Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * KFENCE guarded object allocator and fault handling.
   4 *
   5 * Copyright (C) 2020, Google LLC.
   6 */
   7
   8#define pr_fmt(fmt) "kfence: " fmt
   9
  10#include <linux/atomic.h>
  11#include <linux/bug.h>
  12#include <linux/debugfs.h>
  13#include <linux/hash.h>
  14#include <linux/irq_work.h>
  15#include <linux/jhash.h>
  16#include <linux/kcsan-checks.h>
  17#include <linux/kfence.h>
  18#include <linux/kmemleak.h>
  19#include <linux/list.h>
  20#include <linux/lockdep.h>
  21#include <linux/log2.h>
  22#include <linux/memblock.h>
  23#include <linux/moduleparam.h>
 
  24#include <linux/notifier.h>
  25#include <linux/panic_notifier.h>
  26#include <linux/random.h>
  27#include <linux/rcupdate.h>
  28#include <linux/sched/clock.h>
  29#include <linux/seq_file.h>
  30#include <linux/slab.h>
  31#include <linux/spinlock.h>
  32#include <linux/string.h>
  33
  34#include <asm/kfence.h>
  35
  36#include "kfence.h"
  37
  38/* Disables KFENCE on the first warning assuming an irrecoverable error. */
  39#define KFENCE_WARN_ON(cond)                                                   \
  40	({                                                                     \
  41		const bool __cond = WARN_ON(cond);                             \
  42		if (unlikely(__cond)) {                                        \
  43			WRITE_ONCE(kfence_enabled, false);                     \
  44			disabled_by_warn = true;                               \
  45		}                                                              \
  46		__cond;                                                        \
  47	})
  48
  49/* === Data ================================================================= */
  50
  51static bool kfence_enabled __read_mostly;
  52static bool disabled_by_warn __read_mostly;
  53
  54unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
  55EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
  56
  57#ifdef MODULE_PARAM_PREFIX
  58#undef MODULE_PARAM_PREFIX
  59#endif
  60#define MODULE_PARAM_PREFIX "kfence."
  61
  62static int kfence_enable_late(void);
  63static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
  64{
  65	unsigned long num;
  66	int ret = kstrtoul(val, 0, &num);
  67
  68	if (ret < 0)
  69		return ret;
  70
  71	/* Using 0 to indicate KFENCE is disabled. */
  72	if (!num && READ_ONCE(kfence_enabled)) {
  73		pr_info("disabled\n");
  74		WRITE_ONCE(kfence_enabled, false);
  75	}
  76
  77	*((unsigned long *)kp->arg) = num;
  78
  79	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
  80		return disabled_by_warn ? -EINVAL : kfence_enable_late();
  81	return 0;
  82}
  83
  84static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
  85{
  86	if (!READ_ONCE(kfence_enabled))
  87		return sprintf(buffer, "0\n");
  88
  89	return param_get_ulong(buffer, kp);
  90}
  91
  92static const struct kernel_param_ops sample_interval_param_ops = {
  93	.set = param_set_sample_interval,
  94	.get = param_get_sample_interval,
  95};
  96module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
  97
  98/* Pool usage% threshold when currently covered allocations are skipped. */
  99static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
 100module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
 101
 
 
 
 
 102/* If true, use a deferrable timer. */
 103static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
 104module_param_named(deferrable, kfence_deferrable, bool, 0444);
 105
 106/* If true, check all canary bytes on panic. */
 107static bool kfence_check_on_panic __read_mostly;
 108module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
 109
 110/* The pool of pages used for guard pages and objects. */
 111char *__kfence_pool __read_mostly;
 112EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
 113
 114/*
 115 * Per-object metadata, with one-to-one mapping of object metadata to
 116 * backing pages (in __kfence_pool).
 117 */
 118static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
 119struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
 
 
 
 
 
 
 
 
 120
 121/* Freelist with available objects. */
 122static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
 123static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
 124
 125/*
 126 * The static key to set up a KFENCE allocation; or if static keys are not used
 127 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
 128 */
 129DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
 130
 131/* Gates the allocation, ensuring only one succeeds in a given period. */
 132atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
 133
 134/*
 135 * A Counting Bloom filter of allocation coverage: limits currently covered
 136 * allocations of the same source filling up the pool.
 137 *
 138 * Assuming a range of 15%-85% unique allocations in the pool at any point in
 139 * time, the below parameters provide a probablity of 0.02-0.33 for false
 140 * positive hits respectively:
 141 *
 142 *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
 143 */
 144#define ALLOC_COVERED_HNUM	2
 145#define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
 146#define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
 147#define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
 148#define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
 149static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
 150
 151/* Stack depth used to determine uniqueness of an allocation. */
 152#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
 153
 154/*
 155 * Randomness for stack hashes, making the same collisions across reboots and
 156 * different machines less likely.
 157 */
 158static u32 stack_hash_seed __ro_after_init;
 159
 160/* Statistics counters for debugfs. */
 161enum kfence_counter_id {
 162	KFENCE_COUNTER_ALLOCATED,
 163	KFENCE_COUNTER_ALLOCS,
 164	KFENCE_COUNTER_FREES,
 165	KFENCE_COUNTER_ZOMBIES,
 166	KFENCE_COUNTER_BUGS,
 167	KFENCE_COUNTER_SKIP_INCOMPAT,
 168	KFENCE_COUNTER_SKIP_CAPACITY,
 169	KFENCE_COUNTER_SKIP_COVERED,
 170	KFENCE_COUNTER_COUNT,
 171};
 172static atomic_long_t counters[KFENCE_COUNTER_COUNT];
 173static const char *const counter_names[] = {
 174	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
 175	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
 176	[KFENCE_COUNTER_FREES]		= "total frees",
 177	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
 178	[KFENCE_COUNTER_BUGS]		= "total bugs",
 179	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
 180	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
 181	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
 182};
 183static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
 184
 185/* === Internals ============================================================ */
 186
 187static inline bool should_skip_covered(void)
 188{
 189	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
 190
 191	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
 192}
 193
 194static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
 195{
 196	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
 197	num_entries = filter_irq_stacks(stack_entries, num_entries);
 198	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
 199}
 200
 201/*
 202 * Adds (or subtracts) count @val for allocation stack trace hash
 203 * @alloc_stack_hash from Counting Bloom filter.
 204 */
 205static void alloc_covered_add(u32 alloc_stack_hash, int val)
 206{
 207	int i;
 208
 209	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 210		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
 211		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 212	}
 213}
 214
 215/*
 216 * Returns true if the allocation stack trace hash @alloc_stack_hash is
 217 * currently contained (non-zero count) in Counting Bloom filter.
 218 */
 219static bool alloc_covered_contains(u32 alloc_stack_hash)
 220{
 221	int i;
 222
 223	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 224		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
 225			return false;
 226		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 227	}
 228
 229	return true;
 230}
 231
 232static bool kfence_protect(unsigned long addr)
 233{
 234	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
 235}
 236
 237static bool kfence_unprotect(unsigned long addr)
 238{
 239	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
 240}
 241
 242static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
 243{
 244	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
 245	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
 246
 247	/* The checks do not affect performance; only called from slow-paths. */
 248
 249	/* Only call with a pointer into kfence_metadata. */
 250	if (KFENCE_WARN_ON(meta < kfence_metadata ||
 251			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
 252		return 0;
 253
 254	/*
 255	 * This metadata object only ever maps to 1 page; verify that the stored
 256	 * address is in the expected range.
 257	 */
 258	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
 259		return 0;
 260
 261	return pageaddr;
 262}
 263
 
 
 
 
 
 
 
 264/*
 265 * Update the object's metadata state, including updating the alloc/free stacks
 266 * depending on the state transition.
 267 */
 268static noinline void
 269metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
 270		      unsigned long *stack_entries, size_t num_stack_entries)
 271{
 272	struct kfence_track *track =
 273		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
 274
 275	lockdep_assert_held(&meta->lock);
 276
 
 
 
 
 277	if (stack_entries) {
 278		memcpy(track->stack_entries, stack_entries,
 279		       num_stack_entries * sizeof(stack_entries[0]));
 280	} else {
 281		/*
 282		 * Skip over 1 (this) functions; noinline ensures we do not
 283		 * accidentally skip over the caller by never inlining.
 284		 */
 285		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
 286	}
 287	track->num_stack_entries = num_stack_entries;
 288	track->pid = task_pid_nr(current);
 289	track->cpu = raw_smp_processor_id();
 290	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
 291
 
