Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
 
 
 
 
 
 
 
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 56	}
 57
 58	return err;
 59}
 60
 61#ifdef CONFIG_ARCH_HAS_HUGEPD
 62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 63			     unsigned long end, struct mm_walk *walk, int pdshift)
 64{
 65	int err = 0;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int shift = hugepd_shift(*phpd);
 68	int page_size = 1 << shift;
 69
 70	if (!ops->pte_entry)
 71		return 0;
 72
 73	if (addr & (page_size - 1))
 74		return 0;
 75
 76	for (;;) {
 77		pte_t *pte;
 78
 79		spin_lock(&walk->mm->page_table_lock);
 80		pte = hugepte_offset(*phpd, addr, pdshift);
 81		err = ops->pte_entry(pte, addr, addr + page_size, walk);
 82		spin_unlock(&walk->mm->page_table_lock);
 83
 84		if (err)
 85			break;
 86		if (addr >= end - page_size)
 87			break;
 88		addr += page_size;
 89	}
 
 
 90	return err;
 91}
 92#else
 93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 94			     unsigned long end, struct mm_walk *walk, int pdshift)
 95{
 96	return 0;
 97}
 98#endif
 99
100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101			  struct mm_walk *walk)
102{
103	pmd_t *pmd;
104	unsigned long next;
105	const struct mm_walk_ops *ops = walk->ops;
 
 
106	int err = 0;
107	int depth = real_depth(3);
108
109	pmd = pmd_offset(pud, addr);
110	do {
111again:
112		next = pmd_addr_end(addr, end);
113		if (pmd_none(*pmd)) {
114			if (ops->pte_hole)
 
 
115				err = ops->pte_hole(addr, next, depth, walk);
116			if (err)
117				break;
118			continue;
 
119		}
120
121		walk->action = ACTION_SUBTREE;
122
123		/*
124		 * This implies that each ->pmd_entry() handler
125		 * needs to know about pmd_trans_huge() pmds
126		 */
127		if (ops->pmd_entry)
128			err = ops->pmd_entry(pmd, addr, next, walk);
129		if (err)
130			break;
131
132		if (walk->action == ACTION_AGAIN)
133			goto again;
134
135		/*
136		 * Check this here so we only break down trans_huge
137		 * pages when we _need_ to
138		 */
139		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140		    walk->action == ACTION_CONTINUE ||
141		    !(ops->pte_entry))
142			continue;
143
144		if (walk->vma) {
145			split_huge_pmd(walk->vma, pmd, addr);
146			if (pmd_trans_unstable(pmd))
147				goto again;
 
 
 
 
 
 
148		}
149
150		if (is_hugepd(__hugepd(pmd_val(*pmd))))
151			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152		else
153			err = walk_pte_range(pmd, addr, next, walk);
 
 
154		if (err)
155			break;
 
 
 
 
156	} while (pmd++, addr = next, addr != end);
157
158	return err;
159}
160
161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162			  struct mm_walk *walk)
163{
164	pud_t *pud;
165	unsigned long next;
166	const struct mm_walk_ops *ops = walk->ops;
 
 
167	int err = 0;
168	int depth = real_depth(2);
169
170	pud = pud_offset(p4d, addr);
171	do {
172 again:
173		next = pud_addr_end(addr, end);
174		if (pud_none(*pud)) {
175			if (ops->pte_hole)
 
 
176				err = ops->pte_hole(addr, next, depth, walk);
177			if (err)
178				break;
179			continue;
 
180		}
181
182		walk->action = ACTION_SUBTREE;
183
184		if (ops->pud_entry)
185			err = ops->pud_entry(pud, addr, next, walk);
186		if (err)
187			break;
188
189		if (walk->action == ACTION_AGAIN)
190			goto again;
191
192		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193		    walk->action == ACTION_CONTINUE ||
194		    !(ops->pmd_entry || ops->pte_entry))
195			continue;
196
 
 
 
 
 
 
 
 
 
 
 
 
197		if (walk->vma)
198			split_huge_pud(walk->vma, pud, addr);
 
 
 
199		if (pud_none(*pud))
200			goto again;
201
202		if (is_hugepd(__hugepd(pud_val(*pud))))
203			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204		else
205			err = walk_pmd_range(pud, addr, next, walk);
206		if (err)
207			break;
208	} while (pud++, addr = next, addr != end);
209
210	return err;
211}
212
213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214			  struct mm_walk *walk)
215{
216	p4d_t *p4d;
217	unsigned long next;
218	const struct mm_walk_ops *ops = walk->ops;
 
 
219	int err = 0;
220	int depth = real_depth(1);
221
222	p4d = p4d_offset(pgd, addr);
223	do {
224		next = p4d_addr_end(addr, end);
225		if (p4d_none_or_clear_bad(p4d)) {
226			if (ops->pte_hole)
 
 
227				err = ops->pte_hole(addr, next, depth, walk);
228			if (err)
229				break;
230			continue;
 
231		}
232		if (ops->p4d_entry) {
233			err = ops->p4d_entry(p4d, addr, next, walk);
234			if (err)
235				break;
236		}
237		if (is_hugepd(__hugepd(p4d_val(*p4d))))
238			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240			err = walk_pud_range(p4d, addr, next, walk);
241		if (err)
242			break;
243	} while (p4d++, addr = next, addr != end);
244
245	return err;
246}
247
248static int walk_pgd_range(unsigned long addr, unsigned long end,
249			  struct mm_walk *walk)
250{
251	pgd_t *pgd;
252	unsigned long next;
253	const struct mm_walk_ops *ops = walk->ops;
 
 
 
254	int err = 0;
255
256	if (walk->pgd)
257		pgd = walk->pgd + pgd_index(addr);
258	else
259		pgd = pgd_offset(walk->mm, addr);
260	do {
261		next = pgd_addr_end(addr, end);
262		if (pgd_none_or_clear_bad(pgd)) {
263			if (ops->pte_hole)
 
 
264				err = ops->pte_hole(addr, next, 0, walk);
265			if (err)
266				break;
267			continue;
 
