Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29#include <linux/time_namespace.h>
30
31#include "posix-timers.h"
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/alarmtimer.h>
35
36/**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50} alarm_bases[ALARM_NUMTYPE];
51
52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53/* freezer information to handle clock_nanosleep triggered wakeups */
54static enum alarmtimer_type freezer_alarmtype;
55static ktime_t freezer_expires;
56static ktime_t freezer_delta;
57static DEFINE_SPINLOCK(freezer_delta_lock);
58#endif
59
60#ifdef CONFIG_RTC_CLASS
61/* rtc timer and device for setting alarm wakeups at suspend */
62static struct rtc_timer rtctimer;
63static struct rtc_device *rtcdev;
64static DEFINE_SPINLOCK(rtcdev_lock);
65
66/**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
71struct rtc_device *alarmtimer_get_rtcdev(void)
72{
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81}
82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84static int alarmtimer_rtc_add_device(struct device *dev,
85 struct class_interface *class_intf)
86{
87 unsigned long flags;
88 struct rtc_device *rtc = to_rtc_device(dev);
89 struct platform_device *pdev;
90 int ret = 0;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 pdev = platform_device_register_data(dev, "alarmtimer",
101 PLATFORM_DEVID_AUTO, NULL, 0);
102 if (!IS_ERR(pdev))
103 device_init_wakeup(&pdev->dev, true);
104
105 spin_lock_irqsave(&rtcdev_lock, flags);
106 if (!IS_ERR(pdev) && !rtcdev) {
107 if (!try_module_get(rtc->owner)) {
108 ret = -1;
109 goto unlock;
110 }
111
112 rtcdev = rtc;
113 /* hold a reference so it doesn't go away */
114 get_device(dev);
115 pdev = NULL;
116 } else {
117 ret = -1;
118 }
119unlock:
120 spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122 platform_device_unregister(pdev);
123
124 return ret;
125}
126
127static inline void alarmtimer_rtc_timer_init(void)
128{
129 rtc_timer_init(&rtctimer, NULL, NULL);
130}
131
132static struct class_interface alarmtimer_rtc_interface = {
133 .add_dev = &alarmtimer_rtc_add_device,
134};
135
136static int alarmtimer_rtc_interface_setup(void)
137{
138 alarmtimer_rtc_interface.class = rtc_class;
139 return class_interface_register(&alarmtimer_rtc_interface);
140}
141static void alarmtimer_rtc_interface_remove(void)
142{
143 class_interface_unregister(&alarmtimer_rtc_interface);
144}
145#else
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->get_ktime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->get_ktime());
221 return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->get_ktime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244 ktime_t min, now, expires;
245 int i, ret, type;
246 struct rtc_device *rtc;
247 unsigned long flags;
248 struct rtc_time tm;
249
250 spin_lock_irqsave(&freezer_delta_lock, flags);
251 min = freezer_delta;
252 expires = freezer_expires;
253 type = freezer_alarmtype;
254 freezer_delta = 0;
255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257 rtc = alarmtimer_get_rtcdev();
258 /* If we have no rtcdev, just return */
259 if (!rtc)
260 return 0;
261
262 /* Find the soonest timer to expire*/
263 for (i = 0; i < ALARM_NUMTYPE; i++) {
264 struct alarm_base *base = &alarm_bases[i];
265 struct timerqueue_node *next;
266 ktime_t delta;
267
268 spin_lock_irqsave(&base->lock, flags);
269 next = timerqueue_getnext(&base->timerqueue);
270 spin_unlock_irqrestore(&base->lock, flags);
271 if (!next)
272 continue;
273 delta = ktime_sub(next->expires, base->get_ktime());
274 if (!min || (delta < min)) {
275 expires = next->expires;
276 min = delta;
277 type = i;
278 }
279 }
280 if (min == 0)
281 return 0;
282
283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285 return -EBUSY;
286 }
287
288 trace_alarmtimer_suspend(expires, type);
289
290 /* Setup an rtc timer to fire that far in the future */
291 rtc_timer_cancel(rtc, &rtctimer);
292 rtc_read_time(rtc, &tm);
293 now = rtc_tm_to_ktime(tm);
294 now = ktime_add(now, min);
295
296 /* Set alarm, if in the past reject suspend briefly to handle */
297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298 if (ret < 0)
299 pm_wakeup_event(dev, MSEC_PER_SEC);
300 return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305 struct rtc_device *rtc;
306
307 rtc = alarmtimer_get_rtcdev();
308 if (rtc)
309 rtc_timer_cancel(rtc, &rtctimer);
310 return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316 return 0;
317}
318
319static int alarmtimer_resume(struct device *dev)
320{
321 return 0;
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329 timerqueue_init(&alarm->node);
330 alarm->timer.function = alarmtimer_fired;
331 alarm->function = function;
332 alarm->type = type;
333 alarm->state = ALARMTIMER_STATE_INACTIVE;
334}
335
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346 HRTIMER_MODE_ABS);
347 __alarm_init(alarm, type, function);
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358 struct alarm_base *base = &alarm_bases[alarm->type];
359 unsigned long flags;
360
361 spin_lock_irqsave(&base->lock, flags);
362 alarm->node.expires = start;
363 alarmtimer_enqueue(base, alarm);
364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365 spin_unlock_irqrestore(&base->lock, flags);
366
367 trace_alarmtimer_start(alarm, base->get_ktime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378 struct alarm_base *base = &alarm_bases[alarm->type];
379
380 start = ktime_add_safe(start, base->get_ktime());
381 alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387 struct alarm_base *base = &alarm_bases[alarm->type];
388 unsigned long flags;
389
390 spin_lock_irqsave(&base->lock, flags);
391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392 hrtimer_restart(&alarm->timer);
393 alarmtimer_enqueue(base, alarm);
394 spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407 struct alarm_base *base = &alarm_bases[alarm->type];
408 unsigned long flags;
409 int ret;
410
411 spin_lock_irqsave(&base->lock, flags);
412 ret = hrtimer_try_to_cancel(&alarm->timer);