 292	/*
 293	 * Pairs with READ_ONCE() in
 294	 *	kfence_shutdown_cache(),
 295	 *	kfence_handle_page_fault().
 296	 */
 297	WRITE_ONCE(meta->state, next);
 298}
 299
 300/* Write canary byte to @addr. */
 301static inline bool set_canary_byte(u8 *addr)
 302{
 303	*addr = KFENCE_CANARY_PATTERN(addr);
 304	return true;
 305}
 306
 307/* Check canary byte at @addr. */
 308static inline bool check_canary_byte(u8 *addr)
 309{
 310	struct kfence_metadata *meta;
 311	unsigned long flags;
 312
 313	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
 314		return true;
 315
 316	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 317
 318	meta = addr_to_metadata((unsigned long)addr);
 319	raw_spin_lock_irqsave(&meta->lock, flags);
 320	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
 321	raw_spin_unlock_irqrestore(&meta->lock, flags);
 322
 323	return false;
 324}
 325
 326/* __always_inline this to ensure we won't do an indirect call to fn. */
 327static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
 328{
 329	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 330	unsigned long addr;
 331
 332	/*
 333	 * We'll iterate over each canary byte per-side until fn() returns
 334	 * false. However, we'll still iterate over the canary bytes to the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335	 * right of the object even if there was an error in the canary bytes to
 336	 * the left of the object. Specifically, if check_canary_byte()
 337	 * generates an error, showing both sides might give more clues as to
 338	 * what the error is about when displaying which bytes were corrupted.
 339	 */
 340
 341	/* Apply to left of object. */
 342	for (addr = pageaddr; addr < meta->addr; addr++) {
 343		if (!fn((u8 *)addr))
 344			break;
 345	}
 346
 347	/* Apply to right of object. */
 348	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
 349		if (!fn((u8 *)addr))
 
 
 
 
 350			break;
 351	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352}
 353
 354static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
 355				  unsigned long *stack_entries, size_t num_stack_entries,
 356				  u32 alloc_stack_hash)
 357{
 358	struct kfence_metadata *meta = NULL;
 359	unsigned long flags;
 360	struct slab *slab;
 361	void *addr;
 362	const bool random_right_allocate = get_random_u32_below(2);
 363	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
 364				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
 365
 366	/* Try to obtain a free object. */
 367	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 368	if (!list_empty(&kfence_freelist)) {
 369		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
 370		list_del_init(&meta->list);
 371	}
 372	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 373	if (!meta) {
 374		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
 375		return NULL;
 376	}
 377
 378	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
 379		/*
 380		 * This is extremely unlikely -- we are reporting on a
 381		 * use-after-free, which locked meta->lock, and the reporting
 382		 * code via printk calls kmalloc() which ends up in
 383		 * kfence_alloc() and tries to grab the same object that we're
 384		 * reporting on. While it has never been observed, lockdep does
 385		 * report that there is a possibility of deadlock. Fix it by
 386		 * using trylock and bailing out gracefully.
 387		 */
 388		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 389		/* Put the object back on the freelist. */
 390		list_add_tail(&meta->list, &kfence_freelist);
 391		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 392
 393		return NULL;
 394	}
 395
 396	meta->addr = metadata_to_pageaddr(meta);
 397	/* Unprotect if we're reusing this page. */
 398	if (meta->state == KFENCE_OBJECT_FREED)
 399		kfence_unprotect(meta->addr);
 400
 401	/*
 402	 * Note: for allocations made before RNG initialization, will always
 403	 * return zero. We still benefit from enabling KFENCE as early as
 404	 * possible, even when the RNG is not yet available, as this will allow
 405	 * KFENCE to detect bugs due to earlier allocations. The only downside
 406	 * is that the out-of-bounds accesses detected are deterministic for
 407	 * such allocations.
 408	 */
 409	if (random_right_allocate) {
 410		/* Allocate on the "right" side, re-calculate address. */
 411		meta->addr += PAGE_SIZE - size;
 412		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
 413	}
 414
 415	addr = (void *)meta->addr;
 416
 417	/* Update remaining metadata. */
 418	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
 419	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
 420	WRITE_ONCE(meta->cache, cache);
 421	meta->size = size;
 422	meta->alloc_stack_hash = alloc_stack_hash;
 423	raw_spin_unlock_irqrestore(&meta->lock, flags);
 424
 425	alloc_covered_add(alloc_stack_hash, 1);
 426
 427	/* Set required slab fields. */
 428	slab = virt_to_slab((void *)meta->addr);
 429	slab->slab_cache = cache;
 430#if defined(CONFIG_SLUB)
 431	slab->objects = 1;
 432#elif defined(CONFIG_SLAB)
 433	slab->s_mem = addr;
 434#endif
 435
 436	/* Memory initialization. */
 437	for_each_canary(meta, set_canary_byte);
 438
 439	/*
 440	 * We check slab_want_init_on_alloc() ourselves, rather than letting
 441	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
 442	 * redzone.
 443	 */
 444	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
 445		memzero_explicit(addr, size);
 446	if (cache->ctor)
 447		cache->ctor(addr);
 448
 449	if (random_fault)
 450		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
 451
 452	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
 453	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
 454
 455	return addr;
 456}
 457
 458static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
 459{
 460	struct kcsan_scoped_access assert_page_exclusive;
 461	unsigned long flags;
 462	bool init;
 463
 464	raw_spin_lock_irqsave(&meta->lock, flags);
 465
 466	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
 467		/* Invalid or double-free, bail out. */
 468		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 469		kfence_report_error((unsigned long)addr, false, NULL, meta,
 470				    KFENCE_ERROR_INVALID_FREE);
 471		raw_spin_unlock_irqrestore(&meta->lock, flags);
 472		return;
 473	}
 474
 475	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
 476	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
 477				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
 478				  &assert_page_exclusive);
 479
 480	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
 481		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
 482
 483	/* Restore page protection if there was an OOB access. */
 484	if (meta->unprotected_page) {
 485		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
 486		kfence_protect(meta->unprotected_page);
 487		meta->unprotected_page = 0;
 488	}
 489
 490	/* Mark the object as freed. */
 491	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
 492	init = slab_want_init_on_free(meta->cache);
 493	raw_spin_unlock_irqrestore(&meta->lock, flags);
 494
 495	alloc_covered_add(meta->alloc_stack_hash, -1);
 496
 497	/* Check canary bytes for memory corruption. */
 498	for_each_canary(meta, check_canary_byte);
 499
 500	/*
 501	 * Clear memory if init-on-free is set. While we protect the page, the
 502	 * data is still there, and after a use-after-free is detected, we
 503	 * unprotect the page, so the data is still accessible.
 504	 */
 505	if (!zombie && unlikely(init))
 506		memzero_explicit(addr, meta->size);
 507
 508	/* Protect to detect use-after-frees. */
 509	kfence_protect((unsigned long)addr);
 510
 511	kcsan_end_scoped_access(&assert_page_exclusive);
 512	if (!zombie) {
 513		/* Add it to the tail of the freelist for reuse. */
 514		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 515		KFENCE_WARN_ON(!list_empty(&meta->list));
 516		list_add_tail(&meta->list, &kfence_freelist);
 517		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 518
 519		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
 520		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
 521	} else {
 522		/* See kfence_shutdown_cache(). */
 523		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
 524	}
 525}
 526
 527static void rcu_guarded_free(struct rcu_head *h)
 528{
 529	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
 530
 531	kfence_guarded_free((void *)meta->addr, meta, false);
 532}
 533
 534/*
 535 * Initialization of the KFENCE pool after its allocation.
 536 * Returns 0 on success; otherwise returns the address up to
 537 * which partial initialization succeeded.
 538 */
 539static unsigned long kfence_init_pool(void)
 540{
 541	unsigned long addr = (unsigned long)__kfence_pool;
 542	struct page *pages;
 543	int i;
 544
 545	if (!arch_kfence_init_pool())
 546		return addr;
 547
 
 548	pages = virt_to_page(__kfence_pool);
 549
 550	/*
 551	 * Set up object pages: they must have PG_slab set, to avoid freeing
 552	 * these as real pages.
 553	 *
 554	 * We also want to avoid inserting kfence_free() in the kfree()
 555	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
 556	 * enters __slab_free() slow-path.
 557	 */
 558	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 559		struct slab *slab = page_slab(&pages[i]);
 560
 561		if (!i || (i % 2))
 562			continue;
 563
 564		/* Verify we do not have a compound head page. */
 565		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
 566			return addr;
 567
 568		__folio_set_slab(slab_folio(slab));
 569#ifdef CONFIG_MEMCG
 570		slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
 571				   MEMCG_DATA_OBJCGS;
 572#endif
 573	}
 574
 575	/*
 576	 * Protect the first 2 pages. The first page is mostly unnecessary, and
 577	 * merely serves as an extended guard page. However, adding one
 578	 * additional page in the beginning gives us an even number of pages,
 579	 * which simplifies the mapping of address to metadata index.
 580	 */
 581	for (i = 0; i < 2; i++) {
 582		if (unlikely(!kfence_protect(addr)))
 583			return addr;
 584
 585		addr += PAGE_SIZE;
 586	}
 587
 588	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 589		struct kfence_metadata *meta = &kfence_metadata[i];
 590
 591		/* Initialize metadata. */
 592		INIT_LIST_HEAD(&meta->list);
 593		raw_spin_lock_init(&meta->lock);
 594		meta->state = KFENCE_OBJECT_UNUSED;
 595		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
 596		list_add_tail(&meta->list, &kfence_freelist);
 597
 598		/* Protect the right redzone. */
 599		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
 600			return addr;
 601
 602		addr += 2 * PAGE_SIZE;
 603	}
 604
 