268		}
269		if (ops->pgd_entry) {
270			err = ops->pgd_entry(pgd, addr, next, walk);
271			if (err)
272				break;
273		}
274		if (is_hugepd(__hugepd(pgd_val(*pgd))))
275			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277			err = walk_p4d_range(pgd, addr, next, walk);
278		if (err)
279			break;
280	} while (pgd++, addr = next, addr != end);
281
282	return err;
283}
284
285#ifdef CONFIG_HUGETLB_PAGE
286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287				       unsigned long end)
288{
289	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290	return boundary < end ? boundary : end;
291}
292
293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
294			      struct mm_walk *walk)
295{
296	struct vm_area_struct *vma = walk->vma;
297	struct hstate *h = hstate_vma(vma);
298	unsigned long next;
299	unsigned long hmask = huge_page_mask(h);
300	unsigned long sz = huge_page_size(h);
301	pte_t *pte;
302	const struct mm_walk_ops *ops = walk->ops;
303	int err = 0;
304
 
305	do {
306		next = hugetlb_entry_end(h, addr, end);
307		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309		if (pte)
310			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311		else if (ops->pte_hole)
312			err = ops->pte_hole(addr, next, -1, walk);
313
314		if (err)
315			break;
316	} while (addr = next, addr != end);
 
317
318	return err;
319}
320
321#else /* CONFIG_HUGETLB_PAGE */
322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
323			      struct mm_walk *walk)
324{
325	return 0;
326}
327
328#endif /* CONFIG_HUGETLB_PAGE */
329
330/*
331 * Decide whether we really walk over the current vma on [@start, @end)
332 * or skip it via the returned value. Return 0 if we do walk over the
333 * current vma, and return 1 if we skip the vma. Negative values means
334 * error, where we abort the current walk.
335 */
336static int walk_page_test(unsigned long start, unsigned long end,
337			struct mm_walk *walk)
338{
339	struct vm_area_struct *vma = walk->vma;
340	const struct mm_walk_ops *ops = walk->ops;
341
342	if (ops->test_walk)
343		return ops->test_walk(start, end, walk);
344
345	/*
346	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347	 * range, so we don't walk over it as we do for normal vmas. However,
348	 * Some callers are interested in handling hole range and they don't
349	 * want to just ignore any single address range. Such users certainly
350	 * define their ->pte_hole() callbacks, so let's delegate them to handle
351	 * vma(VM_PFNMAP).
352	 */
353	if (vma->vm_flags & VM_PFNMAP) {
354		int err = 1;
355		if (ops->pte_hole)
356			err = ops->pte_hole(start, end, -1, walk);
357		return err ? err : 1;
358	}
359	return 0;
360}
361
362static int __walk_page_range(unsigned long start, unsigned long end,
363			struct mm_walk *walk)
364{
365	int err = 0;
366	struct vm_area_struct *vma = walk->vma;
367	const struct mm_walk_ops *ops = walk->ops;
 
 
 
 
 
368
369	if (ops->pre_vma) {
370		err = ops->pre_vma(start, end, walk);
371		if (err)
372			return err;
373	}
374
375	if (is_vm_hugetlb_page(vma)) {
376		if (ops->hugetlb_entry)
377			err = walk_hugetlb_range(start, end, walk);
378	} else
379		err = walk_pgd_range(start, end, walk);
380
381	if (ops->post_vma)
382		ops->post_vma(walk);
383
384	return err;
385}
386
387/**
388 * walk_page_range - walk page table with caller specific callbacks
389 * @mm:		mm_struct representing the target process of page table walk
390 * @start:	start address of the virtual address range
391 * @end:	end address of the virtual address range
392 * @ops:	operation to call during the walk
393 * @private:	private data for callbacks' usage
394 *
395 * Recursively walk the page table tree of the process represented by @mm
396 * within the virtual address range [@start, @end). During walking, we can do
397 * some caller-specific works for each entry, by setting up pmd_entry(),
398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399 * callbacks, the associated entries/pages are just ignored.
400 * The return values of these callbacks are commonly defined like below:
401 *
402 *  - 0  : succeeded to handle the current entry, and if you don't reach the
403 *         end address yet, continue to walk.
404 *  - >0 : succeeded to handle the current entry, and return to the caller
405 *         with caller specific value.
406 *  - <0 : failed to handle the current entry, and return to the caller
407 *         with error code.
408 *
409 * Before starting to walk page table, some callers want to check whether
410 * they really want to walk over the current vma, typically by checking
411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412 * purpose.
413 *
414 * If operations need to be staged before and committed after a vma is walked,
415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416 * since it is intended to handle commit-type operations, can't return any
417 * errors.
418 *
419 * struct mm_walk keeps current values of some common data like vma and pmd,
420 * which are useful for the access from callbacks. If you want to pass some
421 * caller-specific data to callbacks, @private should be helpful.
422 *
423 * Locking:
424 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425 *   because these function traverse vma list and/or access to vma's data.
426 */
427int walk_page_range(struct mm_struct *mm, unsigned long start,
428		unsigned long end, const struct mm_walk_ops *ops,
429		void *private)
430{
431	int err = 0;
432	unsigned long next;
433	struct vm_area_struct *vma;
434	struct mm_walk walk = {
435		.ops		= ops,
436		.mm		= mm,
437		.private	= private,
438	};
439
440	if (start >= end)
441		return -EINVAL;
442
443	if (!walk.mm)
444		return -EINVAL;
445
446	mmap_assert_locked(walk.mm);
447
448	vma = find_vma(walk.mm, start);
449	do {
450		if (!vma) { /* after the last vma */
451			walk.vma = NULL;
452			next = end;
453			if (ops->pte_hole)
454				err = ops->pte_hole(start, next, -1, &walk);
455		} else if (start < vma->vm_start) { /* outside vma */
456			walk.vma = NULL;
457			next = min(end, vma->vm_start);
458			if (ops->pte_hole)
459				err = ops->pte_hole(start, next, -1, &walk);
460		} else { /* inside vma */
 
