs */
1362			     : "i" (ASI_ESTATE_ERROR_EN),
1363			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1364			     : "g1");
1365
1366	/* Decide if we can continue after handling this trap and
1367	 * logging the error.
1368	 */
1369	recoverable = 1;
1370	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1371		recoverable = 0;
1372
1373	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1374	 * error was logged while we had error reporting traps disabled.
1375	 */
1376	if (cheetah_recheck_errors(&local_snapshot)) {
1377		unsigned long new_afsr = local_snapshot.afsr;
1378
1379		/* If we got a new asynchronous error, die... */
1380		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1381				CHAFSR_WDU | CHAFSR_CPU |
1382				CHAFSR_IVU | CHAFSR_UE |
1383				CHAFSR_BERR | CHAFSR_TO))
1384			recoverable = 0;
1385	}
1386
1387	/* Log errors. */
1388	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1389
1390	if (!recoverable)
1391		panic("Irrecoverable Fast-ECC error trap.\n");
1392
1393	/* Flush E-cache to kick the error trap handlers out. */
1394	cheetah_flush_ecache();
1395}
1396
1397/* Try to fix a correctable error by pushing the line out from
1398 * the E-cache.  Recheck error reporting registers to see if the
1399 * problem is intermittent.
1400 */
1401static int cheetah_fix_ce(unsigned long physaddr)
1402{
1403	unsigned long orig_estate;
1404	unsigned long alias1, alias2;
1405	int ret;
1406
1407	/* Make sure correctable error traps are disabled. */
1408	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1409			     "andn	%0, %1, %%g1\n\t"
1410			     "stxa	%%g1, [%%g0] %2\n\t"
1411			     "membar	#Sync"
1412			     : "=&r" (orig_estate)
1413			     : "i" (ESTATE_ERROR_CEEN),
1414			       "i" (ASI_ESTATE_ERROR_EN)
1415			     : "g1");
1416
1417	/* We calculate alias addresses that will force the
1418	 * cache line in question out of the E-cache.  Then
1419	 * we bring it back in with an atomic instruction so
1420	 * that we get it in some modified/exclusive state,
1421	 * then we displace it again to try and get proper ECC
1422	 * pushed back into the system.
1423	 */
1424	physaddr &= ~(8UL - 1UL);
1425	alias1 = (ecache_flush_physbase +
1426		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1427	alias2 = alias1 + (ecache_flush_size >> 1);
1428	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1429			     "ldxa	[%1] %3, %%g0\n\t"
1430			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1431			     "ldxa	[%0] %3, %%g0\n\t"
1432			     "ldxa	[%1] %3, %%g0\n\t"
1433			     "membar	#Sync"
1434			     : /* no outputs */
1435			     : "r" (alias1), "r" (alias2),
1436			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1437
1438	/* Did that trigger another error? */
1439	if (cheetah_recheck_errors(NULL)) {
1440		/* Try one more time. */
1441		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1442				     "membar #Sync"
1443				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1444		if (cheetah_recheck_errors(NULL))
1445			ret = 2;
1446		else
1447			ret = 1;
1448	} else {
1449		/* No new error, intermittent problem. */
1450		ret = 0;
1451	}
1452
1453	/* Restore error enables. */
1454	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1455			     "membar	#Sync"
1456			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1457
1458	return ret;
1459}
1460
1461/* Return non-zero if PADDR is a valid physical memory address. */
1462static int cheetah_check_main_memory(unsigned long paddr)
1463{
1464	unsigned long vaddr = PAGE_OFFSET + paddr;
1465
1466	if (vaddr > (unsigned long) high_memory)
1467		return 0;
1468
1469	return kern_addr_valid(vaddr);
1470}
1471
1472void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1473{
1474	struct cheetah_err_info local_snapshot, *p;
1475	int recoverable, is_memory;
1476
1477	p = cheetah_get_error_log(afsr);
1478	if (!p) {
1479		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1480			    afsr, afar);
1481		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1482			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1483		prom_halt();
1484	}
1485
1486	/* Grab snapshot of logged error. */
1487	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1488
1489	/* If the current trap snapshot does not match what the
1490	 * trap handler passed along into our args, big trouble.
1491	 * In such a case, mark the local copy as invalid.
1492	 *
1493	 * Else, it matches and we mark the afsr in the non-local
1494	 * copy as invalid so we may log new error traps there.
1495	 */
1496	if (p->afsr != afsr || p->afar != afar)
1497		local_snapshot.afsr = CHAFSR_INVALID;
1498	else
1499		p->afsr = CHAFSR_INVALID;
1500
1501	is_memory = cheetah_check_main_memory(afar);
1502
1503	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1504		/* XXX Might want to log the results of this operation
1505		 * XXX somewhere... -DaveM
1506		 */
1507		cheetah_fix_ce(afar);
1508	}
1509
1510	{
1511		int flush_all, flush_line;
1512
1513		flush_all = flush_line = 0;
1514		if ((afsr & CHAFSR_EDC) != 0UL) {
1515			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1516				flush_line = 1;
1517			else
1518				flush_all = 1;
1519		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1520			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1521				flush_line = 1;
1522			else
1523				flush_all = 1;
1524		}
1525
1526		/* Trap handler only disabled I-cache, flush it. */
1527		cheetah_flush_icache();
1528
1529		/* Re-enable I-cache */
1530		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1531				     "or %%g1, %1, %%g1\n\t"
1532				     "stxa %%g1, [%%g0] %0\n\t"
1533				     "membar #Sync"
1534				     : /* no outputs */
1535				     : "i" (ASI_DCU_CONTROL_REG),
1536				     "i" (DCU_IC)
1537				     : "g1");
1538
1539		if (flush_all)
1540			cheetah_flush_ecache();
1541		else if (flush_line)
1542			cheetah_flush_ecache_line(afar);
1543	}
1544
1545	/* Re-enable error reporting */
1546	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547			     "or %%g1, %1, %%g1\n\t"
1548			     "stxa %%g1, [%%g0] %0\n\t"
1549			     "membar #Sync"
1550			     : /* no outputs */
1551			     : "i" (ASI_ESTATE_ERROR_EN),
1552			       "i" (ESTATE_ERROR_CEEN)
1553			     : "g1");
1554
1555	/* Decide if we can continue after handling this trap and
1556	 * logging the error.
1557	 */
1558	recoverable = 1;
1559	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1560		recoverable = 0;
1561
1562	/* Re-check AFSR/AFAR */
1563	(void) cheetah_recheck_errors(&local_snapshot);
1564
1565	/* Log errors. */
1566	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1567
1568	if (!recoverable)
1569		panic("Irrecoverable Correctable-ECC error trap.\n");
1570}
1571
1572void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1573{
1574	struct cheetah_err_info local_snapshot, *p;
1575	int recoverable, is_memory;
1576
1577#ifdef CONFIG_PCI
1578	/* Check for the special PCI poke sequence. */
1579	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1580		cheetah_flush_icache();
1581		cheetah_flush_dcache();
1582
1583		/* Re-enable I-cache/D-cache */
1584		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1585				     "or %%g1, %1, %%g1\n\t"
1586				     "stxa %%g1, [%%g0] %0\n\t"
1587				     "membar #Sync"
1588				     : /* no outputs */
1589				     : "i" (ASI_DCU_CONTROL_REG),
1590				       "i" (DCU_DC | DCU_IC)
1591				     : "g1");
1592
1593		/* Re-enable error reporting */
1594		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1595				     "or %%g1, %1, %%g1\n\t"
1596				     "stxa %%g1, [%%g0] %0\n\t"
1597				     "membar #Sync"
1598				     : /* no outputs */
1599				     : "i" (ASI_ESTATE_ERROR_EN),
1600				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1601				     : "g1");
1602
1603		(void) cheetah_recheck_errors(NULL);
1604
1605		pci_poke_faulted = 1;
1606		regs->tpc += 4;
1607		regs->tnpc = regs->tpc + 4;
1608		return;
1609	}
1610#endif
1611
1612	p = cheetah_get_error_log(afsr);
1613	if (!p) {
1614		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1615			    afsr, afar);
1616		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1617			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1618		prom_halt();
1619	}
1620
1621	/* Grab snapshot of logged error. */
1622	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1623
1624	/* If the current trap snapshot does not match what the
1625	 * trap handler passed along into our args, big trouble.
1626	 * In such a case, mark the local copy as invalid.
1627	 *
1628	 * Else, it matches and we mark the afsr in the non-local
1629	 * copy as invalid so we may log new error traps there.
1630	 */
1631	if (p->afsr != afsr || p->afar != afar)
1632		local_snapshot.afsr = CHAFSR_INVALID;
1633	else
1634		p->afsr = CHAFSR_INVALID;
1635
1636	is_memory = cheetah_check_main_memory(afar);
1637
1638	{
1639		int flush_all, flush_line;
1640
1641		flush_all = flush_line = 0;
1642		if ((afsr & CHAFSR_EDU) != 0UL) {
1643			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1644				flush_line = 1;
1645			else
1646				flush_all = 1;
1647		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1648			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1649				flush_line = 1;
1650			else
1651				flush_all = 1;
1652		}
1653
1654		cheetah_flush_icache();
1655		cheetah_flush_dcache();
1656
1657		/* Re-enable I/D caches */
1658		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1659				     "or %%g1, %1, %%g1\n\t"
1660				     "stxa %%g1, [%%g0] %0\n\t"
1661				     "membar #Sync"
1662				     : /* no outputs */
1663				     : "i" (ASI_DCU_CONTROL_REG),
1664				     "i" (DCU_IC | DCU_DC)
1665				     : "g1");
1666
1667		if (flush_all)
1668			cheetah_flush_ecache();
1669		else if (flush_line)
1670			cheetah_flush_ecache_line(afar);
1671	}
1672
1673	/* Re-enable error reporting */
1674	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1675			     "or %%g1, %1, %%g1\n\t"
1676			     "stxa %%g1, [%%g0] %0\n\t"
1677			     "membar #Sync"
1678			     : /* no outputs */
1679			     : "i" (ASI_ESTATE_ERROR_EN),
1680			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1681			     : "g1");
1682
1683	/* Decide if we can continue after handling this trap and
1684	 * logging the error.
1685	 */
1686	recoverable = 1;
1687	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1688		recoverable = 0;
1689
1690	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1691	 * error was logged while we had error reporting traps disabled.
1692	 */
1693	if (cheetah_recheck_errors(&local_snapshot)) {
1694		unsigned long new_afsr = local_snapshot.afsr;
1695
1696		/* If we got a new asynchronous error, die... */
1697		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1698				CHAFSR_WDU | CHAFSR_CPU |
1699				CHAFSR_IVU | CHAFSR_UE |
1700				CHAFSR_BERR | CHAFSR_TO))
1701			recoverable = 0;
1702	}
1703
1704	/* Log errors. */
1705	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1706
1707	/* "Recoverable" here means we try to yank the page from ever
1708	 * being newly used again.  This depends upon a few things:
1709	 * 1) Must be main memory, and AFAR must be valid.
1710	 * 2) If we trapped from user, OK.
1711	 * 3) Else, if we trapped from kernel we must find exception
1712	 *    table entry (ie. we have to have been accessing user
1713	 *    space).
1714	 *
1715	 * If AFAR is not in main memory, or we trapped from kernel
1716	 * and cannot find an exception table entry, it is unacceptable
1717	 * to try and continue.
1718	 */
1719	if (recoverable && is_memory) {
1720		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1721			/* OK, usermode access. */
1722			recoverable = 1;
1723		} else {
1724			const struct exception_table_entry *entry;
1725
1726			entry = search_exception_tables(regs->tpc);
1727			if (entry) {
1728				/* OK, kernel access to userspace. */
1729				recoverable = 1;
1730
1731			} else {
1732				/* BAD, privileged state is corrupted. */
1733				recoverable = 0;
1734			}
1735
1736			if (recoverable) {
1737				if (pfn_valid(afar >> PAGE_SHIFT))
1738					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1739				else
1740					recoverable = 0;
1741
1742				/* Only perform fixup if we still have a
1743				 * recoverable condition.
1744				 */
1745				if (recoverable) {
1746					regs->tpc = entry->fixup;
1747					regs->tnpc = regs->tpc + 4;
1748				}
1749			}
1750		}
1751	} else {
1752		recoverable = 0;
1753	}
1754
1755	if (!recoverable)
1756		panic("Irrecoverable deferred error trap.\n");
1757}
1758
1759/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1760 *
1761 * Bit0:	0=dcache,1=icache
1762 * Bit1:	0=recoverable,1=unrecoverable
1763 *
1764 * The hardware has disabled both the I-cache and D-cache in
1765 * the %dcr register.  
1766 */
1767void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1768{
1769	if (type & 0x1)
1770		__cheetah_flush_icache();
1771	else
1772		cheetah_plus_zap_dcache_parity();
1773	cheetah_flush_dcache();
1774
1775	/* Re-enable I-cache/D-cache */
1776	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1777			     "or %%g1, %1, %%g1\n\t"
1778			     "stxa %%g1, [%%g0] %0\n\t"
1779			     "membar #Sync"
1780			     : /* no outputs */
1781			     : "i" (ASI_DCU_CONTROL_REG),
1782			       "i" (DCU_DC | DCU_IC)
1783			     : "g1");
1784
1785	if (type & 0x2) {
1786		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1787		       smp_processor_id(),
1788		       (type & 0x1) ? 'I' : 'D',
1789		       regs->tpc);
1790		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1791		panic("Irrecoverable Cheetah+ parity error.");
1792	}
1793
1794	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1795	       smp_processor_id(),
1796	       (type & 0x1) ? 'I' : 'D',
1797	       regs->tpc);
1798	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1799}
1800
1801struct sun4v_error_entry {
1802	/* Unique error handle */
1803/*0x00*/u64		err_handle;
1804
1805	/* %stick value at the time of the error */
1806/*0x08*/u64		err_stick;
1807
1808/*0x10*/u8		reserved_1[3];
1809
1810	/* Error type */
1811/*0x13*/u8		err_type;
1812#define SUN4V_ERR_TYPE_UNDEFINED	0
1813#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1814#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1815#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1816#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1817#define SUN4V_ERR_TYPE_DUMP_CORE	5
1818#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1819#define SUN4V_ERR_TYPE_NUM		7
1820
1821	/* Error attributes */
1822/*0x14*/u32		err_attrs;
1823#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1824#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1825#define SUN4V_ERR_ATTRS_PIO		0x00000004
1826#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1827#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1828#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1829#define SUN4V_ERR_ATTRS_ASR		0x00000040
1830#define SUN4V_ERR_ATTRS_ASI		0x00000080
1831#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1832#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1833#define SUN4V_ERR_ATTRS_MCD		0x00000800
1834#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1835#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1836#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1837#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1838
1839#define SUN4V_ERR_SPSTATE_FAULTED	0
1840#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1841#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1842
1843#define SUN4V_ERR_MODE_USER		1
1844#define SUN4V_ERR_MODE_PRIV		2
1845
1846	/* Real address of the memory region or PIO transaction */
1847/*0x18*/u64		err_raddr;
1848
1849	/* Size of the operation triggering the error, in bytes */
1850/*0x20*/u32		err_size;
1851
1852	/* ID of the CPU */
1853/*0x24*/u16		err_cpu;
1854
1855	/* Grace periof for shutdown, in seconds */
1856/*0x26*/u16		err_secs;
1857
1858	/* Value of the %asi register */
1859/*0x28*/u8		err_asi;
1860
1861/*0x29*/u8		reserved_2;
1862
1863	/* Value of the ASR register number */
1864/*0x2a*/u16		err_asr;
1865#define SUN4V_ERR_ASR_VALID		0x8000
1866
1867/*0x2c*/u32		reserved_3;
1868/*0x30*/u64		reserved_4;
1869/*0x38*/u64		reserved_5;
1870};
1871
1872static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1873static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1874
1875static const char *sun4v_err_type_to_str(u8 type)
1876{
1877	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1878		"undefined",
1879		"uncorrected resumable",
1880		"precise nonresumable",
1881		"deferred nonresumable",
1882		"shutdown request",
1883		"dump core",
1884		"SP state change",
1885	};
1886
1887	if (type < SUN4V_ERR_TYPE_NUM)
1888		return types[type];
1889
1890	return "unknown";
1891}
1892
1893static void sun4v_emit_err_attr_strings(u32 attrs)
1894{
1895	static const char *attr_names[] = {
1896		"processor",
1897		"memory",
1898		"PIO",
1899		"int-registers",
1900		"fpu-registers",
1901		"shutdown-request",
1902		"ASR",
1903		"ASI",
1904		"priv-reg",
1905	};
1906	static const char *sp_states[] = {
1907		"sp-faulted",
1908		"sp-available",
1909		"sp-not-present",
1910		"sp-state-reserved",
1911	};
1912	static const char *modes[] = {
1913		"mode-reserved0",
1914		"user",
1915		"priv",
1916		"mode-reserved1",
1917	};
1918	u32 sp_state, mode;
1919	int i;
1920
1921	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1922		if (attrs & (1U << i)) {
1923			const char *s = attr_names[i];
1924
1925			pr_cont("%s ", s);
1926		}
1927	}
1928
1929	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1930		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1931	pr_cont("%s ", sp_states[sp_state]);
1932
1933	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1934		SUN4V_ERR_ATTRS_MODE_SHFT);
1935	pr_cont("%s ", modes[mode]);
1936
1937	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1938		pr_cont("res-queue-full ");
1939}
1940
1941/* When the report contains a real-address of "-1" it means that the
1942 * hardware did not provide the address.  So we compute the effective
1943 * address of the load or store instruction at regs->tpc and report
1944 * that.  Usually when this happens it's a PIO and in such a case we
1945 * are using physical addresses with bypass ASIs anyways, so what we
1946 * report here is exactly what we want.