 
 
 
 
 
 605	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606}
 607
 608static bool __init kfence_init_pool_early(void)
 609{
 610	unsigned long addr;
 611
 612	if (!__kfence_pool)
 613		return false;
 614
 615	addr = kfence_init_pool();
 616
 617	if (!addr) {
 618		/*
 619		 * The pool is live and will never be deallocated from this point on.
 620		 * Ignore the pool object from the kmemleak phys object tree, as it would
 621		 * otherwise overlap with allocations returned by kfence_alloc(), which
 622		 * are registered with kmemleak through the slab post-alloc hook.
 623		 */
 624		kmemleak_ignore_phys(__pa(__kfence_pool));
 625		return true;
 626	}
 627
 628	/*
 629	 * Only release unprotected pages, and do not try to go back and change
 630	 * page attributes due to risk of failing to do so as well. If changing
 631	 * page attributes for some pages fails, it is very likely that it also
 632	 * fails for the first page, and therefore expect addr==__kfence_pool in
 633	 * most failure cases.
 634	 */
 635	for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
 636		struct slab *slab = virt_to_slab(p);
 637
 638		if (!slab)
 639			continue;
 640#ifdef CONFIG_MEMCG
 641		slab->memcg_data = 0;
 642#endif
 643		__folio_clear_slab(slab_folio(slab));
 644	}
 645	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
 646	__kfence_pool = NULL;
 647	return false;
 648}
 649
 650static bool kfence_init_pool_late(void)
 651{
 652	unsigned long addr, free_size;
 653
 654	addr = kfence_init_pool();
 655
 656	if (!addr)
 657		return true;
 658
 659	/* Same as above. */
 660	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
 661#ifdef CONFIG_CONTIG_ALLOC
 662	free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
 663#else
 664	free_pages_exact((void *)addr, free_size);
 665#endif
 666	__kfence_pool = NULL;
 667	return false;
 668}
 669
 670/* === DebugFS Interface ==================================================== */
 671
 672static int stats_show(struct seq_file *seq, void *v)
 673{
 674	int i;
 675
 676	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
 677	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
 678		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
 679
 680	return 0;
 681}
 682DEFINE_SHOW_ATTRIBUTE(stats);
 683
 684/*
 685 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
 686 * start_object() and next_object() return the object index + 1, because NULL is used
 687 * to stop iteration.
 688 */
 689static void *start_object(struct seq_file *seq, loff_t *pos)
 690{
 691	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 692		return (void *)((long)*pos + 1);
 693	return NULL;
 694}
 695
 696static void stop_object(struct seq_file *seq, void *v)
 697{
 698}
 699
 700static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
 701{
 702	++*pos;
 703	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 704		return (void *)((long)*pos + 1);
 705	return NULL;
 706}
 707
 708static int show_object(struct seq_file *seq, void *v)
 709{
 710	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
 711	unsigned long flags;
 712
 713	raw_spin_lock_irqsave(&meta->lock, flags);
 714	kfence_print_object(seq, meta);
 715	raw_spin_unlock_irqrestore(&meta->lock, flags);
 716	seq_puts(seq, "---------------------------------\n");
 717
 718	return 0;
 719}
 720
 721static const struct seq_operations objects_sops = {
 722	.start = start_object,
 723	.next = next_object,
 724	.stop = stop_object,
 725	.show = show_object,
 726};
 727DEFINE_SEQ_ATTRIBUTE(objects);
 728
 729static int __init kfence_debugfs_init(void)
 730{
 731	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
 
 
 
 732
 
 733	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
 734	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
 735	return 0;
 736}
 737
 738late_initcall(kfence_debugfs_init);
 739
 740/* === Panic Notifier ====================================================== */
 741
 742static void kfence_check_all_canary(void)
 743{
 744	int i;
 745
 746	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 747		struct kfence_metadata *meta = &kfence_metadata[i];
 748
 749		if (meta->state == KFENCE_OBJECT_ALLOCATED)
 750			for_each_canary(meta, check_canary_byte);
 751	}
 752}
 753
 754static int kfence_check_canary_callback(struct notifier_block *nb,
 755					unsigned long reason, void *arg)
 756{
 757	kfence_check_all_canary();
 758	return NOTIFY_OK;
 759}
 760
 761static struct notifier_block kfence_check_canary_notifier = {
 762	.notifier_call = kfence_check_canary_callback,
 763};
 764
 765/* === Allocation Gate Timer ================================================ */
 766
 767static struct delayed_work kfence_timer;
 768
 769#ifdef CONFIG_KFENCE_STATIC_KEYS
 770/* Wait queue to wake up allocation-gate timer task. */
 771static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
 772
 773static void wake_up_kfence_timer(struct irq_work *work)
 774{
 775	wake_up(&allocation_wait);
 776}
 777static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
 778#endif
 779
 780/*
 781 * Set up delayed work, which will enable and disable the static key. We need to
 782 * use a work queue (rather than a simple timer), since enabling and disabling a
 783 * static key cannot be done from an interrupt.
 784 *
 785 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
 786 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
 787 * more aggressive sampling intervals), we could get away with a variant that
 788 * avoids IPIs, at the cost of not immediately capturing allocations if the
 789 * instructions remain cached.
 790 */
 791static void toggle_allocation_gate(struct work_struct *work)
 792{
 793	if (!READ_ONCE(kfence_enabled))
 794		return;
 795
 796	atomic_set(&kfence_allocation_gate, 0);
 797#ifdef CONFIG_KFENCE_STATIC_KEYS
 798	/* Enable static key, and await allocation to happen. */
 799	static_branch_enable(&kfence_allocation_key);
 800
 801	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
 802
 803	/* Disable static key and reset timer. */
 804	static_branch_disable(&kfence_allocation_key);
 805#endif
 806	queue_delayed_work(system_unbound_wq, &kfence_timer,
 807			   msecs_to_jiffies(kfence_sample_interval));
 808}
 809
 810/* === Public interface ===================================================== */
 811
 812void __init kfence_alloc_pool(void)
 813{
 814	if (!kfence_sample_interval)
 815		return;
 816
 817	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
 818
 
 
 819	if (!__kfence_pool)
 
 
 
 820		pr_err("failed to allocate pool\n");
 
 
 
 
 
 
 
 
 
 
 821}
 822
 823static void kfence_init_enable(void)
 824{
 825	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
 826		static_branch_enable(&kfence_allocation_key);
 827
 828	if (kfence_deferrable)
 829		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
 830	else
 831		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
 832
 833	if (kfence_check_on_panic)
 834		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
 835
 836	WRITE_ONCE(kfence_enabled, true);
 837	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 838
 839	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
 840		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
 841		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
 842}
 843
 844void __init kfence_init(void)
 845{
 846	stack_hash_seed = get_random_u32();
 847
 848	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
 849	if (!kfence_sample_interval)
 850		return;
 851
 852	if (!kfence_init_pool_early()) {
 853		pr_err("%s failed\n", __func__);
 854		return;
 855	}
 856
 857	kfence_init_enable();
 858}
 859
 860static int kfence_init_late(void)
 861{
 862	const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
 
 
 
 
 
 863#ifdef CONFIG_CONTIG_ALLOC
 864	struct page *pages;
 865
 866	pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
 
 867	if (!pages)
 868		return -ENOMEM;
 
 869	__kfence_pool = page_to_virt(pages);
 
 
 
 
 870#else
 871	if (nr_pages > MAX_ORDER_NR_PAGES) {
 
 872		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
 873		return -EINVAL;
 874	}
 
 875	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
 876	if (!__kfence_pool)
 877		return -ENOMEM;
 
 
 878#endif
 879
 880	if (!kfence_init_pool_late()) {
 881		pr_err("%s failed\n", __func__);
 882		return -EBUSY;
 
 
 
 
 
 
 883	}
 884
 885	kfence_init_enable();
 886	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887}
 888
 889static int kfence_enable_late(void)
 890{
 891	if (!__kfence_pool)
 892		return kfence_init_late();
 893
 894	WRITE_ONCE(kfence_enabled, true);
 895	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 896	pr_info("re-enabled\n");
 897	return 0;
 898}
 899
 900void kfence_shutdown_cache(struct kmem_cache *s)
 901{
 902	unsigned long flags;
 903	struct kfence_metadata *meta;
 904	int i;
 905
 
