Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 ARM Ltd.
  4 *
  5 * Generic implementation of update_vsyscall and update_vsyscall_tz.
  6 *
  7 * Based on the x86 specific implementation.
  8 */
  9
 10#include <linux/hrtimer.h>
 11#include <linux/timekeeper_internal.h>
 12#include <vdso/datapage.h>
 13#include <vdso/helpers.h>
 14#include <vdso/vsyscall.h>
 15
 16#include "timekeeping_internal.h"
 17
 18static inline void update_vdso_data(struct vdso_data *vdata,
 19				    struct timekeeper *tk)
 20{
 21	struct vdso_timestamp *vdso_ts;
 22	u64 nsec, sec;
 23
 24	vdata[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
 
 
 
 25	vdata[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
 26	vdata[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
 27	vdata[CS_HRES_COARSE].shift		= tk->tkr_mono.shift;
 28	vdata[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
 
 
 
 29	vdata[CS_RAW].mask			= tk->tkr_raw.mask;
 30	vdata[CS_RAW].mult			= tk->tkr_raw.mult;
 31	vdata[CS_RAW].shift			= tk->tkr_raw.shift;
 32
 33	/* CLOCK_MONOTONIC */
 34	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
 35	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 36
 37	nsec = tk->tkr_mono.xtime_nsec;
 38	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
 39	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 40		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
 41		vdso_ts->sec++;
 42	}
 43	vdso_ts->nsec	= nsec;
 44
 45	/* Copy MONOTONIC time for BOOTTIME */
 46	sec	= vdso_ts->sec;
 47	/* Add the boot offset */
 48	sec	+= tk->monotonic_to_boot.tv_sec;
 49	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
 50
 51	/* CLOCK_BOOTTIME */
 52	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
 53	vdso_ts->sec	= sec;
 54
 55	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 56		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
 57		vdso_ts->sec++;
 58	}
 59	vdso_ts->nsec	= nsec;
 60
 61	/* CLOCK_MONOTONIC_RAW */
 62	vdso_ts		= &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
 63	vdso_ts->sec	= tk->raw_sec;
 64	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
 65
 66	/* CLOCK_TAI */
 67	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
 68	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
 69	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
 70}
 71
 72void update_vsyscall(struct timekeeper *tk)
 73{
 74	struct vdso_data *vdata = __arch_get_k_vdso_data();
 75	struct vdso_timestamp *vdso_ts;
 76	s32 clock_mode;
 77	u64 nsec;
 78
 79	/* copy vsyscall data */
 80	vdso_write_begin(vdata);
 81
 82	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
 83	vdata[CS_HRES_COARSE].clock_mode	= clock_mode;
 84	vdata[CS_RAW].clock_mode		= clock_mode;
 85
 86	/* CLOCK_REALTIME also required for time() */
 87	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
 88	vdso_ts->sec	= tk->xtime_sec;
 89	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
 90
 91	/* CLOCK_REALTIME_COARSE */
 92	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
 93	vdso_ts->sec	= tk->xtime_sec;
 94	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 95
 96	/* CLOCK_MONOTONIC_COARSE */
 97	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
 98	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 99	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
100	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
101	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
102
103	/*
104	 * Read without the seqlock held by clock_getres().
105	 * Note: No need to have a second copy.
106	 */
107	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
108
109	/*
110	 * If the current clocksource is not VDSO capable, then spare the
111	 * update of the high resolution parts.
112	 */
113	if (clock_mode != VDSO_CLOCKMODE_NONE)
114		update_vdso_data(vdata, tk);
115
116	__arch_update_vsyscall(vdata, tk);
117
118	vdso_write_end(vdata);
119
120	__arch_sync_vdso_data(vdata);
121}
122
123void update_vsyscall_tz(void)
124{
125	struct vdso_data *vdata = __arch_get_k_vdso_data();
126
127	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
128	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
129
130	__arch_sync_vdso_data(vdata);
131}
132
133/**
134 * vdso_update_begin - Start of a VDSO update section
135 *
136 * Allows architecture code to safely update the architecture specific VDSO
137 * data. Disables interrupts, acquires timekeeper lock to serialize against
138 * concurrent updates from timekeeping and invalidates the VDSO data
139 * sequence counter to prevent concurrent readers from accessing
140 * inconsistent data.
141 *
142 * Returns: Saved interrupt flags which need to be handed in to
143 * vdso_update_end().
144 */
145unsigned long vdso_update_begin(void)
146{
147	struct vdso_data *vdata = __arch_get_k_vdso_data();
148	unsigned long flags;
149
150	raw_spin_lock_irqsave(&timekeeper_lock, flags);
151	vdso_write_begin(vdata);
152	return flags;
153}
154
155/**
156 * vdso_update_end - End of a VDSO update section
157 * @flags:	Interrupt flags as returned from vdso_update_begin()
158 *
159 * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
160 * synchronization if the architecture requires it, drops timekeeper lock
161 * and restores interrupt flags.
162 */
163void vdso_update_end(unsigned long flags)
164{
165	struct vdso_data *vdata = __arch_get_k_vdso_data();
166
167	vdso_write_end(vdata);
168	__arch_sync_vdso_data(vdata);
169	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
170}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2019 ARM Ltd.
  4 *
  5 * Generic implementation of update_vsyscall and update_vsyscall_tz.