413 if (ret >= 0)
414 alarmtimer_dequeue(base, alarm);
415 spin_unlock_irqrestore(&base->lock, flags);
416
417 trace_alarmtimer_cancel(alarm, base->get_ktime());
418 return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431 for (;;) {
432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0)
434 return ret;
435 hrtimer_cancel_wait_running(&alarm->timer);
436 }
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443 u64 overrun = 1;
444 ktime_t delta;
445
446 delta = ktime_sub(now, alarm->node.expires);
447
448 if (delta < 0)
449 return 0;
450
451 if (unlikely(delta >= interval)) {
452 s64 incr = ktime_to_ns(interval);
453
454 overrun = ktime_divns(delta, incr);
455
456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457 incr*overrun);
458
459 if (alarm->node.expires > now)
460 return overrun;
461 /*
462 * This (and the ktime_add() below) is the
463 * correction for exact:
464 */
465 overrun++;
466 }
467
468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469 return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
474{
475 struct alarm_base *base = &alarm_bases[alarm->type];
476 ktime_t now = base->get_ktime();
477
478 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
479 /*
480 * Same issue as with posix_timer_fn(). Timers which are
481 * periodic but the signal is ignored can starve the system
482 * with a very small interval. The real fix which was
483 * promised in the context of posix_timer_fn() never
484 * materialized, but someone should really work on it.
485 *
486 * To prevent DOS fake @now to be 1 jiffie out which keeps
487 * the overrun accounting correct but creates an
488 * inconsistency vs. timer_gettime(2).
489 */
490 ktime_t kj = NSEC_PER_SEC / HZ;
491
492 if (interval < kj)
493 now = ktime_add(now, kj);
494 }
495
496 return alarm_forward(alarm, now, interval);
497}
498
499u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
500{
501 return __alarm_forward_now(alarm, interval, false);
502}
503EXPORT_SYMBOL_GPL(alarm_forward_now);
504
505#ifdef CONFIG_POSIX_TIMERS
506
507static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
508{
509 struct alarm_base *base;
510 unsigned long flags;
511 ktime_t delta;
512
513 switch(type) {
514 case ALARM_REALTIME:
515 base = &alarm_bases[ALARM_REALTIME];
516 type = ALARM_REALTIME_FREEZER;
517 break;
518 case ALARM_BOOTTIME:
519 base = &alarm_bases[ALARM_BOOTTIME];
520 type = ALARM_BOOTTIME_FREEZER;
521 break;
522 default:
523 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
524 return;
525 }
526
527 delta = ktime_sub(absexp, base->get_ktime());
528
529 spin_lock_irqsave(&freezer_delta_lock, flags);
530 if (!freezer_delta || (delta < freezer_delta)) {
531 freezer_delta = delta;
532 freezer_expires = absexp;
533 freezer_alarmtype = type;
534 }
535 spin_unlock_irqrestore(&freezer_delta_lock, flags);
536}
537
538/**
539 * clock2alarm - helper that converts from clockid to alarmtypes
540 * @clockid: clockid.
541 */
542static enum alarmtimer_type clock2alarm(clockid_t clockid)
543{
544 if (clockid == CLOCK_REALTIME_ALARM)
545 return ALARM_REALTIME;
546 if (clockid == CLOCK_BOOTTIME_ALARM)
547 return ALARM_BOOTTIME;
548 return -1;
549}
550
551/**
552 * alarm_handle_timer - Callback for posix timers
553 * @alarm: alarm that fired
554 * @now: time at the timer expiration
555 *
556 * Posix timer callback for expired alarm timers.
557 *
558 * Return: whether the timer is to be restarted
559 */
560static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
561 ktime_t now)
562{
563 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
564 it.alarm.alarmtimer);
565 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
566 unsigned long flags;
567 int si_private = 0;
568
569 spin_lock_irqsave(&ptr->it_lock, flags);
570
571 ptr->it_active = 0;
572 if (ptr->it_interval)
573 si_private = ++ptr->it_requeue_pending;
574
575 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
576 /*
577 * Handle ignored signals and rearm the timer. This will go
578 * away once we handle ignored signals proper. Ensure that
579 * small intervals cannot starve the system.
580 */
581 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
582 ++ptr->it_requeue_pending;
583 ptr->it_active = 1;
584 result = ALARMTIMER_RESTART;
585 }
586 spin_unlock_irqrestore(&ptr->it_lock, flags);
587
588 return result;
589}
590
591/**
592 * alarm_timer_rearm - Posix timer callback for rearming timer
593 * @timr: Pointer to the posixtimer data struct
594 */
595static void alarm_timer_rearm(struct k_itimer *timr)
596{
597 struct alarm *alarm = &timr->it.alarm.alarmtimer;
598
599 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
600 alarm_start(alarm, alarm->node.expires);
601}
602
603/**
604 * alarm_timer_forward - Posix timer callback for forwarding timer
605 * @timr: Pointer to the posixtimer data struct
606 * @now: Current time to forward the timer against
607 */
608static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
609{
610 struct alarm *alarm = &timr->it.alarm.alarmtimer;
611
612 return alarm_forward(alarm, timr->it_interval, now);
613}
614
615/**
616 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
617 * @timr: Pointer to the posixtimer data struct
618 * @now: Current time to calculate against
619 */
620static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
621{
622 struct alarm *alarm = &timr->it.alarm.alarmtimer;
623
624 return ktime_sub(alarm->node.expires, now);
625}
626
627/**
628 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
629 * @timr: Pointer to the posixtimer data struct
630 */
631static int alarm_timer_try_to_cancel(struct k_itimer *timr)
632{
633 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
634}
635
636/**
637 * alarm_timer_wait_running - Posix timer callback to wait for a timer
638 * @timr: Pointer to the posixtimer data struct
639 *
640 * Called from the core code when timer cancel detected that the callback
641 * is running. @timr is unlocked and rcu read lock is held to prevent it
642 * from being freed.
