Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168#include <trace/events/ext4.h>
169static struct kmem_cache *ext4_fc_dentry_cachep;
170
171static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172{
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185}
186
187static inline void ext4_fc_reset_inode(struct inode *inode)
188{
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193}
194
195void ext4_fc_init_inode(struct inode *inode)
196{
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205}
206
207/* This function must be called with sbi->s_fc_lock held. */
208static void ext4_fc_wait_committing_inode(struct inode *inode)
209__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210{
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214#if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219#else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224#endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230}
231
232static bool ext4_fc_disabled(struct super_block *sb)
233{
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236}
237
238/*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
245void ext4_fc_start_update(struct inode *inode)
246{
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264}
265
266/*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
269void ext4_fc_stop_update(struct inode *inode)
270{
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278}
279
280/*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
284void ext4_fc_del(struct inode *inode)
285{
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293restart:
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331}
332
333/*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
338void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342
343 if (ext4_fc_disabled(sb))
344 return;
345
346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(handle))
348 tid = handle->h_transaction->t_tid;
349 else {
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
354 }
355 spin_lock(&sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(&sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361}
362
363/*
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
370 *
371 * If enqueue is set, this function enqueues the inode in fast commit list.
372 */
373static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
377{
378 bool update = false;
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 tid_t tid = 0;
382 int ret;
383
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
387 update = true;
388 } else {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
391 }
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(&ei->i_fc_lock);
394
395 if (!enqueue)
396 return ret;
397
398 spin_lock(&sbi->s_fc_lock);
399 if (list_empty(&EXT4_I(inode)->i_fc_list))
400 list_add_tail(&EXT4_I(inode)->i_fc_list,
401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(&sbi->s_fc_lock);
406
407 return ret;
408}
409
410struct __track_dentry_update_args {
411 struct dentry *dentry;
412 int op;
413};
414
415/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417{
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct inode *dir = dentry->d_parent->d_inode;
424 struct super_block *sb = inode->i_sb;
425 struct ext4_sb_info *sbi = EXT4_SB(sb);
426
427 mutex_unlock(&ei->i_fc_lock);
428
429 if (IS_ENCRYPTED(dir)) {
430 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 NULL);
432 mutex_lock(&ei->i_fc_lock);
433 return -EOPNOTSUPP;
434 }
435
436 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 if (!node) {
438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 mutex_lock(&ei->i_fc_lock);
440 return -ENOMEM;
441 }
442
443 node->fcd_op = dentry_update->op;
444 node->fcd_parent = dir->i_ino;
445 node->fcd_ino = inode->i_ino;
446 if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 if (!node->fcd_name.name) {
449 kmem_cache_free(ext4_fc_dentry_cachep, node);
450 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 mutex_lock(&ei->i_fc_lock);
452 return -ENOMEM;
453 }
454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 dentry->d_name.len);
456 } else {
457 memcpy(node->fcd_iname, dentry->d_name.name,
458 dentry->d_name.len);
459 node->fcd_name.name = node->fcd_iname;
460 }
461 node->fcd_name.len = dentry->d_name.len;
462 INIT_LIST_HEAD(&node->fcd_dilist);
463 spin_lock(&sbi->s_fc_lock);
464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 list_add_tail(&node->fcd_list,
467 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 else
469 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470
471 /*
472 * This helps us keep a track of all fc_dentry updates which is part of
473 * this ext4 inode. So in case the inode is getting unlinked, before
474 * even we get a chance to fsync, we could remove all fc_dentry
475 * references while evicting the inode in ext4_fc_del().
476 * Also with this, we don't need to loop over all the inodes in
477 * sbi->s_fc_q to get the corresponding inode in
478 * ext4_fc_commit_dentry_updates().
479 */
480 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 WARN_ON(!list_empty(&ei->i_fc_dilist));
482 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 }
484 spin_unlock(&sbi->s_fc_lock);
485 mutex_lock(&ei->i_fc_lock);
486
487 return 0;
488}
489
490void __ext4_fc_track_unlink(handle_t *handle,
491 struct inode *inode, struct dentry *dentry)
492{
493 struct __track_dentry_update_args args;
494 int ret;
495
496 args.dentry = dentry;
497 args.op = EXT4_FC_TAG_UNLINK;
498
499 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 (void *)&args, 0);
501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502}
503
504void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505{
506 struct inode *inode = d_inode(dentry);
507
508 if (ext4_fc_disabled(inode->i_sb))
509 return;
510
511 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 return;
513
514 __ext4_fc_track_unlink(handle, inode, dentry);
515}
516
517void __ext4_fc_track_link(handle_t *handle,
518 struct inode *inode, struct dentry *dentry)
519{
520 struct __track_dentry_update_args args;
521 int ret;
522
523 args.dentry = dentry;
524 args.op = EXT4_FC_TAG_LINK;
525
526 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 (void *)&args, 0);
528 trace_ext4_fc_track_link(handle, inode, dentry, ret);
529}
530
531void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532{
533 struct inode *inode = d_inode(dentry);
534
535 if (ext4_fc_disabled(inode->i_sb))
536 return;
537
538 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 return;
540
541 __ext4_fc_track_link(handle, inode, dentry);
542}
543
544void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 struct dentry *dentry)
546{
547 struct __track_dentry_update_args args;
548 int ret;
549
550 args.dentry = dentry;
551 args.op = EXT4_FC_TAG_CREAT;
552
553 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 (void *)&args, 0);
555 trace_ext4_fc_track_create(handle, inode, dentry, ret);
556}
557
558void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559{
560 struct inode *inode = d_inode(dentry);
561
562 if (ext4_fc_disabled(inode->i_sb))
563 return;
564
565 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 return;
567
568 __ext4_fc_track_create(handle, inode, dentry);
569}
570
571/* __track_fn for inode tracking */
572static int __track_inode(struct inode *inode, void *arg, bool update)
573{
574 if (update)
575 return -EEXIST;
576
577 EXT4_I(inode)->i_fc_lblk_len = 0;
578
579 return 0;
580}
581
582void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583{
584 int ret;
585
586 if (S_ISDIR(inode->i_mode))
587 return;
588
589 if (ext4_fc_disabled(inode->i_sb))
590 return;
591
592 if (ext4_should_journal_data(inode)) {
593 ext4_fc_mark_ineligible(inode->i_sb,
594 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 return;
596 }
597
598 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 return;
600
601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 trace_ext4_fc_track_inode(handle, inode, ret);
603}
604
605struct __track_range_args {
606 ext4_lblk_t start, end;
607};
608
609/* __track_fn for tracking data updates */
610static int __track_range(struct inode *inode, void *arg, bool update)
611{
612 struct ext4_inode_info *ei = EXT4_I(inode);
613 ext4_lblk_t oldstart;
614 struct __track_range_args *__arg =
615 (struct __track_range_args *)arg;
616
617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 return -ECANCELED;
620 }
621
622 oldstart = ei->i_fc_lblk_start;
623
624 if (update && ei->i_fc_lblk_len > 0) {
625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 ei->i_fc_lblk_len =
627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 ei->i_fc_lblk_start + 1;
629 } else {
630 ei->i_fc_lblk_start = __arg->start;
631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 }
633
634 return 0;
635}
636
637void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 ext4_lblk_t end)
639{
640 struct __track_range_args args;
641 int ret;
642
643 if (S_ISDIR(inode->i_mode))
644 return;
645
646 if (ext4_fc_disabled(inode->i_sb))
647 return;
648
649 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 return;
651
652 args.start = start;
653 args.end = end;
654
655 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
656
657 trace_ext4_fc_track_range(handle, inode, start, end, ret);
658}
659
660static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661{
662 blk_opf_t write_flags = REQ_SYNC;
663 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664
665 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 if (test_opt(sb, BARRIER) && is_tail)
667 write_flags |= REQ_FUA | REQ_PREFLUSH;
668 lock_buffer(bh);
669 set_buffer_dirty(bh);
670 set_buffer_uptodate(bh);
671 bh->b_end_io = ext4_end_buffer_io_sync;
672 submit_bh(REQ_OP_WRITE | write_flags, bh);
673 EXT4_SB(sb)->s_fc_bh = NULL;
674}
675
676/* Ext4 commit path routines */
677
678/*
679 * Allocate len bytes on a fast commit buffer.
680 *
681 * During the commit time this function is used to manage fast commit
682 * block space. We don't split a fast commit log onto different
683 * blocks. So this function makes sure that if there's not enough space
684 * on the current block, the remaining space in the current block is
685 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
686 * new block is from jbd2 and CRC is updated to reflect the padding
687 * we added.
688 */
689static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
690{
691 struct ext4_fc_tl tl;
692 struct ext4_sb_info *sbi = EXT4_SB(sb);
693 struct buffer_head *bh;
694 int bsize = sbi->s_journal->j_blocksize;
695 int ret, off = sbi->s_fc_bytes % bsize;
696 int remaining;
697 u8 *dst;
698
699 /*
700 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
701 * cannot fulfill the request.
702 */
703 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
704 return NULL;
705
706 if (!sbi->s_fc_bh) {
707 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
708 if (ret)
709 return NULL;
710 sbi->s_fc_bh = bh;
711 }
712 dst = sbi->s_fc_bh->b_data + off;
713
714 /*
715 * Allocate the bytes in the current block if we can do so while still
716 * leaving enough space for a PAD tlv.
717 */
718 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
719 if (len <= remaining) {
720 sbi->s_fc_bytes += len;
721 return dst;
722 }
723
724 /*
725 * Else, terminate the current block with a PAD tlv, then allocate a new
726 * block and allocate the bytes at the start of that new block.
727 */
728
729 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
730 tl.fc_len = cpu_to_le16(remaining);
731 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
732 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
733 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
734
735 ext4_fc_submit_bh(sb, false);
736
737 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
738 if (ret)
739 return NULL;
740 sbi->s_fc_bh = bh;
741 sbi->s_fc_bytes += bsize - off + len;
742 return sbi->s_fc_bh->b_data;
743}
744
745/*
746 * Complete a fast commit by writing tail tag.
747 *
748 * Writing tail tag marks the end of a fast commit. In order to guarantee
749 * atomicity, after writing tail tag, even if there's space remaining
750 * in the block, next commit shouldn't use it. That's why tail tag
751 * has the length as that of the remaining space on the block.
752 */
753static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
754{
755 struct ext4_sb_info *sbi = EXT4_SB(sb);
756 struct ext4_fc_tl tl;
757 struct ext4_fc_tail tail;
758 int off, bsize = sbi->s_journal->j_blocksize;
759 u8 *dst;
760
761 /*
762 * ext4_fc_reserve_space takes care of allocating an extra block if
763 * there's no enough space on this block for accommodating this tail.
764 */
765 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
766 if (!dst)
767 return -ENOSPC;
768
769 off = sbi->s_fc_bytes % bsize;
770
771 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
772 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
773 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
774
775 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
776 dst += EXT4_FC_TAG_BASE_LEN;
777 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
778 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
779 dst += sizeof(tail.fc_tid);
780 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
781 dst - (u8 *)sbi->s_fc_bh->b_data);
782 tail.fc_crc = cpu_to_le32(crc);
783 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
784 dst += sizeof(tail.fc_crc);
785 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
786
787 ext4_fc_submit_bh(sb, true);
788
789 return 0;
790}
791
792/*
793 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
794 * Returns false if there's not enough space.
795 */
796static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
797 u32 *crc)
798{
799 struct ext4_fc_tl tl;
800 u8 *dst;
801
802 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
803 if (!dst)
804 return false;
805
806 tl.fc_tag = cpu_to_le16(tag);
807 tl.fc_len = cpu_to_le16(len);
808
809 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
810 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
811
812 return true;
813}
814
815/* Same as above, but adds dentry tlv. */
816static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
817 struct ext4_fc_dentry_update *fc_dentry)
818{
819 struct ext4_fc_dentry_info fcd;
820 struct ext4_fc_tl tl;
821 int dlen = fc_dentry->fcd_name.len;
822 u8 *dst = ext4_fc_reserve_space(sb,
823 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
824
825 if (!dst)
826 return false;
827
828 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
829 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
830 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
831 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
832 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
833 dst += EXT4_FC_TAG_BASE_LEN;
834 memcpy(dst, &fcd, sizeof(fcd));
835 dst += sizeof(fcd);
836 memcpy(dst, fc_dentry->fcd_name.name, dlen);
837
838 return true;
839}
840
841/*
842 * Writes inode in the fast commit space under TLV with tag @tag.
843 * Returns 0 on success, error on failure.
844 */
845static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
846{
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
849 int ret;
850 struct ext4_iloc iloc;
851 struct ext4_fc_inode fc_inode;
852 struct ext4_fc_tl tl;
853 u8 *dst;
854
855 ret = ext4_get_inode_loc(inode, &iloc);
856 if (ret)
857 return ret;
858
859 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
860 inode_len = EXT4_INODE_SIZE(inode->i_sb);
861 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
862 inode_len += ei->i_extra_isize;
863
864 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
865 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
866 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
867
868 ret = -ECANCELED;
869 dst = ext4_fc_reserve_space(inode->i_sb,
870 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
871 if (!dst)
872 goto err;
873
874 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
875 dst += EXT4_FC_TAG_BASE_LEN;
876 memcpy(dst, &fc_inode, sizeof(fc_inode));
877 dst += sizeof(fc_inode);
878 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
879 ret = 0;
880err:
881 brelse(iloc.bh);
882 return ret;
883}
884
885/*
886 * Writes updated data ranges for the inode in question. Updates CRC.
887 * Returns 0 on success, error otherwise.