1947 */
1948static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1949{
1950	unsigned int insn;
1951	u64 addr;
1952
1953	if (!(regs->tstate & TSTATE_PRIV))
1954		return;
1955
1956	insn = *(unsigned int *) regs->tpc;
1957
1958	addr = compute_effective_address(regs, insn, 0);
1959
1960	printk("%s: insn effective address [0x%016llx]\n",
1961	       pfx, addr);
1962}
1963
1964static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1965			    int cpu, const char *pfx, atomic_t *ocnt)
1966{
1967	u64 *raw_ptr = (u64 *) ent;
1968	u32 attrs;
1969	int cnt;
1970
1971	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1972	printk("%s: TPC [0x%016lx] <%pS>\n",
1973	       pfx, regs->tpc, (void *) regs->tpc);
1974
1975	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1976	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1977	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1978	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1979
1980	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1981	       pfx, ent->err_handle, ent->err_stick);
1982
1983	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1984
1985	attrs = ent->err_attrs;
1986	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1987	sun4v_emit_err_attr_strings(attrs);
1988	pr_cont(">\n");
1989
1990	/* Various fields in the error report are only valid if
1991	 * certain attribute bits are set.
1992	 */
1993	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1994		     SUN4V_ERR_ATTRS_PIO |
1995		     SUN4V_ERR_ATTRS_ASI)) {
1996		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1997
1998		if (ent->err_raddr == ~(u64)0)
1999			sun4v_report_real_raddr(pfx, regs);
2000	}
2001
2002	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2003		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2004
2005	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2006		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2007		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2008		     SUN4V_ERR_ATTRS_PRIV_REG))
2009		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2010
2011	if (attrs & SUN4V_ERR_ATTRS_ASI)
2012		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2013
2014	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2015		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2016		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2017	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2018		printk("%s: reg [0x%04x]\n",
2019		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2020
2021	show_regs(regs);
2022
2023	if ((cnt = atomic_read(ocnt)) != 0) {
2024		atomic_set(ocnt, 0);
2025		wmb();
2026		printk("%s: Queue overflowed %d times.\n",
2027		       pfx, cnt);
2028	}
2029}
2030
2031/* Handle memory corruption detected error which is vectored in
2032 * through resumable error trap.
2033 */
2034void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2035{
2036	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2037		       SIGSEGV) == NOTIFY_STOP)
2038		return;
2039
2040	if (regs->tstate & TSTATE_PRIV) {
2041		/* MCD exception could happen because the task was
2042		 * running a system call with MCD enabled and passed a
2043		 * non-versioned pointer or pointer with bad version
2044		 * tag to the system call. In such cases, hypervisor
2045		 * places the address of offending instruction in the
2046		 * resumable error report. This is a deferred error,
2047		 * so the read/write that caused the trap was potentially
2048		 * retired long time back and we may have no choice
2049		 * but to send SIGSEGV to the process.
2050		 */
2051		const struct exception_table_entry *entry;
2052
2053		entry = search_exception_tables(regs->tpc);
2054		if (entry) {
2055			/* Looks like a bad syscall parameter */
2056#ifdef DEBUG_EXCEPTIONS
2057			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2058				 regs->tpc);
2059			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2060				 ent.err_raddr, entry->fixup);
2061#endif
2062			regs->tpc = entry->fixup;
2063			regs->tnpc = regs->tpc + 4;
2064			return;
2065		}
2066	}
2067
2068	/* Send SIGSEGV to the userspace process with the right signal
2069	 * code
2070	 */
2071	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2072}
2073
2074/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2075 * Log the event and clear the first word of the entry.
2076 */
2077void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2078{
2079	enum ctx_state prev_state = exception_enter();
2080	struct sun4v_error_entry *ent, local_copy;
2081	struct trap_per_cpu *tb;
2082	unsigned long paddr;
2083	int cpu;
2084
2085	cpu = get_cpu();
2086
2087	tb = &trap_block[cpu];
2088	paddr = tb->resum_kernel_buf_pa + offset;
2089	ent = __va(paddr);
2090
2091	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2092
2093	/* We have a local copy now, so release the entry.  */
2094	ent->err_handle = 0;
2095	wmb();
2096
2097	put_cpu();
2098
2099	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2100		/* We should really take the seconds field of
2101		 * the error report and use it for the shutdown
2102		 * invocation, but for now do the same thing we
2103		 * do for a DS shutdown request.
2104		 */
2105		pr_info("Shutdown request, %u seconds...\n",
2106			local_copy.err_secs);
2107		orderly_poweroff(true);
2108		goto out;
2109	}
2110
2111	/* If this is a memory corruption detected error vectored in
2112	 * by HV through resumable error trap, call the handler
2113	 */
2114	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2115		do_mcd_err(regs, local_copy);
2116		return;
2117	}
2118
2119	sun4v_log_error(regs, &local_copy, cpu,
2120			KERN_ERR "RESUMABLE ERROR",
2121			&sun4v_resum_oflow_cnt);
2122out:
2123	exception_exit(prev_state);
2124}
2125
2126/* If we try to printk() we'll probably make matters worse, by trying
2127 * to retake locks this cpu already holds or causing more errors. So
2128 * just bump a counter, and we'll report these counter bumps above.
2129 */
2130void sun4v_resum_overflow(struct pt_regs *regs)
2131{
2132	atomic_inc(&sun4v_resum_oflow_cnt);
2133}
2134
2135/* Given a set of registers, get the virtual addressi that was being accessed
2136 * by the faulting instructions at tpc.
2137 */
2138static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2139{
2140	unsigned int insn;
2141
2142	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2143		return compute_effective_address(regs, insn,
2144						 (insn >> 25) & 0x1f);
2145	}
2146	return 0;
2147}
2148
2149/* Attempt to handle non-resumable errors generated from userspace.
2150 * Returns true if the signal was handled, false otherwise.
2151 */
2152bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2153				  struct sun4v_error_entry *ent) {
2154
2155	unsigned int attrs = ent->err_attrs;
2156
2157	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2158		unsigned long addr = ent->err_raddr;
2159
2160		if (addr == ~(u64)0) {
2161			/* This seems highly unlikely to ever occur */
2162			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2163		} else {
2164			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2165							      PAGE_SIZE);
2166
2167			/* Break the unfortunate news. */
2168			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2169				 addr);
2170			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2171				 page_cnt);
2172
2173			while (page_cnt-- > 0) {
2174				if (pfn_valid(addr >> PAGE_SHIFT))
2175					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2176				addr += PAGE_SIZE;
2177			}
2178		}
2179		force_sig(SIGKILL);
2180
2181		return true;
2182	}
2183	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2184		force_sig_fault(SIGBUS, BUS_ADRERR,
2185				(void __user *)sun4v_get_vaddr(regs));
2186		return true;
2187	}
2188
2189	/* Default to doing nothing */
2190	return false;
2191}
2192
2193/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2194 * Log the event, clear the first word of the entry, and die.
2195 */
2196void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2197{
2198	struct sun4v_error_entry *ent, local_copy;
2199	struct trap_per_cpu *tb;
2200	unsigned long paddr;
2201	int cpu;
2202
2203	cpu = get_cpu();
2204
2205	tb = &trap_block[cpu];
2206	paddr = tb->nonresum_kernel_buf_pa + offset;
2207	ent = __va(paddr);
2208
2209	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2210
2211	/* We have a local copy now, so release the entry.  */
2212	ent->err_handle = 0;
2213	wmb();
2214
2215	put_cpu();
2216
2217	if (!(regs->tstate & TSTATE_PRIV) &&
2218	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2219		/* DON'T PANIC: This userspace error was handled. */
2220		return;
2221	}
2222
2223#ifdef CONFIG_PCI
2224	/* Check for the special PCI poke sequence. */
2225	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2226		pci_poke_faulted = 1;
2227		regs->tpc += 4;
2228		regs->tnpc = regs->tpc + 4;
2229		return;
2230	}
2231#endif
2232
2233	sun4v_log_error(regs, &local_copy, cpu,
2234			KERN_EMERG "NON-RESUMABLE ERROR",
2235			&sun4v_nonresum_oflow_cnt);
2236
2237	panic("Non-resumable error.");
2238}
2239
2240/* If we try to printk() we'll probably make matters worse, by trying
2241 * to retake locks this cpu already holds or causing more errors. So
2242 * just bump a counter, and we'll report these counter bumps above.
2243 */
2244void sun4v_nonresum_overflow(struct pt_regs *regs)
2245{
2246	/* XXX Actually even this can make not that much sense.  Perhaps
2247	 * XXX we should just pull the plug and panic directly from here?
2248	 */
2249	atomic_inc(&sun4v_nonresum_oflow_cnt);
2250}
2251
2252static void sun4v_tlb_error(struct pt_regs *regs)
2253{
2254	die_if_kernel("TLB/TSB error", regs);
2255}
2256
2257unsigned long sun4v_err_itlb_vaddr;
2258unsigned long sun4v_err_itlb_ctx;
2259unsigned long sun4v_err_itlb_pte;
2260unsigned long sun4v_err_itlb_error;
2261
2262void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2263{
2264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2265
2266	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2267	       regs->tpc, tl);
2268	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2269	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2271	       (void *) regs->u_regs[UREG_I7]);
2272	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2273	       "pte[%lx] error[%lx]\n",
2274	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2275	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2276
2277	sun4v_tlb_error(regs);
2278}
2279
2280unsigned long sun4v_err_dtlb_vaddr;
2281unsigned long sun4v_err_dtlb_ctx;
2282unsigned long sun4v_err_dtlb_pte;
2283unsigned long sun4v_err_dtlb_error;
2284
2285void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2286{
2287	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2288
2289	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2290	       regs->tpc, tl);
2291	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2292	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2294	       (void *) regs->u_regs[UREG_I7]);
2295	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2296	       "pte[%lx] error[%lx]\n",
2297	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2298	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2299
2300	sun4v_tlb_error(regs);
2301}
2302
2303void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2304{
2305	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2306	       err, op);
2307}
2308
2309void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2310{
2311	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2312	       err, op);
2313}
2314
2315static void do_fpe_common(struct pt_regs *regs)
2316{
2317	if (regs->tstate & TSTATE_PRIV) {
2318		regs->tpc = regs->tnpc;
2319		regs->tnpc += 4;
2320	} else {
2321		unsigned long fsr = current_thread_info()->xfsr[0];
2322		int code;
2323
2324		if (test_thread_flag(TIF_32BIT)) {
2325			regs->tpc &= 0xffffffff;
2326			regs->tnpc &= 0xffffffff;
2327		}
2328		code = FPE_FLTUNK;
2329		if ((fsr & 0x1c000) == (1 << 14)) {
2330			if (fsr & 0x10)
2331				code = FPE_FLTINV;
2332			else if (fsr & 0x08)
2333				code = FPE_FLTOVF;
2334			else if (fsr & 0x04)
2335				code = FPE_FLTUND;
2336			else if (fsr & 0x02)
2337				code = FPE_FLTDIV;
2338			else if (fsr & 0x01)
2339				code = FPE_FLTRES;
2340		}
2341		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2342	}
2343}
2344
2345void do_fpieee(struct pt_regs *regs)
2346{
2347	enum ctx_state prev_state = exception_enter();
2348
2349	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2350		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2351		goto out;
2352
2353	do_fpe_common(regs);
2354out:
2355	exception_exit(prev_state);
2356}
2357
2358void do_fpother(struct pt_regs *regs)
2359{
2360	enum ctx_state prev_state = exception_enter();
2361	struct fpustate *f = FPUSTATE;
2362	int ret = 0;
2363
2364	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2365		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2366		goto out;
2367
2368	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2369	case (2 << 14): /* unfinished_FPop */
2370	case (3 << 14): /* unimplemented_FPop */
2371		ret = do_mathemu(regs, f, false);
2372		break;
2373	}
2374	if (ret)
2375		goto out;
2376	do_fpe_common(regs);
2377out:
2378	exception_exit(prev_state);
2379}
2380
2381void do_tof(struct pt_regs *regs)
2382{
2383	enum ctx_state prev_state = exception_enter();
2384
2385	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2386		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2387		goto out;
2388
2389	if (regs->tstate & TSTATE_PRIV)
2390		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2391	if (test_thread_flag(TIF_32BIT)) {
2392		regs->tpc &= 0xffffffff;
2393		regs->tnpc &= 0xffffffff;
2394	}
2395	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
2396out:
2397	exception_exit(prev_state);
2398}
2399
2400void do_div0(struct pt_regs *regs)
2401{
2402	enum ctx_state prev_state = exception_enter();
2403
2404	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2405		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2406		goto out;
2407
2408	if (regs->tstate & TSTATE_PRIV)
2409		die_if_kernel("TL0: Kernel divide by zero.", regs);
2410	if (test_thread_flag(TIF_32BIT)) {
2411		regs->tpc &= 0xffffffff;
2412		regs->tnpc &= 0xffffffff;
2413	}
2414	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
2415out:
2416	exception_exit(prev_state);
2417}
2418
2419static void instruction_dump(unsigned int *pc)
2420{
2421	int i;
2422
2423	if ((((unsigned long) pc) & 3))
2424		return;
2425
2426	printk("Instruction DUMP:");
2427	for (i = -3; i < 6; i++)
2428		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2429	printk("\n");
2430}
2431
2432static void user_instruction_dump(unsigned int __user *pc)
2433{
2434	int i;
2435	unsigned int buf[9];
2436	
2437	if ((((unsigned long) pc) & 3))
2438		return;
2439		
2440	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2441		return;
2442
2443	printk("Instruction DUMP:");
2444	for (i = 0; i < 9; i++)
2445		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2446	printk("\n");
2447}
2448
2449void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2450{
2451	unsigned long fp, ksp;
2452	struct thread_info *tp;
2453	int count = 0;
2454#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2455	int graph = 0;
2456#endif
2457
2458	ksp = (unsigned long) _ksp;
2459	if (!tsk)
2460		tsk = current;
2461	tp = task_thread_info(tsk);
2462	if (ksp == 0UL) {
2463		if (tsk == current)
2464			asm("mov %%fp, %0" : "=r" (ksp));
2465		else
2466			ksp = tp->ksp;
2467	}
2468	if (tp == current_thread_info())
2469		flushw_all();
2470
2471	fp = ksp + STACK_BIAS;
2472
2473	printk("%sCall Trace:\n", loglvl);
2474	do {
2475		struct sparc_stackf *sf;
2476		struct pt_regs *regs;
2477		unsigned long pc;
2478
2479		if (!kstack_valid(tp, fp))
2480			break;
2481		sf = (struct sparc_stackf *) fp;
2482		regs = (struct pt_regs *) (sf + 1);
2483
2484		if (kstack_is_trap_frame(tp, regs)) {
2485			if (!(regs->tstate & TSTATE_PRIV))
2486				break;
2487			pc = regs->tpc;
2488			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2489		} else {
2490			pc = sf->callers_pc;
2491			fp = (unsigned long)sf->fp + STACK_BIAS;
2492		}
2493
2494		print_ip_sym(loglvl, pc);
2495#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2496		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2497			struct ftrace_ret_stack *ret_stack;
2498			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2499			if (ret_stack) {
2500				pc = ret_stack->ret;
2501				print_ip_sym(loglvl, pc);
2502				graph++;
2503			}
2504		}
2505#endif
2506	} while (++count < 16);
2507}
2508
2509static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2510{
2511	unsigned long fp = rw->ins[6];
2512
2513	if (!fp)
2514		return NULL;
2515
2516	return (struct reg_window *) (fp + STACK_BIAS);
2517}
2518
2519void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2520{
2521	static int die_counter;
2522	int count = 0;
2523	
2524	/* Amuse the user. */
2525	printk(
2526"              \\|/ ____ \\|/\n"
2527"              \"@'/ .. \\`@\"\n"
2528"              /_| \\__/ |_\\\n"
2529"                 \\__U_/\n");
2530
2531	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2532	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2533	__asm__ __volatile__("flushw");
2534	show_regs(regs);
2535	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2536	if (regs->tstate & TSTATE_PRIV) {
2537		struct thread_info *tp = current_thread_info();
2538		struct reg_window *rw = (struct reg_window *)
2539			(regs->u_regs[UREG_FP] + STACK_BIAS);
2540
2541		/* Stop the back trace when we hit userland or we
2542		 * find some badly aligned kernel stack.