 
 
 
 906	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 907		bool in_use;
 908
 909		meta = &kfence_metadata[i];
 910
 911		/*
 912		 * If we observe some inconsistent cache and state pair where we
 913		 * should have returned false here, cache destruction is racing
 914		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
 915		 * the lock will not help, as different critical section
 916		 * serialization will have the same outcome.
 917		 */
 918		if (READ_ONCE(meta->cache) != s ||
 919		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
 920			continue;
 921
 922		raw_spin_lock_irqsave(&meta->lock, flags);
 923		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
 924		raw_spin_unlock_irqrestore(&meta->lock, flags);
 925
 926		if (in_use) {
 927			/*
 928			 * This cache still has allocations, and we should not
 929			 * release them back into the freelist so they can still
 930			 * safely be used and retain the kernel's default
 931			 * behaviour of keeping the allocations alive (leak the
 932			 * cache); however, they effectively become "zombie
 933			 * allocations" as the KFENCE objects are the only ones
 934			 * still in use and the owning cache is being destroyed.
 935			 *
 936			 * We mark them freed, so that any subsequent use shows
 937			 * more useful error messages that will include stack
 938			 * traces of the user of the object, the original
 939			 * allocation, and caller to shutdown_cache().
 940			 */
 941			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
 942		}
 943	}
 944
 945	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 946		meta = &kfence_metadata[i];
 947
 948		/* See above. */
 949		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
 950			continue;
 951
 952		raw_spin_lock_irqsave(&meta->lock, flags);
 953		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
 954			meta->cache = NULL;
 955		raw_spin_unlock_irqrestore(&meta->lock, flags);
 956	}
 957}
 958
 959void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
 960{
 961	unsigned long stack_entries[KFENCE_STACK_DEPTH];
 962	size_t num_stack_entries;
 963	u32 alloc_stack_hash;
 
 964
 965	/*
 966	 * Perform size check before switching kfence_allocation_gate, so that
 967	 * we don't disable KFENCE without making an allocation.
 968	 */
 969	if (size > PAGE_SIZE) {
 970		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
 971		return NULL;
 972	}
 973
 974	/*
 975	 * Skip allocations from non-default zones, including DMA. We cannot
 976	 * guarantee that pages in the KFENCE pool will have the requested
 977	 * properties (e.g. reside in DMAable memory).
 978	 */
 979	if ((flags & GFP_ZONEMASK) ||
 
 980	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
 981		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
 982		return NULL;
 983	}
 984
 985	/*
 986	 * Skip allocations for this slab, if KFENCE has been disabled for
 987	 * this slab.
 988	 */
 989	if (s->flags & SLAB_SKIP_KFENCE)
 990		return NULL;
 991
 992	if (atomic_inc_return(&kfence_allocation_gate) > 1)
 
 993		return NULL;
 994#ifdef CONFIG_KFENCE_STATIC_KEYS
 995	/*
 996	 * waitqueue_active() is fully ordered after the update of
 997	 * kfence_allocation_gate per atomic_inc_return().
 998	 */
 999	if (waitqueue_active(&allocation_wait)) {
1000		/*
1001		 * Calling wake_up() here may deadlock when allocations happen
1002		 * from within timer code. Use an irq_work to defer it.
1003		 */
1004		irq_work_queue(&wake_up_kfence_timer_work);
1005	}
1006#endif
1007
1008	if (!READ_ONCE(kfence_enabled))
1009		return NULL;
1010
1011	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1012
1013	/*
1014	 * Do expensive check for coverage of allocation in slow-path after
1015	 * allocation_gate has already become non-zero, even though it might
1016	 * mean not making any allocation within a given sample interval.
1017	 *
1018	 * This ensures reasonable allocation coverage when the pool is almost
1019	 * full, including avoiding long-lived allocations of the same source
1020	 * filling up the pool (e.g. pagecache allocations).
1021	 */
1022	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1023	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1024		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1025		return NULL;
1026	}
1027
1028	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1029				    alloc_stack_hash);
1030}
1031
1032size_t kfence_ksize(const void *addr)
1033{
1034	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1035
1036	/*
1037	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1038	 * either a use-after-free or invalid access.
1039	 */
1040	return meta ? meta->size : 0;
1041}
1042
1043void *kfence_object_start(const void *addr)
1044{
1045	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1046
1047	/*
1048	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1049	 * either a use-after-free or invalid access.
1050	 */
1051	return meta ? (void *)meta->addr : NULL;
1052}
1053
1054void __kfence_free(void *addr)
1055{
1056	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1057
1058#ifdef CONFIG_MEMCG
1059	KFENCE_WARN_ON(meta->objcg);
1060#endif
1061	/*
1062	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1063	 * the object, as the object page may be recycled for other-typed
1064	 * objects once it has been freed. meta->cache may be NULL if the cache
1065	 * was destroyed.
 
 
1066	 */
1067	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
 
 
 
 
 
1068		call_rcu(&meta->rcu_head, rcu_guarded_free);
1069	else
1070		kfence_guarded_free(addr, meta, false);
 