888 */
889static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
890{
891 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
892 struct ext4_inode_info *ei = EXT4_I(inode);
893 struct ext4_map_blocks map;
894 struct ext4_fc_add_range fc_ext;
895 struct ext4_fc_del_range lrange;
896 struct ext4_extent *ex;
897 int ret;
898
899 mutex_lock(&ei->i_fc_lock);
900 if (ei->i_fc_lblk_len == 0) {
901 mutex_unlock(&ei->i_fc_lock);
902 return 0;
903 }
904 old_blk_size = ei->i_fc_lblk_start;
905 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
906 ei->i_fc_lblk_len = 0;
907 mutex_unlock(&ei->i_fc_lock);
908
909 cur_lblk_off = old_blk_size;
910 ext4_debug("will try writing %d to %d for inode %ld\n",
911 cur_lblk_off, new_blk_size, inode->i_ino);
912
913 while (cur_lblk_off <= new_blk_size) {
914 map.m_lblk = cur_lblk_off;
915 map.m_len = new_blk_size - cur_lblk_off + 1;
916 ret = ext4_map_blocks(NULL, inode, &map, 0);
917 if (ret < 0)
918 return -ECANCELED;
919
920 if (map.m_len == 0) {
921 cur_lblk_off++;
922 continue;
923 }
924
925 if (ret == 0) {
926 lrange.fc_ino = cpu_to_le32(inode->i_ino);
927 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
928 lrange.fc_len = cpu_to_le32(map.m_len);
929 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
930 sizeof(lrange), (u8 *)&lrange, crc))
931 return -ENOSPC;
932 } else {
933 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
934 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
935
936 /* Limit the number of blocks in one extent */
937 map.m_len = min(max, map.m_len);
938
939 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
940 ex = (struct ext4_extent *)&fc_ext.fc_ex;
941 ex->ee_block = cpu_to_le32(map.m_lblk);
942 ex->ee_len = cpu_to_le16(map.m_len);
943 ext4_ext_store_pblock(ex, map.m_pblk);
944 if (map.m_flags & EXT4_MAP_UNWRITTEN)
945 ext4_ext_mark_unwritten(ex);
946 else
947 ext4_ext_mark_initialized(ex);
948 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
949 sizeof(fc_ext), (u8 *)&fc_ext, crc))
950 return -ENOSPC;
951 }
952
953 cur_lblk_off += map.m_len;
954 }
955
956 return 0;
957}
958
959
960/* Submit data for all the fast commit inodes */
961static int ext4_fc_submit_inode_data_all(journal_t *journal)
962{
963 struct super_block *sb = journal->j_private;
964 struct ext4_sb_info *sbi = EXT4_SB(sb);
965 struct ext4_inode_info *ei;
966 int ret = 0;
967
968 spin_lock(&sbi->s_fc_lock);
969 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
970 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
971 while (atomic_read(&ei->i_fc_updates)) {
972 DEFINE_WAIT(wait);
973
974 prepare_to_wait(&ei->i_fc_wait, &wait,
975 TASK_UNINTERRUPTIBLE);
976 if (atomic_read(&ei->i_fc_updates)) {
977 spin_unlock(&sbi->s_fc_lock);
978 schedule();
979 spin_lock(&sbi->s_fc_lock);
980 }
981 finish_wait(&ei->i_fc_wait, &wait);
982 }
983 spin_unlock(&sbi->s_fc_lock);
984 ret = jbd2_submit_inode_data(journal, ei->jinode);
985 if (ret)
986 return ret;
987 spin_lock(&sbi->s_fc_lock);
988 }
989 spin_unlock(&sbi->s_fc_lock);
990
991 return ret;
992}
993
994/* Wait for completion of data for all the fast commit inodes */
995static int ext4_fc_wait_inode_data_all(journal_t *journal)
996{
997 struct super_block *sb = journal->j_private;
998 struct ext4_sb_info *sbi = EXT4_SB(sb);
999 struct ext4_inode_info *pos, *n;
1000 int ret = 0;
1001
1002 spin_lock(&sbi->s_fc_lock);
1003 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1004 if (!ext4_test_inode_state(&pos->vfs_inode,
1005 EXT4_STATE_FC_COMMITTING))
1006 continue;
1007 spin_unlock(&sbi->s_fc_lock);
1008
1009 ret = jbd2_wait_inode_data(journal, pos->jinode);
1010 if (ret)
1011 return ret;
1012 spin_lock(&sbi->s_fc_lock);
1013 }
1014 spin_unlock(&sbi->s_fc_lock);
1015
1016 return 0;
1017}
1018
1019/* Commit all the directory entry updates */
1020static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1021__acquires(&sbi->s_fc_lock)
1022__releases(&sbi->s_fc_lock)
1023{
1024 struct super_block *sb = journal->j_private;
1025 struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1027 struct inode *inode;
1028 struct ext4_inode_info *ei;
1029 int ret;
1030
1031 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1032 return 0;
1033 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1034 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1035 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1036 spin_unlock(&sbi->s_fc_lock);
1037 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1038 ret = -ENOSPC;
1039 goto lock_and_exit;
1040 }
1041 spin_lock(&sbi->s_fc_lock);
1042 continue;
1043 }
1044 /*
1045 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1046 * corresponding inode pointer
1047 */
1048 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1049 ei = list_first_entry(&fc_dentry->fcd_dilist,
1050 struct ext4_inode_info, i_fc_dilist);
1051 inode = &ei->vfs_inode;
1052 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1053
1054 spin_unlock(&sbi->s_fc_lock);
1055
1056 /*
1057 * We first write the inode and then the create dirent. This
1058 * allows the recovery code to create an unnamed inode first
1059 * and then link it to a directory entry. This allows us
1060 * to use namei.c routines almost as is and simplifies
1061 * the recovery code.
1062 */
1063 ret = ext4_fc_write_inode(inode, crc);
1064 if (ret)
1065 goto lock_and_exit;
1066
1067 ret = ext4_fc_write_inode_data(inode, crc);
1068 if (ret)
1069 goto lock_and_exit;
1070
1071 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1072 ret = -ENOSPC;
1073 goto lock_and_exit;
1074 }
1075
1076 spin_lock(&sbi->s_fc_lock);
1077 }
1078 return 0;
1079lock_and_exit:
1080 spin_lock(&sbi->s_fc_lock);
1081 return ret;
1082}
1083
1084static int ext4_fc_perform_commit(journal_t *journal)
1085{
1086 struct super_block *sb = journal->j_private;
1087 struct ext4_sb_info *sbi = EXT4_SB(sb);
1088 struct ext4_inode_info *iter;
1089 struct ext4_fc_head head;
1090 struct inode *inode;
1091 struct blk_plug plug;
1092 int ret = 0;
1093 u32 crc = 0;
1094
1095 ret = ext4_fc_submit_inode_data_all(journal);
1096 if (ret)
1097 return ret;
1098
1099 ret = ext4_fc_wait_inode_data_all(journal);
1100 if (ret)
1101 return ret;
1102
1103 /*
1104 * If file system device is different from journal device, issue a cache
1105 * flush before we start writing fast commit blocks.
1106 */
1107 if (journal->j_fs_dev != journal->j_dev)
1108 blkdev_issue_flush(journal->j_fs_dev);
1109
1110 blk_start_plug(&plug);
1111 if (sbi->s_fc_bytes == 0) {
1112 /*
1113 * Add a head tag only if this is the first fast commit
1114 * in this TID.
1115 */
1116 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1117 head.fc_tid = cpu_to_le32(
1118 sbi->s_journal->j_running_transaction->t_tid);
1119 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1120 (u8 *)&head, &crc)) {
1121 ret = -ENOSPC;
1122 goto out;
1123 }
1124 }
1125
1126 spin_lock(&sbi->s_fc_lock);
1127 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1128 if (ret) {
1129 spin_unlock(&sbi->s_fc_lock);
1130 goto out;
1131 }
1132
1133 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1134 inode = &iter->vfs_inode;
1135 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1136 continue;
1137
1138 spin_unlock(&sbi->s_fc_lock);
1139 ret = ext4_fc_write_inode_data(inode, &crc);
1140 if (ret)
1141 goto out;
1142 ret = ext4_fc_write_inode(inode, &crc);
1143 if (ret)
1144 goto out;
1145 spin_lock(&sbi->s_fc_lock);
1146 }
1147 spin_unlock(&sbi->s_fc_lock);
1148
1149 ret = ext4_fc_write_tail(sb, crc);
1150
1151out:
1152 blk_finish_plug(&plug);
1153 return ret;
1154}
1155
1156static void ext4_fc_update_stats(struct super_block *sb, int status,
1157 u64 commit_time, int nblks, tid_t commit_tid)
1158{
1159 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1160
1161 ext4_debug("Fast commit ended with status = %d for tid %u",
1162 status, commit_tid);
1163 if (status == EXT4_FC_STATUS_OK) {
1164 stats->fc_num_commits++;
1165 stats->fc_numblks += nblks;
1166 if (likely(stats->s_fc_avg_commit_time))
1167 stats->s_fc_avg_commit_time =
1168 (commit_time +
1169 stats->s_fc_avg_commit_time * 3) / 4;
1170 else
1171 stats->s_fc_avg_commit_time = commit_time;
1172 } else if (status == EXT4_FC_STATUS_FAILED ||
1173 status == EXT4_FC_STATUS_INELIGIBLE) {
1174 if (status == EXT4_FC_STATUS_FAILED)
1175 stats->fc_failed_commits++;
1176 stats->fc_ineligible_commits++;
1177 } else {
1178 stats->fc_skipped_commits++;
1179 }
1180 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1181}
1182
1183/*
1184 * The main commit entry point. Performs a fast commit for transaction
1185 * commit_tid if needed. If it's not possible to perform a fast commit
1186 * due to various reasons, we fall back to full commit. Returns 0
1187 * on success, error otherwise.
1188 */
1189int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1190{
1191 struct super_block *sb = journal->j_private;
1192 struct ext4_sb_info *sbi = EXT4_SB(sb);
1193 int nblks = 0, ret, bsize = journal->j_blocksize;
1194 int subtid = atomic_read(&sbi->s_fc_subtid);
1195 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1196 ktime_t start_time, commit_time;
1197
1198 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1199 return jbd2_complete_transaction(journal, commit_tid);
1200
1201 trace_ext4_fc_commit_start(sb, commit_tid);
1202
1203 start_time = ktime_get();
1204
1205restart_fc:
1206 ret = jbd2_fc_begin_commit(journal, commit_tid);
1207 if (ret == -EALREADY) {
1208 /* There was an ongoing commit, check if we need to restart */
1209 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1210 commit_tid > journal->j_commit_sequence)
1211 goto restart_fc;
1212 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1213 commit_tid);
1214 return 0;
1215 } else if (ret) {
1216 /*
1217 * Commit couldn't start. Just update stats and perform a
1218 * full commit.
1219 */
1220 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1221 commit_tid);
1222 return jbd2_complete_transaction(journal, commit_tid);
1223 }
1224
1225 /*
1226 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1227 * if we are fast commit ineligible.
1228 */
1229 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1230 status = EXT4_FC_STATUS_INELIGIBLE;
1231 goto fallback;
1232 }
1233
1234 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1235 ret = ext4_fc_perform_commit(journal);
1236 if (ret < 0) {
1237 status = EXT4_FC_STATUS_FAILED;
1238 goto fallback;
1239 }
1240 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1241 ret = jbd2_fc_wait_bufs(journal, nblks);
1242 if (ret < 0) {
1243 status = EXT4_FC_STATUS_FAILED;
1244 goto fallback;
1245 }
1246 atomic_inc(&sbi->s_fc_subtid);
1247 ret = jbd2_fc_end_commit(journal);
1248 /*
1249 * weight the commit time higher than the average time so we
1250 * don't react too strongly to vast changes in the commit time
1251 */
1252 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1253 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1254 return ret;
1255
1256fallback:
1257 ret = jbd2_fc_end_commit_fallback(journal);
1258 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1259 return ret;
1260}
1261
1262/*
1263 * Fast commit cleanup routine. This is called after every fast commit and
1264 * full commit. full is true if we are called after a full commit.
1265 */
1266static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1267{
1268 struct super_block *sb = journal->j_private;
1269 struct ext4_sb_info *sbi = EXT4_SB(sb);
1270 struct ext4_inode_info *iter, *iter_n;
1271 struct ext4_fc_dentry_update *fc_dentry;
1272
1273 if (full && sbi->s_fc_bh)
1274 sbi->s_fc_bh = NULL;
1275
1276 trace_ext4_fc_cleanup(journal, full, tid);
1277 jbd2_fc_release_bufs(journal);
1278
1279 spin_lock(&sbi->s_fc_lock);
1280 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1281 i_fc_list) {
1282 list_del_init(&iter->i_fc_list);
1283 ext4_clear_inode_state(&iter->vfs_inode,
1284 EXT4_STATE_FC_COMMITTING);
1285 if (iter->i_sync_tid <= tid)
1286 ext4_fc_reset_inode(&iter->vfs_inode);
1287 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1288 smp_mb();
1289#if (BITS_PER_LONG < 64)
1290 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1291#else
1292 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1293#endif
1294 }
1295
1296 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1297 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1298 struct ext4_fc_dentry_update,
1299 fcd_list);
1300 list_del_init(&fc_dentry->fcd_list);
1301 list_del_init(&fc_dentry->fcd_dilist);
1302 spin_unlock(&sbi->s_fc_lock);
1303
1304 if (fc_dentry->fcd_name.name &&
1305 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1306 kfree(fc_dentry->fcd_name.name);
1307 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1308 spin_lock(&sbi->s_fc_lock);
1309 }
1310
1311 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1312 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1313 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1314 &sbi->s_fc_q[FC_Q_MAIN]);
1315
1316 if (tid >= sbi->s_fc_ineligible_tid) {
1317 sbi->s_fc_ineligible_tid = 0;
1318 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1319 }
1320
1321 if (full)
1322 sbi->s_fc_bytes = 0;
1323 spin_unlock(&sbi->s_fc_lock);
1324 trace_ext4_fc_stats(sb);
1325}
1326
1327/* Ext4 Replay Path Routines */
1328
1329/* Helper struct for dentry replay routines */
1330struct dentry_info_args {
1331 int parent_ino, dname_len, ino, inode_len;
1332 char *dname;
1333};
1334
1335static inline void tl_to_darg(struct dentry_info_args *darg,
1336 struct ext4_fc_tl *tl, u8 *val)
1337{
1338 struct ext4_fc_dentry_info fcd;
1339
1340 memcpy(&fcd, val, sizeof(fcd));
1341
1342 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1343 darg->ino = le32_to_cpu(fcd.fc_ino);
1344 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1345 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1346}
1347
1348static inline void ext4_fc_get_tl(struct ext4_fc_tl *tl, u8 *val)
1349{
1350 memcpy(tl, val, EXT4_FC_TAG_BASE_LEN);
1351 tl->fc_len = le16_to_cpu(tl->fc_len);
1352 tl->fc_tag = le16_to_cpu(tl->fc_tag);
1353}
1354
1355/* Unlink replay function */
1356static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1357 u8 *val)
1358{
1359 struct inode *inode, *old_parent;
1360 struct qstr entry;
1361 struct dentry_info_args darg;
1362 int ret = 0;
1363
1364 tl_to_darg(&darg, tl, val);
1365
1366 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1367 darg.parent_ino, darg.dname_len);
1368
1369 entry.name = darg.dname;
1370 entry.len = darg.dname_len;
1371 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1372
1373 if (IS_ERR(inode)) {
1374 ext4_debug("Inode %d not found", darg.ino);
1375 return 0;
1376 }
1377
1378 old_parent = ext4_iget(sb, darg.parent_ino,
1379 EXT4_IGET_NORMAL);
1380 if (IS_ERR(old_parent)) {
1381 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1382 iput(inode);
1383 return 0;
1384 }
1385
1386 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1387 /* -ENOENT ok coz it might not exist anymore. */
1388 if (ret == -ENOENT)
1389 ret = 0;
1390 iput(old_parent);
1391 iput(inode);
1392 return ret;
1393}
1394
1395static int ext4_fc_replay_link_internal(struct super_block *sb,
1396 struct dentry_info_args *darg,
1397 struct inode *inode)
1398{
1399 struct inode *dir = NULL;
1400 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1401 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1402 int ret = 0;
1403
1404 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1405 if (IS_ERR(dir)) {
1406 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1407 dir = NULL;
1408 goto out;
1409 }
1410
1411 dentry_dir = d_obtain_alias(dir);
1412 if (IS_ERR(dentry_dir)) {
1413 ext4_debug("Failed to obtain dentry");
1414 dentry_dir = NULL;
1415 goto out;
1416 }
1417
1418 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1419 if (!dentry_inode) {
1420 ext4_debug("Inode dentry not created.");
1421 ret = -ENOMEM;
1422 goto out;
1423 }
1424
1425 ret = __ext4_link(dir, inode, dentry_inode);
1426 /*
1427 * It's possible that link already existed since data blocks
1428 * for the dir in question got persisted before we crashed OR
1429 * we replayed this tag and crashed before the entire replay
1430 * could complete.