2543		 */
2544		while (rw &&
2545		       count++ < 30 &&
2546		       kstack_valid(tp, (unsigned long) rw)) {
2547			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2548			       (void *) rw->ins[7]);
2549
2550			rw = kernel_stack_up(rw);
2551		}
2552		instruction_dump ((unsigned int *) regs->tpc);
2553	} else {
2554		if (test_thread_flag(TIF_32BIT)) {
2555			regs->tpc &= 0xffffffff;
2556			regs->tnpc &= 0xffffffff;
2557		}
2558		user_instruction_dump ((unsigned int __user *) regs->tpc);
2559	}
2560	if (panic_on_oops)
2561		panic("Fatal exception");
2562	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2563}
2564EXPORT_SYMBOL(die_if_kernel);
2565
2566#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2567#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2568
2569void do_illegal_instruction(struct pt_regs *regs)
2570{
2571	enum ctx_state prev_state = exception_enter();
2572	unsigned long pc = regs->tpc;
2573	unsigned long tstate = regs->tstate;
2574	u32 insn;
2575
2576	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2577		       0, 0x10, SIGILL) == NOTIFY_STOP)
2578		goto out;
2579
2580	if (tstate & TSTATE_PRIV)
2581		die_if_kernel("Kernel illegal instruction", regs);
2582	if (test_thread_flag(TIF_32BIT))
2583		pc = (u32)pc;
2584	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2585		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2586			if (handle_popc(insn, regs))
2587				goto out;
2588		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2589			if (handle_ldf_stq(insn, regs))
2590				goto out;
2591		} else if (tlb_type == hypervisor) {
2592			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2593				if (!vis_emul(regs, insn))
2594					goto out;
2595			} else {
2596				struct fpustate *f = FPUSTATE;
2597
2598				/* On UltraSPARC T2 and later, FPU insns which
2599				 * are not implemented in HW signal an illegal
2600				 * instruction trap and do not set the FP Trap
2601				 * Trap in the %fsr to unimplemented_FPop.
2602				 */
2603				if (do_mathemu(regs, f, true))
2604					goto out;
2605			}
2606		}
2607	}
2608	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2609out:
2610	exception_exit(prev_state);
2611}
2612
2613void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2614{
2615	enum ctx_state prev_state = exception_enter();
2616
2617	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2618		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2619		goto out;
2620
2621	if (regs->tstate & TSTATE_PRIV) {
2622		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2623		goto out;
2624	}
2625	if (is_no_fault_exception(regs))
2626		return;
2627
2628	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2629out:
2630	exception_exit(prev_state);
2631}
2632
2633void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2634{
2635	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2636		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2637		return;
2638
2639	if (regs->tstate & TSTATE_PRIV) {
2640		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2641		return;
2642	}
2643	if (is_no_fault_exception(regs))
2644		return;
2645
2646	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2647}
2648
2649/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2650 * tag mismatch.
2651 *
2652 * ADI version tag mismatch on a load from memory always results in a
2653 * precise exception. Tag mismatch on a store to memory will result in
2654 * precise exception if MCDPER or PMCDPER is set to 1.
2655 */
2656void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2657				      unsigned long context)
2658{
2659	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2660		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2661		return;
2662
2663	if (regs->tstate & TSTATE_PRIV) {
2664		/* MCD exception could happen because the task was running
2665		 * a system call with MCD enabled and passed a non-versioned
2666		 * pointer or pointer with bad version tag to  the system
2667		 * call.
2668		 */
2669		const struct exception_table_entry *entry;
2670
2671		entry = search_exception_tables(regs->tpc);
2672		if (entry) {
2673			/* Looks like a bad syscall parameter */
2674#ifdef DEBUG_EXCEPTIONS
2675			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2676				 regs->tpc);
2677			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2678				 regs->tpc, entry->fixup);
2679#endif
2680			regs->tpc = entry->fixup;
2681			regs->tnpc = regs->tpc + 4;
2682			return;
2683		}
2684		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2685			 __func__, addr, context);
2686		die_if_kernel("MCD precise", regs);
2687	}
2688
2689	if (test_thread_flag(TIF_32BIT)) {
2690		regs->tpc &= 0xffffffff;
2691		regs->tnpc &= 0xffffffff;
2692	}
2693	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2694}
2695
2696void do_privop(struct pt_regs *regs)
2697{
2698	enum ctx_state prev_state = exception_enter();
2699
2700	if (notify_die(DIE_TRAP, "privileged operation", regs,
2701		       0, 0x11, SIGILL) == NOTIFY_STOP)
2702		goto out;
2703
2704	if (test_thread_flag(TIF_32BIT)) {
2705		regs->tpc &= 0xffffffff;
2706		regs->tnpc &= 0xffffffff;
2707	}
2708	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
2709out:
2710	exception_exit(prev_state);
2711}
2712
2713void do_privact(struct pt_regs *regs)
2714{
2715	do_privop(regs);
2716}
2717
2718/* Trap level 1 stuff or other traps we should never see... */
2719void do_cee(struct pt_regs *regs)
2720{
2721	exception_enter();
2722	die_if_kernel("TL0: Cache Error Exception", regs);
2723}
2724
2725void do_div0_tl1(struct pt_regs *regs)
2726{
2727	exception_enter();
2728	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2729	die_if_kernel("TL1: DIV0 Exception", regs);
2730}
2731
2732void do_fpieee_tl1(struct pt_regs *regs)
2733{
2734	exception_enter();
2735	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2736	die_if_kernel("TL1: FPU IEEE Exception", regs);
2737}
2738
2739void do_fpother_tl1(struct pt_regs *regs)
2740{
2741	exception_enter();
2742	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2743	die_if_kernel("TL1: FPU Other Exception", regs);
2744}
2745
2746void do_ill_tl1(struct pt_regs *regs)
2747{
2748	exception_enter();
2749	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2750	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2751}
2752
2753void do_irq_tl1(struct pt_regs *regs)
2754{
2755	exception_enter();
2756	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2757	die_if_kernel("TL1: IRQ Exception", regs);
2758}
2759
2760void do_lddfmna_tl1(struct pt_regs *regs)
2761{
2762	exception_enter();
2763	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2764	die_if_kernel("TL1: LDDF Exception", regs);
2765}
2766
2767void do_stdfmna_tl1(struct pt_regs *regs)
2768{
2769	exception_enter();
2770	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2771	die_if_kernel("TL1: STDF Exception", regs);
2772}
2773
2774void do_paw(struct pt_regs *regs)
2775{
2776	exception_enter();
2777	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2778}
2779
2780void do_paw_tl1(struct pt_regs *regs)
2781{
2782	exception_enter();
2783	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2784	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2785}
2786
2787void do_vaw(struct pt_regs *regs)
2788{
2789	exception_enter();
2790	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2791}
2792
2793void do_vaw_tl1(struct pt_regs *regs)
2794{
2795	exception_enter();
2796	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2797	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2798}
2799
2800void do_tof_tl1(struct pt_regs *regs)
2801{
2802	exception_enter();
2803	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2804	die_if_kernel("TL1: Tag Overflow Exception", regs);
2805}
2806
2807void do_getpsr(struct pt_regs *regs)
2808{
2809	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2810	regs->tpc   = regs->tnpc;
2811	regs->tnpc += 4;
2812	if (test_thread_flag(TIF_32BIT)) {
2813		regs->tpc &= 0xffffffff;
2814		regs->tnpc &= 0xffffffff;
2815	}
2816}
2817
2818u64 cpu_mondo_counter[NR_CPUS] = {0};
2819struct trap_per_cpu trap_block[NR_CPUS];
2820EXPORT_SYMBOL(trap_block);
2821
2822/* This can get invoked before sched_init() so play it super safe
2823 * and use hard_smp_processor_id().
2824 */
2825void notrace init_cur_cpu_trap(struct thread_info *t)
2826{
2827	int cpu = hard_smp_processor_id();
2828	struct trap_per_cpu *p = &trap_block[cpu];
2829
2830	p->thread = t;
2831	p->pgd_paddr = 0;
2832}
2833
2834extern void thread_info_offsets_are_bolixed_dave(void);
2835extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2836extern void tsb_config_offsets_are_bolixed_dave(void);
2837
2838/* Only invoked on boot processor. */
2839void __init trap_init(void)
2840{
2841	/* Compile time sanity check. */
2842	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2843		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2844		     TI_CPU != offsetof(struct thread_info, cpu) ||
2845		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2846		     TI_KSP != offsetof(struct thread_info, ksp) ||
2847		     TI_FAULT_ADDR != offsetof(struct thread_info,
2848					       fault_address) ||
2849		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2850		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2851		     TI_REG_WINDOW != offsetof(struct thread_info,
2852					       reg_window) ||
2853		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2854					       rwbuf_stkptrs) ||
2855		     TI_GSR != offsetof(struct thread_info, gsr) ||
2856		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2857		     TI_PRE_COUNT != offsetof(struct thread_info,
2858					      preempt_count) ||
2859		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2860		     TI_KUNA_REGS != offsetof(struct thread_info,
2861					      kern_una_regs) ||
2862		     TI_KUNA_INSN != offsetof(struct thread_info,
2863					      kern_una_insn) ||
2864		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2865		     (TI_FPREGS & (64 - 1)));
2866
2867	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2868						     thread) ||
2869		     (TRAP_PER_CPU_PGD_PADDR !=
2870		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2871		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2872		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2873		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2874		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2875		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2876		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2877		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2878		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2879		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2880		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2881		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2882		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2883		     (TRAP_PER_CPU_FAULT_INFO !=
2884		      offsetof(struct trap_per_cpu, fault_info)) ||
2885		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2886		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2887		     (TRAP_PER_CPU_CPU_LIST_PA !=
2888		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2889		     (TRAP_PER_CPU_TSB_HUGE !=
2890		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2891		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2892		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2893		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2894		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2895		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2896		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2897		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2898		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2899		     (TRAP_PER_CPU_RESUM_QMASK !=
2900		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2901		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2902		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2903		     (TRAP_PER_CPU_PER_CPU_BASE !=
2904		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2905
2906	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2907		      offsetof(struct tsb_config, tsb)) ||
2908		     (TSB_CONFIG_RSS_LIMIT !=
2909		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2910		     (TSB_CONFIG_NENTRIES !=
2911		      offsetof(struct tsb_config, tsb_nentries)) ||
2912		     (TSB_CONFIG_REG_VAL !=
2913		      offsetof(struct tsb_config, tsb_reg_val)) ||
2914		     (TSB_CONFIG_MAP_VADDR !=
2915		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2916		     (TSB_CONFIG_MAP_PTE !=
2917		      offsetof(struct tsb_config, tsb_map_pte)));
2918
2919	/* Attach to the address space of init_task.  On SMP we
2920	 * do this in smp.c:smp_callin for other cpus.