461			walk.vma = vma;
462			next = min(end, vma->vm_end);
463			vma = find_vma(mm, vma->vm_end);
464
465			err = walk_page_test(start, next, &walk);
466			if (err > 0) {
467				/*
468				 * positive return values are purely for
469				 * controlling the pagewalk, so should never
470				 * be passed to the callers.
471				 */
472				err = 0;
473				continue;
474			}
475			if (err < 0)
476				break;
477			err = __walk_page_range(start, next, &walk);
478		}
479		if (err)
480			break;
481	} while (start = next, start < end);
482	return err;
483}
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485/**
486 * walk_page_range_novma - walk a range of pagetables not backed by a vma
487 * @mm:		mm_struct representing the target process of page table walk
488 * @start:	start address of the virtual address range
489 * @end:	end address of the virtual address range
490 * @ops:	operation to call during the walk
491 * @pgd:	pgd to walk if different from mm->pgd
492 * @private:	private data for callbacks' usage
493 *
494 * Similar to walk_page_range() but can walk any page tables even if they are
495 * not backed by VMAs. Because 'unusual' entries may be walked this function
496 * will also not lock the PTEs for the pte_entry() callback. This is useful for
497 * walking the kernel pages tables or page tables for firmware.
 
 
 
 
 
498 */
499int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500			  unsigned long end, const struct mm_walk_ops *ops,
501			  pgd_t *pgd,
502			  void *private)
503{
504	struct mm_walk walk = {
505		.ops		= ops,
506		.mm		= mm,
507		.pgd		= pgd,
508		.private	= private,
509		.no_vma		= true
510	};
511
512	if (start >= end || !walk.mm)
513		return -EINVAL;
 
 
514
515	mmap_assert_write_locked(walk.mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
517	return walk_pgd_range(start, end, &walk);
518}
519
520int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
521			unsigned long end, const struct mm_walk_ops *ops,
522			void *private)
523{
524	struct mm_walk walk = {
525		.ops		= ops,
526		.mm		= vma->vm_mm,
527		.vma		= vma,
528		.private	= private,
529	};
530
531	if (start >= end || !walk.mm)
532		return -EINVAL;
533	if (start < vma->vm_start || end > vma->vm_end)
534		return -EINVAL;
 
 
535
536	mmap_assert_locked(walk.mm);
 
537	return __walk_page_range(start, end, &walk);
538}
539
540int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
541		void *private)
542{
543	struct mm_walk walk = {
544		.ops		= ops,
545		.mm		= vma->vm_mm,
546		.vma		= vma,
547		.private	= private,
548	};
549
550	if (!walk.mm)
551		return -EINVAL;
 
 
552
553	mmap_assert_locked(walk.mm);
 
554	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
555}
556
557/**
558 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
559 * @mapping: Pointer to the struct address_space
560 * @first_index: First page offset in the address_space
561 * @nr: Number of incremental page offsets to cover
562 * @ops:	operation to call during the walk
563 * @private:	private data for callbacks' usage
564 *
565 * This function walks all memory areas mapped into a struct address_space.
566 * The walk is limited to only the given page-size index range, but if
567 * the index boundaries cross a huge page-table entry, that entry will be
568 * included.
569 *
570 * Also see walk_page_range() for additional information.
571 *
572 * Locking:
573 *   This function can't require that the struct mm_struct::mmap_lock is held,
574 *   since @mapping may be mapped by multiple processes. Instead
575 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
576 *   callbacks, and it's up tho the caller to ensure that the
577 *   struct mm_struct::mmap_lock is not needed.
578 *
579 *   Also this means that a caller can't rely on the struct
580 *   vm_area_struct::vm_flags to be constant across a call,
581 *   except for immutable flags. Callers requiring this shouldn't use
582 *   this function.
583 *
584 * Return: 0 on success, negative error code on failure, positive number on
585 * caller defined premature termination.
586 */
587int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
588		      pgoff_t nr, const struct mm_walk_ops *ops,
589		      void *private)
590{
591	struct mm_walk walk = {
592		.ops		= ops,
593		.private	= private,
594	};
595	struct vm_area_struct *vma;
596	pgoff_t vba, vea, cba, cea;
597	unsigned long start_addr, end_addr;
598	int err = 0;
599
 
 
 
600	lockdep_assert_held(&mapping->i_mmap_rwsem);
601	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
602				  first_index + nr - 1) {
603		/* Clip to the vma */
604		vba = vma->vm_pgoff;
605		vea = vba + vma_pages(vma);
606		cba = first_index;
607		cba = max(cba, vba);
608		cea = first_index + nr;
609		cea = min(cea, vea);
610
611		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
612		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
613		if (start_addr >= end_addr)
614			continue;
615
616		walk.vma = vma;
617		walk.mm = vma->vm_mm;
618
619		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
620		if (err > 0) {
621			err = 0;
622			break;
623		} else if (err < 0)
624			break;
625
626		err = __walk_page_range(start_addr, end_addr, &walk);
627		if (err)
628			break;
629	}
630
631	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6#include <linux/mmu_context.h>
  7#include <linux/swap.h>
  8#include <linux/swapops.h>
  9
 10#include <asm/tlbflush.h>
 11
 12#include "internal.h"
 13
 14/*
 15 * We want to know the real level where a entry is located ignoring any
 16 * folding of levels which may be happening. For example if p4d is folded then
 17 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 18 */
 19static int real_depth(int depth)
 20{
 21	if (depth == 3 && PTRS_PER_PMD == 1)
 22		depth = 2;
 23	if (depth == 2 && PTRS_PER_PUD == 1)
 24		depth = 1;
 25	if (depth == 1 && PTRS_PER_P4D == 1)
 26		depth = 0;
 27	return depth;
 28}
 29
 30static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 31				unsigned long end, struct mm_walk *walk)
 32{
 33	const struct mm_walk_ops *ops = walk->ops;
 34	int err = 0;
 35
 36	for (;;) {
 37		if (ops->install_pte && pte_none(ptep_get(pte))) {
 38			pte_t new_pte;
 39
 40			err = ops->install_pte(addr, addr + PAGE_SIZE, &new_pte,
 41					       walk);
 42			if (err)
 43				break;
 44
 45			set_pte_at(walk->mm, addr, pte, new_pte);
 46			/* Non-present before, so for arches that need it. */
 47			if (!WARN_ON_ONCE(walk->no_vma))
 48				update_mmu_cache(walk->vma, addr, pte);
 49		} else {
 50			err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 51			if (err)
 52				break;
 53		}
 54		if (addr >= end - PAGE_SIZE)
 55			break;
 56		addr += PAGE_SIZE;
 57		pte++;
 58	}
 59	return err;
 60}
 61
 62static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 63			  struct mm_walk *walk)
 64{
 65	pte_t *pte;
 66	int err = 0;
 67	spinlock_t *ptl;
 68
 69	if (walk->no_vma) {
 70		/*
 71		 * pte_offset_map() might apply user-specific validation.
 72		 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
 73		 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
 74		 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
 75		 */
 76		if (walk->mm == &init_mm || addr >= TASK_SIZE)
 77			pte = pte_offset_kernel(pmd, addr);
 78		else
 79			pte = pte_offset_map(pmd, addr);
 80		if (pte) {
 81			err = walk_pte_range_inner(pte, addr, end, walk);
 82			if (walk->mm != &init_mm && addr < TASK_SIZE)
 83				pte_unmap(pte);
 84		}
 85	} else {
 86		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 87		if (pte) {
 88			err = walk_pte_range_inner(pte, addr, end, walk);
 89			pte_unmap_unlock(pte, ptl);
 90		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91	}
 92	if (!pte)
 93		walk->action = ACTION_AGAIN;
 94	return err;
 95}
 