1431 */
1432 if (ret && ret != -EEXIST) {
1433 ext4_debug("Failed to link\n");
1434 goto out;
1435 }
1436
1437 ret = 0;
1438out:
1439 if (dentry_dir) {
1440 d_drop(dentry_dir);
1441 dput(dentry_dir);
1442 } else if (dir) {
1443 iput(dir);
1444 }
1445 if (dentry_inode) {
1446 d_drop(dentry_inode);
1447 dput(dentry_inode);
1448 }
1449
1450 return ret;
1451}
1452
1453/* Link replay function */
1454static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1455 u8 *val)
1456{
1457 struct inode *inode;
1458 struct dentry_info_args darg;
1459 int ret = 0;
1460
1461 tl_to_darg(&darg, tl, val);
1462 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1463 darg.parent_ino, darg.dname_len);
1464
1465 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1466 if (IS_ERR(inode)) {
1467 ext4_debug("Inode not found.");
1468 return 0;
1469 }
1470
1471 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1472 iput(inode);
1473 return ret;
1474}
1475
1476/*
1477 * Record all the modified inodes during replay. We use this later to setup
1478 * block bitmaps correctly.
1479 */
1480static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1481{
1482 struct ext4_fc_replay_state *state;
1483 int i;
1484
1485 state = &EXT4_SB(sb)->s_fc_replay_state;
1486 for (i = 0; i < state->fc_modified_inodes_used; i++)
1487 if (state->fc_modified_inodes[i] == ino)
1488 return 0;
1489 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1490 int *fc_modified_inodes;
1491
1492 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1493 sizeof(int) * (state->fc_modified_inodes_size +
1494 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1495 GFP_KERNEL);
1496 if (!fc_modified_inodes)
1497 return -ENOMEM;
1498 state->fc_modified_inodes = fc_modified_inodes;
1499 state->fc_modified_inodes_size +=
1500 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1501 }
1502 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1503 return 0;
1504}
1505
1506/*
1507 * Inode replay function
1508 */
1509static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1510 u8 *val)
1511{
1512 struct ext4_fc_inode fc_inode;
1513 struct ext4_inode *raw_inode;
1514 struct ext4_inode *raw_fc_inode;
1515 struct inode *inode = NULL;
1516 struct ext4_iloc iloc;
1517 int inode_len, ino, ret, tag = tl->fc_tag;
1518 struct ext4_extent_header *eh;
1519 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1520
1521 memcpy(&fc_inode, val, sizeof(fc_inode));
1522
1523 ino = le32_to_cpu(fc_inode.fc_ino);
1524 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1525
1526 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1527 if (!IS_ERR(inode)) {
1528 ext4_ext_clear_bb(inode);
1529 iput(inode);
1530 }
1531 inode = NULL;
1532
1533 ret = ext4_fc_record_modified_inode(sb, ino);
1534 if (ret)
1535 goto out;
1536
1537 raw_fc_inode = (struct ext4_inode *)
1538 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1539 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1540 if (ret)
1541 goto out;
1542
1543 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1544 raw_inode = ext4_raw_inode(&iloc);
1545
1546 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1547 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1548 inode_len - off_gen);
1549 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1550 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1551 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1552 memset(eh, 0, sizeof(*eh));
1553 eh->eh_magic = EXT4_EXT_MAGIC;
1554 eh->eh_max = cpu_to_le16(
1555 (sizeof(raw_inode->i_block) -
1556 sizeof(struct ext4_extent_header))
1557 / sizeof(struct ext4_extent));
1558 }
1559 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1560 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1561 sizeof(raw_inode->i_block));
1562 }
1563
1564 /* Immediately update the inode on disk. */
1565 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1566 if (ret)
1567 goto out;
1568 ret = sync_dirty_buffer(iloc.bh);
1569 if (ret)
1570 goto out;
1571 ret = ext4_mark_inode_used(sb, ino);
1572 if (ret)
1573 goto out;
1574
1575 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1576 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1577 if (IS_ERR(inode)) {
1578 ext4_debug("Inode not found.");
1579 return -EFSCORRUPTED;
1580 }
1581
1582 /*
1583 * Our allocator could have made different decisions than before
1584 * crashing. This should be fixed but until then, we calculate
1585 * the number of blocks the inode.
1586 */
1587 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1588 ext4_ext_replay_set_iblocks(inode);
1589
1590 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1591 ext4_reset_inode_seed(inode);
1592
1593 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1594 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1595 sync_dirty_buffer(iloc.bh);
1596 brelse(iloc.bh);
1597out:
1598 iput(inode);
1599 if (!ret)
1600 blkdev_issue_flush(sb->s_bdev);
1601
1602 return 0;
1603}
1604
1605/*
1606 * Dentry create replay function.
1607 *
1608 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1609 * inode for which we are trying to create a dentry here, should already have
1610 * been replayed before we start here.
1611 */
1612static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1613 u8 *val)
1614{
1615 int ret = 0;
1616 struct inode *inode = NULL;
1617 struct inode *dir = NULL;
1618 struct dentry_info_args darg;
1619
1620 tl_to_darg(&darg, tl, val);
1621
1622 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1623 darg.parent_ino, darg.dname_len);
1624
1625 /* This takes care of update group descriptor and other metadata */
1626 ret = ext4_mark_inode_used(sb, darg.ino);
1627 if (ret)
1628 goto out;
1629
1630 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1631 if (IS_ERR(inode)) {
1632 ext4_debug("inode %d not found.", darg.ino);
1633 inode = NULL;
1634 ret = -EINVAL;
1635 goto out;
1636 }
1637
1638 if (S_ISDIR(inode->i_mode)) {
1639 /*
1640 * If we are creating a directory, we need to make sure that the
1641 * dot and dot dot dirents are setup properly.
1642 */
1643 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1644 if (IS_ERR(dir)) {
1645 ext4_debug("Dir %d not found.", darg.ino);
1646 goto out;
1647 }
1648 ret = ext4_init_new_dir(NULL, dir, inode);
1649 iput(dir);
1650 if (ret) {
1651 ret = 0;
1652 goto out;
1653 }
1654 }
1655 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1656 if (ret)
1657 goto out;
1658 set_nlink(inode, 1);
1659 ext4_mark_inode_dirty(NULL, inode);
1660out:
1661 iput(inode);
1662 return ret;
1663}
1664
1665/*
1666 * Record physical disk regions which are in use as per fast commit area,
1667 * and used by inodes during replay phase. Our simple replay phase
1668 * allocator excludes these regions from allocation.
1669 */
1670int ext4_fc_record_regions(struct super_block *sb, int ino,
1671 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1672{
1673 struct ext4_fc_replay_state *state;
1674 struct ext4_fc_alloc_region *region;
1675
1676 state = &EXT4_SB(sb)->s_fc_replay_state;
1677 /*
1678 * during replay phase, the fc_regions_valid may not same as
1679 * fc_regions_used, update it when do new additions.
1680 */
1681 if (replay && state->fc_regions_used != state->fc_regions_valid)
1682 state->fc_regions_used = state->fc_regions_valid;
1683 if (state->fc_regions_used == state->fc_regions_size) {
1684 struct ext4_fc_alloc_region *fc_regions;
1685
1686 fc_regions = krealloc(state->fc_regions,
1687 sizeof(struct ext4_fc_alloc_region) *
1688 (state->fc_regions_size +
1689 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1690 GFP_KERNEL);
1691 if (!fc_regions)
1692 return -ENOMEM;
1693 state->fc_regions_size +=
1694 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1695 state->fc_regions = fc_regions;
1696 }
1697 region = &state->fc_regions[state->fc_regions_used++];
1698 region->ino = ino;
1699 region->lblk = lblk;
1700 region->pblk = pblk;
1701 region->len = len;
1702
1703 if (replay)
1704 state->fc_regions_valid++;
1705
1706 return 0;
1707}
1708
1709/* Replay add range tag */
1710static int ext4_fc_replay_add_range(struct super_block *sb,
1711 struct ext4_fc_tl *tl, u8 *val)
1712{
1713 struct ext4_fc_add_range fc_add_ex;
1714 struct ext4_extent newex, *ex;
1715 struct inode *inode;
1716 ext4_lblk_t start, cur;
1717 int remaining, len;
1718 ext4_fsblk_t start_pblk;
1719 struct ext4_map_blocks map;
1720 struct ext4_ext_path *path = NULL;
1721 int ret;
1722
1723 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1724 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1725
1726 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1727 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1728 ext4_ext_get_actual_len(ex));
1729
1730 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1731 if (IS_ERR(inode)) {
1732 ext4_debug("Inode not found.");
1733 return 0;
1734 }
1735
1736 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1737 if (ret)
1738 goto out;
1739
1740 start = le32_to_cpu(ex->ee_block);
1741 start_pblk = ext4_ext_pblock(ex);
1742 len = ext4_ext_get_actual_len(ex);
1743
1744 cur = start;
1745 remaining = len;
1746 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1747 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1748 inode->i_ino);
1749
1750 while (remaining > 0) {
1751 map.m_lblk = cur;
1752 map.m_len = remaining;
1753 map.m_pblk = 0;
1754 ret = ext4_map_blocks(NULL, inode, &map, 0);
1755
1756 if (ret < 0)
1757 goto out;
1758
1759 if (ret == 0) {
1760 /* Range is not mapped */
1761 path = ext4_find_extent(inode, cur, NULL, 0);
1762 if (IS_ERR(path))
1763 goto out;
1764 memset(&newex, 0, sizeof(newex));
1765 newex.ee_block = cpu_to_le32(cur);
1766 ext4_ext_store_pblock(
1767 &newex, start_pblk + cur - start);
1768 newex.ee_len = cpu_to_le16(map.m_len);
1769 if (ext4_ext_is_unwritten(ex))
1770 ext4_ext_mark_unwritten(&newex);
1771 down_write(&EXT4_I(inode)->i_data_sem);
1772 ret = ext4_ext_insert_extent(
1773 NULL, inode, &path, &newex, 0);
1774 up_write((&EXT4_I(inode)->i_data_sem));
1775 ext4_free_ext_path(path);
1776 if (ret)
1777 goto out;
1778 goto next;
1779 }
1780
1781 if (start_pblk + cur - start != map.m_pblk) {
1782 /*
1783 * Logical to physical mapping changed. This can happen
1784 * if this range was removed and then reallocated to
1785 * map to new physical blocks during a fast commit.
1786 */
1787 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1788 ext4_ext_is_unwritten(ex),
1789 start_pblk + cur - start);
1790 if (ret)
1791 goto out;
1792 /*
1793 * Mark the old blocks as free since they aren't used
1794 * anymore. We maintain an array of all the modified
1795 * inodes. In case these blocks are still used at either
1796 * a different logical range in the same inode or in
1797 * some different inode, we will mark them as allocated
1798 * at the end of the FC replay using our array of
1799 * modified inodes.
1800 */
1801 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1802 goto next;
1803 }
1804
1805 /* Range is mapped and needs a state change */
1806 ext4_debug("Converting from %ld to %d %lld",
1807 map.m_flags & EXT4_MAP_UNWRITTEN,
1808 ext4_ext_is_unwritten(ex), map.m_pblk);
1809 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1810 ext4_ext_is_unwritten(ex), map.m_pblk);
1811 if (ret)
1812 goto out;
1813 /*
1814 * We may have split the extent tree while toggling the state.
1815 * Try to shrink the extent tree now.
1816 */
1817 ext4_ext_replay_shrink_inode(inode, start + len);
1818next:
1819 cur += map.m_len;
1820 remaining -= map.m_len;
1821 }
1822 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1823 sb->s_blocksize_bits);
1824out:
1825 iput(inode);
1826 return 0;
1827}
1828
1829/* Replay DEL_RANGE tag */
1830static int
1831ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1832 u8 *val)
1833{
1834 struct inode *inode;
1835 struct ext4_fc_del_range lrange;
1836 struct ext4_map_blocks map;
1837 ext4_lblk_t cur, remaining;
1838 int ret;
1839
1840 memcpy(&lrange, val, sizeof(lrange));
1841 cur = le32_to_cpu(lrange.fc_lblk);
1842 remaining = le32_to_cpu(lrange.fc_len);
1843
1844 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1845 le32_to_cpu(lrange.fc_ino), cur, remaining);
1846
1847 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1848 if (IS_ERR(inode)) {
1849 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1850 return 0;
1851 }
1852
1853 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1854 if (ret)
1855 goto out;
1856
1857 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1858 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1859 le32_to_cpu(lrange.fc_len));
1860 while (remaining > 0) {
1861 map.m_lblk = cur;
1862 map.m_len = remaining;
1863
1864 ret = ext4_map_blocks(NULL, inode, &map, 0);
1865 if (ret < 0)
1866 goto out;
1867 if (ret > 0) {
1868 remaining -= ret;
1869 cur += ret;
1870 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1871 } else {
1872 remaining -= map.m_len;
1873 cur += map.m_len;
1874 }
1875 }
1876
1877 down_write(&EXT4_I(inode)->i_data_sem);
1878 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1879 le32_to_cpu(lrange.fc_lblk) +
1880 le32_to_cpu(lrange.fc_len) - 1);
1881 up_write(&EXT4_I(inode)->i_data_sem);
1882 if (ret)
1883 goto out;
1884 ext4_ext_replay_shrink_inode(inode,
1885 i_size_read(inode) >> sb->s_blocksize_bits);
1886 ext4_mark_inode_dirty(NULL, inode);
1887out:
1888 iput(inode);
1889 return 0;
1890}
1891
1892static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1893{
1894 struct ext4_fc_replay_state *state;
1895 struct inode *inode;
1896 struct ext4_ext_path *path = NULL;
1897 struct ext4_map_blocks map;
1898 int i, ret, j;
1899 ext4_lblk_t cur, end;
1900
1901 state = &EXT4_SB(sb)->s_fc_replay_state;
1902 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1903 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1904 EXT4_IGET_NORMAL);
1905 if (IS_ERR(inode)) {
1906 ext4_debug("Inode %d not found.",
1907 state->fc_modified_inodes[i]);
1908 continue;
1909 }
1910 cur = 0;
1911 end = EXT_MAX_BLOCKS;
1912 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1913 iput(inode);
1914 continue;
1915 }
1916 while (cur < end) {
1917 map.m_lblk = cur;
1918 map.m_len = end - cur;
1919
1920 ret = ext4_map_blocks(NULL, inode, &map, 0);
1921 if (ret < 0)
1922 break;
1923
1924 if (ret > 0) {
1925 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1926 if (!IS_ERR(path)) {
1927 for (j = 0; j < path->p_depth; j++)
1928 ext4_mb_mark_bb(inode->i_sb,
1929 path[j].p_block, 1, 1);
1930 ext4_free_ext_path(path);
1931 }
1932 cur += ret;
1933 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1934 map.m_len, 1);
1935 } else {
1936 cur = cur + (map.m_len ? map.m_len : 1);
1937 }
1938 }
1939 iput(inode);
1940 }
1941}
1942
1943/*
1944 * Check if block is in excluded regions for block allocation. The simple
1945 * allocator that runs during replay phase is calls this function to see
1946 * if it is okay to use a block.
