Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_bmap_btree.h"
17#include "xfs_bmap.h"
18#include "xfs_bmap_util.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_trans.h"
22#include "xfs_trans_space.h"
23#include "xfs_inode_item.h"
24#include "xfs_iomap.h"
25#include "xfs_trace.h"
26#include "xfs_quota.h"
27#include "xfs_dquot_item.h"
28#include "xfs_dquot.h"
29#include "xfs_reflink.h"
30
31#define XFS_ALLOC_ALIGN(mp, off) \
32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
33
34static int
35xfs_alert_fsblock_zero(
36 xfs_inode_t *ip,
37 xfs_bmbt_irec_t *imap)
38{
39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
40 "Access to block zero in inode %llu "
41 "start_block: %llx start_off: %llx "
42 "blkcnt: %llx extent-state: %x",
43 (unsigned long long)ip->i_ino,
44 (unsigned long long)imap->br_startblock,
45 (unsigned long long)imap->br_startoff,
46 (unsigned long long)imap->br_blockcount,
47 imap->br_state);
48 return -EFSCORRUPTED;
49}
50
51u64
52xfs_iomap_inode_sequence(
53 struct xfs_inode *ip,
54 u16 iomap_flags)
55{
56 u64 cookie = 0;
57
58 if (iomap_flags & IOMAP_F_XATTR)
59 return READ_ONCE(ip->i_af.if_seq);
60 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
61 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
62 return cookie | READ_ONCE(ip->i_df.if_seq);
63}
64
65/*
66 * Check that the iomap passed to us is still valid for the given offset and
67 * length.
68 */
69static bool
70xfs_iomap_valid(
71 struct inode *inode,
72 const struct iomap *iomap)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75
76 if (iomap->validity_cookie !=
77 xfs_iomap_inode_sequence(ip, iomap->flags)) {
78 trace_xfs_iomap_invalid(ip, iomap);
79 return false;
80 }
81
82 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
83 return true;
84}
85
86static const struct iomap_page_ops xfs_iomap_page_ops = {
87 .iomap_valid = xfs_iomap_valid,
88};
89
90int
91xfs_bmbt_to_iomap(
92 struct xfs_inode *ip,
93 struct iomap *iomap,
94 struct xfs_bmbt_irec *imap,
95 unsigned int mapping_flags,
96 u16 iomap_flags,
97 u64 sequence_cookie)
98{
99 struct xfs_mount *mp = ip->i_mount;
100 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
101
102 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
103 return xfs_alert_fsblock_zero(ip, imap);
104
105 if (imap->br_startblock == HOLESTARTBLOCK) {
106 iomap->addr = IOMAP_NULL_ADDR;
107 iomap->type = IOMAP_HOLE;
108 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
109 isnullstartblock(imap->br_startblock)) {
110 iomap->addr = IOMAP_NULL_ADDR;
111 iomap->type = IOMAP_DELALLOC;
112 } else {
113 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
114 if (mapping_flags & IOMAP_DAX)
115 iomap->addr += target->bt_dax_part_off;
116
117 if (imap->br_state == XFS_EXT_UNWRITTEN)
118 iomap->type = IOMAP_UNWRITTEN;
119 else
120 iomap->type = IOMAP_MAPPED;
121
122 }
123 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
124 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
125 if (mapping_flags & IOMAP_DAX)
126 iomap->dax_dev = target->bt_daxdev;
127 else
128 iomap->bdev = target->bt_bdev;
129 iomap->flags = iomap_flags;
130
131 if (xfs_ipincount(ip) &&
132 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
133 iomap->flags |= IOMAP_F_DIRTY;
134
135 iomap->validity_cookie = sequence_cookie;
136 iomap->page_ops = &xfs_iomap_page_ops;
137 return 0;
138}
139
140static void
141xfs_hole_to_iomap(
142 struct xfs_inode *ip,
143 struct iomap *iomap,
144 xfs_fileoff_t offset_fsb,
145 xfs_fileoff_t end_fsb)
146{
147 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
148
149 iomap->addr = IOMAP_NULL_ADDR;
150 iomap->type = IOMAP_HOLE;
151 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
152 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
153 iomap->bdev = target->bt_bdev;
154 iomap->dax_dev = target->bt_daxdev;
155}
156
157static inline xfs_fileoff_t
158xfs_iomap_end_fsb(
159 struct xfs_mount *mp,
160 loff_t offset,
161 loff_t count)
162{
163 ASSERT(offset <= mp->m_super->s_maxbytes);
164 return min(XFS_B_TO_FSB(mp, offset + count),
165 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
166}
167
168static xfs_extlen_t
169xfs_eof_alignment(
170 struct xfs_inode *ip)
171{
172 struct xfs_mount *mp = ip->i_mount;
173 xfs_extlen_t align = 0;
174
175 if (!XFS_IS_REALTIME_INODE(ip)) {
176 /*
177 * Round up the allocation request to a stripe unit
178 * (m_dalign) boundary if the file size is >= stripe unit
179 * size, and we are allocating past the allocation eof.
180 *
181 * If mounted with the "-o swalloc" option the alignment is
182 * increased from the strip unit size to the stripe width.
183 */
184 if (mp->m_swidth && xfs_has_swalloc(mp))
185 align = mp->m_swidth;
186 else if (mp->m_dalign)
187 align = mp->m_dalign;
188
189 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
190 align = 0;
191 }
192
193 return align;
194}
195
196/*
197 * Check if last_fsb is outside the last extent, and if so grow it to the next
198 * stripe unit boundary.
199 */
200xfs_fileoff_t
201xfs_iomap_eof_align_last_fsb(
202 struct xfs_inode *ip,
203 xfs_fileoff_t end_fsb)
204{
205 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
206 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
207 xfs_extlen_t align = xfs_eof_alignment(ip);
208 struct xfs_bmbt_irec irec;
209 struct xfs_iext_cursor icur;
210
211 ASSERT(!xfs_need_iread_extents(ifp));
212
213 /*
214 * Always round up the allocation request to the extent hint boundary.
215 */
216 if (extsz) {
217 if (align)
218 align = roundup_64(align, extsz);
219 else
220 align = extsz;
221 }
222
223 if (align) {
224 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
225
226 xfs_iext_last(ifp, &icur);
227 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
228 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
229 return aligned_end_fsb;
230 }
231
232 return end_fsb;
233}
234
235int
236xfs_iomap_write_direct(
237 struct xfs_inode *ip,
238 xfs_fileoff_t offset_fsb,
239 xfs_fileoff_t count_fsb,
240 unsigned int flags,
241 struct xfs_bmbt_irec *imap,
242 u64 *seq)
243{
244 struct xfs_mount *mp = ip->i_mount;
245 struct xfs_trans *tp;
246 xfs_filblks_t resaligned;
247 int nimaps;
248 unsigned int dblocks, rblocks;
249 bool force = false;
250 int error;
251 int bmapi_flags = XFS_BMAPI_PREALLOC;
252 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
253
254 ASSERT(count_fsb > 0);
255
256 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
257 xfs_get_extsz_hint(ip));
258 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
259 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
260 rblocks = resaligned;
261 } else {
262 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
263 rblocks = 0;
264 }
265
266 error = xfs_qm_dqattach(ip);
267 if (error)
268 return error;
269
270 /*
271 * For DAX, we do not allocate unwritten extents, but instead we zero
272 * the block before we commit the transaction. Ideally we'd like to do
273 * this outside the transaction context, but if we commit and then crash
274 * we may not have zeroed the blocks and this will be exposed on
275 * recovery of the allocation. Hence we must zero before commit.
276 *
277 * Further, if we are mapping unwritten extents here, we need to zero
278 * and convert them to written so that we don't need an unwritten extent
279 * callback for DAX. This also means that we need to be able to dip into
280 * the reserve block pool for bmbt block allocation if there is no space
281 * left but we need to do unwritten extent conversion.
282 */
283 if (flags & IOMAP_DAX) {
284 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
285 if (imap->br_state == XFS_EXT_UNWRITTEN) {
286 force = true;
287 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
288 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
289 }
290 }
291
292 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
293 rblocks, force, &tp);
294 if (error)
295 return error;
296
297 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
298 if (error == -EFBIG)
299 error = xfs_iext_count_upgrade(tp, ip, nr_exts);
300 if (error)
301 goto out_trans_cancel;
302
303 /*
304 * From this point onwards we overwrite the imap pointer that the
305 * caller gave to us.
306 */
307 nimaps = 1;
308 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
309 imap, &nimaps);
310 if (error)
311 goto out_trans_cancel;
312
313 /*
314 * Complete the transaction
315 */
316 error = xfs_trans_commit(tp);
317 if (error)
318 goto out_unlock;
319
320 /*
321 * Copy any maps to caller's array and return any error.
322 */
323 if (nimaps == 0) {
324 error = -ENOSPC;
325 goto out_unlock;
326 }
327
328 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
329 error = xfs_alert_fsblock_zero(ip, imap);
330
331out_unlock:
332 *seq = xfs_iomap_inode_sequence(ip, 0);
333 xfs_iunlock(ip, XFS_ILOCK_EXCL);
334 return error;
335
336out_trans_cancel:
337 xfs_trans_cancel(tp);
338 goto out_unlock;
339}
340
341STATIC bool
342xfs_quota_need_throttle(
343 struct xfs_inode *ip,
344 xfs_dqtype_t type,
345 xfs_fsblock_t alloc_blocks)
346{
347 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
348
349 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
350 return false;
351
352 /* no hi watermark, no throttle */
353 if (!dq->q_prealloc_hi_wmark)
354 return false;
355
356 /* under the lo watermark, no throttle */
357 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
358 return false;
359
360 return true;
361}
362
363STATIC void
364xfs_quota_calc_throttle(
365 struct xfs_inode *ip,
366 xfs_dqtype_t type,
367 xfs_fsblock_t *qblocks,
368 int *qshift,
369 int64_t *qfreesp)
370{
371 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
372 int64_t freesp;
373 int shift = 0;
374
375 /* no dq, or over hi wmark, squash the prealloc completely */
376 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
377 *qblocks = 0;
378 *qfreesp = 0;
379 return;
380 }
381
382 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
383 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
384 shift = 2;
385 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
386 shift += 2;
387 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
388 shift += 2;
389 }
390
391 if (freesp < *qfreesp)
392 *qfreesp = freesp;
393
394 /* only overwrite the throttle values if we are more aggressive */
395 if ((freesp >> shift) < (*qblocks >> *qshift)) {
396 *qblocks = freesp;
397 *qshift = shift;
398 }
399}
400
401/*
402 * If we don't have a user specified preallocation size, dynamically increase
403 * the preallocation size as the size of the file grows. Cap the maximum size
404 * at a single extent or less if the filesystem is near full. The closer the
405 * filesystem is to being full, the smaller the maximum preallocation.
