Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 18#include <linux/types.h>
 19#include <asm/asm.h>
 20#include <asm/barrier.h>
 21#include <asm/byteorder.h>		/* sigh ... */
 22#include <asm/compiler.h>
 23#include <asm/cpu-features.h>
 24#include <asm/sgidefs.h>
 25
 26#define __bit_op(mem, insn, inputs...) do {			\
 27	unsigned long __temp;					\
 28								\
 29	asm volatile(						\
 30	"	.set		push			\n"	\
 31	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 32	"	" __SYNC(full, loongson3_war) "		\n"	\
 33	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
 34	"	" insn		"			\n"	\
 35	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
 36	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
 37	"	.set		pop			\n"	\
 38	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 39	: inputs						\
 40	: __LLSC_CLOBBER);					\
 41} while (0)
 42
 43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 44	unsigned long __orig, __temp;				\
 45								\
 46	asm volatile(						\
 47	"	.set		push			\n"	\
 48	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 49	"	" __SYNC(full, loongson3_war) "		\n"	\
 50	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
 51	"	" insn		"			\n"	\
 52	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
 53	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
 54	"	.set		pop			\n"	\
 55	: "=&r"(__orig), "=&r"(__temp),				\
 56	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 57	: inputs						\
 58	: __LLSC_CLOBBER);					\
 59								\
 60	__orig;							\
 61})
 62
 63/*
 64 * These are the "slower" versions of the functions and are in bitops.c.
 65 * These functions call raw_local_irq_{save,restore}().
 66 */
 67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 70int __mips_test_and_set_bit_lock(unsigned long nr,
 71				 volatile unsigned long *addr);
 72int __mips_test_and_clear_bit(unsigned long nr,
 73			      volatile unsigned long *addr);
 74int __mips_test_and_change_bit(unsigned long nr,
 75			       volatile unsigned long *addr);
 76
 
 77
 78/*
 79 * set_bit - Atomically set a bit in memory
 80 * @nr: the bit to set
 81 * @addr: the address to start counting from
 82 *
 83 * This function is atomic and may not be reordered.  See __set_bit()
 84 * if you do not require the atomic guarantees.
 85 * Note that @nr may be almost arbitrarily large; this function is not
 86 * restricted to acting on a single-word quantity.
 87 */
 88static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 89{
 90	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 91	int bit = nr % BITS_PER_LONG;
 92
 93	if (!kernel_uses_llsc) {
 94		__mips_set_bit(nr, addr);
 95		return;
 96	}
 97
 98	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
 99		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
100		return;
101	}
102
103	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
104}
105
106/*
107 * clear_bit - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * clear_bit() is atomic and may not be reordered.  However, it does
112 * not contain a memory barrier, so if it is used for locking purposes,
113 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
114 * in order to ensure changes are visible on other processors.
115 */
116static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
117{
118	volatile unsigned long *m = &addr[BIT_WORD(nr)];
119	int bit = nr % BITS_PER_LONG;
120
121	if (!kernel_uses_llsc) {
122		__mips_clear_bit(nr, addr);
123		return;
124	}
125
126	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
127		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
128		return;
129	}
130
131	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
132}
133
134/*
135 * clear_bit_unlock - Clears a bit in memory
136 * @nr: Bit to clear
137 * @addr: Address to start counting from
138 *
139 * clear_bit() is atomic and implies release semantics before the memory
140 * operation. It can be used for an unlock.
141 */
142static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
143{
144	smp_mb__before_atomic();
145	clear_bit(nr, addr);
146}
147
148/*
149 * change_bit - Toggle a bit in memory
150 * @nr: Bit to change
151 * @addr: Address to start counting from
152 *
153 * change_bit() is atomic and may not be reordered.
154 * Note that @nr may be almost arbitrarily large; this function is not
155 * restricted to acting on a single-word quantity.
156 */
157static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
158{
159	volatile unsigned long *m = &addr[BIT_WORD(nr)];
160	int bit = nr % BITS_PER_LONG;
161
162	if (!kernel_uses_llsc) {
163		__mips_change_bit(nr, addr);
164		return;
165	}
166
167	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
168}
169
170/*
171 * test_and_set_bit_lock - Set a bit and return its old value
172 * @nr: Bit to set
173 * @addr: Address to count from
174 *
175 * This operation is atomic and implies acquire ordering semantics
176 * after the memory operation.