1071}
1072
1073bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1074{
1075	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1076	struct kfence_metadata *to_report = NULL;
1077	enum kfence_error_type error_type;
1078	unsigned long flags;
1079
1080	if (!is_kfence_address((void *)addr))
1081		return false;
1082
1083	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1084		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1085
1086	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1087
1088	if (page_index % 2) {
1089		/* This is a redzone, report a buffer overflow. */
1090		struct kfence_metadata *meta;
1091		int distance = 0;
1092
1093		meta = addr_to_metadata(addr - PAGE_SIZE);
1094		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1095			to_report = meta;
1096			/* Data race ok; distance calculation approximate. */
1097			distance = addr - data_race(meta->addr + meta->size);
1098		}
1099
1100		meta = addr_to_metadata(addr + PAGE_SIZE);
1101		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1102			/* Data race ok; distance calculation approximate. */
1103			if (!to_report || distance > data_race(meta->addr) - addr)
1104				to_report = meta;
1105		}
1106
1107		if (!to_report)
1108			goto out;
1109
1110		raw_spin_lock_irqsave(&to_report->lock, flags);
1111		to_report->unprotected_page = addr;
1112		error_type = KFENCE_ERROR_OOB;
1113
1114		/*
1115		 * If the object was freed before we took the look we can still
1116		 * report this as an OOB -- the report will simply show the
1117		 * stacktrace of the free as well.
1118		 */
1119	} else {
1120		to_report = addr_to_metadata(addr);
1121		if (!to_report)
1122			goto out;
1123
1124		raw_spin_lock_irqsave(&to_report->lock, flags);
1125		error_type = KFENCE_ERROR_UAF;
1126		/*
1127		 * We may race with __kfence_alloc(), and it is possible that a
1128		 * freed object may be reallocated. We simply report this as a
1129		 * use-after-free, with the stack trace showing the place where
1130		 * the object was re-allocated.
1131		 */
1132	}
1133
1134out:
1135	if (to_report) {
1136		kfence_report_error(addr, is_write, regs, to_report, error_type);
1137		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1138	} else {
1139		/* This may be a UAF or OOB access, but we can't be sure. */
1140		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1141	}
1142
1143	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1144}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * KFENCE guarded object allocator and fault handling.
   4 *
   5 * Copyright (C) 2020, Google LLC.
   6 */
   7
   8#define pr_fmt(fmt) "kfence: " fmt
   9
  10#include <linux/atomic.h>
  11#include <linux/bug.h>
  12#include <linux/debugfs.h>
  13#include <linux/hash.h>
  14#include <linux/irq_work.h>
  15#include <linux/jhash.h>
  16#include <linux/kcsan-checks.h>
  17#include <linux/kfence.h>
  18#include <linux/kmemleak.h>
  19#include <linux/list.h>
  20#include <linux/lockdep.h>
  21#include <linux/log2.h>
  22#include <linux/memblock.h>
  23#include <linux/moduleparam.h>
  24#include <linux/nodemask.h>
  25#include <linux/notifier.h>
  26#include <linux/panic_notifier.h>
  27#include <linux/random.h>
  28#include <linux/rcupdate.h>
  29#include <linux/sched/clock.h>
  30#include <linux/seq_file.h>
  31#include <linux/slab.h>
  32#include <linux/spinlock.h>
  33#include <linux/string.h>
  34
  35#include <asm/kfence.h>
  36
  37#include "kfence.h"
  38
  39/* Disables KFENCE on the first warning assuming an irrecoverable error. */
  40#define KFENCE_WARN_ON(cond)                                                   \
  41	({                                                                     \
  42		const bool __cond = WARN_ON(cond);                             \
  43		if (unlikely(__cond)) {                                        \
  44			WRITE_ONCE(kfence_enabled, false);                     \
  45			disabled_by_warn = true;                               \
  46		}                                                              \
  47		__cond;                                                        \
  48	})
  49
  50/* === Data ================================================================= */
  51
  52static bool kfence_enabled __read_mostly;
  53static bool disabled_by_warn __read_mostly;
  54
  55unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
  56EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
  57
  58#ifdef MODULE_PARAM_PREFIX
  59#undef MODULE_PARAM_PREFIX
  60#endif
  61#define MODULE_PARAM_PREFIX "kfence."
  62
  63static int kfence_enable_late(void);
  64static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
  65{
  66	unsigned long num;
  67	int ret = kstrtoul(val, 0, &num);
  68
  69	if (ret < 0)
  70		return ret;
  71
  72	/* Using 0 to indicate KFENCE is disabled. */
  73	if (!num && READ_ONCE(kfence_enabled)) {
  74		pr_info("disabled\n");
  75		WRITE_ONCE(kfence_enabled, false);
  76	}
  77
  78	*((unsigned long *)kp->arg) = num;
  79
  80	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
  81		return disabled_by_warn ? -EINVAL : kfence_enable_late();
  82	return 0;
  83}
  84
  85static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
  86{
  87	if (!READ_ONCE(kfence_enabled))
  88		return sprintf(buffer, "0\n");
  89
  90	return param_get_ulong(buffer, kp);
  91}
  92
  93static const struct kernel_param_ops sample_interval_param_ops = {
  94	.set = param_set_sample_interval,
  95	.get = param_get_sample_interval,
  96};
  97module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
  98
  99/* Pool usage% threshold when currently covered allocations are skipped. */
 100static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
 101module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
 102
 103/* Allocation burst count: number of excess KFENCE allocations per sample. */
 104static unsigned int kfence_burst __read_mostly;
 105module_param_named(burst, kfence_burst, uint, 0644);
 106
 107/* If true, use a deferrable timer. */
 108static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
 109module_param_named(deferrable, kfence_deferrable, bool, 0444);
 110
 111/* If true, check all canary bytes on panic. */
 112static bool kfence_check_on_panic __read_mostly;
 113module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
 114
 115/* The pool of pages used for guard pages and objects. */
 116char *__kfence_pool __read_mostly;
 117EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
 118
 119/*
 120 * Per-object metadata, with one-to-one mapping of object metadata to
 121 * backing pages (in __kfence_pool).
 122 */
 123static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
 124struct kfence_metadata *kfence_metadata __read_mostly;
 125
 126/*
 127 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
 128 * So introduce kfence_metadata_init to initialize metadata, and then make
 129 * kfence_metadata visible after initialization is successful. This prevents
 130 * potential UAF or access to uninitialized metadata.
 131 */
 132static struct kfence_metadata *kfence_metadata_init __read_mostly;
 133
 134/* Freelist with available objects. */
 135static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
 136static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
 137
 138/*
 139 * The static key to set up a KFENCE allocation; or if static keys are not used
 140 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
 141 */
 142DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
 143
 144/* Gates the allocation, ensuring only one succeeds in a given period. */
 145atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
 146
 147/*
 148 * A Counting Bloom filter of allocation coverage: limits currently covered
 149 * allocations of the same source filling up the pool.
 150 *
 151 * Assuming a range of 15%-85% unique allocations in the pool at any point in
 152 * time, the below parameters provide a probablity of 0.02-0.33 for false
 153 * positive hits respectively:
 154 *
 155 *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
 156 */
 157#define ALLOC_COVERED_HNUM	2
 158#define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
 159#define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
 160#define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
 161#define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
 162static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
 163
 164/* Stack depth used to determine uniqueness of an allocation. */
 165#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
 166
 167/*
 168 * Randomness for stack hashes, making the same collisions across reboots and
 169 * different machines less likely.
 170 */
 171static u32 stack_hash_seed __ro_after_init;
 172
 173/* Statistics counters for debugfs. */
 174enum kfence_counter_id {
 175	KFENCE_COUNTER_ALLOCATED,
 176	KFENCE_COUNTER_ALLOCS,
 177	KFENCE_COUNTER_FREES,
 178	KFENCE_COUNTER_ZOMBIES,
 179	KFENCE_COUNTER_BUGS,
 180	KFENCE_COUNTER_SKIP_INCOMPAT,
 181	KFENCE_COUNTER_SKIP_CAPACITY,
 182	KFENCE_COUNTER_SKIP_COVERED,
 183	KFENCE_COUNTER_COUNT,
 184};
 185static atomic_long_t counters[KFENCE_COUNTER_COUNT];
 186static const char *const counter_names[] = {
 187	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
 188	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
 189	[KFENCE_COUNTER_FREES]		= "total frees",
 190	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
 191	[KFENCE_COUNTER_BUGS]		= "total bugs",
 192	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
 193	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
 194	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
 195};
 196static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
 197
 198/* === Internals ============================================================ */
 199
 200static inline bool should_skip_covered(void)
 201{
 202	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
 203
 204	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
 205}
 206
 207static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
 208{
 209	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
 210	num_entries = filter_irq_stacks(stack_entries, num_entries);
 211	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
 212}
 213
 214/*
 215 * Adds (or subtracts) count @val for allocation stack trace hash
 216 * @alloc_stack_hash from Counting Bloom filter.
 217 */
 218static void alloc_covered_add(u32 alloc_stack_hash, int val)
 219{
 220	int i;
 221
 222	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 223		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
 224		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 225	}
 226}
 227
 228/*
 229 * Returns true if the allocation stack trace hash @alloc_stack_hash is
 230 * currently contained (non-zero count) in Counting Bloom filter.
 231 */
 232static bool alloc_covered_contains(u32 alloc_stack_hash)
 233{
 234	int i;
 235
 236	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 237		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
 238			return false;
 239		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 240	}
 241
 242	return true;
 243}
 244
 245static bool kfence_protect(unsigned long addr)
 246{
 247	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
 248}
 249
 250static bool kfence_unprotect(unsigned long addr)
 251{
 252	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
 253}
 254
 255static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
 256{
 257	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
 258	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
 259
 260	/* The checks do not affect performance; only called from slow-paths. */
 261
 262	/* Only call with a pointer into kfence_metadata. */
 263	if (KFENCE_WARN_ON(meta < kfence_metadata ||
 264			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
 265		return 0;
 266
 267	/*
 268	 * This metadata object only ever maps to 1 page; verify that the stored
 269	 * address is in the expected range.
 270	 */
 271	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
 272		return 0;
 273
 274	return pageaddr;
 275}
 276
 277static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
 278{
 279	enum kfence_object_state state = READ_ONCE(meta->state);
 280
 281	return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
 282}
 283
 284/*
 285 * Update the object's metadata state, including updating the alloc/free stacks
 286 * depending on the state transition.
 287 */
 288static noinline void
 289metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
 290		      unsigned long *stack_entries, size_t num_stack_entries)
 291{
 292	struct kfence_track *track =
 293		next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
 294
 295	lockdep_assert_held(&meta->lock);
 296
 297	/* Stack has been saved when calling rcu, skip. */
 298	if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
 299		goto out;
 300
 301	if (stack_entries) {
 302		memcpy(track->stack_entries, stack_entries,
 303		       num_stack_entries * sizeof(stack_entries[0]));
 304	} else {
 305		/*
 306		 * Skip over 1 (this) functions; noinline ensures we do not
 307		 * accidentally skip over the caller by never inlining.
 308		 */
 309		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
 310	}
 311	track->num_stack_entries = num_stack_entries;
 312	track->pid = task_pid_nr(current);
 313	track->cpu = raw_smp_processor_id();
 314	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
 315
 316out:
 317	/*
 318	 * Pairs with READ_ONCE() in
 319	 *	kfence_shutdown_cache(),
 320	 *	kfence_handle_page_fault().
 321	 */
 322	WRITE_ONCE(meta->state, next);
 323}
 324
 325#ifdef CONFIG_KMSAN
 326#define check_canary_attributes noinline __no_kmsan_checks
 327#else
 328#define check_canary_attributes inline
 329#endif
 
 330
 331/* Check canary byte at @addr. */
 332static check_canary_attributes bool check_canary_byte(u8 *addr)
 333{
 334	struct kfence_metadata *meta;
 335	unsigned long flags;
 336
 337	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
 338		return true;
 339
 340	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 341
 342	meta = addr_to_metadata((unsigned long)addr);
 343	raw_spin_lock_irqsave(&meta->lock, flags);
 344	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
 345	raw_spin_unlock_irqrestore(&meta->lock, flags);
 346
 347	return false;
 348}
 349
 350static inline void set_canary(const struct kfence_metadata *meta)
 