643 */
644static void alarm_timer_wait_running(struct k_itimer *timr)
645{
646 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
647}
648
649/**
650 * alarm_timer_arm - Posix timer callback to arm a timer
651 * @timr: Pointer to the posixtimer data struct
652 * @expires: The new expiry time
653 * @absolute: Expiry value is absolute time
654 * @sigev_none: Posix timer does not deliver signals
655 */
656static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
657 bool absolute, bool sigev_none)
658{
659 struct alarm *alarm = &timr->it.alarm.alarmtimer;
660 struct alarm_base *base = &alarm_bases[alarm->type];
661
662 if (!absolute)
663 expires = ktime_add_safe(expires, base->get_ktime());
664 if (sigev_none)
665 alarm->node.expires = expires;
666 else
667 alarm_start(&timr->it.alarm.alarmtimer, expires);
668}
669
670/**
671 * alarm_clock_getres - posix getres interface
672 * @which_clock: clockid
673 * @tp: timespec to fill
674 *
675 * Returns the granularity of underlying alarm base clock
676 */
677static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
678{
679 if (!alarmtimer_get_rtcdev())
680 return -EINVAL;
681
682 tp->tv_sec = 0;
683 tp->tv_nsec = hrtimer_resolution;
684 return 0;
685}
686
687/**
688 * alarm_clock_get_timespec - posix clock_get_timespec interface
689 * @which_clock: clockid
690 * @tp: timespec to fill.
691 *
692 * Provides the underlying alarm base time in a tasks time namespace.
693 */
694static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
695{
696 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
697
698 if (!alarmtimer_get_rtcdev())
699 return -EINVAL;
700
701 base->get_timespec(tp);
702
703 return 0;
704}
705
706/**
707 * alarm_clock_get_ktime - posix clock_get_ktime interface
708 * @which_clock: clockid
709 *
710 * Provides the underlying alarm base time in the root namespace.
711 */
712static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
713{
714 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
715
716 if (!alarmtimer_get_rtcdev())
717 return -EINVAL;
718
719 return base->get_ktime();
720}
721
722/**
723 * alarm_timer_create - posix timer_create interface
724 * @new_timer: k_itimer pointer to manage
725 *
726 * Initializes the k_itimer structure.
727 */
728static int alarm_timer_create(struct k_itimer *new_timer)
729{
730 enum alarmtimer_type type;
731
732 if (!alarmtimer_get_rtcdev())
733 return -EOPNOTSUPP;
734
735 if (!capable(CAP_WAKE_ALARM))
736 return -EPERM;
737
738 type = clock2alarm(new_timer->it_clock);
739 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
740 return 0;
741}
742
743/**
744 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
745 * @alarm: ptr to alarm that fired
746 * @now: time at the timer expiration
747 *
748 * Wakes up the task that set the alarmtimer
749 *
750 * Return: ALARMTIMER_NORESTART
751 */
752static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
753 ktime_t now)
754{
755 struct task_struct *task = (struct task_struct *)alarm->data;
756
757 alarm->data = NULL;
758 if (task)
759 wake_up_process(task);
760 return ALARMTIMER_NORESTART;
761}
762
763/**
764 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
765 * @alarm: ptr to alarmtimer
766 * @absexp: absolute expiration time
767 * @type: alarm type (BOOTTIME/REALTIME).
768 *
769 * Sets the alarm timer and sleeps until it is fired or interrupted.