177 */
178static inline int test_and_set_bit_lock(unsigned long nr,
179	volatile unsigned long *addr)
180{
181	volatile unsigned long *m = &addr[BIT_WORD(nr)];
182	int bit = nr % BITS_PER_LONG;
183	unsigned long res, orig;
184
185	if (!kernel_uses_llsc) {
186		res = __mips_test_and_set_bit_lock(nr, addr);
187	} else {
188		orig = __test_bit_op(*m, "%0",
189				     "or\t%1, %0, %3",
190				     "ir"(BIT(bit)));
191		res = (orig & BIT(bit)) != 0;
192	}
193
194	smp_llsc_mb();
195
196	return res;
197}
198
199/*
200 * test_and_set_bit - Set a bit and return its old value
201 * @nr: Bit to set
202 * @addr: Address to count from
203 *
204 * This operation is atomic and cannot be reordered.
205 * It also implies a memory barrier.
206 */
207static inline int test_and_set_bit(unsigned long nr,
208	volatile unsigned long *addr)
209{
210	smp_mb__before_atomic();
211	return test_and_set_bit_lock(nr, addr);
212}
213
214/*
215 * test_and_clear_bit - Clear a bit and return its old value
216 * @nr: Bit to clear
217 * @addr: Address to count from
218 *
219 * This operation is atomic and cannot be reordered.
220 * It also implies a memory barrier.
221 */
222static inline int test_and_clear_bit(unsigned long nr,
223	volatile unsigned long *addr)
224{
225	volatile unsigned long *m = &addr[BIT_WORD(nr)];
226	int bit = nr % BITS_PER_LONG;
227	unsigned long res, orig;
228
229	smp_mb__before_atomic();
230
231	if (!kernel_uses_llsc) {
232		res = __mips_test_and_clear_bit(nr, addr);
233	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
234		res = __test_bit_op(*m, "%1",
235				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
236				    __stringify(LONG_INS) " %1, $0, %3, 1",
237				    "i"(bit));
238	} else {
239		orig = __test_bit_op(*m, "%0",
240				     "or\t%1, %0, %3;"
241				     "xor\t%1, %1, %3",
242				     "ir"(BIT(bit)));
243		res = (orig & BIT(bit)) != 0;
244	}
245
246	smp_llsc_mb();
247
248	return res;
249}
250
251/*
252 * test_and_change_bit - Change a bit and return its old value
253 * @nr: Bit to change
254 * @addr: Address to count from
255 *
256 * This operation is atomic and cannot be reordered.
257 * It also implies a memory barrier.
258 */
259static inline int test_and_change_bit(unsigned long nr,
260	volatile unsigned long *addr)
261{
262	volatile unsigned long *m = &addr[BIT_WORD(nr)];
263	int bit = nr % BITS_PER_LONG;
264	unsigned long res, orig;
265
266	smp_mb__before_atomic();
267
268	if (!kernel_uses_llsc) {
269		res = __mips_test_and_change_bit(nr, addr);
270	} else {
271		orig = __test_bit_op(*m, "%0",
272				     "xor\t%1, %0, %3",
273				     "ir"(BIT(bit)));
274		res = (orig & BIT(bit)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275	}
276
277	smp_llsc_mb();
278
279	return res;
280}
281
282#undef __bit_op
283#undef __test_bit_op
284
285#include <asm-generic/bitops/non-atomic.h>
286
287/*
288 * __clear_bit_unlock - Clears a bit in memory
289 * @nr: Bit to clear
290 * @addr: Address to start counting from
291 *
292 * __clear_bit() is non-atomic and implies release semantics before the memory
293 * operation. It can be used for an unlock if no other CPUs can concurrently
294 * modify other bits in the word.