 351{
 352	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 353	unsigned long addr = pageaddr;
 354
 355	/*
 356	 * The canary may be written to part of the object memory, but it does
 357	 * not affect it. The user should initialize the object before using it.
 358	 */
 359	for (; addr < meta->addr; addr += sizeof(u64))
 360		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
 361
 362	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
 363	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
 364		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
 365}
 366
 367static check_canary_attributes void
 368check_canary(const struct kfence_metadata *meta)
 369{
 370	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 371	unsigned long addr = pageaddr;
 372
 373	/*
 374	 * We'll iterate over each canary byte per-side until a corrupted byte
 375	 * is found. However, we'll still iterate over the canary bytes to the
 376	 * right of the object even if there was an error in the canary bytes to
 377	 * the left of the object. Specifically, if check_canary_byte()
 378	 * generates an error, showing both sides might give more clues as to
 379	 * what the error is about when displaying which bytes were corrupted.
 380	 */
 381
 382	/* Apply to left of object. */
 383	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
 384		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
 385			break;
 386	}
 387
 388	/*
 389	 * If the canary is corrupted in a certain 64 bytes, or the canary
 390	 * memory cannot be completely covered by multiple consecutive 64 bytes,
 391	 * it needs to be checked one by one.
 392	 */
 393	for (; addr < meta->addr; addr++) {
 394		if (unlikely(!check_canary_byte((u8 *)addr)))
 395			break;
 396	}
 397
 398	/* Apply to right of object. */
 399	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
 400		if (unlikely(!check_canary_byte((u8 *)addr)))
 401			return;
 402	}
 403	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
 404		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
 405
 406			for (; addr - pageaddr < PAGE_SIZE; addr++) {
 407				if (!check_canary_byte((u8 *)addr))
 408					return;
 409			}
 410		}
 411	}
 412}
 413
 414static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
 415				  unsigned long *stack_entries, size_t num_stack_entries,
 416				  u32 alloc_stack_hash)
 417{
 418	struct kfence_metadata *meta = NULL;
 419	unsigned long flags;
 420	struct slab *slab;
 421	void *addr;
 422	const bool random_right_allocate = get_random_u32_below(2);
 423	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
 424				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
 425
 426	/* Try to obtain a free object. */
 427	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 428	if (!list_empty(&kfence_freelist)) {
 429		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
 430		list_del_init(&meta->list);
 431	}
 432	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 433	if (!meta) {
 434		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
 435		return NULL;
 436	}
 437
 438	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
 439		/*
 440		 * This is extremely unlikely -- we are reporting on a
 441		 * use-after-free, which locked meta->lock, and the reporting
 442		 * code via printk calls kmalloc() which ends up in
 443		 * kfence_alloc() and tries to grab the same object that we're
 444		 * reporting on. While it has never been observed, lockdep does
 445		 * report that there is a possibility of deadlock. Fix it by
 446		 * using trylock and bailing out gracefully.
 447		 */
 448		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 449		/* Put the object back on the freelist. */
 450		list_add_tail(&meta->list, &kfence_freelist);
 451		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 452
 453		return NULL;
 454	}
 455
 456	meta->addr = metadata_to_pageaddr(meta);
 457	/* Unprotect if we're reusing this page. */
 458	if (meta->state == KFENCE_OBJECT_FREED)
 459		kfence_unprotect(meta->addr);
 460
 461	/*
 462	 * Note: for allocations made before RNG initialization, will always
 463	 * return zero. We still benefit from enabling KFENCE as early as
 464	 * possible, even when the RNG is not yet available, as this will allow
 465	 * KFENCE to detect bugs due to earlier allocations. The only downside
 466	 * is that the out-of-bounds accesses detected are deterministic for
 467	 * such allocations.
 468	 */
 469	if (random_right_allocate) {
 470		/* Allocate on the "right" side, re-calculate address. */
 471		meta->addr += PAGE_SIZE - size;
 472		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
 473	}
 474
 475	addr = (void *)meta->addr;
 476
 477	/* Update remaining metadata. */
 478	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
 479	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
 480	WRITE_ONCE(meta->cache, cache);
 481	meta->size = size;
 482	meta->alloc_stack_hash = alloc_stack_hash;
 483	raw_spin_unlock_irqrestore(&meta->lock, flags);
 484
 485	alloc_covered_add(alloc_stack_hash, 1);
 486
 487	/* Set required slab fields. */
 488	slab = virt_to_slab((void *)meta->addr);
 489	slab->slab_cache = cache;
 
 490	slab->objects = 1;
 
 
 
 491
 492	/* Memory initialization. */
 493	set_canary(meta);
 494
 495	/*
 496	 * We check slab_want_init_on_alloc() ourselves, rather than letting
 497	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
 498	 * redzone.
 499	 */
 500	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
 501		memzero_explicit(addr, size);
 502	if (cache->ctor)
 503		cache->ctor(addr);
 504
 505	if (random_fault)
 506		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
 507
 508	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
 509	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
 510
 511	return addr;
 512}
 513
 514static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
 515{
 516	struct kcsan_scoped_access assert_page_exclusive;
 517	unsigned long flags;
 518	bool init;
 519
 520	raw_spin_lock_irqsave(&meta->lock, flags);
 521
 522	if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
 523		/* Invalid or double-free, bail out. */
 524		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 525		kfence_report_error((unsigned long)addr, false, NULL, meta,
 526				    KFENCE_ERROR_INVALID_FREE);
 527		raw_spin_unlock_irqrestore(&meta->lock, flags);
 528		return;
 529	}
 530
 531	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
 532	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
 533				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
 534				  &assert_page_exclusive);
 535
 536	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
 537		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
 538
 539	/* Restore page protection if there was an OOB access. */
 540	if (meta->unprotected_page) {
 541		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
 542		kfence_protect(meta->unprotected_page);
 543		meta->unprotected_page = 0;
 544	}
 545
 546	/* Mark the object as freed. */
 547	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
 548	init = slab_want_init_on_free(meta->cache);
 549	raw_spin_unlock_irqrestore(&meta->lock, flags);
 550
 551	alloc_covered_add(meta->alloc_stack_hash, -1);
 552
 553	/* Check canary bytes for memory corruption. */
 554	check_canary(meta);
 555
 556	/*
 557	 * Clear memory if init-on-free is set. While we protect the page, the
 558	 * data is still there, and after a use-after-free is detected, we
 559	 * unprotect the page, so the data is still accessible.
 560	 */
 561	if (!zombie && unlikely(init))
 562		memzero_explicit(addr, meta->size);
 563
 564	/* Protect to detect use-after-frees. */
 565	kfence_protect((unsigned long)addr);
 566
 567	kcsan_end_scoped_access(&assert_page_exclusive);
 568	if (!zombie) {
 569		/* Add it to the tail of the freelist for reuse. */
 570		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 571		KFENCE_WARN_ON(!list_empty(&meta->list));
 572		list_add_tail(&meta->list, &kfence_freelist);
 573		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 574
 575		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
 576		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
 577	} else {
 578		/* See kfence_shutdown_cache(). */
 579		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
 580	}
 581}
 582
 583static void rcu_guarded_free(struct rcu_head *h)
 584{
 585	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
 586
 587	kfence_guarded_free((void *)meta->addr, meta, false);
 588}
 589
 590/*
 591 * Initialization of the KFENCE pool after its allocation.
 592 * Returns 0 on success; otherwise returns the address up to
 593 * which partial initialization succeeded.
 594 */
 595static unsigned long kfence_init_pool(void)
 596{
 597	unsigned long addr;
 598	struct page *pages;
 599	int i;
 600
 601	if (!arch_kfence_init_pool())
 602		return (unsigned long)__kfence_pool;
 603
 604	addr = (unsigned long)__kfence_pool;
 605	pages = virt_to_page(__kfence_pool);
 606
 607	/*
 608	 * Set up object pages: they must have PG_slab set, to avoid freeing
 609	 * these as real pages.
 610	 *
 611	 * We also want to avoid inserting kfence_free() in the kfree()
 612	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
 613	 * enters __slab_free() slow-path.
 614	 */
 615	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 616		struct slab *slab = page_slab(nth_page(pages, i));
 617
 618		if (!i || (i % 2))
 619			continue;
 620
 
 
 