1947 */
1948bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1949{
1950 int i;
1951 struct ext4_fc_replay_state *state;
1952
1953 state = &EXT4_SB(sb)->s_fc_replay_state;
1954 for (i = 0; i < state->fc_regions_valid; i++) {
1955 if (state->fc_regions[i].ino == 0 ||
1956 state->fc_regions[i].len == 0)
1957 continue;
1958 if (in_range(blk, state->fc_regions[i].pblk,
1959 state->fc_regions[i].len))
1960 return true;
1961 }
1962 return false;
1963}
1964
1965/* Cleanup function called after replay */
1966void ext4_fc_replay_cleanup(struct super_block *sb)
1967{
1968 struct ext4_sb_info *sbi = EXT4_SB(sb);
1969
1970 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1971 kfree(sbi->s_fc_replay_state.fc_regions);
1972 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1973}
1974
1975static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1976 int tag, int len)
1977{
1978 switch (tag) {
1979 case EXT4_FC_TAG_ADD_RANGE:
1980 return len == sizeof(struct ext4_fc_add_range);
1981 case EXT4_FC_TAG_DEL_RANGE:
1982 return len == sizeof(struct ext4_fc_del_range);
1983 case EXT4_FC_TAG_CREAT:
1984 case EXT4_FC_TAG_LINK:
1985 case EXT4_FC_TAG_UNLINK:
1986 len -= sizeof(struct ext4_fc_dentry_info);
1987 return len >= 1 && len <= EXT4_NAME_LEN;
1988 case EXT4_FC_TAG_INODE:
1989 len -= sizeof(struct ext4_fc_inode);
1990 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1991 len <= sbi->s_inode_size;
1992 case EXT4_FC_TAG_PAD:
1993 return true; /* padding can have any length */
1994 case EXT4_FC_TAG_TAIL:
1995 return len >= sizeof(struct ext4_fc_tail);
1996 case EXT4_FC_TAG_HEAD:
1997 return len == sizeof(struct ext4_fc_head);
1998 }
1999 return false;
2000}
2001
2002/*
2003 * Recovery Scan phase handler
2004 *
2005 * This function is called during the scan phase and is responsible
2006 * for doing following things:
2007 * - Make sure the fast commit area has valid tags for replay
2008 * - Count number of tags that need to be replayed by the replay handler
2009 * - Verify CRC
2010 * - Create a list of excluded blocks for allocation during replay phase
2011 *
2012 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2013 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2014 * to indicate that scan has finished and JBD2 can now start replay phase.
2015 * It returns a negative error to indicate that there was an error. At the end
2016 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2017 * to indicate the number of tags that need to replayed during the replay phase.
2018 */
2019static int ext4_fc_replay_scan(journal_t *journal,
2020 struct buffer_head *bh, int off,
2021 tid_t expected_tid)
2022{
2023 struct super_block *sb = journal->j_private;
2024 struct ext4_sb_info *sbi = EXT4_SB(sb);
2025 struct ext4_fc_replay_state *state;
2026 int ret = JBD2_FC_REPLAY_CONTINUE;
2027 struct ext4_fc_add_range ext;
2028 struct ext4_fc_tl tl;
2029 struct ext4_fc_tail tail;
2030 __u8 *start, *end, *cur, *val;
2031 struct ext4_fc_head head;
2032 struct ext4_extent *ex;
2033
2034 state = &sbi->s_fc_replay_state;
2035
2036 start = (u8 *)bh->b_data;
2037 end = start + journal->j_blocksize;
2038
2039 if (state->fc_replay_expected_off == 0) {
2040 state->fc_cur_tag = 0;
2041 state->fc_replay_num_tags = 0;
2042 state->fc_crc = 0;
2043 state->fc_regions = NULL;
2044 state->fc_regions_valid = state->fc_regions_used =
2045 state->fc_regions_size = 0;
2046 /* Check if we can stop early */
2047 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2048 != EXT4_FC_TAG_HEAD)
2049 return 0;
2050 }
2051
2052 if (off != state->fc_replay_expected_off) {
2053 ret = -EFSCORRUPTED;
2054 goto out_err;
2055 }
2056
2057 state->fc_replay_expected_off++;
2058 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2059 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2060 ext4_fc_get_tl(&tl, cur);
2061 val = cur + EXT4_FC_TAG_BASE_LEN;
2062 if (tl.fc_len > end - val ||
2063 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2064 ret = state->fc_replay_num_tags ?
2065 JBD2_FC_REPLAY_STOP : -ECANCELED;
2066 goto out_err;
2067 }
2068 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2069 tag2str(tl.fc_tag), bh->b_blocknr);
2070 switch (tl.fc_tag) {
2071 case EXT4_FC_TAG_ADD_RANGE:
2072 memcpy(&ext, val, sizeof(ext));
2073 ex = (struct ext4_extent *)&ext.fc_ex;
2074 ret = ext4_fc_record_regions(sb,
2075 le32_to_cpu(ext.fc_ino),
2076 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2077 ext4_ext_get_actual_len(ex), 0);
2078 if (ret < 0)
2079 break;
2080 ret = JBD2_FC_REPLAY_CONTINUE;
2081 fallthrough;
2082 case EXT4_FC_TAG_DEL_RANGE:
2083 case EXT4_FC_TAG_LINK:
2084 case EXT4_FC_TAG_UNLINK:
2085 case EXT4_FC_TAG_CREAT:
2086 case EXT4_FC_TAG_INODE:
2087 case EXT4_FC_TAG_PAD:
2088 state->fc_cur_tag++;
2089 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2090 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2091 break;
2092 case EXT4_FC_TAG_TAIL:
2093 state->fc_cur_tag++;
2094 memcpy(&tail, val, sizeof(tail));
2095 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2096 EXT4_FC_TAG_BASE_LEN +
2097 offsetof(struct ext4_fc_tail,
2098 fc_crc));
2099 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2100 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2101 state->fc_replay_num_tags = state->fc_cur_tag;
2102 state->fc_regions_valid =
2103 state->fc_regions_used;
2104 } else {
2105 ret = state->fc_replay_num_tags ?
2106 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2107 }
2108 state->fc_crc = 0;
2109 break;
2110 case EXT4_FC_TAG_HEAD:
2111 memcpy(&head, val, sizeof(head));
2112 if (le32_to_cpu(head.fc_features) &
2113 ~EXT4_FC_SUPPORTED_FEATURES) {
2114 ret = -EOPNOTSUPP;
2115 break;
2116 }
2117 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2118 ret = JBD2_FC_REPLAY_STOP;
2119 break;
2120 }
2121 state->fc_cur_tag++;
2122 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2123 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2124 break;
2125 default:
2126 ret = state->fc_replay_num_tags ?
2127 JBD2_FC_REPLAY_STOP : -ECANCELED;
2128 }
2129 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2130 break;
2131 }
2132
2133out_err:
2134 trace_ext4_fc_replay_scan(sb, ret, off);
2135 return ret;
2136}
2137
2138/*
2139 * Main recovery path entry point.
2140 * The meaning of return codes is similar as above.
2141 */
2142static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2143 enum passtype pass, int off, tid_t expected_tid)
2144{
2145 struct super_block *sb = journal->j_private;
2146 struct ext4_sb_info *sbi = EXT4_SB(sb);
2147 struct ext4_fc_tl tl;
2148 __u8 *start, *end, *cur, *val;
2149 int ret = JBD2_FC_REPLAY_CONTINUE;
2150 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2151 struct ext4_fc_tail tail;
2152
2153 if (pass == PASS_SCAN) {
2154 state->fc_current_pass = PASS_SCAN;
2155 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2156 }
2157
2158 if (state->fc_current_pass != pass) {
2159 state->fc_current_pass = pass;
2160 sbi->s_mount_state |= EXT4_FC_REPLAY;
2161 }
2162 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2163 ext4_debug("Replay stops\n");
2164 ext4_fc_set_bitmaps_and_counters(sb);
2165 return 0;
2166 }
2167
2168#ifdef CONFIG_EXT4_DEBUG
2169 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2170 pr_warn("Dropping fc block %d because max_replay set\n", off);
2171 return JBD2_FC_REPLAY_STOP;
2172 }
2173#endif
2174
2175 start = (u8 *)bh->b_data;
2176 end = start + journal->j_blocksize;
2177
2178 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2179 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2180 ext4_fc_get_tl(&tl, cur);
2181 val = cur + EXT4_FC_TAG_BASE_LEN;
2182
2183 if (state->fc_replay_num_tags == 0) {
2184 ret = JBD2_FC_REPLAY_STOP;
2185 ext4_fc_set_bitmaps_and_counters(sb);
2186 break;
2187 }
2188
2189 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2190 state->fc_replay_num_tags--;
2191 switch (tl.fc_tag) {
2192 case EXT4_FC_TAG_LINK:
2193 ret = ext4_fc_replay_link(sb, &tl, val);
2194 break;
2195 case EXT4_FC_TAG_UNLINK:
2196 ret = ext4_fc_replay_unlink(sb, &tl, val);
2197 break;
2198 case EXT4_FC_TAG_ADD_RANGE:
2199 ret = ext4_fc_replay_add_range(sb, &tl, val);
2200 break;
2201 case EXT4_FC_TAG_CREAT:
2202 ret = ext4_fc_replay_create(sb, &tl, val);
2203 break;
2204 case EXT4_FC_TAG_DEL_RANGE:
2205 ret = ext4_fc_replay_del_range(sb, &tl, val);
2206 break;
2207 case EXT4_FC_TAG_INODE:
2208 ret = ext4_fc_replay_inode(sb, &tl, val);
2209 break;
2210 case EXT4_FC_TAG_PAD:
2211 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2212 tl.fc_len, 0);
2213 break;
2214 case EXT4_FC_TAG_TAIL:
2215 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2216 0, tl.fc_len, 0);
2217 memcpy(&tail, val, sizeof(tail));
2218 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2219 break;
2220 case EXT4_FC_TAG_HEAD:
2221 break;
2222 default:
2223 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2224 ret = -ECANCELED;
2225 break;
2226 }
2227 if (ret < 0)
2228 break;
2229 ret = JBD2_FC_REPLAY_CONTINUE;
2230 }
2231 return ret;
2232}
2233
2234void ext4_fc_init(struct super_block *sb, journal_t *journal)
2235{
2236 /*
2237 * We set replay callback even if fast commit disabled because we may
2238 * could still have fast commit blocks that need to be replayed even if
2239 * fast commit has now been turned off.
2240 */
2241 journal->j_fc_replay_callback = ext4_fc_replay;
2242 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2243 return;
2244 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2245}
2246
2247static const char * const fc_ineligible_reasons[] = {
2248 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2249 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2250 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2251 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2252 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2253 [EXT4_FC_REASON_RESIZE] = "Resize",
2254 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2255 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2256 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2257 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2258};
2259
2260int ext4_fc_info_show(struct seq_file *seq, void *v)
2261{
2262 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2263 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2264 int i;
2265
2266 if (v != SEQ_START_TOKEN)
2267 return 0;
2268
2269 seq_printf(seq,
2270 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2271 stats->fc_num_commits, stats->fc_ineligible_commits,
2272 stats->fc_numblks,
2273 div_u64(stats->s_fc_avg_commit_time, 1000));
2274 seq_puts(seq, "Ineligible reasons:\n");
2275 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2276 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2277 stats->fc_ineligible_reason_count[i]);
2278
2279 return 0;
2280}
2281
2282int __init ext4_fc_init_dentry_cache(void)
2283{
2284 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2285 SLAB_RECLAIM_ACCOUNT);
2286
2287 if (ext4_fc_dentry_cachep == NULL)
2288 return -ENOMEM;
2289
2290 return 0;
2291}
2292
2293void ext4_fc_destroy_dentry_cache(void)
2294{
2295 kmem_cache_destroy(ext4_fc_dentry_cachep);
2296}
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168#include <trace/events/ext4.h>
169static struct kmem_cache *ext4_fc_dentry_cachep;
170
171static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172{
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185}
186
187static inline void ext4_fc_reset_inode(struct inode *inode)
188{
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193}
194
195void ext4_fc_init_inode(struct inode *inode)
196{
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205}
206
207/* This function must be called with sbi->s_fc_lock held. */
208static void ext4_fc_wait_committing_inode(struct inode *inode)
209__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210{
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214#if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219#else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224#endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230}
231
232static bool ext4_fc_disabled(struct super_block *sb)
233{
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236}
237
238/*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
245void ext4_fc_start_update(struct inode *inode)
246{
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264}
265
266/*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
269void ext4_fc_stop_update(struct inode *inode)
270{
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278}
279
280/*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
284void ext4_fc_del(struct inode *inode)
285{
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293restart:
294 spin_lock(&sbi->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&sbi->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331}
332
333/*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
338void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342 bool has_transaction = true;
343 bool is_ineligible;
344
345 if (ext4_fc_disabled(sb))
346 return;
347
348 if (handle && !IS_ERR(handle))
349 tid = handle->h_transaction->t_tid;
350 else {
351 read_lock(&sbi->s_journal->j_state_lock);
352 if (sbi->s_journal->j_running_transaction)
353 tid = sbi->s_journal->j_running_transaction->t_tid;
354 else
355 has_transaction = false;
356 read_unlock(&sbi->s_journal->j_state_lock);
357 }
358 spin_lock(&sbi->s_fc_lock);
359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
361 sbi->s_fc_ineligible_tid = tid;
362 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
363 spin_unlock(&sbi->s_fc_lock);
364 WARN_ON(reason >= EXT4_FC_REASON_MAX);
365 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
366}
367
368/*
369 * Generic fast commit tracking function. If this is the first time this we are
370 * called after a full commit, we initialize fast commit fields and then call
371 * __fc_track_fn() with update = 0. If we have already been called after a full
372 * commit, we pass update = 1. Based on that, the track function can determine
373 * if it needs to track a field for the first time or if it needs to just
374 * update the previously tracked value.