 
 
 
 
 
 
 96
 97static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 98			  struct mm_walk *walk)
 99{
100	pmd_t *pmd;
101	unsigned long next;
102	const struct mm_walk_ops *ops = walk->ops;
103	bool has_handler = ops->pte_entry;
104	bool has_install = ops->install_pte;
105	int err = 0;
106	int depth = real_depth(3);
107
108	pmd = pmd_offset(pud, addr);
109	do {
110again:
111		next = pmd_addr_end(addr, end);
112		if (pmd_none(*pmd)) {
113			if (has_install)
114				err = __pte_alloc(walk->mm, pmd);
115			else if (ops->pte_hole)
116				err = ops->pte_hole(addr, next, depth, walk);
117			if (err)
118				break;
119			if (!has_install)
120				continue;
121		}
122
123		walk->action = ACTION_SUBTREE;
124
125		/*
126		 * This implies that each ->pmd_entry() handler
127		 * needs to know about pmd_trans_huge() pmds
128		 */
129		if (ops->pmd_entry)
130			err = ops->pmd_entry(pmd, addr, next, walk);
131		if (err)
132			break;
133
134		if (walk->action == ACTION_AGAIN)
135			goto again;
136		if (walk->action == ACTION_CONTINUE)
 
 
 
 
 
 
 
137			continue;
138
139		if (!has_handler) { /* No handlers for lower page tables. */
140			if (!has_install)
141				continue; /* Nothing to do. */
142			/*
143			 * We are ONLY installing, so avoid unnecessarily
144			 * splitting a present huge page.
145			 */
146			if (pmd_present(*pmd) &&
147			    (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
148				continue;
149		}
150
151		if (walk->vma)
152			split_huge_pmd(walk->vma, pmd, addr);
153		else if (pmd_leaf(*pmd) || !pmd_present(*pmd))
154			continue; /* Nothing to do. */
155
156		err = walk_pte_range(pmd, addr, next, walk);
157		if (err)
158			break;
159
160		if (walk->action == ACTION_AGAIN)
161			goto again;
162
163	} while (pmd++, addr = next, addr != end);
164
165	return err;
166}
167
168static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
169			  struct mm_walk *walk)
170{
171	pud_t *pud;
172	unsigned long next;
173	const struct mm_walk_ops *ops = walk->ops;
174	bool has_handler = ops->pmd_entry || ops->pte_entry;
175	bool has_install = ops->install_pte;
176	int err = 0;
177	int depth = real_depth(2);
178
179	pud = pud_offset(p4d, addr);
180	do {
181 again:
182		next = pud_addr_end(addr, end);
183		if (pud_none(*pud)) {
184			if (has_install)
185				err = __pmd_alloc(walk->mm, pud, addr);
186			else if (ops->pte_hole)
187				err = ops->pte_hole(addr, next, depth, walk);
188			if (err)
189				break;
190			if (!has_install)
191				continue;
192		}
193
194		walk->action = ACTION_SUBTREE;
195
196		if (ops->pud_entry)
197			err = ops->pud_entry(pud, addr, next, walk);
198		if (err)
199			break;
200
201		if (walk->action == ACTION_AGAIN)
202			goto again;
203		if (walk->action == ACTION_CONTINUE)
 
 
 
204			continue;
205
206		if (!has_handler) { /* No handlers for lower page tables. */
207			if (!has_install)
208				continue; /* Nothing to do. */
209			/*
210			 * We are ONLY installing, so avoid unnecessarily
211			 * splitting a present huge page.
212			 */
213			if (pud_present(*pud) &&
214			    (pud_trans_huge(*pud) || pud_devmap(*pud)))
215				continue;
216		}
217
218		if (walk->vma)
219			split_huge_pud(walk->vma, pud, addr);
220		else if (pud_leaf(*pud) || !pud_present(*pud))
221			continue; /* Nothing to do. */
222
223		if (pud_none(*pud))
224			goto again;
225
226		err = walk_pmd_range(pud, addr, next, walk);
 
 
 