770 */
771static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
772 enum alarmtimer_type type)
773{
774 struct restart_block *restart;
775 alarm->data = (void *)current;
776 do {
777 set_current_state(TASK_INTERRUPTIBLE);
778 alarm_start(alarm, absexp);
779 if (likely(alarm->data))
780 schedule();
781
782 alarm_cancel(alarm);
783 } while (alarm->data && !signal_pending(current));
784
785 __set_current_state(TASK_RUNNING);
786
787 destroy_hrtimer_on_stack(&alarm->timer);
788
789 if (!alarm->data)
790 return 0;
791
792 if (freezing(current))
793 alarmtimer_freezerset(absexp, type);
794 restart = ¤t->restart_block;
795 if (restart->nanosleep.type != TT_NONE) {
796 struct timespec64 rmt;
797 ktime_t rem;
798
799 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
800
801 if (rem <= 0)
802 return 0;
803 rmt = ktime_to_timespec64(rem);
804
805 return nanosleep_copyout(restart, &rmt);
806 }
807 return -ERESTART_RESTARTBLOCK;
808}
809
810static void
811alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
812 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
813{
814 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
815 HRTIMER_MODE_ABS);
816 __alarm_init(alarm, type, function);
817}
818
819/**
820 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
821 * @restart: ptr to restart block
822 *
823 * Handles restarted clock_nanosleep calls
824 */
825static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
826{
827 enum alarmtimer_type type = restart->nanosleep.clockid;
828 ktime_t exp = restart->nanosleep.expires;
829 struct alarm alarm;
830
831 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833 return alarmtimer_do_nsleep(&alarm, exp, type);
834}
835
836/**
837 * alarm_timer_nsleep - alarmtimer nanosleep
838 * @which_clock: clockid
839 * @flags: determines abstime or relative
840 * @tsreq: requested sleep time (abs or rel)
841 *
842 * Handles clock_nanosleep calls against _ALARM clockids
843 */
844static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
845 const struct timespec64 *tsreq)
846{
847 enum alarmtimer_type type = clock2alarm(which_clock);
848 struct restart_block *restart = ¤t->restart_block;
849 struct alarm alarm;
850 ktime_t exp;
851 int ret = 0;
852
853 if (!alarmtimer_get_rtcdev())
854 return -EOPNOTSUPP;
855
856 if (flags & ~TIMER_ABSTIME)
857 return -EINVAL;
858
859 if (!capable(CAP_WAKE_ALARM))
860 return -EPERM;
861
862 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
863
864 exp = timespec64_to_ktime(*tsreq);
865 /* Convert (if necessary) to absolute time */
866 if (flags != TIMER_ABSTIME) {
867 ktime_t now = alarm_bases[type].get_ktime();
868
869 exp = ktime_add_safe(now, exp);
870 } else {
871 exp = timens_ktime_to_host(which_clock, exp);
872 }
873
874 ret = alarmtimer_do_nsleep(&alarm, exp, type);
875 if (ret != -ERESTART_RESTARTBLOCK)
876 return ret;
877
878 /* abs timers don't set remaining time or restart */
879 if (flags == TIMER_ABSTIME)
880 return -ERESTARTNOHAND;
881
882 restart->nanosleep.clockid = type;
883 restart->nanosleep.expires = exp;
884 set_restart_fn(restart, alarm_timer_nsleep_restart);
885 return ret;
886}
887
888const struct k_clock alarm_clock = {
889 .clock_getres = alarm_clock_getres,
890 .clock_get_ktime = alarm_clock_get_ktime,
891 .clock_get_timespec = alarm_clock_get_timespec,
892 .timer_create = alarm_timer_create,
893 .timer_set = common_timer_set,
894 .timer_del = common_timer_del,
895 .timer_get = common_timer_get,
896 .timer_arm = alarm_timer_arm,
897 .timer_rearm = alarm_timer_rearm,
898 .timer_forward = alarm_timer_forward,
899 .timer_remaining = alarm_timer_remaining,
900 .timer_try_to_cancel = alarm_timer_try_to_cancel,
901 .timer_wait_running = alarm_timer_wait_running,
902 .nsleep = alarm_timer_nsleep,
903};
904#endif /* CONFIG_POSIX_TIMERS */
905
906
907/* Suspend hook structures */
908static const struct dev_pm_ops alarmtimer_pm_ops = {
909 .suspend = alarmtimer_suspend,
910 .resume = alarmtimer_resume,
911};
912
913static struct platform_driver alarmtimer_driver = {
914 .driver = {
915 .name = "alarmtimer",
916 .pm = &alarmtimer_pm_ops,
917 }
918};
919
920static void get_boottime_timespec(struct timespec64 *tp)
921{
922 ktime_get_boottime_ts64(tp);
923 timens_add_boottime(tp);
924}
925
926/**
927 * alarmtimer_init - Initialize alarm timer code
928 *
929 * This function initializes the alarm bases and registers
930 * the posix clock ids.
931 */
932static int __init alarmtimer_init(void)
933{
934 int error;
935 int i;
936
937 alarmtimer_rtc_timer_init();
938
939 /* Initialize alarm bases */
940 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
941 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
942 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
943 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
944 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
945 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
946 for (i = 0; i < ALARM_NUMTYPE; i++) {
947 timerqueue_init_head(&alarm_bases[i].timerqueue);
948 spin_lock_init(&alarm_bases[i].lock);
949 }
950
951 error = alarmtimer_rtc_interface_setup();
952 if (error)
953 return error;
954
955 error = platform_driver_register(&alarmtimer_driver);
956 if (error)
957 goto out_if;
958
959 return 0;
960out_if:
961 alarmtimer_rtc_interface_remove();
962 return error;
963}
964device_initcall(alarmtimer_init);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15#include <linux/time.h>
16#include <linux/hrtimer.h>
17#include <linux/timerqueue.h>
18#include <linux/rtc.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/alarmtimer.h>
22#include <linux/mutex.h>
23#include <linux/platform_device.h>
24#include <linux/posix-timers.h>
25#include <linux/workqueue.h>
26#include <linux/freezer.h>
27#include <linux/compat.h>
28#include <linux/module.h>
29#include <linux/time_namespace.h>
30
31#include "posix-timers.h"
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/alarmtimer.h>
35