375 *
376 * If enqueue is set, this function enqueues the inode in fast commit list.
377 */
378static int ext4_fc_track_template(
379 handle_t *handle, struct inode *inode,
380 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
381 void *args, int enqueue)
382{
383 bool update = false;
384 struct ext4_inode_info *ei = EXT4_I(inode);
385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
386 tid_t tid = 0;
387 int ret;
388
389 tid = handle->h_transaction->t_tid;
390 mutex_lock(&ei->i_fc_lock);
391 if (tid == ei->i_sync_tid) {
392 update = true;
393 } else {
394 ext4_fc_reset_inode(inode);
395 ei->i_sync_tid = tid;
396 }
397 ret = __fc_track_fn(handle, inode, args, update);
398 mutex_unlock(&ei->i_fc_lock);
399
400 if (!enqueue)
401 return ret;
402
403 spin_lock(&sbi->s_fc_lock);
404 if (list_empty(&EXT4_I(inode)->i_fc_list))
405 list_add_tail(&EXT4_I(inode)->i_fc_list,
406 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
407 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
408 &sbi->s_fc_q[FC_Q_STAGING] :
409 &sbi->s_fc_q[FC_Q_MAIN]);
410 spin_unlock(&sbi->s_fc_lock);
411
412 return ret;
413}
414
415struct __track_dentry_update_args {
416 struct dentry *dentry;
417 int op;
418};
419
420/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
421static int __track_dentry_update(handle_t *handle, struct inode *inode,
422 void *arg, bool update)
423{
424 struct ext4_fc_dentry_update *node;
425 struct ext4_inode_info *ei = EXT4_I(inode);
426 struct __track_dentry_update_args *dentry_update =
427 (struct __track_dentry_update_args *)arg;
428 struct dentry *dentry = dentry_update->dentry;
429 struct inode *dir = dentry->d_parent->d_inode;
430 struct super_block *sb = inode->i_sb;
431 struct ext4_sb_info *sbi = EXT4_SB(sb);
432
433 mutex_unlock(&ei->i_fc_lock);
434
435 if (IS_ENCRYPTED(dir)) {
436 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
437 handle);
438 mutex_lock(&ei->i_fc_lock);
439 return -EOPNOTSUPP;
440 }
441
442 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
443 if (!node) {
444 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
445 mutex_lock(&ei->i_fc_lock);
446 return -ENOMEM;
447 }
448
449 node->fcd_op = dentry_update->op;
450 node->fcd_parent = dir->i_ino;
451 node->fcd_ino = inode->i_ino;
452 if (dentry->d_name.len > DNAME_INLINE_LEN) {
453 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
454 if (!node->fcd_name.name) {
455 kmem_cache_free(ext4_fc_dentry_cachep, node);
456 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
457 mutex_lock(&ei->i_fc_lock);
458 return -ENOMEM;
459 }
460 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
461 dentry->d_name.len);
462 } else {
463 memcpy(node->fcd_iname, dentry->d_name.name,
464 dentry->d_name.len);
465 node->fcd_name.name = node->fcd_iname;
466 }
467 node->fcd_name.len = dentry->d_name.len;
468 INIT_LIST_HEAD(&node->fcd_dilist);
469 spin_lock(&sbi->s_fc_lock);
470 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
471 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
472 list_add_tail(&node->fcd_list,
473 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
474 else
475 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
476
477 /*
478 * This helps us keep a track of all fc_dentry updates which is part of
479 * this ext4 inode. So in case the inode is getting unlinked, before
480 * even we get a chance to fsync, we could remove all fc_dentry
481 * references while evicting the inode in ext4_fc_del().
482 * Also with this, we don't need to loop over all the inodes in
483 * sbi->s_fc_q to get the corresponding inode in
484 * ext4_fc_commit_dentry_updates().
485 */
486 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
487 WARN_ON(!list_empty(&ei->i_fc_dilist));
488 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
489 }
490 spin_unlock(&sbi->s_fc_lock);
491 mutex_lock(&ei->i_fc_lock);
492
493 return 0;
494}
495
496void __ext4_fc_track_unlink(handle_t *handle,
497 struct inode *inode, struct dentry *dentry)
498{
499 struct __track_dentry_update_args args;
500 int ret;
501
502 args.dentry = dentry;
503 args.op = EXT4_FC_TAG_UNLINK;
504
505 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
506 (void *)&args, 0);
507 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
508}
509
510void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
511{
512 struct inode *inode = d_inode(dentry);
513
514 if (ext4_fc_disabled(inode->i_sb))
515 return;
516
517 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
518 return;
519
520 __ext4_fc_track_unlink(handle, inode, dentry);
521}
522
523void __ext4_fc_track_link(handle_t *handle,
524 struct inode *inode, struct dentry *dentry)
525{
526 struct __track_dentry_update_args args;
527 int ret;
528
529 args.dentry = dentry;
530 args.op = EXT4_FC_TAG_LINK;
531
532 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
533 (void *)&args, 0);
534 trace_ext4_fc_track_link(handle, inode, dentry, ret);
535}
536
537void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
538{
539 struct inode *inode = d_inode(dentry);
540
541 if (ext4_fc_disabled(inode->i_sb))
542 return;
543
544 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
545 return;
546
547 __ext4_fc_track_link(handle, inode, dentry);
548}
549
550void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
551 struct dentry *dentry)
552{
553 struct __track_dentry_update_args args;
554 int ret;
555
556 args.dentry = dentry;
557 args.op = EXT4_FC_TAG_CREAT;
558
559 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
560 (void *)&args, 0);
561 trace_ext4_fc_track_create(handle, inode, dentry, ret);
562}
563
564void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
565{
566 struct inode *inode = d_inode(dentry);
567
568 if (ext4_fc_disabled(inode->i_sb))
569 return;
570
571 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
572 return;
573
574 __ext4_fc_track_create(handle, inode, dentry);
575}
576
577/* __track_fn for inode tracking */
578static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
579 bool update)
580{
581 if (update)
582 return -EEXIST;
583
584 EXT4_I(inode)->i_fc_lblk_len = 0;
585
586 return 0;
587}
588
589void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
590{
591 int ret;
592
593 if (S_ISDIR(inode->i_mode))
594 return;
595
596 if (ext4_fc_disabled(inode->i_sb))
597 return;
598
599 if (ext4_should_journal_data(inode)) {
600 ext4_fc_mark_ineligible(inode->i_sb,
601 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
602 return;
603 }
604
605 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
606 return;
607
608 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
609 trace_ext4_fc_track_inode(handle, inode, ret);
610}
611
612struct __track_range_args {
613 ext4_lblk_t start, end;
614};
615
616/* __track_fn for tracking data updates */
617static int __track_range(handle_t *handle, struct inode *inode, void *arg,
618 bool update)
619{
620 struct ext4_inode_info *ei = EXT4_I(inode);
621 ext4_lblk_t oldstart;
622 struct __track_range_args *__arg =
623 (struct __track_range_args *)arg;
624
625 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
626 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
627 return -ECANCELED;
628 }
629
630 oldstart = ei->i_fc_lblk_start;
631
632 if (update && ei->i_fc_lblk_len > 0) {
633 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
634 ei->i_fc_lblk_len =
635 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
636 ei->i_fc_lblk_start + 1;
637 } else {
638 ei->i_fc_lblk_start = __arg->start;
639 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
640 }
641
642 return 0;
643}
644
645void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
646 ext4_lblk_t end)
647{
648 struct __track_range_args args;
649 int ret;
650
651 if (S_ISDIR(inode->i_mode))
652 return;
653
654 if (ext4_fc_disabled(inode->i_sb))
655 return;
656
657 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
658 return;
659
660 if (ext4_has_inline_data(inode)) {
661 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
662 handle);
663 return;
664 }
665
666 args.start = start;
667 args.end = end;
668
669 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
670
671 trace_ext4_fc_track_range(handle, inode, start, end, ret);
672}
673
674static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
675{
676 blk_opf_t write_flags = REQ_SYNC;
677 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
678
679 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
680 if (test_opt(sb, BARRIER) && is_tail)
681 write_flags |= REQ_FUA | REQ_PREFLUSH;
682 lock_buffer(bh);
683 set_buffer_dirty(bh);
684 set_buffer_uptodate(bh);
685 bh->b_end_io = ext4_end_buffer_io_sync;
686 submit_bh(REQ_OP_WRITE | write_flags, bh);
687 EXT4_SB(sb)->s_fc_bh = NULL;
688}
689
690/* Ext4 commit path routines */
691
692/*
693 * Allocate len bytes on a fast commit buffer.
694 *
695 * During the commit time this function is used to manage fast commit
696 * block space. We don't split a fast commit log onto different
697 * blocks. So this function makes sure that if there's not enough space
698 * on the current block, the remaining space in the current block is
699 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
700 * new block is from jbd2 and CRC is updated to reflect the padding
701 * we added.
702 */
703static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
704{
705 struct ext4_fc_tl tl;
706 struct ext4_sb_info *sbi = EXT4_SB(sb);
707 struct buffer_head *bh;
708 int bsize = sbi->s_journal->j_blocksize;
709 int ret, off = sbi->s_fc_bytes % bsize;
710 int remaining;
711 u8 *dst;
712
713 /*
714 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
715 * cannot fulfill the request.
716 */
717 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
718 return NULL;
719
720 if (!sbi->s_fc_bh) {
721 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
722 if (ret)
723 return NULL;
724 sbi->s_fc_bh = bh;
725 }
726 dst = sbi->s_fc_bh->b_data + off;
727
728 /*
729 * Allocate the bytes in the current block if we can do so while still
730 * leaving enough space for a PAD tlv.
731 */
732 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
733 if (len <= remaining) {
734 sbi->s_fc_bytes += len;
735 return dst;
736 }
737
738 /*
739 * Else, terminate the current block with a PAD tlv, then allocate a new
740 * block and allocate the bytes at the start of that new block.
741 */
742
743 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
744 tl.fc_len = cpu_to_le16(remaining);
745 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
746 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
747 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
748
749 ext4_fc_submit_bh(sb, false);
750
751 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
752 if (ret)
753 return NULL;
754 sbi->s_fc_bh = bh;
755 sbi->s_fc_bytes += bsize - off + len;
756 return sbi->s_fc_bh->b_data;
757}
758
759/*
760 * Complete a fast commit by writing tail tag.
761 *
762 * Writing tail tag marks the end of a fast commit. In order to guarantee
763 * atomicity, after writing tail tag, even if there's space remaining
764 * in the block, next commit shouldn't use it. That's why tail tag
765 * has the length as that of the remaining space on the block.
766 */
767static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
768{
769 struct ext4_sb_info *sbi = EXT4_SB(sb);
770 struct ext4_fc_tl tl;
771 struct ext4_fc_tail tail;
772 int off, bsize = sbi->s_journal->j_blocksize;
773 u8 *dst;
774
775 /*
776 * ext4_fc_reserve_space takes care of allocating an extra block if
777 * there's no enough space on this block for accommodating this tail.
778 */
779 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
780 if (!dst)
781 return -ENOSPC;
782
783 off = sbi->s_fc_bytes % bsize;
784
785 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
786 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
787 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
788
789 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
790 dst += EXT4_FC_TAG_BASE_LEN;
791 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
792 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
793 dst += sizeof(tail.fc_tid);
794 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
795 dst - (u8 *)sbi->s_fc_bh->b_data);
796 tail.fc_crc = cpu_to_le32(crc);
797 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
798 dst += sizeof(tail.fc_crc);
799 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
800
801 ext4_fc_submit_bh(sb, true);
802
803 return 0;
804}
805
806/*
807 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
808 * Returns false if there's not enough space.
809 */
810static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
811 u32 *crc)
812{
813 struct ext4_fc_tl tl;
814 u8 *dst;
815
816 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
817 if (!dst)
818 return false;
819
820 tl.fc_tag = cpu_to_le16(tag);
821 tl.fc_len = cpu_to_le16(len);
822
823 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
824 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
825
826 return true;
827}
828
829/* Same as above, but adds dentry tlv. */
830static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
831 struct ext4_fc_dentry_update *fc_dentry)
832{
833 struct ext4_fc_dentry_info fcd;
834 struct ext4_fc_tl tl;
835 int dlen = fc_dentry->fcd_name.len;
836 u8 *dst = ext4_fc_reserve_space(sb,
837 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
838
839 if (!dst)
840 return false;
841
842 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
843 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
844 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
845 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
846 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
847 dst += EXT4_FC_TAG_BASE_LEN;
848 memcpy(dst, &fcd, sizeof(fcd));
849 dst += sizeof(fcd);
850 memcpy(dst, fc_dentry->fcd_name.name, dlen);
851
852 return true;
853}
854
855/*
856 * Writes inode in the fast commit space under TLV with tag @tag.
857 * Returns 0 on success, error on failure.
858 */
859static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
860{
861 struct ext4_inode_info *ei = EXT4_I(inode);
862 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
863 int ret;
864 struct ext4_iloc iloc;
865 struct ext4_fc_inode fc_inode;
866 struct ext4_fc_tl tl;
867 u8 *dst;
868
869 ret = ext4_get_inode_loc(inode, &iloc);
870 if (ret)
871 return ret;
872
873 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
874 inode_len = EXT4_INODE_SIZE(inode->i_sb);
875 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
876 inode_len += ei->i_extra_isize;
877
878 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
879 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
880 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
881
882 ret = -ECANCELED;
883 dst = ext4_fc_reserve_space(inode->i_sb,
884 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
885 if (!dst)
886 goto err;
887
888 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
889 dst += EXT4_FC_TAG_BASE_LEN;
890 memcpy(dst, &fc_inode, sizeof(fc_inode));
891 dst += sizeof(fc_inode);
892 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
893 ret = 0;
894err:
895 brelse(iloc.bh);
896 return ret;
897}
898
899/*
900 * Writes updated data ranges for the inode in question. Updates CRC.
901 * Returns 0 on success, error otherwise.