2921	 */
2922	mmgrab(&init_mm);
2923	current->active_mm = &init_mm;
2924}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/extable.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/debug.h>
  16#include <linux/linkage.h>
  17#include <linux/kernel.h>
  18#include <linux/signal.h>
  19#include <linux/smp.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/kallsyms.h>
  23#include <linux/kdebug.h>
  24#include <linux/ftrace.h>
  25#include <linux/reboot.h>
  26#include <linux/gfp.h>
  27#include <linux/context_tracking.h>
  28
  29#include <asm/smp.h>
  30#include <asm/delay.h>
  31#include <asm/ptrace.h>
  32#include <asm/oplib.h>
  33#include <asm/page.h>
  34#include <asm/unistd.h>
  35#include <linux/uaccess.h>
  36#include <asm/fpumacro.h>
  37#include <asm/lsu.h>
  38#include <asm/dcu.h>
  39#include <asm/estate.h>
  40#include <asm/chafsr.h>
  41#include <asm/sfafsr.h>
  42#include <asm/psrcompat.h>
  43#include <asm/processor.h>
  44#include <asm/timer.h>
  45#include <asm/head.h>
  46#include <asm/prom.h>
  47#include <asm/memctrl.h>
  48#include <asm/cacheflush.h>
  49#include <asm/setup.h>
  50
  51#include "entry.h"
  52#include "kernel.h"
  53#include "kstack.h"
  54
  55/* When an irrecoverable trap occurs at tl > 0, the trap entry
  56 * code logs the trap state registers at every level in the trap
  57 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  58 * is as follows:
  59 */
  60struct tl1_traplog {
  61	struct {
  62		unsigned long tstate;
  63		unsigned long tpc;
  64		unsigned long tnpc;
  65		unsigned long tt;
  66	} trapstack[4];
  67	unsigned long tl;
  68};
  69
  70static void dump_tl1_traplog(struct tl1_traplog *p)
  71{
  72	int i, limit;
  73
  74	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  75	       "dumping track stack.\n", p->tl);
  76
  77	limit = (tlb_type == hypervisor) ? 2 : 4;
  78	for (i = 0; i < limit; i++) {
  79		printk(KERN_EMERG
  80		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  81		       "TNPC[%016lx] TT[%lx]\n",
  82		       i + 1,
  83		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  84		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  85		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  86	}
  87}
  88
  89void bad_trap(struct pt_regs *regs, long lvl)
  90{
  91	char buffer[36];
  92
  93	if (notify_die(DIE_TRAP, "bad trap", regs,
  94		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  95		return;
  96
  97	if (lvl < 0x100) {
  98		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  99		die_if_kernel(buffer, regs);
 100	}
 101
 102	lvl -= 0x100;
 103	if (regs->tstate & TSTATE_PRIV) {
 104		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 105		die_if_kernel(buffer, regs);
 106	}
 107	if (test_thread_flag(TIF_32BIT)) {
 108		regs->tpc &= 0xffffffff;
 109		regs->tnpc &= 0xffffffff;
 110	}
 111	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
 112			       (void __user *)regs->tpc, lvl);
 113}
 114
 115void bad_trap_tl1(struct pt_regs *regs, long lvl)
 116{
 117	char buffer[36];
 118	
 119	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 120		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 121		return;
 122
 123	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 124
 125	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 126	die_if_kernel (buffer, regs);
 127}
 128
 129#ifdef CONFIG_DEBUG_BUGVERBOSE
 130void do_BUG(const char *file, int line)
 131{
 132	bust_spinlocks(1);
 133	printk("kernel BUG at %s:%d!\n", file, line);
 134}
 135EXPORT_SYMBOL(do_BUG);
 136#endif
 137
 138static DEFINE_SPINLOCK(dimm_handler_lock);
 139static dimm_printer_t dimm_handler;
 140
 141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 142{
 143	unsigned long flags;
 144	int ret = -ENODEV;
 145
 146	spin_lock_irqsave(&dimm_handler_lock, flags);
 147	if (dimm_handler) {
 148		ret = dimm_handler(synd_code, paddr, buf, buflen);
 149	} else if (tlb_type == spitfire) {
 150		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 151			ret = -EINVAL;
 152		else
 153			ret = 0;
 154	} else
 155		ret = -ENODEV;
 156	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 157
 158	return ret;
 159}
 160
 161int register_dimm_printer(dimm_printer_t func)
 162{
 163	unsigned long flags;
 164	int ret = 0;
 165
 166	spin_lock_irqsave(&dimm_handler_lock, flags);
 167	if (!dimm_handler)
 168		dimm_handler = func;
 169	else
 170		ret = -EEXIST;
 171	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 172
 173	return ret;
 174}
 175EXPORT_SYMBOL_GPL(register_dimm_printer);
 176
 177void unregister_dimm_printer(dimm_printer_t func)
 178{
 179	unsigned long flags;
 180
 181	spin_lock_irqsave(&dimm_handler_lock, flags);
 182	if (dimm_handler == func)
 183		dimm_handler = NULL;
 184	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 185}
 186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 187
 188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 189{
 190	enum ctx_state prev_state = exception_enter();
 191
 192	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 193		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 194		goto out;
 195
 196	if (regs->tstate & TSTATE_PRIV) {
 197		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 198		       "SFAR[%016lx], going.\n", sfsr, sfar);
 199		die_if_kernel("Iax", regs);
 200	}
 201	if (test_thread_flag(TIF_32BIT)) {
 202		regs->tpc &= 0xffffffff;
 203		regs->tnpc &= 0xffffffff;
 204	}
 205	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253static bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf6) == ASI_PNF) {
 279			if (insn & 0x200000)        /* op3[2], stores   */
 280				return false;
 281			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
 282				handle_ldf_stq(insn, regs);
 283			else
 284				handle_ld_nf(insn, regs);
 285			return true;
 286		}
 287	}
 288	return false;
 289}
 290
 291void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 292{
 293	enum ctx_state prev_state = exception_enter();
 294
 295	if (notify_die(DIE_TRAP, "data access exception", regs,
 296		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 297		goto out;
 298
 299	if (regs->tstate & TSTATE_PRIV) {
 300		/* Test if this comes from uaccess places. */
 301		const struct exception_table_entry *entry;
 302
 303		entry = search_exception_tables(regs->tpc);
 304		if (entry) {
 305			/* Ouch, somebody is trying VM hole tricks on us... */
 306#ifdef DEBUG_EXCEPTIONS
 307			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 308			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 309			       regs->tpc, entry->fixup);
 310#endif
 311			regs->tpc = entry->fixup;
 312			regs->tnpc = regs->tpc + 4;
 313			goto out;
 314		}
 315		/* Shit... */
 316		printk("spitfire_data_access_exception: SFSR[%016lx] "
 317		       "SFAR[%016lx], going.\n", sfsr, sfar);
 318		die_if_kernel("Dax", regs);
 319	}
 320
 321	if (is_no_fault_exception(regs))
 322		return;
 323
 324	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
 325out:
 326	exception_exit(prev_state);
 327}
 328
 329void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 330{
 331	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 332		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 333		return;
 334
 335	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 336	spitfire_data_access_exception(regs, sfsr, sfar);
 337}
 338
 339void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 340{
 341	unsigned short type = (type_ctx >> 16);
 342	unsigned short ctx  = (type_ctx & 0xffff);
 343
 344	if (notify_die(DIE_TRAP, "data access exception", regs,
 345		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 346		return;
 347
 348	if (regs->tstate & TSTATE_PRIV) {
 349		/* Test if this comes from uaccess places. */
 350		const struct exception_table_entry *entry;
 351
 352		entry = search_exception_tables(regs->tpc);
 353		if (entry) {
 354			/* Ouch, somebody is trying VM hole tricks on us... */
 355#ifdef DEBUG_EXCEPTIONS
 356			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 357			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 358			       regs->tpc, entry->fixup);
 359#endif
 360			regs->tpc = entry->fixup;
 361			regs->tnpc = regs->tpc + 4;
 362			return;
 363		}
 364		printk("sun4v_data_access_exception: ADDR[%016lx] "
 365		       "CTX[%04x] TYPE[%04x], going.\n",
 366		       addr, ctx, type);
 367		die_if_kernel("Dax", regs);
 368	}
 369
 370	if (test_thread_flag(TIF_32BIT)) {
 371		regs->tpc &= 0xffffffff;
 372		regs->tnpc &= 0xffffffff;
 373	}
 374	if (is_no_fault_exception(regs))
 375		return;
 376
 377	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 378	 * is vectored thorugh data access exception trap with fault type
 379	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 380	 * Accessing an address with invalid ASI for the address, for
 381	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 382	 * when TTE.mcd is not set for the VA, is also vectored into
 383	 * kerbel by HV as data access exception with fault type set to
 384	 * HV_FAULT_TYPE_INV_ASI.
 385	 */
 386	switch (type) {
 387	case HV_FAULT_TYPE_INV_ASI:
 388		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
 389		break;
 390	case HV_FAULT_TYPE_MCD_DIS:
 391		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
 392		break;
 393	default:
 394		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
 395		break;
 396	}
 397}
 398
 399void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 400{
 401	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 402		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 403		return;
 404
 405	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 406	sun4v_data_access_exception(regs, addr, type_ctx);
 407}
 408
 409#ifdef CONFIG_PCI
 410#include "pci_impl.h"
 411#endif
 412
 413/* When access exceptions happen, we must do this. */
 414static void spitfire_clean_and_reenable_l1_caches(void)
 415{
 416	unsigned long va;
 417
 418	if (tlb_type != spitfire)
 419		BUG();
 420
 421	/* Clean 'em. */
 422	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 423		spitfire_put_icache_tag(va, 0x0);
 424		spitfire_put_dcache_tag(va, 0x0);
 425	}
 426
 427	/* Re-enable in LSU. */
 428	__asm__ __volatile__("flush %%g6\n\t"
 429			     "membar #Sync\n\t"
 430			     "stxa %0, [%%g0] %1\n\t"
 431			     "membar #Sync"
 432			     : /* no outputs */
 433			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 434				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 435			     "i" (ASI_LSU_CONTROL)
 436			     : "memory");
 437}
 438
 439static void spitfire_enable_estate_errors(void)
 440{
 441	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 442			     "membar	#Sync"
 443			     : /* no outputs */
 444			     : "r" (ESTATE_ERR_ALL),
 445			       "i" (ASI_ESTATE_ERROR_EN));
 446}
 447
 448static char ecc_syndrome_table[] = {
 449	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 450	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 451	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 452	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 453	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 454	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 455	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 456	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 457	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 458	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 459	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 460	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 461	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 462	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 463	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 464	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 465	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 466	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 467	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 468	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 469	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 470	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 471	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 472	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 473	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 474	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 475	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 476	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 477	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 478	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 479	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 480	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 481};
 482
 483static char *syndrome_unknown = "<Unknown>";
 484
 485static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 486{
 487	unsigned short scode;
 488	char memmod_str[64], *p;
 489
 490	if (udbl & bit) {
 491		scode = ecc_syndrome_table[udbl & 0xff];
 492		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 493			p = syndrome_unknown;
 494		else
 495			p = memmod_str;
 496		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 497		       "Memory Module \"%s\"\n",
 498		       smp_processor_id(), scode, p);
 499	}
 500
 501	if (udbh & bit) {
 502		scode = ecc_syndrome_table[udbh & 0xff];
 503		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 504			p = syndrome_unknown;
 505		else
 506			p = memmod_str;
 507		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 508		       "Memory Module \"%s\"\n",
 509		       smp_processor_id(), scode, p);
 510	}
 511
 512}
 513
 514static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 515{
 516
 517	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 518	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 519	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 520
 521	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 522
 523	/* We always log it, even if someone is listening for this
 524	 * trap.
 525	 */
 526	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 527		   0, TRAP_TYPE_CEE, SIGTRAP);
 528
 529	/* The Correctable ECC Error trap does not disable I/D caches.  So
 530	 * we only have to restore the ESTATE Error Enable register.
 531	 */
 532	spitfire_enable_estate_errors();
 533}
 534
 535static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 536{
 537	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 538	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 539	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 540
 541	/* XXX add more human friendly logging of the error status
 542	 * XXX as is implemented for cheetah
 543	 */
 544
 545	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 546
 547	/* We always log it, even if someone is listening for this
 548	 * trap.
 549	 */
 550	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 551		   0, tt, SIGTRAP);
 552
 553	if (regs->tstate & TSTATE_PRIV) {
 554		if (tl1)
 555			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 556		die_if_kernel("UE", regs);
 557	}
 558
 559	/* XXX need more intelligent processing here, such as is implemented
 560	 * XXX for cheetah errors, in fact if the E-cache still holds the
 561	 * XXX line with bad parity this will loop
 562	 */
 563
 564	spitfire_clean_and_reenable_l1_caches();
 565	spitfire_enable_estate_errors();
 566
 567	if (test_thread_flag(TIF_32BIT)) {
 568		regs->tpc &= 0xffffffff;
 569		regs->tnpc &= 0xffffffff;
 570	}
 571	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
 572}
 573
 574void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 575{
 576	unsigned long afsr, tt, udbh, udbl;
 577	int tl1;
 578
 579	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 580	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 581	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 582	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 583	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 584
 585#ifdef CONFIG_PCI
 586	if (tt == TRAP_TYPE_DAE &&
 587	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 588		spitfire_clean_and_reenable_l1_caches();
 589		spitfire_enable_estate_errors();
 590
 591		pci_poke_faulted = 1;
 592		regs->tnpc = regs->tpc + 4;
 593		return;
 594	}
 595#endif
 596
 597	if (afsr & SFAFSR_UE)
 598		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 599
 600	if (tt == TRAP_TYPE_CEE) {
 601		/* Handle the case where we took a CEE trap, but ACK'd
 602		 * only the UE state in the UDB error registers.
 603		 */
 604		if (afsr & SFAFSR_UE) {
 605			if (udbh & UDBE_CE) {
 606				__asm__ __volatile__(
 607					"stxa	%0, [%1] %2\n\t"
 608					"membar	#Sync"
 609					: /* no outputs */
 610					: "r" (udbh & UDBE_CE),
 611					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 612			}
 613			if (udbl & UDBE_CE) {
 614				__asm__ __volatile__(
 615					"stxa	%0, [%1] %2\n\t"
 616					"membar	#Sync"
 617					: /* no outputs */
 618					: "r" (udbl & UDBE_CE),
 619					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 620			}
 621		}
 622
 623		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 624	}
 625}
 626
 627int cheetah_pcache_forced_on;
 628
 629void cheetah_enable_pcache(void)
 630{
 631	unsigned long dcr;
 632
 633	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 634	       smp_processor_id());
 635
 636	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 637			     : "=r" (dcr)
 638			     : "i" (ASI_DCU_CONTROL_REG));
 639	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 640	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 641			     "membar #Sync"
 642			     : /* no outputs */
 643			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 644}
 645
 646/* Cheetah error trap handling. */
 647static unsigned long ecache_flush_physbase;
 648static unsigned long ecache_flush_linesize;
 649static unsigned long ecache_flush_size;
 650
 651/* This table is ordered in priority of errors and matches the
 652 * AFAR overwrite policy as well.