36/**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50} alarm_bases[ALARM_NUMTYPE];
51
52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53/* freezer information to handle clock_nanosleep triggered wakeups */
54static enum alarmtimer_type freezer_alarmtype;
55static ktime_t freezer_expires;
56static ktime_t freezer_delta;
57static DEFINE_SPINLOCK(freezer_delta_lock);
58#endif
59
60#ifdef CONFIG_RTC_CLASS
61/* rtc timer and device for setting alarm wakeups at suspend */
62static struct rtc_timer rtctimer;
63static struct rtc_device *rtcdev;
64static DEFINE_SPINLOCK(rtcdev_lock);
65
66/**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
71struct rtc_device *alarmtimer_get_rtcdev(void)
72{
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81}
82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84static int alarmtimer_rtc_add_device(struct device *dev)
85{
86 unsigned long flags;
87 struct rtc_device *rtc = to_rtc_device(dev);
88 struct platform_device *pdev;
89 int ret = 0;
90
91 if (rtcdev)
92 return -EBUSY;
93
94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 return -1;
96 if (!device_may_wakeup(rtc->dev.parent))
97 return -1;
98
99 pdev = platform_device_register_data(dev, "alarmtimer",
100 PLATFORM_DEVID_AUTO, NULL, 0);
101 if (!IS_ERR(pdev))
102 device_init_wakeup(&pdev->dev, true);
103
104 spin_lock_irqsave(&rtcdev_lock, flags);
105 if (!IS_ERR(pdev) && !rtcdev) {
106 if (!try_module_get(rtc->owner)) {
107 ret = -1;
108 goto unlock;
109 }
110
111 rtcdev = rtc;
112 /* hold a reference so it doesn't go away */
113 get_device(dev);
114 pdev = NULL;
115 } else {
116 ret = -1;
117 }
118unlock:
119 spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121 platform_device_unregister(pdev);
122
123 return ret;
124}
125
126static inline void alarmtimer_rtc_timer_init(void)
127{
128 rtc_timer_init(&rtctimer, NULL, NULL);
129}
130
131static struct class_interface alarmtimer_rtc_interface = {
132 .add_dev = &alarmtimer_rtc_add_device,
133};
134
135static int alarmtimer_rtc_interface_setup(void)
136{
137 alarmtimer_rtc_interface.class = &rtc_class;
138 return class_interface_register(&alarmtimer_rtc_interface);
139}
140static void alarmtimer_rtc_interface_remove(void)
141{
142 class_interface_unregister(&alarmtimer_rtc_interface);
143}
144#else
145static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146static inline void alarmtimer_rtc_interface_remove(void) { }
147static inline void alarmtimer_rtc_timer_init(void) { }
148#endif
149
150/**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
159static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160{
161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 timerqueue_del(&base->timerqueue, &alarm->node);
163
164 timerqueue_add(&base->timerqueue, &alarm->node);
165 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166}
167
168/**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
177static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178{
179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 return;
181
182 timerqueue_del(&base->timerqueue, &alarm->node);
183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184}
185
186
187/**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
196static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197{
198 struct alarm *alarm = container_of(timer, struct alarm, timer);
199 struct alarm_base *base = &alarm_bases[alarm->type];
200
201 scoped_guard (spinlock_irqsave, &base->lock)
202 alarmtimer_dequeue(base, alarm);
203
204 if (alarm->function)
205 alarm->function(alarm, base->get_ktime());
206
207 trace_alarmtimer_fired(alarm, base->get_ktime());
208 return HRTIMER_NORESTART;
209}
210
211ktime_t alarm_expires_remaining(const struct alarm *alarm)
212{
213 struct alarm_base *base = &alarm_bases[alarm->type];
214 return ktime_sub(alarm->node.expires, base->get_ktime());
215}
216EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217
218#ifdef CONFIG_RTC_CLASS
219/**
220 * alarmtimer_suspend - Suspend time callback
221 * @dev: unused
222 *
223 * When we are going into suspend, we look through the bases
224 * to see which is the soonest timer to expire. We then
225 * set an rtc timer to fire that far into the future, which
226 * will wake us from suspend.
227 */
228static int alarmtimer_suspend(struct device *dev)
229{
230 ktime_t min, now, expires;
231 int i, ret, type;
232 struct rtc_device *rtc;
233 unsigned long flags;
234 struct rtc_time tm;
235
236 spin_lock_irqsave(&freezer_delta_lock, flags);
237 min = freezer_delta;
238 expires = freezer_expires;
239 type = freezer_alarmtype;
240 freezer_delta = 0;
241 spin_unlock_irqrestore(&freezer_delta_lock, flags);
242
243 rtc = alarmtimer_get_rtcdev();
244 /* If we have no rtcdev, just return */
245 if (!rtc)
246 return 0;
247
248 /* Find the soonest timer to expire*/
249 for (i = 0; i < ALARM_NUMTYPE; i++) {
250 struct alarm_base *base = &alarm_bases[i];
251 struct timerqueue_node *next;
252 ktime_t delta;
253
254 spin_lock_irqsave(&base->lock, flags);
255 next = timerqueue_getnext(&base->timerqueue);
256 spin_unlock_irqrestore(&base->lock, flags);
257 if (!next)
258 continue;
259 delta = ktime_sub(next->expires, base->get_ktime());
260 if (!min || (delta < min)) {
261 expires = next->expires;
262 min = delta;
263 type = i;
264 }
265 }
266 if (min == 0)
267 return 0;
268
269 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271 return -EBUSY;
272 }
273
274 trace_alarmtimer_suspend(expires, type);
275
276 /* Setup an rtc timer to fire that far in the future */
277 rtc_timer_cancel(rtc, &rtctimer);
278 rtc_read_time(rtc, &tm);
279 now = rtc_tm_to_ktime(tm);
280
281 /*
282 * If the RTC alarm timer only supports a limited time offset, set the
283 * alarm time to the maximum supported value.
284 * The system may wake up earlier (possibly much earlier) than expected
285 * when the alarmtimer runs. This is the best the kernel can do if
286 * the alarmtimer exceeds the time that the rtc device can be programmed
287 * for.