295 */
296static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
297{
298	smp_mb__before_llsc();
299	__clear_bit(nr, addr);
300	nudge_writes();
301}
302
303/*
304 * Return the bit position (0..63) of the most significant 1 bit in a word
305 * Returns -1 if no 1 bit exists
306 */
307static __always_inline unsigned long __fls(unsigned long word)
308{
309	int num;
310
311	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
312	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
313		__asm__(
314		"	.set	push					\n"
315		"	.set	"MIPS_ISA_LEVEL"			\n"
316		"	clz	%0, %1					\n"
317		"	.set	pop					\n"
318		: "=r" (num)
319		: "r" (word));
320
321		return 31 - num;
322	}
323
324	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
325	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
326		__asm__(
327		"	.set	push					\n"
328		"	.set	"MIPS_ISA_LEVEL"			\n"
329		"	dclz	%0, %1					\n"
330		"	.set	pop					\n"
331		: "=r" (num)
332		: "r" (word));
333
334		return 63 - num;
335	}
336
337	num = BITS_PER_LONG - 1;
338
339#if BITS_PER_LONG == 64
340	if (!(word & (~0ul << 32))) {
341		num -= 32;
342		word <<= 32;
343	}
344#endif
345	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
346		num -= 16;
347		word <<= 16;
348	}
349	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
350		num -= 8;
351		word <<= 8;
352	}
353	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
354		num -= 4;
355		word <<= 4;
356	}
357	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
358		num -= 2;
359		word <<= 2;
360	}
361	if (!(word & (~0ul << (BITS_PER_LONG-1))))
362		num -= 1;
363	return num;
364}
365
366/*
367 * __ffs - find first bit in word.
368 * @word: The word to search
369 *
370 * Returns 0..SZLONG-1
371 * Undefined if no bit exists, so code should check against 0 first.
372 */
373static __always_inline unsigned long __ffs(unsigned long word)
374{
375	return __fls(word & -word);
376}
377
378/*
379 * fls - find last bit set.
380 * @word: The word to search
381 *
382 * This is defined the same way as ffs.
383 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
384 */
385static inline int fls(unsigned int x)
386{
387	int r;
388
389	if (!__builtin_constant_p(x) &&
390	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
391		__asm__(
392		"	.set	push					\n"
393		"	.set	"MIPS_ISA_LEVEL"			\n"
394		"	clz	%0, %1					\n"
395		"	.set	pop					\n"
396		: "=r" (x)
397		: "r" (x));
398
399		return 32 - x;
400	}
401
402	r = 32;
403	if (!x)
404		return 0;
405	if (!(x & 0xffff0000u)) {
406		x <<= 16;
407		r -= 16;
408	}
409	if (!(x & 0xff000000u)) {
410		x <<= 8;
411		r -= 8;
412	}
413	if (!(x & 0xf0000000u)) {
414		x <<= 4;
415		r -= 4;
416	}
417	if (!(x & 0xc0000000u)) {
418		x <<= 2;
419		r -= 2;
420	}
421	if (!(x & 0x80000000u)) {
422		x <<= 1;
423		r -= 1;
424	}
425	return r;
426}
427
428#include <asm-generic/bitops/fls64.h>
429
430/*
431 * ffs - find first bit set.
432 * @word: The word to search
433 *
434 * This is defined the same way as
435 * the libc and compiler builtin ffs routines, therefore
436 * differs in spirit from the below ffz (man ffs).