 653 */
 654
 655struct afsr_error_table {
 656	unsigned long mask;
 657	const char *name;
 658};
 659
 660static const char CHAFSR_PERR_msg[] =
 661	"System interface protocol error";
 662static const char CHAFSR_IERR_msg[] =
 663	"Internal processor error";
 664static const char CHAFSR_ISAP_msg[] =
 665	"System request parity error on incoming address";
 666static const char CHAFSR_UCU_msg[] =
 667	"Uncorrectable E-cache ECC error for ifetch/data";
 668static const char CHAFSR_UCC_msg[] =
 669	"SW Correctable E-cache ECC error for ifetch/data";
 670static const char CHAFSR_UE_msg[] =
 671	"Uncorrectable system bus data ECC error for read";
 672static const char CHAFSR_EDU_msg[] =
 673	"Uncorrectable E-cache ECC error for stmerge/blkld";
 674static const char CHAFSR_EMU_msg[] =
 675	"Uncorrectable system bus MTAG error";
 676static const char CHAFSR_WDU_msg[] =
 677	"Uncorrectable E-cache ECC error for writeback";
 678static const char CHAFSR_CPU_msg[] =
 679	"Uncorrectable ECC error for copyout";
 680static const char CHAFSR_CE_msg[] =
 681	"HW corrected system bus data ECC error for read";
 682static const char CHAFSR_EDC_msg[] =
 683	"HW corrected E-cache ECC error for stmerge/blkld";
 684static const char CHAFSR_EMC_msg[] =
 685	"HW corrected system bus MTAG ECC error";
 686static const char CHAFSR_WDC_msg[] =
 687	"HW corrected E-cache ECC error for writeback";
 688static const char CHAFSR_CPC_msg[] =
 689	"HW corrected ECC error for copyout";
 690static const char CHAFSR_TO_msg[] =
 691	"Unmapped error from system bus";
 692static const char CHAFSR_BERR_msg[] =
 693	"Bus error response from system bus";
 694static const char CHAFSR_IVC_msg[] =
 695	"HW corrected system bus data ECC error for ivec read";
 696static const char CHAFSR_IVU_msg[] =
 697	"Uncorrectable system bus data ECC error for ivec read";
 698static struct afsr_error_table __cheetah_error_table[] = {
 699	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 700	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 701	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 702	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 703	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 704	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 705	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 706	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 707	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 708	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 709	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 710	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 711	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 712	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 713	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 714	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 715	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 716	/* These two do not update the AFAR. */
 717	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 718	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 719	{	0,		NULL			},
 720};
 721static const char CHPAFSR_DTO_msg[] =
 722	"System bus unmapped error for prefetch/storequeue-read";
 723static const char CHPAFSR_DBERR_msg[] =
 724	"System bus error for prefetch/storequeue-read";
 725static const char CHPAFSR_THCE_msg[] =
 726	"Hardware corrected E-cache Tag ECC error";
 727static const char CHPAFSR_TSCE_msg[] =
 728	"SW handled correctable E-cache Tag ECC error";
 729static const char CHPAFSR_TUE_msg[] =
 730	"Uncorrectable E-cache Tag ECC error";
 731static const char CHPAFSR_DUE_msg[] =
 732	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 733static struct afsr_error_table __cheetah_plus_error_table[] = {
 734	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 735	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 736	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 737	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 738	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 739	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 740	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 741	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 742	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 743	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 744	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 745	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 746	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 747	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 748	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 749	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 750	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 751	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 752	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 753	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 754	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 755	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 756	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 757	/* These two do not update the AFAR. */
 758	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 759	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 760	{	0,		NULL			},
 761};
 762static const char JPAFSR_JETO_msg[] =
 763	"System interface protocol error, hw timeout caused";
 764static const char JPAFSR_SCE_msg[] =
 765	"Parity error on system snoop results";
 766static const char JPAFSR_JEIC_msg[] =
 767	"System interface protocol error, illegal command detected";
 768static const char JPAFSR_JEIT_msg[] =
 769	"System interface protocol error, illegal ADTYPE detected";
 770static const char JPAFSR_OM_msg[] =
 771	"Out of range memory error has occurred";
 772static const char JPAFSR_ETP_msg[] =
 773	"Parity error on L2 cache tag SRAM";
 774static const char JPAFSR_UMS_msg[] =
 775	"Error due to unsupported store";
 776static const char JPAFSR_RUE_msg[] =
 777	"Uncorrectable ECC error from remote cache/memory";
 778static const char JPAFSR_RCE_msg[] =
 779	"Correctable ECC error from remote cache/memory";
 780static const char JPAFSR_BP_msg[] =
 781	"JBUS parity error on returned read data";
 782static const char JPAFSR_WBP_msg[] =
 783	"JBUS parity error on data for writeback or block store";
 784static const char JPAFSR_FRC_msg[] =
 785	"Foreign read to DRAM incurring correctable ECC error";
 786static const char JPAFSR_FRU_msg[] =
 787	"Foreign read to DRAM incurring uncorrectable ECC error";
 788static struct afsr_error_table __jalapeno_error_table[] = {
 789	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 790	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 791	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 792	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 793	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 794	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 795	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 796	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 797	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 798	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 799	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 800	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 801	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 802	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 803	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 804	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 805	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 806	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 807	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 808	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 809	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 810	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 811	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 812	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 813	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 814	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 815	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 816	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 817	/* These two do not update the AFAR. */
 818	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 819	{	0,		NULL			},
 820};
 821static struct afsr_error_table *cheetah_error_table;
 822static unsigned long cheetah_afsr_errors;
 823
 824struct cheetah_err_info *cheetah_error_log;
 825
 826static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 827{
 828	struct cheetah_err_info *p;
 829	int cpu = smp_processor_id();
 830
 831	if (!cheetah_error_log)
 832		return NULL;
 833
 834	p = cheetah_error_log + (cpu * 2);
 835	if ((afsr & CHAFSR_TL1) != 0UL)
 836		p++;
 837
 838	return p;
 839}
 840
 841extern unsigned int tl0_icpe[], tl1_icpe[];
 842extern unsigned int tl0_dcpe[], tl1_dcpe[];
 843extern unsigned int tl0_fecc[], tl1_fecc[];
 844extern unsigned int tl0_cee[], tl1_cee[];
 845extern unsigned int tl0_iae[], tl1_iae[];
 846extern unsigned int tl0_dae[], tl1_dae[];
 847extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 848extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 849extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 850extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 851extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 852
 853void __init cheetah_ecache_flush_init(void)
 854{
 855	unsigned long largest_size, smallest_linesize, order, ver;
 856	int i, sz;
 857
 858	/* Scan all cpu device tree nodes, note two values:
 859	 * 1) largest E-cache size
 860	 * 2) smallest E-cache line size
 861	 */
 862	largest_size = 0UL;
 863	smallest_linesize = ~0UL;
 864
 865	for (i = 0; i < NR_CPUS; i++) {
 866		unsigned long val;
 867
 868		val = cpu_data(i).ecache_size;
 869		if (!val)
 870			continue;
 871
 872		if (val > largest_size)
 873			largest_size = val;
 874
 875		val = cpu_data(i).ecache_line_size;
 876		if (val < smallest_linesize)
 877			smallest_linesize = val;
 878
 879	}
 880
 881	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 882		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 883			    "parameters.\n");
 884		prom_halt();
 885	}
 886
 887	ecache_flush_size = (2 * largest_size);
 888	ecache_flush_linesize = smallest_linesize;
 889
 890	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 891
 892	if (ecache_flush_physbase == ~0UL) {
 893		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 894			    "contiguous physical memory.\n",
 895			    ecache_flush_size);
 896		prom_halt();
 897	}
 898
 899	/* Now allocate error trap reporting scoreboard. */
 900	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 901	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 902		if ((PAGE_SIZE << order) >= sz)
 903			break;
 904	}
 905	cheetah_error_log = (struct cheetah_err_info *)
 906		__get_free_pages(GFP_KERNEL, order);
 907	if (!cheetah_error_log) {
 908		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 909			    "error logging scoreboard (%d bytes).\n", sz);
 910		prom_halt();
 911	}
 912	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 913
 914	/* Mark all AFSRs as invalid so that the trap handler will
 915	 * log new new information there.
 916	 */
 917	for (i = 0; i < 2 * NR_CPUS; i++)
 918		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 919
 920	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 921	if ((ver >> 32) == __JALAPENO_ID ||
 922	    (ver >> 32) == __SERRANO_ID) {
 923		cheetah_error_table = &__jalapeno_error_table[0];
 924		cheetah_afsr_errors = JPAFSR_ERRORS;
 925	} else if ((ver >> 32) == 0x003e0015) {
 926		cheetah_error_table = &__cheetah_plus_error_table[0];
 927		cheetah_afsr_errors = CHPAFSR_ERRORS;
 928	} else {
 929		cheetah_error_table = &__cheetah_error_table[0];
 930		cheetah_afsr_errors = CHAFSR_ERRORS;
 931	}
 932
 933	/* Now patch trap tables. */
 934	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 935	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 936	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 937	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 938	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 939	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 940	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 941	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 942	if (tlb_type == cheetah_plus) {
 943		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 944		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 945		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 946		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 947	}
 948	flushi(PAGE_OFFSET);
 949}
 950
 951static void cheetah_flush_ecache(void)
 952{
 953	unsigned long flush_base = ecache_flush_physbase;
 954	unsigned long flush_linesize = ecache_flush_linesize;
 955	unsigned long flush_size = ecache_flush_size;
 956
 957	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 958			     "   bne,pt	%%xcc, 1b\n\t"
 959			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 960			     : "=&r" (flush_size)
 961			     : "0" (flush_size), "r" (flush_base),
 962			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 963}
 964
 965static void cheetah_flush_ecache_line(unsigned long physaddr)
 966{
 967	unsigned long alias;
 968
 969	physaddr &= ~(8UL - 1UL);
 970	physaddr = (ecache_flush_physbase +
 971		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 972	alias = physaddr + (ecache_flush_size >> 1UL);
 973	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 974			     "ldxa [%1] %2, %%g0\n\t"
 975			     "membar #Sync"
 976			     : /* no outputs */
 977			     : "r" (physaddr), "r" (alias),
 978			       "i" (ASI_PHYS_USE_EC));
 979}
 980
 981/* Unfortunately, the diagnostic access to the I-cache tags we need to
 982 * use to clear the thing interferes with I-cache coherency transactions.
 983 *
 984 * So we must only flush the I-cache when it is disabled.
 985 */
 986static void __cheetah_flush_icache(void)
 987{
 988	unsigned int icache_size, icache_line_size;
 989	unsigned long addr;
 990
 991	icache_size = local_cpu_data().icache_size;
 992	icache_line_size = local_cpu_data().icache_line_size;
 993
 994	/* Clear the valid bits in all the tags. */
 995	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 996		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 997				     "membar #Sync"
 998				     : /* no outputs */
 999				     : "r" (addr | (2 << 3)),
1000				       "i" (ASI_IC_TAG));
1001	}
1002}
1003
1004static void cheetah_flush_icache(void)
1005{
1006	unsigned long dcu_save;
1007
1008	/* Save current DCU, disable I-cache. */
1009	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010			     "or %0, %2, %%g1\n\t"
1011			     "stxa %%g1, [%%g0] %1\n\t"
1012			     "membar #Sync"
1013			     : "=r" (dcu_save)
1014			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015			     : "g1");
1016
1017	__cheetah_flush_icache();
1018
1019	/* Restore DCU register */
1020	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021			     "membar #Sync"
1022			     : /* no outputs */
1023			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024}
1025
1026static void cheetah_flush_dcache(void)
1027{
1028	unsigned int dcache_size, dcache_line_size;
1029	unsigned long addr;
1030
1031	dcache_size = local_cpu_data().dcache_size;
1032	dcache_line_size = local_cpu_data().dcache_line_size;
1033
1034	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036				     "membar #Sync"
1037				     : /* no outputs */
1038				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1039	}
1040}
1041
1042/* In order to make the even parity correct we must do two things.
1043 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044 * Next, we clear out all 32-bytes of data for that line.  Data of
1045 * all-zero + tag parity value of zero == correct parity.
1046 */
1047static void cheetah_plus_zap_dcache_parity(void)
1048{
1049	unsigned int dcache_size, dcache_line_size;
1050	unsigned long addr;
1051
1052	dcache_size = local_cpu_data().dcache_size;
1053	dcache_line_size = local_cpu_data().dcache_line_size;
1054
1055	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056		unsigned long tag = (addr >> 14);
1057		unsigned long line;
1058
1059		__asm__ __volatile__("membar	#Sync\n\t"
1060				     "stxa	%0, [%1] %2\n\t"
1061				     "membar	#Sync"
1062				     : /* no outputs */
1063				     : "r" (tag), "r" (addr),
1064				       "i" (ASI_DCACHE_UTAG));
1065		for (line = addr; line < addr + dcache_line_size; line += 8)
1066			__asm__ __volatile__("membar	#Sync\n\t"
1067					     "stxa	%%g0, [%0] %1\n\t"
1068					     "membar	#Sync"
1069					     : /* no outputs */
1070					     : "r" (line),
1071					       "i" (ASI_DCACHE_DATA));
1072	}
1073}
1074
1075/* Conversion tables used to frob Cheetah AFSR syndrome values into
1076 * something palatable to the memory controller driver get_unumber
1077 * routine.
1078 */
1079#define MT0	137
1080#define MT1	138
1081#define MT2	139
1082#define NONE	254
1083#define MTC0	140
1084#define MTC1	141
1085#define MTC2	142
1086#define MTC3	143
1087#define C0	128
1088#define C1	129
1089#define C2	130
1090#define C3	131
1091#define C4	132
1092#define C5	133
1093#define C6	134
1094#define C7	135
1095#define C8	136
1096#define M2	144
1097#define M3	145
1098#define M4	146
1099#define M	147
1100static unsigned char cheetah_ecc_syntab[] = {
1101/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133};
1134static unsigned char cheetah_mtag_syntab[] = {
1135       NONE, MTC0,
1136       MTC1, NONE,
1137       MTC2, NONE,
1138       NONE, MT0,
1139       MTC3, NONE,
1140       NONE, MT1,
1141       NONE, MT2,
1142       NONE, NONE
1143};
1144
1145/* Return the highest priority error conditon mentioned. */
1146static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147{
1148	unsigned long tmp = 0;
1149	int i;
1150
1151	for (i = 0; cheetah_error_table[i].mask; i++) {
1152		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153			return tmp;
1154	}
1155	return tmp;
1156}
1157
1158static const char *cheetah_get_string(unsigned long bit)
1159{
1160	int i;
1161
1162	for (i = 0; cheetah_error_table[i].mask; i++) {
1163		if ((bit & cheetah_error_table[i].mask) != 0UL)
1164			return cheetah_error_table[i].name;
1165	}
1166	return "???";
1167}
1168
1169static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170			       unsigned long afsr, unsigned long afar, int recoverable)
1171{
1172	unsigned long hipri;
1173	char unum[256];
1174
1175	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177	       afsr, afar,
1178	       (afsr & CHAFSR_TL1) ? 1 : 0);
1179	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182	printk("%s" "ERROR(%d): ",
1183	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184	printk("TPC<%pS>\n", (void *) regs->tpc);
1185	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191	hipri = cheetah_get_hipri(afsr);
1192	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194	       hipri, cheetah_get_string(hipri));
1195
1196	/* Try to get unumber if relevant. */
1197#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1198			 CHAFSR_CPC | CHAFSR_CPU | \
1199			 CHAFSR_UE  | CHAFSR_CE  | \
1200			 CHAFSR_EDC | CHAFSR_EDU  | \
1201			 CHAFSR_UCC | CHAFSR_UCU  | \
1202			 CHAFSR_WDU | CHAFSR_WDC)
1203#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1204	if (afsr & ESYND_ERRORS) {
1205		int syndrome;
1206		int ret;
1207
1208		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209		syndrome = cheetah_ecc_syntab[syndrome];
1210		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211		if (ret != -1)
1212			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213			       (recoverable ? KERN_WARNING : KERN_CRIT),
1214			       smp_processor_id(), unum);
1215	} else if (afsr & MSYND_ERRORS) {
1216		int syndrome;
1217		int ret;
1218
1219		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220		syndrome = cheetah_mtag_syntab[syndrome];
1221		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222		if (ret != -1)
1223			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224			       (recoverable ? KERN_WARNING : KERN_CRIT),
1225			       smp_processor_id(), unum);
1226	}
1227
1228	/* Now dump the cache snapshots. */
1229	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231	       (int) info->dcache_index,
1232	       info->dcache_tag,
1233	       info->dcache_utag,
1234	       info->dcache_stag);
1235	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237	       info->dcache_data[0],
1238	       info->dcache_data[1],
1239	       info->dcache_data[2],
1240	       info->dcache_data[3]);
1241	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242	       "u[%016llx] l[%016llx]\n",
1243	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244	       (int) info->icache_index,
1245	       info->icache_tag,
1246	       info->icache_utag,
1247	       info->icache_stag,
1248	       info->icache_upper,
1249	       info->icache_lower);
1250	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252	       info->icache_data[0],
1253	       info->icache_data[1],
1254	       info->icache_data[2],
1255	       info->icache_data[3]);
1256	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258	       info->icache_data[4],
1259	       info->icache_data[5],
1260	       info->icache_data[6],
1261	       info->icache_data[7]);
1262	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264	       (int) info->ecache_index, info->ecache_tag);
1265	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267	       info->ecache_data[0],
1268	       info->ecache_data[1],
1269	       info->ecache_data[2],
1270	       info->ecache_data[3]);
1271
1272	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273	while (afsr != 0UL) {
1274		unsigned long bit = cheetah_get_hipri(afsr);
1275
1276		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277		       (recoverable ? KERN_WARNING : KERN_CRIT),
1278		       bit, cheetah_get_string(bit));
1279
1280		afsr &= ~bit;
1281	}
1282
1283	if (!recoverable)
1284		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285}
1286
1287static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288{
1289	unsigned long afsr, afar;
1290	int ret = 0;
1291
1292	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293			     : "=r" (afsr)
1294			     : "i" (ASI_AFSR));
1295	if ((afsr & cheetah_afsr_errors) != 0) {
1296		if (logp != NULL) {
1297			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298					     : "=r" (afar)
1299					     : "i" (ASI_AFAR));
1300			logp->afsr = afsr;
1301			logp->afar = afar;
1302		}
1303		ret = 1;
1304	}
1305	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306			     "membar #Sync\n\t"
1307			     : : "r" (afsr), "i" (ASI_AFSR));
1308
1309	return ret;
1310}
1311
1312void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313{
1314	struct cheetah_err_info local_snapshot, *p;
1315	int recoverable;
1316
1317	/* Flush E-cache */
1318	cheetah_flush_ecache();
1319
1320	p = cheetah_get_error_log(afsr);
1321	if (!p) {
1322		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323			    afsr, afar);
1324		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326		prom_halt();
1327	}
1328
1329	/* Grab snapshot of logged error. */
1330	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331
1332	/* If the current trap snapshot does not match what the
1333	 * trap handler passed along into our args, big trouble.