406 */
407STATIC xfs_fsblock_t
408xfs_iomap_prealloc_size(
409 struct xfs_inode *ip,
410 int whichfork,
411 loff_t offset,
412 loff_t count,
413 struct xfs_iext_cursor *icur)
414{
415 struct xfs_iext_cursor ncur = *icur;
416 struct xfs_bmbt_irec prev, got;
417 struct xfs_mount *mp = ip->i_mount;
418 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
419 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 int64_t freesp;
421 xfs_fsblock_t qblocks;
422 xfs_fsblock_t alloc_blocks = 0;
423 xfs_extlen_t plen;
424 int shift = 0;
425 int qshift = 0;
426
427 /*
428 * As an exception we don't do any preallocation at all if the file is
429 * smaller than the minimum preallocation and we are using the default
430 * dynamic preallocation scheme, as it is likely this is the only write
431 * to the file that is going to be done.
432 */
433 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
434 return 0;
435
436 /*
437 * Use the minimum preallocation size for small files or if we are
438 * writing right after a hole.
439 */
440 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
441 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
442 prev.br_startoff + prev.br_blockcount < offset_fsb)
443 return mp->m_allocsize_blocks;
444
445 /*
446 * Take the size of the preceding data extents as the basis for the
447 * preallocation size. Note that we don't care if the previous extents
448 * are written or not.
449 */
450 plen = prev.br_blockcount;
451 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
452 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
453 isnullstartblock(got.br_startblock) ||
454 got.br_startoff + got.br_blockcount != prev.br_startoff ||
455 got.br_startblock + got.br_blockcount != prev.br_startblock)
456 break;
457 plen += got.br_blockcount;
458 prev = got;
459 }
460
461 /*
462 * If the size of the extents is greater than half the maximum extent
463 * length, then use the current offset as the basis. This ensures that
464 * for large files the preallocation size always extends to
465 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
466 * unit/width alignment of real extents.
467 */
468 alloc_blocks = plen * 2;
469 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
470 alloc_blocks = XFS_B_TO_FSB(mp, offset);
471 qblocks = alloc_blocks;
472
473 /*
474 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
475 * down to the nearest power of two value after throttling. To prevent
476 * the round down from unconditionally reducing the maximum supported
477 * prealloc size, we round up first, apply appropriate throttling, round
478 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
479 */
480 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
481 alloc_blocks);
482
483 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
484 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
485 shift = 2;
486 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
487 shift++;
488 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
489 shift++;
490 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
491 shift++;
492 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
493 shift++;
494 }
495
496 /*
497 * Check each quota to cap the prealloc size, provide a shift value to
498 * throttle with and adjust amount of available space.
499 */
500 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
501 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
502 &freesp);
503 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
504 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
505 &freesp);
506 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
507 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
508 &freesp);
509
510 /*
511 * The final prealloc size is set to the minimum of free space available
512 * in each of the quotas and the overall filesystem.
513 *
514 * The shift throttle value is set to the maximum value as determined by
515 * the global low free space values and per-quota low free space values.
516 */
517 alloc_blocks = min(alloc_blocks, qblocks);
518 shift = max(shift, qshift);
519
520 if (shift)
521 alloc_blocks >>= shift;
522 /*
523 * rounddown_pow_of_two() returns an undefined result if we pass in
524 * alloc_blocks = 0.
525 */
526 if (alloc_blocks)
527 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
528 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
529 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
530
531 /*
532 * If we are still trying to allocate more space than is
533 * available, squash the prealloc hard. This can happen if we
534 * have a large file on a small filesystem and the above
535 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
536 */
537 while (alloc_blocks && alloc_blocks >= freesp)
538 alloc_blocks >>= 4;
539 if (alloc_blocks < mp->m_allocsize_blocks)
540 alloc_blocks = mp->m_allocsize_blocks;
541 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
542 mp->m_allocsize_blocks);
543 return alloc_blocks;
544}
545
546int
547xfs_iomap_write_unwritten(
548 xfs_inode_t *ip,
549 xfs_off_t offset,
550 xfs_off_t count,
551 bool update_isize)
552{
553 xfs_mount_t *mp = ip->i_mount;
554 xfs_fileoff_t offset_fsb;
555 xfs_filblks_t count_fsb;
556 xfs_filblks_t numblks_fsb;
557 int nimaps;
558 xfs_trans_t *tp;
559 xfs_bmbt_irec_t imap;
560 struct inode *inode = VFS_I(ip);
561 xfs_fsize_t i_size;
562 uint resblks;
563 int error;
564
565 trace_xfs_unwritten_convert(ip, offset, count);
566
567 offset_fsb = XFS_B_TO_FSBT(mp, offset);
568 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
569 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
570
571 /*
572 * Reserve enough blocks in this transaction for two complete extent
573 * btree splits. We may be converting the middle part of an unwritten
574 * extent and in this case we will insert two new extents in the btree
575 * each of which could cause a full split.
576 *
577 * This reservation amount will be used in the first call to
578 * xfs_bmbt_split() to select an AG with enough space to satisfy the
579 * rest of the operation.
580 */
581 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
582
583 /* Attach dquots so that bmbt splits are accounted correctly. */
584 error = xfs_qm_dqattach(ip);
585 if (error)
586 return error;
587
588 do {
589 /*
590 * Set up a transaction to convert the range of extents
591 * from unwritten to real. Do allocations in a loop until
592 * we have covered the range passed in.
593 *
594 * Note that we can't risk to recursing back into the filesystem
595 * here as we might be asked to write out the same inode that we
596 * complete here and might deadlock on the iolock.
597 */
598 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
599 0, true, &tp);
600 if (error)
601 return error;
602
603 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
604 XFS_IEXT_WRITE_UNWRITTEN_CNT);
605 if (error == -EFBIG)
606 error = xfs_iext_count_upgrade(tp, ip,
607 XFS_IEXT_WRITE_UNWRITTEN_CNT);
608 if (error)
609 goto error_on_bmapi_transaction;
610
611 /*
612 * Modify the unwritten extent state of the buffer.
613 */
614 nimaps = 1;
615 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
616 XFS_BMAPI_CONVERT, resblks, &imap,
617 &nimaps);
618 if (error)
619 goto error_on_bmapi_transaction;
620
621 /*
622 * Log the updated inode size as we go. We have to be careful
623 * to only log it up to the actual write offset if it is
624 * halfway into a block.
625 */
626 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
627 if (i_size > offset + count)
628 i_size = offset + count;
629 if (update_isize && i_size > i_size_read(inode))
630 i_size_write(inode, i_size);
631 i_size = xfs_new_eof(ip, i_size);
632 if (i_size) {
633 ip->i_disk_size = i_size;
634 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
635 }
636
637 error = xfs_trans_commit(tp);
638 xfs_iunlock(ip, XFS_ILOCK_EXCL);
639 if (error)
640 return error;
641
642 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
643 return xfs_alert_fsblock_zero(ip, &imap);
644
645 if ((numblks_fsb = imap.br_blockcount) == 0) {
646 /*
647 * The numblks_fsb value should always get
648 * smaller, otherwise the loop is stuck.
649 */
650 ASSERT(imap.br_blockcount);
651 break;
652 }
653 offset_fsb += numblks_fsb;
654 count_fsb -= numblks_fsb;
655 } while (count_fsb > 0);
656
657 return 0;
658
659error_on_bmapi_transaction:
660 xfs_trans_cancel(tp);
661 xfs_iunlock(ip, XFS_ILOCK_EXCL);
662 return error;
663}
664
665static inline bool
666imap_needs_alloc(
667 struct inode *inode,
668 unsigned flags,
669 struct xfs_bmbt_irec *imap,
670 int nimaps)
671{
672 /* don't allocate blocks when just zeroing */
673 if (flags & IOMAP_ZERO)
674 return false;
675 if (!nimaps ||
676 imap->br_startblock == HOLESTARTBLOCK ||
677 imap->br_startblock == DELAYSTARTBLOCK)
678 return true;
679 /* we convert unwritten extents before copying the data for DAX */
680 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
681 return true;
682 return false;
683}
684
685static inline bool
686imap_needs_cow(
687 struct xfs_inode *ip,
688 unsigned int flags,
689 struct xfs_bmbt_irec *imap,
690 int nimaps)
691{
692 if (!xfs_is_cow_inode(ip))
693 return false;
694
695 /* when zeroing we don't have to COW holes or unwritten extents */
696 if (flags & IOMAP_ZERO) {
697 if (!nimaps ||
698 imap->br_startblock == HOLESTARTBLOCK ||
699 imap->br_state == XFS_EXT_UNWRITTEN)
700 return false;
701 }
702
703 return true;
704}
705
706static int
707xfs_ilock_for_iomap(
708 struct xfs_inode *ip,
709 unsigned flags,
710 unsigned *lockmode)
711{
712 unsigned int mode = *lockmode;
713 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
714
715 /*
716 * COW writes may allocate delalloc space or convert unwritten COW
717 * extents, so we need to make sure to take the lock exclusively here.
718 */
719 if (xfs_is_cow_inode(ip) && is_write)
720 mode = XFS_ILOCK_EXCL;
721
722 /*
723 * Extents not yet cached requires exclusive access, don't block. This
724 * is an opencoded xfs_ilock_data_map_shared() call but with
725 * non-blocking behaviour.
726 */
727 if (xfs_need_iread_extents(&ip->i_df)) {
728 if (flags & IOMAP_NOWAIT)
729 return -EAGAIN;
730 mode = XFS_ILOCK_EXCL;
731 }
732
733relock:
734 if (flags & IOMAP_NOWAIT) {
735 if (!xfs_ilock_nowait(ip, mode))
736 return -EAGAIN;
737 } else {
738 xfs_ilock(ip, mode);
739 }
740
741 /*
742 * The reflink iflag could have changed since the earlier unlocked
743 * check, so if we got ILOCK_SHARED for a write and but we're now a
744 * reflink inode we have to switch to ILOCK_EXCL and relock.
745 */
746 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
747 xfs_iunlock(ip, mode);
748 mode = XFS_ILOCK_EXCL;
749 goto relock;
750 }
751
752 *lockmode = mode;
753 return 0;
754}
755
756/*
757 * Check that the imap we are going to return to the caller spans the entire
758 * range that the caller requested for the IO.