437 */
438static inline int ffs(int word)
439{
440	if (!word)
441		return 0;
442
443	return fls(word & -word);
444}
445
446#include <asm-generic/bitops/ffz.h>
447
448#ifdef __KERNEL__
449
450#include <asm-generic/bitops/sched.h>
451
452#include <asm/arch_hweight.h>
453#include <asm-generic/bitops/const_hweight.h>
454
455#include <asm-generic/bitops/le.h>
456#include <asm-generic/bitops/ext2-atomic.h>
457
458#endif /* __KERNEL__ */
459
460#endif /* _ASM_BITOPS_H */
v6.13.7
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
  7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
  8 */
  9#ifndef _ASM_BITOPS_H
 10#define _ASM_BITOPS_H
 11
 12#ifndef _LINUX_BITOPS_H
 13#error only <linux/bitops.h> can be included directly
 14#endif
 15
 16#include <linux/bits.h>
 17#include <linux/compiler.h>
 18#include <linux/types.h>
 19#include <asm/asm.h>
 20#include <asm/barrier.h>
 21#include <asm/byteorder.h>		/* sigh ... */
 22#include <asm/compiler.h>
 23#include <asm/cpu-features.h>
 24#include <asm/sgidefs.h>
 25
 26#define __bit_op(mem, insn, inputs...) do {			\
 27	unsigned long __temp;					\
 28								\
 29	asm volatile(						\
 30	"	.set		push			\n"	\
 31	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 32	"	" __SYNC(full, loongson3_war) "		\n"	\
 33	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
 34	"	" insn		"			\n"	\
 35	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
 36	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
 37	"	.set		pop			\n"	\
 38	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
 39	: inputs						\
 40	: __LLSC_CLOBBER);					\
 41} while (0)
 42
 43#define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
 44	unsigned long __orig, __temp;				\
 45								\
 46	asm volatile(						\
 47	"	.set		push			\n"	\
 48	"	.set		" MIPS_ISA_LEVEL "	\n"	\
 49	"	" __SYNC(full, loongson3_war) "		\n"	\
 50	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
 51	"	" insn		"			\n"	\
 52	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
 53	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
 54	"	.set		pop			\n"	\
 55	: "=&r"(__orig), "=&r"(__temp),				\
 56	  "+" GCC_OFF_SMALL_ASM()(mem)				\
 57	: inputs						\
 58	: __LLSC_CLOBBER);					\
 59								\
 60	__orig;							\
 61})
 62
 63/*
 64 * These are the "slower" versions of the functions and are in bitops.c.
 65 * These functions call raw_local_irq_{save,restore}().
 66 */
 67void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
 68void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
 69void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
 70int __mips_test_and_set_bit_lock(unsigned long nr,
 71				 volatile unsigned long *addr);
 72int __mips_test_and_clear_bit(unsigned long nr,
 73			      volatile unsigned long *addr);
 74int __mips_test_and_change_bit(unsigned long nr,
 75			       volatile unsigned long *addr);
 76bool __mips_xor_is_negative_byte(unsigned long mask,
 77		volatile unsigned long *addr);
 78
 79/*
 80 * set_bit - Atomically set a bit in memory
 81 * @nr: the bit to set
 82 * @addr: the address to start counting from
 83 *
 84 * This function is atomic and may not be reordered.  See __set_bit()
 85 * if you do not require the atomic guarantees.
 86 * Note that @nr may be almost arbitrarily large; this function is not
 87 * restricted to acting on a single-word quantity.
 88 */
 89static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
 90{
 91	volatile unsigned long *m = &addr[BIT_WORD(nr)];
 92	int bit = nr % BITS_PER_LONG;
 93
 94	if (!kernel_uses_llsc) {
 95		__mips_set_bit(nr, addr);
 96		return;
 97	}
 98
 99	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
100		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
101		return;
102	}
103
104	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
105}
106
107/*
108 * clear_bit - Clears a bit in memory
109 * @nr: Bit to clear
110 * @addr: Address to start counting from
111 *
112 * clear_bit() is atomic and may not be reordered.  However, it does
113 * not contain a memory barrier, so if it is used for locking purposes,
114 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
115 * in order to ensure changes are visible on other processors.
116 */
117static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
118{
119	volatile unsigned long *m = &addr[BIT_WORD(nr)];
120	int bit = nr % BITS_PER_LONG;
121
122	if (!kernel_uses_llsc) {
123		__mips_clear_bit(nr, addr);
124		return;
125	}
126
127	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
128		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
129		return;
130	}
131
132	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
133}
134
135/*
136 * clear_bit_unlock - Clears a bit in memory
137 * @nr: Bit to clear
138 * @addr: Address to start counting from
139 *
140 * clear_bit() is atomic and implies release semantics before the memory
141 * operation. It can be used for an unlock.
142 */
143static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
144{
145	smp_mb__before_atomic();
146	clear_bit(nr, addr);
147}
148
149/*
150 * change_bit - Toggle a bit in memory
151 * @nr: Bit to change
152 * @addr: Address to start counting from
153 *
154 * change_bit() is atomic and may not be reordered.
155 * Note that @nr may be almost arbitrarily large; this function is not
156 * restricted to acting on a single-word quantity.