 
 621		__folio_set_slab(slab_folio(slab));
 622#ifdef CONFIG_MEMCG
 623		slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
 624				 MEMCG_DATA_OBJEXTS;
 625#endif
 626	}
 627
 628	/*
 629	 * Protect the first 2 pages. The first page is mostly unnecessary, and
 630	 * merely serves as an extended guard page. However, adding one
 631	 * additional page in the beginning gives us an even number of pages,
 632	 * which simplifies the mapping of address to metadata index.
 633	 */
 634	for (i = 0; i < 2; i++) {
 635		if (unlikely(!kfence_protect(addr)))
 636			return addr;
 637
 638		addr += PAGE_SIZE;
 639	}
 640
 641	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 642		struct kfence_metadata *meta = &kfence_metadata_init[i];
 643
 644		/* Initialize metadata. */
 645		INIT_LIST_HEAD(&meta->list);
 646		raw_spin_lock_init(&meta->lock);
 647		meta->state = KFENCE_OBJECT_UNUSED;
 648		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
 649		list_add_tail(&meta->list, &kfence_freelist);
 650
 651		/* Protect the right redzone. */
 652		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
 653			goto reset_slab;
 654
 655		addr += 2 * PAGE_SIZE;
 656	}
 657
 658	/*
 659	 * Make kfence_metadata visible only when initialization is successful.
 660	 * Otherwise, if the initialization fails and kfence_metadata is freed,
 661	 * it may cause UAF in kfence_shutdown_cache().
 662	 */
 663	smp_store_release(&kfence_metadata, kfence_metadata_init);
 664	return 0;
 665
 666reset_slab:
 667	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 668		struct slab *slab = page_slab(nth_page(pages, i));
 669
 670		if (!i || (i % 2))
 671			continue;
 672#ifdef CONFIG_MEMCG
 673		slab->obj_exts = 0;
 674#endif
 675		__folio_clear_slab(slab_folio(slab));
 676	}
 677
 678	return addr;
 679}
 680
 681static bool __init kfence_init_pool_early(void)
 682{
 683	unsigned long addr;
 684
 685	if (!__kfence_pool)
 686		return false;
 687
 688	addr = kfence_init_pool();
 689
 690	if (!addr) {
 691		/*
 692		 * The pool is live and will never be deallocated from this point on.
 693		 * Ignore the pool object from the kmemleak phys object tree, as it would
 694		 * otherwise overlap with allocations returned by kfence_alloc(), which
 695		 * are registered with kmemleak through the slab post-alloc hook.
 696		 */
 697		kmemleak_ignore_phys(__pa(__kfence_pool));
 698		return true;
 699	}
 700
 701	/*
 702	 * Only release unprotected pages, and do not try to go back and change
 703	 * page attributes due to risk of failing to do so as well. If changing
 704	 * page attributes for some pages fails, it is very likely that it also
 705	 * fails for the first page, and therefore expect addr==__kfence_pool in
 706	 * most failure cases.
 707	 */
 
 
 
 
 
 
 
 
 
 
 708	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
 709	__kfence_pool = NULL;
 
 
 
 
 
 
 
 
 710
 711	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
 712	kfence_metadata_init = NULL;
 713
 
 
 
 
 
 
 
 
 714	return false;
 715}
 716
 717/* === DebugFS Interface ==================================================== */
 718
 719static int stats_show(struct seq_file *seq, void *v)
 720{
 721	int i;
 722
 723	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
 724	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
 725		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
 726
 727	return 0;
 728}
 729DEFINE_SHOW_ATTRIBUTE(stats);
 730
 731/*
 732 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
 733 * start_object() and next_object() return the object index + 1, because NULL is used
 734 * to stop iteration.
 735 */
 736static void *start_object(struct seq_file *seq, loff_t *pos)
 737{
 738	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 739		return (void *)((long)*pos + 1);
 740	return NULL;
 741}
 742
 743static void stop_object(struct seq_file *seq, void *v)
 744{
 745}
 746
 747static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
 748{
 749	++*pos;
 750	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 751		return (void *)((long)*pos + 1);
 752	return NULL;
 753}
 754
 755static int show_object(struct seq_file *seq, void *v)
 756{
 757	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
 758	unsigned long flags;
 759
 760	raw_spin_lock_irqsave(&meta->lock, flags);
 761	kfence_print_object(seq, meta);
 762	raw_spin_unlock_irqrestore(&meta->lock, flags);
 763	seq_puts(seq, "---------------------------------\n");
 764
 765	return 0;
 766}
 767
 768static const struct seq_operations objects_sops = {
 769	.start = start_object,
 770	.next = next_object,
 771	.stop = stop_object,
 772	.show = show_object,
 773};
 774DEFINE_SEQ_ATTRIBUTE(objects);
 775
 776static int kfence_debugfs_init(void)
 777{
 778	struct dentry *kfence_dir;
 779
 780	if (!READ_ONCE(kfence_enabled))
 781		return 0;
 782
 783	kfence_dir = debugfs_create_dir("kfence", NULL);
 784	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
 785	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
 786	return 0;
 787}
 788
 789late_initcall(kfence_debugfs_init);
 790
 791/* === Panic Notifier ====================================================== */
 792
 793static void kfence_check_all_canary(void)
 794{
 795	int i;
 796
 797	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 798		struct kfence_metadata *meta = &kfence_metadata[i];
 799
 800		if (kfence_obj_allocated(meta))
 801			check_canary(meta);
 802	}
 803}
 804
 805static int kfence_check_canary_callback(struct notifier_block *nb,
 806					unsigned long reason, void *arg)
 807{
 808	kfence_check_all_canary();
 809	return NOTIFY_OK;
 810}
 811
 812static struct notifier_block kfence_check_canary_notifier = {
 813	.notifier_call = kfence_check_canary_callback,
 814};
 815
 816/* === Allocation Gate Timer ================================================ */
 817
 818static struct delayed_work kfence_timer;
 819
 820#ifdef CONFIG_KFENCE_STATIC_KEYS
 821/* Wait queue to wake up allocation-gate timer task. */
 822static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
 823
 824static void wake_up_kfence_timer(struct irq_work *work)
 825{
 826	wake_up(&allocation_wait);
 827}
 828static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
 829#endif
 830
 831/*
 832 * Set up delayed work, which will enable and disable the static key. We need to
 833 * use a work queue (rather than a simple timer), since enabling and disabling a
 834 * static key cannot be done from an interrupt.
 835 *
 836 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
 837 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
 838 * more aggressive sampling intervals), we could get away with a variant that
 839 * avoids IPIs, at the cost of not immediately capturing allocations if the
 840 * instructions remain cached.
 841 */
 842static void toggle_allocation_gate(struct work_struct *work)
 843{
 844	if (!READ_ONCE(kfence_enabled))
 845		return;
 846
 847	atomic_set(&kfence_allocation_gate, -kfence_burst);
 848#ifdef CONFIG_KFENCE_STATIC_KEYS
 849	/* Enable static key, and await allocation to happen. */
 850	static_branch_enable(&kfence_allocation_key);
 851
 852	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
 853
 854	/* Disable static key and reset timer. */
 855	static_branch_disable(&kfence_allocation_key);
 856#endif
 857	queue_delayed_work(system_unbound_wq, &kfence_timer,
 858			   msecs_to_jiffies(kfence_sample_interval));
 859}
 860
 861/* === Public interface ===================================================== */
 862
 863void __init kfence_alloc_pool_and_metadata(void)
 864{
 865	if (!kfence_sample_interval)
 866		return;
 867
 868	/*
 869	 * If the pool has already been initialized by arch, there is no need to
 870	 * re-allocate the memory pool.
 871	 */
 872	if (!__kfence_pool)
 873		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
 874
 875	if (!__kfence_pool) {
 876		pr_err("failed to allocate pool\n");
 877		return;
 878	}
 879
 880	/* The memory allocated by memblock has been zeroed out. */
 881	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
 882	if (!kfence_metadata_init) {
 883		pr_err("failed to allocate metadata\n");
 884		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
 885		__kfence_pool = NULL;
 886	}
 887}
 888
 889static void kfence_init_enable(void)
 890{
 891	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
 892		static_branch_enable(&kfence_allocation_key);
 893
 894	if (kfence_deferrable)
 895		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
 896	else
 897		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
 898
 899	if (kfence_check_on_panic)
 900		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
 901
 902	WRITE_ONCE(kfence_enabled, true);
 903	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 904
 905	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
 906		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
 907		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
 908}
 909
 910void __init kfence_init(void)
 911{
 912	stack_hash_seed = get_random_u32();
 913
 914	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
 915	if (!kfence_sample_interval)
 916		return;
 917
 918	if (!kfence_init_pool_early()) {
 919		pr_err("%s failed\n", __func__);
 920		return;
 921	}
 922
 923	kfence_init_enable();
 924}
 925
 926static int kfence_init_late(void)
 927{
 928	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
 929	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
 930	unsigned long addr = (unsigned long)__kfence_pool;
 931	unsigned long free_size = KFENCE_POOL_SIZE;
 932	int err = -ENOMEM;
 933
 934#ifdef CONFIG_CONTIG_ALLOC
 935	struct page *pages;
 936
 937	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
 938				   NULL);
 939	if (!pages)
 940		return -ENOMEM;
 941
 942	__kfence_pool = page_to_virt(pages);
 943	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
 944				   NULL);
 945	if (pages)
 946		kfence_metadata_init = page_to_virt(pages);
 947#else
 948	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
 949	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
 950		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
 951		return -EINVAL;
 952	}
 953
 954	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
 955	if (!__kfence_pool)
 956		return -ENOMEM;
 957
 958	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
 959#endif
 960
 961	if (!kfence_metadata_init)
 962		goto free_pool;
 963
 964	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
 965	addr = kfence_init_pool();
 966	if (!addr) {
 967		kfence_init_enable();
 968		kfence_debugfs_init();
 969		return 0;
 970	}
 971
 972	pr_err("%s failed\n", __func__);
 973	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
 974	err = -EBUSY;
 975
 976#ifdef CONFIG_CONTIG_ALLOC
 977	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
 978			  nr_pages_meta);
 979free_pool:
 980	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
 981			  free_size / PAGE_SIZE);
 982#else
 983	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
 984free_pool:
 985	free_pages_exact((void *)addr, free_size);
 986#endif
 987
 988	kfence_metadata_init = NULL;
 989	__kfence_pool = NULL;
 990	return err;
 991}
 992
 993static int kfence_enable_late(void)
 994{
 995	if (!__kfence_pool)
 996		return kfence_init_late();
 997
 998	WRITE_ONCE(kfence_enabled, true);
 999	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1000	pr_info("re-enabled\n");
1001	return 0;
1002}
1003
1004void kfence_shutdown_cache(struct kmem_cache *s)
1005{
1006	unsigned long flags;
1007	struct kfence_metadata *meta;
1008	int i;
1009
1010	/* Pairs with release in kfence_init_pool(). */
1011	if (!smp_load_acquire(&kfence_metadata))
1012		return;
1013
1014	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1015		bool in_use;
1016
1017		meta = &kfence_metadata[i];
1018
1019		/*
1020		 * If we observe some inconsistent cache and state pair where we
1021		 * should have returned false here, cache destruction is racing
1022		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1023		 * the lock will not help, as different critical section
1024		 * serialization will have the same outcome.
1025		 */
1026		if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
 