227		if (err)
228			break;
229	} while (pud++, addr = next, addr != end);
230
231	return err;
232}
233
234static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
235			  struct mm_walk *walk)
236{
237	p4d_t *p4d;
238	unsigned long next;
239	const struct mm_walk_ops *ops = walk->ops;
240	bool has_handler = ops->pud_entry || ops->pmd_entry || ops->pte_entry;
241	bool has_install = ops->install_pte;
242	int err = 0;
243	int depth = real_depth(1);
244
245	p4d = p4d_offset(pgd, addr);
246	do {
247		next = p4d_addr_end(addr, end);
248		if (p4d_none_or_clear_bad(p4d)) {
249			if (has_install)
250				err = __pud_alloc(walk->mm, p4d, addr);
251			else if (ops->pte_hole)
252				err = ops->pte_hole(addr, next, depth, walk);
253			if (err)
254				break;
255			if (!has_install)
256				continue;
257		}
258		if (ops->p4d_entry) {
259			err = ops->p4d_entry(p4d, addr, next, walk);
260			if (err)
261				break;
262		}
263		if (has_handler || has_install)
 
 
264			err = walk_pud_range(p4d, addr, next, walk);
265		if (err)
266			break;
267	} while (p4d++, addr = next, addr != end);
268
269	return err;
270}
271
272static int walk_pgd_range(unsigned long addr, unsigned long end,
273			  struct mm_walk *walk)
274{
275	pgd_t *pgd;
276	unsigned long next;
277	const struct mm_walk_ops *ops = walk->ops;
278	bool has_handler = ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
279		ops->pte_entry;
280	bool has_install = ops->install_pte;
281	int err = 0;
282
283	if (walk->pgd)
284		pgd = walk->pgd + pgd_index(addr);
285	else
286		pgd = pgd_offset(walk->mm, addr);
287	do {
288		next = pgd_addr_end(addr, end);
289		if (pgd_none_or_clear_bad(pgd)) {
290			if (has_install)
291				err = __p4d_alloc(walk->mm, pgd, addr);
292			else if (ops->pte_hole)
293				err = ops->pte_hole(addr, next, 0, walk);
294			if (err)
295				break;
296			if (!has_install)
297				continue;
298		}
299		if (ops->pgd_entry) {
300			err = ops->pgd_entry(pgd, addr, next, walk);
301			if (err)
302				break;
303		}
304		if (has_handler || has_install)
 
 
305			err = walk_p4d_range(pgd, addr, next, walk);
306		if (err)
307			break;
308	} while (pgd++, addr = next, addr != end);
309
310	return err;
311}
312
313#ifdef CONFIG_HUGETLB_PAGE
314static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
315				       unsigned long end)
316{
317	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
318	return boundary < end ? boundary : end;
319}
320
321static int walk_hugetlb_range(unsigned long addr, unsigned long end,
322			      struct mm_walk *walk)
323{
324	struct vm_area_struct *vma = walk->vma;
325	struct hstate *h = hstate_vma(vma);
326	unsigned long next;
327	unsigned long hmask = huge_page_mask(h);
328	unsigned long sz = huge_page_size(h);
329	pte_t *pte;
330	const struct mm_walk_ops *ops = walk->ops;
331	int err = 0;
332
333	hugetlb_vma_lock_read(vma);
334	do {
335		next = hugetlb_entry_end(h, addr, end);
336		pte = hugetlb_walk(vma, addr & hmask, sz);
 
337		if (pte)
338			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
339		else if (ops->pte_hole)
340			err = ops->pte_hole(addr, next, -1, walk);
 
341		if (err)
342			break;
343	} while (addr = next, addr != end);
344	hugetlb_vma_unlock_read(vma);
345
346	return err;
347}
348
349#else /* CONFIG_HUGETLB_PAGE */
350static int walk_hugetlb_range(unsigned long addr, unsigned long end,
351			      struct mm_walk *walk)
352{
353	return 0;
354}
355
356#endif /* CONFIG_HUGETLB_PAGE */
357
358/*
359 * Decide whether we really walk over the current vma on [@start, @end)
360 * or skip it via the returned value. Return 0 if we do walk over the
361 * current vma, and return 1 if we skip the vma. Negative values means
362 * error, where we abort the current walk.
363 */
364static int walk_page_test(unsigned long start, unsigned long end,
365			struct mm_walk *walk)
366{
367	struct vm_area_struct *vma = walk->vma;
368	const struct mm_walk_ops *ops = walk->ops;
369
370	if (ops->test_walk)
371		return ops->test_walk(start, end, walk);
372
373	/*
374	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
375	 * range, so we don't walk over it as we do for normal vmas. However,
376	 * Some callers are interested in handling hole range and they don't
377	 * want to just ignore any single address range. Such users certainly
378	 * define their ->pte_hole() callbacks, so let's delegate them to handle
379	 * vma(VM_PFNMAP).
380	 */
381	if (vma->vm_flags & VM_PFNMAP) {
382		int err = 1;
383		if (ops->pte_hole)
384			err = ops->pte_hole(start, end, -1, walk);
385		return err ? err : 1;
386	}
387	return 0;
388}
389
390static int __walk_page_range(unsigned long start, unsigned long end,
391			struct mm_walk *walk)
392{
393	int err = 0;
394	struct vm_area_struct *vma = walk->vma;
395	const struct mm_walk_ops *ops = walk->ops;
396	bool is_hugetlb = is_vm_hugetlb_page(vma);
397
398	/* We do not support hugetlb PTE installation. */
399	if (ops->install_pte && is_hugetlb)
400		return -EINVAL;
401
402	if (ops->pre_vma) {
403		err = ops->pre_vma(start, end, walk);
404		if (err)
405			return err;
406	}
407
408	if (is_hugetlb) {
409		if (ops->hugetlb_entry)
410			err = walk_hugetlb_range(start, end, walk);
411	} else
412		err = walk_pgd_range(start, end, walk);
413
414	if (ops->post_vma)
415		ops->post_vma(walk);
416
417	return err;
418}
419
420static inline void process_mm_walk_lock(struct mm_struct *mm,
421					enum page_walk_lock walk_lock)
422{
423	if (walk_lock == PGWALK_RDLOCK)
424		mmap_assert_locked(mm);
425	else
426		mmap_assert_write_locked(mm);
427}
428
429static inline void process_vma_walk_lock(struct vm_area_struct *vma,
430					 enum page_walk_lock walk_lock)
431{
432#ifdef CONFIG_PER_VMA_LOCK
433	switch (walk_lock) {
434	case PGWALK_WRLOCK:
435		vma_start_write(vma);
436		break;
437	case PGWALK_WRLOCK_VERIFY:
438		vma_assert_write_locked(vma);
439		break;
440	case PGWALK_RDLOCK:
441		/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
442		break;
443	}
444#endif
445}
446
447/*
448 * See the comment for walk_page_range(), this performs the heavy lifting of the
449 * operation, only sets no restrictions on how the walk proceeds.
 