288 */
289 min = rtc_bound_alarmtime(rtc, min);
290
291 now = ktime_add(now, min);
292
293 /* Set alarm, if in the past reject suspend briefly to handle */
294 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295 if (ret < 0)
296 pm_wakeup_event(dev, MSEC_PER_SEC);
297 return ret;
298}
299
300static int alarmtimer_resume(struct device *dev)
301{
302 struct rtc_device *rtc;
303
304 rtc = alarmtimer_get_rtcdev();
305 if (rtc)
306 rtc_timer_cancel(rtc, &rtctimer);
307 return 0;
308}
309
310#else
311static int alarmtimer_suspend(struct device *dev)
312{
313 return 0;
314}
315
316static int alarmtimer_resume(struct device *dev)
317{
318 return 0;
319}
320#endif
321
322static void
323__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 void (*function)(struct alarm *, ktime_t))
325{
326 timerqueue_init(&alarm->node);
327 alarm->function = function;
328 alarm->type = type;
329 alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
331
332/**
333 * alarm_init - Initialize an alarm structure
334 * @alarm: ptr to alarm to be initialized
335 * @type: the type of the alarm
336 * @function: callback that is run when the alarm fires
337 */
338void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339 void (*function)(struct alarm *, ktime_t))
340{
341 hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342 HRTIMER_MODE_ABS);
343 __alarm_init(alarm, type, function);
344}
345EXPORT_SYMBOL_GPL(alarm_init);
346
347/**
348 * alarm_start - Sets an absolute alarm to fire
349 * @alarm: ptr to alarm to set
350 * @start: time to run the alarm
351 */
352void alarm_start(struct alarm *alarm, ktime_t start)
353{
354 struct alarm_base *base = &alarm_bases[alarm->type];
355 unsigned long flags;
356
357 spin_lock_irqsave(&base->lock, flags);
358 alarm->node.expires = start;
359 alarmtimer_enqueue(base, alarm);
360 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
361 spin_unlock_irqrestore(&base->lock, flags);
362
363 trace_alarmtimer_start(alarm, base->get_ktime());
364}
365EXPORT_SYMBOL_GPL(alarm_start);
366
367/**
368 * alarm_start_relative - Sets a relative alarm to fire
369 * @alarm: ptr to alarm to set
370 * @start: time relative to now to run the alarm
371 */
372void alarm_start_relative(struct alarm *alarm, ktime_t start)
373{
374 struct alarm_base *base = &alarm_bases[alarm->type];
375
376 start = ktime_add_safe(start, base->get_ktime());
377 alarm_start(alarm, start);
378}
379EXPORT_SYMBOL_GPL(alarm_start_relative);
380
381void alarm_restart(struct alarm *alarm)
382{
383 struct alarm_base *base = &alarm_bases[alarm->type];
384 unsigned long flags;
385
386 spin_lock_irqsave(&base->lock, flags);
387 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388 hrtimer_restart(&alarm->timer);
389 alarmtimer_enqueue(base, alarm);
390 spin_unlock_irqrestore(&base->lock, flags);
391}
392EXPORT_SYMBOL_GPL(alarm_restart);
393
394/**
395 * alarm_try_to_cancel - Tries to cancel an alarm timer
396 * @alarm: ptr to alarm to be canceled
397 *
398 * Returns 1 if the timer was canceled, 0 if it was not running,
399 * and -1 if the callback was running
400 */
401int alarm_try_to_cancel(struct alarm *alarm)
402{
403 struct alarm_base *base = &alarm_bases[alarm->type];
404 unsigned long flags;
405 int ret;
406
407 spin_lock_irqsave(&base->lock, flags);
408 ret = hrtimer_try_to_cancel(&alarm->timer);
409 if (ret >= 0)
410 alarmtimer_dequeue(base, alarm);
411 spin_unlock_irqrestore(&base->lock, flags);
412
413 trace_alarmtimer_cancel(alarm, base->get_ktime());
414 return ret;
415}
416EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417
418
419/**
420 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421 * @alarm: ptr to alarm to be canceled
422 *
423 * Returns 1 if the timer was canceled, 0 if it was not active.
424 */
425int alarm_cancel(struct alarm *alarm)
426{
427 for (;;) {
428 int ret = alarm_try_to_cancel(alarm);
429 if (ret >= 0)
430 return ret;
431 hrtimer_cancel_wait_running(&alarm->timer);
432 }
433}
434EXPORT_SYMBOL_GPL(alarm_cancel);
435
436
437u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438{
439 u64 overrun = 1;
440 ktime_t delta;
441
442 delta = ktime_sub(now, alarm->node.expires);
443
444 if (delta < 0)
445 return 0;
446
447 if (unlikely(delta >= interval)) {
448 s64 incr = ktime_to_ns(interval);
449
450 overrun = ktime_divns(delta, incr);
451
452 alarm->node.expires = ktime_add_ns(alarm->node.expires,
453 incr*overrun);
454
455 if (alarm->node.expires > now)
456 return overrun;
457 /*
458 * This (and the ktime_add() below) is the
459 * correction for exact:
460 */
461 overrun++;
462 }
463
464 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465 return overrun;
466}
467EXPORT_SYMBOL_GPL(alarm_forward);
468
469u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470{
471 struct alarm_base *base = &alarm_bases[alarm->type];
472
473 return alarm_forward(alarm, base->get_ktime(), interval);
474}
475EXPORT_SYMBOL_GPL(alarm_forward_now);
476
477#ifdef CONFIG_POSIX_TIMERS
478
479static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480{
481 struct alarm_base *base;
482 unsigned long flags;
483 ktime_t delta;
484
485 switch(type) {
486 case ALARM_REALTIME:
487 base = &alarm_bases[ALARM_REALTIME];
488 type = ALARM_REALTIME_FREEZER;
489 break;
490 case ALARM_BOOTTIME:
491 base = &alarm_bases[ALARM_BOOTTIME];
492 type = ALARM_BOOTTIME_FREEZER;
493 break;
494 default:
495 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496 return;
497 }
498
499 delta = ktime_sub(absexp, base->get_ktime());
500
501 spin_lock_irqsave(&freezer_delta_lock, flags);
502 if (!freezer_delta || (delta < freezer_delta)) {
503 freezer_delta = delta;
504 freezer_expires = absexp;
505 freezer_alarmtype = type;
506 }
507 spin_unlock_irqrestore(&freezer_delta_lock, flags);
508}
509
510/**
511 * clock2alarm - helper that converts from clockid to alarmtypes
512 * @clockid: clockid.