759 */
760static bool
761imap_spans_range(
762 struct xfs_bmbt_irec *imap,
763 xfs_fileoff_t offset_fsb,
764 xfs_fileoff_t end_fsb)
765{
766 if (imap->br_startoff > offset_fsb)
767 return false;
768 if (imap->br_startoff + imap->br_blockcount < end_fsb)
769 return false;
770 return true;
771}
772
773static int
774xfs_direct_write_iomap_begin(
775 struct inode *inode,
776 loff_t offset,
777 loff_t length,
778 unsigned flags,
779 struct iomap *iomap,
780 struct iomap *srcmap)
781{
782 struct xfs_inode *ip = XFS_I(inode);
783 struct xfs_mount *mp = ip->i_mount;
784 struct xfs_bmbt_irec imap, cmap;
785 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
786 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
787 int nimaps = 1, error = 0;
788 bool shared = false;
789 u16 iomap_flags = 0;
790 unsigned int lockmode = XFS_ILOCK_SHARED;
791 u64 seq;
792
793 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
794
795 if (xfs_is_shutdown(mp))
796 return -EIO;
797
798 /*
799 * Writes that span EOF might trigger an IO size update on completion,
800 * so consider them to be dirty for the purposes of O_DSYNC even if
801 * there is no other metadata changes pending or have been made here.
802 */
803 if (offset + length > i_size_read(inode))
804 iomap_flags |= IOMAP_F_DIRTY;
805
806 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
807 if (error)
808 return error;
809
810 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
811 &nimaps, 0);
812 if (error)
813 goto out_unlock;
814
815 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
816 error = -EAGAIN;
817 if (flags & IOMAP_NOWAIT)
818 goto out_unlock;
819
820 /* may drop and re-acquire the ilock */
821 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
822 &lockmode,
823 (flags & IOMAP_DIRECT) || IS_DAX(inode));
824 if (error)
825 goto out_unlock;
826 if (shared)
827 goto out_found_cow;
828 end_fsb = imap.br_startoff + imap.br_blockcount;
829 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
830 }
831
832 if (imap_needs_alloc(inode, flags, &imap, nimaps))
833 goto allocate_blocks;
834
835 /*
836 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
837 * a single map so that we avoid partial IO failures due to the rest of
838 * the I/O range not covered by this map triggering an EAGAIN condition
839 * when it is subsequently mapped and aborting the I/O.
840 */
841 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
842 error = -EAGAIN;
843 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
844 goto out_unlock;
845 }
846
847 /*
848 * For overwrite only I/O, we cannot convert unwritten extents without
849 * requiring sub-block zeroing. This can only be done under an
850 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
851 * extent to tell the caller to try again.
852 */
853 if (flags & IOMAP_OVERWRITE_ONLY) {
854 error = -EAGAIN;
855 if (imap.br_state != XFS_EXT_NORM &&
856 ((offset | length) & mp->m_blockmask))
857 goto out_unlock;
858 }
859
860 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
861 xfs_iunlock(ip, lockmode);
862 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
863 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
864
865allocate_blocks:
866 error = -EAGAIN;
867 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
868 goto out_unlock;
869
870 /*
871 * We cap the maximum length we map to a sane size to keep the chunks
872 * of work done where somewhat symmetric with the work writeback does.
873 * This is a completely arbitrary number pulled out of thin air as a
874 * best guess for initial testing.
875 *
876 * Note that the values needs to be less than 32-bits wide until the
877 * lower level functions are updated.
878 */
879 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
880 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
881
882 if (offset + length > XFS_ISIZE(ip))
883 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
884 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
885 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
886 xfs_iunlock(ip, lockmode);
887
888 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
889 flags, &imap, &seq);
890 if (error)
891 return error;
892
893 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
894 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
895 iomap_flags | IOMAP_F_NEW, seq);
896
897out_found_cow:
898 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
899 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
900 if (imap.br_startblock != HOLESTARTBLOCK) {
901 seq = xfs_iomap_inode_sequence(ip, 0);
902 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
903 if (error)
904 goto out_unlock;
905 }
906 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
907 xfs_iunlock(ip, lockmode);
908 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
909
910out_unlock:
911 if (lockmode)
912 xfs_iunlock(ip, lockmode);
913 return error;
914}
915
916const struct iomap_ops xfs_direct_write_iomap_ops = {
917 .iomap_begin = xfs_direct_write_iomap_begin,
918};
919
920static int
921xfs_dax_write_iomap_end(
922 struct inode *inode,
923 loff_t pos,
924 loff_t length,
925 ssize_t written,
926 unsigned flags,
927 struct iomap *iomap)
928{
929 struct xfs_inode *ip = XFS_I(inode);
930
931 if (!xfs_is_cow_inode(ip))
932 return 0;
933
934 if (!written) {
935 xfs_reflink_cancel_cow_range(ip, pos, length, true);
936 return 0;
937 }
938
939 return xfs_reflink_end_cow(ip, pos, written);
940}
941
942const struct iomap_ops xfs_dax_write_iomap_ops = {
943 .iomap_begin = xfs_direct_write_iomap_begin,
944 .iomap_end = xfs_dax_write_iomap_end,
945};
946
947static int
948xfs_buffered_write_iomap_begin(
949 struct inode *inode,
950 loff_t offset,
951 loff_t count,
952 unsigned flags,
953 struct iomap *iomap,
954 struct iomap *srcmap)
955{
956 struct xfs_inode *ip = XFS_I(inode);
957 struct xfs_mount *mp = ip->i_mount;
958 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
959 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
960 struct xfs_bmbt_irec imap, cmap;
961 struct xfs_iext_cursor icur, ccur;
962 xfs_fsblock_t prealloc_blocks = 0;
963 bool eof = false, cow_eof = false, shared = false;
964 int allocfork = XFS_DATA_FORK;
965 int error = 0;
966 unsigned int lockmode = XFS_ILOCK_EXCL;
967 u64 seq;
968
969 if (xfs_is_shutdown(mp))
970 return -EIO;
971
972 /* we can't use delayed allocations when using extent size hints */
973 if (xfs_get_extsz_hint(ip))
974 return xfs_direct_write_iomap_begin(inode, offset, count,
975 flags, iomap, srcmap);
976
977 ASSERT(!XFS_IS_REALTIME_INODE(ip));
978
979 error = xfs_qm_dqattach(ip);
980 if (error)
981 return error;
982
983 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
984 if (error)
985 return error;
986
987 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
988 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
989 error = -EFSCORRUPTED;
990 goto out_unlock;
991 }
992
993 XFS_STATS_INC(mp, xs_blk_mapw);
994
995 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
996 if (error)
997 goto out_unlock;
998
999 /*
1000 * Search the data fork first to look up our source mapping. We
1001 * always need the data fork map, as we have to return it to the
1002 * iomap code so that the higher level write code can read data in to
1003 * perform read-modify-write cycles for unaligned writes.
1004 */
1005 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1006 if (eof)
1007 imap.br_startoff = end_fsb; /* fake hole until the end */
1008
1009 /* We never need to allocate blocks for zeroing a hole. */
1010 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
1011 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1012 goto out_unlock;
1013 }
1014
1015 /*
1016 * Search the COW fork extent list even if we did not find a data fork
1017 * extent. This serves two purposes: first this implements the
1018 * speculative preallocation using cowextsize, so that we also unshare
1019 * block adjacent to shared blocks instead of just the shared blocks
1020 * themselves. Second the lookup in the extent list is generally faster
1021 * than going out to the shared extent tree.
1022 */
1023 if (xfs_is_cow_inode(ip)) {
1024 if (!ip->i_cowfp) {
1025 ASSERT(!xfs_is_reflink_inode(ip));
1026 xfs_ifork_init_cow(ip);
1027 }
1028 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1029 &ccur, &cmap);
1030 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1031 trace_xfs_reflink_cow_found(ip, &cmap);
1032 goto found_cow;
1033 }
1034 }
1035
1036 if (imap.br_startoff <= offset_fsb) {
1037 /*
1038 * For reflink files we may need a delalloc reservation when
1039 * overwriting shared extents. This includes zeroing of
1040 * existing extents that contain data.
1041 */
1042 if (!xfs_is_cow_inode(ip) ||
1043 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1044 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1045 &imap);
1046 goto found_imap;
1047 }
1048
1049 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1050
1051 /* Trim the mapping to the nearest shared extent boundary. */
1052 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1053 if (error)
1054 goto out_unlock;
1055
1056 /* Not shared? Just report the (potentially capped) extent. */
1057 if (!shared) {
1058 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1059 &imap);
1060 goto found_imap;
1061 }
1062
1063 /*
1064 * Fork all the shared blocks from our write offset until the
1065 * end of the extent.
1066 */
1067 allocfork = XFS_COW_FORK;
1068 end_fsb = imap.br_startoff + imap.br_blockcount;
1069 } else {
1070 /*
1071 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1072 * pages to keep the chunks of work done where somewhat
1073 * symmetric with the work writeback does. This is a completely
1074 * arbitrary number pulled out of thin air.
1075 *
1076 * Note that the values needs to be less than 32-bits wide until
1077 * the lower level functions are updated.
1078 */
1079 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1080 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1081
1082 if (xfs_is_always_cow_inode(ip))
1083 allocfork = XFS_COW_FORK;
1084 }
1085
1086 if (eof && offset + count > XFS_ISIZE(ip)) {
1087 /*
1088 * Determine the initial size of the preallocation.
1089 * We clean up any extra preallocation when the file is closed.