1027			continue;
1028
1029		raw_spin_lock_irqsave(&meta->lock, flags);
1030		in_use = meta->cache == s && kfence_obj_allocated(meta);
1031		raw_spin_unlock_irqrestore(&meta->lock, flags);
1032
1033		if (in_use) {
1034			/*
1035			 * This cache still has allocations, and we should not
1036			 * release them back into the freelist so they can still
1037			 * safely be used and retain the kernel's default
1038			 * behaviour of keeping the allocations alive (leak the
1039			 * cache); however, they effectively become "zombie
1040			 * allocations" as the KFENCE objects are the only ones
1041			 * still in use and the owning cache is being destroyed.
1042			 *
1043			 * We mark them freed, so that any subsequent use shows
1044			 * more useful error messages that will include stack
1045			 * traces of the user of the object, the original
1046			 * allocation, and caller to shutdown_cache().
1047			 */
1048			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1049		}
1050	}
1051
1052	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1053		meta = &kfence_metadata[i];
1054
1055		/* See above. */
1056		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1057			continue;
1058
1059		raw_spin_lock_irqsave(&meta->lock, flags);
1060		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1061			meta->cache = NULL;
1062		raw_spin_unlock_irqrestore(&meta->lock, flags);
1063	}
1064}
1065
1066void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1067{
1068	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1069	size_t num_stack_entries;
1070	u32 alloc_stack_hash;
1071	int allocation_gate;
1072
1073	/*
1074	 * Perform size check before switching kfence_allocation_gate, so that
1075	 * we don't disable KFENCE without making an allocation.
1076	 */
1077	if (size > PAGE_SIZE) {
1078		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1079		return NULL;
1080	}
1081
1082	/*
1083	 * Skip allocations from non-default zones, including DMA. We cannot
1084	 * guarantee that pages in the KFENCE pool will have the requested
1085	 * properties (e.g. reside in DMAable memory).
1086	 */
1087	if ((flags & GFP_ZONEMASK) ||
1088	    ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1089	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1090		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1091		return NULL;
1092	}
1093
1094	/*
1095	 * Skip allocations for this slab, if KFENCE has been disabled for
1096	 * this slab.
1097	 */
1098	if (s->flags & SLAB_SKIP_KFENCE)
1099		return NULL;
1100
1101	allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1102	if (allocation_gate > 1)
1103		return NULL;
1104#ifdef CONFIG_KFENCE_STATIC_KEYS
1105	/*
1106	 * waitqueue_active() is fully ordered after the update of
1107	 * kfence_allocation_gate per atomic_inc_return().
1108	 */
1109	if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1110		/*
1111		 * Calling wake_up() here may deadlock when allocations happen
1112		 * from within timer code. Use an irq_work to defer it.
1113		 */
1114		irq_work_queue(&wake_up_kfence_timer_work);
1115	}
1116#endif
1117
1118	if (!READ_ONCE(kfence_enabled))
1119		return NULL;
1120
1121	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1122
1123	/*
1124	 * Do expensive check for coverage of allocation in slow-path after
1125	 * allocation_gate has already become non-zero, even though it might
1126	 * mean not making any allocation within a given sample interval.
1127	 *
1128	 * This ensures reasonable allocation coverage when the pool is almost
1129	 * full, including avoiding long-lived allocations of the same source
1130	 * filling up the pool (e.g. pagecache allocations).
1131	 */
1132	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1133	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1134		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1135		return NULL;
1136	}
1137
1138	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1139				    alloc_stack_hash);
1140}
1141
1142size_t kfence_ksize(const void *addr)
1143{
1144	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1145
1146	/*
1147	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1148	 * either a use-after-free or invalid access.
1149	 */
1150	return meta ? meta->size : 0;
1151}
1152
1153void *kfence_object_start(const void *addr)
1154{
1155	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1156
1157	/*
1158	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1159	 * either a use-after-free or invalid access.
1160	 */
1161	return meta ? (void *)meta->addr : NULL;
1162}
1163
1164void __kfence_free(void *addr)
1165{
1166	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1167
1168#ifdef CONFIG_MEMCG
1169	KFENCE_WARN_ON(meta->obj_exts.objcg);
1170#endif
1171	/*
1172	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1173	 * the object, as the object page may be recycled for other-typed
1174	 * objects once it has been freed. meta->cache may be NULL if the cache
1175	 * was destroyed.
1176	 * Save the stack trace here so that reports show where the user freed
1177	 * the object.
1178	 */
1179	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1180		unsigned long flags;
1181
1182		raw_spin_lock_irqsave(&meta->lock, flags);
1183		metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1184		raw_spin_unlock_irqrestore(&meta->lock, flags);
1185		call_rcu(&meta->rcu_head, rcu_guarded_free);
1186	} else {
1187		kfence_guarded_free(addr, meta, false);
1188	}
1189}
1190
1191bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1192{
1193	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1194	struct kfence_metadata *to_report = NULL;
1195	enum kfence_error_type error_type;
1196	unsigned long flags;
1197
1198	if (!is_kfence_address((void *)addr))
1199		return false;
1200
1201	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1202		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1203
1204	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1205
1206	if (page_index % 2) {
1207		/* This is a redzone, report a buffer overflow. */
1208		struct kfence_metadata *meta;
1209		int distance = 0;
1210
1211		meta = addr_to_metadata(addr - PAGE_SIZE);
1212		if (meta && kfence_obj_allocated(meta)) {
1213			to_report = meta;
1214			/* Data race ok; distance calculation approximate. */
1215			distance = addr - data_race(meta->addr + meta->size);
1216		}
1217
1218		meta = addr_to_metadata(addr + PAGE_SIZE);
1219		if (meta && kfence_obj_allocated(meta)) {
1220			/* Data race ok; distance calculation approximate. */
1221			if (!to_report || distance > data_race(meta->addr) - addr)
1222				to_report = meta;
1223		}
1224
1225		if (!to_report)
1226			goto out;
1227
1228		raw_spin_lock_irqsave(&to_report->lock, flags);
1229		to_report->unprotected_page = addr;
1230		error_type = KFENCE_ERROR_OOB;
1231
1232		/*
1233		 * If the object was freed before we took the look we can still
1234		 * report this as an OOB -- the report will simply show the
1235		 * stacktrace of the free as well.
1236		 */
1237	} else {
1238		to_report = addr_to_metadata(addr);
1239		if (!to_report)
1240			goto out;
1241
1242		raw_spin_lock_irqsave(&to_report->lock, flags);
1243		error_type = KFENCE_ERROR_UAF;
1244		/*
1245		 * We may race with __kfence_alloc(), and it is possible that a
1246		 * freed object may be reallocated. We simply report this as a
1247		 * use-after-free, with the stack trace showing the place where
1248		 * the object was re-allocated.
1249		 */
1250	}
1251
1252out:
1253	if (to_report) {
1254		kfence_report_error(addr, is_write, regs, to_report, error_type);
1255		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1256	} else {
1257		/* This may be a UAF or OOB access, but we can't be sure. */
1258		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1259	}
1260
1261	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1262}