 
 
 
 
450 *
451 * We usually restrict the ability to install PTEs, but this functionality is
452 * available to internal memory management code and provided in mm/internal.h.
 
453 */
454int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
455		unsigned long end, const struct mm_walk_ops *ops,
456		void *private)
457{
458	int err = 0;
459	unsigned long next;
460	struct vm_area_struct *vma;
461	struct mm_walk walk = {
462		.ops		= ops,
463		.mm		= mm,
464		.private	= private,
465	};
466
467	if (start >= end)
468		return -EINVAL;
469
470	if (!walk.mm)
471		return -EINVAL;
472
473	process_mm_walk_lock(walk.mm, ops->walk_lock);
474
475	vma = find_vma(walk.mm, start);
476	do {
477		if (!vma) { /* after the last vma */
478			walk.vma = NULL;
479			next = end;
480			if (ops->pte_hole)
481				err = ops->pte_hole(start, next, -1, &walk);
482		} else if (start < vma->vm_start) { /* outside vma */
483			walk.vma = NULL;
484			next = min(end, vma->vm_start);
485			if (ops->pte_hole)
486				err = ops->pte_hole(start, next, -1, &walk);
487		} else { /* inside vma */
488			process_vma_walk_lock(vma, ops->walk_lock);
489			walk.vma = vma;
490			next = min(end, vma->vm_end);
491			vma = find_vma(mm, vma->vm_end);
492
493			err = walk_page_test(start, next, &walk);
494			if (err > 0) {
495				/*
496				 * positive return values are purely for
497				 * controlling the pagewalk, so should never
498				 * be passed to the callers.
499				 */
500				err = 0;
501				continue;
502			}
503			if (err < 0)
504				break;
505			err = __walk_page_range(start, next, &walk);
506		}
507		if (err)
508			break;
509	} while (start = next, start < end);
510	return err;
511}
512
513/*
514 * Determine if the walk operations specified are permitted to be used for a
515 * page table walk.
516 *
517 * This check is performed on all functions which are parameterised by walk
518 * operations and exposed in include/linux/pagewalk.h.
519 *
520 * Internal memory management code can use the walk_page_range_mm() function to
521 * be able to use all page walking operations.
522 */
523static bool check_ops_valid(const struct mm_walk_ops *ops)
524{
525	/*
526	 * The installation of PTEs is solely under the control of memory
527	 * management logic and subject to many subtle locking, security and
528	 * cache considerations so we cannot permit other users to do so, and
529	 * certainly not for exported symbols.
530	 */
531	if (ops->install_pte)
532		return false;
533
534	return true;
535}
536
537/**
538 * walk_page_range - walk page table with caller specific callbacks
539 * @mm:		mm_struct representing the target process of page table walk
540 * @start:	start address of the virtual address range
541 * @end:	end address of the virtual address range
542 * @ops:	operation to call during the walk
543 * @private:	private data for callbacks' usage
544 *
545 * Recursively walk the page table tree of the process represented by @mm
546 * within the virtual address range [@start, @end). During walking, we can do
547 * some caller-specific works for each entry, by setting up pmd_entry(),
548 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
549 * callbacks, the associated entries/pages are just ignored.
550 * The return values of these callbacks are commonly defined like below:
551 *
552 *  - 0  : succeeded to handle the current entry, and if you don't reach the
553 *         end address yet, continue to walk.
554 *  - >0 : succeeded to handle the current entry, and return to the caller
555 *         with caller specific value.
556 *  - <0 : failed to handle the current entry, and return to the caller
557 *         with error code.
558 *
559 * Before starting to walk page table, some callers want to check whether
560 * they really want to walk over the current vma, typically by checking
561 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
562 * purpose.
563 *
564 * If operations need to be staged before and committed after a vma is walked,
565 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
566 * since it is intended to handle commit-type operations, can't return any
567 * errors.
568 *
569 * struct mm_walk keeps current values of some common data like vma and pmd,
570 * which are useful for the access from callbacks. If you want to pass some
571 * caller-specific data to callbacks, @private should be helpful.
572 *
573 * Locking:
574 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
575 *   because these function traverse vma list and/or access to vma's data.
576 */
577int walk_page_range(struct mm_struct *mm, unsigned long start,
578		unsigned long end, const struct mm_walk_ops *ops,
579		void *private)
580{
581	if (!check_ops_valid(ops))
582		return -EINVAL;
583
584	return walk_page_range_mm(mm, start, end, ops, private);
585}
586
587/**
588 * walk_page_range_novma - walk a range of pagetables not backed by a vma
589 * @mm:		mm_struct representing the target process of page table walk
590 * @start:	start address of the virtual address range
591 * @end:	end address of the virtual address range
592 * @ops:	operation to call during the walk
593 * @pgd:	pgd to walk if different from mm->pgd
594 * @private:	private data for callbacks' usage
595 *
596 * Similar to walk_page_range() but can walk any page tables even if they are
597 * not backed by VMAs. Because 'unusual' entries may be walked this function
598 * will also not lock the PTEs for the pte_entry() callback. This is useful for
599 * walking the kernel pages tables or page tables for firmware.
600 *
601 * Note: Be careful to walk the kernel pages tables, the caller may be need to
602 * take other effective approaches (mmap lock may be insufficient) to prevent
603 * the intermediate kernel page tables belonging to the specified address range
604 * from being freed (e.g. memory hot-remove).
605 */
606int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
607			  unsigned long end, const struct mm_walk_ops *ops,