1090 */
1091 if (xfs_has_allocsize(mp))
1092 prealloc_blocks = mp->m_allocsize_blocks;
1093 else
1094 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1095 offset, count, &icur);
1096 if (prealloc_blocks) {
1097 xfs_extlen_t align;
1098 xfs_off_t end_offset;
1099 xfs_fileoff_t p_end_fsb;
1100
1101 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1102 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1103 prealloc_blocks;
1104
1105 align = xfs_eof_alignment(ip);
1106 if (align)
1107 p_end_fsb = roundup_64(p_end_fsb, align);
1108
1109 p_end_fsb = min(p_end_fsb,
1110 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1111 ASSERT(p_end_fsb > offset_fsb);
1112 prealloc_blocks = p_end_fsb - end_fsb;
1113 }
1114 }
1115
1116retry:
1117 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1118 end_fsb - offset_fsb, prealloc_blocks,
1119 allocfork == XFS_DATA_FORK ? &imap : &cmap,
1120 allocfork == XFS_DATA_FORK ? &icur : &ccur,
1121 allocfork == XFS_DATA_FORK ? eof : cow_eof);
1122 switch (error) {
1123 case 0:
1124 break;
1125 case -ENOSPC:
1126 case -EDQUOT:
1127 /* retry without any preallocation */
1128 trace_xfs_delalloc_enospc(ip, offset, count);
1129 if (prealloc_blocks) {
1130 prealloc_blocks = 0;
1131 goto retry;
1132 }
1133 fallthrough;
1134 default:
1135 goto out_unlock;
1136 }
1137
1138 if (allocfork == XFS_COW_FORK) {
1139 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1140 goto found_cow;
1141 }
1142
1143 /*
1144 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1145 * them out if the write happens to fail.
1146 */
1147 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_NEW);
1148 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1149 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1150 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW, seq);
1151
1152found_imap:
1153 seq = xfs_iomap_inode_sequence(ip, 0);
1154 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1155 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1156
1157found_cow:
1158 seq = xfs_iomap_inode_sequence(ip, 0);
1159 if (imap.br_startoff <= offset_fsb) {
1160 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
1161 if (error)
1162 goto out_unlock;
1163 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1164 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1165 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1166 IOMAP_F_SHARED, seq);
1167 }
1168
1169 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1170 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1171 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0, seq);
1172
1173out_unlock:
1174 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1175 return error;
1176}
1177
1178static int
1179xfs_buffered_write_delalloc_punch(
1180 struct inode *inode,
1181 loff_t offset,
1182 loff_t length)
1183{
1184 return xfs_bmap_punch_delalloc_range(XFS_I(inode), offset,
1185 offset + length);
1186}
1187
1188static int
1189xfs_buffered_write_iomap_end(
1190 struct inode *inode,
1191 loff_t offset,
1192 loff_t length,
1193 ssize_t written,
1194 unsigned flags,
1195 struct iomap *iomap)
1196{
1197
1198 struct xfs_mount *mp = XFS_M(inode->i_sb);
1199 int error;
1200
1201 error = iomap_file_buffered_write_punch_delalloc(inode, iomap, offset,
1202 length, written, &xfs_buffered_write_delalloc_punch);
1203 if (error && !xfs_is_shutdown(mp)) {
1204 xfs_alert(mp, "%s: unable to clean up ino 0x%llx",
1205 __func__, XFS_I(inode)->i_ino);
1206 return error;
1207 }
1208 return 0;
1209}
1210
1211const struct iomap_ops xfs_buffered_write_iomap_ops = {
1212 .iomap_begin = xfs_buffered_write_iomap_begin,
1213 .iomap_end = xfs_buffered_write_iomap_end,
1214};
1215
1216/*
1217 * iomap_page_mkwrite() will never fail in a way that requires delalloc extents
1218 * that it allocated to be revoked. Hence we do not need an .iomap_end method
1219 * for this operation.
1220 */
1221const struct iomap_ops xfs_page_mkwrite_iomap_ops = {
1222 .iomap_begin = xfs_buffered_write_iomap_begin,
1223};
1224
1225static int
1226xfs_read_iomap_begin(
1227 struct inode *inode,
1228 loff_t offset,
1229 loff_t length,
1230 unsigned flags,
1231 struct iomap *iomap,
1232 struct iomap *srcmap)
1233{
1234 struct xfs_inode *ip = XFS_I(inode);
1235 struct xfs_mount *mp = ip->i_mount;
1236 struct xfs_bmbt_irec imap;
1237 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1238 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1239 int nimaps = 1, error = 0;
1240 bool shared = false;
1241 unsigned int lockmode = XFS_ILOCK_SHARED;
1242 u64 seq;
1243
1244 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1245
1246 if (xfs_is_shutdown(mp))
1247 return -EIO;
1248
1249 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1250 if (error)
1251 return error;
1252 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1253 &nimaps, 0);
1254 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1255 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1256 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1257 xfs_iunlock(ip, lockmode);
1258
1259 if (error)
1260 return error;
1261 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1262 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1263 shared ? IOMAP_F_SHARED : 0, seq);
1264}
1265
1266const struct iomap_ops xfs_read_iomap_ops = {
1267 .iomap_begin = xfs_read_iomap_begin,
1268};
1269
1270static int
1271xfs_seek_iomap_begin(
1272 struct inode *inode,
1273 loff_t offset,
1274 loff_t length,
1275 unsigned flags,
1276 struct iomap *iomap,
1277 struct iomap *srcmap)
1278{
1279 struct xfs_inode *ip = XFS_I(inode);
1280 struct xfs_mount *mp = ip->i_mount;
1281 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1282 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1283 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1284 struct xfs_iext_cursor icur;
1285 struct xfs_bmbt_irec imap, cmap;
1286 int error = 0;
1287 unsigned lockmode;
1288 u64 seq;
1289
1290 if (xfs_is_shutdown(mp))
1291 return -EIO;
1292
1293 lockmode = xfs_ilock_data_map_shared(ip);
1294 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1295 if (error)
1296 goto out_unlock;
1297
1298 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1299 /*
1300 * If we found a data extent we are done.
1301 */
1302 if (imap.br_startoff <= offset_fsb)
1303 goto done;
1304 data_fsb = imap.br_startoff;
1305 } else {
1306 /*
1307 * Fake a hole until the end of the file.
1308 */
1309 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1310 }
1311
1312 /*
1313 * If a COW fork extent covers the hole, report it - capped to the next
1314 * data fork extent:
1315 */
1316 if (xfs_inode_has_cow_data(ip) &&
1317 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1318 cow_fsb = cmap.br_startoff;
1319 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1320 if (data_fsb < cow_fsb + cmap.br_blockcount)
1321 end_fsb = min(end_fsb, data_fsb);
1322 xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1323 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1324 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1325 IOMAP_F_SHARED, seq);
1326 /*
1327 * This is a COW extent, so we must probe the page cache
1328 * because there could be dirty page cache being backed
1329 * by this extent.
1330 */
1331 iomap->type = IOMAP_UNWRITTEN;
1332 goto out_unlock;
1333 }
1334
1335 /*
1336 * Else report a hole, capped to the next found data or COW extent.
1337 */
1338 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1339 imap.br_blockcount = cow_fsb - offset_fsb;
1340 else
1341 imap.br_blockcount = data_fsb - offset_fsb;
1342 imap.br_startoff = offset_fsb;
1343 imap.br_startblock = HOLESTARTBLOCK;
1344 imap.br_state = XFS_EXT_NORM;
1345done:
1346 seq = xfs_iomap_inode_sequence(ip, 0);
1347 xfs_trim_extent(&imap, offset_fsb, end_fsb);
1348 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1349out_unlock:
1350 xfs_iunlock(ip, lockmode);
1351 return error;
1352}
1353
1354const struct iomap_ops xfs_seek_iomap_ops = {
1355 .iomap_begin = xfs_seek_iomap_begin,
1356};
1357
1358static int
1359xfs_xattr_iomap_begin(
1360 struct inode *inode,
1361 loff_t offset,
1362 loff_t length,
1363 unsigned flags,
1364 struct iomap *iomap,
1365 struct iomap *srcmap)
1366{
1367 struct xfs_inode *ip = XFS_I(inode);
1368 struct xfs_mount *mp = ip->i_mount;
1369 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1370 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1371 struct xfs_bmbt_irec imap;
1372 int nimaps = 1, error = 0;
1373 unsigned lockmode;
1374 int seq;
1375
1376 if (xfs_is_shutdown(mp))
1377 return -EIO;
1378
1379 lockmode = xfs_ilock_attr_map_shared(ip);
1380
1381 /* if there are no attribute fork or extents, return ENOENT */
1382 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1383 error = -ENOENT;
1384 goto out_unlock;
1385 }
1386
1387 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1388 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1389 &nimaps, XFS_BMAPI_ATTRFORK);
1390out_unlock:
1391
1392 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1393 xfs_iunlock(ip, lockmode);
1394
1395 if (error)
1396 return error;
1397 ASSERT(nimaps);
1398 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1399}
1400
1401const struct iomap_ops xfs_xattr_iomap_ops = {
1402 .iomap_begin = xfs_xattr_iomap_begin,
1403};
1404
1405int
1406xfs_zero_range(
1407 struct xfs_inode *ip,
1408 loff_t pos,
1409 loff_t len,
1410 bool *did_zero)
1411{
1412 struct inode *inode = VFS_I(ip);
1413
1414 if (IS_DAX(inode))
1415 return dax_zero_range(inode, pos, len, did_zero,
1416 &xfs_dax_write_iomap_ops);
1417 return iomap_zero_range(inode, pos, len, did_zero,
1418 &xfs_buffered_write_iomap_ops);
1419}
1420
1421int
1422xfs_truncate_page(
1423 struct xfs_inode *ip,
1424 loff_t pos,
1425 bool *did_zero)
1426{
1427 struct inode *inode = VFS_I(ip);
1428
1429 if (IS_DAX(inode))
1430 return dax_truncate_page(inode, pos, did_zero,
1431 &xfs_dax_write_iomap_ops);
1432 return iomap_truncate_page(inode, pos, did_zero,
1433 &xfs_buffered_write_iomap_ops);
1434}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_bmap_btree.h"
17#include "xfs_bmap.h"
18#include "xfs_bmap_util.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_trans.h"
22#include "xfs_trans_space.h"
23#include "xfs_inode_item.h"
24#include "xfs_iomap.h"
25#include "xfs_trace.h"
26#include "xfs_quota.h"
27#include "xfs_rtgroup.h"
28#include "xfs_dquot_item.h"
29#include "xfs_dquot.h"
30#include "xfs_reflink.h"
31#include "xfs_health.h"
32#include "xfs_rtbitmap.h"
33
34#define XFS_ALLOC_ALIGN(mp, off) \
35 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
36
37static int
38xfs_alert_fsblock_zero(
39 xfs_inode_t *ip,
40 xfs_bmbt_irec_t *imap)
41{
42 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
43 "Access to block zero in inode %llu "
44 "start_block: %llx start_off: %llx "
45 "blkcnt: %llx extent-state: %x",
46 (unsigned long long)ip->i_ino,
47 (unsigned long long)imap->br_startblock,
48 (unsigned long long)imap->br_startoff,
49 (unsigned long long)imap->br_blockcount,
50 imap->br_state);
51 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
52 return -EFSCORRUPTED;
53}
54
55u64
56xfs_iomap_inode_sequence(
57 struct xfs_inode *ip,
58 u16 iomap_flags)
59{
60 u64 cookie = 0;
61
62 if (iomap_flags & IOMAP_F_XATTR)
63 return READ_ONCE(ip->i_af.if_seq);
64 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
65 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
66 return cookie | READ_ONCE(ip->i_df.if_seq);
67}
68
69/*
70 * Check that the iomap passed to us is still valid for the given offset and
71 * length.