1334	 * In such a case, mark the local copy as invalid.
1335	 *
1336	 * Else, it matches and we mark the afsr in the non-local
1337	 * copy as invalid so we may log new error traps there.
1338	 */
1339	if (p->afsr != afsr || p->afar != afar)
1340		local_snapshot.afsr = CHAFSR_INVALID;
1341	else
1342		p->afsr = CHAFSR_INVALID;
1343
1344	cheetah_flush_icache();
1345	cheetah_flush_dcache();
1346
1347	/* Re-enable I-cache/D-cache */
1348	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349			     "or %%g1, %1, %%g1\n\t"
1350			     "stxa %%g1, [%%g0] %0\n\t"
1351			     "membar #Sync"
1352			     : /* no outputs */
1353			     : "i" (ASI_DCU_CONTROL_REG),
1354			       "i" (DCU_DC | DCU_IC)
1355			     : "g1");
1356
1357	/* Re-enable error reporting */
1358	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359			     "or %%g1, %1, %%g1\n\t"
1360			     "stxa %%g1, [%%g0] %0\n\t"
1361			     "membar #Sync"
1362			     : /* no outputs */
1363			     : "i" (ASI_ESTATE_ERROR_EN),
1364			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365			     : "g1");
1366
1367	/* Decide if we can continue after handling this trap and
1368	 * logging the error.
1369	 */
1370	recoverable = 1;
1371	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372		recoverable = 0;
1373
1374	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375	 * error was logged while we had error reporting traps disabled.
1376	 */
1377	if (cheetah_recheck_errors(&local_snapshot)) {
1378		unsigned long new_afsr = local_snapshot.afsr;
1379
1380		/* If we got a new asynchronous error, die... */
1381		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382				CHAFSR_WDU | CHAFSR_CPU |
1383				CHAFSR_IVU | CHAFSR_UE |
1384				CHAFSR_BERR | CHAFSR_TO))
1385			recoverable = 0;
1386	}
1387
1388	/* Log errors. */
1389	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390
1391	if (!recoverable)
1392		panic("Irrecoverable Fast-ECC error trap.\n");
1393
1394	/* Flush E-cache to kick the error trap handlers out. */
1395	cheetah_flush_ecache();
1396}
1397
1398/* Try to fix a correctable error by pushing the line out from
1399 * the E-cache.  Recheck error reporting registers to see if the
1400 * problem is intermittent.
1401 */
1402static int cheetah_fix_ce(unsigned long physaddr)
1403{
1404	unsigned long orig_estate;
1405	unsigned long alias1, alias2;
1406	int ret;
1407
1408	/* Make sure correctable error traps are disabled. */
1409	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1410			     "andn	%0, %1, %%g1\n\t"
1411			     "stxa	%%g1, [%%g0] %2\n\t"
1412			     "membar	#Sync"
1413			     : "=&r" (orig_estate)
1414			     : "i" (ESTATE_ERROR_CEEN),
1415			       "i" (ASI_ESTATE_ERROR_EN)
1416			     : "g1");
1417
1418	/* We calculate alias addresses that will force the
1419	 * cache line in question out of the E-cache.  Then
1420	 * we bring it back in with an atomic instruction so
1421	 * that we get it in some modified/exclusive state,
1422	 * then we displace it again to try and get proper ECC
1423	 * pushed back into the system.
1424	 */
1425	physaddr &= ~(8UL - 1UL);
1426	alias1 = (ecache_flush_physbase +
1427		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1428	alias2 = alias1 + (ecache_flush_size >> 1);
1429	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1430			     "ldxa	[%1] %3, %%g0\n\t"
1431			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1432			     "ldxa	[%0] %3, %%g0\n\t"
1433			     "ldxa	[%1] %3, %%g0\n\t"
1434			     "membar	#Sync"
1435			     : /* no outputs */
1436			     : "r" (alias1), "r" (alias2),
1437			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438
1439	/* Did that trigger another error? */
1440	if (cheetah_recheck_errors(NULL)) {
1441		/* Try one more time. */
1442		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443				     "membar #Sync"
1444				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445		if (cheetah_recheck_errors(NULL))
1446			ret = 2;
1447		else
1448			ret = 1;
1449	} else {
1450		/* No new error, intermittent problem. */
1451		ret = 0;
1452	}
1453
1454	/* Restore error enables. */
1455	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1456			     "membar	#Sync"
1457			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458
1459	return ret;
1460}
1461
1462/* Return non-zero if PADDR is a valid physical memory address. */
1463static int cheetah_check_main_memory(unsigned long paddr)
1464{
1465	unsigned long vaddr = PAGE_OFFSET + paddr;
1466
1467	if (vaddr > (unsigned long) high_memory)
1468		return 0;
1469
1470	return kern_addr_valid(vaddr);
1471}
1472
1473void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474{
1475	struct cheetah_err_info local_snapshot, *p;
1476	int recoverable, is_memory;
1477
1478	p = cheetah_get_error_log(afsr);
1479	if (!p) {
1480		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481			    afsr, afar);
1482		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484		prom_halt();
1485	}
1486
1487	/* Grab snapshot of logged error. */
1488	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489
1490	/* If the current trap snapshot does not match what the
1491	 * trap handler passed along into our args, big trouble.
1492	 * In such a case, mark the local copy as invalid.
1493	 *
1494	 * Else, it matches and we mark the afsr in the non-local
1495	 * copy as invalid so we may log new error traps there.
1496	 */
1497	if (p->afsr != afsr || p->afar != afar)
1498		local_snapshot.afsr = CHAFSR_INVALID;
1499	else
1500		p->afsr = CHAFSR_INVALID;
1501
1502	is_memory = cheetah_check_main_memory(afar);
1503
1504	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505		/* XXX Might want to log the results of this operation
1506		 * XXX somewhere... -DaveM
1507		 */
1508		cheetah_fix_ce(afar);
1509	}
1510
1511	{
1512		int flush_all, flush_line;
1513
1514		flush_all = flush_line = 0;
1515		if ((afsr & CHAFSR_EDC) != 0UL) {
1516			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517				flush_line = 1;
1518			else
1519				flush_all = 1;
1520		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1521			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522				flush_line = 1;
1523			else
1524				flush_all = 1;
1525		}
1526
1527		/* Trap handler only disabled I-cache, flush it. */
1528		cheetah_flush_icache();
1529
1530		/* Re-enable I-cache */
1531		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532				     "or %%g1, %1, %%g1\n\t"
1533				     "stxa %%g1, [%%g0] %0\n\t"
1534				     "membar #Sync"
1535				     : /* no outputs */
1536				     : "i" (ASI_DCU_CONTROL_REG),
1537				     "i" (DCU_IC)
1538				     : "g1");
1539
1540		if (flush_all)
1541			cheetah_flush_ecache();
1542		else if (flush_line)
1543			cheetah_flush_ecache_line(afar);
1544	}
1545
1546	/* Re-enable error reporting */
1547	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548			     "or %%g1, %1, %%g1\n\t"
1549			     "stxa %%g1, [%%g0] %0\n\t"
1550			     "membar #Sync"
1551			     : /* no outputs */
1552			     : "i" (ASI_ESTATE_ERROR_EN),
1553			       "i" (ESTATE_ERROR_CEEN)
1554			     : "g1");
1555
1556	/* Decide if we can continue after handling this trap and
1557	 * logging the error.
1558	 */
1559	recoverable = 1;
1560	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561		recoverable = 0;
1562
1563	/* Re-check AFSR/AFAR */
1564	(void) cheetah_recheck_errors(&local_snapshot);
1565
1566	/* Log errors. */
1567	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568
1569	if (!recoverable)
1570		panic("Irrecoverable Correctable-ECC error trap.\n");
1571}
1572
1573void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574{
1575	struct cheetah_err_info local_snapshot, *p;
1576	int recoverable, is_memory;
1577
1578#ifdef CONFIG_PCI
1579	/* Check for the special PCI poke sequence. */
1580	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581		cheetah_flush_icache();
1582		cheetah_flush_dcache();
1583
1584		/* Re-enable I-cache/D-cache */
1585		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586				     "or %%g1, %1, %%g1\n\t"
1587				     "stxa %%g1, [%%g0] %0\n\t"
1588				     "membar #Sync"
1589				     : /* no outputs */
1590				     : "i" (ASI_DCU_CONTROL_REG),
1591				       "i" (DCU_DC | DCU_IC)
1592				     : "g1");
1593
1594		/* Re-enable error reporting */
1595		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596				     "or %%g1, %1, %%g1\n\t"
1597				     "stxa %%g1, [%%g0] %0\n\t"
1598				     "membar #Sync"
1599				     : /* no outputs */
1600				     : "i" (ASI_ESTATE_ERROR_EN),
1601				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602				     : "g1");
1603
1604		(void) cheetah_recheck_errors(NULL);
1605
1606		pci_poke_faulted = 1;
1607		regs->tpc += 4;
1608		regs->tnpc = regs->tpc + 4;
1609		return;
1610	}
1611#endif
1612
1613	p = cheetah_get_error_log(afsr);
1614	if (!p) {
1615		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616			    afsr, afar);
1617		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619		prom_halt();
1620	}
1621
1622	/* Grab snapshot of logged error. */
1623	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624
1625	/* If the current trap snapshot does not match what the
1626	 * trap handler passed along into our args, big trouble.
1627	 * In such a case, mark the local copy as invalid.
1628	 *
1629	 * Else, it matches and we mark the afsr in the non-local
1630	 * copy as invalid so we may log new error traps there.
1631	 */
1632	if (p->afsr != afsr || p->afar != afar)
1633		local_snapshot.afsr = CHAFSR_INVALID;
1634	else
1635		p->afsr = CHAFSR_INVALID;
1636
1637	is_memory = cheetah_check_main_memory(afar);
1638
1639	{
1640		int flush_all, flush_line;
1641
1642		flush_all = flush_line = 0;
1643		if ((afsr & CHAFSR_EDU) != 0UL) {
1644			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645				flush_line = 1;
1646			else
1647				flush_all = 1;
1648		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1649			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650				flush_line = 1;
1651			else
1652				flush_all = 1;
1653		}
1654
1655		cheetah_flush_icache();
1656		cheetah_flush_dcache();
1657
1658		/* Re-enable I/D caches */
1659		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660				     "or %%g1, %1, %%g1\n\t"
1661				     "stxa %%g1, [%%g0] %0\n\t"
1662				     "membar #Sync"
1663				     : /* no outputs */
1664				     : "i" (ASI_DCU_CONTROL_REG),
1665				     "i" (DCU_IC | DCU_DC)
1666				     : "g1");
1667
1668		if (flush_all)
1669			cheetah_flush_ecache();
1670		else if (flush_line)
1671			cheetah_flush_ecache_line(afar);
1672	}
1673
1674	/* Re-enable error reporting */
1675	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676			     "or %%g1, %1, %%g1\n\t"
1677			     "stxa %%g1, [%%g0] %0\n\t"
1678			     "membar #Sync"
1679			     : /* no outputs */
1680			     : "i" (ASI_ESTATE_ERROR_EN),
1681			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682			     : "g1");
1683
1684	/* Decide if we can continue after handling this trap and
1685	 * logging the error.
1686	 */
1687	recoverable = 1;
1688	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689		recoverable = 0;
1690
1691	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692	 * error was logged while we had error reporting traps disabled.
1693	 */
1694	if (cheetah_recheck_errors(&local_snapshot)) {
1695		unsigned long new_afsr = local_snapshot.afsr;
1696
1697		/* If we got a new asynchronous error, die... */
1698		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699				CHAFSR_WDU | CHAFSR_CPU |
1700				CHAFSR_IVU | CHAFSR_UE |
1701				CHAFSR_BERR | CHAFSR_TO))
1702			recoverable = 0;
1703	}
1704
1705	/* Log errors. */
1706	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707
1708	/* "Recoverable" here means we try to yank the page from ever
1709	 * being newly used again.  This depends upon a few things:
1710	 * 1) Must be main memory, and AFAR must be valid.
1711	 * 2) If we trapped from user, OK.
1712	 * 3) Else, if we trapped from kernel we must find exception
1713	 *    table entry (ie. we have to have been accessing user
1714	 *    space).
1715	 *
1716	 * If AFAR is not in main memory, or we trapped from kernel
1717	 * and cannot find an exception table entry, it is unacceptable
1718	 * to try and continue.
1719	 */
1720	if (recoverable && is_memory) {
1721		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722			/* OK, usermode access. */
1723			recoverable = 1;
1724		} else {
1725			const struct exception_table_entry *entry;
1726
1727			entry = search_exception_tables(regs->tpc);
1728			if (entry) {
1729				/* OK, kernel access to userspace. */
1730				recoverable = 1;
1731
1732			} else {
1733				/* BAD, privileged state is corrupted. */
1734				recoverable = 0;
1735			}
1736
1737			if (recoverable) {
1738				if (pfn_valid(afar >> PAGE_SHIFT))
1739					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740				else
1741					recoverable = 0;
1742
1743				/* Only perform fixup if we still have a
1744				 * recoverable condition.
1745				 */
1746				if (recoverable) {
1747					regs->tpc = entry->fixup;
1748					regs->tnpc = regs->tpc + 4;
1749				}
1750			}
1751		}
1752	} else {
1753		recoverable = 0;
1754	}
1755
1756	if (!recoverable)
1757		panic("Irrecoverable deferred error trap.\n");
1758}
1759
1760/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761 *
1762 * Bit0:	0=dcache,1=icache
1763 * Bit1:	0=recoverable,1=unrecoverable
1764 *
1765 * The hardware has disabled both the I-cache and D-cache in
1766 * the %dcr register.  