513 */
514static enum alarmtimer_type clock2alarm(clockid_t clockid)
515{
516 if (clockid == CLOCK_REALTIME_ALARM)
517 return ALARM_REALTIME;
518 if (clockid == CLOCK_BOOTTIME_ALARM)
519 return ALARM_BOOTTIME;
520 return -1;
521}
522
523/**
524 * alarm_handle_timer - Callback for posix timers
525 * @alarm: alarm that fired
526 * @now: time at the timer expiration
527 *
528 * Posix timer callback for expired alarm timers.
529 *
530 * Return: whether the timer is to be restarted
531 */
532static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
533{
534 struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535
536 guard(spinlock_irqsave)(&ptr->it_lock);
537 posix_timer_queue_signal(ptr);
538}
539
540/**
541 * alarm_timer_rearm - Posix timer callback for rearming timer
542 * @timr: Pointer to the posixtimer data struct
543 */
544static void alarm_timer_rearm(struct k_itimer *timr)
545{
546 struct alarm *alarm = &timr->it.alarm.alarmtimer;
547
548 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549 alarm_start(alarm, alarm->node.expires);
550}
551
552/**
553 * alarm_timer_forward - Posix timer callback for forwarding timer
554 * @timr: Pointer to the posixtimer data struct
555 * @now: Current time to forward the timer against
556 */
557static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558{
559 struct alarm *alarm = &timr->it.alarm.alarmtimer;
560
561 return alarm_forward(alarm, timr->it_interval, now);
562}
563
564/**
565 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566 * @timr: Pointer to the posixtimer data struct
567 * @now: Current time to calculate against
568 */
569static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570{
571 struct alarm *alarm = &timr->it.alarm.alarmtimer;
572
573 return ktime_sub(alarm->node.expires, now);
574}
575
576/**
577 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578 * @timr: Pointer to the posixtimer data struct
579 */
580static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581{
582 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583}
584
585/**
586 * alarm_timer_wait_running - Posix timer callback to wait for a timer
587 * @timr: Pointer to the posixtimer data struct
588 *
589 * Called from the core code when timer cancel detected that the callback
590 * is running. @timr is unlocked and rcu read lock is held to prevent it
591 * from being freed.
592 */
593static void alarm_timer_wait_running(struct k_itimer *timr)
594{
595 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596}
597
598/**
599 * alarm_timer_arm - Posix timer callback to arm a timer
600 * @timr: Pointer to the posixtimer data struct
601 * @expires: The new expiry time
602 * @absolute: Expiry value is absolute time
603 * @sigev_none: Posix timer does not deliver signals
604 */
605static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606 bool absolute, bool sigev_none)
607{
608 struct alarm *alarm = &timr->it.alarm.alarmtimer;
609 struct alarm_base *base = &alarm_bases[alarm->type];
610
611 if (!absolute)
612 expires = ktime_add_safe(expires, base->get_ktime());
613 if (sigev_none)
614 alarm->node.expires = expires;
615 else
616 alarm_start(&timr->it.alarm.alarmtimer, expires);
617}
618
619/**
620 * alarm_clock_getres - posix getres interface
621 * @which_clock: clockid
622 * @tp: timespec to fill
623 *
624 * Returns the granularity of underlying alarm base clock
625 */
626static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627{
628 if (!alarmtimer_get_rtcdev())
629 return -EINVAL;
630
631 tp->tv_sec = 0;
632 tp->tv_nsec = hrtimer_resolution;
633 return 0;
634}
635
636/**
637 * alarm_clock_get_timespec - posix clock_get_timespec interface
638 * @which_clock: clockid
639 * @tp: timespec to fill.
640 *
641 * Provides the underlying alarm base time in a tasks time namespace.
642 */
643static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644{
645 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
646
647 if (!alarmtimer_get_rtcdev())
648 return -EINVAL;
649
650 base->get_timespec(tp);
651
652 return 0;
653}
654
655/**
656 * alarm_clock_get_ktime - posix clock_get_ktime interface
657 * @which_clock: clockid
658 *
659 * Provides the underlying alarm base time in the root namespace.
660 */
661static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
662{
663 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664
665 if (!alarmtimer_get_rtcdev())
666 return -EINVAL;
667
668 return base->get_ktime();
669}
670
671/**
672 * alarm_timer_create - posix timer_create interface
673 * @new_timer: k_itimer pointer to manage
674 *
675 * Initializes the k_itimer structure.
676 */
677static int alarm_timer_create(struct k_itimer *new_timer)
678{
679 enum alarmtimer_type type;
680
681 if (!alarmtimer_get_rtcdev())
682 return -EOPNOTSUPP;
683
684 if (!capable(CAP_WAKE_ALARM))
685 return -EPERM;
686
687 type = clock2alarm(new_timer->it_clock);
688 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
689 return 0;
690}
691
692/**
693 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694 * @alarm: ptr to alarm that fired
695 * @now: time at the timer expiration
696 *
697 * Wakes up the task that set the alarmtimer
698 */
699static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
700{
701 struct task_struct *task = alarm->data;
702
703 alarm->data = NULL;
704 if (task)
705 wake_up_process(task);
706}
707
708/**
709 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710 * @alarm: ptr to alarmtimer
711 * @absexp: absolute expiration time
712 * @type: alarm type (BOOTTIME/REALTIME).