  6 *
  7 * Based on the x86 specific implementation.
  8 */
  9
 10#include <linux/hrtimer.h>
 11#include <linux/timekeeper_internal.h>
 12#include <vdso/datapage.h>
 13#include <vdso/helpers.h>
 14#include <vdso/vsyscall.h>
 15
 16#include "timekeeping_internal.h"
 17
 18static inline void update_vdso_data(struct vdso_data *vdata,
 19				    struct timekeeper *tk)
 20{
 21	struct vdso_timestamp *vdso_ts;
 22	u64 nsec, sec;
 23
 24	vdata[CS_HRES_COARSE].cycle_last	= tk->tkr_mono.cycle_last;
 25#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
 26	vdata[CS_HRES_COARSE].max_cycles	= tk->tkr_mono.clock->max_cycles;
 27#endif
 28	vdata[CS_HRES_COARSE].mask		= tk->tkr_mono.mask;
 29	vdata[CS_HRES_COARSE].mult		= tk->tkr_mono.mult;
 30	vdata[CS_HRES_COARSE].shift		= tk->tkr_mono.shift;
 31	vdata[CS_RAW].cycle_last		= tk->tkr_raw.cycle_last;
 32#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
 33	vdata[CS_RAW].max_cycles		= tk->tkr_raw.clock->max_cycles;
 34#endif
 35	vdata[CS_RAW].mask			= tk->tkr_raw.mask;
 36	vdata[CS_RAW].mult			= tk->tkr_raw.mult;
 37	vdata[CS_RAW].shift			= tk->tkr_raw.shift;
 38
 39	/* CLOCK_MONOTONIC */
 40	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
 41	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 42
 43	nsec = tk->tkr_mono.xtime_nsec;
 44	nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
 45	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 46		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
 47		vdso_ts->sec++;
 48	}
 49	vdso_ts->nsec	= nsec;
 50
 51	/* Copy MONOTONIC time for BOOTTIME */
 52	sec	= vdso_ts->sec;
 53	/* Add the boot offset */
 54	sec	+= tk->monotonic_to_boot.tv_sec;
 55	nsec	+= (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
 56
 57	/* CLOCK_BOOTTIME */
 58	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
 59	vdso_ts->sec	= sec;
 60
 61	while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 62		nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
 63		vdso_ts->sec++;
 64	}
 65	vdso_ts->nsec	= nsec;
 66
 67	/* CLOCK_MONOTONIC_RAW */
 68	vdso_ts		= &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
 69	vdso_ts->sec	= tk->raw_sec;
 70	vdso_ts->nsec	= tk->tkr_raw.xtime_nsec;
 71
 72	/* CLOCK_TAI */
 73	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI];
 74	vdso_ts->sec	= tk->xtime_sec + (s64)tk->tai_offset;
 75	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
 76}
 77
 78void update_vsyscall(struct timekeeper *tk)
 79{
 80	struct vdso_data *vdata = __arch_get_k_vdso_data();
 81	struct vdso_timestamp *vdso_ts;
 82	s32 clock_mode;
 83	u64 nsec;
 84
 85	/* copy vsyscall data */
 86	vdso_write_begin(vdata);
 87
 88	clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
 89	vdata[CS_HRES_COARSE].clock_mode	= clock_mode;
 90	vdata[CS_RAW].clock_mode		= clock_mode;
 91
 92	/* CLOCK_REALTIME also required for time() */
 93	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
 94	vdso_ts->sec	= tk->xtime_sec;
 95	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec;
 96
 97	/* CLOCK_REALTIME_COARSE */
 98	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
 99	vdso_ts->sec	= tk->xtime_sec;
100	vdso_ts->nsec	= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
101
102	/* CLOCK_MONOTONIC_COARSE */
103	vdso_ts		= &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
104	vdso_ts->sec	= tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
105	nsec		= tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
106	nsec		= nsec + tk->wall_to_monotonic.tv_nsec;
107	vdso_ts->sec	+= __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
108
109	/*
110	 * Read without the seqlock held by clock_getres().
111	 * Note: No need to have a second copy.
112	 */
113	WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution);
114
115	/*
116	 * If the current clocksource is not VDSO capable, then spare the
117	 * update of the high resolution parts.
118	 */
119	if (clock_mode != VDSO_CLOCKMODE_NONE)
120		update_vdso_data(vdata, tk);
121
122	__arch_update_vsyscall(vdata);
123
124	vdso_write_end(vdata);
125
126	__arch_sync_vdso_data(vdata);
127}
128
129void update_vsyscall_tz(void)
130{
131	struct vdso_data *vdata = __arch_get_k_vdso_data();
132
133	vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
134	vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
135
136	__arch_sync_vdso_data(vdata);
137}
138
139/**
140 * vdso_update_begin - Start of a VDSO update section
141 *
142 * Allows architecture code to safely update the architecture specific VDSO
143 * data. Disables interrupts, acquires timekeeper lock to serialize against
144 * concurrent updates from timekeeping and invalidates the VDSO data
145 * sequence counter to prevent concurrent readers from accessing
146 * inconsistent data.
147 *
148 * Returns: Saved interrupt flags which need to be handed in to
149 * vdso_update_end().
150 */
151unsigned long vdso_update_begin(void)
152{
153	struct vdso_data *vdata = __arch_get_k_vdso_data();
154	unsigned long flags = timekeeper_lock_irqsave();
155
 
156	vdso_write_begin(vdata);
157	return flags;
158}
159
160/**
161 * vdso_update_end - End of a VDSO update section
162 * @flags:	Interrupt flags as returned from vdso_update_begin()
163 *
164 * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
165 * synchronization if the architecture requires it, drops timekeeper lock
166 * and restores interrupt flags.
167 */
168void vdso_update_end(unsigned long flags)
169{
170	struct vdso_data *vdata = __arch_get_k_vdso_data();
171
172	vdso_write_end(vdata);
173	__arch_sync_vdso_data(vdata);
174	timekeeper_unlock_irqrestore(flags);
175}