902 */
903static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
904{
905 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
906 struct ext4_inode_info *ei = EXT4_I(inode);
907 struct ext4_map_blocks map;
908 struct ext4_fc_add_range fc_ext;
909 struct ext4_fc_del_range lrange;
910 struct ext4_extent *ex;
911 int ret;
912
913 mutex_lock(&ei->i_fc_lock);
914 if (ei->i_fc_lblk_len == 0) {
915 mutex_unlock(&ei->i_fc_lock);
916 return 0;
917 }
918 old_blk_size = ei->i_fc_lblk_start;
919 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
920 ei->i_fc_lblk_len = 0;
921 mutex_unlock(&ei->i_fc_lock);
922
923 cur_lblk_off = old_blk_size;
924 ext4_debug("will try writing %d to %d for inode %ld\n",
925 cur_lblk_off, new_blk_size, inode->i_ino);
926
927 while (cur_lblk_off <= new_blk_size) {
928 map.m_lblk = cur_lblk_off;
929 map.m_len = new_blk_size - cur_lblk_off + 1;
930 ret = ext4_map_blocks(NULL, inode, &map, 0);
931 if (ret < 0)
932 return -ECANCELED;
933
934 if (map.m_len == 0) {
935 cur_lblk_off++;
936 continue;
937 }
938
939 if (ret == 0) {
940 lrange.fc_ino = cpu_to_le32(inode->i_ino);
941 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
942 lrange.fc_len = cpu_to_le32(map.m_len);
943 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
944 sizeof(lrange), (u8 *)&lrange, crc))
945 return -ENOSPC;
946 } else {
947 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
948 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
949
950 /* Limit the number of blocks in one extent */
951 map.m_len = min(max, map.m_len);
952
953 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
954 ex = (struct ext4_extent *)&fc_ext.fc_ex;
955 ex->ee_block = cpu_to_le32(map.m_lblk);
956 ex->ee_len = cpu_to_le16(map.m_len);
957 ext4_ext_store_pblock(ex, map.m_pblk);
958 if (map.m_flags & EXT4_MAP_UNWRITTEN)
959 ext4_ext_mark_unwritten(ex);
960 else
961 ext4_ext_mark_initialized(ex);
962 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
963 sizeof(fc_ext), (u8 *)&fc_ext, crc))
964 return -ENOSPC;
965 }
966
967 cur_lblk_off += map.m_len;
968 }
969
970 return 0;
971}
972
973
974/* Submit data for all the fast commit inodes */
975static int ext4_fc_submit_inode_data_all(journal_t *journal)
976{
977 struct super_block *sb = journal->j_private;
978 struct ext4_sb_info *sbi = EXT4_SB(sb);
979 struct ext4_inode_info *ei;
980 int ret = 0;
981
982 spin_lock(&sbi->s_fc_lock);
983 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
984 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
985 while (atomic_read(&ei->i_fc_updates)) {
986 DEFINE_WAIT(wait);
987
988 prepare_to_wait(&ei->i_fc_wait, &wait,
989 TASK_UNINTERRUPTIBLE);
990 if (atomic_read(&ei->i_fc_updates)) {
991 spin_unlock(&sbi->s_fc_lock);
992 schedule();
993 spin_lock(&sbi->s_fc_lock);
994 }
995 finish_wait(&ei->i_fc_wait, &wait);
996 }
997 spin_unlock(&sbi->s_fc_lock);
998 ret = jbd2_submit_inode_data(journal, ei->jinode);
999 if (ret)
1000 return ret;
1001 spin_lock(&sbi->s_fc_lock);
1002 }
1003 spin_unlock(&sbi->s_fc_lock);
1004
1005 return ret;
1006}
1007
1008/* Wait for completion of data for all the fast commit inodes */
1009static int ext4_fc_wait_inode_data_all(journal_t *journal)
1010{
1011 struct super_block *sb = journal->j_private;
1012 struct ext4_sb_info *sbi = EXT4_SB(sb);
1013 struct ext4_inode_info *pos, *n;
1014 int ret = 0;
1015
1016 spin_lock(&sbi->s_fc_lock);
1017 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1018 if (!ext4_test_inode_state(&pos->vfs_inode,
1019 EXT4_STATE_FC_COMMITTING))
1020 continue;
1021 spin_unlock(&sbi->s_fc_lock);
1022
1023 ret = jbd2_wait_inode_data(journal, pos->jinode);
1024 if (ret)
1025 return ret;
1026 spin_lock(&sbi->s_fc_lock);
1027 }
1028 spin_unlock(&sbi->s_fc_lock);
1029
1030 return 0;
1031}
1032
1033/* Commit all the directory entry updates */
1034static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1035__acquires(&sbi->s_fc_lock)
1036__releases(&sbi->s_fc_lock)
1037{
1038 struct super_block *sb = journal->j_private;
1039 struct ext4_sb_info *sbi = EXT4_SB(sb);
1040 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1041 struct inode *inode;
1042 struct ext4_inode_info *ei;
1043 int ret;
1044
1045 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1046 return 0;
1047 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1048 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1049 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1050 spin_unlock(&sbi->s_fc_lock);
1051 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1052 ret = -ENOSPC;
1053 goto lock_and_exit;
1054 }
1055 spin_lock(&sbi->s_fc_lock);
1056 continue;
1057 }
1058 /*
1059 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1060 * corresponding inode pointer
1061 */
1062 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1063 ei = list_first_entry(&fc_dentry->fcd_dilist,
1064 struct ext4_inode_info, i_fc_dilist);
1065 inode = &ei->vfs_inode;
1066 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1067
1068 spin_unlock(&sbi->s_fc_lock);
1069
1070 /*
1071 * We first write the inode and then the create dirent. This
1072 * allows the recovery code to create an unnamed inode first
1073 * and then link it to a directory entry. This allows us
1074 * to use namei.c routines almost as is and simplifies
1075 * the recovery code.
1076 */
1077 ret = ext4_fc_write_inode(inode, crc);
1078 if (ret)
1079 goto lock_and_exit;
1080
1081 ret = ext4_fc_write_inode_data(inode, crc);
1082 if (ret)
1083 goto lock_and_exit;
1084
1085 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086 ret = -ENOSPC;
1087 goto lock_and_exit;
1088 }
1089
1090 spin_lock(&sbi->s_fc_lock);
1091 }
1092 return 0;
1093lock_and_exit:
1094 spin_lock(&sbi->s_fc_lock);
1095 return ret;
1096}
1097
1098static int ext4_fc_perform_commit(journal_t *journal)
1099{
1100 struct super_block *sb = journal->j_private;
1101 struct ext4_sb_info *sbi = EXT4_SB(sb);
1102 struct ext4_inode_info *iter;
1103 struct ext4_fc_head head;
1104 struct inode *inode;
1105 struct blk_plug plug;
1106 int ret = 0;
1107 u32 crc = 0;
1108
1109 ret = ext4_fc_submit_inode_data_all(journal);
1110 if (ret)
1111 return ret;
1112
1113 ret = ext4_fc_wait_inode_data_all(journal);
1114 if (ret)
1115 return ret;
1116
1117 /*
1118 * If file system device is different from journal device, issue a cache
1119 * flush before we start writing fast commit blocks.
1120 */
1121 if (journal->j_fs_dev != journal->j_dev)
1122 blkdev_issue_flush(journal->j_fs_dev);
1123
1124 blk_start_plug(&plug);
1125 if (sbi->s_fc_bytes == 0) {
1126 /*
1127 * Add a head tag only if this is the first fast commit
1128 * in this TID.
1129 */
1130 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1131 head.fc_tid = cpu_to_le32(
1132 sbi->s_journal->j_running_transaction->t_tid);
1133 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1134 (u8 *)&head, &crc)) {
1135 ret = -ENOSPC;
1136 goto out;
1137 }
1138 }
1139
1140 spin_lock(&sbi->s_fc_lock);
1141 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1142 if (ret) {
1143 spin_unlock(&sbi->s_fc_lock);
1144 goto out;
1145 }
1146
1147 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148 inode = &iter->vfs_inode;
1149 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150 continue;
1151
1152 spin_unlock(&sbi->s_fc_lock);
1153 ret = ext4_fc_write_inode_data(inode, &crc);
1154 if (ret)
1155 goto out;
1156 ret = ext4_fc_write_inode(inode, &crc);
1157 if (ret)
1158 goto out;
1159 spin_lock(&sbi->s_fc_lock);
1160 }
1161 spin_unlock(&sbi->s_fc_lock);
1162
1163 ret = ext4_fc_write_tail(sb, crc);
1164
1165out:
1166 blk_finish_plug(&plug);
1167 return ret;
1168}
1169
1170static void ext4_fc_update_stats(struct super_block *sb, int status,
1171 u64 commit_time, int nblks, tid_t commit_tid)
1172{
1173 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1174
1175 ext4_debug("Fast commit ended with status = %d for tid %u",
1176 status, commit_tid);
1177 if (status == EXT4_FC_STATUS_OK) {
1178 stats->fc_num_commits++;
1179 stats->fc_numblks += nblks;
1180 if (likely(stats->s_fc_avg_commit_time))
1181 stats->s_fc_avg_commit_time =
1182 (commit_time +
1183 stats->s_fc_avg_commit_time * 3) / 4;
1184 else
1185 stats->s_fc_avg_commit_time = commit_time;
1186 } else if (status == EXT4_FC_STATUS_FAILED ||
1187 status == EXT4_FC_STATUS_INELIGIBLE) {
1188 if (status == EXT4_FC_STATUS_FAILED)
1189 stats->fc_failed_commits++;
1190 stats->fc_ineligible_commits++;
1191 } else {
1192 stats->fc_skipped_commits++;
1193 }
1194 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1195}
1196
1197/*
1198 * The main commit entry point. Performs a fast commit for transaction
1199 * commit_tid if needed. If it's not possible to perform a fast commit
1200 * due to various reasons, we fall back to full commit. Returns 0
1201 * on success, error otherwise.
1202 */
1203int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1204{
1205 struct super_block *sb = journal->j_private;
1206 struct ext4_sb_info *sbi = EXT4_SB(sb);
1207 int nblks = 0, ret, bsize = journal->j_blocksize;
1208 int subtid = atomic_read(&sbi->s_fc_subtid);
1209 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1210 ktime_t start_time, commit_time;
1211
1212 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1213 return jbd2_complete_transaction(journal, commit_tid);
1214
1215 trace_ext4_fc_commit_start(sb, commit_tid);
1216
1217 start_time = ktime_get();
1218
1219restart_fc:
1220 ret = jbd2_fc_begin_commit(journal, commit_tid);
1221 if (ret == -EALREADY) {
1222 /* There was an ongoing commit, check if we need to restart */
1223 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224 tid_gt(commit_tid, journal->j_commit_sequence))
1225 goto restart_fc;
1226 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227 commit_tid);
1228 return 0;
1229 } else if (ret) {
1230 /*
1231 * Commit couldn't start. Just update stats and perform a
1232 * full commit.
1233 */
1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235 commit_tid);
1236 return jbd2_complete_transaction(journal, commit_tid);
1237 }
1238
1239 /*
1240 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241 * if we are fast commit ineligible.
1242 */
1243 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244 status = EXT4_FC_STATUS_INELIGIBLE;
1245 goto fallback;
1246 }
1247
1248 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1249 ret = ext4_fc_perform_commit(journal);
1250 if (ret < 0) {
1251 status = EXT4_FC_STATUS_FAILED;
1252 goto fallback;
1253 }
1254 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1255 ret = jbd2_fc_wait_bufs(journal, nblks);
1256 if (ret < 0) {
1257 status = EXT4_FC_STATUS_FAILED;
1258 goto fallback;
1259 }
1260 atomic_inc(&sbi->s_fc_subtid);
1261 ret = jbd2_fc_end_commit(journal);
1262 /*
1263 * weight the commit time higher than the average time so we
1264 * don't react too strongly to vast changes in the commit time
1265 */
1266 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1267 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1268 return ret;
1269
1270fallback:
1271 ret = jbd2_fc_end_commit_fallback(journal);
1272 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273 return ret;
1274}
1275
1276/*
1277 * Fast commit cleanup routine. This is called after every fast commit and
1278 * full commit. full is true if we are called after a full commit.
1279 */
1280static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1281{
1282 struct super_block *sb = journal->j_private;
1283 struct ext4_sb_info *sbi = EXT4_SB(sb);
1284 struct ext4_inode_info *iter, *iter_n;
1285 struct ext4_fc_dentry_update *fc_dentry;
1286
1287 if (full && sbi->s_fc_bh)
1288 sbi->s_fc_bh = NULL;
1289
1290 trace_ext4_fc_cleanup(journal, full, tid);
1291 jbd2_fc_release_bufs(journal);
1292
1293 spin_lock(&sbi->s_fc_lock);
1294 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1295 i_fc_list) {
1296 list_del_init(&iter->i_fc_list);
1297 ext4_clear_inode_state(&iter->vfs_inode,
1298 EXT4_STATE_FC_COMMITTING);
1299 if (tid_geq(tid, iter->i_sync_tid)) {
1300 ext4_fc_reset_inode(&iter->vfs_inode);
1301 } else if (full) {
1302 /*
1303 * We are called after a full commit, inode has been
1304 * modified while the commit was running. Re-enqueue
1305 * the inode into STAGING, which will then be splice
1306 * back into MAIN. This cannot happen during
1307 * fastcommit because the journal is locked all the
1308 * time in that case (and tid doesn't increase so
1309 * tid check above isn't reliable).