72 */
73static bool
74xfs_iomap_valid(
75 struct inode *inode,
76 const struct iomap *iomap)
77{
78 struct xfs_inode *ip = XFS_I(inode);
79
80 if (iomap->validity_cookie !=
81 xfs_iomap_inode_sequence(ip, iomap->flags)) {
82 trace_xfs_iomap_invalid(ip, iomap);
83 return false;
84 }
85
86 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
87 return true;
88}
89
90static const struct iomap_folio_ops xfs_iomap_folio_ops = {
91 .iomap_valid = xfs_iomap_valid,
92};
93
94int
95xfs_bmbt_to_iomap(
96 struct xfs_inode *ip,
97 struct iomap *iomap,
98 struct xfs_bmbt_irec *imap,
99 unsigned int mapping_flags,
100 u16 iomap_flags,
101 u64 sequence_cookie)
102{
103 struct xfs_mount *mp = ip->i_mount;
104 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
105
106 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
107 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
108 return xfs_alert_fsblock_zero(ip, imap);
109 }
110
111 if (imap->br_startblock == HOLESTARTBLOCK) {
112 iomap->addr = IOMAP_NULL_ADDR;
113 iomap->type = IOMAP_HOLE;
114 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
115 isnullstartblock(imap->br_startblock)) {
116 iomap->addr = IOMAP_NULL_ADDR;
117 iomap->type = IOMAP_DELALLOC;
118 } else {
119 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
120
121 iomap->addr = BBTOB(daddr);
122 if (mapping_flags & IOMAP_DAX)
123 iomap->addr += target->bt_dax_part_off;
124
125 if (imap->br_state == XFS_EXT_UNWRITTEN)
126 iomap->type = IOMAP_UNWRITTEN;
127 else
128 iomap->type = IOMAP_MAPPED;
129
130 /*
131 * Mark iomaps starting at the first sector of a RTG as merge
132 * boundary so that each I/O completions is contained to a
133 * single RTG.
134 */
135 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
136 xfs_rtbno_is_group_start(mp, imap->br_startblock))
137 iomap->flags |= IOMAP_F_BOUNDARY;
138 }
139 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
140 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
141 if (mapping_flags & IOMAP_DAX)
142 iomap->dax_dev = target->bt_daxdev;
143 else
144 iomap->bdev = target->bt_bdev;
145 iomap->flags = iomap_flags;
146
147 if (xfs_ipincount(ip) &&
148 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
149 iomap->flags |= IOMAP_F_DIRTY;
150
151 iomap->validity_cookie = sequence_cookie;
152 iomap->folio_ops = &xfs_iomap_folio_ops;
153 return 0;
154}
155
156static void
157xfs_hole_to_iomap(
158 struct xfs_inode *ip,
159 struct iomap *iomap,
160 xfs_fileoff_t offset_fsb,
161 xfs_fileoff_t end_fsb)
162{
163 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
164
165 iomap->addr = IOMAP_NULL_ADDR;
166 iomap->type = IOMAP_HOLE;
167 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
168 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
169 iomap->bdev = target->bt_bdev;
170 iomap->dax_dev = target->bt_daxdev;
171}
172
173static inline xfs_fileoff_t
174xfs_iomap_end_fsb(
175 struct xfs_mount *mp,
176 loff_t offset,
177 loff_t count)
178{
179 ASSERT(offset <= mp->m_super->s_maxbytes);
180 return min(XFS_B_TO_FSB(mp, offset + count),
181 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
182}
183
184static xfs_extlen_t
185xfs_eof_alignment(
186 struct xfs_inode *ip)
187{
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_extlen_t align = 0;
190
191 if (!XFS_IS_REALTIME_INODE(ip)) {
192 /*
193 * Round up the allocation request to a stripe unit
194 * (m_dalign) boundary if the file size is >= stripe unit
195 * size, and we are allocating past the allocation eof.
196 *
197 * If mounted with the "-o swalloc" option the alignment is
198 * increased from the strip unit size to the stripe width.
199 */
200 if (mp->m_swidth && xfs_has_swalloc(mp))
201 align = mp->m_swidth;
202 else if (mp->m_dalign)
203 align = mp->m_dalign;
204
205 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
206 align = 0;
207 }
208
209 return align;
210}
211
212/*
213 * Check if last_fsb is outside the last extent, and if so grow it to the next
214 * stripe unit boundary.
215 */
216xfs_fileoff_t
217xfs_iomap_eof_align_last_fsb(
218 struct xfs_inode *ip,
219 xfs_fileoff_t end_fsb)
220{
221 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
222 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
223 xfs_extlen_t align = xfs_eof_alignment(ip);
224 struct xfs_bmbt_irec irec;
225 struct xfs_iext_cursor icur;
226
227 ASSERT(!xfs_need_iread_extents(ifp));
228
229 /*
230 * Always round up the allocation request to the extent hint boundary.
231 */
232 if (extsz) {
233 if (align)
234 align = roundup_64(align, extsz);
235 else
236 align = extsz;
237 }
238
239 if (align) {
240 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
241
242 xfs_iext_last(ifp, &icur);
243 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
244 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
245 return aligned_end_fsb;
246 }
247
248 return end_fsb;
249}
250
251int
252xfs_iomap_write_direct(
253 struct xfs_inode *ip,
254 xfs_fileoff_t offset_fsb,
255 xfs_fileoff_t count_fsb,
256 unsigned int flags,
257 struct xfs_bmbt_irec *imap,
258 u64 *seq)
259{
260 struct xfs_mount *mp = ip->i_mount;
261 struct xfs_trans *tp;
262 xfs_filblks_t resaligned;
263 int nimaps;
264 unsigned int dblocks, rblocks;
265 bool force = false;
266 int error;
267 int bmapi_flags = XFS_BMAPI_PREALLOC;
268 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
269
270 ASSERT(count_fsb > 0);
271
272 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
273 xfs_get_extsz_hint(ip));
274 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
275 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
276 rblocks = resaligned;
277 } else {
278 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
279 rblocks = 0;
280 }
281
282 error = xfs_qm_dqattach(ip);
283 if (error)
284 return error;
285
286 /*
287 * For DAX, we do not allocate unwritten extents, but instead we zero
288 * the block before we commit the transaction. Ideally we'd like to do
289 * this outside the transaction context, but if we commit and then crash
290 * we may not have zeroed the blocks and this will be exposed on
291 * recovery of the allocation. Hence we must zero before commit.
292 *
293 * Further, if we are mapping unwritten extents here, we need to zero
294 * and convert them to written so that we don't need an unwritten extent
295 * callback for DAX. This also means that we need to be able to dip into
296 * the reserve block pool for bmbt block allocation if there is no space
297 * left but we need to do unwritten extent conversion.
298 */
299 if (flags & IOMAP_DAX) {
300 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
301 if (imap->br_state == XFS_EXT_UNWRITTEN) {
302 force = true;
303 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
304 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
305 }
306 }
307
308 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
309 rblocks, force, &tp);
310 if (error)
311 return error;
312
313 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
314 if (error)
315 goto out_trans_cancel;
316
317 /*
318 * From this point onwards we overwrite the imap pointer that the
319 * caller gave to us.
320 */
321 nimaps = 1;
322 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
323 imap, &nimaps);
324 if (error)
325 goto out_trans_cancel;
326
327 /*
328 * Complete the transaction
329 */
330 error = xfs_trans_commit(tp);
331 if (error)
332 goto out_unlock;
333
334 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
335 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
336 error = xfs_alert_fsblock_zero(ip, imap);
337 }
338
339out_unlock:
340 *seq = xfs_iomap_inode_sequence(ip, 0);
341 xfs_iunlock(ip, XFS_ILOCK_EXCL);
342 return error;
343
344out_trans_cancel:
345 xfs_trans_cancel(tp);
346 goto out_unlock;
347}
348
349STATIC bool
350xfs_quota_need_throttle(
351 struct xfs_inode *ip,
352 xfs_dqtype_t type,
353 xfs_fsblock_t alloc_blocks)
354{
355 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
356 struct xfs_dquot_res *res;
357 struct xfs_dquot_pre *pre;
358
359 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
360 return false;
361
362 if (XFS_IS_REALTIME_INODE(ip)) {
363 res = &dq->q_rtb;
364 pre = &dq->q_rtb_prealloc;
365 } else {
366 res = &dq->q_blk;
367 pre = &dq->q_blk_prealloc;
368 }
369
370 /* no hi watermark, no throttle */
371 if (!pre->q_prealloc_hi_wmark)
372 return false;
373
374 /* under the lo watermark, no throttle */
375 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
376 return false;
377
378 return true;
379}
380
381STATIC void
382xfs_quota_calc_throttle(
383 struct xfs_inode *ip,
384 xfs_dqtype_t type,
385 xfs_fsblock_t *qblocks,
386 int *qshift,
387 int64_t *qfreesp)
388{
389 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
390 struct xfs_dquot_res *res;
391 struct xfs_dquot_pre *pre;
392 int64_t freesp;
393 int shift = 0;
394
395 if (!dq) {
396 res = NULL;
397 pre = NULL;
398 } else if (XFS_IS_REALTIME_INODE(ip)) {
399 res = &dq->q_rtb;
400 pre = &dq->q_rtb_prealloc;
401 } else {
402 res = &dq->q_blk;
403 pre = &dq->q_blk_prealloc;
404 }
405
406 /* no dq, or over hi wmark, squash the prealloc completely */
407 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
408 *qblocks = 0;
409 *qfreesp = 0;
410 return;
411 }
412
413 freesp = pre->q_prealloc_hi_wmark - res->reserved;
414 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
415 shift = 2;
416 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
417 shift += 2;
418 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
419 shift += 2;
420 }
421
422 if (freesp < *qfreesp)
423 *qfreesp = freesp;
424
425 /* only overwrite the throttle values if we are more aggressive */
426 if ((freesp >> shift) < (*qblocks >> *qshift)) {
427 *qblocks = freesp;
428 *qshift = shift;
429 }
430}
431
432static int64_t
433xfs_iomap_freesp(
434 struct percpu_counter *counter,
435 uint64_t low_space[XFS_LOWSP_MAX],
436 int *shift)
437{
438 int64_t freesp;
439
440 freesp = percpu_counter_read_positive(counter);
441 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
442 *shift = 2;
443 if (freesp < low_space[XFS_LOWSP_4_PCNT])
444 (*shift)++;
445 if (freesp < low_space[XFS_LOWSP_3_PCNT])
446 (*shift)++;
447 if (freesp < low_space[XFS_LOWSP_2_PCNT])
448 (*shift)++;
449 if (freesp < low_space[XFS_LOWSP_1_PCNT])
450 (*shift)++;
451 }
452 return freesp;
453}
454
455/*
456 * If we don't have a user specified preallocation size, dynamically increase
457 * the preallocation size as the size of the file grows. Cap the maximum size
458 * at a single extent or less if the filesystem is near full. The closer the
459 * filesystem is to being full, the smaller the maximum preallocation.