157 */
158static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
159{
160	volatile unsigned long *m = &addr[BIT_WORD(nr)];
161	int bit = nr % BITS_PER_LONG;
162
163	if (!kernel_uses_llsc) {
164		__mips_change_bit(nr, addr);
165		return;
166	}
167
168	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
169}
170
171/*
172 * test_and_set_bit_lock - Set a bit and return its old value
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
176 * This operation is atomic and implies acquire ordering semantics
177 * after the memory operation.
178 */
179static inline int test_and_set_bit_lock(unsigned long nr,
180	volatile unsigned long *addr)
181{
182	volatile unsigned long *m = &addr[BIT_WORD(nr)];
183	int bit = nr % BITS_PER_LONG;
184	unsigned long res, orig;
185
186	if (!kernel_uses_llsc) {
187		res = __mips_test_and_set_bit_lock(nr, addr);
188	} else {
189		orig = __test_bit_op(*m, "%0",
190				     "or\t%1, %0, %3",
191				     "ir"(BIT(bit)));
192		res = (orig & BIT(bit)) != 0;
193	}
194
195	smp_llsc_mb();
196
197	return res;
198}
199
200/*
201 * test_and_set_bit - Set a bit and return its old value
202 * @nr: Bit to set
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208static inline int test_and_set_bit(unsigned long nr,
209	volatile unsigned long *addr)
210{
211	smp_mb__before_atomic();
212	return test_and_set_bit_lock(nr, addr);
213}
214
215/*
216 * test_and_clear_bit - Clear a bit and return its old value
217 * @nr: Bit to clear
218 * @addr: Address to count from
219 *
220 * This operation is atomic and cannot be reordered.
221 * It also implies a memory barrier.
222 */
223static inline int test_and_clear_bit(unsigned long nr,
224	volatile unsigned long *addr)
225{
226	volatile unsigned long *m = &addr[BIT_WORD(nr)];
227	int bit = nr % BITS_PER_LONG;
228	unsigned long res, orig;
229
230	smp_mb__before_atomic();
231
232	if (!kernel_uses_llsc) {
233		res = __mips_test_and_clear_bit(nr, addr);
234	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
235		res = __test_bit_op(*m, "%1",
236				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
237				    __stringify(LONG_INS) " %1, $0, %3, 1",
238				    "i"(bit));
239	} else {
240		orig = __test_bit_op(*m, "%0",
241				     "or\t%1, %0, %3;"
242				     "xor\t%1, %1, %3",
243				     "ir"(BIT(bit)));
244		res = (orig & BIT(bit)) != 0;
245	}
246
247	smp_llsc_mb();
248
249	return res;
250}
251
252/*
253 * test_and_change_bit - Change a bit and return its old value
254 * @nr: Bit to change
255 * @addr: Address to count from
256 *
257 * This operation is atomic and cannot be reordered.
258 * It also implies a memory barrier.
259 */
260static inline int test_and_change_bit(unsigned long nr,
261	volatile unsigned long *addr)
262{
263	volatile unsigned long *m = &addr[BIT_WORD(nr)];
264	int bit = nr % BITS_PER_LONG;
265	unsigned long res, orig;
266
267	smp_mb__before_atomic();
268
269	if (!kernel_uses_llsc) {
270		res = __mips_test_and_change_bit(nr, addr);
271	} else {
272		orig = __test_bit_op(*m, "%0",
273				     "xor\t%1, %0, %3",
274				     "ir"(BIT(bit)));
275		res = (orig & BIT(bit)) != 0;
276	}
277
278	smp_llsc_mb();
279
280	return res;
281}
282
283static inline bool xor_unlock_is_negative_byte(unsigned long mask,
284		volatile unsigned long *p)
285{
286	unsigned long orig;
287	bool res;
288
289	smp_mb__before_atomic();
290
291	if (!kernel_uses_llsc) {
292		res = __mips_xor_is_negative_byte(mask, p);
293	} else {
294		orig = __test_bit_op(*p, "%0",
295				     "xor\t%1, %0, %3",
296				     "ir"(mask));
297		res = (orig & BIT(7)) != 0;
298	}
299
300	smp_llsc_mb();
301
302	return res;
303}
304
305#undef __bit_op
306#undef __test_bit_op
307
308#include <asm-generic/bitops/non-atomic.h>
309
310/*
311 * __clear_bit_unlock - Clears a bit in memory
312 * @nr: Bit to clear
313 * @addr: Address to start counting from
314 *
315 * __clear_bit() is non-atomic and implies release semantics before the memory
316 * operation. It can be used for an unlock if no other CPUs can concurrently
317 * modify other bits in the word.