608			  pgd_t *pgd,
609			  void *private)
610{
611	struct mm_walk walk = {
612		.ops		= ops,
613		.mm		= mm,
614		.pgd		= pgd,
615		.private	= private,
616		.no_vma		= true
617	};
618
619	if (start >= end || !walk.mm)
620		return -EINVAL;
621	if (!check_ops_valid(ops))
622		return -EINVAL;
623
624	/*
625	 * 1) For walking the user virtual address space:
626	 *
627	 * The mmap lock protects the page walker from changes to the page
628	 * tables during the walk.  However a read lock is insufficient to
629	 * protect those areas which don't have a VMA as munmap() detaches
630	 * the VMAs before downgrading to a read lock and actually tearing
631	 * down PTEs/page tables. In which case, the mmap write lock should
632	 * be hold.
633	 *
634	 * 2) For walking the kernel virtual address space:
635	 *
636	 * The kernel intermediate page tables usually do not be freed, so
637	 * the mmap map read lock is sufficient. But there are some exceptions.
638	 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
639	 * to prevent the intermediate kernel pages tables belonging to the
640	 * specified address range from being freed. The caller should take
641	 * other actions to prevent this race.
642	 */
643	if (mm == &init_mm)
644		mmap_assert_locked(walk.mm);
645	else
646		mmap_assert_write_locked(walk.mm);
647
648	return walk_pgd_range(start, end, &walk);
649}
650
651int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
652			unsigned long end, const struct mm_walk_ops *ops,
653			void *private)
654{
655	struct mm_walk walk = {
656		.ops		= ops,
657		.mm		= vma->vm_mm,
658		.vma		= vma,
659		.private	= private,
660	};
661
662	if (start >= end || !walk.mm)
663		return -EINVAL;
664	if (start < vma->vm_start || end > vma->vm_end)
665		return -EINVAL;
666	if (!check_ops_valid(ops))
667		return -EINVAL;
668
669	process_mm_walk_lock(walk.mm, ops->walk_lock);
670	process_vma_walk_lock(vma, ops->walk_lock);
671	return __walk_page_range(start, end, &walk);
672}
673
674int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
675		void *private)
676{
677	struct mm_walk walk = {
678		.ops		= ops,
679		.mm		= vma->vm_mm,
680		.vma		= vma,
681		.private	= private,
682	};
683
684	if (!walk.mm)
685		return -EINVAL;
686	if (!check_ops_valid(ops))
687		return -EINVAL;
688
689	process_mm_walk_lock(walk.mm, ops->walk_lock);
690	process_vma_walk_lock(vma, ops->walk_lock);
691	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
692}
693
694/**
695 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
696 * @mapping: Pointer to the struct address_space
697 * @first_index: First page offset in the address_space
698 * @nr: Number of incremental page offsets to cover
699 * @ops:	operation to call during the walk
700 * @private:	private data for callbacks' usage
701 *
702 * This function walks all memory areas mapped into a struct address_space.
703 * The walk is limited to only the given page-size index range, but if
704 * the index boundaries cross a huge page-table entry, that entry will be
705 * included.
706 *
707 * Also see walk_page_range() for additional information.
708 *
709 * Locking:
710 *   This function can't require that the struct mm_struct::mmap_lock is held,
711 *   since @mapping may be mapped by multiple processes. Instead
712 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
713 *   callbacks, and it's up tho the caller to ensure that the
714 *   struct mm_struct::mmap_lock is not needed.
715 *
716 *   Also this means that a caller can't rely on the struct
717 *   vm_area_struct::vm_flags to be constant across a call,
718 *   except for immutable flags. Callers requiring this shouldn't use
719 *   this function.
720 *
721 * Return: 0 on success, negative error code on failure, positive number on
722 * caller defined premature termination.
723 */
724int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
725		      pgoff_t nr, const struct mm_walk_ops *ops,
726		      void *private)
727{
728	struct mm_walk walk = {
729		.ops		= ops,
730		.private	= private,
731	};
732	struct vm_area_struct *vma;
733	pgoff_t vba, vea, cba, cea;
734	unsigned long start_addr, end_addr;
735	int err = 0;
736
737	if (!check_ops_valid(ops))
738		return -EINVAL;
739
740	lockdep_assert_held(&mapping->i_mmap_rwsem);
741	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
742				  first_index + nr - 1) {
743		/* Clip to the vma */
744		vba = vma->vm_pgoff;
745		vea = vba + vma_pages(vma);
746		cba = first_index;
747		cba = max(cba, vba);
748		cea = first_index + nr;
749		cea = min(cea, vea);
750
751		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
752		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
753		if (start_addr >= end_addr)
754			continue;
755
756		walk.vma = vma;
757		walk.mm = vma->vm_mm;
758
759		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
760		if (err > 0) {
761			err = 0;
762			break;
763		} else if (err < 0)
764			break;
765
766		err = __walk_page_range(start_addr, end_addr, &walk);
767		if (err)
768			break;
769	}
770
771	return err;
772}
773
774/**
775 * folio_walk_start - walk the page tables to a folio
776 * @fw: filled with information on success.
777 * @vma: the VMA.
778 * @addr: the virtual address to use for the page table walk.
779 * @flags: flags modifying which folios to walk to.
780 *
781 * Walk the page tables using @addr in a given @vma to a mapped folio and
782 * return the folio, making sure that the page table entry referenced by
783 * @addr cannot change until folio_walk_end() was called.
784 *
785 * As default, this function returns only folios that are not special (e.g., not
786 * the zeropage) and never returns folios that are supposed to be ignored by the
787 * VM as documented by vm_normal_page(). If requested, zeropages will be
788 * returned as well.
789 *
790 * As default, this function only considers present page table entries.
791 * If requested, it will also consider migration entries.
792 *