1310 */
1311 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1312 &sbi->s_fc_q[FC_Q_STAGING]);
1313 }
1314 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1315 smp_mb();
1316#if (BITS_PER_LONG < 64)
1317 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1318#else
1319 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1320#endif
1321 }
1322
1323 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1324 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1325 struct ext4_fc_dentry_update,
1326 fcd_list);
1327 list_del_init(&fc_dentry->fcd_list);
1328 list_del_init(&fc_dentry->fcd_dilist);
1329 spin_unlock(&sbi->s_fc_lock);
1330
1331 if (fc_dentry->fcd_name.name &&
1332 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1333 kfree(fc_dentry->fcd_name.name);
1334 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1335 spin_lock(&sbi->s_fc_lock);
1336 }
1337
1338 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1339 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1340 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1341 &sbi->s_fc_q[FC_Q_MAIN]);
1342
1343 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1344 sbi->s_fc_ineligible_tid = 0;
1345 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1346 }
1347
1348 if (full)
1349 sbi->s_fc_bytes = 0;
1350 spin_unlock(&sbi->s_fc_lock);
1351 trace_ext4_fc_stats(sb);
1352}
1353
1354/* Ext4 Replay Path Routines */
1355
1356/* Helper struct for dentry replay routines */
1357struct dentry_info_args {
1358 int parent_ino, dname_len, ino, inode_len;
1359 char *dname;
1360};
1361
1362/* Same as struct ext4_fc_tl, but uses native endianness fields */
1363struct ext4_fc_tl_mem {
1364 u16 fc_tag;
1365 u16 fc_len;
1366};
1367
1368static inline void tl_to_darg(struct dentry_info_args *darg,
1369 struct ext4_fc_tl_mem *tl, u8 *val)
1370{
1371 struct ext4_fc_dentry_info fcd;
1372
1373 memcpy(&fcd, val, sizeof(fcd));
1374
1375 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1376 darg->ino = le32_to_cpu(fcd.fc_ino);
1377 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1378 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1379}
1380
1381static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1382{
1383 struct ext4_fc_tl tl_disk;
1384
1385 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1386 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1387 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1388}
1389
1390/* Unlink replay function */
1391static int ext4_fc_replay_unlink(struct super_block *sb,
1392 struct ext4_fc_tl_mem *tl, u8 *val)
1393{
1394 struct inode *inode, *old_parent;
1395 struct qstr entry;
1396 struct dentry_info_args darg;
1397 int ret = 0;
1398
1399 tl_to_darg(&darg, tl, val);
1400
1401 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1402 darg.parent_ino, darg.dname_len);
1403
1404 entry.name = darg.dname;
1405 entry.len = darg.dname_len;
1406 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1407
1408 if (IS_ERR(inode)) {
1409 ext4_debug("Inode %d not found", darg.ino);
1410 return 0;
1411 }
1412
1413 old_parent = ext4_iget(sb, darg.parent_ino,
1414 EXT4_IGET_NORMAL);
1415 if (IS_ERR(old_parent)) {
1416 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1417 iput(inode);
1418 return 0;
1419 }
1420
1421 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1422 /* -ENOENT ok coz it might not exist anymore. */
1423 if (ret == -ENOENT)
1424 ret = 0;
1425 iput(old_parent);
1426 iput(inode);
1427 return ret;
1428}
1429
1430static int ext4_fc_replay_link_internal(struct super_block *sb,
1431 struct dentry_info_args *darg,
1432 struct inode *inode)
1433{
1434 struct inode *dir = NULL;
1435 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1436 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1437 int ret = 0;
1438
1439 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1440 if (IS_ERR(dir)) {
1441 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1442 dir = NULL;
1443 goto out;
1444 }
1445
1446 dentry_dir = d_obtain_alias(dir);
1447 if (IS_ERR(dentry_dir)) {
1448 ext4_debug("Failed to obtain dentry");
1449 dentry_dir = NULL;
1450 goto out;
1451 }
1452
1453 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1454 if (!dentry_inode) {
1455 ext4_debug("Inode dentry not created.");
1456 ret = -ENOMEM;
1457 goto out;
1458 }
1459
1460 ret = __ext4_link(dir, inode, dentry_inode);
1461 /*
1462 * It's possible that link already existed since data blocks
1463 * for the dir in question got persisted before we crashed OR
1464 * we replayed this tag and crashed before the entire replay
1465 * could complete.
1466 */
1467 if (ret && ret != -EEXIST) {
1468 ext4_debug("Failed to link\n");
1469 goto out;
1470 }
1471
1472 ret = 0;
1473out:
1474 if (dentry_dir) {
1475 d_drop(dentry_dir);
1476 dput(dentry_dir);
1477 } else if (dir) {
1478 iput(dir);
1479 }
1480 if (dentry_inode) {
1481 d_drop(dentry_inode);
1482 dput(dentry_inode);
1483 }
1484
1485 return ret;
1486}
1487
1488/* Link replay function */
1489static int ext4_fc_replay_link(struct super_block *sb,
1490 struct ext4_fc_tl_mem *tl, u8 *val)
1491{
1492 struct inode *inode;
1493 struct dentry_info_args darg;
1494 int ret = 0;
1495
1496 tl_to_darg(&darg, tl, val);
1497 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1498 darg.parent_ino, darg.dname_len);
1499
1500 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1501 if (IS_ERR(inode)) {
1502 ext4_debug("Inode not found.");
1503 return 0;
1504 }
1505
1506 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1507 iput(inode);
1508 return ret;
1509}
1510
1511/*
1512 * Record all the modified inodes during replay. We use this later to setup
1513 * block bitmaps correctly.
1514 */
1515static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1516{
1517 struct ext4_fc_replay_state *state;
1518 int i;
1519
1520 state = &EXT4_SB(sb)->s_fc_replay_state;
1521 for (i = 0; i < state->fc_modified_inodes_used; i++)
1522 if (state->fc_modified_inodes[i] == ino)
1523 return 0;
1524 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1525 int *fc_modified_inodes;
1526
1527 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1528 sizeof(int) * (state->fc_modified_inodes_size +
1529 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1530 GFP_KERNEL);
1531 if (!fc_modified_inodes)
1532 return -ENOMEM;
1533 state->fc_modified_inodes = fc_modified_inodes;
1534 state->fc_modified_inodes_size +=
1535 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1536 }
1537 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1538 return 0;
1539}
1540
1541/*
1542 * Inode replay function
1543 */
1544static int ext4_fc_replay_inode(struct super_block *sb,
1545 struct ext4_fc_tl_mem *tl, u8 *val)
1546{
1547 struct ext4_fc_inode fc_inode;
1548 struct ext4_inode *raw_inode;
1549 struct ext4_inode *raw_fc_inode;
1550 struct inode *inode = NULL;
1551 struct ext4_iloc iloc;
1552 int inode_len, ino, ret, tag = tl->fc_tag;
1553 struct ext4_extent_header *eh;
1554 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1555
1556 memcpy(&fc_inode, val, sizeof(fc_inode));
1557
1558 ino = le32_to_cpu(fc_inode.fc_ino);
1559 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1560
1561 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1562 if (!IS_ERR(inode)) {
1563 ext4_ext_clear_bb(inode);
1564 iput(inode);
1565 }
1566 inode = NULL;
1567
1568 ret = ext4_fc_record_modified_inode(sb, ino);
1569 if (ret)
1570 goto out;
1571
1572 raw_fc_inode = (struct ext4_inode *)
1573 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1574 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1575 if (ret)
1576 goto out;
1577
1578 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1579 raw_inode = ext4_raw_inode(&iloc);
1580
1581 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1582 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1583 inode_len - off_gen);
1584 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1585 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1586 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1587 memset(eh, 0, sizeof(*eh));
1588 eh->eh_magic = EXT4_EXT_MAGIC;
1589 eh->eh_max = cpu_to_le16(
1590 (sizeof(raw_inode->i_block) -
1591 sizeof(struct ext4_extent_header))
1592 / sizeof(struct ext4_extent));
1593 }
1594 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1595 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1596 sizeof(raw_inode->i_block));
1597 }
1598
1599 /* Immediately update the inode on disk. */
1600 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1601 if (ret)
1602 goto out;
1603 ret = sync_dirty_buffer(iloc.bh);
1604 if (ret)
1605 goto out;
1606 ret = ext4_mark_inode_used(sb, ino);
1607 if (ret)
1608 goto out;
1609
1610 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1611 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1612 if (IS_ERR(inode)) {
1613 ext4_debug("Inode not found.");
1614 return -EFSCORRUPTED;
1615 }
1616
1617 /*
1618 * Our allocator could have made different decisions than before
1619 * crashing. This should be fixed but until then, we calculate
1620 * the number of blocks the inode.
1621 */
1622 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1623 ext4_ext_replay_set_iblocks(inode);
1624
1625 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1626 ext4_reset_inode_seed(inode);
1627
1628 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1629 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1630 sync_dirty_buffer(iloc.bh);
1631 brelse(iloc.bh);
1632out:
1633 iput(inode);
1634 if (!ret)
1635 blkdev_issue_flush(sb->s_bdev);
1636
1637 return 0;
1638}
1639
1640/*
1641 * Dentry create replay function.
1642 *
1643 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1644 * inode for which we are trying to create a dentry here, should already have
1645 * been replayed before we start here.
1646 */
1647static int ext4_fc_replay_create(struct super_block *sb,
1648 struct ext4_fc_tl_mem *tl, u8 *val)
1649{
1650 int ret = 0;
1651 struct inode *inode = NULL;
1652 struct inode *dir = NULL;
1653 struct dentry_info_args darg;
1654
1655 tl_to_darg(&darg, tl, val);
1656
1657 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1658 darg.parent_ino, darg.dname_len);
1659
1660 /* This takes care of update group descriptor and other metadata */
1661 ret = ext4_mark_inode_used(sb, darg.ino);
1662 if (ret)
1663 goto out;
1664
1665 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1666 if (IS_ERR(inode)) {
1667 ext4_debug("inode %d not found.", darg.ino);
1668 inode = NULL;
1669 ret = -EINVAL;
1670 goto out;
1671 }
1672
1673 if (S_ISDIR(inode->i_mode)) {
1674 /*
1675 * If we are creating a directory, we need to make sure that the
1676 * dot and dot dot dirents are setup properly.
1677 */
1678 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1679 if (IS_ERR(dir)) {
1680 ext4_debug("Dir %d not found.", darg.ino);
1681 goto out;
1682 }
1683 ret = ext4_init_new_dir(NULL, dir, inode);
1684 iput(dir);
1685 if (ret) {
1686 ret = 0;
1687 goto out;
1688 }
1689 }
1690 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1691 if (ret)
1692 goto out;
1693 set_nlink(inode, 1);
1694 ext4_mark_inode_dirty(NULL, inode);
1695out:
1696 iput(inode);
1697 return ret;
1698}
1699
1700/*
1701 * Record physical disk regions which are in use as per fast commit area,
1702 * and used by inodes during replay phase. Our simple replay phase
1703 * allocator excludes these regions from allocation.
1704 */
1705int ext4_fc_record_regions(struct super_block *sb, int ino,
1706 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1707{
1708 struct ext4_fc_replay_state *state;
1709 struct ext4_fc_alloc_region *region;
1710
1711 state = &EXT4_SB(sb)->s_fc_replay_state;
1712 /*
1713 * during replay phase, the fc_regions_valid may not same as
1714 * fc_regions_used, update it when do new additions.
1715 */
1716 if (replay && state->fc_regions_used != state->fc_regions_valid)
1717 state->fc_regions_used = state->fc_regions_valid;
1718 if (state->fc_regions_used == state->fc_regions_size) {
1719 struct ext4_fc_alloc_region *fc_regions;
1720
1721 fc_regions = krealloc(state->fc_regions,
1722 sizeof(struct ext4_fc_alloc_region) *
1723 (state->fc_regions_size +
1724 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1725 GFP_KERNEL);
1726 if (!fc_regions)
1727 return -ENOMEM;
1728 state->fc_regions_size +=
1729 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1730 state->fc_regions = fc_regions;
1731 }
1732 region = &state->fc_regions[state->fc_regions_used++];
1733 region->ino = ino;
1734 region->lblk = lblk;
1735 region->pblk = pblk;
1736 region->len = len;
1737
1738 if (replay)
1739 state->fc_regions_valid++;
1740
1741 return 0;
1742}
1743
1744/* Replay add range tag */
1745static int ext4_fc_replay_add_range(struct super_block *sb,
1746 struct ext4_fc_tl_mem *tl, u8 *val)
1747{
1748 struct ext4_fc_add_range fc_add_ex;
1749 struct ext4_extent newex, *ex;
1750 struct inode *inode;
1751 ext4_lblk_t start, cur;
1752 int remaining, len;
1753 ext4_fsblk_t start_pblk;
1754 struct ext4_map_blocks map;
1755 struct ext4_ext_path *path = NULL;
1756 int ret;
1757
1758 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1759 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1760
1761 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1762 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1763 ext4_ext_get_actual_len(ex));
1764
1765 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1766 if (IS_ERR(inode)) {
1767 ext4_debug("Inode not found.");
1768 return 0;
1769 }
1770
1771 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1772 if (ret)
1773 goto out;
1774
1775 start = le32_to_cpu(ex->ee_block);
1776 start_pblk = ext4_ext_pblock(ex);
1777 len = ext4_ext_get_actual_len(ex);
1778
1779 cur = start;
1780 remaining = len;
1781 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1782 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1783 inode->i_ino);
1784
1785 while (remaining > 0) {
1786 map.m_lblk = cur;
1787 map.m_len = remaining;
1788 map.m_pblk = 0;
1789 ret = ext4_map_blocks(NULL, inode, &map, 0);
1790
1791 if (ret < 0)
1792 goto out;
1793
1794 if (ret == 0) {
1795 /* Range is not mapped */
1796 path = ext4_find_extent(inode, cur, path, 0);
1797 if (IS_ERR(path))
1798 goto out;
1799 memset(&newex, 0, sizeof(newex));
1800 newex.ee_block = cpu_to_le32(cur);
1801 ext4_ext_store_pblock(
1802 &newex, start_pblk + cur - start);
1803 newex.ee_len = cpu_to_le16(map.m_len);
1804 if (ext4_ext_is_unwritten(ex))
1805 ext4_ext_mark_unwritten(&newex);
1806 down_write(&EXT4_I(inode)->i_data_sem);
1807 path = ext4_ext_insert_extent(NULL, inode,
1808 path, &newex, 0);
1809 up_write((&EXT4_I(inode)->i_data_sem));
1810 if (IS_ERR(path))
1811 goto out;
1812 goto next;
1813 }
1814
1815 if (start_pblk + cur - start != map.m_pblk) {
1816 /*
1817 * Logical to physical mapping changed. This can happen
1818 * if this range was removed and then reallocated to
1819 * map to new physical blocks during a fast commit.
1820 */
1821 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1822 ext4_ext_is_unwritten(ex),
1823 start_pblk + cur - start);
1824 if (ret)
1825 goto out;
1826 /*
1827 * Mark the old blocks as free since they aren't used
1828 * anymore. We maintain an array of all the modified
1829 * inodes. In case these blocks are still used at either
1830 * a different logical range in the same inode or in
1831 * some different inode, we will mark them as allocated
1832 * at the end of the FC replay using our array of
1833 * modified inodes.
1834 */
1835 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1836 goto next;
1837 }
1838
1839 /* Range is mapped and needs a state change */
1840 ext4_debug("Converting from %ld to %d %lld",
1841 map.m_flags & EXT4_MAP_UNWRITTEN,
1842 ext4_ext_is_unwritten(ex), map.m_pblk);
1843 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1844 ext4_ext_is_unwritten(ex), map.m_pblk);
1845 if (ret)
1846 goto out;
1847 /*
1848 * We may have split the extent tree while toggling the state.
1849 * Try to shrink the extent tree now.