318 */
319static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
320{
321	smp_mb__before_llsc();
322	__clear_bit(nr, addr);
323	nudge_writes();
324}
325
326/*
327 * Return the bit position (0..63) of the most significant 1 bit in a word
328 * Returns -1 if no 1 bit exists
329 */
330static __always_inline unsigned long __fls(unsigned long word)
331{
332	int num;
333
334	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
335	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
336		__asm__(
337		"	.set	push					\n"
338		"	.set	"MIPS_ISA_LEVEL"			\n"
339		"	clz	%0, %1					\n"
340		"	.set	pop					\n"
341		: "=r" (num)
342		: "r" (word));
343
344		return 31 - num;
345	}
346
347	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
348	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
349		__asm__(
350		"	.set	push					\n"
351		"	.set	"MIPS_ISA_LEVEL"			\n"
352		"	dclz	%0, %1					\n"
353		"	.set	pop					\n"
354		: "=r" (num)
355		: "r" (word));
356
357		return 63 - num;
358	}
359
360	num = BITS_PER_LONG - 1;
361
362#if BITS_PER_LONG == 64
363	if (!(word & (~0ul << 32))) {
364		num -= 32;
365		word <<= 32;
366	}
367#endif
368	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
369		num -= 16;
370		word <<= 16;
371	}
372	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
373		num -= 8;
374		word <<= 8;
375	}
376	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
377		num -= 4;
378		word <<= 4;
379	}
380	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
381		num -= 2;
382		word <<= 2;
383	}
384	if (!(word & (~0ul << (BITS_PER_LONG-1))))
385		num -= 1;
386	return num;
387}
388
389/*
390 * __ffs - find first bit in word.
391 * @word: The word to search
392 *
393 * Returns 0..SZLONG-1
394 * Undefined if no bit exists, so code should check against 0 first.
395 */
396static __always_inline unsigned long __ffs(unsigned long word)
397{
398	return __fls(word & -word);
399}
400
401/*
402 * fls - find last bit set.
403 * @word: The word to search
404 *
405 * This is defined the same way as ffs.
406 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
407 */
408static inline int fls(unsigned int x)
409{
410	int r;
411
412	if (!__builtin_constant_p(x) &&
413	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
414		__asm__(
415		"	.set	push					\n"
416		"	.set	"MIPS_ISA_LEVEL"			\n"
417		"	clz	%0, %1					\n"
418		"	.set	pop					\n"
419		: "=r" (x)
420		: "r" (x));
421
422		return 32 - x;
423	}
424
425	r = 32;
426	if (!x)
427		return 0;
428	if (!(x & 0xffff0000u)) {
429		x <<= 16;
430		r -= 16;
431	}
432	if (!(x & 0xff000000u)) {
433		x <<= 8;
434		r -= 8;
435	}
436	if (!(x & 0xf0000000u)) {
437		x <<= 4;
438		r -= 4;
439	}
440	if (!(x & 0xc0000000u)) {
441		x <<= 2;
442		r -= 2;
443	}
444	if (!(x & 0x80000000u)) {
445		x <<= 1;
446		r -= 1;
447	}
448	return r;
449}
450
451#include <asm-generic/bitops/fls64.h>
452
453/*
454 * ffs - find first bit set.
455 * @word: The word to search
456 *
457 * This is defined the same way as
458 * the libc and compiler builtin ffs routines, therefore
459 * differs in spirit from the below ffz (man ffs).
460 */
461static inline int ffs(int word)
462{
463	if (!word)
464		return 0;
465
466	return fls(word & -word);
467}
468
469#include <asm-generic/bitops/ffz.h>
470
471#ifdef __KERNEL__
472
473#include <asm-generic/bitops/sched.h>
474
475#include <asm/arch_hweight.h>
476#include <asm-generic/bitops/const_hweight.h>
477
478#include <asm-generic/bitops/le.h>
479#include <asm-generic/bitops/ext2-atomic.h>
480
481#endif /* __KERNEL__ */
482
483#endif /* _ASM_BITOPS_H */