1767 */
1768void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769{
1770	if (type & 0x1)
1771		__cheetah_flush_icache();
1772	else
1773		cheetah_plus_zap_dcache_parity();
1774	cheetah_flush_dcache();
1775
1776	/* Re-enable I-cache/D-cache */
1777	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778			     "or %%g1, %1, %%g1\n\t"
1779			     "stxa %%g1, [%%g0] %0\n\t"
1780			     "membar #Sync"
1781			     : /* no outputs */
1782			     : "i" (ASI_DCU_CONTROL_REG),
1783			       "i" (DCU_DC | DCU_IC)
1784			     : "g1");
1785
1786	if (type & 0x2) {
1787		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788		       smp_processor_id(),
1789		       (type & 0x1) ? 'I' : 'D',
1790		       regs->tpc);
1791		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792		panic("Irrecoverable Cheetah+ parity error.");
1793	}
1794
1795	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796	       smp_processor_id(),
1797	       (type & 0x1) ? 'I' : 'D',
1798	       regs->tpc);
1799	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800}
1801
1802struct sun4v_error_entry {
1803	/* Unique error handle */
1804/*0x00*/u64		err_handle;
1805
1806	/* %stick value at the time of the error */
1807/*0x08*/u64		err_stick;
1808
1809/*0x10*/u8		reserved_1[3];
1810
1811	/* Error type */
1812/*0x13*/u8		err_type;
1813#define SUN4V_ERR_TYPE_UNDEFINED	0
1814#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1815#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1816#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1817#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1818#define SUN4V_ERR_TYPE_DUMP_CORE	5
1819#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1820#define SUN4V_ERR_TYPE_NUM		7
1821
1822	/* Error attributes */
1823/*0x14*/u32		err_attrs;
1824#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1825#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1826#define SUN4V_ERR_ATTRS_PIO		0x00000004
1827#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1828#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1829#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1830#define SUN4V_ERR_ATTRS_ASR		0x00000040
1831#define SUN4V_ERR_ATTRS_ASI		0x00000080
1832#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1833#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1834#define SUN4V_ERR_ATTRS_MCD		0x00000800
1835#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1836#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1837#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1838#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1839
1840#define SUN4V_ERR_SPSTATE_FAULTED	0
1841#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1842#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1843
1844#define SUN4V_ERR_MODE_USER		1
1845#define SUN4V_ERR_MODE_PRIV		2
1846
1847	/* Real address of the memory region or PIO transaction */
1848/*0x18*/u64		err_raddr;
1849
1850	/* Size of the operation triggering the error, in bytes */
1851/*0x20*/u32		err_size;
1852
1853	/* ID of the CPU */
1854/*0x24*/u16		err_cpu;
1855
1856	/* Grace periof for shutdown, in seconds */
1857/*0x26*/u16		err_secs;
1858
1859	/* Value of the %asi register */
1860/*0x28*/u8		err_asi;
1861
1862/*0x29*/u8		reserved_2;
1863
1864	/* Value of the ASR register number */
1865/*0x2a*/u16		err_asr;
1866#define SUN4V_ERR_ASR_VALID		0x8000
1867
1868/*0x2c*/u32		reserved_3;
1869/*0x30*/u64		reserved_4;
1870/*0x38*/u64		reserved_5;
1871};
1872
1873static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875
1876static const char *sun4v_err_type_to_str(u8 type)
1877{
1878	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879		"undefined",
1880		"uncorrected resumable",
1881		"precise nonresumable",
1882		"deferred nonresumable",
1883		"shutdown request",
1884		"dump core",
1885		"SP state change",
1886	};
1887
1888	if (type < SUN4V_ERR_TYPE_NUM)
1889		return types[type];
1890
1891	return "unknown";
1892}
1893
1894static void sun4v_emit_err_attr_strings(u32 attrs)
1895{
1896	static const char *attr_names[] = {
1897		"processor",
1898		"memory",
1899		"PIO",
1900		"int-registers",
1901		"fpu-registers",
1902		"shutdown-request",
1903		"ASR",
1904		"ASI",
1905		"priv-reg",
1906	};
1907	static const char *sp_states[] = {
1908		"sp-faulted",
1909		"sp-available",
1910		"sp-not-present",
1911		"sp-state-reserved",
1912	};
1913	static const char *modes[] = {
1914		"mode-reserved0",
1915		"user",
1916		"priv",
1917		"mode-reserved1",
1918	};
1919	u32 sp_state, mode;
1920	int i;
1921
1922	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923		if (attrs & (1U << i)) {
1924			const char *s = attr_names[i];
1925
1926			pr_cont("%s ", s);
1927		}
1928	}
1929
1930	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932	pr_cont("%s ", sp_states[sp_state]);
1933
1934	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935		SUN4V_ERR_ATTRS_MODE_SHFT);
1936	pr_cont("%s ", modes[mode]);
1937
1938	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939		pr_cont("res-queue-full ");
1940}
1941
1942/* When the report contains a real-address of "-1" it means that the
1943 * hardware did not provide the address.  So we compute the effective
1944 * address of the load or store instruction at regs->tpc and report
1945 * that.  Usually when this happens it's a PIO and in such a case we
1946 * are using physical addresses with bypass ASIs anyways, so what we
1947 * report here is exactly what we want.
1948 */
1949static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950{
1951	unsigned int insn;
1952	u64 addr;
1953
1954	if (!(regs->tstate & TSTATE_PRIV))
1955		return;
1956
1957	insn = *(unsigned int *) regs->tpc;
1958
1959	addr = compute_effective_address(regs, insn, 0);
1960
1961	printk("%s: insn effective address [0x%016llx]\n",
1962	       pfx, addr);
1963}
1964
1965static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966			    int cpu, const char *pfx, atomic_t *ocnt)
1967{
1968	u64 *raw_ptr = (u64 *) ent;
1969	u32 attrs;
1970	int cnt;
1971
1972	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973	printk("%s: TPC [0x%016lx] <%pS>\n",
1974	       pfx, regs->tpc, (void *) regs->tpc);
1975
1976	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980
1981	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982	       pfx, ent->err_handle, ent->err_stick);
1983
1984	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985
1986	attrs = ent->err_attrs;
1987	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988	sun4v_emit_err_attr_strings(attrs);
1989	pr_cont(">\n");
1990
1991	/* Various fields in the error report are only valid if
1992	 * certain attribute bits are set.
1993	 */
1994	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995		     SUN4V_ERR_ATTRS_PIO |
1996		     SUN4V_ERR_ATTRS_ASI)) {
1997		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998
1999		if (ent->err_raddr == ~(u64)0)
2000			sun4v_report_real_raddr(pfx, regs);
2001	}
2002
2003	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005
2006	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2008		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009		     SUN4V_ERR_ATTRS_PRIV_REG))
2010		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011
2012	if (attrs & SUN4V_ERR_ATTRS_ASI)
2013		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014
2015	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019		printk("%s: reg [0x%04x]\n",
2020		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021
2022	show_regs(regs);
2023
2024	if ((cnt = atomic_read(ocnt)) != 0) {
2025		atomic_set(ocnt, 0);
2026		wmb();
2027		printk("%s: Queue overflowed %d times.\n",
2028		       pfx, cnt);
2029	}
2030}
2031
2032/* Handle memory corruption detected error which is vectored in
2033 * through resumable error trap.
2034 */
2035static void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036{
2037	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038		       SIGSEGV) == NOTIFY_STOP)
2039		return;
2040
2041	if (regs->tstate & TSTATE_PRIV) {
2042		/* MCD exception could happen because the task was
2043		 * running a system call with MCD enabled and passed a
2044		 * non-versioned pointer or pointer with bad version
2045		 * tag to the system call. In such cases, hypervisor
2046		 * places the address of offending instruction in the
2047		 * resumable error report. This is a deferred error,
2048		 * so the read/write that caused the trap was potentially
2049		 * retired long time back and we may have no choice
2050		 * but to send SIGSEGV to the process.
2051		 */
2052		const struct exception_table_entry *entry;
2053
2054		entry = search_exception_tables(regs->tpc);
2055		if (entry) {
2056			/* Looks like a bad syscall parameter */
2057#ifdef DEBUG_EXCEPTIONS
2058			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059				 regs->tpc);
2060			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061				 ent.err_raddr, entry->fixup);
2062#endif
2063			regs->tpc = entry->fixup;
2064			regs->tnpc = regs->tpc + 4;
2065			return;
2066		}
2067	}
2068
2069	/* Send SIGSEGV to the userspace process with the right signal
2070	 * code
2071	 */
2072	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2073}
2074
2075/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2076 * Log the event and clear the first word of the entry.
2077 */
2078void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2079{
2080	enum ctx_state prev_state = exception_enter();
2081	struct sun4v_error_entry *ent, local_copy;
2082	struct trap_per_cpu *tb;
2083	unsigned long paddr;
2084	int cpu;
2085
2086	cpu = get_cpu();
2087
2088	tb = &trap_block[cpu];
2089	paddr = tb->resum_kernel_buf_pa + offset;
2090	ent = __va(paddr);
2091
2092	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2093
2094	/* We have a local copy now, so release the entry.  */
2095	ent->err_handle = 0;
2096	wmb();
2097
2098	put_cpu();
2099
2100	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2101		/* We should really take the seconds field of
2102		 * the error report and use it for the shutdown
2103		 * invocation, but for now do the same thing we
2104		 * do for a DS shutdown request.
2105		 */
2106		pr_info("Shutdown request, %u seconds...\n",
2107			local_copy.err_secs);
2108		orderly_poweroff(true);
2109		goto out;
2110	}
2111
2112	/* If this is a memory corruption detected error vectored in
2113	 * by HV through resumable error trap, call the handler
2114	 */
2115	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2116		do_mcd_err(regs, local_copy);
2117		return;
2118	}
2119
2120	sun4v_log_error(regs, &local_copy, cpu,
2121			KERN_ERR "RESUMABLE ERROR",
2122			&sun4v_resum_oflow_cnt);
2123out:
2124	exception_exit(prev_state);
2125}
2126
2127/* If we try to printk() we'll probably make matters worse, by trying
2128 * to retake locks this cpu already holds or causing more errors. So
2129 * just bump a counter, and we'll report these counter bumps above.
2130 */
2131void sun4v_resum_overflow(struct pt_regs *regs)
2132{
2133	atomic_inc(&sun4v_resum_oflow_cnt);
2134}
2135
2136/* Given a set of registers, get the virtual addressi that was being accessed
2137 * by the faulting instructions at tpc.
2138 */
2139static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2140{
2141	unsigned int insn;
2142
2143	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2144		return compute_effective_address(regs, insn,
2145						 (insn >> 25) & 0x1f);
2146	}
2147	return 0;
2148}
2149
2150/* Attempt to handle non-resumable errors generated from userspace.
2151 * Returns true if the signal was handled, false otherwise.
2152 */
2153static bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2154					      struct sun4v_error_entry *ent)
2155{
2156	unsigned int attrs = ent->err_attrs;
2157
2158	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2159		unsigned long addr = ent->err_raddr;
2160
2161		if (addr == ~(u64)0) {
2162			/* This seems highly unlikely to ever occur */
2163			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2164		} else {
2165			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2166							      PAGE_SIZE);
2167
2168			/* Break the unfortunate news. */
2169			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2170				 addr);
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2172				 page_cnt);
2173
2174			while (page_cnt-- > 0) {
2175				if (pfn_valid(addr >> PAGE_SHIFT))
2176					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2177				addr += PAGE_SIZE;
2178			}
2179		}
2180		force_sig(SIGKILL);
2181
2182		return true;
2183	}
2184	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2185		force_sig_fault(SIGBUS, BUS_ADRERR,
2186				(void __user *)sun4v_get_vaddr(regs));
2187		return true;
2188	}
2189
2190	/* Default to doing nothing */
2191	return false;
2192}
2193
2194/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2195 * Log the event, clear the first word of the entry, and die.
2196 */
2197void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2198{
2199	struct sun4v_error_entry *ent, local_copy;
2200	struct trap_per_cpu *tb;
2201	unsigned long paddr;
2202	int cpu;
2203
2204	cpu = get_cpu();
2205
2206	tb = &trap_block[cpu];
2207	paddr = tb->nonresum_kernel_buf_pa + offset;
2208	ent = __va(paddr);
2209
2210	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2211
2212	/* We have a local copy now, so release the entry.  */
2213	ent->err_handle = 0;
2214	wmb();
2215
2216	put_cpu();
2217
2218	if (!(regs->tstate & TSTATE_PRIV) &&
2219	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2220		/* DON'T PANIC: This userspace error was handled. */
2221		return;
2222	}
2223
2224#ifdef CONFIG_PCI
2225	/* Check for the special PCI poke sequence. */
2226	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2227		pci_poke_faulted = 1;
2228		regs->tpc += 4;
2229		regs->tnpc = regs->tpc + 4;
2230		return;
2231	}
2232#endif
2233
2234	sun4v_log_error(regs, &local_copy, cpu,
2235			KERN_EMERG "NON-RESUMABLE ERROR",
2236			&sun4v_nonresum_oflow_cnt);
2237
2238	panic("Non-resumable error.");
2239}
2240
2241/* If we try to printk() we'll probably make matters worse, by trying
2242 * to retake locks this cpu already holds or causing more errors. So
2243 * just bump a counter, and we'll report these counter bumps above.
2244 */
2245void sun4v_nonresum_overflow(struct pt_regs *regs)
2246{
2247	/* XXX Actually even this can make not that much sense.  Perhaps
2248	 * XXX we should just pull the plug and panic directly from here?