793 * If this function returns NULL it might either indicate "there is nothing" or
794 * "there is nothing suitable".
795 *
796 * On success, @fw is filled and the function returns the folio while the PTL
797 * is still held and folio_walk_end() must be called to clean up,
798 * releasing any held locks. The returned folio must *not* be used after the
799 * call to folio_walk_end(), unless a short-term folio reference is taken before
800 * that call.
801 *
802 * @fw->page will correspond to the page that is effectively referenced by
803 * @addr. However, for migration entries and shared zeropages @fw->page is
804 * set to NULL. Note that large folios might be mapped by multiple page table
805 * entries, and this function will always only lookup a single entry as
806 * specified by @addr, which might or might not cover more than a single page of
807 * the returned folio.
808 *
809 * This function must *not* be used as a naive replacement for
810 * get_user_pages() / pin_user_pages(), especially not to perform DMA or
811 * to carelessly modify page content. This function may *only* be used to grab
812 * short-term folio references, never to grab long-term folio references.
813 *
814 * Using the page table entry pointers in @fw for reading or modifying the
815 * entry should be avoided where possible: however, there might be valid
816 * use cases.
817 *
818 * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
819 * For example, PMD page table sharing might require prior unsharing. Also,
820 * logical hugetlb entries might span multiple physical page table entries,
821 * which *must* be modified in a single operation (set_huge_pte_at(),
822 * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
823 * not correspond to the first physical entry of a logical hugetlb entry.
824 *
825 * The mmap lock must be held in read mode.
826 *
827 * Return: folio pointer on success, otherwise NULL.
828 */
829struct folio *folio_walk_start(struct folio_walk *fw,
830		struct vm_area_struct *vma, unsigned long addr,
831		folio_walk_flags_t flags)
832{
833	unsigned long entry_size;
834	bool expose_page = true;
835	struct page *page;
836	pud_t *pudp, pud;
837	pmd_t *pmdp, pmd;
838	pte_t *ptep, pte;
839	spinlock_t *ptl;
840	pgd_t *pgdp;
841	p4d_t *p4dp;
842
843	mmap_assert_locked(vma->vm_mm);
844	vma_pgtable_walk_begin(vma);
845
846	if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end))
847		goto not_found;
848
849	pgdp = pgd_offset(vma->vm_mm, addr);
850	if (pgd_none_or_clear_bad(pgdp))
851		goto not_found;
852
853	p4dp = p4d_offset(pgdp, addr);
854	if (p4d_none_or_clear_bad(p4dp))
855		goto not_found;
856
857	pudp = pud_offset(p4dp, addr);
858	pud = pudp_get(pudp);
859	if (pud_none(pud))
860		goto not_found;
861	if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
862	    (!pud_present(pud) || pud_leaf(pud))) {
863		ptl = pud_lock(vma->vm_mm, pudp);
864		pud = pudp_get(pudp);
865
866		entry_size = PUD_SIZE;
867		fw->level = FW_LEVEL_PUD;
868		fw->pudp = pudp;
869		fw->pud = pud;
870
871		/*
872		 * TODO: FW_MIGRATION support for PUD migration entries
873		 * once there are relevant users.
874		 */
875		if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) {
876			spin_unlock(ptl);
877			goto not_found;
878		} else if (!pud_leaf(pud)) {
879			spin_unlock(ptl);
880			goto pmd_table;
881		}
882		/*
883		 * TODO: vm_normal_page_pud() will be handy once we want to
884		 * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
885		 */
886		page = pud_page(pud);
887		goto found;
888	}
889
890pmd_table:
891	VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud));
892	pmdp = pmd_offset(pudp, addr);
893	pmd = pmdp_get_lockless(pmdp);
894	if (pmd_none(pmd))
895		goto not_found;
896	if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
897	    (!pmd_present(pmd) || pmd_leaf(pmd))) {
898		ptl = pmd_lock(vma->vm_mm, pmdp);
899		pmd = pmdp_get(pmdp);
900
901		entry_size = PMD_SIZE;
902		fw->level = FW_LEVEL_PMD;
903		fw->pmdp = pmdp;
904		fw->pmd = pmd;
905
906		if (pmd_none(pmd)) {
907			spin_unlock(ptl);
908			goto not_found;
909		} else if (pmd_present(pmd) && !pmd_leaf(pmd)) {
910			spin_unlock(ptl);
911			goto pte_table;
912		} else if (pmd_present(pmd)) {
913			page = vm_normal_page_pmd(vma, addr, pmd);
914			if (page) {
915				goto found;
916			} else if ((flags & FW_ZEROPAGE) &&
917				    is_huge_zero_pmd(pmd)) {
918				page = pfn_to_page(pmd_pfn(pmd));
919				expose_page = false;
920				goto found;
921			}
922		} else if ((flags & FW_MIGRATION) &&
923			   is_pmd_migration_entry(pmd)) {
924			swp_entry_t entry = pmd_to_swp_entry(pmd);
925
926			page = pfn_swap_entry_to_page(entry);
927			expose_page = false;
928			goto found;
929		}
930		spin_unlock(ptl);
931		goto not_found;
932	}
933
934pte_table:
935	VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd));
936	ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl);
937	if (!ptep)
938		goto not_found;
939	pte = ptep_get(ptep);
940
941	entry_size = PAGE_SIZE;
942	fw->level = FW_LEVEL_PTE;
943	fw->ptep = ptep;
944	fw->pte = pte;
945
946	if (pte_present(pte)) {
947		page = vm_normal_page(vma, addr, pte);
948		if (page)
949			goto found;
950		if ((flags & FW_ZEROPAGE) &&
951		    is_zero_pfn(pte_pfn(pte))) {
952			page = pfn_to_page(pte_pfn(pte));
953			expose_page = false;
954			goto found;
955		}
956	} else if (!pte_none(pte)) {
957		swp_entry_t entry = pte_to_swp_entry(pte);
958
959		if ((flags & FW_MIGRATION) &&
960		    is_migration_entry(entry)) {
961			page = pfn_swap_entry_to_page(entry);
962			expose_page = false;
963			goto found;
964		}
965	}
966	pte_unmap_unlock(ptep, ptl);
967not_found:
968	vma_pgtable_walk_end(vma);
969	return NULL;
970found:
971	if (expose_page)
972		/* Note: Offset from the mapped page, not the folio start. */
973		fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT);
974	else
975		fw->page = NULL;
976	fw->ptl = ptl;
977	return page_folio(page);
978}