460 */
461STATIC xfs_fsblock_t
462xfs_iomap_prealloc_size(
463 struct xfs_inode *ip,
464 int whichfork,
465 loff_t offset,
466 loff_t count,
467 struct xfs_iext_cursor *icur)
468{
469 struct xfs_iext_cursor ncur = *icur;
470 struct xfs_bmbt_irec prev, got;
471 struct xfs_mount *mp = ip->i_mount;
472 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
473 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
474 int64_t freesp;
475 xfs_fsblock_t qblocks;
476 xfs_fsblock_t alloc_blocks = 0;
477 xfs_extlen_t plen;
478 int shift = 0;
479 int qshift = 0;
480
481 /*
482 * As an exception we don't do any preallocation at all if the file is
483 * smaller than the minimum preallocation and we are using the default
484 * dynamic preallocation scheme, as it is likely this is the only write
485 * to the file that is going to be done.
486 */
487 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
488 return 0;
489
490 /*
491 * Use the minimum preallocation size for small files or if we are
492 * writing right after a hole.
493 */
494 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
495 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
496 prev.br_startoff + prev.br_blockcount < offset_fsb)
497 return mp->m_allocsize_blocks;
498
499 /*
500 * Take the size of the preceding data extents as the basis for the
501 * preallocation size. Note that we don't care if the previous extents
502 * are written or not.
503 */
504 plen = prev.br_blockcount;
505 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
506 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
507 isnullstartblock(got.br_startblock) ||
508 got.br_startoff + got.br_blockcount != prev.br_startoff ||
509 got.br_startblock + got.br_blockcount != prev.br_startblock)
510 break;
511 plen += got.br_blockcount;
512 prev = got;
513 }
514
515 /*
516 * If the size of the extents is greater than half the maximum extent
517 * length, then use the current offset as the basis. This ensures that
518 * for large files the preallocation size always extends to
519 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
520 * unit/width alignment of real extents.
521 */
522 alloc_blocks = plen * 2;
523 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
524 alloc_blocks = XFS_B_TO_FSB(mp, offset);
525 qblocks = alloc_blocks;
526
527 /*
528 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
529 * down to the nearest power of two value after throttling. To prevent
530 * the round down from unconditionally reducing the maximum supported
531 * prealloc size, we round up first, apply appropriate throttling, round
532 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
533 */
534 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
535 alloc_blocks);
536
537 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
538 freesp = xfs_rtbxlen_to_blen(mp,
539 xfs_iomap_freesp(&mp->m_frextents,
540 mp->m_low_rtexts, &shift));
541 else
542 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space,
543 &shift);
544
545 /*
546 * Check each quota to cap the prealloc size, provide a shift value to
547 * throttle with and adjust amount of available space.
548 */
549 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
550 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
551 &freesp);
552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
554 &freesp);
555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
557 &freesp);
558
559 /*
560 * The final prealloc size is set to the minimum of free space available
561 * in each of the quotas and the overall filesystem.
562 *
563 * The shift throttle value is set to the maximum value as determined by
564 * the global low free space values and per-quota low free space values.
565 */
566 alloc_blocks = min(alloc_blocks, qblocks);
567 shift = max(shift, qshift);
568
569 if (shift)
570 alloc_blocks >>= shift;
571 /*
572 * rounddown_pow_of_two() returns an undefined result if we pass in
573 * alloc_blocks = 0.
574 */
575 if (alloc_blocks)
576 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
577 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
578 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
579
580 /*
581 * If we are still trying to allocate more space than is
582 * available, squash the prealloc hard. This can happen if we
583 * have a large file on a small filesystem and the above
584 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
585 */
586 while (alloc_blocks && alloc_blocks >= freesp)
587 alloc_blocks >>= 4;
588 if (alloc_blocks < mp->m_allocsize_blocks)
589 alloc_blocks = mp->m_allocsize_blocks;
590 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
591 mp->m_allocsize_blocks);
592 return alloc_blocks;
593}
594
595int
596xfs_iomap_write_unwritten(
597 xfs_inode_t *ip,
598 xfs_off_t offset,
599 xfs_off_t count,
600 bool update_isize)
601{
602 xfs_mount_t *mp = ip->i_mount;
603 xfs_fileoff_t offset_fsb;
604 xfs_filblks_t count_fsb;
605 xfs_filblks_t numblks_fsb;
606 int nimaps;
607 xfs_trans_t *tp;
608 xfs_bmbt_irec_t imap;
609 struct inode *inode = VFS_I(ip);
610 xfs_fsize_t i_size;
611 uint resblks;
612 int error;
613
614 trace_xfs_unwritten_convert(ip, offset, count);
615
616 offset_fsb = XFS_B_TO_FSBT(mp, offset);
617 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
618 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
619
620 /*
621 * Reserve enough blocks in this transaction for two complete extent
622 * btree splits. We may be converting the middle part of an unwritten
623 * extent and in this case we will insert two new extents in the btree
624 * each of which could cause a full split.
625 *
626 * This reservation amount will be used in the first call to
627 * xfs_bmbt_split() to select an AG with enough space to satisfy the
628 * rest of the operation.
629 */
630 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
631
632 /* Attach dquots so that bmbt splits are accounted correctly. */
633 error = xfs_qm_dqattach(ip);
634 if (error)
635 return error;
636
637 do {
638 /*
639 * Set up a transaction to convert the range of extents
640 * from unwritten to real. Do allocations in a loop until
641 * we have covered the range passed in.
642 *
643 * Note that we can't risk to recursing back into the filesystem
644 * here as we might be asked to write out the same inode that we
645 * complete here and might deadlock on the iolock.
646 */
647 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
648 0, true, &tp);
649 if (error)
650 return error;
651
652 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
653 XFS_IEXT_WRITE_UNWRITTEN_CNT);
654 if (error)
655 goto error_on_bmapi_transaction;
656
657 /*
658 * Modify the unwritten extent state of the buffer.
659 */
660 nimaps = 1;
661 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
662 XFS_BMAPI_CONVERT, resblks, &imap,
663 &nimaps);
664 if (error)
665 goto error_on_bmapi_transaction;
666
667 /*
668 * Log the updated inode size as we go. We have to be careful
669 * to only log it up to the actual write offset if it is
670 * halfway into a block.
671 */
672 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
673 if (i_size > offset + count)
674 i_size = offset + count;
675 if (update_isize && i_size > i_size_read(inode))
676 i_size_write(inode, i_size);
677 i_size = xfs_new_eof(ip, i_size);
678 if (i_size) {
679 ip->i_disk_size = i_size;
680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
681 }
682
683 error = xfs_trans_commit(tp);
684 xfs_iunlock(ip, XFS_ILOCK_EXCL);
685 if (error)
686 return error;
687
688 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
689 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
690 return xfs_alert_fsblock_zero(ip, &imap);
691 }
692
693 if ((numblks_fsb = imap.br_blockcount) == 0) {
694 /*
695 * The numblks_fsb value should always get
696 * smaller, otherwise the loop is stuck.
697 */
698 ASSERT(imap.br_blockcount);
699 break;
700 }
701 offset_fsb += numblks_fsb;
702 count_fsb -= numblks_fsb;
703 } while (count_fsb > 0);
704
705 return 0;
706
707error_on_bmapi_transaction:
708 xfs_trans_cancel(tp);
709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
710 return error;
711}
712
713static inline bool
714imap_needs_alloc(
715 struct inode *inode,
716 unsigned flags,
717 struct xfs_bmbt_irec *imap,
718 int nimaps)
719{
720 /* don't allocate blocks when just zeroing */
721 if (flags & IOMAP_ZERO)
722 return false;
723 if (!nimaps ||
724 imap->br_startblock == HOLESTARTBLOCK ||
725 imap->br_startblock == DELAYSTARTBLOCK)
726 return true;
727 /* we convert unwritten extents before copying the data for DAX */
728 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
729 return true;
730 return false;
731}
732
733static inline bool
734imap_needs_cow(
735 struct xfs_inode *ip,
736 unsigned int flags,
737 struct xfs_bmbt_irec *imap,
738 int nimaps)
739{
740 if (!xfs_is_cow_inode(ip))
741 return false;
742
743 /* when zeroing we don't have to COW holes or unwritten extents */
744 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
745 if (!nimaps ||
746 imap->br_startblock == HOLESTARTBLOCK ||
747 imap->br_state == XFS_EXT_UNWRITTEN)
748 return false;
749 }
750
751 return true;
752}
753
754/*
755 * Extents not yet cached requires exclusive access, don't block for
756 * IOMAP_NOWAIT.
757 *
758 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
759 * support for IOMAP_NOWAIT.
760 */
761static int
762xfs_ilock_for_iomap(
763 struct xfs_inode *ip,
764 unsigned flags,
765 unsigned *lockmode)
766{
767 if (flags & IOMAP_NOWAIT) {
768 if (xfs_need_iread_extents(&ip->i_df))
769 return -EAGAIN;
770 if (!xfs_ilock_nowait(ip, *lockmode))
771 return -EAGAIN;
772 } else {
773 if (xfs_need_iread_extents(&ip->i_df))
774 *lockmode = XFS_ILOCK_EXCL;
775 xfs_ilock(ip, *lockmode);
776 }
777
778 return 0;
779}
780
781/*
782 * Check that the imap we are going to return to the caller spans the entire
783 * range that the caller requested for the IO.