1850 */
1851 ext4_ext_replay_shrink_inode(inode, start + len);
1852next:
1853 cur += map.m_len;
1854 remaining -= map.m_len;
1855 }
1856 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1857 sb->s_blocksize_bits);
1858out:
1859 ext4_free_ext_path(path);
1860 iput(inode);
1861 return 0;
1862}
1863
1864/* Replay DEL_RANGE tag */
1865static int
1866ext4_fc_replay_del_range(struct super_block *sb,
1867 struct ext4_fc_tl_mem *tl, u8 *val)
1868{
1869 struct inode *inode;
1870 struct ext4_fc_del_range lrange;
1871 struct ext4_map_blocks map;
1872 ext4_lblk_t cur, remaining;
1873 int ret;
1874
1875 memcpy(&lrange, val, sizeof(lrange));
1876 cur = le32_to_cpu(lrange.fc_lblk);
1877 remaining = le32_to_cpu(lrange.fc_len);
1878
1879 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1880 le32_to_cpu(lrange.fc_ino), cur, remaining);
1881
1882 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1883 if (IS_ERR(inode)) {
1884 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1885 return 0;
1886 }
1887
1888 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1889 if (ret)
1890 goto out;
1891
1892 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1893 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1894 le32_to_cpu(lrange.fc_len));
1895 while (remaining > 0) {
1896 map.m_lblk = cur;
1897 map.m_len = remaining;
1898
1899 ret = ext4_map_blocks(NULL, inode, &map, 0);
1900 if (ret < 0)
1901 goto out;
1902 if (ret > 0) {
1903 remaining -= ret;
1904 cur += ret;
1905 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1906 } else {
1907 remaining -= map.m_len;
1908 cur += map.m_len;
1909 }
1910 }
1911
1912 down_write(&EXT4_I(inode)->i_data_sem);
1913 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1914 le32_to_cpu(lrange.fc_lblk) +
1915 le32_to_cpu(lrange.fc_len) - 1);
1916 up_write(&EXT4_I(inode)->i_data_sem);
1917 if (ret)
1918 goto out;
1919 ext4_ext_replay_shrink_inode(inode,
1920 i_size_read(inode) >> sb->s_blocksize_bits);
1921 ext4_mark_inode_dirty(NULL, inode);
1922out:
1923 iput(inode);
1924 return 0;
1925}
1926
1927static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1928{
1929 struct ext4_fc_replay_state *state;
1930 struct inode *inode;
1931 struct ext4_ext_path *path = NULL;
1932 struct ext4_map_blocks map;
1933 int i, ret, j;
1934 ext4_lblk_t cur, end;
1935
1936 state = &EXT4_SB(sb)->s_fc_replay_state;
1937 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1938 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1939 EXT4_IGET_NORMAL);
1940 if (IS_ERR(inode)) {
1941 ext4_debug("Inode %d not found.",
1942 state->fc_modified_inodes[i]);
1943 continue;
1944 }
1945 cur = 0;
1946 end = EXT_MAX_BLOCKS;
1947 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1948 iput(inode);
1949 continue;
1950 }
1951 while (cur < end) {
1952 map.m_lblk = cur;
1953 map.m_len = end - cur;
1954
1955 ret = ext4_map_blocks(NULL, inode, &map, 0);
1956 if (ret < 0)
1957 break;
1958
1959 if (ret > 0) {
1960 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1961 if (!IS_ERR(path)) {
1962 for (j = 0; j < path->p_depth; j++)
1963 ext4_mb_mark_bb(inode->i_sb,
1964 path[j].p_block, 1, true);
1965 } else {
1966 path = NULL;
1967 }
1968 cur += ret;
1969 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1970 map.m_len, true);
1971 } else {
1972 cur = cur + (map.m_len ? map.m_len : 1);
1973 }
1974 }
1975 iput(inode);
1976 }
1977
1978 ext4_free_ext_path(path);
1979}
1980
1981/*
1982 * Check if block is in excluded regions for block allocation. The simple
1983 * allocator that runs during replay phase is calls this function to see
1984 * if it is okay to use a block.
1985 */
1986bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1987{
1988 int i;
1989 struct ext4_fc_replay_state *state;
1990
1991 state = &EXT4_SB(sb)->s_fc_replay_state;
1992 for (i = 0; i < state->fc_regions_valid; i++) {
1993 if (state->fc_regions[i].ino == 0 ||
1994 state->fc_regions[i].len == 0)
1995 continue;
1996 if (in_range(blk, state->fc_regions[i].pblk,
1997 state->fc_regions[i].len))
1998 return true;
1999 }
2000 return false;
2001}
2002
2003/* Cleanup function called after replay */
2004void ext4_fc_replay_cleanup(struct super_block *sb)
2005{
2006 struct ext4_sb_info *sbi = EXT4_SB(sb);
2007
2008 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2009 kfree(sbi->s_fc_replay_state.fc_regions);
2010 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2011}
2012
2013static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2014 int tag, int len)
2015{
2016 switch (tag) {
2017 case EXT4_FC_TAG_ADD_RANGE:
2018 return len == sizeof(struct ext4_fc_add_range);
2019 case EXT4_FC_TAG_DEL_RANGE:
2020 return len == sizeof(struct ext4_fc_del_range);
2021 case EXT4_FC_TAG_CREAT:
2022 case EXT4_FC_TAG_LINK:
2023 case EXT4_FC_TAG_UNLINK:
2024 len -= sizeof(struct ext4_fc_dentry_info);
2025 return len >= 1 && len <= EXT4_NAME_LEN;
2026 case EXT4_FC_TAG_INODE:
2027 len -= sizeof(struct ext4_fc_inode);
2028 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2029 len <= sbi->s_inode_size;
2030 case EXT4_FC_TAG_PAD:
2031 return true; /* padding can have any length */
2032 case EXT4_FC_TAG_TAIL:
2033 return len >= sizeof(struct ext4_fc_tail);
2034 case EXT4_FC_TAG_HEAD:
2035 return len == sizeof(struct ext4_fc_head);
2036 }
2037 return false;
2038}
2039
2040/*
2041 * Recovery Scan phase handler
2042 *
2043 * This function is called during the scan phase and is responsible
2044 * for doing following things:
2045 * - Make sure the fast commit area has valid tags for replay
2046 * - Count number of tags that need to be replayed by the replay handler
2047 * - Verify CRC
2048 * - Create a list of excluded blocks for allocation during replay phase
2049 *
2050 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2051 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2052 * to indicate that scan has finished and JBD2 can now start replay phase.
2053 * It returns a negative error to indicate that there was an error. At the end
2054 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2055 * to indicate the number of tags that need to replayed during the replay phase.
2056 */
2057static int ext4_fc_replay_scan(journal_t *journal,
2058 struct buffer_head *bh, int off,
2059 tid_t expected_tid)
2060{
2061 struct super_block *sb = journal->j_private;
2062 struct ext4_sb_info *sbi = EXT4_SB(sb);
2063 struct ext4_fc_replay_state *state;
2064 int ret = JBD2_FC_REPLAY_CONTINUE;
2065 struct ext4_fc_add_range ext;
2066 struct ext4_fc_tl_mem tl;
2067 struct ext4_fc_tail tail;
2068 __u8 *start, *end, *cur, *val;
2069 struct ext4_fc_head head;
2070 struct ext4_extent *ex;
2071
2072 state = &sbi->s_fc_replay_state;
2073
2074 start = (u8 *)bh->b_data;
2075 end = start + journal->j_blocksize;
2076
2077 if (state->fc_replay_expected_off == 0) {
2078 state->fc_cur_tag = 0;
2079 state->fc_replay_num_tags = 0;
2080 state->fc_crc = 0;
2081 state->fc_regions = NULL;
2082 state->fc_regions_valid = state->fc_regions_used =
2083 state->fc_regions_size = 0;
2084 /* Check if we can stop early */
2085 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2086 != EXT4_FC_TAG_HEAD)
2087 return 0;
2088 }
2089
2090 if (off != state->fc_replay_expected_off) {
2091 ret = -EFSCORRUPTED;
2092 goto out_err;
2093 }
2094
2095 state->fc_replay_expected_off++;
2096 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2097 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2098 ext4_fc_get_tl(&tl, cur);
2099 val = cur + EXT4_FC_TAG_BASE_LEN;
2100 if (tl.fc_len > end - val ||
2101 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2102 ret = state->fc_replay_num_tags ?
2103 JBD2_FC_REPLAY_STOP : -ECANCELED;
2104 goto out_err;
2105 }
2106 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2107 tag2str(tl.fc_tag), bh->b_blocknr);
2108 switch (tl.fc_tag) {
2109 case EXT4_FC_TAG_ADD_RANGE:
2110 memcpy(&ext, val, sizeof(ext));
2111 ex = (struct ext4_extent *)&ext.fc_ex;
2112 ret = ext4_fc_record_regions(sb,
2113 le32_to_cpu(ext.fc_ino),
2114 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2115 ext4_ext_get_actual_len(ex), 0);
2116 if (ret < 0)
2117 break;
2118 ret = JBD2_FC_REPLAY_CONTINUE;
2119 fallthrough;
2120 case EXT4_FC_TAG_DEL_RANGE:
2121 case EXT4_FC_TAG_LINK:
2122 case EXT4_FC_TAG_UNLINK:
2123 case EXT4_FC_TAG_CREAT:
2124 case EXT4_FC_TAG_INODE:
2125 case EXT4_FC_TAG_PAD:
2126 state->fc_cur_tag++;
2127 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2128 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2129 break;
2130 case EXT4_FC_TAG_TAIL:
2131 state->fc_cur_tag++;
2132 memcpy(&tail, val, sizeof(tail));
2133 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2134 EXT4_FC_TAG_BASE_LEN +
2135 offsetof(struct ext4_fc_tail,
2136 fc_crc));
2137 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2138 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2139 state->fc_replay_num_tags = state->fc_cur_tag;
2140 state->fc_regions_valid =
2141 state->fc_regions_used;
2142 } else {
2143 ret = state->fc_replay_num_tags ?
2144 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2145 }
2146 state->fc_crc = 0;
2147 break;
2148 case EXT4_FC_TAG_HEAD:
2149 memcpy(&head, val, sizeof(head));
2150 if (le32_to_cpu(head.fc_features) &
2151 ~EXT4_FC_SUPPORTED_FEATURES) {
2152 ret = -EOPNOTSUPP;
2153 break;
2154 }
2155 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2156 ret = JBD2_FC_REPLAY_STOP;
2157 break;
2158 }
2159 state->fc_cur_tag++;
2160 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2161 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2162 break;
2163 default:
2164 ret = state->fc_replay_num_tags ?
2165 JBD2_FC_REPLAY_STOP : -ECANCELED;
2166 }
2167 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2168 break;
2169 }
2170
2171out_err:
2172 trace_ext4_fc_replay_scan(sb, ret, off);
2173 return ret;
2174}
2175
2176/*
2177 * Main recovery path entry point.
2178 * The meaning of return codes is similar as above.
2179 */
2180static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2181 enum passtype pass, int off, tid_t expected_tid)
2182{
2183 struct super_block *sb = journal->j_private;
2184 struct ext4_sb_info *sbi = EXT4_SB(sb);
2185 struct ext4_fc_tl_mem tl;
2186 __u8 *start, *end, *cur, *val;
2187 int ret = JBD2_FC_REPLAY_CONTINUE;
2188 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2189 struct ext4_fc_tail tail;
2190
2191 if (pass == PASS_SCAN) {
2192 state->fc_current_pass = PASS_SCAN;
2193 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2194 }
2195
2196 if (state->fc_current_pass != pass) {
2197 state->fc_current_pass = pass;
2198 sbi->s_mount_state |= EXT4_FC_REPLAY;
2199 }
2200 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2201 ext4_debug("Replay stops\n");
2202 ext4_fc_set_bitmaps_and_counters(sb);
2203 return 0;
2204 }
2205
2206#ifdef CONFIG_EXT4_DEBUG
2207 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2208 pr_warn("Dropping fc block %d because max_replay set\n", off);
2209 return JBD2_FC_REPLAY_STOP;
2210 }
2211#endif
2212
2213 start = (u8 *)bh->b_data;
2214 end = start + journal->j_blocksize;
2215
2216 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2217 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2218 ext4_fc_get_tl(&tl, cur);
2219 val = cur + EXT4_FC_TAG_BASE_LEN;
2220
2221 if (state->fc_replay_num_tags == 0) {
2222 ret = JBD2_FC_REPLAY_STOP;
2223 ext4_fc_set_bitmaps_and_counters(sb);
2224 break;
2225 }
2226
2227 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2228 state->fc_replay_num_tags--;
2229 switch (tl.fc_tag) {
2230 case EXT4_FC_TAG_LINK:
2231 ret = ext4_fc_replay_link(sb, &tl, val);
2232 break;
2233 case EXT4_FC_TAG_UNLINK:
2234 ret = ext4_fc_replay_unlink(sb, &tl, val);
2235 break;
2236 case EXT4_FC_TAG_ADD_RANGE:
2237 ret = ext4_fc_replay_add_range(sb, &tl, val);
2238 break;
2239 case EXT4_FC_TAG_CREAT:
2240 ret = ext4_fc_replay_create(sb, &tl, val);
2241 break;
2242 case EXT4_FC_TAG_DEL_RANGE:
2243 ret = ext4_fc_replay_del_range(sb, &tl, val);
2244 break;
2245 case EXT4_FC_TAG_INODE:
2246 ret = ext4_fc_replay_inode(sb, &tl, val);
2247 break;
2248 case EXT4_FC_TAG_PAD:
2249 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2250 tl.fc_len, 0);
2251 break;
2252 case EXT4_FC_TAG_TAIL:
2253 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2254 0, tl.fc_len, 0);
2255 memcpy(&tail, val, sizeof(tail));
2256 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2257 break;
2258 case EXT4_FC_TAG_HEAD:
2259 break;
2260 default:
2261 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2262 ret = -ECANCELED;
2263 break;
2264 }
2265 if (ret < 0)
2266 break;
2267 ret = JBD2_FC_REPLAY_CONTINUE;
2268 }
2269 return ret;
2270}
2271
2272void ext4_fc_init(struct super_block *sb, journal_t *journal)
2273{
2274 /*
2275 * We set replay callback even if fast commit disabled because we may
2276 * could still have fast commit blocks that need to be replayed even if
2277 * fast commit has now been turned off.
2278 */
2279 journal->j_fc_replay_callback = ext4_fc_replay;
2280 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2281 return;
2282 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2283}
2284
2285static const char * const fc_ineligible_reasons[] = {
2286 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2287 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2288 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2289 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2290 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2291 [EXT4_FC_REASON_RESIZE] = "Resize",
2292 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2293 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2294 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2295 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2296};
2297
2298int ext4_fc_info_show(struct seq_file *seq, void *v)
2299{
2300 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2301 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2302 int i;
2303
2304 if (v != SEQ_START_TOKEN)
2305 return 0;
2306
2307 seq_printf(seq,
2308 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2309 stats->fc_num_commits, stats->fc_ineligible_commits,
2310 stats->fc_numblks,
2311 div_u64(stats->s_fc_avg_commit_time, 1000));
2312 seq_puts(seq, "Ineligible reasons:\n");
2313 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2314 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2315 stats->fc_ineligible_reason_count[i]);
2316
2317 return 0;
2318}
2319
2320int __init ext4_fc_init_dentry_cache(void)
2321{
2322 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2323 SLAB_RECLAIM_ACCOUNT);
2324
2325 if (ext4_fc_dentry_cachep == NULL)
2326 return -ENOMEM;
2327
2328 return 0;
2329}
2330
2331void ext4_fc_destroy_dentry_cache(void)
2332{
2333 kmem_cache_destroy(ext4_fc_dentry_cachep);
2334}