713 *
714 * Sets the alarm timer and sleeps until it is fired or interrupted.
715 */
716static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717 enum alarmtimer_type type)
718{
719 struct restart_block *restart;
720 alarm->data = (void *)current;
721 do {
722 set_current_state(TASK_INTERRUPTIBLE);
723 alarm_start(alarm, absexp);
724 if (likely(alarm->data))
725 schedule();
726
727 alarm_cancel(alarm);
728 } while (alarm->data && !signal_pending(current));
729
730 __set_current_state(TASK_RUNNING);
731
732 destroy_hrtimer_on_stack(&alarm->timer);
733
734 if (!alarm->data)
735 return 0;
736
737 if (freezing(current))
738 alarmtimer_freezerset(absexp, type);
739 restart = ¤t->restart_block;
740 if (restart->nanosleep.type != TT_NONE) {
741 struct timespec64 rmt;
742 ktime_t rem;
743
744 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
745
746 if (rem <= 0)
747 return 0;
748 rmt = ktime_to_timespec64(rem);
749
750 return nanosleep_copyout(restart, &rmt);
751 }
752 return -ERESTART_RESTARTBLOCK;
753}
754
755static void
756alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757 void (*function)(struct alarm *, ktime_t))
758{
759 hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760 HRTIMER_MODE_ABS);
761 __alarm_init(alarm, type, function);
762}
763
764/**
765 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766 * @restart: ptr to restart block
767 *
768 * Handles restarted clock_nanosleep calls
769 */
770static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771{
772 enum alarmtimer_type type = restart->nanosleep.clockid;
773 ktime_t exp = restart->nanosleep.expires;
774 struct alarm alarm;
775
776 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777
778 return alarmtimer_do_nsleep(&alarm, exp, type);
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determines abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 *
787 * Handles clock_nanosleep calls against _ALARM clockids
788 */
789static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 const struct timespec64 *tsreq)
791{
792 enum alarmtimer_type type = clock2alarm(which_clock);
793 struct restart_block *restart = ¤t->restart_block;
794 struct alarm alarm;
795 ktime_t exp;
796 int ret;
797
798 if (!alarmtimer_get_rtcdev())
799 return -EOPNOTSUPP;
800
801 if (flags & ~TIMER_ABSTIME)
802 return -EINVAL;
803
804 if (!capable(CAP_WAKE_ALARM))
805 return -EPERM;
806
807 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809 exp = timespec64_to_ktime(*tsreq);
810 /* Convert (if necessary) to absolute time */
811 if (flags != TIMER_ABSTIME) {
812 ktime_t now = alarm_bases[type].get_ktime();
813
814 exp = ktime_add_safe(now, exp);
815 } else {
816 exp = timens_ktime_to_host(which_clock, exp);
817 }
818
819 ret = alarmtimer_do_nsleep(&alarm, exp, type);
820 if (ret != -ERESTART_RESTARTBLOCK)
821 return ret;
822
823 /* abs timers don't set remaining time or restart */
824 if (flags == TIMER_ABSTIME)
825 return -ERESTARTNOHAND;
826
827 restart->nanosleep.clockid = type;
828 restart->nanosleep.expires = exp;
829 set_restart_fn(restart, alarm_timer_nsleep_restart);
830 return ret;
831}
832
833const struct k_clock alarm_clock = {
834 .clock_getres = alarm_clock_getres,
835 .clock_get_ktime = alarm_clock_get_ktime,
836 .clock_get_timespec = alarm_clock_get_timespec,
837 .timer_create = alarm_timer_create,
838 .timer_set = common_timer_set,
839 .timer_del = common_timer_del,
840 .timer_get = common_timer_get,
841 .timer_arm = alarm_timer_arm,
842 .timer_rearm = alarm_timer_rearm,
843 .timer_forward = alarm_timer_forward,
844 .timer_remaining = alarm_timer_remaining,
845 .timer_try_to_cancel = alarm_timer_try_to_cancel,
846 .timer_wait_running = alarm_timer_wait_running,
847 .nsleep = alarm_timer_nsleep,
848};
849#endif /* CONFIG_POSIX_TIMERS */
850
851
852/* Suspend hook structures */
853static const struct dev_pm_ops alarmtimer_pm_ops = {
854 .suspend = alarmtimer_suspend,
855 .resume = alarmtimer_resume,
856};
857
858static struct platform_driver alarmtimer_driver = {
859 .driver = {
860 .name = "alarmtimer",
861 .pm = &alarmtimer_pm_ops,
862 }
863};
864
865static void get_boottime_timespec(struct timespec64 *tp)
866{
867 ktime_get_boottime_ts64(tp);
868 timens_add_boottime(tp);
869}
870
871/**
872 * alarmtimer_init - Initialize alarm timer code
873 *
874 * This function initializes the alarm bases and registers
875 * the posix clock ids.
876 */
877static int __init alarmtimer_init(void)
878{
879 int error;
880 int i;
881
882 alarmtimer_rtc_timer_init();
883
884 /* Initialize alarm bases */
885 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891 for (i = 0; i < ALARM_NUMTYPE; i++) {
892 timerqueue_init_head(&alarm_bases[i].timerqueue);
893 spin_lock_init(&alarm_bases[i].lock);
894 }
895
896 error = alarmtimer_rtc_interface_setup();
897 if (error)
898 return error;
899
900 error = platform_driver_register(&alarmtimer_driver);
901 if (error)
902 goto out_if;
903
904 return 0;
905out_if:
906 alarmtimer_rtc_interface_remove();
907 return error;
908}
909device_initcall(alarmtimer_init);