784 */
785static bool
786imap_spans_range(
787 struct xfs_bmbt_irec *imap,
788 xfs_fileoff_t offset_fsb,
789 xfs_fileoff_t end_fsb)
790{
791 if (imap->br_startoff > offset_fsb)
792 return false;
793 if (imap->br_startoff + imap->br_blockcount < end_fsb)
794 return false;
795 return true;
796}
797
798static int
799xfs_direct_write_iomap_begin(
800 struct inode *inode,
801 loff_t offset,
802 loff_t length,
803 unsigned flags,
804 struct iomap *iomap,
805 struct iomap *srcmap)
806{
807 struct xfs_inode *ip = XFS_I(inode);
808 struct xfs_mount *mp = ip->i_mount;
809 struct xfs_bmbt_irec imap, cmap;
810 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
811 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
812 int nimaps = 1, error = 0;
813 bool shared = false;
814 u16 iomap_flags = 0;
815 unsigned int lockmode;
816 u64 seq;
817
818 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
819
820 if (xfs_is_shutdown(mp))
821 return -EIO;
822
823 /*
824 * Writes that span EOF might trigger an IO size update on completion,
825 * so consider them to be dirty for the purposes of O_DSYNC even if
826 * there is no other metadata changes pending or have been made here.
827 */
828 if (offset + length > i_size_read(inode))
829 iomap_flags |= IOMAP_F_DIRTY;
830
831 /*
832 * COW writes may allocate delalloc space or convert unwritten COW
833 * extents, so we need to make sure to take the lock exclusively here.
834 */
835 if (xfs_is_cow_inode(ip))
836 lockmode = XFS_ILOCK_EXCL;
837 else
838 lockmode = XFS_ILOCK_SHARED;
839
840relock:
841 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
842 if (error)
843 return error;
844
845 /*
846 * The reflink iflag could have changed since the earlier unlocked
847 * check, check if it again and relock if needed.
848 */
849 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
850 xfs_iunlock(ip, lockmode);
851 lockmode = XFS_ILOCK_EXCL;
852 goto relock;
853 }
854
855 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
856 &nimaps, 0);
857 if (error)
858 goto out_unlock;
859
860 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
861 error = -EAGAIN;
862 if (flags & IOMAP_NOWAIT)
863 goto out_unlock;
864
865 /* may drop and re-acquire the ilock */
866 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
867 &lockmode,
868 (flags & IOMAP_DIRECT) || IS_DAX(inode));
869 if (error)
870 goto out_unlock;
871 if (shared)
872 goto out_found_cow;
873 end_fsb = imap.br_startoff + imap.br_blockcount;
874 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
875 }
876
877 if (imap_needs_alloc(inode, flags, &imap, nimaps))
878 goto allocate_blocks;
879
880 /*
881 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
882 * a single map so that we avoid partial IO failures due to the rest of
883 * the I/O range not covered by this map triggering an EAGAIN condition
884 * when it is subsequently mapped and aborting the I/O.
885 */
886 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
887 error = -EAGAIN;
888 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
889 goto out_unlock;
890 }
891
892 /*
893 * For overwrite only I/O, we cannot convert unwritten extents without
894 * requiring sub-block zeroing. This can only be done under an
895 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
896 * extent to tell the caller to try again.
897 */
898 if (flags & IOMAP_OVERWRITE_ONLY) {
899 error = -EAGAIN;
900 if (imap.br_state != XFS_EXT_NORM &&
901 ((offset | length) & mp->m_blockmask))
902 goto out_unlock;
903 }
904
905 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
906 xfs_iunlock(ip, lockmode);
907 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
908 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
909
910allocate_blocks:
911 error = -EAGAIN;
912 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
913 goto out_unlock;
914
915 /*
916 * We cap the maximum length we map to a sane size to keep the chunks
917 * of work done where somewhat symmetric with the work writeback does.
918 * This is a completely arbitrary number pulled out of thin air as a
919 * best guess for initial testing.
920 *
921 * Note that the values needs to be less than 32-bits wide until the
922 * lower level functions are updated.
923 */
924 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
925 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
926
927 if (offset + length > XFS_ISIZE(ip))
928 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
929 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
930 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
931 xfs_iunlock(ip, lockmode);
932
933 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
934 flags, &imap, &seq);
935 if (error)
936 return error;
937
938 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
939 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
940 iomap_flags | IOMAP_F_NEW, seq);
941
942out_found_cow:
943 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
944 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
945 if (imap.br_startblock != HOLESTARTBLOCK) {
946 seq = xfs_iomap_inode_sequence(ip, 0);
947 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
948 if (error)
949 goto out_unlock;
950 }
951 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
952 xfs_iunlock(ip, lockmode);
953 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
954
955out_unlock:
956 if (lockmode)
957 xfs_iunlock(ip, lockmode);
958 return error;
959}
960
961const struct iomap_ops xfs_direct_write_iomap_ops = {
962 .iomap_begin = xfs_direct_write_iomap_begin,
963};
964
965static int
966xfs_dax_write_iomap_end(
967 struct inode *inode,
968 loff_t pos,
969 loff_t length,
970 ssize_t written,
971 unsigned flags,
972 struct iomap *iomap)
973{
974 struct xfs_inode *ip = XFS_I(inode);
975
976 if (!xfs_is_cow_inode(ip))
977 return 0;
978
979 if (!written)
980 return xfs_reflink_cancel_cow_range(ip, pos, length, true);
981
982 return xfs_reflink_end_cow(ip, pos, written);
983}
984
985const struct iomap_ops xfs_dax_write_iomap_ops = {
986 .iomap_begin = xfs_direct_write_iomap_begin,
987 .iomap_end = xfs_dax_write_iomap_end,
988};
989
990static int
991xfs_buffered_write_iomap_begin(
992 struct inode *inode,
993 loff_t offset,
994 loff_t count,
995 unsigned flags,
996 struct iomap *iomap,
997 struct iomap *srcmap)
998{
999 struct xfs_inode *ip = XFS_I(inode);
1000 struct xfs_mount *mp = ip->i_mount;
1001 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1002 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1003 struct xfs_bmbt_irec imap, cmap;
1004 struct xfs_iext_cursor icur, ccur;
1005 xfs_fsblock_t prealloc_blocks = 0;
1006 bool eof = false, cow_eof = false, shared = false;
1007 int allocfork = XFS_DATA_FORK;
1008 int error = 0;
1009 unsigned int lockmode = XFS_ILOCK_EXCL;
1010 unsigned int iomap_flags = 0;
1011 u64 seq;
1012
1013 if (xfs_is_shutdown(mp))
1014 return -EIO;
1015
1016 /* we can't use delayed allocations when using extent size hints */
1017 if (xfs_get_extsz_hint(ip))
1018 return xfs_direct_write_iomap_begin(inode, offset, count,
1019 flags, iomap, srcmap);
1020
1021 error = xfs_qm_dqattach(ip);
1022 if (error)
1023 return error;
1024
1025 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1026 if (error)
1027 return error;
1028
1029 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1030 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1031 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1032 error = -EFSCORRUPTED;
1033 goto out_unlock;
1034 }
1035
1036 XFS_STATS_INC(mp, xs_blk_mapw);
1037
1038 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1039 if (error)
1040 goto out_unlock;
1041
1042 /*
1043 * Search the data fork first to look up our source mapping. We
1044 * always need the data fork map, as we have to return it to the
1045 * iomap code so that the higher level write code can read data in to
1046 * perform read-modify-write cycles for unaligned writes.
1047 */
1048 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1049 if (eof)
1050 imap.br_startoff = end_fsb; /* fake hole until the end */
1051
1052 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1053 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1054 imap.br_startoff > offset_fsb) {
1055 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1056 goto out_unlock;
1057 }
1058
1059 /*
1060 * For zeroing, trim a delalloc extent that extends beyond the EOF
1061 * block. If it starts beyond the EOF block, convert it to an
1062 * unwritten extent.
1063 */
1064 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1065 isnullstartblock(imap.br_startblock)) {
1066 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1067
1068 if (offset_fsb >= eof_fsb)
1069 goto convert_delay;
1070 if (end_fsb > eof_fsb) {
1071 end_fsb = eof_fsb;
1072 xfs_trim_extent(&imap, offset_fsb,
1073 end_fsb - offset_fsb);
1074 }
1075 }
1076
1077 /*
1078 * Search the COW fork extent list even if we did not find a data fork
1079 * extent. This serves two purposes: first this implements the
1080 * speculative preallocation using cowextsize, so that we also unshare
1081 * block adjacent to shared blocks instead of just the shared blocks
1082 * themselves. Second the lookup in the extent list is generally faster
1083 * than going out to the shared extent tree.
1084 */
1085 if (xfs_is_cow_inode(ip)) {
1086 if (!ip->i_cowfp) {
1087 ASSERT(!xfs_is_reflink_inode(ip));
1088 xfs_ifork_init_cow(ip);
1089 }
1090 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1091 &ccur, &cmap);
1092 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1093 trace_xfs_reflink_cow_found(ip, &cmap);
1094 goto found_cow;
1095 }
1096 }
1097
1098 if (imap.br_startoff <= offset_fsb) {
1099 /*
1100 * For reflink files we may need a delalloc reservation when
1101 * overwriting shared extents. This includes zeroing of
1102 * existing extents that contain data.
1103 */
1104 if (!xfs_is_cow_inode(ip) ||
1105 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1106 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1107 &imap);
1108 goto found_imap;
1109 }
1110
1111 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1112
1113 /* Trim the mapping to the nearest shared extent boundary. */
1114 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1115 if (error)
1116 goto out_unlock;
1117
1118 /* Not shared? Just report the (potentially capped) extent. */
1119 if (!shared) {
1120 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1121 &imap);
1122 goto found_imap;
1123 }
1124
1125 /*
1126 * Fork all the shared blocks from our write offset until the
1127 * end of the extent.
1128 */
1129 allocfork = XFS_COW_FORK;
1130 end_fsb = imap.br_startoff + imap.br_blockcount;
1131 } else {
1132 /*
1133 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1134 * pages to keep the chunks of work done where somewhat
1135 * symmetric with the work writeback does. This is a completely
1136 * arbitrary number pulled out of thin air.
1137 *
1138 * Note that the values needs to be less than 32-bits wide until
1139 * the lower level functions are updated.
1140 */
1141 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1142 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1143
1144 if (xfs_is_always_cow_inode(ip))
1145 allocfork = XFS_COW_FORK;
1146 }
1147
1148 if (eof && offset + count > XFS_ISIZE(ip)) {
1149 /*
1150 * Determine the initial size of the preallocation.