2249	 */
2250	atomic_inc(&sun4v_nonresum_oflow_cnt);
2251}
2252
2253static void sun4v_tlb_error(struct pt_regs *regs)
2254{
2255	die_if_kernel("TLB/TSB error", regs);
2256}
2257
2258unsigned long sun4v_err_itlb_vaddr;
2259unsigned long sun4v_err_itlb_ctx;
2260unsigned long sun4v_err_itlb_pte;
2261unsigned long sun4v_err_itlb_error;
2262
2263void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2264{
2265	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2266
2267	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2268	       regs->tpc, tl);
2269	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2270	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2271	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2272	       (void *) regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2274	       "pte[%lx] error[%lx]\n",
2275	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2276	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2277
2278	sun4v_tlb_error(regs);
2279}
2280
2281unsigned long sun4v_err_dtlb_vaddr;
2282unsigned long sun4v_err_dtlb_ctx;
2283unsigned long sun4v_err_dtlb_pte;
2284unsigned long sun4v_err_dtlb_error;
2285
2286void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2287{
2288	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2289
2290	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2291	       regs->tpc, tl);
2292	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2293	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2294	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2295	       (void *) regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2297	       "pte[%lx] error[%lx]\n",
2298	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2299	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2300
2301	sun4v_tlb_error(regs);
2302}
2303
2304void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2305{
2306	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2307	       err, op);
2308}
2309
2310void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2311{
2312	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2313	       err, op);
2314}
2315
2316static void do_fpe_common(struct pt_regs *regs)
2317{
2318	if (regs->tstate & TSTATE_PRIV) {
2319		regs->tpc = regs->tnpc;
2320		regs->tnpc += 4;
2321	} else {
2322		unsigned long fsr = current_thread_info()->xfsr[0];
2323		int code;
2324
2325		if (test_thread_flag(TIF_32BIT)) {
2326			regs->tpc &= 0xffffffff;
2327			regs->tnpc &= 0xffffffff;
2328		}
2329		code = FPE_FLTUNK;
2330		if ((fsr & 0x1c000) == (1 << 14)) {
2331			if (fsr & 0x10)
2332				code = FPE_FLTINV;
2333			else if (fsr & 0x08)
2334				code = FPE_FLTOVF;
2335			else if (fsr & 0x04)
2336				code = FPE_FLTUND;
2337			else if (fsr & 0x02)
2338				code = FPE_FLTDIV;
2339			else if (fsr & 0x01)
2340				code = FPE_FLTRES;
2341		}
2342		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2343	}
2344}
2345
2346void do_fpieee(struct pt_regs *regs)
2347{
2348	enum ctx_state prev_state = exception_enter();
2349
2350	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2351		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2352		goto out;
2353
2354	do_fpe_common(regs);
2355out:
2356	exception_exit(prev_state);
2357}
2358
2359void do_fpother(struct pt_regs *regs)
2360{
2361	enum ctx_state prev_state = exception_enter();
2362	struct fpustate *f = FPUSTATE;
2363	int ret = 0;
2364
2365	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2366		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2367		goto out;
2368
2369	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2370	case (2 << 14): /* unfinished_FPop */
2371	case (3 << 14): /* unimplemented_FPop */
2372		ret = do_mathemu(regs, f, false);
2373		break;
2374	}
2375	if (ret)
2376		goto out;
2377	do_fpe_common(regs);
2378out:
2379	exception_exit(prev_state);
2380}
2381
2382void do_tof(struct pt_regs *regs)
2383{
2384	enum ctx_state prev_state = exception_enter();
2385
2386	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2387		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2388		goto out;
2389
2390	if (regs->tstate & TSTATE_PRIV)
2391		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2392	if (test_thread_flag(TIF_32BIT)) {
2393		regs->tpc &= 0xffffffff;
2394		regs->tnpc &= 0xffffffff;
2395	}
2396	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
2397out:
2398	exception_exit(prev_state);
2399}
2400
2401void do_div0(struct pt_regs *regs)
2402{
2403	enum ctx_state prev_state = exception_enter();
2404
2405	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2406		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2407		goto out;
2408
2409	if (regs->tstate & TSTATE_PRIV)
2410		die_if_kernel("TL0: Kernel divide by zero.", regs);
2411	if (test_thread_flag(TIF_32BIT)) {
2412		regs->tpc &= 0xffffffff;
2413		regs->tnpc &= 0xffffffff;
2414	}
2415	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
2416out:
2417	exception_exit(prev_state);
2418}
2419
2420static void instruction_dump(unsigned int *pc)
2421{
2422	int i;
2423
2424	if ((((unsigned long) pc) & 3))
2425		return;
2426
2427	printk("Instruction DUMP:");
2428	for (i = -3; i < 6; i++)
2429		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2430	printk("\n");
2431}
2432
2433static void user_instruction_dump(unsigned int __user *pc)
2434{
2435	int i;
2436	unsigned int buf[9];
2437	
2438	if ((((unsigned long) pc) & 3))
2439		return;
2440		
2441	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2442		return;
2443
2444	printk("Instruction DUMP:");
2445	for (i = 0; i < 9; i++)
2446		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2447	printk("\n");
2448}
2449
2450void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2451{
2452	unsigned long fp, ksp;
2453	struct thread_info *tp;
2454	int count = 0;
2455#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2456	int graph = 0;
2457#endif
2458
2459	ksp = (unsigned long) _ksp;
2460	if (!tsk)
2461		tsk = current;
2462	tp = task_thread_info(tsk);
2463	if (ksp == 0UL) {
2464		if (tsk == current)
2465			asm("mov %%fp, %0" : "=r" (ksp));
2466		else
2467			ksp = tp->ksp;
2468	}
2469	if (tp == current_thread_info())
2470		flushw_all();
2471
2472	fp = ksp + STACK_BIAS;
2473
2474	printk("%sCall Trace:\n", loglvl);
2475	do {
2476		struct sparc_stackf *sf;
2477		struct pt_regs *regs;
2478		unsigned long pc;
2479
2480		if (!kstack_valid(tp, fp))
2481			break;
2482		sf = (struct sparc_stackf *) fp;
2483		regs = (struct pt_regs *) (sf + 1);
2484
2485		if (kstack_is_trap_frame(tp, regs)) {
2486			if (!(regs->tstate & TSTATE_PRIV))
2487				break;
2488			pc = regs->tpc;
2489			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2490		} else {
2491			pc = sf->callers_pc;
2492			fp = (unsigned long)sf->fp + STACK_BIAS;
2493		}
2494
2495		print_ip_sym(loglvl, pc);
2496#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2497		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2498			struct ftrace_ret_stack *ret_stack;
2499			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2500			if (ret_stack) {
2501				pc = ret_stack->ret;
2502				print_ip_sym(loglvl, pc);
2503				graph++;
2504			}
2505		}
2506#endif
2507	} while (++count < 16);
2508}
2509
2510static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2511{
2512	unsigned long fp = rw->ins[6];
2513
2514	if (!fp)
2515		return NULL;
2516
2517	return (struct reg_window *) (fp + STACK_BIAS);
2518}
2519
2520void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2521{
2522	static int die_counter;
2523	int count = 0;
2524	
2525	/* Amuse the user. */
2526	printk(
2527"              \\|/ ____ \\|/\n"
2528"              \"@'/ .. \\`@\"\n"
2529"              /_| \\__/ |_\\\n"
2530"                 \\__U_/\n");
2531
2532	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2533	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2534	__asm__ __volatile__("flushw");
2535	show_regs(regs);
2536	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2537	if (regs->tstate & TSTATE_PRIV) {
2538		struct thread_info *tp = current_thread_info();
2539		struct reg_window *rw = (struct reg_window *)
2540			(regs->u_regs[UREG_FP] + STACK_BIAS);
2541
2542		/* Stop the back trace when we hit userland or we
2543		 * find some badly aligned kernel stack.
2544		 */
2545		while (rw &&
2546		       count++ < 30 &&
2547		       kstack_valid(tp, (unsigned long) rw)) {
2548			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2549			       (void *) rw->ins[7]);
2550
2551			rw = kernel_stack_up(rw);
2552		}
2553		instruction_dump ((unsigned int *) regs->tpc);
2554	} else {
2555		if (test_thread_flag(TIF_32BIT)) {
2556			regs->tpc &= 0xffffffff;
2557			regs->tnpc &= 0xffffffff;
2558		}
2559		user_instruction_dump ((unsigned int __user *) regs->tpc);
2560	}
2561	if (panic_on_oops)
2562		panic("Fatal exception");
2563	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2564}
2565EXPORT_SYMBOL(die_if_kernel);
2566
2567#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2568#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2569
2570void do_illegal_instruction(struct pt_regs *regs)
2571{
2572	enum ctx_state prev_state = exception_enter();
2573	unsigned long pc = regs->tpc;
2574	unsigned long tstate = regs->tstate;
2575	u32 insn;
2576
2577	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2578		       0, 0x10, SIGILL) == NOTIFY_STOP)
2579		goto out;
2580
2581	if (tstate & TSTATE_PRIV)
2582		die_if_kernel("Kernel illegal instruction", regs);
2583	if (test_thread_flag(TIF_32BIT))
2584		pc = (u32)pc;
2585	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2586		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2587			if (handle_popc(insn, regs))
2588				goto out;
2589		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2590			if (handle_ldf_stq(insn, regs))
2591				goto out;
2592		} else if (tlb_type == hypervisor) {
2593			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2594				if (!vis_emul(regs, insn))
2595					goto out;
2596			} else {
2597				struct fpustate *f = FPUSTATE;
2598
2599				/* On UltraSPARC T2 and later, FPU insns which
2600				 * are not implemented in HW signal an illegal
2601				 * instruction trap and do not set the FP Trap
2602				 * Trap in the %fsr to unimplemented_FPop.
2603				 */
2604				if (do_mathemu(regs, f, true))
2605					goto out;
2606			}
2607		}
2608	}
2609	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2610out:
2611	exception_exit(prev_state);
2612}
2613
2614void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2615{
2616	enum ctx_state prev_state = exception_enter();
2617
2618	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2619		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2620		goto out;
2621
2622	if (regs->tstate & TSTATE_PRIV) {
2623		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2624		goto out;
2625	}
2626	if (is_no_fault_exception(regs))
2627		return;
2628
2629	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2630out:
2631	exception_exit(prev_state);
2632}
2633
2634void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2635{
2636	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2637		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2638		return;
2639
2640	if (regs->tstate & TSTATE_PRIV) {
2641		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2642		return;
2643	}
2644	if (is_no_fault_exception(regs))
2645		return;
2646
2647	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2648}
2649
2650/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2651 * tag mismatch.
2652 *
2653 * ADI version tag mismatch on a load from memory always results in a
2654 * precise exception. Tag mismatch on a store to memory will result in
2655 * precise exception if MCDPER or PMCDPER is set to 1.
2656 */
2657void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2658				      unsigned long context)
2659{
2660	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2661		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2662		return;
2663
2664	if (regs->tstate & TSTATE_PRIV) {
2665		/* MCD exception could happen because the task was running
2666		 * a system call with MCD enabled and passed a non-versioned
2667		 * pointer or pointer with bad version tag to  the system
2668		 * call.
2669		 */
2670		const struct exception_table_entry *entry;
2671
2672		entry = search_exception_tables(regs->tpc);
2673		if (entry) {
2674			/* Looks like a bad syscall parameter */
2675#ifdef DEBUG_EXCEPTIONS
2676			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2677				 regs->tpc);
2678			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2679				 regs->tpc, entry->fixup);
2680#endif
2681			regs->tpc = entry->fixup;
2682			regs->tnpc = regs->tpc + 4;
2683			return;
2684		}
2685		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2686			 __func__, addr, context);
2687		die_if_kernel("MCD precise", regs);
2688	}
2689
2690	if (test_thread_flag(TIF_32BIT)) {
2691		regs->tpc &= 0xffffffff;
2692		regs->tnpc &= 0xffffffff;
2693	}
2694	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2695}
2696
2697void do_privop(struct pt_regs *regs)
2698{
2699	enum ctx_state prev_state = exception_enter();
2700
2701	if (notify_die(DIE_TRAP, "privileged operation", regs,
2702		       0, 0x11, SIGILL) == NOTIFY_STOP)
2703		goto out;
2704
2705	if (test_thread_flag(TIF_32BIT)) {
2706		regs->tpc &= 0xffffffff;
2707		regs->tnpc &= 0xffffffff;
2708	}
2709	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
2710out:
2711	exception_exit(prev_state);
2712}
2713
2714void do_privact(struct pt_regs *regs)
2715{
2716	do_privop(regs);
2717}
2718
2719/* Trap level 1 stuff or other traps we should never see... */
2720void do_cee(struct pt_regs *regs)
2721{
2722	exception_enter();
2723	die_if_kernel("TL0: Cache Error Exception", regs);
2724}
2725
2726void do_div0_tl1(struct pt_regs *regs)
2727{
2728	exception_enter();
2729	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2730	die_if_kernel("TL1: DIV0 Exception", regs);
2731}
2732
2733void do_fpieee_tl1(struct pt_regs *regs)
2734{
2735	exception_enter();
2736	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737	die_if_kernel("TL1: FPU IEEE Exception", regs);
2738}
2739
2740void do_fpother_tl1(struct pt_regs *regs)
2741{
2742	exception_enter();
2743	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744	die_if_kernel("TL1: FPU Other Exception", regs);
2745}
2746
2747void do_ill_tl1(struct pt_regs *regs)
2748{
2749	exception_enter();
2750	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2752}
2753
2754void do_irq_tl1(struct pt_regs *regs)
2755{
2756	exception_enter();
2757	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758	die_if_kernel("TL1: IRQ Exception", regs);
2759}
2760
2761void do_lddfmna_tl1(struct pt_regs *regs)
2762{
2763	exception_enter();
2764	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765	die_if_kernel("TL1: LDDF Exception", regs);
2766}
2767
2768void do_stdfmna_tl1(struct pt_regs *regs)
2769{
2770	exception_enter();
2771	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772	die_if_kernel("TL1: STDF Exception", regs);
2773}
2774
2775void do_paw(struct pt_regs *regs)
2776{
2777	exception_enter();
2778	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2779}
2780
2781void do_paw_tl1(struct pt_regs *regs)
2782{
2783	exception_enter();
2784	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2785	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2786}
2787
2788void do_vaw(struct pt_regs *regs)
2789{
2790	exception_enter();
2791	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2792}
2793
2794void do_vaw_tl1(struct pt_regs *regs)
2795{
2796	exception_enter();
2797	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2798	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2799}
2800
2801void do_tof_tl1(struct pt_regs *regs)
2802{
2803	exception_enter();
2804	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805	die_if_kernel("TL1: Tag Overflow Exception", regs);
2806}
2807
2808void do_getpsr(struct pt_regs *regs)
2809{
2810	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2811	regs->tpc   = regs->tnpc;
2812	regs->tnpc += 4;
2813	if (test_thread_flag(TIF_32BIT)) {
2814		regs->tpc &= 0xffffffff;
2815		regs->tnpc &= 0xffffffff;
2816	}
2817}
2818
2819u64 cpu_mondo_counter[NR_CPUS] = {0};
2820struct trap_per_cpu trap_block[NR_CPUS];
2821EXPORT_SYMBOL(trap_block);
2822
2823/* This can get invoked before sched_init() so play it super safe
2824 * and use hard_smp_processor_id().
2825 */
2826void notrace init_cur_cpu_trap(struct thread_info *t)
2827{
2828	int cpu = hard_smp_processor_id();
2829	struct trap_per_cpu *p = &trap_block[cpu];
2830
2831	p->thread = t;
2832	p->pgd_paddr = 0;
2833}
2834
2835extern void thread_info_offsets_are_bolixed_dave(void);
2836extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2837extern void tsb_config_offsets_are_bolixed_dave(void);
2838
2839/* Only invoked on boot processor. */
2840void __init trap_init(void)
2841{
2842	/* Compile time sanity check. */
2843	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2844		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2845		     TI_CPU != offsetof(struct thread_info, cpu) ||
2846		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2847		     TI_KSP != offsetof(struct thread_info, ksp) ||
2848		     TI_FAULT_ADDR != offsetof(struct thread_info,
2849					       fault_address) ||
2850		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2851		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2852		     TI_REG_WINDOW != offsetof(struct thread_info,
2853					       reg_window) ||
2854		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2855					       rwbuf_stkptrs) ||
2856		     TI_GSR != offsetof(struct thread_info, gsr) ||
2857		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2858		     TI_PRE_COUNT != offsetof(struct thread_info,
2859					      preempt_count) ||
2860		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2861		     TI_KUNA_REGS != offsetof(struct thread_info,
2862					      kern_una_regs) ||
2863		     TI_KUNA_INSN != offsetof(struct thread_info,
2864					      kern_una_insn) ||
2865		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2866		     (TI_FPREGS & (64 - 1)));
2867
2868	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2869						     thread) ||
2870		     (TRAP_PER_CPU_PGD_PADDR !=
2871		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2872		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2873		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2874		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2875		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2876		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2877		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2878		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2879		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2880		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2881		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2882		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2883		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2884		     (TRAP_PER_CPU_FAULT_INFO !=
2885		      offsetof(struct trap_per_cpu, fault_info)) ||
2886		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2887		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2888		     (TRAP_PER_CPU_CPU_LIST_PA !=
2889		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2890		     (TRAP_PER_CPU_TSB_HUGE !=
2891		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2892		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2893		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2894		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2895		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2898		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2899		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2900		     (TRAP_PER_CPU_RESUM_QMASK !=
2901		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2902		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2903		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2904		     (TRAP_PER_CPU_PER_CPU_BASE !=
2905		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2906
2907	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2908		      offsetof(struct tsb_config, tsb)) ||
2909		     (TSB_CONFIG_RSS_LIMIT !=
2910		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2911		     (TSB_CONFIG_NENTRIES !=
2912		      offsetof(struct tsb_config, tsb_nentries)) ||
2913		     (TSB_CONFIG_REG_VAL !=
2914		      offsetof(struct tsb_config, tsb_reg_val)) ||
2915		     (TSB_CONFIG_MAP_VADDR !=
2916		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2917		     (TSB_CONFIG_MAP_PTE !=
2918		      offsetof(struct tsb_config, tsb_map_pte)));
2919
2920	/* Attach to the address space of init_task.  On SMP we
2921	 * do this in smp.c:smp_callin for other cpus.
2922	 */
2923	mmgrab(&init_mm);
2924	current->active_mm = &init_mm;
2925}