1151 * We clean up any extra preallocation when the file is closed.
1152 */
1153 if (xfs_has_allocsize(mp))
1154 prealloc_blocks = mp->m_allocsize_blocks;
1155 else if (allocfork == XFS_DATA_FORK)
1156 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1157 offset, count, &icur);
1158 else
1159 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1160 offset, count, &ccur);
1161 if (prealloc_blocks) {
1162 xfs_extlen_t align;
1163 xfs_off_t end_offset;
1164 xfs_fileoff_t p_end_fsb;
1165
1166 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1167 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1168 prealloc_blocks;
1169
1170 align = xfs_eof_alignment(ip);
1171 if (align)
1172 p_end_fsb = roundup_64(p_end_fsb, align);
1173
1174 p_end_fsb = min(p_end_fsb,
1175 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1176 ASSERT(p_end_fsb > offset_fsb);
1177 prealloc_blocks = p_end_fsb - end_fsb;
1178 }
1179 }
1180
1181 /*
1182 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1183 * them out if the write happens to fail.
1184 */
1185 iomap_flags |= IOMAP_F_NEW;
1186 if (allocfork == XFS_COW_FORK) {
1187 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1188 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1189 &ccur, cow_eof);
1190 if (error)
1191 goto out_unlock;
1192
1193 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1194 goto found_cow;
1195 }
1196
1197 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1198 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1199 eof);
1200 if (error)
1201 goto out_unlock;
1202
1203 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1204found_imap:
1205 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1206 xfs_iunlock(ip, lockmode);
1207 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1208
1209convert_delay:
1210 xfs_iunlock(ip, lockmode);
1211 truncate_pagecache(inode, offset);
1212 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1213 iomap, NULL);
1214 if (error)
1215 return error;
1216
1217 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1218 return 0;
1219
1220found_cow:
1221 if (imap.br_startoff <= offset_fsb) {
1222 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1223 xfs_iomap_inode_sequence(ip, 0));
1224 if (error)
1225 goto out_unlock;
1226 } else {
1227 xfs_trim_extent(&cmap, offset_fsb,
1228 imap.br_startoff - offset_fsb);
1229 }
1230
1231 iomap_flags |= IOMAP_F_SHARED;
1232 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1233 xfs_iunlock(ip, lockmode);
1234 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1235
1236out_unlock:
1237 xfs_iunlock(ip, lockmode);
1238 return error;
1239}
1240
1241static void
1242xfs_buffered_write_delalloc_punch(
1243 struct inode *inode,
1244 loff_t offset,
1245 loff_t length,
1246 struct iomap *iomap)
1247{
1248 xfs_bmap_punch_delalloc_range(XFS_I(inode),
1249 (iomap->flags & IOMAP_F_SHARED) ?
1250 XFS_COW_FORK : XFS_DATA_FORK,
1251 offset, offset + length);
1252}
1253
1254static int
1255xfs_buffered_write_iomap_end(
1256 struct inode *inode,
1257 loff_t offset,
1258 loff_t length,
1259 ssize_t written,
1260 unsigned flags,
1261 struct iomap *iomap)
1262{
1263 loff_t start_byte, end_byte;
1264
1265 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1266 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1267 return 0;
1268
1269 /*
1270 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1271 * extents that it allocated to be revoked. Hence never try to release
1272 * them here.
1273 */
1274 if (flags & IOMAP_FAULT)
1275 return 0;
1276
1277 /* Nothing to do if we've written the entire delalloc extent */
1278 start_byte = iomap_last_written_block(inode, offset, written);
1279 end_byte = round_up(offset + length, i_blocksize(inode));
1280 if (start_byte >= end_byte)
1281 return 0;
1282
1283 /* For zeroing operations the callers already hold invalidate_lock. */
1284 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1285 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1286 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1287 iomap, xfs_buffered_write_delalloc_punch);
1288 } else {
1289 filemap_invalidate_lock(inode->i_mapping);
1290 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1291 iomap, xfs_buffered_write_delalloc_punch);
1292 filemap_invalidate_unlock(inode->i_mapping);
1293 }
1294
1295 return 0;
1296}
1297
1298const struct iomap_ops xfs_buffered_write_iomap_ops = {
1299 .iomap_begin = xfs_buffered_write_iomap_begin,
1300 .iomap_end = xfs_buffered_write_iomap_end,
1301};
1302
1303static int
1304xfs_read_iomap_begin(
1305 struct inode *inode,
1306 loff_t offset,
1307 loff_t length,
1308 unsigned flags,
1309 struct iomap *iomap,
1310 struct iomap *srcmap)
1311{
1312 struct xfs_inode *ip = XFS_I(inode);
1313 struct xfs_mount *mp = ip->i_mount;
1314 struct xfs_bmbt_irec imap;
1315 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1316 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1317 int nimaps = 1, error = 0;
1318 bool shared = false;
1319 unsigned int lockmode = XFS_ILOCK_SHARED;
1320 u64 seq;
1321
1322 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1323
1324 if (xfs_is_shutdown(mp))
1325 return -EIO;
1326
1327 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1328 if (error)
1329 return error;
1330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1331 &nimaps, 0);
1332 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1333 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1334 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1335 xfs_iunlock(ip, lockmode);
1336
1337 if (error)
1338 return error;
1339 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1340 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1341 shared ? IOMAP_F_SHARED : 0, seq);
1342}
1343
1344const struct iomap_ops xfs_read_iomap_ops = {
1345 .iomap_begin = xfs_read_iomap_begin,
1346};
1347
1348static int
1349xfs_seek_iomap_begin(
1350 struct inode *inode,
1351 loff_t offset,
1352 loff_t length,
1353 unsigned flags,
1354 struct iomap *iomap,
1355 struct iomap *srcmap)
1356{
1357 struct xfs_inode *ip = XFS_I(inode);
1358 struct xfs_mount *mp = ip->i_mount;
1359 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1360 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1361 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1362 struct xfs_iext_cursor icur;
1363 struct xfs_bmbt_irec imap, cmap;
1364 int error = 0;
1365 unsigned lockmode;
1366 u64 seq;
1367
1368 if (xfs_is_shutdown(mp))
1369 return -EIO;
1370
1371 lockmode = xfs_ilock_data_map_shared(ip);
1372 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1373 if (error)
1374 goto out_unlock;
1375
1376 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1377 /*
1378 * If we found a data extent we are done.
1379 */
1380 if (imap.br_startoff <= offset_fsb)
1381 goto done;
1382 data_fsb = imap.br_startoff;
1383 } else {
1384 /*
1385 * Fake a hole until the end of the file.
1386 */
1387 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1388 }
1389
1390 /*
1391 * If a COW fork extent covers the hole, report it - capped to the next
1392 * data fork extent:
1393 */
1394 if (xfs_inode_has_cow_data(ip) &&
1395 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1396 cow_fsb = cmap.br_startoff;
1397 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1398 if (data_fsb < cow_fsb + cmap.br_blockcount)
1399 end_fsb = min(end_fsb, data_fsb);
1400 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1401 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1402 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1403 IOMAP_F_SHARED, seq);
1404 /*
1405 * This is a COW extent, so we must probe the page cache
1406 * because there could be dirty page cache being backed
1407 * by this extent.
1408 */
1409 iomap->type = IOMAP_UNWRITTEN;
1410 goto out_unlock;
1411 }
1412
1413 /*
1414 * Else report a hole, capped to the next found data or COW extent.
1415 */
1416 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1417 imap.br_blockcount = cow_fsb - offset_fsb;
1418 else
1419 imap.br_blockcount = data_fsb - offset_fsb;
1420 imap.br_startoff = offset_fsb;
1421 imap.br_startblock = HOLESTARTBLOCK;
1422 imap.br_state = XFS_EXT_NORM;
1423done:
1424 seq = xfs_iomap_inode_sequence(ip, 0);
1425 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1426 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1427out_unlock:
1428 xfs_iunlock(ip, lockmode);
1429 return error;
1430}
1431
1432const struct iomap_ops xfs_seek_iomap_ops = {
1433 .iomap_begin = xfs_seek_iomap_begin,
1434};
1435
1436static int
1437xfs_xattr_iomap_begin(
1438 struct inode *inode,
1439 loff_t offset,
1440 loff_t length,
1441 unsigned flags,
1442 struct iomap *iomap,
1443 struct iomap *srcmap)
1444{
1445 struct xfs_inode *ip = XFS_I(inode);
1446 struct xfs_mount *mp = ip->i_mount;
1447 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1448 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1449 struct xfs_bmbt_irec imap;
1450 int nimaps = 1, error = 0;
1451 unsigned lockmode;
1452 int seq;
1453
1454 if (xfs_is_shutdown(mp))
1455 return -EIO;
1456
1457 lockmode = xfs_ilock_attr_map_shared(ip);
1458
1459 /* if there are no attribute fork or extents, return ENOENT */
1460 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1461 error = -ENOENT;
1462 goto out_unlock;
1463 }
1464
1465 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1466 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1467 &nimaps, XFS_BMAPI_ATTRFORK);
1468out_unlock:
1469
1470 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1471 xfs_iunlock(ip, lockmode);
1472
1473 if (error)
1474 return error;
1475 ASSERT(nimaps);
1476 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1477}
1478
1479const struct iomap_ops xfs_xattr_iomap_ops = {
1480 .iomap_begin = xfs_xattr_iomap_begin,
1481};
1482
1483int
1484xfs_zero_range(
1485 struct xfs_inode *ip,
1486 loff_t pos,
1487 loff_t len,
1488 bool *did_zero)
1489{
1490 struct inode *inode = VFS_I(ip);
1491
1492 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1493
1494 if (IS_DAX(inode))
1495 return dax_zero_range(inode, pos, len, did_zero,
1496 &xfs_dax_write_iomap_ops);
1497 return iomap_zero_range(inode, pos, len, did_zero,
1498 &xfs_buffered_write_iomap_ops);
1499}
1500
1501int
1502xfs_truncate_page(
1503 struct xfs_inode *ip,
1504 loff_t pos,
1505 bool *did_zero)
1506{
1507 struct inode *inode = VFS_I(ip);
1508
1509 if (IS_DAX(inode))
1510 return dax_truncate_page(inode, pos, did_zero,
1511 &xfs_dax_write_iomap_ops);
1512 return iomap_truncate_page(inode, pos, did_zero,
1513 &xfs_buffered_write_iomap_ops);
1514}